WO2024100977A1 - Mass spectrometer - Google Patents

Mass spectrometer Download PDF

Info

Publication number
WO2024100977A1
WO2024100977A1 PCT/JP2023/032730 JP2023032730W WO2024100977A1 WO 2024100977 A1 WO2024100977 A1 WO 2024100977A1 JP 2023032730 W JP2023032730 W JP 2023032730W WO 2024100977 A1 WO2024100977 A1 WO 2024100977A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
ion
introduction tube
ion introduction
sample
Prior art date
Application number
PCT/JP2023/032730
Other languages
French (fr)
Japanese (ja)
Inventor
健太 寺島
郷志 笠松
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024100977A1 publication Critical patent/WO2024100977A1/en

Links

Images

Definitions

  • the present invention relates to a mass spectrometer that uses an ion source that generates ions by irradiating a sample with laser light in an atmospheric pressure environment.
  • mass spectrometers equipped with an ionization section that generates ions of the target substance by electrospray ionization (ESI) are used.
  • ESI electrospray ionization
  • the liquid sample is charged and sprayed into an ionization chamber that is at approximately atmospheric pressure, and the ions are introduced into the mass analysis section in the vacuum chamber via an ion introduction tube.
  • the ion introduction tube is positioned so as to penetrate the partition between the ionization chamber and the vacuum chamber, and the ion introduction tube is heated to promote desolvation of the ions and increase the efficiency of ion generation.
  • MALDI is an ion source that ionizes samples using the Matrix-Assisted Laser Desorption/Ionization method.
  • a mass spectrometer with atmospheric pressure MALDI is equipped with an ionization section that is at atmospheric pressure (atmospheric pressure MALDI) and a mass analysis section that is installed in a vacuum chamber and separates and detects ions according to their mass-to-charge ratio.
  • a pretreatment is performed by applying a matrix substance, which is an easily ionized substance, to the surface of the sample placed on the sample plate, forming microcrystals of the matrix substance that incorporate the molecules of the sample on the surface of the sample.
  • a matrix substance which is an easily ionized substance
  • Ions generated from the sample molecules are taken in through the inlet end (ion intake port) of the ion introduction tube and pass through the ion introduction tube to enter the mass analysis section.
  • the ions that enter the mass analysis section are separated according to their mass-to-charge ratio and detected by the ion detector.
  • a mass spectrum is obtained with the mass-to-charge ratio on the horizontal axis and the signal intensity on the vertical axis.
  • ESI and atmospheric pressure MALDI use different ionization methods, but they can use the same mass spectrometer.
  • mirrors for reflecting the light irradiated onto the sample surface and lenses for focusing the light are placed in front of the sample. Therefore, in atmospheric pressure MALDI, the sample is usually located farther from the vacuum chamber than in ESI.
  • the distance from the sample to the inlet of the ion introduction tube becomes long, and the efficiency of ion intake into the ion introduction tube becomes poor.
  • an extension tube is connected to the ion introduction tube used to introduce the ions generated by ESI into the vacuum chamber, and the inlet end of the ion introduction tube is positioned near the measurement point.
  • the ion introduction tube used in ESI is lengthened by connecting an extension tube to it and ions generated by atmospheric pressure MALDI are introduced into the vacuum chamber, it may not be possible to measure the ions with sufficient sensitivity.
  • the problem that this invention aims to solve is to improve the measurement sensitivity of ions in a mass spectrometer that uses an ion source that generates ions by irradiating a sample with laser light in an atmospheric pressure environment.
  • the present invention which has been made to solve the above problems, is a mass spectrometer in which a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment and a second ion source that irradiates a laser beam onto a sample in an atmospheric pressure environment to ionize the sample are alternatively installed as an ionization unit, a mass spectrometry unit provided in a vacuum chamber connected to the ionization unit via a partition wall, the mass spectrometry unit separating and detecting the ions generated in the ionization unit according to their mass-to-charge ratios; a second ion introduction tube that is provided through the partition wall and introduces ions generated in the ionization unit into the vacuum chamber, the second ion introduction tube being longer than a first ion introduction tube that is used when the first ion source is used and that is used when the second ion source is used; a heating unit configured to heat a portion of the second ion introduction tube that extends
  • the first ion source that sprays and ionizes the liquid sample is, for example, ESI, atmospheric pressure chemical ionization (APCI), or a dual ion source (DUIS) equipped with both.
  • the second ion source that ionizes the sample by irradiating it with laser light in an atmospheric pressure environment is, for example, atmospheric pressure MALDI or surface-assisted laser desorption ionization source (SALDI).
  • an ion introduction tube used in ESI or APCI is used as is when atmospheric pressure MALDI or the like is used, the distance from the inlet end of the ion introduction tube to the measurement point becomes long, and the efficiency of ion intake into the ion introduction tube becomes poor. Therefore, in the present invention, when the second ion source is used, a second ion introduction tube that is longer than the first ion introduction tube used when the first ion source is used is used.
  • the reason why ions could not be measured with sufficient sensitivity when using the second ion introduction tube in the past was that the part of the second ion introduction tube that extended from the first ion introduction tube to the ionization section side was not heated and became low temperature.
  • the part of the second ion introduction tube that extended from the first ion introduction tube to the ionization section side is heated by the heating section, and the ion measurement sensitivity can be improved compared to the past.
  • FIG. 1 is a diagram showing the configuration of a main part of an embodiment of a mass spectrometer according to the present invention
  • FIG. 2 is a schematic diagram of a sample introduction section of the mass spectrometer of the present embodiment (when using ESI).
  • FIG. 2 is a schematic diagram of a sample introduction section of the mass spectrometer of the present embodiment (when atmospheric pressure MALDI is used).
  • 1 shows an example of the configuration of a sample introduction section of a mass spectrometer according to the present embodiment (when atmospheric pressure MALDI is used).
  • FIG. 2 is a diagram showing a removable portion of the sample introduction section of the mass spectrometer of the present embodiment (when atmospheric pressure MALDI is used).
  • Figure 1 shows the overall configuration of the main components of a mass spectrometer 1 of this embodiment (when using atmospheric pressure MALDI).
  • the mass spectrometer 1 of this embodiment is equipped with an ionization section having atmospheric pressure MALDI installed in an ionization chamber 11 that is at approximately atmospheric pressure, and a mass analysis section that is installed in a vacuum chamber 20 and separates and detects ions according to their mass-to-charge ratio.
  • ESI instead of atmospheric pressure MALDI, ESI (see Figure 2) can be used, which also sprays and ionizes a liquid sample in an atmospheric pressure environment (electrospray ionization).
  • Atmospheric pressure MALDI is equipped with a sample plate holder 13 on which a sample plate 12 is placed, and a moving mechanism 14 that moves the sample plate 12 between an observation position (position shown by a dashed line in FIG. 1) and a measurement position (position shown by a solid line in FIG. 1). It also has an optical system including a laser light source 15, a mirror 16 that reflects the light emitted from the laser light source 15 and irradiates it onto the sample plate 12 placed on the sample plate holder 13, and a lens 17 that focuses the laser light reflected by the mirror 16 onto a measurement point on the sample plate. It is also equipped with an optical microscope 18 for observing the surface of the sample on the sample plate 12.
  • a partition 80 is provided between the atmospheric pressure MALDI and the vacuum chamber 20, and the partition 80 is provided with a sample introduction section 3. Details of the sample introduction section 3 will be described later.
  • first intermediate vacuum chamber 21 Inside the vacuum chamber 20, in order from the ionization chamber 11 side, there are a first intermediate vacuum chamber 21, a second intermediate vacuum chamber 22, a third intermediate vacuum chamber 23, and an analysis chamber 24.
  • first intermediate vacuum chamber 21 Inside the vacuum chamber 20, in order from the ionization chamber 11 side, there are a first intermediate vacuum chamber 21, a second intermediate vacuum chamber 22, a third intermediate vacuum chamber 23, and an analysis chamber 24.
  • Each of these chambers has a multi-stage differential pumping system configuration in which the degree of vacuum gradually increases from the first intermediate vacuum chamber 21 toward the analysis chamber 24.
  • an ion lens 211 consisting of multiple ring electrodes is arranged to focus the ions generated in the ionization chamber 11 and introduced through the sample introduction section 3 near the ion optical axis C, which is the central axis of the ion flight direction, while transporting them to the subsequent stage.
  • the first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 212 with a small hole at the top.
  • the second intermediate vacuum chamber 22 also has an ion guide 221 made up of multiple rod electrodes arranged to focus ions near the ion optical axis C while transporting them to the subsequent stage.
  • the second intermediate vacuum chamber 22 and the third intermediate vacuum chamber 23 are connected by a small diameter hole provided in the partition between them.
  • a quadrupole mass filter 231 consisting of four rod electrodes
  • a collision cell 232 from the side closest to the second intermediate vacuum chamber 22, a quadrupole mass filter 231 consisting of four rod electrodes, a collision cell 232, and an ion lens 234 consisting of multiple ring electrodes are arranged.
  • a multipole ion guide 233 consisting of multiple rod electrodes is arranged inside the collision cell 232.
  • a CID gas such as argon or nitrogen is continuously or intermittently supplied at an appropriate timing.
  • the third intermediate vacuum chamber 23 and the analysis chamber 24 are connected by a small diameter hole provided in the partition between them.
  • an ion lens 241 consisting of multiple ring electrodes, an orthogonal acceleration section 242, an acceleration electrode 243, a flight tube 244, a reflectron electrode 245, and an ion detector 246 are arranged.
  • the orthogonal acceleration section 242 is composed of an extrusion electrode 2421 and a retraction electrode 2422, each of which is a plate-shaped electrode, and is arranged opposite each other across the flight path of the ions transported by the ion lens 241.
  • the retraction electrode 2422 has an opening for passing the ions.
  • the acceleration electrode 243 is composed of multiple ring electrodes for accelerating the ions whose flight direction has been changed by the orthogonal acceleration section 242.
  • the flight tube 244 is a cylindrical electrode, and the flight space of the ions is defined inside it.
  • the reflectron electrode 245 is composed of multiple ring electrodes, and a predetermined voltage is applied to each electrode so as to form a potential gradient in which the potential increases toward the rear stage. Ions accelerated by the acceleration electrode 243 and flying through the flight space defined inside the flight tube 244 are turned around by this potential gradient.
  • the ion detector 246 detects the turned around ions by the potential gradient formed by the reflectron electrode 245.
  • the control unit 5 includes a memory unit 51.
  • the memory unit 51 stores time-of-flight-mass-to-charge ratio information and applied voltage information.
  • the time-of-flight-mass-to-charge ratio information describes the time required for ions having various mass-to-charge ratios to fly through the flight space in the analysis chamber 24.
  • the applied voltage information includes information on the value of the voltage applied to each electrode provided in the mass spectrometer 1, and information on the relationship between the applied voltage from the first power supply 34 and second power supply 38 described below and the set temperature.
  • the memory unit 51 also stores a compound database that includes information on the measurement conditions (mass-to-charge ratio of precursor ions, collision energy value, etc.) and analysis methods for each of a number of known compounds.
  • the control unit 5 also includes, as functional blocks, a measurement execution unit 52 and an analysis processing unit 53.
  • the measurement execution unit 52 executes measurements by controlling the operation of each unit, for example by applying a predetermined voltage to each electrode arranged in the mass spectrometer 1 based on the measurement conditions set by the user.
  • the analysis processing unit 53 performs processing such as generating a mass spectrum from the measurement data.
  • the actual control unit 5 is, for example, a general personal computer, and the above functional blocks are realized by executing a dedicated program pre-installed in the processor.
  • the control unit 5 is also connected to an input unit 6 consisting of a keyboard, mouse, etc., and a display unit 7 consisting of a liquid crystal display, etc.
  • the mass analysis performed by the mass spectrometer 1 of this embodiment is the same as in the conventional method, so it will be explained briefly below.
  • a pretreatment is performed by applying a matrix substance, which is a substance that is easily ionized, to the surface of the sample placed on the sample plate 12, thereby forming microcrystals of the matrix substance that incorporate the molecules of the sample on the surface of the sample.
  • the sample plate 12 on which the pretreated sample is placed is placed on the sample plate holder 13, and the sample plate holder 13 is placed at the measurement position.
