WO2024100916A1 - Information processing system and information processing method - Google Patents

Information processing system and information processing method Download PDF

Info

Publication number
WO2024100916A1
WO2024100916A1 PCT/JP2023/015905 JP2023015905W WO2024100916A1 WO 2024100916 A1 WO2024100916 A1 WO 2024100916A1 JP 2023015905 W JP2023015905 W JP 2023015905W WO 2024100916 A1 WO2024100916 A1 WO 2024100916A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information processing
thermoelectric conversion
heat
thermoelectromotive force
Prior art date
Application number
PCT/JP2023/015905
Other languages
French (fr)
Japanese (ja)
Inventor
新 高橋
Original Assignee
TopoLogic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TopoLogic株式会社 filed Critical TopoLogic株式会社
Publication of WO2024100916A1 publication Critical patent/WO2024100916A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to an information processing system and an information processing method.
  • Patent document 1 discloses a technology for estimating the temperature corresponding to the internal resistance of a storage element.
  • the energy storage system described in Patent Document 1 has an energy storage element that performs charging and discharging, a temperature sensor for acquiring the temperature outside the energy storage element, and a controller that calculates the temperature of a reference point indicating a temperature corresponding to the internal resistance of the energy storage element using the temperature outside the energy storage element and an equation that represents the transfer of heat.
  • the controller determines whether or not the temperature variation inside the energy storage element has been eliminated.
  • the controller uses the surface temperature on the surface of the energy storage element as the temperature of the reference point, and when the temperature variation has not been eliminated, calculates the temperature of the reference point.
  • the temperature change of the temperature sensor itself is necessary.
  • the temperature sensor itself has a heat capacity, the temperature change of the temperature sensor tends to lag behind the temperature change of the equipment depending on the heat capacity.
  • an information processing system includes a thermoelectric conversion unit and a signal processing unit.
  • the thermoelectric conversion unit is configured to generate a temperature gradient by heat exchange with an equipment, and is configured to generate a thermoelectromotive force based on the temperature gradient.
  • the signal processing unit includes an acquisition unit and a detection unit.
  • the acquisition unit is configured to acquire the thermoelectromotive force.
  • the detection unit is configured to detect abnormal operation of the equipment that generates heat based on the thermoelectromotive force.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormalities or control the device with higher sensitivity than before.
  • FIG. 1 is a diagram showing an overview of an information processing system 1.
  • FIG. 2 is a diagram illustrating an example of the configuration of a signal processing circuit 35.
  • FIG. 2 is a perspective view showing an example of the structure of a power storage unit BU.
  • 4 is a plan view of one of the power storage units BU shown in FIG. 3 as viewed from a first direction D1.
  • FIG. 4 is a side view of one of the power storage units BU shown in FIG. 3 when viewed in plan from a third direction D3.
  • FIG. FIG. 2 is a block diagram showing a hardware configuration of an information processing device 4.
  • FIG. 4 is a diagram illustrating an example of a functional unit included in a processor 43.
  • FIG. 2 is an activity diagram showing an example of a flow of a first information process executed in the information processing system 1.
  • FIG. 11 is an activity diagram showing an example of a flow of a second information process executed in the information processing system 1.
  • FIG. 11 is an activity diagram showing an example of a flow of a third information process executed in the information processing system 1.
  • FIG. 13 is a cross-sectional view of the power storage device 2 and a thermoelectric conversion unit 31 in contact with the power storage device 2, taken along a plane perpendicular to a third direction D3.
  • FIG. 13 is a diagram showing another example of the signal processing circuit 35.
  • FIG. 13 is a diagram showing an example of a signal processing system 3 that does not include a first heat conducting portion 33.
  • 4A to 4C are diagrams showing an example of an installation mode of a thermoelectric conversion unit 31.
  • the program for implementing the software used in this embodiment may be provided as a non-transitory computer-readable recording medium, or may be provided so that it can be downloaded from an external server, or may be provided so that the program is started on an external computer and its functions are implemented on a client terminal (so-called cloud computing).
  • a "unit” can also include, for example, hardware resources implemented by a circuit in the broad sense, and software information processing that can be specifically realized by these hardware resources.
  • this embodiment handles various types of information, which can be represented, for example, by physical values of signal values representing voltage and current, high and low signal values as a binary bit collection consisting of 0 or 1, or quantum superposition (so-called quantum bits), and communication and calculations can be performed on a circuit in the broad sense.
  • a circuit in the broad sense is a circuit that is realized by at least appropriately combining a circuit, circuitry, a processor, and memory.
  • ASICs application specific integrated circuits
  • SPLDs simple programmable logic devices
  • CPLDs complex programmable logic devices
  • FPGAs field programmable gate arrays
  • the information processing system 1 includes a driving device M1 and a power storage system BS.
  • the driving device M1 is configured to be driven by power output from the power storage system BS, and may be a motor, a light, a computer, or the like.
  • the driving device M1 transmits a required power P required for its own operation to the outside.
  • the power storage system BS is connected to the driving device M1 through a power converter (not shown), and can output power according to the required power P by controlling the power converter.
  • the power storage system BS includes at least one power storage unit BU (three or more in this embodiment).
  • the power storage units BU are configured to supply power to the driving equipment M1 in response to a required power P transmitted from the driving equipment M1.
  • the power storage units BU are connected in series with each other, and include, for example, a power storage device 2 as a device and a signal processing system 3.
  • the power storage units BU may be connected in any manner, and may be connected in parallel.
  • the power storage device 2 is configured to be capable of charging and discharging power to the movable device M1, and includes, for example, a housing 21 and a power storage unit 22 housed inside the housing 21.
  • the housing 21 is configured to conduct heat generated from the power storage unit 22 to at least a part of its surface, and is formed using a thermally conductive material such as metal. A specific embodiment of the housing 21 will be described later.
  • the power storage unit 22 is configured to generate an electromotive force V, and examples of the battery include a lead-acid battery, a nickel-cadmium battery, a lithium-ion battery, and an air battery.
  • the lithium-ion battery may be an iron phosphate battery, an iron titanate battery, a ternary battery, a manganese battery, a nickel battery, a cobalt battery, an NCA (nickel-cobalt-aluminum) battery, a lithium polymer battery, or the like, and may be any one of these batteries or a combination of a plurality of these batteries, and is not particularly limited.
  • the power storage device 2 is configured to generate heat according to the operating state of the power storage device 2. For example, the power storage device 2 generates heat such that the amount of heat generated increases as the amount of discharge or charge per unit time increases.
  • the signal processing system 3 is configured to process a signal including information regarding the state of the power storage device 2.
  • the signal processing system 3 includes a thermoelectric conversion unit 31, a heat bath 32, a first heat conduction unit 33, a second heat conduction unit 34, a signal processing circuit 35, and a switch 36, and at least a part of the signal processing system 3 functions as a signal processing unit.
  • thermoelectric conversion unit 31 is configured to generate a temperature gradient J by heat exchange with the power storage device 2, and is configured to generate a thermoelectromotive force E based on the temperature gradient J.
  • the thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E according to the temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2.
  • the thermoelectric conversion unit 31 can function as a heat flow sensor capable of detecting a heat flow caused by heat exchange with the power storage device 2. The details of the thermoelectric conversion unit 31 will be described later.
