WO2024101023A1 - Fluorescent light source device - Google Patents

Fluorescent light source device Download PDF

Info

Publication number
WO2024101023A1
WO2024101023A1 PCT/JP2023/035061 JP2023035061W WO2024101023A1 WO 2024101023 A1 WO2024101023 A1 WO 2024101023A1 JP 2023035061 W JP2023035061 W JP 2023035061W WO 2024101023 A1 WO2024101023 A1 WO 2024101023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
fluorescent
notch filter
optical system
Prior art date
Application number
PCT/JP2023/035061
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 井上
清幸 蕪木
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2024101023A1 publication Critical patent/WO2024101023A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a fluorescent light source device that converts the wavelength of incident excitation light and emits the generated fluorescent light.
  • the market may demand that the illumination light have high color rendering properties.
  • Patent Document 1 discloses a light source device that includes an excitation light-emitting element composed of a GaN-based LED element, and a wavelength control optical member that includes a phosphor that receives light emitted from the light-emitting element and emits fluorescence.
  • the wavelength control optical member disclosed in Patent Document 1 has a multi-layer structure, and specifically includes a first wavelength conversion layer in which a green fluorescent dye is dispersed within a matrix resin, a second wavelength conversion layer in which a red fluorescent dye is dispersed within a matrix resin, and a wavelength selection layer in which a light-absorbing dye is dispersed within a matrix resin.
  • the wavelength control optical component with the above structure is capable of improving color rendering by absorbing yellow light, which reduces color rendering, with a light absorbing pigment and a red fluorescent pigment, and emitting red light with the red fluorescent pigment.
  • Patent document 2 also discloses a technique for cutting out red light using a dichroic mirror that functions as a notch filter to improve color reproducibility.
  • Patent Document 1 improves color rendering by absorbing light in the visible range using a phosphor or a dye-absorbing dye. As a result, a large amount of light is absorbed in the wavelength control optical component, and it is necessary to increase the output of the excitation light source to obtain a high light output, resulting in insufficient light utilization efficiency.
  • the method of Patent Document 2 has a structure in which a dichroic mirror functions as a notch filter, and is arranged at a 45° inclination with respect to the optical axis.
  • a notch filter is formed by stacking multiple dielectric layers with different refractive indices. To narrow the cut wavelength range of the notch filter, it is necessary to increase the number of layers (number of films). On the other hand, if the number of films is too large, the stress on the substrate holding the dielectric multilayer film increases, which may induce deformation or cracking of the substrate. For this reason, there is a natural limit to the number of layers that can be stacked as a dielectric multilayer film.
  • a notch filter When a notch filter is placed with its light incidence surface tilted at 45° with respect to the optical axis, the chief ray of light incident on this notch filter passes through the notch filter at a 45° inclination with respect to the lamination direction of the dielectric multilayer film.
  • the thickness of the notch filter needs to be made thicker; in other words, the number of layers needs to be increased.
  • a notch filter with its light incidence surface tilted at 45° with respect to the optical axis is structurally unable to sufficiently narrow the cut wavelength range.
  • the present invention aims to enable the generation of light with high color rendering properties in a light source device that includes an excitation light source and a phosphor.
  • the fluorescent light source device comprises: an excitation light source that emits excitation light in the blue region; a fluorescent plate including a Ce-activated phosphor and configured to receive the excitation light and generate fluorescence having a longer wavelength than the excitation light; a collimating optical system for reducing at least the divergence angle of the fluorescent light; a notch filter through which the light emitted from the collimating optical system passes, the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
  • the cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
  • the first feature of the present invention is that the light guided to the downstream utilization optical system via the notch filter is a composite light of the fluorescent light and light in the blue region, and has an average color rendering index (Ra value
  • the fluorescent light source device is an excitation light source that emits excitation light; a fluorescent plate including a Ce-activated phosphor and configured to receive the excitation light and generate fluorescence having a longer wavelength than the excitation light; a collimating optical system for reducing at least the divergence angle of the fluorescent light; a notch filter through which the light emitted from the collimating optical system passes; a blue light source that inputs superimposed light of a blue range onto an optical path of the fluorescence emitted from the fluorescent plate, the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
  • the cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
  • a second feature of the present invention is that the light guided to the downstream utilization optical system via the
  • the phosphor may be a Ce-activated oxide phosphor or a Ce-activated nitride phosphor.
  • a specific example may be one or more selected from the group consisting of LSN ( La3Si6N11 :Ce2 + , (La,Y) 3Si6N11 : Ce2 + ), CSO ( CaSc2O4 : Ce3 + ) , LuAG ( Al5O12Lu3 :Ce2 +), and YAG (Al5O12Y3:Ce2+ ) .
  • LSN La3Si6N11 :Ce2 + , (La,Y) 3Si6N11 : Ce2 + ), CSO ( CaSc2O4 : Ce3 + ) , LuAG ( Al5O12Lu3 :Ce2 +), and YAG (Al5O12Y3:Ce2+ ) .
  • LSN is particularly preferred.
  • Ce-activated phosphors there are also Eu-activated and Gd-activated phosphors.
  • the electron orbitals of Eu and Gd are more susceptible to heat and deexcitation is more likely to occur.
  • thermal quenching is large and the luminous efficiency is reduced. Therefore, from the perspective of achieving both high color rendering and high brightness, it is preferable to use Ce as the material activated in the phosphor.
  • the divergence angle of the fluorescence emitted from the fluorescent plate is reduced through a collimating optical system, and then the fluorescence is incident on a notch filter whose light incidence surface is formed in a direction substantially perpendicular to the optical axis of the principal ray.
  • the wavelength range of the fluorescence cut by the notch filter can be narrowed.
  • the cut wavelength range of the notch filter can be set so that the center wavelength is in the range of 553 nm to 575 nm, and the half-width is in the range of 17 nm to 41 nm.
  • the light that is incident on this optical system is a composite light of fluorescent light and light in the blue range, and an extremely high average color rendering index (Ra value) of 85 or more is achieved.
  • This Ra value is a high value that has not been easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source.
  • the chromaticity y of the composite light is preferably in the range of 0.283 to 0.373.
  • the Ra value of the synthetic light can be measured by a method conforming to the method specified in JIS Z 8726 (method for evaluating the color rendering properties of light sources).
  • the chromaticity y value of the synthetic light can be measured by a method conforming to the method specified in, for example, JIS Z 8724 (method for measuring color - light source color).
  • a sintered binder made of inorganic compounds such as CaF2 , BaF2 , MgF2 , ZnS, Al2O3 , MgO, ZrO2 , ZnO, TiO2, etc., in which the particulate fluorescent material is dispersed and sintered can be used.
  • oxide materials are particularly preferred as the binder material, with Al2O3 being particularly preferred.
  • MgO is particularly preferred as the binder material.
  • the light source device may emit a composite light of the blue light emitted from the excitation light source and the fluorescence emitted from the fluorescent plate.
  • a separate blue light source that further emits blue light may be prepared, and the blue light emitted from the blue light source may be superimposed on the fluorescence emitted from the fluorescent plate, and the resulting composite light may be emitted from the light source device.
  • the excitation light source does not necessarily have to be a light source that emits light in the blue range, and can be, for example, a light source that emits violet light or ultraviolet light.
  • the position where the light in the blue range is superimposed can be between the notch filter and the fluorescent plate, or a position behind the fluorescent plate.
  • the collimating optical system may have a light entrance surface or light exit surface formed as a flat surface, and the notch filter may be disposed on the flat surface.
  • the above configuration allows the collimating optical system and the notch filter to be integrated, making it possible to reduce the size of the device.
  • the fluorescent light source device of the present invention can generate light that exhibits high color rendering properties.
  • FIG. 1 is a diagram illustrating a schematic configuration of an embodiment of a fluorescent light source device.
  • 1 is a diagram showing an example of a transmission spectrum of a notch filter.
  • 4 is a schematic cross-sectional view for explaining the structure of a fluorescent plate.
  • FIG. FIG. 4 is a partially enlarged view of FIG. 3 .
  • 13 is a graph in which the spectrum of synthetic light L1 and the transmission spectrum of notch filter 20 are superimposed when blue light source 9 is an LED.
  • 13 is a graph in which the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 are superimposed when the blue light source 9 is a laser diode.
  • 13 is a graph showing the relationship between the y value and the Ra value of the combined light L1 when the blue light source 9 is an LED, the material of the phosphor 16 contained in the phosphor plate 10, and the presence or absence of the notch filter 20 are changed.
  • 13 is a graph showing the relationship between the y value and the Ra value of the combined light L1 when the blue light source 9 is a laser diode, the material of the phosphor 16 contained in the phosphor plate 10, and the presence or absence of the notch filter 20 are changed.
  • 11 is a graph showing the relationship between the half width of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1.
  • 11 is a graph showing the relationship between the minimum transmittance of light within the cut wavelength band of the notch filter 20 and the Ra value of the synthetic light L1.
  • 11 is a graph showing the relationship between the center wavelength of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment.
  • 13 is a graph in which the spectrum of the combined light L1 and the transmission spectrum of the notch filter 20 are superimposed when the blue light source 9 is an LED and the fluorescent plate contains two types of fluorescent materials.
  • FIG. 1 is a diagram showing a schematic configuration of one embodiment of a fluorescent light source device.
  • the fluorescent light source device 1 shown in FIG. 1 includes an excitation light source 5, a collimating optical system 7, a fluorescent plate 10, and a notch filter 20.
  • the fluorescent light source device 1 of this embodiment includes a blue light source 9 that emits blue light, a reflecting mirror 41, and a dichroic mirror 43.
  • the emission wavelength of the excitation light source 5 is not limited as long as it is a wavelength capable of exciting the phosphor mounted on the fluorescent plate 10, but is typically in the blue, violet, or ultraviolet range.
  • the excitation light source 5 includes a semiconductor laser element that emits light in the blue range with a wavelength of 445 nm to 465 nm.
  • the excitation light source 5 may include an optical system such as a collimating lens as necessary.
  • Dichroic mirror 43 is designed to reflect at least blue light and transmit light with longer wavelengths than blue light.
  • blue light refers to light in the wavelength range of 420 nm to 500 nm
  • purple light refers to light in the wavelength range of 370 nm to 420 nm
  • ultraviolet light refers to light in the wavelength range of less than 370 nm.
  • excitation light L5 in the blue range from the excitation light source 5 is guided to one main surface of the fluorescent plate 10 (the main surface opposite to the side on which the substrate 11 is installed) via a reflecting mirror 41 and a dichroic mirror 43.
  • the phosphor contained in the fluorescent plate 10 is excited by the excitation light L5 and emits fluorescent light L10.
  • the divergence angle of the fluorescent light L10 is reduced via the collimating optical system 7, and then it is typically converted into parallel light, and then passes through the notch filter 20.
  • the notch filter 20 significantly reduces the light intensity of components in the designed cut wavelength range of the incident light, while hardly reducing the light output of wavelength components outside the cut wavelength range.
  • the cut wavelength range of the notch filter 20 is designed so that the center wavelength falls within the range of 553 nm to 575 nm and the half width falls within the range of 17 nm to 41 nm. That is, the cut wavelength range of the notch filter 20 provided in the fluorescent light source device 1 is an extremely narrow band.
  • the fluorescence L10 which has been converted into nearly parallel light by the collimating optical system 7, enters the notch filter 20.
  • the light incidence surface of the notch filter 20 is oriented in a direction substantially perpendicular to the optical axis of the chief ray of the fluorescence L10 emitted from the collimating optical system 7. Therefore, unlike the configuration of Patent Document 2, the cut wavelength range of the notch filter 20 can be narrowed.
  • the fluorescence L10 which has passed through the notch filter 20 and has a reduced light intensity of the components in the cut wavelength range, is combined with the blue light L9 emitted from the blue light source 9.
  • This combined light L1 is guided to the downstream utilization optical system 50.
  • An LED or a laser diode can be used as the blue light source 9.
  • the utilization optical system 50 is any optical system that utilizes the combined light L1 emitted from the fluorescent light source device 1.
  • a collimating optical system 45 is provided to reduce the divergence angle of the blue light L9 emitted from the blue light source 9, but it is optional whether or not to provide this collimating optical system 45.
  • Fig. 3 is a cross-sectional view showing a schematic configuration of the fluorescent plate 10 and the substrate 11.
  • Fig. 4 is an enlarged view of a portion of Fig. 3.
  • the fluorescent plate 10 is fixed to the substrate 11 via a bonding layer 12.
  • the substrate 11 is provided to dissipate heat generated by the fluorescent plate 10, and is made of a material with a thermal conductivity of, for example, 90 [W/m ⁇ K] or more, specifically, for example, 230 to 400 [W/m ⁇ K]. Examples of such materials include Cu, copper compounds (MoCu, CuW, etc.), Al, and AlN.
  • the thickness of the substrate 11 is, for example, 0.5 mm to 5 mm. From the standpoint of heat dissipation, it is preferable that the surface area of the substrate 11 is larger than the area of the fluorescent plate 10.
  • the bonding layer 12 is a layer that bonds the substrate 11 and the fluorescent plate 10, and is made of, for example, a solder material. From the viewpoint of heat dissipation, it is preferable that the material that constitutes the bonding layer 12 has, for example, a thermal conductivity of 40 [W/m ⁇ K] or more. More specifically, for example, cream solder made by mixing flux and other impurities with materials such as Sn and Pb in a cream (paste) form, Sn-Ag-Cu solder, Au-Sn solder, etc. can be used.