  • the microcrystals of the matrix substance are heated, and the sample molecules are desorbed and ionized. Ions generated from the sample molecules in the ionization chamber 11 enter the vacuum chamber 20 through the sample introduction section 3.
  • the ions that enter the vacuum chamber 20 are transported by the ion lens 211 and the ion guide 221, and then enter the quadrupole mass filter 231.
  • ions having a predetermined mass-to-charge ratio are selected as precursor ions and enter the collision cell 232.
  • the precursor ions entering the collision cell 232 collide with molecules of the CID gas introduced into the collision cell 232 and are fragmented to generate product ions.
  • the product ions generated in the collision cell 232 are transported by the ion lenses 234 and 241 and enter the orthogonal acceleration section 242.
  • the product ions whose flight direction is changed to a substantially orthogonal direction in the orthogonal acceleration section 242, are accelerated by the acceleration electrode 243, enter a flight space surrounded by a flight tube 244, and fly back and forth due to the potential gradient formed by the reflectron electrode 245 located at the end of the flight tube, before being detected by the ion detector 246.
  • the output signals from the ion detector 246 are sequentially stored in the memory unit 51.
  • the analysis processing unit 53 converts the flight time of each ion into a mass-to-charge ratio based on the flight time-mass-to-charge ratio information stored in the memory unit 51, and generates mass spectrum data with the mass-to-charge ratio and signal intensity on two axes.
  • the mass spectrometer 1 of this embodiment is characterized by the configuration of the sample introduction section 3 provided in the partition 80 between the ionization chamber 11 and the first intermediate vacuum chamber 21.
  • the sample introduction section 3 will be described below.
  • FIG. 2 is a schematic diagram showing the configuration of the sample introduction section 3 when mass spectrometry is performed on ions generated by ESI.
  • the sample introduction section 3 has a first tube 31 (corresponding to the first ion introduction tube in the present invention), a tube attachment section 32 to which the first tube 31 is attached, a heating element 33 arranged on the outer periphery of the first tube 31, and a first power supply 34 to supply power to the heating element 33.
  • the first tube 31 is made of, for example, stainless steel.
  • the central axis of the first tube 31 is perpendicular to the spray direction of the charged droplets from the ESI probe 111, and ions generated by desolvation from the charged droplets are drawn into the first tube 31 by the pressure difference between the ionization chamber 11 and the vacuum chamber 20.
  • FIG. 3 is a schematic diagram showing the configuration of the sample introduction section 3 when performing mass analysis on ions generated by atmospheric pressure MALDI.
  • the sample introduction section 3 has a first tube 31 attached to a tube attachment section 32, a tube connection section 35, and a second tube 36 connected to the first tube 31 by the tube connection section 35.
  • the second tube 36 is also made of, for example, stainless steel.
  • the second tube 36 and the tube connection section 35 are detachable from the first tube 31.
  • the first tube 31 and the second tube 36 correspond to the second ion introduction tube in the present invention
  • the second tube 36 corresponds to the portion of the second ion introduction tube that extends from the first ion introduction tube to the ionization section side in the present invention.
  • the inlet end of the ion introduction tube can be brought closer to the sample surface, and more ions emitted from the sample can be introduced from the ion introduction tube (second tube 36 and first tube 31) to the mass analysis section.
  • the ion introduction tube for atmospheric pressure MALDI is constructed by connecting the first tube 31 and the second tube 36 with the tube connection part 35, but a single long ion introduction tube may also be used.
  • a heating element 33 shown diagrammatically as a heater wire, is attached to the outer periphery of the first tube 31, and the first tube 31 is heated by supplying power to the heating element 33 from a first power source 34.
  • a heater wire is shown diagrammatically in FIGS. 2 and 3, various items capable of heating the first tube 31 can be used, and for example, a cartridge heater (such as a block heater), a microsheath heater, a ceramic coating, etc. can be used as the heating element 33.
  • the first tube 31 may be heated by irradiation with infrared light, etc.
  • a heating element (corresponding to the heating section in this invention) 37 shown diagrammatically as a heater wire, is attached to the outer periphery of the second tube 36, and the second tube 36 is heated by supplying power to the heating element 37 from a second power source 38.
  • the heating element 37 and the second power source 38 correspond to the heating section in this invention.
  • Various methods can be used to heat the second tube 36; for example, the second tube 36 can be heated by using the heating element 37 and the second power source 38 made up of the various heaters described above, or by irradiating it with infrared light.
  • the heating element 37 for heating the second tube 36 is arranged so as to heat the end of the second tube 36 (the end on the ionization chamber 11 side).
  • the heating element 37 is arranged so as to surround the tip of the second tube 36 or the outer periphery near it.
  • a heating element 37 is provided to heat the second tube 36. Therefore, not only the first tube 31 but also the second tube 36 is sufficiently heated. As will be described later with reference to the measurement results, by heating the second tube 36, ions can be detected with higher sensitivity than before.
  • the first tube mounting member 41 is arranged on the outer periphery of the first tube 31, and the second tube mounting member 42 is arranged on the outer periphery of the second tube 36.
  • Both the first tube mounting member 41 and the second tube mounting member 42 are made of stainless steel having electrical conductivity.
  • the first tube mounting member 41 and the second tube mounting member 42 are detachable.
  • the first tube mounting member 41 is connected to the first power source 34. When electricity is applied from the first power source 34 to the first tube mounting member 41 and the first tube 31, the first tube 31, which has a large electrical resistance, generates heat.
  • a cartridge heater 43 is arranged along the outer periphery of the second tube 36. When a voltage is applied from the second power source 38 to the cartridge heater 43, the cartridge heater 43 generates heat and the second tube 36 is heated.
  • the parts shown in FIG. 5 can be attached and detached. Therefore, when exchanging between ESI and atmospheric pressure MALDI, it is only necessary to attach and detach the parts shown in FIG. 5, and there is no need to remove the first tube 31 attached to the bulkhead 80 by the tube attachment section 32.
  • the second tube 36 and the cartridge heater 43 are configured as separate bodies, and both are detachable. Therefore, if sample components adhere to the inside of the second tube 36 or if the second tube 36 becomes clogged, only the second tube 36 can be removed and cleaned or replaced. Also, if a malfunction occurs in the cartridge heater 43, such as a broken wire, only the cartridge heater 43 can be replaced. This allows for reduced costs compared to replacing the integrated second tube 36 and cartridge heater 43 (including the second tube attachment member 42).
  • the first tube 31 was heated to 250°C by applying current from the first power source 34, and the temperature of the second tube 36 was measured. Also, as an example (with tip heating), in addition to heating the first tube 31, the second tube 36 was heated to 450°C by the cartridge heater 43, and the temperature of the second tube 36 was measured. The length of the second tube 36 used in these measurements was 50 mm.
  • the entire second tube 36 is at a higher temperature than in the comparative example.
  • the tip of the second tube 36 on the ionization chamber side is at a higher temperature by more than 200°C compared to the comparative example (approximately 50°C).
  • the ions generated from AngII (angiotensin II) and chloroquine were measured for each of the comparative example and example. As shown in Figure 7, the measured intensity for each ion was higher in the example in which tip heating was performed than in the comparative example in which tip heating was not performed.
  • the maximum heating temperature of the tip in this measurement was approximately 430°C, and at least up to this temperature, the higher the heating temperature, the higher the measured ion intensity.
  • the heat resistance of the sample it is thought that the higher the second tube 36 is heated to, at least up to over 400°C, the better the ion measurement sensitivity will be. Note that, although this depends on the material of second tube 36, taking into account heat resistance, etc., it is appropriate to set the upper limit of the heating temperature of second tube 36 to around 500°C.
  • atmospheric pressure MALDI and ESI were used as the ion source, but other laser ion sources (e.g., SALDI) can be used instead of atmospheric pressure MALDI.
  • SALDI laser ion sources
  • APCI or a DUIS equipped with both ESI and APCI can be used.
  • an ion introduction tube for atmospheric pressure MALDI is constructed by connecting the second tube 36 as an extension tube to the first tube 31, which is an ion introduction tube for ESI, but a single ion introduction tube that is longer than the ion introduction tube for ESI may also be used as the ion introduction tube for atmospheric pressure MALDI.
  • a configuration for heating the first tube 31 and the second tube 36 has been described, but it is also effective to provide a means for suppressing heat dissipation in addition to the heating section.
  • a heat insulating material may be wrapped around the outer circumference of the first tube 31 and/or the second tube 36, or a reflector that reflects heat radiation from the first tube 31 and/or the second tube 36 may be disposed so as to surround the first tube 31 and/or the second tube 36.
  • One aspect of the present invention is a mass spectrometer in which a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment and a second ion source that irradiates and ionizes the sample with laser light in an atmospheric pressure environment are alternatively installed as an ionization unit, a mass spectrometry unit provided in a vacuum chamber connected to the ionization unit via a partition wall, the mass spectrometry unit separating and detecting the ions generated in the ionization unit according to their mass-to-charge ratios; a second ion introduction tube that is provided through the partition wall and introduces ions generated in the ionization unit into the vacuum chamber, the second ion introduction tube being longer than a first ion introduction tube that is used when the first ion source is used and that is used when the second ion source is used; a heating unit configured to heat a portion of the second ion introduction tube that extends from the first ion introduction
  • the mass spectrometer according to paragraph 1 is a mass spectrometer that is alternatively equipped as an ionization unit with a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment, and a second ion source that irradiates a sample to which a matrix substance has been mixed or applied with laser light in an atmospheric pressure environment to ionize the sample.
  • the first ion source that sprays and ionizes a liquid sample is, for example, a DUIS equipped with ESI, APCI, or both.
  • the second ion source that ionizes a sample to which a matrix substance has been mixed or applied with laser light in an atmospheric pressure environment is atmospheric pressure MALDI.
  • a mass spectrometer according to paragraph 2 is a mass spectrometer according to paragraph 1,
  • the second iontophoretic tube has the first iontophoretic tube and an extension tube connected to the first iontophoretic tube.
  • a mass spectrometer according to paragraph 3 is a mass spectrometer according to paragraph 1,
  • the second iontophoretic tube is composed of a single tube.
  • the second ion introduction tube in the mass spectrometer of paragraph 1 may be a single ion introduction tube having a length such that the end on the ionization section side is located close to the position where the laser light is irradiated on the sample surface, as in the mass spectrometer of paragraph 3, or may have a first ion introduction tube and a second tube detachably connected to the first ion introduction tube, as in the mass spectrometer of paragraph 2.
  • the second ion introduction tube can be easily configured by connecting an extension tube while the first ion introduction tube that penetrates the bulkhead is still attached.
  • a mass spectrometer according to paragraph 4 is a mass spectrometer according to any one of paragraphs 1 to 3,
  • the heating section is provided so as to surround the second iontophoretic tube and has a heating element that generates heat when electricity is applied thereto.
  • the ion introduction tube is heated by a heating element that generates heat when electricity is passed through it, thereby heating the second ion introduction tube to a higher temperature and improving the measurement sensitivity of ions.
  • Mass spectrometer 11 Ionization chamber 111... ESI probe 12... Sample plate 13... Sample plate holder 14... Moving mechanism 15... Laser light source 16... Mirror 17... Lens 18... Optical microscope 20... Vacuum chamber 21... First intermediate vacuum chamber 211... Ion lens 212... Skimmer 22... Second intermediate vacuum chamber 221... Ion guide 23... Third intermediate vacuum chamber 231... Quadrupole mass filter 232... Collision cell 233... Multipole ion guide 234... Ion lens 24... Analysis chamber 241... Ion 3.
  • Reflectron lens 242 ...orthogonal acceleration section 2421...push electrode 2422...pull-in electrode 243...acceleration electrode 244...flight tube 245...reflectron electrode 246...ion detector 3...sample introduction section 31...first tube 32...tube attachment section 33...heating element 34...first power supply 35...tube connection section 36...second tube 37...heating element 38...second power supply 41...first tube attachment member 42...second tube attachment member 43...cartridge heater 5...control section 51...memory section 52...measurement execution section 53...analysis processing section 6...input section 7...display section 80...partition wall C...ion optical axis