  • the heat bath 32 is maintained at a predetermined reference temperature Tb.
  • the reference temperature Tb is a temperature that is a reference for the temperature gradient J generated in the thermoelectric conversion unit 31.
  • the specific configuration of the heat bath 32 is arbitrary, but examples of the heat bath 32 include a housing that houses the power storage unit BU and a housing of the driving device M1, whose temperature is maintained at approximately the outside air temperature by heat exchange with the outside air, and a member with a sufficiently large heat capacity compared to the housing 21, such as a metal bath or a salt bath.
  • the first heat conducting portion 33 connects the power storage device 2 (the housing 21 in this embodiment) and the thermoelectric conversion portion 31, and is formed of a heat conducting material such as metal.
  • the housing 21 and the thermoelectric conversion portion 31 exchange heat through the first heat conducting portion 33.
  • a temperature gradient J is generated in the thermoelectric conversion portion 31 along a direction from the first heat conducting portion 33 toward the thermoelectric conversion portion 31.
  • heat exchange between the power storage device 2 and the thermoelectric conversion portion 31 is performed through the first heat conducting portion 33, which makes it easier to reduce variations in the thermoelectromotive force E caused by different heat generation positions in the power storage device 2.
  • the second heat conducting portion 34 is connected to the heat bath 32 and configured to maintain the temperature of the second region 312 at approximately the reference temperature Tb. With this configuration, it becomes easier to grasp the temperature gradient J of the thermoelectric conversion portion 31 more accurately.
  • the second heat conducting portion 34 is formed of a heat conductive material such as a metal, similar to the first heat conducting portion 33.
  • the thermoelectric conversion portion 31 and the heat bath 32 exchange heat through the second heat conducting portion 34. In this embodiment, the heat exchange between the housing 21 and the thermoelectric conversion portion 31 and the heat exchange between the thermoelectric conversion portion 31 and the heat bath 32 are configured to occur respectively.
  • the heat bath 32 is an example of a temperature adjustment portion capable of adjusting the temperature of the second heat conducting portion 34.
  • the signal processing circuit 35 is configured to obtain the thermoelectromotive force E generated by the thermoelectric conversion unit 31 and control the power storage device 2 and the like in accordance with the thermoelectromotive force E.
  • the thermoelectromotive force E is an example of a first signal caused by the thermoelectromotive force E.
  • FIG. 2 is a diagram showing an example configuration of the signal processing circuit 35.
  • the signal processing circuit 35 includes a comparison unit 351 and an AC/DC converter 352.
  • the comparison unit 351 is configured to compare the thermoelectromotive force E of the thermoelectric conversion unit 31 with a threshold voltage Vt1 as a predetermined reference value.
  • the comparison unit 351 is configured with an operational amplifier, and the inverting input terminal thereof is connected to a reference power supply that outputs the threshold voltage Vt1, and the non-inverting input terminal thereof is connected to the thermoelectric conversion unit 31. Therefore, when the thermoelectromotive force E output from the thermoelectric conversion unit 31 exceeds the threshold voltage Vt1, the comparison unit 351 outputs an analog voltage signal corresponding to the difference between the thermoelectromotive force E and the threshold voltage Vt1.
  • the AC/DC converter 352 is connected to an output terminal of the comparison unit 351.
  • the AC/DC converter 352 is configured to convert the analog voltage signal output from the comparison unit 351 into a digital signal.
  • the digital signal is output to the information processing device 4, for example.
  • the switch 36 is configured to permit charging and discharging of the power storage device 2 when in an on state, and to restrict, more specifically, stop, charging and discharging of the power storage device 2 when in an off state.
  • the specific form of the switch 36 is arbitrary. For example, when the switch 36 is a single-pole single-throw type, charging and discharging of all the power storage devices 2 is restricted when the switch 36 is in an off state. Also, when the switch 36 is a single-pole double-throw type, when the switch 36 is in an off state, the switch 36 is connected to a redundant circuit that bypasses the power storage device 2 corresponding to the switch 36, and charging and discharging of the corresponding power storage device 2 alone is restricted.
  • one of the signal processing systems 3 further includes an information processing device 4.
  • the information processing device 4 is configured to control each of the signal processing systems 3 across the board, and functions as, for example, a battery management system (BMS).
  • BMS battery management system
  • the information processing device 4 of this embodiment is configured to be capable of controlling a driving device M1 as a second device other than the power storage device 2.
  • Fig. 3 is a perspective view showing an example of the structure of the power storage unit BU.
  • Fig. 4 is a plan view of one of the power storage units BU shown in Fig. 3 when viewed from a first direction D1.
  • Fig. 5 is a side view of one of the power storage units BU shown in Fig. 3 when viewed from a third direction D3.
  • each of the energy storage units BU is configured in a flat plate shape in a plane whose normal extends in the first direction D1, and is stacked on top of each other in the first direction D1 to form a single assembly.
  • the first direction D1 can also be called the stacking direction.
  • various wiring extending from the energy storage units BU is not shown.
  • the two directions perpendicular to the first direction D1 are referred to as the second direction D2 and the third direction D3, respectively.
  • the second direction D2 and the third direction D3 are perpendicular to each other.
  • the housing 21 of the storage device 2 is formed as a flat rectangular parallelepiped whose normal line extends in the first direction D1, and its thickness direction is parallel to the first direction D1.
  • the long sides of the housing 21 extend along the second direction D2, and the short sides of the housing 21 extend along the third direction D3.
  • the second direction D2 can be said to be the long side direction
  • the third direction D3 can be said to be the short side direction.
  • the storage device 2 generates heat due to operations such as charging and discharging, or an abnormality such as a failure of the storage unit 22, and a heat source Q may be generated inside the housing 21.
  • a heat source Q may be generated inside the housing 21.
  • the location of the heat source Q is not limited to the center and is arbitrary, and may be, for example, on the surface or inside of the storage device 2, or at the end of the storage device.
  • the first heat conductive portion 33 is formed in a flat plate shape with a normal extending in the first direction D1, and the first heat conductive portion 33 has a main surface portion 331 and a protrusion portion 332.
  • the main surface portion 331 is formed in a rectangular flat plate shape, similar to the housing 21, and its thickness direction is parallel to the first direction D1.
  • the long side direction of the main surface portion 331 extends along the second direction D2, and the short side direction of the main surface portion 331 extends along the third direction D3.
  • the main surface portion 331 is in contact with the housing 21 in the first direction D1, so that heat generated from the heat source Q is transferred through the housing 21 to the surface of the housing 21 and then from the surface of the housing 21 to the main surface portion 331.
  • the outer edge of the main surface portion 331 in a plane perpendicular to the first direction D1 is formed so as to be included within the outer edge of the main surface portion 331 in the plane perpendicular to the first direction D1.
  • the protrusion 332 is configured to protrude from the power storage device 2 when the power storage device 2 is viewed in a plan view from a predetermined first direction D1, and extends from a part of the outer edge of the main surface portion 331 in the second direction D2. Therefore, even when a plurality of power storage units BU are stacked, the protrusion 332 is configured not to be clamped by the housing 21. With this configuration, it becomes easier to measure the thermoelectromotive force E of the thermoelectric conversion unit 31, and the freedom of arrangement of the power storage device 2 and the like can be improved.
  • the shape of the protrusion 332 is a rectangular flat plate whose thickness direction extends along the first direction D1, and is integrally formed so as to be flush with the main surface portion 331.