  • the thickness of the bonding layer 12 is, for example, 20 ⁇ m to 200 ⁇ m.
  • a metal film made of Ni/Au film formed by, for example, a plating method may be formed between the substrate 11 and the bonding layer 12.
  • the surface on which the excitation light L5 is incident on the fluorescent plate 10 and the surface on which the fluorescent light L10 is extracted from the fluorescent plate 10 and used are the same surface.
  • a reflective layer 13 is provided on the upper surface of the substrate 11.
  • the reflective layer 13 is provided to reflect the fluorescent light L10 generated by the fluorescent plate 10 and proceed toward the substrate 11 side, and to guide it to the main surface on the light extraction side.
  • the reflective layer 13 can be composed of, for example, a metal film such as Al or Ag, or an increased reflection film in which a dielectric multilayer film is formed on the metal film.
  • the reflective layer 13 is not necessary.
  • the fluorescent plate 10 has a rectangular flat plate-like structure when viewed in a direction perpendicular to the surface of the substrate 11.
  • the fluorescent plate 10 has a thickness of, for example, 0.05 mm to 1 mm.
  • the fluorescent plate 10 includes a phosphor 16, a binder 17, and pores 18.
  • the light extraction surface of the fluorescent plate 10 may have a moth-eye structure 15 formed by processing into fine projections and recesses.
  • the phosphor 16 is a Ce- activated oxide phosphor or a Ce-activated nitride phosphor.
  • one or more materials selected from the group consisting of LSN (La3Si6N11 : Ce2 + , ( La , Y ) 3Si6N11 :Ce2+), CSO ( CaSc2O4 : Ce3 + ), LuAG ( Al5O12Lu3 :Ce2 + ), and YAG ( Al5O12Y3 : Ce2 + ) can be used.
  • LSN is particularly preferable.
  • phosphor 16 is in the form of particles and is dispersed within binder 17.
  • the particle size of phosphor 16 is 30 ⁇ m or less, preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the binder 17 is composed of an inorganic compound.
  • the binder 17 is composed of one or more of CaF2 , BaF2 , MgF2 , ZnS, Al2O3 , MgO, ZrO2 , ZnO , and TiO2 .
  • alumina Al2O3
  • MgO is particularly preferable as the material of the binder 17.
  • the fluorescent plate 10 is a sintered body of inorganic particles, which are the constituent material of the binder 17, and particles of the constituent material of the phosphor 16.
  • the pores 18 contained in the fluorescent plate 10 are generated during the sintering process, but it is also possible to make the structure completely free of pores 18 by changing the profile of the sintering process.
  • the mass ratio of the binder 17 contained in the fluorescent plate 10 is preferably 30% to 70% by mass or less, and more preferably 50% to 90% by mass.
  • the mass ratio of the binder 17 contained in the fluorescent plate 10 refers to the ratio of the mass of the binder 17 to the total mass of the phosphor 16 and the binder 17.
  • the relative density of the fluorescent plate 10 is preferably 80.4% to 99.5%.
  • the relative density of the fluorescent plate 10 is the ratio of the apparent density to the theoretical density of the fluorescent plate 10, which is a sintered body, and can be measured, for example, by a method conforming to JIS R 1634 (Method of measuring density and open porosity of sintered fine ceramics).
  • the fluorescent plate 10 can include pores 18 with a content of 0.5% to 19.6%.
  • the inclusion of pores 18 in the fluorescent plate 10 creates a refractive index difference at the interface between the phosphor 16 or binder 17 and the pores 18, making it easier to refract the fluorescence L10 generated within the fluorescent plate 10 to the main surface on the light extraction side.
  • Figure 5 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the phosphor 16 contained in the fluorescent plate 10 is LSN (fluorescence peak wavelength is 535 nm), the binder 17 is alumina, and the blue light source 9 is an LED with a peak wavelength of 455 nm.
  • a filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20.
  • the synthetic light L1 is light that has passed through the notch filter 20, the light intensity in the vicinity of 553 nm to 575 nm, which is the cut wavelength range of the notch filter 20, is significantly reduced.
  • Figure 6 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the phosphor 16 contained in the fluorescent plate 10 is LSN (fluorescence peak wavelength is 535 nm), the binder 17 is alumina, and the blue light source 9 is a laser diode with a peak wavelength of 460 nm.
  • a filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20.
  • the synthetic light L1 is light that has passed through the notch filter 20, the light intensity in the vicinity of 553 nm to 575 nm, which is the cut wavelength range of the notch filter 20, is significantly reduced.
  • the reason why extremely high color rendering is achieved by the synthetic light L1 obtained by the fluorescent light source device 1 of this embodiment is unclear, but it is presumed that this is because the spectrum of the fluorescence L10 generated by excitation with the excitation light L5 has a reduced intensity in the wavelength range between the green and red ranges, near 553 nm to 575 nm.
  • the synthetic light L1 which is obtained by combining the fluorescence L10, whose light intensity in the cut wavelength range near 553 nm to 575 nm is significantly reduced, with the blue light L9, essentially simulates a state in which blue light, green light, and red light are superimposed, and it is presumed that this results in high color rendering.
  • FIG. 7 is a graph showing the relationship between the y value and the Ra value measured when the material of the phosphor 16 contained in the fluorescent plate 10 is YAG or LSN, and when the notch filter 20 is provided and when the notch filter 20 is not provided.
  • the y value was changed by adjusting the relative value of the light output of the excitation light source 5 and the blue light source 9 to change the target color temperature.
  • the Ra value was measured using synthetic light according to a method in accordance with JIS Z 8726. As the blue light source 9, an LED with a peak wavelength of 455 nm was used.
  • LSN LSN
  • LSN-2 LSN
  • YAG referred to as "YAG-1”
  • YAG-2 YAG
  • the Ra value of the synthetic light L1 falls below 80 regardless of the y value.
  • the notch filter 20 it can be seen that an extremely high Ra value of 85 or more is obtained for any phosphor when the chromaticity y value of the synthetic light L1 is within the range of 0.283 to 0.396.
  • a higher Ra value is obtained with LSN. This is thought to be because the fluorescence L10 emitted from LSN contains more red components than the fluorescence L10 emitted from YAG.
  • the chromaticity y value is within the range of 0.283 to 0.396, the color temperature of the synthetic light L1 is 5100K to 9100K.
  • Figure 8 is a graph showing the relationship between the y value and the Ra value measured in the same manner as in Figure 7, using a laser diode with a peak wavelength of 460 nm as the blue light source 9.
  • Figure 8 confirms that when the blue light source 9 is a laser diode, as in the case of an LED, the Ra value of the synthetic light L1 falls below 80 regardless of the y value when the notch filter 20 is not provided.
  • the notch filter 20 it can be seen that an extremely high Ra value of 85 or more is obtained for all phosphors when the chromaticity y value of the synthetic light L1 is within the range of 0.280 to 0.373. Note that when the chromaticity y value is within the range of 0.283 to 0.373, the color temperature of the synthetic light L1 is 5400K to 8300K.
  • Table 1 shows the relationship between the half-width of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1 when the half-width is changed in a case where an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10.
  • FIG. 9 is a graph showing the results when the center wavelength of the cut wavelength range of each notch filter 20 is fixed at 564 nm and only the half-width is designed to be changed.
  • the Ra value of the synthetic light L1 can be increased by designing the cut wavelength range of the notch filter 20 to have a half-width in the range of 17 nm to 41 nm. If the half-width is too narrow, the light components in the wavelength range that should be cut to achieve high color rendering are not cut, and it is believed that the color rendering is degraded. Conversely, if the half-width is too wide, the light components in the wavelength range that should not be cut to achieve high color rendering are cut, and it is believed that the color rendering is degraded.
  • the Ra value of the synthetic light L1 exceeds 85.
  • the half-width is 18 nm
  • the Ra value is 84.4, which can be considered to be substantially equivalent to 85.
  • the Ra value can be made 84 or more. Even when the Ra value is in the range of 84 to 85, the color rendering value is lower than when the Ra value is 85 or more, but this is a high value that could not be easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source.
  • the Ra value of the synthetic light L1 exceeds 85.
  • the half-width is 17 nm
  • the Ra value is 84.9, which can be considered to be substantially equivalent to 85.
  • the Ra value can be made 84 or more. Even when the Ra value is in the range of 84 to 85, the color rendering value is lower than when the Ra value is 85 or more, but this is a high value that could not be easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source.
  • the Ra value of the synthetic light L1 exceeds 85.
  • the half-width is 23 nm to 25 nm
  • the Ra value of the synthetic light L1 reaches approximately 90.
  • the half-width is 16 nm or 32 nm
  • the Ra is 84.5, which can be considered to be 85 when rounded off to the first decimal place.
  • the Ra value of the synthetic light L1 exceeds 85.
  • the half-width is 23 nm to 29 nm
  • the Ra value of the synthetic light L1 reaches approximately 90.
  • the half-width is 17 nm
  • the Ra is 84.5, which can be considered to be 85 when rounded off to the first decimal place.
  • the Ra value of the synthetic light L1 exceeds 85.
  • the half-width is 28 nm to 32 nm
  • the Ra value of the synthetic light L1 reaches approximately 90.
  • the half-width is 20 nm or 40 nm
  • the Ra is 84.8, which can be considered to be 85 when rounded off to the first decimal place.
  • the Ra value of the synthetic light L1 exceeds 85. If the half-width is 30 nm or 36 nm, the Ra is 84.8, and if rounded to the first decimal place, the Ra can be considered to be 85. Also, by setting the half-width to 30 nm to 36 nm, the Ra can be made 84 or more.
  • the Ra value of the synthetic light L1 could not be increased to 83 or more even by adjusting the half-width of the cut wavelength range.
  • Figure 10 is a graph evaluating the effect on the Ra value of the synthetic light L1 when the degree of reduction in light belonging to the cut wavelength range of the notch filter 20 is changed when an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10.
  • the horizontal axis is the transmittance for light of the central wavelength in the cut wavelength range of the notch filter 20, and the vertical axis is the Ra value of the synthetic light L1.
  • Figure 11 is a graph evaluating the effect on the Ra value of the synthetic light L1 when the central wavelength of the cut wavelength range of the notch filter 20 is changed when an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10.
  • each notch filter 20 was designed so that the half-width of the cut wavelength range of the notch filter 20 was fixed at 25 nm and only the central wavelength was changed.
  • the Ra value of the synthetic light L1 can be increased.
  • the notch filter 20 may be disposed downstream of the location where the blue light L9 is combined with the fluorescent light L10. In the example of FIG. 12, the notch filter 20 is disposed downstream of the dichroic mirror 43.
  • the notch filter 20 may be installed as an integral part of a refractive optical system that changes the direction of light travel.
  • the fluorescent light source device 1 shown in FIG. 13 is equipped with a focusing optical system 46.
  • This focusing optical system 46 is arranged for the purpose of focusing and guiding the composite light L1 generated by the fluorescent light source device 1 toward the downstream utilization optical system 50. If this focusing optical system 46 is a lens having a flat surface, the notch filter 20 may be arranged on this flat surface.
  • a notch filter 20 may be disposed on the light exit surface of the lens that constitutes the collimating optical system 7.
  • the fluorescent light source device 1 may emit a composite light L1 that is a composite of the blue light L5 from the excitation light source 5 and the fluorescent light L10. In this case, as shown in FIG. 15, the fluorescent light source device 1 may not include a blue light source 9.
  • the excitation light source 5 may emit excitation light L5 from the back side of the fluorescent plate 10, and a portion of the excitation light L5 transmitted through the fluorescent plate 10 and the fluorescence L10 emitted from the fluorescent plate 10 may be guided to the utilization optical system 50 as a composite light L1.
  • the fluorescent plate 10 in a state where it is not held by the substrate 11, unlike the configuration described above with reference to Fig. 3.
  • the reflective layer 13 is not necessary.
  • excitation light L5 may be incident from the excitation light source 5 obliquely onto the fluorescent plate 10.
  • a portion of the excitation light L5 reflected by the light incident surface of the fluorescent plate 10 is superimposed on the fluorescent light L10 to obtain a composite light L1.
  • the fluorescent plate 10 may include multiple types of fluorescent material 16.
  • Figure 18 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the fluorescent material 16 contained in the fluorescent plate 10 is a mixture of LuAG (peak fluorescence wavelength 517 nm) and LSN (peak fluorescence wavelength 556 nm), the binder 17 is alumina, and the blue light source 9 is an LED with a peak wavelength of 455 nm.
  • a filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20.
  • the y value of the synthetic light L1 is increased compared to when the phosphor 16 is made of a single type of material. This suggests that the fluorescent light source device 1 can generate synthetic light L1 that has a high Ra value while having a low color temperature by providing a fluorescent plate 10 containing multiple types of phosphors 16 that produce fluorescence L10 with different wavelengths.
  • Fluorescent light source device 5 Excitation light source 7: Collimating optical system 9: Blue light source 10: Fluorescent plate 11: Substrate 17: Binder 20: Notch filter 41: Reflecting mirror 43: Dichroic mirror 45: Collimating optical system 46: Condensing optical system 50: Utilizing optical system L1: Synthesized light L10: Fluorescent light L5: Excitation light L9: Blue light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is a fluorescent light source device that includes an excitation light source and a fluorescent body, and that is capable of generating light that exhibits excellent color-rendering properties. The fluorescent light source device comprises: an excitation light source that emits excitation light in the blue color region; a fluorescent plate that includes a fluorescent body in which Ce has been activated, and generates long-wavelength fluorescence by receiving the excitation light; a collimating optical system that at least reduces the divergence angle of the fluorescence; and a notch filter through which light that is emitted from the collimating optical system passes. The notch filter has a light incidence surface that is oriented substantially orthogonal to the optical axis of the principal rays of the light emitted from the collimating optical system, and a cut wavelength region in which the center wavelength thereof is in a range of 553–575 nm, and the half value width is in a range of 17–41 nm.