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a mass spectrometer (1) in which a first ion source (12) to (17) that atomizes a liquid sample under an atmospheric pressure to ionize the liquid sample and a second ion source (111) that emits laser beam to the sample to ionize the sample are attached alternatively as an ionization section, the mass spectrometer (1) being further provided with: a mass analysis section (231), (242) to (246) which is disposed in a vacuum chamber connected to the ionization section through a partitioning wall and separates and detects ions in accordance with mass-to-charge ratios thereof; a second ion introduction tube (31), (36) which is longer than a first ion introduction tube and is used when the second ion source is used, in which the first ion introduction tube is disposed through the partitioning wall and through which ions are introduced into the vacuum chamber and us used when the first ion source is used; and a heating section (37), (38) which heats a part of the second ion introduction tube which extends from the first ion introduction tube toward the ionization section side.

Description

質量分析装置Mass Spectrometer
 本発明は、大気圧雰囲気で試料にレーザ光を照射してイオンを生成するイオン源を用いる質量分析装置に関する。 The present invention relates to a mass spectrometer that uses an ion source that generates ions by irradiating a sample with laser light in an atmospheric pressure environment.
 液体試料に含まれる目的物質を同定したり定量したりするために、エレクトロスプレーイオン化(ESI)により目的物質のイオンを生成するイオン化部を備えた質量分析装置が用いられている。ESIでは、液体試料を帯電させて略大気圧であるイオン化室に噴霧し、イオン導入管を介して真空チャンバ内の質量分析部にイオンを導入する。イオン導入管はイオン化室と真空チャンバの隔壁を貫通するように配置されており、該イオン導入管を加熱することによってイオンの脱溶媒を促進してイオンの生成効率を高めている。 In order to identify and quantify target substances contained in liquid samples, mass spectrometers equipped with an ionization section that generates ions of the target substance by electrospray ionization (ESI) are used. In ESI, the liquid sample is charged and sprayed into an ionization chamber that is at approximately atmospheric pressure, and the ions are introduced into the mass analysis section in the vacuum chamber via an ion introduction tube. The ion introduction tube is positioned so as to penetrate the partition between the ionization chamber and the vacuum chamber, and the ion introduction tube is heated to promote desolvation of the ions and increase the efficiency of ion generation.
 また、生体試料等に含まれる目的物質を測定するために、MALDIを備えた質量分析装置を用いた質量分析が行われている(例えば特許文献1)。MALDIは、マトリックス支援レーザ脱離イオン化(Matrix-Assisted Laser Desorption/Ionization)法により試料をイオン化するイオン源である。 In addition, mass spectrometry using a mass spectrometer equipped with MALDI is being carried out to measure target substances contained in biological samples, etc. (for example, Patent Document 1). MALDI is an ion source that ionizes samples using the Matrix-Assisted Laser Desorption/Ionization method.
 MALDIには、大気圧雰囲気で試料をイオン化する大気圧MALDIと、真空雰囲気で試料をイオン化する真空MALDIがある。大気圧MALDIを有する質量分析装置は、大気圧であるイオン化部(大気圧MALDI)と、真空チャンバ内に設けられイオンを質量電荷比に応じて分離し検出する質量分析部とを備えている。  There are two types of MALDI: atmospheric pressure MALDI, which ionizes samples in an atmospheric pressure environment, and vacuum MALDI, which ionizes samples in a vacuum environment. A mass spectrometer with atmospheric pressure MALDI is equipped with an ionization section that is at atmospheric pressure (atmospheric pressure MALDI) and a mass analysis section that is installed in a vacuum chamber and separates and detects ions according to their mass-to-charge ratio.
 大気圧MALDIを備えた質量分析装置では、以下のようにして質量分析が行われる。 In a mass spectrometer equipped with atmospheric pressure MALDI, mass analysis is performed as follows:
 まず、サンプルプレート上に載置した試料の表面に、イオン化しやすい物質であるマトリックス物質を塗布する前処理を行うことにより、試料の表面に該試料の分子を取り込んだマトリックス物質の微結晶を形成させる。前処理後の試料を載置したサンプルプレートをMALDIの所定の位置にセットして試料表面にレーザ光を照射すると、該表面に存在するマトリックス物質の微結晶が加熱され、該微結晶に取り込まれた試料分子が脱離しイオン化する。 First, a pretreatment is performed by applying a matrix substance, which is an easily ionized substance, to the surface of the sample placed on the sample plate, forming microcrystals of the matrix substance that incorporate the molecules of the sample on the surface of the sample. When the sample plate with the pretreated sample placed on it is set in a designated position in the MALDI and laser light is irradiated onto the sample surface, the microcrystals of the matrix substance present on the surface are heated, and the sample molecules incorporated into the microcrystals are desorbed and ionized.
 試料分子から生成されたイオンは、イオン導入管の入口端(イオン取込口)から取り込まれ、該イオン導入管を通って質量分析部に進入する。質量分析部に進入したイオンは、質量電荷比に応じて分離され、イオン検出器で検出される。イオン検出器から順次出力される信号強度を、イオンの質量電荷比に対応付けることにより、横軸を質量電荷比、縦軸を信号強度とするマススペクトルが得られる。 Ions generated from the sample molecules are taken in through the inlet end (ion intake port) of the ion introduction tube and pass through the ion introduction tube to enter the mass analysis section. The ions that enter the mass analysis section are separated according to their mass-to-charge ratio and detected by the ion detector. By correlating the signal intensities sequentially output by the ion detector with the mass-to-charge ratios of the ions, a mass spectrum is obtained with the mass-to-charge ratio on the horizontal axis and the signal intensity on the vertical axis.
 ESIと大気圧MALDIではイオン化の方法が異なるが、質量分析部には共通のものを用いることができる。ただし、大気圧MALDIでは、試料表面に照射する光を反射するためのミラーや、集光するためのレンズ等が試料の前方に配置される。そのため、ESIに比べると大気圧MALDIの方が、通常、試料が真空チャンバからより遠くに位置する。  ESI and atmospheric pressure MALDI use different ionization methods, but they can use the same mass spectrometer. However, in atmospheric pressure MALDI, mirrors for reflecting the light irradiated onto the sample surface and lenses for focusing the light are placed in front of the sample. Therefore, in atmospheric pressure MALDI, the sample is usually located farther from the vacuum chamber than in ESI.
特開2021-196303号公報JP 2021-196303 A
 ESIで用いられるイオン導入管をそのまま使用すると、試料からイオン導入管の入口までの距離が長くなり、イオン導入管へのイオンの取り込み効率が悪くなる。そのため、大気圧MALDIによりイオンを生成する場合には、例えば、ESIにより生成したイオンを真空チャンバ内に導入するために用いられるイオン導入管に延長管を接続するなどして、該イオン導入管の入口端を測定点の近傍に配置している。ところが、ESIで用いられるイオン導入管に延長管を接続するなどして長くして、大気圧MALDIにより生成されたイオンを真空チャンバに導入すると、十分な感度でイオンを測定することができない場合があることが分かった。 If the ion introduction tube used in ESI is used as is, the distance from the sample to the inlet of the ion introduction tube becomes long, and the efficiency of ion intake into the ion introduction tube becomes poor. For this reason, when ions are generated by atmospheric pressure MALDI, for example, an extension tube is connected to the ion introduction tube used to introduce the ions generated by ESI into the vacuum chamber, and the inlet end of the ion introduction tube is positioned near the measurement point. However, it has been found that when the ion introduction tube used in ESI is lengthened by connecting an extension tube to it and ions generated by atmospheric pressure MALDI are introduced into the vacuum chamber, it may not be possible to measure the ions with sufficient sensitivity.
 本発明が解決しようとする課題は、大気圧雰囲気で試料にレーザ光を照射してイオンを生成するイオン源を用いる質量分析装置において、イオンの測定感度を向上することである。 The problem that this invention aims to solve is to improve the measurement sensitivity of ions in a mass spectrometer that uses an ion source that generates ions by irradiating a sample with laser light in an atmospheric pressure environment.
 上記課題を解決するために成された本発明は、大気圧雰囲気で液体試料を噴霧してイオン化する第1イオン源と、大気圧雰囲気で試料にレーザ光を照射してイオン化する第2イオン源が択一的にイオン化部として取り付けられる質量分析装置であって、
 前記イオン化部に隔壁を介して接続された真空チャンバ内に設けられ、前記イオン化部で生成されたイオンを質量電荷比に応じて分離し検出する質量分析部と、
 前記隔壁を貫通して設けられ、前記イオン化部で生成されたイオンを前記真空チャンバ内に導入するイオン導入管であって、前記第1イオン源の使用時に用いられる第1イオン導入管よりも長尺であり前記第2イオン源の使用時に用いられる第2イオン導入管と、
 前記第2イオン導入管のうち、前記第1イオン導入管から前記イオン化部側に延長された部分を加熱する加熱部と
 を備える。
The present invention, which has been made to solve the above problems, is a mass spectrometer in which a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment and a second ion source that irradiates a laser beam onto a sample in an atmospheric pressure environment to ionize the sample are alternatively installed as an ionization unit,
a mass spectrometry unit provided in a vacuum chamber connected to the ionization unit via a partition wall, the mass spectrometry unit separating and detecting the ions generated in the ionization unit according to their mass-to-charge ratios;
a second ion introduction tube that is provided through the partition wall and introduces ions generated in the ionization unit into the vacuum chamber, the second ion introduction tube being longer than a first ion introduction tube that is used when the first ion source is used and that is used when the second ion source is used;
a heating unit configured to heat a portion of the second ion introduction tube that extends from the first ion introduction tube toward the ionization unit.
 上記の、液体試料を噴霧してイオン化する第1イオン源は、例えばESI、大気圧化学イオン化(APCI)、あるいはその両方を備えたデュアルイオンソース(DUIS)である。また、上記の、大気圧雰囲気で試料にレーザ光を照射してイオン化する第2イオン源は、例えば、大気圧MALDI、表面支援レーザ脱離イオン化源(SALDI)である。 The first ion source that sprays and ionizes the liquid sample is, for example, ESI, atmospheric pressure chemical ionization (APCI), or a dual ion source (DUIS) equipped with both. The second ion source that ionizes the sample by irradiating it with laser light in an atmospheric pressure environment is, for example, atmospheric pressure MALDI or surface-assisted laser desorption ionization source (SALDI).
 ESIやAPCIで用いられるイオン導入管をそのまま大気圧MALDIなどの使用時に用いると、イオン導入管の入口端から測定点までの距離が長くなり、イオン導入管へのイオンの取り込み効率が悪くなる。そのため、本発明では、第2イオン源の使用時に、第1イオン源の使用時に用いられる第1イオン導入管よりも長尺である第2イオン導入管を使用する。本発明者が得た知見によれば、従来、第2イオン導入管を使用する際に十分な感度でイオンを測定することができなかったのは、第2イオン導入管のうち第1イオン導入管からイオン化部側に延長された部分が加熱されず低温になることが理由であった。本発明に係る質量分析装置では、第2イオン導入管のうち、第1イオン導入管からイオン化部側に延長された部分を加熱部によって加熱することにより、イオンの測定感度を従来よりも向上することができる。 If an ion introduction tube used in ESI or APCI is used as is when atmospheric pressure MALDI or the like is used, the distance from the inlet end of the ion introduction tube to the measurement point becomes long, and the efficiency of ion intake into the ion introduction tube becomes poor. Therefore, in the present invention, when the second ion source is used, a second ion introduction tube that is longer than the first ion introduction tube used when the first ion source is used is used. According to the knowledge obtained by the inventors, the reason why ions could not be measured with sufficient sensitivity when using the second ion introduction tube in the past was that the part of the second ion introduction tube that extended from the first ion introduction tube to the ionization section side was not heated and became low temperature. In the mass spectrometer according to the present invention, the part of the second ion introduction tube that extended from the first ion introduction tube to the ionization section side is heated by the heating section, and the ion measurement sensitivity can be improved compared to the past.
本発明に係る質量分析装置の一実施形態の要部構成図。1 is a diagram showing the configuration of a main part of an embodiment of a mass spectrometer according to the present invention; 本実施形態の質量分析装置(ESI使用時)の試料導入部の模式図。FIG. 2 is a schematic diagram of a sample introduction section of the mass spectrometer of the present embodiment (when using ESI). 本実施形態の質量分析装置(大気圧MALDI使用時)の試料導入部の模式図。FIG. 2 is a schematic diagram of a sample introduction section of the mass spectrometer of the present embodiment (when atmospheric pressure MALDI is used). 本実施形態の質量分析装置(大気圧MALDI使用時)の試料導入部の構成例。1 shows an example of the configuration of a sample introduction section of a mass spectrometer according to the present embodiment (when atmospheric pressure MALDI is used). 本実施形態の質量分析装置(大気圧MALDI使用時)の試料導入部のうち、着脱可能な部分を示す図。FIG. 2 is a diagram showing a removable portion of the sample introduction section of the mass spectrometer of the present embodiment (when atmospheric pressure MALDI is used). 比較例と実施例における第2イオン導入管の温度を測定した結果。4 shows the results of measuring the temperature of the second iontophoretic tube in the comparative example and the example. 比較例と実施例によりAngIIとChloroquineのイオンの強度を測定した結果。The results of measuring the ionic intensity of AngII and chloroquine in the comparative example and the example. 実施例における先端の加熱温度が異なる条件でマウス脳由来のイオンの強度を測定した結果。13 shows the results of measuring the intensity of ions derived from mouse brain under different heating temperatures of the tip in the example.