  • the shape of the protrusion 332 is arbitrary and is not limited thereto.
  • the protrusions 332 of different power storage units BU may be configured not to overlap with each other when the power storage device 2 is viewed in a plan view from the first direction D1. With this configuration, by securing a space near the protruding portion 332 in the first direction D1, it is possible to promote thermal convection near the protruding portion 332.
  • the protruding portions 332 of different power storage units BU may be configured to overlap with each other when the power storage device 2 is viewed in a plan view from the first direction D1. With this configuration, it is possible to make the assembly formed of the multiple power storage units BU more compact.
  • thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E including a component generated in a direction different from the temperature gradient J. According to such a configuration, since it becomes easier to measure the thermoelectromotive force E from a direction different from the temperature gradient J, it is possible to reduce wiring between the power storage device 2 and the thermoelectric conversion unit 31. Therefore, it is possible to suppress a decrease in sensitivity to the temperature gradient J.
  • the temperature gradient J is generated along the first direction D1
  • the thermoelectromotive force E includes a component generated in a second direction D2 perpendicular to the first direction D1.
  • thermoelectric conversion unit 31 is configured so that the thermoelectromotive force E changes according to a temperature change of the surface of the power storage device 2 (for example, a region of the surface of the housing 21 that contacts the thermoelectric conversion unit 31) due to heat generation.
  • the thermoelectric mechanism of such a thermoelectromotive force E is arbitrary, but can be realized, for example, by the anomalous Nernst effect.
  • the thermoelectric conversion unit 31 generates a thermoelectromotive force E in a direction perpendicular to the temperature gradient J and the direction that characterizes the magnetic structure by a magnetic structure characterized in a direction perpendicular to the temperature gradient J by the anomalous Nernst effect.
  • the anomalous Nernst effect is expressed by a quantity that depends on a physical variable corresponding to a magnetic field among the off-diagonal components of the thermoelectric tensor of the thermoelectric conversion unit 31.
  • the thermoelectromotive force E is antisymmetric with respect to the magnetic field, symmetric with respect to the in-plane component perpendicular to the first direction D1 of the temperature gradient J, and antisymmetric with respect to the perpendicular component parallel to the first direction D1.
  • compositions capable of expressing such an anomalous Nernst effect include, for example, Mn3Sn, Mn3Ge, Mn3Ga, Co2MnGa, Fe3Al, Fe3Ga, Fe3Sn2, FeGa, L1_0 type FePt, L1_0 type FePd, L1_0 type MnGa, D0_22 type Mn2Ga, SmCo5, Nd2Ir2O7, or alloys, elemental substitutes, or mixtures thereof, but are not limited to those listed here and are arbitrary.
  • the anomalous Nernst coefficient may be increased.
  • thermoelectric conversion unit 31 is not limited to those composed only of the above-mentioned compositions.
  • the mechanism of expression of the anomalous Nernst effect is arbitrary, but examples include those due to an antiferromagnetic magnetic structure having a non-collinear spin structure, or those due to a unique band structure called a Weyl point or nodal web.
  • the amount (e.g., Chern number) representing the geometrical features becomes finite due to the symmetry of the band structure, etc., which is presumed to be one of the factors that manifest the anomalous Nernst effect.
  • the anomalous Nernst effect manifests when the wave function of the electrons constituting the system acquires a Berry phase corresponding to the feature amount, and the Berry phase functions as a virtual magnetic field acting on the electrons.
  • the geometrical feature amount is calculated from, for example, a band structure obtained by band calculation obtained from the microscopic structure (including the crystal structure and magnetic structure) of the material.
  • the material constituting the thermoelectric conversion unit 31 may be realized as a polycrystalline body of these materials or as a single crystal body.
  • the thickness of the thermoelectric conversion unit 31 in the first direction D1 is arbitrary, but specifically, for example, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 nm, and may be within a range between any two of the numerical values exemplified here. It is also possible to be outside these ranges.
  • thermoelectric conversion unit 31 The method of mounting the thermoelectric material that exhibits the anomalous Nernst effect or the like as the thermoelectric conversion unit 31 is arbitrary, and any method can be adopted, such as physical vapor deposition methods such as sputtering and ion plating, plating methods, chemical vapor deposition methods, molecular beam epitaxy (MBE), and various printing methods such as inkjet printing using droplets in which the above compound is dissolved.
  • physical vapor deposition methods such as sputtering and ion plating
  • plating methods plating methods
  • chemical vapor deposition methods chemical vapor deposition methods
  • molecular beam epitaxy (MBE) molecular beam epitaxy
  • various printing methods such as inkjet printing using droplets in which the above compound is dissolved.
  • thermoelectric conversion unit 31 of this embodiment utilizes this anomalous Nernst effect, and can be formed thinner and have a smaller volume than a thermoelectric conversion unit that utilizes the Seebeck effect, while maintaining its sensitivity to heat flow (i.e., the magnitude of the thermoelectromotive force E relative to the temperature gradient J per unit area).
  • the thermoelectric conversion unit that utilizes the Seebeck effect may be referred to as a Seebeck element.
  • the thermoelectric conversion unit 31 of this embodiment can reduce the overall heat capacity by reducing the volume compared to a Seebeck element.
  • thermoelectric conversion unit 31 of this embodiment can respond to temperature changes of the measurement target such as the power storage device 2 in a relatively short time compared to a Seebeck element, and can achieve high time resolution and high sensitivity, and in some cases, can achieve both of these characteristics that have traditionally tended to be traded off. With this configuration, it is possible to detect the dynamics of instantaneous heat changes such as the occurrence of abnormal heat generation that could not be detected by conventional thermometers or heat flow sensors.
  • the thermoelectric conversion unit 31 includes a first region 311 and a second region 312, and the first region 311 of the thermoelectric conversion unit 31 is connected to the protruding portion 332.
  • heat from the heat source Q of the storage device 2 is transferred through the first heat conducting portion 33 to the main surface portion 331 and the protruding portion 332 in that order, and is transferred from the protruding portion 332 to the thermoelectric conversion unit 31 via the first region 311.
  • Heat exchange between the thermoelectric conversion unit 31 and the storage device 2 is performed through such a heat transfer path.
  • the second region 312 is located in the direction of the temperature gradient J from the first region 311 (i.e., the first direction D1).
  • the second region 312 can be said to be a region located opposite the first region 311 in the thickness direction of the thermoelectric conversion unit 31, and has a front-back relationship with the first region 311.
  • the second heat conducting portion 34 includes a contact portion 341 and a heat transport portion 342, and the contact portion 341 of the second heat conducting portion 34 is connected to the second region 312.
  • the contact portion 341 is disposed so as to cover the second region 312 of the thermoelectric conversion portion 31. This makes it possible to suppress the temperature of the second region 312 of the thermoelectric conversion portion 31 from varying depending on the position.
  • the contact portion 341 of this embodiment is configured in a rectangular flat plate shape with a thickness direction extending along the first direction D1, similar to the thermoelectric conversion portion 31.
  • the heat transporting portion 342 is connected to the outer edge of the contact portion 341, extends from the outer edge in the second direction D2, and is connected to the heat bath 32 (not shown).