Description

蛍光光源装置Fluorescent light source device
 本発明は、入射された励起光の波長を変換して生成された蛍光を出射する、蛍光光源装置に関する。 The present invention relates to a fluorescent light source device that converts the wavelength of incident excitation light and emits the generated fluorescent light.
 照明光を生成する光源装置においては、照明光の高い演色性が市場から要求される場合がある。 In light source devices that generate illumination light, the market may demand that the illumination light have high color rendering properties.
 下記特許文献1には、GaN系のLED素子で構成される励起用の発光素子と、この発光素子から出射された光を受光して蛍光を発する蛍光体を含む波長制御光学部材と、を備えた光源装置が開示されている。この特許文献1に開示された波長制御光学部材は、多層構造であって、具体的には、マトリックス樹脂の内部で緑色蛍光色素を分散させた第一波長変換層と、マトリックス樹脂の内部で赤色蛍光色素を分散させた第二波長変換層と、マトリックス樹脂の内部で光吸収色素を分散させた波長選択層とを含む。 Patent Document 1 below discloses a light source device that includes an excitation light-emitting element composed of a GaN-based LED element, and a wavelength control optical member that includes a phosphor that receives light emitted from the light-emitting element and emits fluorescence. The wavelength control optical member disclosed in Patent Document 1 has a multi-layer structure, and specifically includes a first wavelength conversion layer in which a green fluorescent dye is dispersed within a matrix resin, a second wavelength conversion layer in which a red fluorescent dye is dispersed within a matrix resin, and a wavelength selection layer in which a light-absorbing dye is dispersed within a matrix resin.
 特許文献1によれば、上記構造の波長制御光学部材によって、演色性を低下させる黄色光を光吸収色素及び赤色蛍光色素により吸収し、赤色蛍光色素により赤色光を発光することにより、演色性を高めることができるとされている。 According to Patent Document 1, the wavelength control optical component with the above structure is capable of improving color rendering by absorbing yellow light, which reduces color rendering, with a light absorbing pigment and a red fluorescent pigment, and emitting red light with the red fluorescent pigment.
 また、特許文献2には、色再現性を良くするために、ノッチフィルタとして機能するダイクロイックミラーを用いて赤色域の光をカットする技術が開示されている。 Patent document 2 also discloses a technique for cutting out red light using a dichroic mirror that functions as a notch filter to improve color reproducibility.
特開2017-138534号公報JP 2017-138534 A 特許第5928383号公報Patent No. 5928383
 上記特許文献1の方法は、蛍光体又は色素吸収色素によって可視域を光吸収することで演色性を改善するものである。このため、波長制御光学部材において多くの光量が吸収される結果、高い光出力を得るには励起光源の出力を高める必要があり、光の利用効率が十分ではなかった。 The method of Patent Document 1 improves color rendering by absorbing light in the visible range using a phosphor or a dye-absorbing dye. As a result, a large amount of light is absorbed in the wavelength control optical component, and it is necessary to increase the output of the excitation light source to obtain a high light output, resulting in insufficient light utilization efficiency.
 また、特許文献2の方法は、ダイクロイックミラーをノッチフィルタとして機能させる構造であり、光軸に対して45°傾斜させた状態で配置されている。ノッチフィルタは、屈折率の異なる複数の誘電体層が積層されて形成される。ノッチフィルタのカット波長域を狭小化するには、この積層数(膜数)を多くする必要がある。一方で、膜数を多くしすぎると、誘電体多層膜を保持する基板への応力が高まり、基板の変形や割れを誘発するおそれがある。このため、誘電体多層膜として積層できる数にはおのずと限界がある。 The method of Patent Document 2 has a structure in which a dichroic mirror functions as a notch filter, and is arranged at a 45° inclination with respect to the optical axis. A notch filter is formed by stacking multiple dielectric layers with different refractive indices. To narrow the cut wavelength range of the notch filter, it is necessary to increase the number of layers (number of films). On the other hand, if the number of films is too large, the stress on the substrate holding the dielectric multilayer film increases, which may induce deformation or cracking of the substrate. For this reason, there is a natural limit to the number of layers that can be stacked as a dielectric multilayer film.
 光入射面が光軸に対して45°傾けられた状態でノッチフィルタが配置されていると、このノッチフィルタに入射された光の主光線は、誘電体多層膜の積層方向に対して45°傾斜した状態でノッチフィルタを通過する。このことは、ノッチフィルタの光入射面の法線方向に光の主光線が入射した場合と比較すると、同じ光路長だけノッチフィルタ内を通過させるためには、ノッチフィルタの厚みを厚くする必要がある、言い換えれば積層数を増加させる必要があることを意味する。しかし、誘電体多層膜として積層できる数に限界があることは上述した通りである。したがって、光入射面が光軸に対して45°傾けられて配置されたノッチフィルタでは、構造上カット波長域を十分に狭小化することができない。 When a notch filter is placed with its light incidence surface tilted at 45° with respect to the optical axis, the chief ray of light incident on this notch filter passes through the notch filter at a 45° inclination with respect to the lamination direction of the dielectric multilayer film. This means that, compared to when the chief ray of light is incident in the normal direction of the light incidence surface of the notch filter, in order to pass the same optical path length through the notch filter, the thickness of the notch filter needs to be made thicker; in other words, the number of layers needs to be increased. However, as mentioned above, there is a limit to the number of layers that can be stacked as a dielectric multilayer film. Therefore, a notch filter with its light incidence surface tilted at 45° with respect to the optical axis is structurally unable to sufficiently narrow the cut wavelength range.
 本発明者の鋭意研究の結果、カット波長域が広帯域になることで、演色性が低下することが確認されている。このような事情から、特許文献2において提案されている技術では、極めて高い演色性を示す光源装置を実現することは困難である。 As a result of the inventor's intensive research, it has been confirmed that the color rendering property decreases as the cut wavelength range becomes wider. For these reasons, it is difficult to realize a light source device that exhibits extremely high color rendering property using the technology proposed in Patent Document 2.
 本発明は、上記の課題に鑑み、励起用光源と蛍光体とを含む光源装置において、高い演色性を示す光の生成を可能にすることを目的とする。 In view of the above problems, the present invention aims to enable the generation of light with high color rendering properties in a light source device that includes an excitation light source and a phosphor.
 本発明に係る蛍光光源装置は、
 青色域の励起光を発する励起光源と、
 Ceが賦活された蛍光体を含み、前記励起光を受光して前記励起光よりも長波長の蛍光を生成する蛍光プレートと、
 少なくとも前記蛍光の発散角を縮小するコリメート光学系と、
 前記コリメート光学系から出射される光が通過するノッチフィルタとを備え、
 前記ノッチフィルタは、光入射面が前記コリメート光学系から出射される光の主光線の光軸に実質的に直交する向きに配置されており、
 前記ノッチフィルタのカット波長域は、当該カット波長域の中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内であり、
 前記ノッチフィルタを介して後段の利用光学系に導光される光は、前記蛍光と青色域の光との合成光であって平均演色評価数(Ra値)が85以上であることを第一の特徴とする。
The fluorescent light source device according to the present invention comprises:
an excitation light source that emits excitation light in the blue region;
a fluorescent plate including a Ce-activated phosphor and configured to receive the excitation light and generate fluorescence having a longer wavelength than the excitation light;
a collimating optical system for reducing at least the divergence angle of the fluorescent light;
a notch filter through which the light emitted from the collimating optical system passes,
the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
The cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
The first feature of the present invention is that the light guided to the downstream utilization optical system via the notch filter is a composite light of the fluorescent light and light in the blue region, and has an average color rendering index (Ra value) of 85 or more.
 また、本発明に係る蛍光光源装置は、
 励起光を発する励起光源と、
 Ceが賦活された蛍光体を含み、前記励起光を受光して前記励起光よりも長波長の蛍光を生成する蛍光プレートと、
 少なくとも前記蛍光の発散角を縮小するコリメート光学系と、
 前記コリメート光学系から出射される光が通過するノッチフィルタと、
 前記蛍光プレートから出射される前記蛍光の光路に、青色域の重畳光を入射する青色光源とを備え、
 前記ノッチフィルタは、光入射面が前記コリメート光学系から出射される光の主光線の光軸に実質的に直交する向きに配置されており、
 前記ノッチフィルタのカット波長域は、当該カット波長域の中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内であり、
 前記ノッチフィルタを介して後段の利用光学系に導光される光は、前記蛍光と青色域の光との合成光であって平均演色評価数(Ra値)が85以上であることを第二の特徴とする。
Further, the fluorescent light source device according to the present invention is
an excitation light source that emits excitation light;
a fluorescent plate including a Ce-activated phosphor and configured to receive the excitation light and generate fluorescence having a longer wavelength than the excitation light;
a collimating optical system for reducing at least the divergence angle of the fluorescent light;
a notch filter through which the light emitted from the collimating optical system passes;
a blue light source that inputs superimposed light of a blue range onto an optical path of the fluorescence emitted from the fluorescent plate,
the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
The cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
A second feature of the present invention is that the light guided to the downstream utilization optical system via the notch filter is a composite light of the fluorescent light and light in the blue region, and has an average color rendering index (Ra value) of 85 or more.
 前記蛍光体としては、Ceが賦活された酸化物蛍光体又はCeが賦活された窒化物蛍光体を採用することができる。具体的な一例としては、LSN(La3Si611:Ce2+,(La, Y)3Si611:Ce2+)、CSO(CaSc24:Ce3+)、LuAG(Al512Lu3:Ce2+)、及びYAG(Al5123:Ce2+)からなる群から選択された1種又は2種以上を利用できる。上に挙げた材料の中では、LSNが特に好ましい。 The phosphor may be a Ce-activated oxide phosphor or a Ce-activated nitride phosphor. A specific example may be one or more selected from the group consisting of LSN ( La3Si6N11 :Ce2 + , (La,Y) 3Si6N11 : Ce2 + ), CSO ( CaSc2O4 : Ce3 + ) , LuAG ( Al5O12Lu3 :Ce2 +), and YAG (Al5O12Y3:Ce2+ ) . Among the above-listed materials, LSN is particularly preferred.
 蛍光体の中には、Ceが賦活されたもの以外に、Euが賦活されたもの、Gdが賦活されたもの等も存在する。しかし、EuやGdは、Ceと比較して、電子軌道が熱による影響を受けやすく、脱励起が起こりやすい。この結果、温度消光が大きく、発光効率が低下してしまう。よって、高演色性と高輝度の両立を実現する観点からは、蛍光体に賦活される材料としてCeを用いるのが好ましい。 In addition to Ce-activated phosphors, there are also Eu-activated and Gd-activated phosphors. However, compared to Ce, the electron orbitals of Eu and Gd are more susceptible to heat and deexcitation is more likely to occur. As a result, thermal quenching is large and the luminous efficiency is reduced. Therefore, from the perspective of achieving both high color rendering and high brightness, it is preferable to use Ce as the material activated in the phosphor.
 上記の構造によれば、蛍光プレートから出射された蛍光は、コリメート光学系を介して発散角が縮小された後、この主光線の光軸に実質的に直交する向きに光入射面が形成されたノッチフィルタに入射される。この結果、ノッチフィルタによってカットされる蛍光の波長域を狭小化することができる。 With the above structure, the divergence angle of the fluorescence emitted from the fluorescent plate is reduced through a collimating optical system, and then the fluorescence is incident on a notch filter whose light incidence surface is formed in a direction substantially perpendicular to the optical axis of the principal ray. As a result, the wavelength range of the fluorescence cut by the notch filter can be narrowed.
 具体的には、ノッチフィルタのカット波長域を、中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内とすることが可能となる。このようなノッチフィルタを配置することにより、同フィルタを通過した後、後段の利用光学系に入射される光の演色性が高められる。この利用光学系に入射される光とは、蛍光と青色域の光との合成光であり、平均演色評価数(Ra値)が85以上という、極めて高いRa値が実現される。このRa値は、蛍光体と励起光源を含む従来型の蛍光光源装置では、これまで容易に実現できなかった高い値である。なお、合成光の色度yは、好ましくは0.283~0.373の範囲内である。 Specifically, the cut wavelength range of the notch filter can be set so that the center wavelength is in the range of 553 nm to 575 nm, and the half-width is in the range of 17 nm to 41 nm. By arranging such a notch filter, the color rendering of the light that passes through the filter and is then incident on the downstream optical system is improved. The light that is incident on this optical system is a composite light of fluorescent light and light in the blue range, and an extremely high average color rendering index (Ra value) of 85 or more is achieved. This Ra value is a high value that has not been easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source. The chromaticity y of the composite light is preferably in the range of 0.283 to 0.373.