 本発明に係る質量分析装置の一実施形態について、以下、図面を参照して説明する。 One embodiment of a mass spectrometer according to the present invention will be described below with reference to the drawings.
 図1に、本実施形態の質量分析装置1(大気圧MALDI使用時)の全体の要部構成を示す。本実施形態の質量分析装置1は、略大気圧であるイオン化室11に設けられた大気圧MALDIを有するイオン化部と、真空チャンバ20内に設けられイオンを質量電荷比に応じて分離し検出する質量分析部とを備えている。また、本実施例の質量分析装置1では、大気圧MALDIに代えて、同じく大気圧雰囲気で液体試料を噴霧してイオン化(エレクトロスプレーイオン化)するESI(図2参照)を用いることができる。 Figure 1 shows the overall configuration of the main components of a mass spectrometer 1 of this embodiment (when using atmospheric pressure MALDI). The mass spectrometer 1 of this embodiment is equipped with an ionization section having atmospheric pressure MALDI installed in an ionization chamber 11 that is at approximately atmospheric pressure, and a mass analysis section that is installed in a vacuum chamber 20 and separates and detects ions according to their mass-to-charge ratio. In addition, in the mass spectrometer 1 of this embodiment, instead of atmospheric pressure MALDI, ESI (see Figure 2) can be used, which also sprays and ionizes a liquid sample in an atmospheric pressure environment (electrospray ionization).
 大気圧MALDIは、サンプルプレート12が載置されるサンプルプレートホルダ13と、該サンプルプレート12を観察位置(図1に破線で示す位置)と測定位置(図1に実線で示す位置)の間で移動させる移動機構14を備えている。また、レーザ光源15、該レーザ光源15から発せられた光を反射し、サンプルプレートホルダ13に載置されたサンプルプレート12に照射するミラー16、該ミラー16で反射されたレーザ光をサンプルプレート上の測定点に集光するレンズ17などの光学系を備えている。また、サンプルプレート12上の試料の表面を観察するための光学顕微鏡18を備えている。 Atmospheric pressure MALDI is equipped with a sample plate holder 13 on which a sample plate 12 is placed, and a moving mechanism 14 that moves the sample plate 12 between an observation position (position shown by a dashed line in FIG. 1) and a measurement position (position shown by a solid line in FIG. 1). It also has an optical system including a laser light source 15, a mirror 16 that reflects the light emitted from the laser light source 15 and irradiates it onto the sample plate 12 placed on the sample plate holder 13, and a lens 17 that focuses the laser light reflected by the mirror 16 onto a measurement point on the sample plate. It is also equipped with an optical microscope 18 for observing the surface of the sample on the sample plate 12.
 大気圧MALDIと真空チャンバ20の間には隔壁80が設けられており、隔壁80には試料導入部3が設けられている。試料導入部3の詳細は後記する。 A partition 80 is provided between the atmospheric pressure MALDI and the vacuum chamber 20, and the partition 80 is provided with a sample introduction section 3. Details of the sample introduction section 3 will be described later.
 真空チャンバ20内には、イオン化室11の側から順に、第1中間真空室21、第2中間真空室22、第3中間真空室23、及び分析室24が設けられている。これらの各室は第1中間真空室21から分析室24に向かって徐々に真空度が高くなる多段差動排気系の構成を有している。 Inside the vacuum chamber 20, in order from the ionization chamber 11 side, there are a first intermediate vacuum chamber 21, a second intermediate vacuum chamber 22, a third intermediate vacuum chamber 23, and an analysis chamber 24. Each of these chambers has a multi-stage differential pumping system configuration in which the degree of vacuum gradually increases from the first intermediate vacuum chamber 21 toward the analysis chamber 24.
 第1中間真空室21には、イオン化室11で生成され試料導入部3を通じて導入されるイオンを、イオンの飛行方向の中心軸であるイオン光軸Cの近傍に収束させつつ後段に輸送するための、複数のリング電極で構成されたイオンレンズ211が配置されている。 In the first intermediate vacuum chamber 21, an ion lens 211 consisting of multiple ring electrodes is arranged to focus the ions generated in the ionization chamber 11 and introduced through the sample introduction section 3 near the ion optical axis C, which is the central axis of the ion flight direction, while transporting them to the subsequent stage.
 第1中間真空室21と第2中間真空室22は頂部に小孔を有するスキマー212で隔てられている。第2中間真空室22にも、イオン光軸Cの近傍にイオンを収束させつつ後段へ輸送するための、複数のロッド電極で構成されたイオンガイド221が配置されている。 The first intermediate vacuum chamber 21 and the second intermediate vacuum chamber 22 are separated by a skimmer 212 with a small hole at the top. The second intermediate vacuum chamber 22 also has an ion guide 221 made up of multiple rod electrodes arranged to focus ions near the ion optical axis C while transporting them to the subsequent stage.
 第2中間真空室22と第3中間真空室23は、両者の隔壁に設けられた小径の孔で連通している。第3中間真空室23には、第2中間真空室22に近い側から順に、4本のロッド電極で構成される四重極マスフィルタ231、コリジョンセル232、複数のリング電極で構成されるイオンレンズ234が配置されている。コリジョンセル232の内部には、複数のロッド電極で構成される多重極イオンガイド233が配置されている。コリジョンセル232の内部には、適宜のタイミングでアルゴン、窒素などのCIDガスが連続的又は間欠的に供給される。 The second intermediate vacuum chamber 22 and the third intermediate vacuum chamber 23 are connected by a small diameter hole provided in the partition between them. In the third intermediate vacuum chamber 23, from the side closest to the second intermediate vacuum chamber 22, a quadrupole mass filter 231 consisting of four rod electrodes, a collision cell 232, and an ion lens 234 consisting of multiple ring electrodes are arranged. Inside the collision cell 232, a multipole ion guide 233 consisting of multiple rod electrodes is arranged. Inside the collision cell 232, a CID gas such as argon or nitrogen is continuously or intermittently supplied at an appropriate timing.
 第3中間真空室23と分析室24は、両者の隔壁に設けられた小径の孔で連通している。分析室24には、複数のリング電極で構成されるイオンレンズ241、直交加速部242、加速電極243、フライトチューブ244、リフレクトロン電極245、及びイオン検出器246が配置されている。直交加速部242は、イオンレンズ241で輸送されたイオンの飛行経路を挟んで対向配置された、それぞれが板状電極である押出電極2421と引込電極2422で構成されている。引込電極2422には、イオンを通過させるための開口が設けられている。加速電極243は、直交加速部242で飛行方向が変更されたイオンを加速するための複数のリング電極で構成されている。フライトチューブ244は筒状の電極であり、その内部にイオンの飛行空間が規定される。リフレクトロン電極245は、複数のリング電極で構成されており、後段側に向かって電位が高くなる電位勾配を形成するように各電極に所定の電圧が印加される。加速電極243で加速されフライトチューブ244の内部に規定された飛行空間を飛行してきたイオンは、この電位勾配によって折り返し飛行する。イオン検出器246は、リフレクトロン電極245によって形成された電位勾配で折り返し飛行したイオンを検出する。 The third intermediate vacuum chamber 23 and the analysis chamber 24 are connected by a small diameter hole provided in the partition between them. In the analysis chamber 24, an ion lens 241 consisting of multiple ring electrodes, an orthogonal acceleration section 242, an acceleration electrode 243, a flight tube 244, a reflectron electrode 245, and an ion detector 246 are arranged. The orthogonal acceleration section 242 is composed of an extrusion electrode 2421 and a retraction electrode 2422, each of which is a plate-shaped electrode, and is arranged opposite each other across the flight path of the ions transported by the ion lens 241. The retraction electrode 2422 has an opening for passing the ions. The acceleration electrode 243 is composed of multiple ring electrodes for accelerating the ions whose flight direction has been changed by the orthogonal acceleration section 242. The flight tube 244 is a cylindrical electrode, and the flight space of the ions is defined inside it. The reflectron electrode 245 is composed of multiple ring electrodes, and a predetermined voltage is applied to each electrode so as to form a potential gradient in which the potential increases toward the rear stage. Ions accelerated by the acceleration electrode 243 and flying through the flight space defined inside the flight tube 244 are turned around by this potential gradient. The ion detector 246 detects the turned around ions by the potential gradient formed by the reflectron electrode 245.
 制御部5は、記憶部51を備えている。記憶部51には、飛行時間-質量電荷比情報、及び印加電圧情報が保存されている。飛行時間-質量電荷比情報は、種々の質量電荷比を有するイオンが分析室24内の飛行空間を飛行するのに要する時間が記載された情報である。また、印加電圧情報は、質量分析装置1に設けられた各電極への印加電圧の値に関する情報、及び後記する第1電源34や第2電源38からの印加電圧と設定温度の関係に関する情報を含む。さらに、記憶部51には、複数の既知の化合物のそれぞれの測定条件(プリカーサイオンの質量電荷比、コリジョンエネルギーの値等)や解析手法に関する情報を収録した化合物データベースなども保存されている。 The control unit 5 includes a memory unit 51. The memory unit 51 stores time-of-flight-mass-to-charge ratio information and applied voltage information. The time-of-flight-mass-to-charge ratio information describes the time required for ions having various mass-to-charge ratios to fly through the flight space in the analysis chamber 24. The applied voltage information includes information on the value of the voltage applied to each electrode provided in the mass spectrometer 1, and information on the relationship between the applied voltage from the first power supply 34 and second power supply 38 described below and the set temperature. The memory unit 51 also stores a compound database that includes information on the measurement conditions (mass-to-charge ratio of precursor ions, collision energy value, etc.) and analysis methods for each of a number of known compounds.
 制御部5は、また、機能ブロックとして、測定実行部52、及び解析処理部53を備えている。測定実行部52は、使用者により設定された測定条件に基づいて質量分析装置1に配置された各電極に所定の電圧を印加する等して各部の動作を制御することにより測定を実行する。解析処理部53は測定データからマススペクトルを生成する等の処理を行う。制御部5の実体は、例えば一般的なパーソナルコンピュータであり、予めインストールされた専用のプログラムをプロセッサで実行することにより上記の機能ブロックが具現化される。制御部5には、また、キーボードやマウスなどで構成される入力部6と、液晶ディスプレイなどで構成される表示部7が接続されている。 The control unit 5 also includes, as functional blocks, a measurement execution unit 52 and an analysis processing unit 53. The measurement execution unit 52 executes measurements by controlling the operation of each unit, for example by applying a predetermined voltage to each electrode arranged in the mass spectrometer 1 based on the measurement conditions set by the user. The analysis processing unit 53 performs processing such as generating a mass spectrum from the measurement data. The actual control unit 5 is, for example, a general personal computer, and the above functional blocks are realized by executing a dedicated program pre-installed in the processor. The control unit 5 is also connected to an input unit 6 consisting of a keyboard, mouse, etc., and a display unit 7 consisting of a liquid crystal display, etc.
 本実施形態の質量分析装置1で実行する質量分析自体は従来同様であるため、以下、簡単に説明する。 The mass analysis performed by the mass spectrometer 1 of this embodiment is the same as in the conventional method, so it will be explained briefly below.
 まず、サンプルプレート12上に載置した試料の表面に、イオン化しやすい物質であるマトリックス物質を塗布する前処理を行うことにより、試料の表面に該試料の分子を取り込んだマトリックス物質の微結晶を形成させる。続いて、前処理後の試料を載置したサンプルプレート12をサンプルプレートホルダ13に載置し、該サンプルプレートホルダ13を測定位置に配置する。そして、レーザ光源15からレーザ光を照射すると、マトリックス物質の微結晶が加熱され、試料分子が脱離しイオン化する。イオン化室11において試料分子から生成されたイオンは、試料導入部3を通って真空チャンバ20内に進入する。真空チャンバ20内に進入したイオンは、イオンレンズ211及びイオンガイド221で輸送されたあと、四重極マスフィルタ231に入射する。四重極マスフィルタ231では、所定の質量電荷比を有するイオンがプリカーサイオンとして選別され、コリジョンセル232に入射する。コリジョンセル232に入射したプリカーサイオンは、該コリジョンセル232に導入されたCIDガスの分子と衝突して開裂し、プロダクトイオンを生成する。コリジョンセル232内で生成されたプロダクトイオンは、イオンレンズ234、241により輸送され直交加速部242に入射する。直交加速部242において飛行方向が略直交方向に変更されたプロダクトイオンは、加速電極243で加速されたあと、フライトチューブ244で囲まれた飛行空間に進入し、その端部に位置するリフレクトロン電極245によって形成された電位勾配で折り返し飛行した後、イオン検出器246で検出される。 First, a pretreatment is performed by applying a matrix substance, which is a substance that is easily ionized, to the surface of the sample placed on the sample plate 12, thereby forming microcrystals of the matrix substance that incorporate the molecules of the sample on the surface of the sample. Next, the sample plate 12 on which the pretreated sample is placed is placed on the sample plate holder 13, and the sample plate holder 13 is placed at the measurement position. Then, when laser light is irradiated from the laser light source 15, the microcrystals of the matrix substance are heated, and the sample molecules are desorbed and ionized. Ions generated from the sample molecules in the ionization chamber 11 enter the vacuum chamber 20 through the sample introduction section 3. The ions that enter the vacuum chamber 20 are transported by the ion lens 211 and the ion guide 221, and then enter the quadrupole mass filter 231. In the quadrupole mass filter 231, ions having a predetermined mass-to-charge ratio are selected as precursor ions and enter the collision cell 232. The precursor ions entering the collision cell 232 collide with molecules of the CID gas introduced into the collision cell 232 and are fragmented to generate product ions. The product ions generated in the collision cell 232 are transported by the ion lenses 234 and 241 and enter the orthogonal acceleration section 242. The product ions, whose flight direction is changed to a substantially orthogonal direction in the orthogonal acceleration section 242, are accelerated by the acceleration electrode 243, enter a flight space surrounded by a flight tube 244, and fly back and forth due to the potential gradient formed by the reflectron electrode 245 located at the end of the flight tube, before being detected by the ion detector 246.
 イオン検出器246からの出力信号は順次、記憶部51に保存される。測定終了後、解析処理部53は、記憶部51に保存された飛行時間-質量電荷比情報に基づいて各イオンの飛行時間を質量電荷比に変換し、質量電荷比と信号強度を二軸とするマススペクトルデータを生成する。 The output signals from the ion detector 246 are sequentially stored in the memory unit 51. After the measurement is completed, the analysis processing unit 53 converts the flight time of each ion into a mass-to-charge ratio based on the flight time-mass-to-charge ratio information stored in the memory unit 51, and generates mass spectrum data with the mass-to-charge ratio and signal intensity on two axes.