  • the heat bath 32 exchanges heat with the second region 312 of the thermoelectric conversion portion 31 via the heat transporting portion 342 and the contact portion 341 in that order. This makes it easier for the surface temperature of the second region 312 of the thermoelectric conversion portion 31 to be maintained at the reference temperature Tb of the heat bath 32. Meanwhile, the surface temperature of the first region 311 of the thermoelectric conversion portion 31 rises due to heat generated from the heat source Q in the housing 21.
  • thermoelectric conversion portion 31 As a result, a temperature gradient J is generated in the thermoelectric conversion portion 31 along the first direction D1 due to the difference between the surface temperatures of the first region 311 and the second region 312. As described above, the surface temperature of the second region 312 is easily maintained at the reference temperature Tb, so it is possible to grasp the temperature gradient J that occurs in the thermoelectric conversion unit 31 according to the temperature of the second thermal conductive unit 34, and therefore to increase the information that can be obtained from the thermoelectromotive force E. Therefore, a wider variety of heat-related processes can be performed.
  • the surface of the contact portion 341 that is in contact with the second region 312 and that is opposite in the first direction D1 are exposed to air. Therefore, if the temperature of the thermoelectric conversion portion 31 becomes excessively high, the heat accumulated in the thermoelectric conversion portion 31 is released to the air via the contact portion 341. Therefore, the second heat conducting portion 34 (particularly the contact portion 341) functions as a heat dissipation portion that can dissipate at least a portion of the heat that flows into the thermoelectric conversion portion 31 by heat exchange. In other words, the second heat conducting portion 34 has such a heat dissipation portion. With this configuration, the heat generated by the heat generation of the power storage device 2 can be released from the heat dissipation portion, thereby suppressing an excessive temperature rise in the thermoelectric conversion portion 31.
  • FIG. 6 is a block diagram showing the hardware configuration of the information processing device 4.
  • the information processing device 4 includes a communication bus 40, a communication unit 41, a storage unit 42, a processor 43 as a control unit, a display unit 44, and an input unit 45. These components are electrically connected via the communication bus 40 inside the information processing device 4.
  • the communication unit 41 is preferably a wired communication means such as USB, IEEE 1394, Thunderbolt (registered trademark), wired LAN network communication, etc., but may also include wireless LAN network communication, mobile communication such as 3G/LTE/5G, BLUETOOTH (registered trademark) communication, etc. as necessary. In other words, it is more preferable to implement it as a collection of multiple communication means. In other words, the information processing device 4 may communicate various information from the outside via the communication unit 41 and the network.
  • the storage unit 42 stores various information defined by the above description. This can be implemented, for example, as a storage device such as a solid state drive (SSD) that stores various programs and the like related to the information processing device 4 executed by the processor 43, or as a memory such as a random access memory (RAM) that stores temporarily required information (arguments, arrays, etc.) related to the program calculations.
  • the storage unit 42 stores various programs, variables, etc. related to the information processing device 4 executed by the processor 43.
  • the processor 43 processes and controls the overall operation related to the information processing device 4.
  • the processor 43 is, for example, a central processing unit (CPU) not shown.
  • the processor 43 realizes various functions related to the information processing device 4 by reading out a predetermined program stored in the storage unit 42. That is, information processing by software stored in the storage unit 42 can be specifically realized by the processor 43, which is an example of hardware, and executed as each functional unit included in the processor 43. These will be described in more detail in the next section.
  • the processor 43 is not limited to being single, and may be implemented to have multiple processors 43 for each function. Also, a combination of these may be used.
  • the display unit 44 may be included in the housing of the information processing device 4 or may be externally attached.
  • the display unit 44 displays a screen of a graphical user interface (GUI) that can be operated by a user. This is preferably implemented by using display devices such as a CRT display, a liquid crystal display, an organic EL display, and a plasma display according to the type of the information processing device 4.
  • GUI graphical user interface
  • the input unit 45 may be included in the housing of the information processing device 4, or may be externally attached.
  • the input unit 45 may be implemented as a touch panel integrated with the display unit 44. If it is a touch panel, the user can input a tap operation, a swipe operation, or the like.
  • a switch button, a mouse, a QWERTY keyboard, or the like may be adopted instead of the touch panel. That is, the input unit 45 accepts an operation input made by the user.
  • the input is transferred as a command signal to the processor 43 via the communication bus 40, and the processor 43 can execute a predetermined control or calculation as necessary.
  • FIG. 7 is a diagram showing an example of functional units included in the processor 43.
  • the processor 43 includes an acquisition unit 431, a detection unit 432, a determination unit 433, a change unit 434, an estimation unit 435, a device control unit 436, and a display processing unit 437.
  • the acquisition unit 431 is configured to acquire information from the power storage device 2 or other devices and execute an acquisition step.
  • the acquisition unit 431 is configured to be able to acquire various pieces of information by reading out various pieces of information stored in a storage area that is at least a part of the memory unit 42 and writing the read out information in a working area that is at least a part of the memory unit 42.
  • the storage area is, for example, an area of the memory unit 42 that is implemented as a storage device such as an SSD.
  • the working area is, for example, an area that is implemented as a memory such as a RAM.
  • the detection unit 432 is configured to detect abnormalities in devices such as the power storage device 2 based on various acquired information, and to execute a detection step.
  • the determination unit 433 is configured to determine the operating state of devices such as the power storage device 2 based on the various acquired information, and to execute a determination step.
  • the modification unit 434 is configured to modify the operation of devices such as the power storage device 2 based on various acquired information and execute modification steps.
  • the estimation unit 435 is configured to estimate various information, such as the state of the equipment, such as the power storage device 2, and the position of the heat source Q generated by the operation of the equipment, based on the various acquired information, and to execute a first estimation step and a second estimation step.
  • the device control unit 436 is configured to control the operation of the devices such as the power storage device 2 and the driving device M1 based on various information.
  • the display processing unit 437 is configured to display various information.
  • the information can be presented to the user via the display unit 44 or another device.
  • the display processing unit 437 controls the display unit 44 to display visual information such as a screen, an image including a still image or a video, an icon, a message, etc.
  • the display processing unit 437 may generate only rendering information for displaying the visual information on the information processing device 4 or a user terminal (not shown). Note that the display processing unit 437 may present the output information to the user without going through another device.
  • the information processing may include any exception processing not shown. Exception processing includes interruption of the information processing and omission of each process. Selection or input performed in the information processing may be based on a user operation or may be performed automatically without relying on a user operation.
  • a first information processing which is an example of information processing executed by the above-described information processing system 1, will be described.
  • Fig. 8 is an activity diagram showing an example of the flow of the first information processing executed in the information processing system 1.
  • the information processing system 1 can detect an abnormal operation of the power storage device 2 by performing the first information processing.
  • the acquisition unit 431 acquires the thermoelectromotive force E.
  • the acquisition unit 431 acquires an output signal output from the comparison unit 351 based on the thermoelectromotive force E.
  • the acquisition unit 431 indirectly acquires the thermoelectromotive force E.
  • the determination unit 433 determines whether the acquired thermoelectromotive force E is equal to or lower than the threshold voltage Vt1.
  • the comparison unit 351 outputs an output signal when the thermoelectromotive force E is greater than the threshold voltage Vt1, so the determination unit 433 may make the determination based on whether the acquisition unit 431 has acquired the output signal.