 前記合成光のRa値は、JIS Z 8726(光源の演色性評価方法)に規定された方法に準拠した方法で測定することができる。また、前記合成光の色度y値は、例えばJIS Z 8724(色の測定方法-光源色)に規定された方法に準拠した方法で測定することができる。 The Ra value of the synthetic light can be measured by a method conforming to the method specified in JIS Z 8726 (method for evaluating the color rendering properties of light sources). The chromaticity y value of the synthetic light can be measured by a method conforming to the method specified in, for example, JIS Z 8724 (method for measuring color - light source color).
 なお、「ノッチフィルタの光入射面が、コリメート光学系から出射された光の主光線の光軸に実質的に直交する」とは、前記光入射面の法線と前記コリメート光学系から出射された光の主光線の光軸とのなす角度が、-5°~+5°の範囲内であることを意味し、より好ましくは、-3°~+3°の範囲内である。 Note that "the light incident surface of the notch filter is substantially perpendicular to the optical axis of the chief ray of the light emitted from the collimating optical system" means that the angle between the normal to the light incident surface and the optical axis of the chief ray of the light emitted from the collimating optical system is within the range of -5° to +5°, and more preferably within the range of -3° to +3°.
 前記蛍光プレートの構成例としては、CaF2、BaF2、MgF2、ZnS、Al23、MgO、ZrO2、ZnO、TiO2等の無機化合物で形成されたバインダ内に、粒子状の前記蛍光体を分散させて焼結したものを利用することができる。なお、バインダの構成材料としては、上記の無機化合物の中では、特に酸化物材料が好ましく、Al23が特に好ましい。前記蛍光体として窒化物蛍光体を用いる場合には、バインダの構成材料としてはMgOが特に好ましい。 As an example of the fluorescent plate, a sintered binder made of inorganic compounds such as CaF2 , BaF2 , MgF2 , ZnS, Al2O3 , MgO, ZrO2 , ZnO, TiO2, etc., in which the particulate fluorescent material is dispersed and sintered can be used. Among the inorganic compounds listed above, oxide materials are particularly preferred as the binder material, with Al2O3 being particularly preferred. When a nitride fluorescent material is used as the fluorescent material, MgO is particularly preferred as the binder material.
 励起光源として、青色光を発する光源が利用される上記第一の特徴構成の場合には、励起光源から出射された青色光と、蛍光プレートから出射された蛍光との合成光が、光源装置から出射されるものとしても構わない。また、この構成において、更に青色光を発する別途の青色光源を準備して、青色光源から出射された青色光を蛍光プレートから出射された蛍光と重畳させ、得られた合成光が光源装置から出射されるものとしても構わない。 In the case of the first characteristic configuration described above, in which a light source emitting blue light is used as the excitation light source, the light source device may emit a composite light of the blue light emitted from the excitation light source and the fluorescence emitted from the fluorescent plate. In addition, in this configuration, a separate blue light source that further emits blue light may be prepared, and the blue light emitted from the blue light source may be superimposed on the fluorescence emitted from the fluorescent plate, and the resulting composite light may be emitted from the light source device.
 一方、上記第二の特徴構成の場合は、青色光を発する別途の青色光源を備えており、青色光源から出射された青色光を蛍光プレートから出射された蛍光と重畳させ、得られた合成光が光源装置から出射される。このため、励起光源としては、必ずしも青色域の光を発する光源である必要はなく、例えば、紫色光や紫外光を発する光源としても構わない。また、青色域の光を重畳する位置は、前記ノッチフィルタと前記蛍光プレートとの間、又は前記蛍光プレートの後段の位置とすることができる。 On the other hand, in the case of the second characteristic configuration described above, a separate blue light source that emits blue light is provided, and the blue light emitted from the blue light source is superimposed on the fluorescence emitted from the fluorescent plate, and the resulting composite light is emitted from the light source device. For this reason, the excitation light source does not necessarily have to be a light source that emits light in the blue range, and can be, for example, a light source that emits violet light or ultraviolet light. Furthermore, the position where the light in the blue range is superimposed can be between the notch filter and the fluorescent plate, or a position behind the fluorescent plate.
 前記コリメート光学系は、光入射面又は光出射面が平坦面で形成されており、前記ノッチフィルタは前記平坦面上に配置されているものとしても構わない。 The collimating optical system may have a light entrance surface or light exit surface formed as a flat surface, and the notch filter may be disposed on the flat surface.
 上記構成によれば、コリメート光学系とノッチフィルタとを一体化できるため、装置規模を縮小化できる。 The above configuration allows the collimating optical system and the notch filter to be integrated, making it possible to reduce the size of the device.
 本発明の蛍光光源装置によれば、高い演色性を示す光を生成することができる。 The fluorescent light source device of the present invention can generate light that exhibits high color rendering properties.
蛍光光源装置の一実施形態の構成を模式的に示す図面である。1 is a diagram illustrating a schematic configuration of an embodiment of a fluorescent light source device. ノッチフィルタの透過スペクトルの一例を示す図面である。1 is a diagram showing an example of a transmission spectrum of a notch filter. 蛍光プレートの構造を説明するための模式的な断面図である。4 is a schematic cross-sectional view for explaining the structure of a fluorescent plate. FIG. 図3の一部拡大図である。FIG. 4 is a partially enlarged view of FIG. 3 . 青色光源9をLEDとした場合の、合成光L1のスペクトルと、ノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。13 is a graph in which the spectrum of synthetic light L1 and the transmission spectrum of notch filter 20 are superimposed when blue light source 9 is an LED. 青色光源9をレーザダイオードとした場合の、合成光L1のスペクトルと、ノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。13 is a graph in which the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 are superimposed when the blue light source 9 is a laser diode. 青色光源9をLEDとして、蛍光プレート10に含まれる蛍光体16の材料、及びノッチフィルタ20の有無を変化させたときの、合成光L1のy値とRa値との関係を測定したグラフである。13 is a graph showing the relationship between the y value and the Ra value of the combined light L1 when the blue light source 9 is an LED, the material of the phosphor 16 contained in the phosphor plate 10, and the presence or absence of the notch filter 20 are changed. 青色光源9をレーザダイオードとして、蛍光プレート10に含まれる蛍光体16の材料、及びノッチフィルタ20の有無を変化させたときの、合成光L1のy値とRa値との関係を測定したグラフである。13 is a graph showing the relationship between the y value and the Ra value of the combined light L1 when the blue light source 9 is a laser diode, the material of the phosphor 16 contained in the phosphor plate 10, and the presence or absence of the notch filter 20 are changed. ノッチフィルタ20のカット波長域の半値幅と合成光L1のRa値との関係を示すグラフである。11 is a graph showing the relationship between the half width of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1. ノッチフィルタ20のカット波長域内の光の最低透過率と、合成光L1のRa値との関係を示すグラフである。11 is a graph showing the relationship between the minimum transmittance of light within the cut wavelength band of the notch filter 20 and the Ra value of the synthetic light L1. ノッチフィルタ20のカット波長域の中心波長と合成光L1のRa値との関係を示すグラフである。11 is a graph showing the relationship between the center wavelength of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 蛍光光源装置の別実施形態の構成例を模式的に示す図面である。11 is a diagram illustrating a configuration example of a fluorescent light source device according to another embodiment. 青色光源9をLEDとし、蛍光プレートが2種類の蛍光体を含む場合の、合成光L1のスペクトルとノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。13 is a graph in which the spectrum of the combined light L1 and the transmission spectrum of the notch filter 20 are superimposed when the blue light source 9 is an LED and the fluorescent plate contains two types of fluorescent materials.
 本発明の蛍光光源装置の構成につき、図面を参照して説明する。なお、以下の各図において、図面上の寸法比と実際の寸法比は必ずしも一致しない。また、図面上の個数と実際の個数についても必ずしも一致しない。 The configuration of the fluorescent light source device of the present invention will be described with reference to the drawings. Note that in each of the following figures, the dimensional ratios on the drawings do not necessarily match the actual dimensional ratios. Furthermore, the numbers on the drawings do not necessarily match the actual numbers.
 図1は、蛍光光源装置の一実施形態の構成を模式的に示す図面である。図1に示す蛍光光源装置1は、励起光源5と、コリメート光学系7と、蛍光プレート10と、ノッチフィルタ20とを含む。 FIG. 1 is a diagram showing a schematic configuration of one embodiment of a fluorescent light source device. The fluorescent light source device 1 shown in FIG. 1 includes an excitation light source 5, a collimating optical system 7, a fluorescent plate 10, and a notch filter 20.
 更に、本実施形態の蛍光光源装置1は、青色光を発する青色光源9と、反射ミラー41と、ダイクロイックミラー43とを備える。 Furthermore, the fluorescent light source device 1 of this embodiment includes a blue light source 9 that emits blue light, a reflecting mirror 41, and a dichroic mirror 43.
 本実施形態において、励起光源5の発光波長は、蛍光プレート10に搭載された蛍光体を励起可能な波長であれば限定されないが、典型的には青色域、紫色域又は紫外域である。具体的な一例として、励起光源5は、波長が445nm~465nmの青色領域の光を出射する半導体レーザ素子を含んで構成される。励起光源5は、必要に応じてコリメートレンズなどの光学系を備えてもよい。 In this embodiment, the emission wavelength of the excitation light source 5 is not limited as long as it is a wavelength capable of exciting the phosphor mounted on the fluorescent plate 10, but is typically in the blue, violet, or ultraviolet range. As a specific example, the excitation light source 5 includes a semiconductor laser element that emits light in the blue range with a wavelength of 445 nm to 465 nm. The excitation light source 5 may include an optical system such as a collimating lens as necessary.
 ダイクロイックミラー43は、少なくとも青色光を反射し、青色光よりも長波長の光を透過するように設計されている。なお、本明細書において、青色光とは420nm~500nmの波長域に属する光を指し、紫色光とは370~420nmの波長域に属する光を指し、紫外光とは370nm未満の波長域に属する光を指す。 Dichroic mirror 43 is designed to reflect at least blue light and transmit light with longer wavelengths than blue light. In this specification, blue light refers to light in the wavelength range of 420 nm to 500 nm, purple light refers to light in the wavelength range of 370 nm to 420 nm, and ultraviolet light refers to light in the wavelength range of less than 370 nm.
 図1に示す本実施形態の蛍光光源装置1では、励起光源5からの青色域の励起光L5が、反射ミラー41及びダイクロイックミラー43を介して、蛍光プレート10の一方の主面(基板11が設置されている側とは反対側の主面)に導かれる。蛍光プレート10に含まれる蛍光体は、励起光L5によって励起されて蛍光L10を発する。蛍光L10は、コリメート光学系7を介して発散角が縮小された後、典型的には平行光に変換された後、ノッチフィルタ20を通過する。 In the fluorescent light source device 1 of this embodiment shown in FIG. 1, excitation light L5 in the blue range from the excitation light source 5 is guided to one main surface of the fluorescent plate 10 (the main surface opposite to the side on which the substrate 11 is installed) via a reflecting mirror 41 and a dichroic mirror 43. The phosphor contained in the fluorescent plate 10 is excited by the excitation light L5 and emits fluorescent light L10. The divergence angle of the fluorescent light L10 is reduced via the collimating optical system 7, and then it is typically converted into parallel light, and then passes through the notch filter 20.
 ノッチフィルタ20は、入射された光のうち、設計されたカット波長域の成分の光強度を大幅に低下させる一方、カット波長域以外の波長成分については、光出力をほとんど低下させない。ノッチフィルタ20のカット波長域は、中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内に属するように設計されている。
すなわち、蛍光光源装置1が備えるノッチフィルタ20のカット波長域は、極めて狭帯域である。図2にノッチフィルタ20の透過スペクトルの一例を示す。
The notch filter 20 significantly reduces the light intensity of components in the designed cut wavelength range of the incident light, while hardly reducing the light output of wavelength components outside the cut wavelength range. The cut wavelength range of the notch filter 20 is designed so that the center wavelength falls within the range of 553 nm to 575 nm and the half width falls within the range of 17 nm to 41 nm.