 本実施形態の質量分析装置1は、イオン化室11と第1中間真空室21の間の隔壁80に設けられた試料導入部3の構成に特徴を有する。以下、試料導入部3について説明する。 The mass spectrometer 1 of this embodiment is characterized by the configuration of the sample introduction section 3 provided in the partition 80 between the ionization chamber 11 and the first intermediate vacuum chamber 21. The sample introduction section 3 will be described below.
 図2は、ESIによって生成したイオンを質量分析する際の、試料導入部3の構成を示す模式図である。試料導入部3は、第1管(本発明における第1イオン導入管に相当)31、該第1管31を取り付ける管取付部32、第1管31の外周に配置された発熱体33、及び該発熱体33に電力を供給する第1電源34を有している。第1管31には、例えばステンレス鋼製のものが用いられる。第1管31の中心軸は、ESIプローブ111からの帯電液滴の噴霧方向と直交しており、帯電液滴から脱溶媒して生成されたイオンが、イオン化室11と真空チャンバ20内の圧力差によって第1管31に引き込まれる。 FIG. 2 is a schematic diagram showing the configuration of the sample introduction section 3 when mass spectrometry is performed on ions generated by ESI. The sample introduction section 3 has a first tube 31 (corresponding to the first ion introduction tube in the present invention), a tube attachment section 32 to which the first tube 31 is attached, a heating element 33 arranged on the outer periphery of the first tube 31, and a first power supply 34 to supply power to the heating element 33. The first tube 31 is made of, for example, stainless steel. The central axis of the first tube 31 is perpendicular to the spray direction of the charged droplets from the ESI probe 111, and ions generated by desolvation from the charged droplets are drawn into the first tube 31 by the pressure difference between the ionization chamber 11 and the vacuum chamber 20.
 図3は、大気圧MALDIによって生成したイオンを質量分析する際の、試料導入部3の構成を示す模式図である。試料導入部3は、管取付部32に取り付けられた第1管31と、管接続部35と、該管接続部35によって第1管31に接続された第2管36を有している。第2管36にも、例えばステンレス鋼製のものが用いられる。第2管36と管接続部35は、第1管31に着脱可能である。このように、第2管36を第1管31に接続することにより、ESIによりイオンを生成する場合よりもイオン導入管を長くして、第2管36の入口端をサンプルプレート12上の試料の近傍に配置する。第1管31及び第2管36は、本発明における第2イオン導入管に相当し、第2管36は、本発明における、第2イオン導入管のうち第1イオン導入管からイオン化部側に延長された部分に相当する。このように、ESI使用時に比べて長尺のイオン導入管を用いることによって、イオン導入管の入口端を試料表面に近づけ、試料から発せられたイオンをより多く、イオン導入管(第2管36及び第1管31)から質量分析部に導入することができる。ここでは第1管31と第2管36を管接続部35で接続することにより大気圧MALDI用のイオン導入管を構成しているが、1本の長尺のイオン導入管を用いてもよい。 FIG. 3 is a schematic diagram showing the configuration of the sample introduction section 3 when performing mass analysis on ions generated by atmospheric pressure MALDI. The sample introduction section 3 has a first tube 31 attached to a tube attachment section 32, a tube connection section 35, and a second tube 36 connected to the first tube 31 by the tube connection section 35. The second tube 36 is also made of, for example, stainless steel. The second tube 36 and the tube connection section 35 are detachable from the first tube 31. By connecting the second tube 36 to the first tube 31 in this way, the ion introduction tube is made longer than when ions are generated by ESI, and the inlet end of the second tube 36 is positioned near the sample on the sample plate 12. The first tube 31 and the second tube 36 correspond to the second ion introduction tube in the present invention, and the second tube 36 corresponds to the portion of the second ion introduction tube that extends from the first ion introduction tube to the ionization section side in the present invention. In this way, by using a longer ion introduction tube than when ESI is used, the inlet end of the ion introduction tube can be brought closer to the sample surface, and more ions emitted from the sample can be introduced from the ion introduction tube (second tube 36 and first tube 31) to the mass analysis section. Here, the ion introduction tube for atmospheric pressure MALDI is constructed by connecting the first tube 31 and the second tube 36 with the tube connection part 35, but a single long ion introduction tube may also be used.
 第1管31の外周には模式的にヒータ線で示す発熱体33が取り付けられており、該発熱体33に第1電源34から電力を供給することによって第1管31が加熱される。図2及び3ではヒータ線で模式的に示しているが、第1管31を加熱可能な種々のものを使用可能であり、例えば、カートリッジヒータ(ブロックヒータ等)、マイクロシースヒータ、セラミックコーティングなどを発熱体33として用いることができる。あるいは、赤外光等の照射によって第1管31を加熱してもよい。 A heating element 33, shown diagrammatically as a heater wire, is attached to the outer periphery of the first tube 31, and the first tube 31 is heated by supplying power to the heating element 33 from a first power source 34. Although a heater wire is shown diagrammatically in FIGS. 2 and 3, various items capable of heating the first tube 31 can be used, and for example, a cartridge heater (such as a block heater), a microsheath heater, a ceramic coating, etc. can be used as the heating element 33. Alternatively, the first tube 31 may be heated by irradiation with infrared light, etc.
 第2管36の外周にも同様に、模式的にヒータ線で示す発熱体(本発明における加熱部に相当)37が取り付けられており、該発熱体37に第2電源38から電力を供給することによって第2管36が加熱される。発熱体37及び第2電源38は、本発明における加熱部に相当する。第2管36の加熱にも種々のものを使用可能であり、例えば、上記した各種のヒータから成る発熱体37と第2電源38を用いたり、赤外光を照射したりして第2管36を加熱することができる。 Similarly, a heating element (corresponding to the heating section in this invention) 37, shown diagrammatically as a heater wire, is attached to the outer periphery of the second tube 36, and the second tube 36 is heated by supplying power to the heating element 37 from a second power source 38. The heating element 37 and the second power source 38 correspond to the heating section in this invention. Various methods can be used to heat the second tube 36; for example, the second tube 36 can be heated by using the heating element 37 and the second power source 38 made up of the various heaters described above, or by irradiating it with infrared light.
 本実施形態の質量分析装置1では、第2管36を加熱する発熱体37を、該第2管36の端部(イオン化室11側の端部)を加熱するように配置する。好ましくは、発熱体37は、第2管36の先端又はその近傍の外周を囲うように配置する。 In the mass spectrometer 1 of this embodiment, the heating element 37 for heating the second tube 36 is arranged so as to heat the end of the second tube 36 (the end on the ionization chamber 11 side). Preferably, the heating element 37 is arranged so as to surround the tip of the second tube 36 or the outer periphery near it.
 従来の質量分析装置では、大気圧MALDIにより生成したイオンを質量分析する際、第1管に第2管を接続してイオン導入管を延長するのみであったが、その場合には十分な感度でイオンを測定することができない場合があった。これには様々な要因が考えられるが、第1管が加熱されるのみで第2管は加熱されず低温であるために、例えば、試料の前処理時に塗布したマトリックス物質の分子が試料分子のイオンから脱離しなかったり、低温の気体分子との衝突によって試料由来のイオンがエネルギーを失ってイオン導入管に付着して消失したりしていたことが考えられる。 In conventional mass spectrometers, when performing mass analysis on ions generated by atmospheric pressure MALDI, the ion introduction tube was simply extended by connecting a second tube to the first tube, but in that case, it was sometimes not possible to measure ions with sufficient sensitivity. There are various possible reasons for this, but it is thought that because only the first tube is heated and the second tube is not heated and is at a low temperature, for example, the molecules of the matrix material applied during sample pretreatment do not detach from the ions of the sample molecules, or ions derived from the sample lose energy through collisions with low-temperature gas molecules and attach to the ion introduction tube, resulting in their disappearance.
 これに対し、本実施形態の質量分析装置1では、第2管36を加熱する発熱体37が配置されている。そのため、第1管31だけでなく、第2管36も十分に加熱される。測定結果を参照して後記する通り、第2管36を加熱することによって、従来よりも高い感度でイオンを検出することができる。 In contrast, in the mass spectrometer 1 of this embodiment, a heating element 37 is provided to heat the second tube 36. Therefore, not only the first tube 31 but also the second tube 36 is sufficiently heated. As will be described later with reference to the measurement results, by heating the second tube 36, ions can be detected with higher sensitivity than before.
 次に、本実施形態の質量分析装置1において第2管36を加熱によるイオンの検出感度が向上することを確認した測定の結果を説明する。ここでは、図4に示すように、第1管31の外周に第1管取付部材41を配置し、第2管36の外周に第2管取付部材42を配置した。第1管取付部材41と第2管取付部材42はいずれも導電性を有するステンレス鋼で構成されている。第1管取付部材41と第2管取付部材42は着脱可能である。第1管取付部材41には第1電源34が接続されている。第1電源34から第1管取付部材41及び第1管31に通電すると、電気抵抗が大きい第1管31が発熱する。第2管取付部材42の内部には、第2管36の外周に沿ってカートリッジヒータ43が配置されている。第2電源38からカートリッジヒータ43に電圧を印加すると、該カートリッジヒータ43が発熱して第2管36が加熱される。 Next, the results of measurements that confirmed that the ion detection sensitivity is improved by heating the second tube 36 in the mass spectrometer 1 of this embodiment will be described. Here, as shown in FIG. 4, the first tube mounting member 41 is arranged on the outer periphery of the first tube 31, and the second tube mounting member 42 is arranged on the outer periphery of the second tube 36. Both the first tube mounting member 41 and the second tube mounting member 42 are made of stainless steel having electrical conductivity. The first tube mounting member 41 and the second tube mounting member 42 are detachable. The first tube mounting member 41 is connected to the first power source 34. When electricity is applied from the first power source 34 to the first tube mounting member 41 and the first tube 31, the first tube 31, which has a large electrical resistance, generates heat. Inside the second tube mounting member 42, a cartridge heater 43 is arranged along the outer periphery of the second tube 36. When a voltage is applied from the second power source 38 to the cartridge heater 43, the cartridge heater 43 generates heat and the second tube 36 is heated.
 図4の構成例の試料導入部3では、図5に示す部分(管接続部35、第2管36、第2管取付部材42、及びカートリッジヒータ43)を着脱することができる。そのため、ESIと大気圧MALDIを交換する際には図5に示す部材を着脱するのみでよく、管取付部32によって隔壁80に取り付けられた第1管31を取り外す必要がない。 In the sample introduction section 3 of the configuration example of FIG. 4, the parts shown in FIG. 5 (tube connection section 35, second tube 36, second tube attachment member 42, and cartridge heater 43) can be attached and detached. Therefore, when exchanging between ESI and atmospheric pressure MALDI, it is only necessary to attach and detach the parts shown in FIG. 5, and there is no need to remove the first tube 31 attached to the bulkhead 80 by the tube attachment section 32.
 また、図4に示す構成例では、第2管36とカートリッジヒータ43(を含む第2管取付部材42)が別体で構成されており、両者が着脱可能になっている。そのため、第2管36の内部に試料成分が付着したり第2管36に詰まりが生じたりした場合に第2管36のみを取り外して洗浄あるいは交換することができる。また、カートリッジヒータ43に断線が生じる等の不具合が発生した場合にカートリッジヒータ43のみを交換することができる。これにより、一体化された第2管36とカートリッジヒータ43(を含む第2管取付部材42)を交換する場合に比べてコストを低減することができる。 In addition, in the configuration example shown in FIG. 4, the second tube 36 and the cartridge heater 43 (including the second tube attachment member 42) are configured as separate bodies, and both are detachable. Therefore, if sample components adhere to the inside of the second tube 36 or if the second tube 36 becomes clogged, only the second tube 36 can be removed and cleaned or replaced. Also, if a malfunction occurs in the cartridge heater 43, such as a broken wire, only the cartridge heater 43 can be replaced. This allows for reduced costs compared to replacing the integrated second tube 36 and cartridge heater 43 (including the second tube attachment member 42).
 まず、比較例(先端加熱なし)として、第1電源34からの通電によって第1管31を250℃に加熱し、第2管36の温度を測定した。また、実施例(先端加熱あり)として、第1管31の加熱に加え、カートリッジヒータ43によって第2管36を450℃に加熱し、第2管36の温度を測定した。なお、これら測定で使用した第2管36の長さは50mmである。 First, as a comparative example (without tip heating), the first tube 31 was heated to 250°C by applying current from the first power source 34, and the temperature of the second tube 36 was measured. Also, as an example (with tip heating), in addition to heating the first tube 31, the second tube 36 was heated to 450°C by the cartridge heater 43, and the temperature of the second tube 36 was measured. The length of the second tube 36 used in these measurements was 50 mm.
 図6に測定結果を示す通り、実施例(先端加熱あり)では、第2管36の全体が比較例よりも高温になっている。特に、第2管36のイオン化室側の先端部分では、比較例(約50℃)に比べて200℃以上も高温になっている。 As the measurement results are shown in Figure 6, in the embodiment (with tip heating), the entire second tube 36 is at a higher temperature than in the comparative example. In particular, the tip of the second tube 36 on the ionization chamber side is at a higher temperature by more than 200°C compared to the comparative example (approximately 50°C).
 また、比較例と実施例のそれぞれについて、AngII(アンジオテンシンII)とChloroquine(クロロキン)からそれぞれ生成したイオンを測定した。図7に示すとおり、いずれのイオンについても、先端加熱を行った実施例の方が、先端加熱を行わない比較例に比べて測定強度が高くなった。 In addition, the ions generated from AngII (angiotensin II) and chloroquine were measured for each of the comparative example and example. As shown in Figure 7, the measured intensity for each ion was higher in the example in which tip heating was performed than in the comparative example in which tip heating was not performed.