  • the determination is made for each of the multiple power storage devices 2, but is not limited thereto and may be made collectively for at least some of the power storage devices 2.
  • thermoelectromotive force E is equal to or lower than the threshold voltage Vt1
  • the process proceeds to activity A2, where the determination unit 433 determines that the power storage device 2 is normal, and continues the operation of the power storage device 2. Thereafter, the process returns to activity A1, and the acquisition and determination of the thermoelectromotive force E are repeated.
  • Activity A4 Next, the process proceeds to activity A4, where the processor 43 turns off the switch 36 corresponding to the power storage device 2 in which abnormal operation has been detected. This restricts charging and discharging of at least the power storage device 2 that has been turned off. Detecting an operational abnormality also means determining the operating state of the power storage device 2. Therefore, the determination unit determines the operating state of the power storage device 2 according to the thermoelectromotive force E. According to this configuration, the change in temperature gradient J due to heat generation of the power storage device 2 changes in a short period of time compared to the change in temperature due to heat generation of the power storage device 2, so that the operating state of the power storage device 2 can be distinguished with higher sensitivity than before.
  • the process proceeds to activity A5, and the display processing unit 437 notifies the user of the detection result of the abnormal operation.
  • the display processing unit 437 visually notifies the user of information related to the power storage device 2 in which the abnormal operation has been detected, for example, via the display unit 44.
  • the information related to the power storage device 2 includes, for example, the details of the abnormal operation of the power storage device 2.
  • the notification method is not limited to this and may be arbitrary, and may be performed using sound, light, etc. Then, the first information process ends.
  • the information processing system 1 comprises a thermoelectric conversion unit 31, a signal processing circuit 35 as a signal processing unit, and an information processing device 4.
  • the thermoelectric conversion unit 31 is configured to generate a temperature gradient J by heat exchange with the power storage device 2 as a device, and is configured to generate a thermoelectromotive force E based on the temperature gradient J.
  • the processor 43 of the information processing device 4 included in the signal processing unit comprises an acquisition unit 431 and a detection unit 432.
  • the acquisition unit 431 is configured to acquire the thermoelectromotive force E.
  • the detection unit 432 is configured to detect abnormal operation of the power storage device 2 involving heat generation based on the thermoelectromotive force E.
  • the change in temperature gradient J caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
  • FIG. 9 is an activity diagram showing an example of the flow of the second information processing executed in the information processing system 1.
  • controlling the power storage device 2 is not limited to controlling the power storage device 2 by directly transmitting a signal to the power storage device 2, but also includes indirectly controlling the power storage device 2 by transmitting a signal to a device (e.g., a power converter or a driving device M1) different from the power storage device 2 and controlling the operation of the device.
  • the acquisition unit 431 acquires the required power P and the thermoelectromotive force E of the moving device M1.
  • the manner of acquiring the thermoelectromotive force E is arbitrary, and if the signal processing circuit 35 includes a voltage measuring unit capable of measuring the thermoelectromotive force E, the acquisition unit 431 may acquire the value of the thermoelectromotive force E from the voltage measuring unit. Also, if the signal processing circuit 35 includes a plurality of comparison units 351 in a manner that allows the thermoelectromotive force E to be compared with a plurality of threshold voltages, the acquisition unit 431 may acquire the comparison results between the thermoelectromotive force E and each of the plurality of thresholds.
  • the reference information IF0 is information that specifies the correspondence between the thermoelectromotive force E and the maximum output power Pmax, and is stored in the storage unit 42 or the like. Since the thermoelectromotive force E is information that indicates the heat flow associated with the temperature gradient J, the thermoelectromotive force E is information that indicates the temperature of the storage device 2, specifically, the change in temperature over time. Therefore, the reference information IF0 is information that indicates the temperature of the storage device 2 and the maximum output power Pmax that the storage device 2 can output at that temperature.
  • the reference information IF0 can be generated based on, for example, the results of a test performed in advance or the results of a predetermined simulation, and the format of the reference information IF0 can be any format, such as a function, a lookup table, or a learned model.
  • the determination unit 433 compares the acquired required power P with the maximum output power Pmax obtained by the search, and determines which is larger.
  • the comparison unit 351 outputs the comparison result of the thermoelectromotive force E as a first electrical signal
  • the change unit 434 changes the operation of the power storage device 2 based on the comparison result of the thermoelectromotive force E.
  • the thermoelectromotive force E generated by the thermoelectric conversion unit 31 can be grasped as a difference from a reference value. Therefore, it becomes easier to stably change the operation of the power storage device 2 by the electrical signal output from the thermoelectric conversion unit 31.
  • the change unit 434 changes whether to perform the next process, activity A13 or activity A14, based on the comparison result of the thermoelectromotive force E, for example.
  • Activity A13 If the required power P is equal to or less than the maximum output power Pmax, the process proceeds to activity A13, where the device control unit 436 causes the power storage device 2 to output power according to the required power P of the driving device M1.
  • the output power of the power storage device 2 is controlled, for example, through the control of a power converter (not shown). Then, the process returns to activity A11.
  • the process proceeds to activity A14, where the device control unit 436 limits the driving device M1 so that the required power P of the driving device M1 is equal to or less than the maximum output power Pmax, and causes the power storage device 2 to output power according to the limited required power P.
  • the information processing system 1 searches for the maximum output power Pmax based on the thermoelectromotive force E, and controls the output power of the power storage device 2 so that it does not exceed the maximum output power Pmax.
  • the information processing system 1 comprises a thermoelectric conversion unit 31, a signal processing circuit 35 as a signal processing unit, and an information processing device 4.
  • the thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E in response to a temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2 as a device.
  • the processor 43 of the information processing device 4 included in the signal processing unit comprises an acquisition unit 431 and a device control unit 436.
  • the acquisition unit 431 is configured to acquire the thermoelectromotive force E.
  • the device control unit 436 is configured to control the operation of the device based on the acquired thermoelectromotive force E.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to control the device with a faster response speed than before.
  • Fig. 10 is an activity diagram showing an example of the flow of the third information processing executed in the information processing system 1.
  • the information processing system 1 can further estimate the state of charge or the state of health of the power storage device 2.
  • activity A21 First, in activity A21, the acquisition unit 431 acquires the required power P and the thermoelectromotive force E of the moving machine M1. The details of the process are similar to those of activity A11.
  • activity A22 the process proceeds to activity A22, where the processor 43 searches for the maximum output power Pmax corresponding to the thermoelectromotive force E based on the predetermined reference information IF0.
  • the details of the process are similar to those of activity A12.
  • the determination unit 433 compares the acquired required power P with the maximum output power Pmax obtained by the search, and determines which is larger.
  • Activity A24 On the other hand, if the required power P is greater than the maximum output power Pmax, the process proceeds to activity A24, where the device control unit 436 limits the driving device M1 so that the required power P of the driving device M1 is equal to or less than the maximum output power Pmax, and causes the power storage device 2 to output power according to the limited required power P. The details of the process are similar to those of activity A14. Then, the process proceeds to activity A25.
  • the acquisition unit 431 acquires the output power of the storage device 2 and stores the history of the output power in the storage unit 42, etc.
  • the output power of the storage device 2 is an example of information about the second electric signal output from the storage device 2, and may be an output voltage, an output current, etc. Then, the process returns to activity A21.