That is, the cut wavelength range of the notch filter 20 provided in the fluorescent light source device 1 is an extremely narrow band.
 図1に示すように、コリメート光学系7によってほぼ平行光に変換された状態の蛍光L10が、ノッチフィルタ20に入射する。つまり、ノッチフィルタ20の光入射面は、コリメート光学系7から出射された蛍光L10の主光線の光軸に実質的に直交する向きに配置されている。このため、特許文献2の構成とは異なり、ノッチフィルタ20のカット波長域を狭帯域化することができる。 As shown in FIG. 1, the fluorescence L10, which has been converted into nearly parallel light by the collimating optical system 7, enters the notch filter 20. In other words, the light incidence surface of the notch filter 20 is oriented in a direction substantially perpendicular to the optical axis of the chief ray of the fluorescence L10 emitted from the collimating optical system 7. Therefore, unlike the configuration of Patent Document 2, the cut wavelength range of the notch filter 20 can be narrowed.
 ノッチフィルタ20を通過して、カット波長域の成分の光強度が低下された蛍光L10は、青色光源9から出射された青色光L9と合成される。この合成光L1が、後段の利用光学系50に導かれる。青色光源9としては、LED又はレーザダイオードを利用することができる。利用光学系50とは、蛍光光源装置1から出射される合成光L1を利用する任意の光学系である。 The fluorescence L10, which has passed through the notch filter 20 and has a reduced light intensity of the components in the cut wavelength range, is combined with the blue light L9 emitted from the blue light source 9. This combined light L1 is guided to the downstream utilization optical system 50. An LED or a laser diode can be used as the blue light source 9. The utilization optical system 50 is any optical system that utilizes the combined light L1 emitted from the fluorescent light source device 1.
 なお、図1に示す例では、青色光源9から出射された青色光L9の発散角を縮小するコリメート光学系45が備えられているが、このコリメート光学系45を備えるか否かは任意である。 In the example shown in FIG. 1, a collimating optical system 45 is provided to reduce the divergence angle of the blue light L9 emitted from the blue light source 9, but it is optional whether or not to provide this collimating optical system 45.
 本実施形態の蛍光光源装置1が備える蛍光プレート10の一例につき、図3~図4を参照して説明する。図3は、蛍光プレート10及び基板11の構成を模式的に示す断面図である。図4は、図3の一部を拡大した図面である。 An example of the fluorescent plate 10 provided in the fluorescent light source device 1 of this embodiment will be described with reference to Figs. 3 and 4. Fig. 3 is a cross-sectional view showing a schematic configuration of the fluorescent plate 10 and the substrate 11. Fig. 4 is an enlarged view of a portion of Fig. 3.
 図3に示す例では、蛍光プレート10は接合層12を介して基板11に固定されている。 In the example shown in Figure 3, the fluorescent plate 10 is fixed to the substrate 11 via a bonding layer 12.
 基板11は、蛍光プレート10で発せられた熱を排熱するために設けられており、例えば熱伝導率が90[W/m・K]以上、具体的には例えば230~400[W/m・K]である材料で構成される。このような材料の例としては、Cu、銅化合物(MoCu、CuWなど)、Al、AlNなどが挙げられる。基板11の厚みは、例えば0.5mm~5mmである。また、排熱性などの観点から、基板11の表面における面積は、蛍光プレート10の面積よりも大きいことが好ましい。 The substrate 11 is provided to dissipate heat generated by the fluorescent plate 10, and is made of a material with a thermal conductivity of, for example, 90 [W/m·K] or more, specifically, for example, 230 to 400 [W/m·K]. Examples of such materials include Cu, copper compounds (MoCu, CuW, etc.), Al, and AlN. The thickness of the substrate 11 is, for example, 0.5 mm to 5 mm. From the standpoint of heat dissipation, it is preferable that the surface area of the substrate 11 is larger than the area of the fluorescent plate 10.
 接合層12は、基板11と蛍光プレート10とを接合する層であり、例えばハンダ材料からなる。排熱性などの観点から、接合層12を構成する材料としては、例えば熱伝導率が40[W/m・K]以上であるものが用いられることが好ましい。より詳細には、例えば、Sn、Pbなどの材料にフラックスやその他の不純物を混ぜてクリーム状(ペースト状)の形態としたクリームハンダ、Sn-Ag-Cu系ハンダ、Au-Sn系ハンダなどを用いることができる。接合層12の厚みは、例えば20μm~200μmである。 The bonding layer 12 is a layer that bonds the substrate 11 and the fluorescent plate 10, and is made of, for example, a solder material. From the viewpoint of heat dissipation, it is preferable that the material that constitutes the bonding layer 12 has, for example, a thermal conductivity of 40 [W/m·K] or more. More specifically, for example, cream solder made by mixing flux and other impurities with materials such as Sn and Pb in a cream (paste) form, Sn-Ag-Cu solder, Au-Sn solder, etc. can be used. The thickness of the bonding layer 12 is, for example, 20 μm to 200 μm.
 図示しないが、基板11と接合層12との接合性を更に高める観点から、基板11と接合層12との間に、例えばメッキ法によって形成された、Ni/Au膜よりなる金属膜が形成されているものとしても構わない。この金属膜の厚みは、例えばNi/Au=1000nm~5000nm/30nm~1000nmとすることができる。 Although not shown, in order to further improve the bond between the substrate 11 and the bonding layer 12, a metal film made of Ni/Au film formed by, for example, a plating method may be formed between the substrate 11 and the bonding layer 12. The thickness of this metal film may be, for example, Ni/Au = 1000 nm to 5000 nm/30 nm to 1000 nm.
 図1に示す例では、蛍光プレート10に対して励起光L5が入射される面と、蛍光プレート10から蛍光L10を取り出して利用する面とが、同一面である。つまり、蛍光プレート10の基板11側の面から蛍光L10が出射しても、この蛍光L10の利用が予定されていないため、利用効率が低下する。かかる観点から、図3に示す例では、基板11の上面に反射層13が設けられている。反射層13は、蛍光プレート10で生成された蛍光L10のうち、基板11側に進行する蛍光L10を反射させて、光取り出し側の主面に導くために設けられている。反射層13は、例えば、Al、Ag等の金属膜や、前記金属膜上に誘電体多層膜を形成した増反射膜などで構成されることができる。 In the example shown in FIG. 1, the surface on which the excitation light L5 is incident on the fluorescent plate 10 and the surface on which the fluorescent light L10 is extracted from the fluorescent plate 10 and used are the same surface. In other words, even if the fluorescent light L10 is emitted from the surface on the substrate 11 side of the fluorescent plate 10, the use of this fluorescent light L10 is not planned, and the efficiency of use is reduced. From this perspective, in the example shown in FIG. 3, a reflective layer 13 is provided on the upper surface of the substrate 11. The reflective layer 13 is provided to reflect the fluorescent light L10 generated by the fluorescent plate 10 and proceed toward the substrate 11 side, and to guide it to the main surface on the light extraction side. The reflective layer 13 can be composed of, for example, a metal film such as Al or Ag, or an increased reflection film in which a dielectric multilayer film is formed on the metal film.
 ただし、図16を参照して後述するように、蛍光プレート10に対して励起光L5が入射される面と、蛍光L10が取り出される面とが異なる場合には、反射層13は不要である。 However, as will be described later with reference to Figure 16, if the surface of the fluorescent plate 10 where the excitation light L5 is incident is different from the surface where the fluorescent light L10 is extracted, the reflective layer 13 is not necessary.
 蛍光プレート10は、一例として基板11の面に直交する方向から見たときに矩形平板状の構造を示す。蛍光プレート10の厚みは、例えば0.05mm~1mmである。図4に示す例では、蛍光プレート10は、蛍光体16、バインダ17、及び気孔18を含む。
なお、図3に示すように、蛍光プレート10の光取出し面側の主面には微細な凹凸加工が施されたモスアイ構造15を有していても構わない。
As an example, the fluorescent plate 10 has a rectangular flat plate-like structure when viewed in a direction perpendicular to the surface of the substrate 11. The fluorescent plate 10 has a thickness of, for example, 0.05 mm to 1 mm. In the example shown in FIG. 4, the fluorescent plate 10 includes a phosphor 16, a binder 17, and pores 18.
As shown in FIG. 3, the light extraction surface of the fluorescent plate 10 may have a moth-eye structure 15 formed by processing into fine projections and recesses.
 蛍光体16は、Ceが賦活された酸化物蛍光体又はCeが賦活された窒化物蛍光体である。具体的な一例としては、LSN(La3Si611:Ce2+,(La, Y)3Si611:Ce2+)、CSO(CaSc24:Ce3+)、LuAG(Al512Lu3:Ce2+)、及びYAG(Al5123:Ce2+)からなる群から選択された1種又は2種以上を利用できる。上に挙げた材料の中では、LSNが特に好ましい。 The phosphor 16 is a Ce- activated oxide phosphor or a Ce-activated nitride phosphor. As a specific example, one or more materials selected from the group consisting of LSN (La3Si6N11 : Ce2 + , ( La , Y ) 3Si6N11 :Ce2+), CSO ( CaSc2O4 : Ce3 + ), LuAG ( Al5O12Lu3 :Ce2 + ), and YAG ( Al5O12Y3 : Ce2 + ) can be used. Among the above-listed materials, LSN is particularly preferable.
 蛍光体16は、図4に図示されるように、粒子状を呈してバインダ17内に分散して存在する。蛍光体16は、粒径が30μm以下であり、好ましくは25μm以下であり、更に好ましくは20μm以下であり、特に好ましくは10μm以下である。蛍光体16の粒径の下限値は特に規定はないが、一般的には1μm以上である。 As shown in FIG. 4, phosphor 16 is in the form of particles and is dispersed within binder 17. The particle size of phosphor 16 is 30 μm or less, preferably 25 μm or less, more preferably 20 μm or less, and particularly preferably 10 μm or less. There is no particular lower limit for the particle size of phosphor 16, but it is generally 1 μm or more.
 バインダ17は、無機化合物で構成されている。具体的な例として、バインダ17は、CaF2、BaF2、MgF2、ZnS、Al23、MgO、ZrO2、ZnO、及びTiO2等からなる1種又は2種以上で構成される。上記の材料例の中では、アルミナ(Al23)が好ましい。窒化物蛍光体を組み合わせる場合には、バインダ17の材料としては、MgOが特に好ましい。蛍光プレート10は、バインダ17の構成材料である無機物粒子と、蛍光体16の構成材料の粒子との焼結体である。蛍光プレート10に含まれる気孔18は、焼結の過程で生成されたものであるが、焼結工程のプロファイルを変更することで、気孔18を完全に含まない構造とすることも可能である。 The binder 17 is composed of an inorganic compound. As a specific example, the binder 17 is composed of one or more of CaF2 , BaF2 , MgF2 , ZnS, Al2O3 , MgO, ZrO2 , ZnO , and TiO2 . Among the above examples of materials, alumina ( Al2O3 ) is preferable. When a nitride phosphor is combined, MgO is particularly preferable as the material of the binder 17. The fluorescent plate 10 is a sintered body of inorganic particles, which are the constituent material of the binder 17, and particles of the constituent material of the phosphor 16. The pores 18 contained in the fluorescent plate 10 are generated during the sintering process, but it is also possible to make the structure completely free of pores 18 by changing the profile of the sintering process.
 蛍光プレート10に含まれるバインダ17の質量割合は、好ましくは30質量%~70質量%以下であり、より好ましくは50質量%~90質量%である。なお、蛍光プレート10に含まれるバインダ17の質量割合とは、蛍光体16とバインダ17の合計質量に対する、バインダ17の質量の比率を指す。 The mass ratio of the binder 17 contained in the fluorescent plate 10 is preferably 30% to 70% by mass or less, and more preferably 50% to 90% by mass. The mass ratio of the binder 17 contained in the fluorescent plate 10 refers to the ratio of the mass of the binder 17 to the total mass of the phosphor 16 and the binder 17.
 蛍光プレート10の相対密度は、好ましくは80.4%~99.5%以下である。蛍光プレート10の相対密度とは、焼結体である蛍光プレート10の理論密度に対する見かけ密度の比率であり、例えばJIS R 1634(ファインセラミックスの焼結体密度・開気孔率の測定方法)に準拠した方法によって測定することができる。言い換えれば、蛍光プレート10は、含有率が0.5%~19.6%の気孔18を含むものとすることができる。蛍光プレート10に気孔18を含めることで、蛍光体16又はバインダ17と、気孔18との界面で屈折率差が生じるため、蛍光プレート10内で生成された蛍光L10を光取り出し側の主面に屈折させやすくなる。 The relative density of the fluorescent plate 10 is preferably 80.4% to 99.5%. The relative density of the fluorescent plate 10 is the ratio of the apparent density to the theoretical density of the fluorescent plate 10, which is a sintered body, and can be measured, for example, by a method conforming to JIS R 1634 (Method of measuring density and open porosity of sintered fine ceramics). In other words, the fluorescent plate 10 can include pores 18 with a content of 0.5% to 19.6%. The inclusion of pores 18 in the fluorescent plate 10 creates a refractive index difference at the interface between the phosphor 16 or binder 17 and the pores 18, making it easier to refract the fluorescence L10 generated within the fluorescent plate 10 to the main surface on the light extraction side.