 さらに、実施例のように先端加熱を行う際の加熱温度と測定強度の関係を調べる測定も行った。この測定では、試料としてマウスの脳の切片(マウス脳)を用い、該切片から生成されるm/z=798.54のイオン(Phosphatidylcholine(34:1))を測定した。 Furthermore, measurements were also carried out to investigate the relationship between the heating temperature and the measurement intensity when the tip was heated as in the example. In these measurements, slices of mouse brain (mouse brain) were used as samples, and the m/z=798.54 ion (phosphatidylcholine (34:1)) generated from the slices was measured.
 図8に示すとおり、この測定における先端の最高加熱温度(第2管36の加熱温度)は約430℃であったが、少なくともこの温度までは、加熱温度を高くするほどイオンの測定強度が高くなった。試料の熱耐性などを考慮する必要はあるが、少なくとも400℃超までは、第2管36を高温に加熱するほどイオンの測定感度が向上すると考えられる。なお、第2管36の材質によるが、耐熱性等を考慮すると、第2管36の加熱温度の上限は500℃程度とすることが適当である。 As shown in Figure 8, the maximum heating temperature of the tip in this measurement (heating temperature of second tube 36) was approximately 430°C, and at least up to this temperature, the higher the heating temperature, the higher the measured ion intensity. Although it is necessary to take into account the heat resistance of the sample, it is thought that the higher the second tube 36 is heated to, at least up to over 400°C, the better the ion measurement sensitivity will be. Note that, although this depends on the material of second tube 36, taking into account heat resistance, etc., it is appropriate to set the upper limit of the heating temperature of second tube 36 to around 500°C.
 上記実施形態や、実際の測定で使用した装置の構成は一例であって、本発明の趣旨に沿って適宜に変更することができる。 The above embodiment and the configuration of the device used in the actual measurements are merely examples and can be modified as appropriate in accordance with the spirit of the present invention.
 上記実施形態及び実施例ではイオン源として大気圧MALDIとESIを用いたが、大気圧MALDIに代えて他のレーザイオン源(例えばSALDI)を用いることもできる。また、ESIに代えて、APCI、あるいはESIとAPCIの両方を備えたDUISを用いることもできる。 In the above embodiments and examples, atmospheric pressure MALDI and ESI were used as the ion source, but other laser ion sources (e.g., SALDI) can be used instead of atmospheric pressure MALDI. Also, instead of ESI, APCI or a DUIS equipped with both ESI and APCI can be used.
 上記実施形態及び実施例では、ESI用のイオン導入管である第1管31に第2管36を延長管として接続することにより、大気圧MALDI用のイオン導入管を構成したが、ESI用のイオン導入管よりも長尺な1本のイオン導入管を大気圧MALDI用のイオン導入管としてもよい。 In the above embodiment and examples, an ion introduction tube for atmospheric pressure MALDI is constructed by connecting the second tube 36 as an extension tube to the first tube 31, which is an ion introduction tube for ESI, but a single ion introduction tube that is longer than the ion introduction tube for ESI may also be used as the ion introduction tube for atmospheric pressure MALDI.
 また、上記実施形態では、第1管31や第2管36を加熱する構成について説明したが、加熱部に加えて放熱を抑制する手段を設けることも効果的である。具体的には、第1管31及び/又は第2管36の外周に断熱材を巻回したり、第1管31及び/又は第2管36を取り囲むように、該第1管31及び/又は第2管36からの熱輻射を反射するリフレクタを配置したりしてもよい。 In the above embodiment, a configuration for heating the first tube 31 and the second tube 36 has been described, but it is also effective to provide a means for suppressing heat dissipation in addition to the heating section. Specifically, a heat insulating material may be wrapped around the outer circumference of the first tube 31 and/or the second tube 36, or a reflector that reflects heat radiation from the first tube 31 and/or the second tube 36 may be disposed so as to surround the first tube 31 and/or the second tube 36.
 [態様]
 上述した例示的な実施形態が以下の態様の具体例であることは、当業者には明らかである。
[Aspects]
It will be apparent to those skilled in the art that the above-described exemplary embodiments are illustrative of the following aspects.
 (第1項)
 本発明の一態様は、大気圧雰囲気で液体試料を噴霧してイオン化する第1イオン源と、大気圧雰囲気で試料にレーザ光を照射してイオン化する第2イオン源が択一的にイオン化部として取り付けられる質量分析装置であって、
 前記イオン化部に隔壁を介して接続された真空チャンバ内に設けられ、前記イオン化部で生成されたイオンを質量電荷比に応じて分離し検出する質量分析部と、
 前記隔壁を貫通して設けられ、前記イオン化部で生成されたイオンを前記真空チャンバ内に導入するイオン導入管であって、前記第1イオン源の使用時に用いられる第1イオン導入管よりも長尺であり前記第2イオン源の使用時に用いられる第2イオン導入管と、
 前記第2イオン導入管のうち、前記第1イオン導入管から前記イオン化部側に延長された部分を加熱する加熱部と
 を備える。
(Section 1)
One aspect of the present invention is a mass spectrometer in which a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment and a second ion source that irradiates and ionizes the sample with laser light in an atmospheric pressure environment are alternatively installed as an ionization unit,
a mass spectrometry unit provided in a vacuum chamber connected to the ionization unit via a partition wall, the mass spectrometry unit separating and detecting the ions generated in the ionization unit according to their mass-to-charge ratios;
a second ion introduction tube that is provided through the partition wall and introduces ions generated in the ionization unit into the vacuum chamber, the second ion introduction tube being longer than a first ion introduction tube that is used when the first ion source is used and that is used when the second ion source is used;
a heating unit configured to heat a portion of the second ion introduction tube that extends from the first ion introduction tube toward the ionization unit.
 第1項に係る質量分析装置は、大気圧雰囲気で液体試料を噴霧してイオン化する第1イオン源と、大気圧雰囲気で、マトリックス物質が混合又は塗布された試料にレーザ光を照射してイオン化する第2イオン源が択一的にイオン化部として取り付けられる質量分析装置である。液体試料を噴霧してイオン化する第1イオン源は、例えばESI、APCI、あるいはその両方を備えたDUISである。また、大気圧雰囲気で、マトリックス物質が混合又は塗布された試料にレーザ光を照射してイオン化する第2イオン源は、大気圧MALDIである。 The mass spectrometer according to paragraph 1 is a mass spectrometer that is alternatively equipped as an ionization unit with a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment, and a second ion source that irradiates a sample to which a matrix substance has been mixed or applied with laser light in an atmospheric pressure environment to ionize the sample. The first ion source that sprays and ionizes a liquid sample is, for example, a DUIS equipped with ESI, APCI, or both. The second ion source that ionizes a sample to which a matrix substance has been mixed or applied with laser light in an atmospheric pressure environment is atmospheric pressure MALDI.
 ESIやAPCIで用いられるイオン導入管をそのまま大気圧MALDIの使用時に用いると、イオン導入管の入口端から測定点までの距離が長くなり、イオン導入管へのイオンの取り込み効率が悪くなる。そのため、第1項に係る質量分析装置では、第2イオン源の使用時に、第1イオン源の使用時に用いられる第1イオン導入管よりも長尺である第2イオン導入管を使用する。本発明者が得た知見によれば、従来、第2イオン導入管を使用する際に十分な感度でイオンを測定することができなかったのは、第2イオン導入管のうち第1イオン導入管から延長された部分が加熱されず低温になることが理由であった。第1項に係る質量分析装置では、第2イオン導入管のうち、第1イオン導入管から延長された部分を加熱部によって加熱することにより、イオンの測定感度を従来よりも向上することができる。 If an ion introduction tube used in ESI or APCI is used as is in atmospheric pressure MALDI, the distance from the inlet end of the ion introduction tube to the measurement point becomes long, and the efficiency of ion introduction into the ion introduction tube becomes poor. Therefore, in the mass spectrometer according to paragraph 1, when the second ion source is used, a second ion introduction tube that is longer than the first ion introduction tube used when the first ion source is used is used. According to the knowledge obtained by the present inventor, in the past, when using the second ion introduction tube, it was not possible to measure ions with sufficient sensitivity because the part of the second ion introduction tube that extended from the first ion introduction tube was not heated and became low temperature. In the mass spectrometer according to paragraph 1, the part of the second ion introduction tube that extended from the first ion introduction tube is heated by a heating unit, thereby improving the ion measurement sensitivity compared to the past.
 (第2項)
 第2項に係る質量分析装置は、第1項に係る質量分析装置において、
 前記第2イオン導入管が、前記第1イオン導入管と、該第1イオン導入管に接続される延長管を有する。
(Section 2)
A mass spectrometer according to paragraph 2 is a mass spectrometer according to paragraph 1,
The second iontophoretic tube has the first iontophoretic tube and an extension tube connected to the first iontophoretic tube.
 (第3項)
 第3項に係る質量分析装置は、第1項に係る質量分析装置において、
 前記第2イオン導入管が1本の管で構成されている。
(Section 3)
A mass spectrometer according to paragraph 3 is a mass spectrometer according to paragraph 1,
The second iontophoretic tube is composed of a single tube.
 第1項の質量分析装置における第2イオン導入管は、第3項の質量分析装置のように、イオン化部側の端部が試料表面のレーザ光の照射位置に近接して位置する長さを有する1本のイオン導入管であってもよく、第2項の質量分析装置のように、第1イオン導入管と、該第1イオン導入管に着脱可能に接続された第2管を有するものであってもよい。第2項の質量分析装置では、隔壁を貫通する第1イオン導入管を装着したままで延長管を接続することにより、簡便に第2イオン導入管を構成することができる。 The second ion introduction tube in the mass spectrometer of paragraph 1 may be a single ion introduction tube having a length such that the end on the ionization section side is located close to the position where the laser light is irradiated on the sample surface, as in the mass spectrometer of paragraph 3, or may have a first ion introduction tube and a second tube detachably connected to the first ion introduction tube, as in the mass spectrometer of paragraph 2. In the mass spectrometer of paragraph 2, the second ion introduction tube can be easily configured by connecting an extension tube while the first ion introduction tube that penetrates the bulkhead is still attached.
 (第4項)
 第4項に係る質量分析装置は、第1項から第3項のいずれかに係る質量分析装置において、
 前記加熱部が、前記第2イオン導入管を囲うように設けられ、通電により発熱する発熱体を有する。
(Section 4)
A mass spectrometer according to paragraph 4 is a mass spectrometer according to any one of paragraphs 1 to 3,
The heating section is provided so as to surround the second iontophoretic tube and has a heating element that generates heat when electricity is applied thereto.
 第4項の質量分析装置では、通電により発熱する発熱体によってイオン導入管を加熱することにより、より高温に第2イオン導入管を加熱してイオンの測定感度を向上することができる。 In the mass spectrometer of paragraph 4, the ion introduction tube is heated by a heating element that generates heat when electricity is passed through it, thereby heating the second ion introduction tube to a higher temperature and improving the measurement sensitivity of ions.
 (第5項)
 第5項に係る質量分析装置は、第4項に係る質量分析装置において、
 前記発熱体と前記第2イオン導入管は別体で構成され、相互に着脱可能である。
(Section 5)
A mass spectrometer according to claim 5, in the mass spectrometer according to claim 4,
The heating element and the second iontophoretic tube are configured as separate bodies and are detachable from each other.
 第5項に係る質量分析装置では、第2イオン導入管の内部に試料成分が付着したり第2イオン導入管に詰まりが生じたりした場合に、該第2イオン導入管のみを取り外して洗浄あるいは交換することができる。また、発熱体に断線が生じる等の不具合が発生した場合には、発熱体のみを交換することができる。そのため、第2イオン導入管と発熱体の両方を交換する場合に比べてコストを低減することができる。 In the mass spectrometer according to paragraph 5, if sample components adhere to the inside of the second ion introduction tube or if the second ion introduction tube becomes clogged, only the second ion introduction tube can be removed and cleaned or replaced. Also, if a malfunction occurs such as a broken wire in the heating element, only the heating element can be replaced. This allows for reduced costs compared to replacing both the second ion introduction tube and the heating element.
1…質量分析装置
11…イオン化室
111…ESIプローブ
12…サンプルプレート
13…サンプルプレートホルダ
14…移動機構
15…レーザ光源
16…ミラー
17…レンズ
18…光学顕微鏡
20…真空チャンバ
21…第1中間真空室
211…イオンレンズ
212…スキマー
22…第2中間真空室
221…イオンガイド
23…第3中間真空室
231…四重極マスフィルタ
232…コリジョンセル
233…多重極イオンガイド
234…イオンレンズ
24…分析室
241…イオンレンズ
242…直交加速部
2421…押出電極
2422…引込電極
243…加速電極
244…フライトチューブ
245…リフレクトロン電極
246…イオン検出器
3…試料導入部
31…第1管
32…管取付部
33…発熱体
34…第1電源
35…管接続部
36…第2管
37…発熱体
38…第2電源
41…第1管取付部材
42…第2管取付部材
43…カートリッジヒータ
5…制御部
51…記憶部
52…測定実行部
53…解析処理部
6…入力部
7…表示部
80…隔壁
C…イオン光軸
1... Mass spectrometer 11... Ionization chamber 111... ESI probe 12... Sample plate 13... Sample plate holder 14... Moving mechanism 15... Laser light source 16... Mirror 17... Lens 18... Optical microscope 20... Vacuum chamber 21... First intermediate vacuum chamber 211... Ion lens 212... Skimmer 22... Second intermediate vacuum chamber 221... Ion guide 23... Third intermediate vacuum chamber 231... Quadrupole mass filter 232... Collision cell 233... Multipole ion guide 234... Ion lens 24... Analysis chamber 241... Ion 3. Reflectron lens 242...orthogonal acceleration section 2421...push electrode 2422...pull-in electrode 243...acceleration electrode 244...flight tube 245...reflectron electrode 246...ion detector 3...sample introduction section 31...first tube 32...tube attachment section 33...heating element 34...first power supply 35...tube connection section 36...second tube 37...heating element 38...second power supply 41...first tube attachment member 42...second tube attachment member 43...cartridge heater 5...control section 51...memory section 52...measurement execution section 53...analysis processing section 6...input section 7...display section 80...partition wall C...ion optical axis