  • the estimation unit 435 estimates the state of charge (SOC) or state of health (SOH) of the power storage device 2 based on the output history of the output power of the power storage device 2 and the thermoelectromotive force E, and updates the existing SOC and SOH to the estimated values. With this configuration, the operation of the power storage device 2 can be made more stable. Any method can be used to estimate the state of the power storage device 2. For example, the estimation unit 435 estimates the temperature and temperature change of the power storage device 2 based on the thermoelectromotive force E.
  • the estimation unit 435 compares the estimated temperature change with the output history of the output power to estimate the power consumption inside the power storage device 2 due to the discharge of the power storage device 2 at the temperature.
  • the estimation unit 435 estimates the internal resistance of the power storage device 2 based on the power consumption inside the power storage device 2 and the output voltage of the power storage device 2.
  • the internal resistance is one of the indexes representing the SOH of the power storage device 2. By correcting such internal resistance with temperature, the estimation unit 435 can estimate the SOH reflecting the temperature of the power storage device 2.
  • the estimation unit 435 can estimate the current SOC of the power storage device 2 taking into consideration the temperature state of the power storage device 2 by performing calculations such as integrating the power output to the driving device M1 and the power consumed inside the power storage device 2 and subtracting the integrated value from the power capacity in the fully charged state.
  • the detection unit 432 may detect in activity A27 that the thermoelectromotive force E has exceeded the threshold voltage Vt1. In this case, the processing exceptionally proceeds to activity A28, and the detection unit 432 detects an abnormal operation of the power storage device 2 involving heat generation based on the thermoelectromotive force E.
  • Activity A29 Thereafter, the process proceeds to activity A29, where the processor 43 turns off the switch 36 corresponding to the power storage device 2 in which the abnormal operation has been detected.
  • the details of the process are similar to those of activity A4.
  • the above information processing may be performed individually or in combination.
  • the above information processing may be performed independently, in parallel, or in cooperation.
  • thermoelectric conversion unit 31 contacts first region 311 without first heat conduction unit 33, but as described above, the same applies to the case where thermoelectric conversion unit 31 contacts housing 21 via first heat conduction unit 33.
  • Fig. 11 is a cross-sectional view of power storage device 2 and thermoelectric conversion unit 31 in contact with power storage device 2, taken along a plane perpendicular to third direction D3.
  • heat source Q may be located at a position away from the surface of housing 21 in first direction D1. Therefore, the temperature of heat source Q deviates from the surface temperature of housing 21 (in other words, the temperature of first region 311) by a temperature difference ⁇ T. Therefore, the surface temperature of housing 21 estimated from temperature gradient J deviates by that temperature difference ⁇ T.
  • the estimation unit 435 of this embodiment sets the temperature of the first region 311 as the detection temperature Td, and constructs a thermal circuit model M of a heat conduction path from the first region 311 to the heat source Q by simulation or the like.
  • FIG. 12 is a diagram showing an example of the thermal circuit model M.
  • the estimation unit 435 may estimate various information such as the deep temperature of the heat source Q from the thermoelectromotive force E and its position information (for example, the distance in the first direction D1 from the surface of the housing 21 to the heat source Q) using the thermal circuit model M.
  • the thermal circuit model M is expressed as, for example, a parallel connection of a thermal resistance R1 and a thermal capacity C1, and the estimation unit 435 estimates these parameters by simulation or the like.
  • the relationship between the temperature difference ⁇ T, the thermal resistance, and the thermal capacity C1 is expressed, for example, by the following relational expression.
  • Q represents the amount of heat generated by the heat source Q
  • n is a natural number representing the number of steps representing the time change in the amount of heat generated by the heat source Q.
  • t_sampling indicates the sampling period.
  • the estimation unit 435 is configured to estimate position information of the heat generation position of the storage device 2 relative to the surface of the storage device 2, based on a predetermined thermal conduction model of the storage device 2 and the temperature of the surface of the storage device 2 based on the thermoelectromotive force E. With such a configuration, it becomes easier to grasp the position of a heat source present inside the storage device 2.
  • the information processing system 1 may further include a temperature adjustment element 6.
  • FIG. 13 is a cross-sectional view of the power storage device 2 and the like in a plane perpendicular to the third direction D3 when the thermoelectric conversion unit 31 is in contact with the power storage device 2 via the temperature adjustment element 6.
  • the temperature adjustment element 6 is configured to adjust the temperature of the first region 311 of the thermoelectric conversion unit 31 based on the control of the information processing device 4 and the like, and is implemented using, for example, a seat heater or a Peltier element.
  • the temperature adjustment element 6 is disposed between the housing 21 and the first region 311 of the thermoelectric conversion unit 31. It is preferable that the temperature adjustment element 6 includes a conduction path of heat flow from the housing 21 to the first region 311.
  • the information processing device 4 controls the temperature adjustment element 6 based on the thermoelectromotive force E associated with the temperature gradient J, and drives the temperature adjustment element 6 so that the thermoelectromotive force E decreases.
  • the temperature adjustment element 6 adjusts the temperature of the first region 311 so that the temperature gradient J between the first region 311 and the second region 312 is less than a predetermined value. In this way, a compact control system can be constructed by performing closed-loop control using the thermoelectric conversion unit 31, the information processing device 4, and the temperature adjustment element 6.
  • the estimation unit 435 may also estimate various information such as the internal parameters of the thermal circuit model M (e.g., thermal resistance R1 and heat capacity C1), position information of the heat source Q, and the degree of deterioration of the power storage device 2 from the control value of the temperature of the temperature adjustment element 6 at this time, the heat flow (temperature gradient J), and the temperature response.
  • the internal parameters of the thermal circuit model M e.g., thermal resistance R1 and heat capacity C1
  • position information of the heat source Q e.g., position information of the heat source Q
  • the degree of deterioration of the power storage device 2 e.g., the degree of deterioration of the power storage device 2 from the control value of the temperature of the temperature adjustment element 6 at this time, the heat flow (temperature gradient J), and the temperature response.
  • FIG. 14 is a diagram showing another example of the signal processing circuit 35.
  • the signal processing circuit 35 may further include a capacitor 353.
  • the capacitor 353 is disposed between the thermoelectric conversion unit 31 and the non-inverting input terminal of the comparison unit 351, and converts the first electric signal input to the comparison unit 351 from the thermoelectromotive force E into a signal corresponding to the time differential of the thermoelectromotive force E, that is, the rate of change of the temperature gradient J per unit time.
  • the information processing device 4 can perform the above-mentioned control based on the signal corresponding to the time differential of such thermoelectromotive force E.
  • the signal is particularly suitable for detecting a tendency for heat to be generated suddenly due to leakage of the electrolyte of the power storage unit 22, etc.
  • the function of the signal processing circuit 35 may be realized by the information processing device 4. That is, the information processing device 4 may function as a signal processing unit.
  • the above-mentioned signal processing circuit 35 is not limited to being implemented by an analog circuit, but may be realized by the processor 43 of the information processing device 4 executing a predetermined program.
  • the specific configuration of the signal processing circuit 35 is arbitrary and is not limited to the above-mentioned one.
  • the detection unit 432 detects an abnormal operation of the power storage device 2 accompanied by heat generation based on the comparison result between the thermoelectromotive force E and the threshold voltage Vt1, but the detection manner of the abnormal operation is not limited to this and is arbitrary.