 図5は、蛍光プレート10に含まれる蛍光体16をLSN(蛍光ピーク波長は535nm)、バインダ17をアルミナとし、青色光源9をピーク波長455nmのLEDとした場合の、合成光L1のスペクトルと、ノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。ノッチフィルタ20としては、図2に示す透過スペクトルのフィルタが利用された。前記のとおり、合成光L1は、ノッチフィルタ20を通過した後の光であるため、ノッチフィルタ20のカット波長域である553nm~575nm近傍の光強度が著しく低下している。 Figure 5 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the phosphor 16 contained in the fluorescent plate 10 is LSN (fluorescence peak wavelength is 535 nm), the binder 17 is alumina, and the blue light source 9 is an LED with a peak wavelength of 455 nm. A filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20. As mentioned above, since the synthetic light L1 is light that has passed through the notch filter 20, the light intensity in the vicinity of 553 nm to 575 nm, which is the cut wavelength range of the notch filter 20, is significantly reduced.
 このときに得られた合成光L1をJIS Z 8724(色の測定方法-光源色)に準拠した方法で測定すると、色度上のy値が0.33であった。また、合成光L1をJIS Z 8726(光源の演色性評価方法)に準拠した方法で測定すると、平均演色評価数(Ra値)が92という極めて高い値が得られた。 When the synthetic light L1 obtained at this time was measured using a method conforming to JIS Z 8724 (method of measuring color - light source color), the chromaticity y value was 0.33. Furthermore, when the synthetic light L1 was measured using a method conforming to JIS Z 8726 (method of evaluating the color rendering properties of light sources), an extremely high average color rendering index (Ra value) of 92 was obtained.
 図6は、蛍光プレート10に含まれる蛍光体16をLSN(蛍光ピーク波長は535nm)、バインダ17をアルミナとし、青色光源9をピーク波長460nmのレーザダイオードとした場合の、合成光L1のスペクトルと、ノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。ノッチフィルタ20としては、図2に示す透過スペクトルのフィルタが利用された。前記のとおり、合成光L1は、ノッチフィルタ20を通過した後の光であるため、ノッチフィルタ20のカット波長域である553nm~575nm近傍の光強度が著しく低下している。 Figure 6 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the phosphor 16 contained in the fluorescent plate 10 is LSN (fluorescence peak wavelength is 535 nm), the binder 17 is alumina, and the blue light source 9 is a laser diode with a peak wavelength of 460 nm. A filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20. As mentioned above, since the synthetic light L1 is light that has passed through the notch filter 20, the light intensity in the vicinity of 553 nm to 575 nm, which is the cut wavelength range of the notch filter 20, is significantly reduced.
 このときに得られた合成光L1をJIS Z 8724に準拠した方法で測定すると、色度上のy値が0.34であった。また、合成光L1をJIS Z 8726に準拠した方法で測定すると、Ra値が89.8という極めて高い値が得られた。 When the synthetic light L1 obtained at this time was measured using a method conforming to JIS Z 8724, the chromaticity y value was 0.34. Furthermore, when the synthetic light L1 was measured using a method conforming to JIS Z 8726, an extremely high Ra value of 89.8 was obtained.
 本実施形態の蛍光光源装置1によって得られる合成光L1によって、極めて高い演色性が得られた理由は定かではないが、励起光L5で励起されて生成された蛍光L10のスペクトルが、緑色域と赤色域との間の波長域である553nm~575nm近傍において強度が低下されたことによるものと推察される。553nm~575nm近傍のカット波長域の光強度が大幅に低下した蛍光L10と、青色光L9とが合成されてなる合成光L1は、実質的に、青色光と緑色光と赤色光とを重ね合わせた状態が模擬され、高い演色性が得られたものと推察される。 The reason why extremely high color rendering is achieved by the synthetic light L1 obtained by the fluorescent light source device 1 of this embodiment is unclear, but it is presumed that this is because the spectrum of the fluorescence L10 generated by excitation with the excitation light L5 has a reduced intensity in the wavelength range between the green and red ranges, near 553 nm to 575 nm. The synthetic light L1, which is obtained by combining the fluorescence L10, whose light intensity in the cut wavelength range near 553 nm to 575 nm is significantly reduced, with the blue light L9, essentially simulates a state in which blue light, green light, and red light are superimposed, and it is presumed that this results in high color rendering.
 図7は、蛍光プレート10に含まれる蛍光体16の材料をYAG又はLSNとし、ノッチフィルタ20を設けた場合とノッチフィルタ20を設けなかった場合のそれぞれにおいて、y値とRa値との関係を測定したグラフである。y値の変化は、励起光源5と青色光源9の光出力の相対値を調整し、目標とする色温度を変化させることによって行われた。
Ra値は、合成光をJIS Z 8726に準拠する方法で測定した。青色光源9としては、ピーク波長455nmのLEDが採用された。
7 is a graph showing the relationship between the y value and the Ra value measured when the material of the phosphor 16 contained in the fluorescent plate 10 is YAG or LSN, and when the notch filter 20 is provided and when the notch filter 20 is not provided. The y value was changed by adjusting the relative value of the light output of the excitation light source 5 and the blue light source 9 to change the target color temperature.
The Ra value was measured using synthetic light according to a method in accordance with JIS Z 8726. As the blue light source 9, an LED with a peak wavelength of 455 nm was used.
 なお、ノッチフィルタ20を設けた場合については、蛍光プレート10に含まれる蛍光体16として、蛍光L10のピーク波長が535nmに設定されたLSN(「LSN-1」と称する。)、蛍光L10のピーク波長が540nmに設定されたLSN(「LSN-2」と称する。)、蛍光L10のピーク波長が540nmに設定されたYAG(「YAG-1」と称する。)、及び蛍光L10のピーク波長が545nmに設定されたYAG(「YAG-2」と称する。)の4種類について検証が行われた。一方、ノッチフィルタ20を設けなかった場合については、蛍光プレート10に含まれる蛍光体16として、YAG-1とLSN-1の2種類について検証が行われた。 When the notch filter 20 was provided, verification was performed on four types of phosphors 16 contained in the fluorescent plate 10: LSN (referred to as "LSN-1"), in which the peak wavelength of the fluorescence L10 was set to 535 nm; LSN (referred to as "LSN-2"), in which the peak wavelength of the fluorescence L10 was set to 540 nm; YAG (referred to as "YAG-1"), in which the peak wavelength of the fluorescence L10 was set to 540 nm; and YAG (referred to as "YAG-2"), in which the peak wavelength of the fluorescence L10 was set to 545 nm. On the other hand, when the notch filter 20 was not provided, verification was performed on two types of phosphors 16 contained in the fluorescent plate 10: YAG-1 and LSN-1.
 図7によれば、ノッチフィルタ20を設けていない場合には、y値にかかわらず合成光L1のRa値が80を下回ることが確認される。一方で、ノッチフィルタ20を設けた場合には、いずれの蛍光体においても、合成光L1の色度y値が0.283~0.396の範囲内にある場合には、Ra値が85以上という極めて高い値が得られていることが分かる。更に、蛍光体をYAGとした場合とLSNとした場合とで比較すると、LSNの方がより高いRa値が得られた。これは、LSNから出射される蛍光L10が、YAGから出射される蛍光L10よりも赤色成分が多いためと考えられる。なお、色度y値が0.283~0.396の範囲内にある場合、合成光L1の色温度は5100K~9100Kであった。 According to FIG. 7, when the notch filter 20 is not provided, the Ra value of the synthetic light L1 falls below 80 regardless of the y value. On the other hand, when the notch filter 20 is provided, it can be seen that an extremely high Ra value of 85 or more is obtained for any phosphor when the chromaticity y value of the synthetic light L1 is within the range of 0.283 to 0.396. Furthermore, when comparing the cases where the phosphor is YAG and where it is LSN, a higher Ra value is obtained with LSN. This is thought to be because the fluorescence L10 emitted from LSN contains more red components than the fluorescence L10 emitted from YAG. When the chromaticity y value is within the range of 0.283 to 0.396, the color temperature of the synthetic light L1 is 5100K to 9100K.
 図8は、青色光源9としてピーク波長460nmのレーザダイオードを用いて、図7と同様の方法で測定されたy値とRa値との関係を測定したグラフである。図8によれば、青色光源9がレーザダイオードの場合についても、LEDの場合と同様に、ノッチフィルタ20を設けていない場合には、y値にかかわらず合成光L1のRa値が80を下回ることが確認される。一方で、ノッチフィルタ20を設けた場合には、いずれの蛍光体においても、合成光L1の色度y値が0.280~0.373の範囲内にある場合には、Ra値が85以上という極めて高い値が得られていることが分かる。なお、色度y値が0.283~0.373の範囲内にある場合、合成光L1の色温度は5400K~8300Kであった。 Figure 8 is a graph showing the relationship between the y value and the Ra value measured in the same manner as in Figure 7, using a laser diode with a peak wavelength of 460 nm as the blue light source 9. Figure 8 confirms that when the blue light source 9 is a laser diode, as in the case of an LED, the Ra value of the synthetic light L1 falls below 80 regardless of the y value when the notch filter 20 is not provided. On the other hand, when the notch filter 20 is provided, it can be seen that an extremely high Ra value of 85 or more is obtained for all phosphors when the chromaticity y value of the synthetic light L1 is within the range of 0.280 to 0.373. Note that when the chromaticity y value is within the range of 0.283 to 0.373, the color temperature of the synthetic light L1 is 5400K to 8300K.
 表1は、青色光源9としてピーク波長462nmのLEDを用い、蛍光プレート10に含まれる蛍光体16としてLSN-2を用いた場合に、ノッチフィルタ20のカット波長域の半値幅を変化させたときの、前記半値幅と合成光L1のRa値との関係を示す表である。なお、図9は、各ノッチフィルタ20のカット波長域の中心波長を564nmで固定した上で、半値幅のみを変更するように設計されした場合の結果を示すグラフである。 Table 1 shows the relationship between the half-width of the cut wavelength range of the notch filter 20 and the Ra value of the synthetic light L1 when the half-width is changed in a case where an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10. Note that FIG. 9 is a graph showing the results when the center wavelength of the cut wavelength range of each notch filter 20 is fixed at 564 nm and only the half-width is designed to be changed.
 図9によれば、ノッチフィルタ20のカット波長域が、半値幅17nm~41nmの範囲内で設計されることで、合成光L1のRa値を高くすることができる。なお、半値幅が狭すぎると、高い演色性を得るためにはカットすべき波長域の光成分がカットされず、演色性が低下したものと考えられる。逆に、半値幅が広すぎると、高い演色性を得るためにはカットすべきでない波長域の光成分がカットされてしまい、演色性が低下したものと考えられる。 As shown in Figure 9, the Ra value of the synthetic light L1 can be increased by designing the cut wavelength range of the notch filter 20 to have a half-width in the range of 17 nm to 41 nm. If the half-width is too narrow, the light components in the wavelength range that should be cut to achieve high color rendering are not cut, and it is believed that the color rendering is degraded. Conversely, if the half-width is too wide, the light components in the wavelength range that should not be cut to achieve high color rendering are cut, and it is believed that the color rendering is degraded.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からは、以下の結果が得られる。 The following results can be obtained from Table 1.
 ノッチフィルタ20のカット波長域の中心波長が553nmの場合には、カット波長域の半値幅を19nm~23nmとすると、合成光L1のRa値が85を超える。なお、前記半値幅が18nmの場合は、Ra値が84.4であり実質的に85と同等とみなすことができる。前記半値幅を17nm~25nmとすることで、Ra値を84以上とすることができる。Ra値が84~85の範囲を示す場合においても、Ra値が85以上であるものよりは演色性の値が低いものの、蛍光体と励起光源を含む従来型の蛍光光源装置では、容易には実現できなかった高い値である。 When the center wavelength of the cut wavelength range of the notch filter 20 is 553 nm, if the half-width of the cut wavelength range is 19 nm to 23 nm, the Ra value of the synthetic light L1 exceeds 85. When the half-width is 18 nm, the Ra value is 84.4, which can be considered to be substantially equivalent to 85. By setting the half-width to 17 nm to 25 nm, the Ra value can be made 84 or more. Even when the Ra value is in the range of 84 to 85, the color rendering value is lower than when the Ra value is 85 or more, but this is a high value that could not be easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source.
 ノッチフィルタ20のカット波長域の中心波長が555nmの場合、カット波長域の半値幅を18nm~27nmとすると、合成光L1のRa値が85を超える。なお、前記半値幅が17nmの場合は、Ra値が84.9であり実質的に85と同等とみなすことができる。前記半値幅を17nm~28nmとすることで、Ra値を84以上とすることができる。Ra値が84~85の範囲を示す場合においても、Ra値が85以上であるものよりは演色性の値が低いものの、蛍光体と励起光源を含む従来型の蛍光光源装置では、容易には実現できなかった高い値である。 When the center wavelength of the cut wavelength range of the notch filter 20 is 555 nm, if the half-width of the cut wavelength range is 18 nm to 27 nm, the Ra value of the synthetic light L1 exceeds 85. When the half-width is 17 nm, the Ra value is 84.9, which can be considered to be substantially equivalent to 85. By setting the half-width to 17 nm to 28 nm, the Ra value can be made 84 or more. Even when the Ra value is in the range of 84 to 85, the color rendering value is lower than when the Ra value is 85 or more, but this is a high value that could not be easily achieved with conventional fluorescent light source devices that include a phosphor and an excitation light source.