Claims (5)

  1.  大気圧雰囲気で液体試料を噴霧してイオン化する第1イオン源と、大気圧雰囲気で試料にレーザ光を照射してイオン化する第2イオン源が択一的にイオン化部として取り付けられる質量分析装置であって、
     前記イオン化部に隔壁を介して接続された真空チャンバ内に設けられ、前記イオン化部で生成されたイオンを質量電荷比に応じて分離し検出する質量分析部と、
     前記隔壁を貫通して設けられ、前記イオン化部で生成されたイオンを前記真空チャンバ内に導入するイオン導入管であって、前記第1イオン源の使用時に用いられる第1イオン導入管よりも長尺であり前記第2イオン源の使用時に用いられる第2イオン導入管と、
     前記第2イオン導入管のうち、前記第1イオン導入管から前記イオン化部側に延長された部分を加熱する加熱部と
     を備える質量分析装置。
    A mass spectrometer in which a first ion source that sprays and ionizes a liquid sample in an atmospheric pressure environment and a second ion source that ionizes the sample by irradiating it with a laser beam in an atmospheric pressure environment are alternatively installed as an ionization unit,
    a mass spectrometry unit provided in a vacuum chamber connected to the ionization unit via a partition wall, the mass spectrometry unit separating and detecting the ions generated in the ionization unit according to their mass-to-charge ratios;
    a second ion introduction tube that is provided through the partition wall and introduces ions generated in the ionization unit into the vacuum chamber, the second ion introduction tube being longer than a first ion introduction tube that is used when the first ion source is used and that is used when the second ion source is used;
    a heating unit configured to heat a portion of the second ion introduction tube that extends from the first ion introduction tube toward the ionization unit.
  2.  前記第2イオン導入管が、前記第1イオン導入管と、該第1イオン導入管に接続される延長管を有する、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the second ion introduction tube has the first ion introduction tube and an extension tube connected to the first ion introduction tube.
  3.  前記第2イオン導入管が1本の管で構成されている、請求項1に記載の質量分析装置。 The mass spectrometer of claim 1, wherein the second ion introduction tube is composed of a single tube.
  4.  前記加熱部が、前記第2イオン導入管を囲うように設けられ、通電により発熱する発熱体を有する、請求項1に記載の質量分析装置。 The mass spectrometer according to claim 1, wherein the heating unit is provided so as to surround the second ion introduction tube and has a heating element that generates heat when electricity is applied.
  5.  前記発熱体と前記第2イオン導入管は別体で構成され、相互に着脱可能である、請求項4に記載の質量分析装置。 The mass spectrometer according to claim 4, wherein the heating element and the second ion introduction tube are separate and detachable from each other.
PCT/JP2023/032730 2022-11-10 2023-09-07 Mass spectrometer WO2024100977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180132 2022-11-10
JP2022180132 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024100977A1 true WO2024100977A1 (en) 2024-05-16