  • the detection unit 432 may detect an abnormal operation of the power storage device 2 based on whether or not the acquired information on the thermoelectromotive force E satisfies a condition indicating an abnormal operation that is specified in advance.
  • the condition may be specified based on a test result, a simulation result, or the like.
  • the specification method is arbitrary, and may be specified by processing the test result, etc.
  • thermoelectromotive force E is not limited to the thermoelectromotive force E itself, and may include various aspects such as a differential value, an integral value, and time-series information of the thermoelectromotive force E.
  • the detection unit 432 may detect an abnormal operation of the power storage device 2 based on the time-series information of the thermoelectromotive force E. This allows for the detection of abnormal operation to be performed while taking into account the effects of continuous usage of equipment such as the power storage device 2, thereby improving convenience.
  • the modification unit 434 may modify the operation of the power storage device 2 in activity A12, etc., based on something other than the result of comparing the thermoelectromotive force E with various reference values such as the maximum output power Pmax.
  • the modification unit 434 may modify the operation of the power storage device 2 based on whether the thermoelectromotive force E is included in the range of thermoelectromotive force E corresponding to the modified operation.
  • the modification unit 434 may modify the operation of the power storage device 2 based on time-series information on the thermoelectromotive force E. This makes it possible to modify the operation of a device such as the power storage device 2, for example, taking into account the influence of the continuous usage mode of the device such as the power storage device 2, thereby reducing the burden on the device, etc.
  • the temperature adjustment unit is not limited to the heat bath 32, but may be a heat sink, a water cooling device, etc., and may be any unit capable of adjusting the temperature of the second thermal conduction unit 34 or the second region 312 of the thermoelectric conversion unit 31.
  • the change in temperature gradient J due to heat generation from the storage device 2 changes in a shorter time than the change in temperature due to heat generation from the storage device 2, making it possible to detect abnormal heat generation from the storage device 2 with higher sensitivity than in the past.
  • the first signal is not limited to the thermoelectromotive force E, but may be an electrical signal such as a current or power caused by the thermoelectromotive force E, or a magnetic force induced by the current.
  • the second signal is not limited to voltage, current, and power, but may be any signal that includes information that can estimate the SOC or SOH of the storage unit 22 of each storage device 2.
  • the main surface portion 331 does not have to be arranged along the outer edge of the housing 21, and the shape of the main surface portion 331 is arbitrary as long as it can transmit heat from the heat source Q to the thermoelectric conversion unit 31.
  • the main surface portion 331 may be formed such that, when the housing 21 is viewed in a plan view from the first direction D1, the outer edge of the main surface portion 331 encompasses an area where the power storage unit 22 may be present.
  • FIG. 15 is a diagram showing an example of a signal processing system 3 not including the first heat conducting section 33.
  • the thermoelectric conversion section 31 is arranged so that the first region 311 is in direct contact with the housing 21 without going through the first heat conducting section 33.
  • the shape of the thermoelectric conversion section 31 is similar to the main surface section 331 of the first heat conducting section 33 described above, and the thermoelectric conversion section 31 is formed so that the outer edge of the housing 21 encompasses the outer edge of the thermoelectric conversion section 31 when viewed in a plan view from the first direction D1. This makes it possible to detect the generation of the heat source Q over a wider range.
  • the first heat conducting portion 33 may not have a main surface portion 331, but may have a protruding portion 332.
  • the protruding portion 332 is positioned so as to be in contact with at least a portion of the outer edge of the housing 21.
  • the signal processing system 3 may not include the second heat conducting section 34.
  • the thermoelectric conversion section 31 may be configured so that the second region 312 is in direct contact with the heat bath 32 without going through the second heat conducting section 34.
  • the heat bath 32 may be arranged so as to cover the second region 312 of the thermoelectric conversion section 31 from the first direction D1.
  • the signal processing system 3 may not include the heat bath 32.
  • thermoelectric conversion unit 31 The position where the thermoelectric conversion unit 31 is attached is arbitrary as long as it is possible to detect the presence of the heat source Q, and is not limited to the surface of the housing 21.
  • Figure 16 is a diagram showing an example of an attachment mode of the thermoelectric conversion unit 31. As shown in Figure 16, the thermoelectric conversion unit 31 may be housed inside the housing 21. In this case, the shape of the thermoelectric conversion unit 31 is arbitrary, and is, for example, a flat plate shape as shown in Figure 15.
  • Thermoelectric conversion unit 31 is not limited to one that exhibits the anomalous Nernst effect as described above, and may be configured to exhibit the Seebeck effect, etc. In this case, the thermoelectric conversion unit 31 needs to be wired so that the thermoelectromotive force E is extracted in a direction parallel to the temperature gradient J, since the temperature gradient J induces a thermoelectromotive force E that includes a component parallel to the temperature gradient J.
  • the object to be connected to the power storage unit BU is not limited to the above-mentioned driving device M1, which is driven by power from the power storage unit BU.
  • the power storage unit BU may be connected to a charging device that supplies power to the power storage unit BU.
  • the charging device includes, for example, a power source such as a commercial power source, and a power converter that converts the power from the power source.
  • the information processing device 4 of the power storage unit BU transmits the required power P to the charging device, and the power storage unit BU transmits power corresponding to the required power P to the power storage unit BU.
  • the information processing described above can also be applied to an information processing system 1 configured in this way.
  • the heat exchange between the power storage device 2 and the thermoelectric conversion unit 31 is not limited to the case where heat is transferred from the power storage device 2 to the thermoelectric conversion unit 31, but can also include the case where heat is transferred from the thermoelectric conversion unit 31 to the power storage device 2.
  • the information processing performed by the information processing system 1 may be on-premise or in cloud form.
  • the above-mentioned functions and processing may be provided in the form of, for example, SaaS (Software as a Service) or cloud computing.
  • the signal processing system 3 and the information processing device 4 performed various storage and control operations, but multiple external devices may be used instead of the signal processing system 3 and the information processing device 4.
  • various information and programs may be distributed and stored in multiple external devices using blockchain technology, etc.
  • the above embodiment is not limited to the information processing system 1, but may be an information processing method or an information processing program.
  • the information processing method executed by the information processing system 1 includes the following steps.
  • the thermoelectric conversion step generates a thermoelectromotive force E according to a temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2 as a device.
  • the power storage device 2 as a device is configured to generate heat according to the operating state of the device.
  • the determination unit 433 determines the operating state of the device according to the thermoelectromotive force E.
  • the information processing method executed by the information processing system 1 includes the following steps.
  • a temperature gradient J is generated by heat exchange with the power storage device 2, and a thermoelectromotive force E is generated based on the temperature gradient J.
  • the thermoelectromotive force E is acquired.
  • an abnormal operation of the power storage device 2 involving heat generation is detected based on the thermoelectromotive force E.
  • the change in temperature gradient J due to heat generation from the storage device 2 changes in a shorter time than the change in temperature due to heat generation from the storage device 2, so abnormal heat generation from the storage device 2 can be detected with higher sensitivity than in the past.