 ノッチフィルタ20のカット波長域の中心波長が560nmの場合には、カット波長域の半値幅を17nm~31nmとすると、合成光L1のRa値が85を超える。特に、前記半値幅を23nm~25nmとすると、合成光L1のRa値が約90に達する。なお、前記半値幅が16nm又は32nmの場合はRaが84.5であり、小数点以下第1位で四捨五入すると、85とみなすことができる。前記半値幅を16nm~32nmとすることで、Ra値を84以上とすることができる。 When the center wavelength of the cut wavelength range of the notch filter 20 is 560 nm, if the half-width of the cut wavelength range is 17 nm to 31 nm, the Ra value of the synthetic light L1 exceeds 85. In particular, if the half-width is 23 nm to 25 nm, the Ra value of the synthetic light L1 reaches approximately 90. Note that if the half-width is 16 nm or 32 nm, the Ra is 84.5, which can be considered to be 85 when rounded off to the first decimal place. By setting the half-width to 16 nm to 32 nm, the Ra value can be made 84 or more.
 ノッチフィルタ20のカット波長域の中心波長が565nmの場合には、カット波長域の半値幅を18nm~35nmとすると、合成光L1のRa値が85を超える。特に、前記半値幅を23nm~29nmとすると、合成光L1のRa値が約90に達する。なお、前記半値幅が17nmの場合はRaが84.5であり、小数点以下第1位で四捨五入するとRaが85とみなすことができる。前記半値幅を17nm~36nmとすることで、Ra値を84以上とすることができる。 When the center wavelength of the cut wavelength range of the notch filter 20 is 565 nm, if the half-width of the cut wavelength range is 18 nm to 35 nm, the Ra value of the synthetic light L1 exceeds 85. In particular, if the half-width is 23 nm to 29 nm, the Ra value of the synthetic light L1 reaches approximately 90. When the half-width is 17 nm, the Ra is 84.5, which can be considered to be 85 when rounded off to the first decimal place. By setting the half-width to 17 nm to 36 nm, the Ra value can be made 84 or more.
 ノッチフィルタ20のカット波長域の中心波長が570nmの場合には、カット波長域の半値幅を21nm~39nmとすると、合成光L1のRa値が85を超える。特に、前記半値幅を28nm~32nmとすると、合成光L1のRa値が約90に達する。なお、前記半値幅が20nm又は40nmの場合はRaが84.8であり、小数点以下第1位で四捨五入するとRaが85とみなすことができる。前記半値幅を20nm~41nmとすることで、Ra値を84以上とすることができる。 When the center wavelength of the cut wavelength range of the notch filter 20 is 570 nm, if the half-width of the cut wavelength range is 21 nm to 39 nm, the Ra value of the synthetic light L1 exceeds 85. In particular, if the half-width is 28 nm to 32 nm, the Ra value of the synthetic light L1 reaches approximately 90. When the half-width is 20 nm or 40 nm, the Ra is 84.8, which can be considered to be 85 when rounded off to the first decimal place. By setting the half-width to 20 nm to 41 nm, the Ra value can be made 84 or more.
 ノッチフィルタ20のカット波長域の中心波長が575nmの場合には、カット波長域の半値幅を32nm、34nmとすると、合成光L1のRa値が85を超える。なお、前記半値幅が30nm又は36nmの場合はRaが84.8であり、小数点以下第1位で四捨五入するとRaが85とみなすことができる。また、前記半値幅を30nm~36nmとすることで、Raを84以上とすることができる。 When the center wavelength of the cut wavelength range of the notch filter 20 is 575 nm, if the half-width of the cut wavelength range is 32 nm or 34 nm, the Ra value of the synthetic light L1 exceeds 85. If the half-width is 30 nm or 36 nm, the Ra is 84.8, and if rounded to the first decimal place, the Ra can be considered to be 85. Also, by setting the half-width to 30 nm to 36 nm, the Ra can be made 84 or more.
 一方、ノッチフィルタ20のカット波長域の中心波長が550nmの場合、又は580nmの場合は、カット波長域の半値幅を調整しても合成光L1のRa値を83以上にすることができなかった。 On the other hand, when the center wavelength of the cut wavelength range of the notch filter 20 is 550 nm or 580 nm, the Ra value of the synthetic light L1 could not be increased to 83 or more even by adjusting the half-width of the cut wavelength range.
 図10は、青色光源9としてピーク波長462nmのLEDを用い、蛍光プレート10に含まれる蛍光体16としてLSN-2を用いた場合に、ノッチフィルタ20のカット波長域に属する光の低下の程度を変化させたときの、合成光L1のRa値への影響を評価したグラフである。具体的に、横軸は、ノッチフィルタ20のカット波長域の中心波長の光に対する透過率であり、縦軸は合成光L1のRa値である。 Figure 10 is a graph evaluating the effect on the Ra value of the synthetic light L1 when the degree of reduction in light belonging to the cut wavelength range of the notch filter 20 is changed when an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10. Specifically, the horizontal axis is the transmittance for light of the central wavelength in the cut wavelength range of the notch filter 20, and the vertical axis is the Ra value of the synthetic light L1.
 図10によれば、少なくとも透過率が33%以下であれば、高いRa値を示す合成光L1が得られることが分かる。 According to FIG. 10, it can be seen that if the transmittance is at least 33% or less, a synthetic light L1 with a high Ra value can be obtained.
 図11は、青色光源9としてピーク波長462nmのLEDを用い、蛍光プレート10に含まれる蛍光体16としてLSN-2を用いた場合に、ノッチフィルタ20のカット波長域の中心波長を変化させたときの、合成光L1のRa値への影響を評価したグラフである。具体的には、ノッチフィルタ20のカット波長域の半値幅を25nmで固定して、中心波長のみを変更するように各ノッチフィルタ20が設計された。 Figure 11 is a graph evaluating the effect on the Ra value of the synthetic light L1 when the central wavelength of the cut wavelength range of the notch filter 20 is changed when an LED with a peak wavelength of 462 nm is used as the blue light source 9 and LSN-2 is used as the phosphor 16 contained in the fluorescent plate 10. Specifically, each notch filter 20 was designed so that the half-width of the cut wavelength range of the notch filter 20 was fixed at 25 nm and only the central wavelength was changed.
 図11によれば、ノッチフィルタ20は、カット波長域の中心波長が553nm~575nmの範囲内となるように設計されることで、合成光L1のRa値を高くすることができることが確認される。 According to FIG. 11, it can be seen that by designing the notch filter 20 so that the center wavelength of the cut wavelength range is within the range of 553 nm to 575 nm, the Ra value of the synthetic light L1 can be increased.
 [別実施形態]
 以下、蛍光光源装置1の別実施形態について説明する。なお、以下の各図において、図1と共通の要素については、同一の符号が付されている。
[Another embodiment]
The following describes another embodiment of the fluorescent light source device 1. In the following drawings, the same elements as those in FIG.
 〈1〉図12に示す蛍光光源装置1のように、ノッチフィルタ20は、青色光L9が蛍光L10に合成される場所よりも後段に配置されていても構わない。図12の例では、ダイクロイックミラー43よりも後段にノッチフィルタ20が設置されている。 <1> As in the fluorescent light source device 1 shown in FIG. 12, the notch filter 20 may be disposed downstream of the location where the blue light L9 is combined with the fluorescent light L10. In the example of FIG. 12, the notch filter 20 is disposed downstream of the dichroic mirror 43.
 〈2〉 ノッチフィルタ20は、光の進行方向を変換する屈折光学系に一体化された状態で設置されていても構わない。 <2> The notch filter 20 may be installed as an integral part of a refractive optical system that changes the direction of light travel.
 図13に示す蛍光光源装置1は、集光光学系46を備えている。この集光光学系46は、蛍光光源装置1で生成された合成光L1を、後段の利用光学系50に向けて集光して導光する目的で配置されている。この集光光学系46が平坦面を有するレンズである場合この平坦面上にノッチフィルタ20を配置するものとして構わない。 The fluorescent light source device 1 shown in FIG. 13 is equipped with a focusing optical system 46. This focusing optical system 46 is arranged for the purpose of focusing and guiding the composite light L1 generated by the fluorescent light source device 1 toward the downstream utilization optical system 50. If this focusing optical system 46 is a lens having a flat surface, the notch filter 20 may be arranged on this flat surface.
 また、図14に示すように、コリメート光学系7を構成するレンズの光出射面にノッチフィルタ20を配置するものとしても構わない。 Also, as shown in FIG. 14, a notch filter 20 may be disposed on the light exit surface of the lens that constitutes the collimating optical system 7.
 〈3〉蛍光光源装置1は、励起光源5からの励起光L5を青色光として、この青色光と蛍光L10とが合成されてなる合成光L1を出射するものとしても構わない。この場合、図15に示すように、蛍光光源装置1は青色光源9を備えなくても構わない。 <3> The fluorescent light source device 1 may emit a composite light L1 that is a composite of the blue light L5 from the excitation light source 5 and the fluorescent light L10. In this case, as shown in FIG. 15, the fluorescent light source device 1 may not include a blue light source 9.
 また、図16に示すように、励起光源5が蛍光プレート10の裏面側から励起光L5を入射し、蛍光プレート10を透過した励起光L5の一部と、蛍光プレート10から出射された蛍光L10とが、合成光L1として利用光学系50に導かれるものとして構わない。
この場合、励起光L5の減衰を防ぐ観点から、図3を参照して上述した構成とは異なり、蛍光プレート10は基板11に保持されていない状態で利用されるのが好適である。また、反射層13も不要である。
Furthermore, as shown in FIG. 16 , the excitation light source 5 may emit excitation light L5 from the back side of the fluorescent plate 10, and a portion of the excitation light L5 transmitted through the fluorescent plate 10 and the fluorescence L10 emitted from the fluorescent plate 10 may be guided to the utilization optical system 50 as a composite light L1.
In this case, from the viewpoint of preventing attenuation of the excitation light L5, it is preferable to use the fluorescent plate 10 in a state where it is not held by the substrate 11, unlike the configuration described above with reference to Fig. 3. Furthermore, the reflective layer 13 is not necessary.
 なお、図17に示すように、励起光源5から蛍光プレート10に対して斜め方向に励起光L5を入射させるものとしても構わない。この場合、蛍光プレート10の光入射面で反射した励起光L5の一部と、蛍光L10とが重畳して合成光L1が得られる。 As shown in FIG. 17, excitation light L5 may be incident from the excitation light source 5 obliquely onto the fluorescent plate 10. In this case, a portion of the excitation light L5 reflected by the light incident surface of the fluorescent plate 10 is superimposed on the fluorescent light L10 to obtain a composite light L1.
 〈4〉図12~図17に示した蛍光光源装置1の各構造は、適宜組み合わせることができる。 <4> The structures of the fluorescent light source device 1 shown in Figures 12 to 17 can be combined as appropriate.
 〈5〉蛍光プレート10は、複数種類の蛍光体16を備えていても構わない。図18は、蛍光プレート10に含まれる蛍光体16をLuAG(蛍光のピーク波長517nm)とLSN(蛍光のピーク波長556nm)との混合体とし、バインダ17をアルミナとし、青色光源9をピーク波長455nmのLEDとした場合の、合成光L1のスペクトルとノッチフィルタ20の透過スペクトルとを重ね合わせたグラフである。ノッチフィルタ20としては、図2に示す透過スペクトルのフィルタが利用された。 <5> The fluorescent plate 10 may include multiple types of fluorescent material 16. Figure 18 is a graph superimposing the spectrum of the synthetic light L1 and the transmission spectrum of the notch filter 20 when the fluorescent material 16 contained in the fluorescent plate 10 is a mixture of LuAG (peak fluorescence wavelength 517 nm) and LSN (peak fluorescence wavelength 556 nm), the binder 17 is alumina, and the blue light source 9 is an LED with a peak wavelength of 455 nm. A filter with the transmission spectrum shown in Figure 2 was used as the notch filter 20.
 このときに得られた合成光L1をJIS Z 8724に準拠した方法で測定すると、色度上のy値が0.38であった。また、合成光L1をJIS Z 8726(光源の演色性評価方法)に準拠した方法で測定すると、Ra値が90.4という極めて高い値が得られた。 When the synthetic light L1 obtained at this time was measured using a method conforming to JIS Z 8724, the chromaticity y value was 0.38. Furthermore, when the synthetic light L1 was measured using a method conforming to JIS Z 8726 (method for evaluating the color rendering properties of light sources), an extremely high Ra value of 90.4 was obtained.
 図5~図6を参照して上述したように、蛍光体16が単一種類の材料で形成されている場合と比較して、合成光L1のy値が上昇している。このことは、蛍光光源装置1が、得られる蛍光L10の波長が異なる複数種類の蛍光体16を含む蛍光プレート10を備えることで、色温度を低くしながらも高いRa値を示す合成光L1を生成できることを示唆するものである。 As described above with reference to Figures 5 and 6, the y value of the synthetic light L1 is increased compared to when the phosphor 16 is made of a single type of material. This suggests that the fluorescent light source device 1 can generate synthetic light L1 that has a high Ra value while having a low color temperature by providing a fluorescent plate 10 containing multiple types of phosphors 16 that produce fluorescence L10 with different wavelengths.
1   :蛍光光源装置
5   :励起光源
7   :コリメート光学系
9   :青色光源
10  :蛍光プレート
11  :基板
17  :バインダ
20  :ノッチフィルタ
41  :反射ミラー
43  :ダイクロイックミラー
45  :コリメート光学系
46  :集光光学系
50  :利用光学系
L1  :合成光
L10 :蛍光
L5  :励起光
L9  :青色光
 