Family

ID=91032196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032730 WO2024100977A1 (en) 2022-11-10 2023-09-07 Mass spectrometer

Country Status (1)

Country Link
WO (1) WO2024100977A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190526A (en) * 2005-01-05 2006-07-20 Shimadzu Corp Mass spectrometry apparatus
JP2009222554A (en) * 2008-03-17 2009-10-01 Shimadzu Corp Mass spectrometer and mass spectrometry
JP2011159422A (en) * 2010-01-29 2011-08-18 Shimadzu Corp Mass spectroscope
JP2016530680A (en) * 2013-07-19 2016-09-29 スミスズ ディテクション インコーポレイティド Mass spectrometer inlet that allows a reduction in average flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190526A (en) * 2005-01-05 2006-07-20 Shimadzu Corp Mass spectrometry apparatus
JP2009222554A (en) * 2008-03-17 2009-10-01 Shimadzu Corp Mass spectrometer and mass spectrometry
JP2011159422A (en) * 2010-01-29 2011-08-18 Shimadzu Corp Mass spectroscope
JP2016530680A (en) * 2013-07-19 2016-09-29 スミスズ ディテクション インコーポレイティド Mass spectrometer inlet that allows a reduction in average flow

Similar Documents

Publication Publication Date Title
Zhan et al. Microwave-induced plasma desorption/ionization source for ambient mass spectrometry
US9543138B2 (en) Ion optical system for MALDI-TOF mass spectrometer
EP3422388B1 (en) Lipid-analyzing method using mass spectrometry and mass spectrometer
JP6141772B2 (en) Method, apparatus and system for mass spectrometry
KR101340880B1 (en) Gas analyzer
US7855357B2 (en) Apparatus and method for ion calibrant introduction
US20110139977A1 (en) Matrix-assisted laser desorption with high ionization yield
Nemes et al. Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization
CN105845540A (en) Desolvation and ionizationoun method through heating and apparatus
JP2004172070A (en) Orthogonal acceleration time-of-flight mass spectroscope
Steven et al. Construction and testing of an atmospheric-pressure transmission-mode matrix assisted laser desorption ionisation mass spectrometry imaging ion source with plasma ionisation enhancement
Monge et al. An introduction to ambient ionization mass spectrometry
US11056327B2 (en) Inorganic and organic mass spectrometry systems and methods of using them
US20210270773A1 (en) Structural analysis of ionised molecules
Sekimoto et al. Improvement in ionization efficiency of direct analysis in real time-mass spectrometry (DART-MS) by corona discharge
WO2024100977A1 (en) Mass spectrometer
US8110795B2 (en) Laser system for MALDI mass spectrometry
WO2020046892A1 (en) Molecular imaging of biological samples with sub-cellular spatial resolution and high sensitivity
JP2008064727A (en) Liquid chromatograph/laser desorption ionization flight time mass spectrometer
Yin et al. Exploration and performance evaluation of microwave‐induced plasma with different discharge gases for ambient desorption/ionization mass spectrometry
US9565747B2 (en) Asymmetric induction devices and systems and methods using them
GB2468394A (en) Pulsed laser system for MALDI mass spectrometry
JP2006059809A (en) Ion source having adjustable ion source pressure for connecting esi-, fi-, fd-, lifdi- and maldi-elements and hybrid means between ionization techniques for mass spectrometry and/or electron paramagnetic resonance spectroscopy
GB2453407A (en) Matrix-assisted laser desorption with high ionization yield
CN115938909B (en) Laser-coupled electrospray extraction ionization source and analysis system