1: Fluorescent light source device 5: Excitation light source 7: Collimating optical system 9: Blue light source 10: Fluorescent plate 11: Substrate 17: Binder 20: Notch filter 41: Reflecting mirror 43: Dichroic mirror 45: Collimating optical system 46: Condensing optical system 50: Utilizing optical system L1: Synthesized light L10: Fluorescent light L5: Excitation light L9: Blue light

Claims (6)

  1.  青色域の励起光を発する励起光源と、
     Ceが賦活された蛍光体を含み、前記励起光を受光して前記励起光よりも長波長の蛍光を生成する蛍光プレートと、
     少なくとも前記蛍光の発散角を縮小するコリメート光学系と、
     前記コリメート光学系から出射される光が通過するノッチフィルタとを備え、
     前記ノッチフィルタは、光入射面が前記コリメート光学系から出射される光の主光線の光軸に実質的に直交する向きに配置されており、
     前記ノッチフィルタのカット波長域は、当該カット波長域の中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内であり、
     前記ノッチフィルタを介して後段の利用光学系に導光される光は、前記蛍光と青色域の光との合成光であって平均演色評価数(Ra値)が85以上であることを特徴とする、蛍光光源装置。
    an excitation light source that emits excitation light in the blue region;
    a fluorescent plate that includes a Ce-activated phosphor and receives the excitation light to generate fluorescence having a longer wavelength than the excitation light;
    a collimating optical system for reducing at least the divergence angle of the fluorescent light;
    a notch filter through which the light emitted from the collimating optical system passes,
    the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
    The cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
    a notch filter for filtering light emitted from the fluorescent light source and guided to a downstream utilization optical system; a light source device for detecting light emitted from the fluorescent light source and guided to a downstream utilization optical system through the notch filter;
  2.  励起光を発する励起光源と、
     Ceが賦活された蛍光体を含み、前記励起光を受光して前記励起光よりも長波長の蛍光を生成する蛍光プレートと、
     少なくとも前記蛍光の発散角を縮小するコリメート光学系と、
     前記コリメート光学系から出射される光が通過するノッチフィルタと、
     前記蛍光プレートから出射される前記蛍光の光路に、青色域の重畳光を入射する青色光源とを備え、
     前記ノッチフィルタは、光入射面が前記コリメート光学系から出射される光の主光線の光軸に実質的に直交する向きに配置されており、
     前記ノッチフィルタのカット波長域は、当該カット波長域の中心波長が553nm~575nmの範囲内に属し、半値幅が17nm~41nmの範囲内であり、
     前記ノッチフィルタを介して後段の利用光学系に導光される光は、前記蛍光と青色域の光との合成光であって平均演色評価数(Ra値)が85以上であることを特徴とする、蛍光光源装置。
    an excitation light source that emits excitation light;
    a fluorescent plate including a Ce-activated phosphor and configured to receive the excitation light and generate fluorescence having a longer wavelength than the excitation light;
    a collimating optical system for reducing at least the divergence angle of the fluorescent light;
    a notch filter through which the light emitted from the collimating optical system passes;
    a blue light source that inputs superimposed light of a blue range onto an optical path of the fluorescence emitted from the fluorescent plate,
    the notch filter is disposed such that a light incident surface thereof is oriented substantially perpendicular to an optical axis of a chief ray of light emitted from the collimating optical system;
    The cut wavelength range of the notch filter has a center wavelength in the range of 553 nm to 575 nm and a half width in the range of 17 nm to 41 nm;
    a fluorescent light source device, characterized in that the light guided to a downstream utilization optical system via the notch filter is a composite light of the fluorescent light and light in a blue region, and has an average color rendering index (Ra value) of 85 or more.
  3.  前記ノッチフィルタは、前記カット波長域の中心波長の光に対する透過率が33%以下であることを特徴とする、請求項1又は2に記載の蛍光光源装置。 The fluorescent light source device according to claim 1 or 2, characterized in that the notch filter has a transmittance of 33% or less for light of the center wavelength of the cut wavelength range.
  4.  前記合成光は、色度yが0.283~0.373の範囲内であることを特徴とする請求項1又は2に記載の蛍光光源装置。 The fluorescent light source device according to claim 1 or 2, characterized in that the composite light has a chromaticity y in the range of 0.283 to 0.373.
  5.  前記コリメート光学系は、光入射面又は光出射面が平坦面で形成されており、
     前記ノッチフィルタは、前記平坦面上に配置されていることを特徴とする、請求項1又は2に記載の蛍光光源装置。
    the collimating optical system has a light incidence surface or a light emission surface formed as a flat surface,
    3. The fluorescent light source device according to claim 1, wherein the notch filter is disposed on the flat surface.
  6.  前記蛍光プレートは、無機材料からなるバインダと、前記バインダ内に分散されたCe賦活の酸化物蛍光体又はCe賦活の窒化物蛍光体との焼結体を含んで構成されていることを特徴とする、請求項1又は2に記載の蛍光光源装置。
     
    3. The fluorescent light source device according to claim 1, wherein the fluorescent plate is composed of a binder made of an inorganic material and a sintered body of a Ce-activated oxide phosphor or a Ce-activated nitride phosphor dispersed in the binder.
PCT/JP2023/035061 2022-11-09 2023-09-27 Fluorescent light source device WO2024101023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179688A JP2024068970A (en) 2022-11-09 2022-11-09 Fluorescent light source device
JP2022-179688 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101023A1 true WO2024101023A1 (en) 2024-05-16

Family

ID=91032268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035061 WO2024101023A1 (en) 2022-11-09 2023-09-27 Fluorescent light source device

Country Status (2)

Country Link
JP (1) JP2024068970A (en)
WO (1) WO2024101023A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186115A (en) * 2013-03-22 2014-10-02 Sony Corp Light source device and display device
JP2018040914A (en) * 2016-09-07 2018-03-15 ウシオ電機株式会社 Fluorescence microscope-purpose light source device and fluorescence microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186115A (en) * 2013-03-22 2014-10-02 Sony Corp Light source device and display device
JP2018040914A (en) * 2016-09-07 2018-03-15 ウシオ電機株式会社 Fluorescence microscope-purpose light source device and fluorescence microscope

Also Published As

Publication number Publication date
JP2024068970A (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP6253392B2 (en) Light emitting device and light source for projector using the same
US10365551B2 (en) Wavelength conversion member including phosphor
US10658811B2 (en) Optical component, light emitting device using the optical component, and method of manufacturing the optical component
TWI463692B (en) Led module
US11316078B2 (en) Optical wavelength converter and composite optical device
EP2642540A1 (en) Wavelength conversion element and light source provided with same
JP2011511447A (en) Projection device with optoelectronic module and optoelectronic module
WO2017217486A1 (en) Phosphor element and lighting device
JP6943984B2 (en) Light wavelength converter and light emitting device
KR102044140B1 (en) Wavelength converting member and light emitting device
KR20190105653A (en) Optical wavelength conversion member and light emitting device
CN109196738B (en) Light conversion device
EP3730979A1 (en) Light-emitting apparatus
WO2024101023A1 (en) Fluorescent light source device
WO2018150630A1 (en) Light-emitting device
WO2019021846A1 (en) Wavelength conversion member and light emitting device
WO2020100728A1 (en) Light emission device
WO2020003787A1 (en) Color conversion element and illumination device
WO2024047888A1 (en) Phosphor device
US20220140204A1 (en) Dielectric Film Coating for Full Conversion Ceramic Platelets
WO2021157738A1 (en) Optical device
JPWO2019043772A1 (en) Phosphor element and lighting device
JPWO2020066077A1 (en) Fluorescent element, its manufacturing method and lighting equipment
JP2019525469A (en) Silicone composition
JP2014216445A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888376

Country of ref document: EP

Kind code of ref document: A1