  • thermoelectric conversion unit configured to generate a temperature gradient by heat exchange with an equipment and configured to generate a thermoelectromotive force based on the temperature gradient
  • signal processing unit comprising an acquisition unit and a detection unit, the acquisition unit configured to acquire the thermoelectromotive force, and the detection unit configured to detect abnormal operation of the equipment involving heat generation based on the thermoelectromotive force.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
  • thermoelectric conversion unit configured to generate a thermoelectromotive force in response to a temperature gradient generated in the thermoelectric conversion unit by heat exchange with an equipment
  • signal processing unit comprising an acquisition unit and an equipment control unit, the acquisition unit configured to acquire the thermoelectromotive force, and the equipment control unit configured to control the operation of the equipment based on the acquired thermoelectromotive force.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to control the device with a faster response speed than before.
  • thermoelectric conversion unit is configured to generate the thermoelectromotive force including a component that occurs in a direction different from the temperature gradient.
  • thermoelectromotive force from a direction different from the temperature gradient, which reduces the amount of wiring between the device and the thermoelectric conversion unit. This makes it possible to suppress a decrease in sensitivity to temperature gradients.
  • thermoelectric conversion unit (4) The information processing system according to any one of (1) to (3) above, further comprising a first heat conducting unit, the first heat conducting unit connecting the device and the thermoelectric conversion unit.
  • thermoelectric conversion unit heat exchange between the device and the thermoelectric conversion unit occurs via the first thermal conduction unit, making it easier to reduce variations in thermoelectromotive force due to different heat generation positions in the device.
  • the first thermal conduction section has a protrusion
  • the protrusion is configured to protrude from the device when the device is viewed in a plan view from a predetermined first direction
  • the thermoelectric conversion section is connected to the protrusion.
  • thermoelectric conversion unit makes it easier to measure the thermoelectromotive force of the thermoelectric conversion unit, improving the freedom of arrangement of equipment, etc.
  • thermoelectric conversion unit including a first region in which heat exchange with the device takes place and a second region located from the first region in the direction of the temperature gradient, and the second heat conducting unit connected to the second region.
  • thermoelectric conversion section According to this configuration, it is possible to grasp the temperature gradient that occurs in the thermoelectric conversion section according to the temperature of the second thermal conduction section, and therefore to increase the information that can be obtained from the thermoelectromotive force. Therefore, it is possible to perform a wider variety of heat-related processing.
  • the second heat conducting unit is connected to a temperature adjustment unit capable of adjusting the temperature of the second heat conducting unit.
  • thermoelectric conversion section makes it easier to grasp the temperature gradient of the thermoelectric conversion section more accurately.
  • the second thermal conduction section is provided with a heat dissipation section capable of dissipating at least a portion of the heat that flows into the thermoelectric conversion section by the heat exchange.
  • thermoelectric conversion section With this configuration, heat generated by the device can be released from the heat dissipation section, preventing excessive temperature rise in the thermoelectric conversion section.
  • the second thermal conduction section is configured to be connected to a heat bath having a predetermined reference temperature, thereby maintaining the temperature of the second region at approximately the reference temperature.
  • thermoelectric conversion unit With this configuration, the operating temperature of the thermoelectric conversion unit is stabilized, improving the accuracy of detecting the heat generation state of the device.
  • the signal processing unit further includes a comparison unit and a change unit, the comparison unit is configured to compare a first signal caused by the thermoelectromotive force of the thermoelectric conversion unit with a predetermined reference value, and the change unit is configured to change the operation of the device based on the comparison result of the first signal.
  • thermoelectromotive force generated by the thermoelectric conversion unit can be understood as the difference from a reference value. Therefore, it becomes easier to stably change the operation of the device using the signal output from the thermoelectric conversion unit.
  • the device is a power storage device capable of charging and discharging power
  • the signal processing unit further includes a first estimation unit
  • the acquisition unit is configured to be able to acquire information about a second signal output from the power storage device
  • the first estimation unit is configured to estimate the charge state or health state of the power storage device based on the output history of the second signal and the thermoelectromotive force.
  • This configuration makes it possible to make the operation of the power storage device more stable.
  • thermoelectric conversion unit is configured to change the thermoelectromotive force in response to a change in temperature of the surface of the device due to heat generation
  • the signal processing unit further includes a second estimation unit, and the second estimation unit is configured to estimate position information of the heat generation position of the device relative to the surface of the device based on a predetermined thermal conduction model of the device and the temperature of the surface of the device based on the thermoelectromotive force.
  • This configuration makes it easier to determine the location of heat sources inside the device.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
  • thermoelectric conversion step a thermoelectromotive force is generated in response to a temperature gradient generated in a thermoelectric conversion unit by heat exchange with an equipment, the equipment being configured to generate heat in response to the operating state of the equipment; and in the determination step, the operating state of the equipment is determined in response to the thermoelectromotive force.
  • the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to determine the operating state of the device with higher sensitivity than before.
  • thermoelectric conversion step a temperature gradient is generated by heat exchange with an equipment, a thermoelectromotive force is generated based on the temperature gradient, in the acquisition step, the thermoelectromotive force is acquired, and in the detection step, abnormal operation of the equipment accompanied by heat generation is detected based on the thermoelectromotive force.
  • a heat flow sensor that monitors the amount of heat generated is attached to the battery pack, allowing for more immediate abnormality detection than temperature detection. Furthermore, by attaching the sensor to a large area, abnormalities can be detected over a larger range.
  • the heat flow sensor according to this embodiment is preferably a thin-film type heat flow sensor based on the anomalous Nernst effect.
  • the element of the heat flow sensor i.e., thermoelectric conversion device
  • the element may be composed of a compound exhibiting the anomalous Nernst effect.
  • the element may be composed of, for example, a topological ferromagnet or a topological antiferromagnet called a Weyl semimetal, or may be composed of a ferrimagnetic material, or may be a combination of these.
  • the topological ferromagnet may be a metal having a composition of Co2TX such as Co2MnGa (X is any one of Si, Ge, Sn, Al, and Ga), or may be an alloy of a known topological ferromagnet such as a metal having a composition formula of Fe3X (X is a stoichiometric composition in which a typical element or a transition element such as Al or Ga is used).
  • the topological antiferromagnet may be a known topological antiferromagnet such as Mn3X (X is one or more elements selected from Sn, Ge, Ga, Pt, Ir, and Rh, or a compound thereof).
  • the compound constituting the element may be, for example, an alloy containing a transition metal, and the alloy may be a compound having a crystal structure with a kagome lattice plane of the transition metal, and may exhibit the anomalous Nernst effect.
  • the ferrimagnetic material is also not particularly limited as long as it exhibits the anomalous Nernst effect.
  • the structure of the element is not particularly limited, and a known one may be used.
  • the heat flow sensor may be installed directly on the battery pack. Because it is a thin-film heat flow sensor, a PCB or other substrate for the sensor is not required.
  • the heat flow sensor may be installed on each cell, or in the case of a multi-cell battery, it may be installed on each cell.
  • a heat sink may also be provided for the heat flow sensor.
  • the heat sink may be a publicly known type, but the structure must be designed appropriately.
  • the heat flow sensor can adjust the heat flow using a heat sink, so a thermal design with a heat sink may be used. As long as the heat flow path is guaranteed, it goes without saying that the optimal shape may be used for each design.
  • it is not limited to using a heat sink, but it is even better to use a cooling means such as air cooling or water cooling to manage the thermal state, and it goes without saying that performance will be further improved if a temperature sensor is used to manage the temperature of the heat flow sensor. It also goes without saying that this cell may be a multi-cell.
  • the heat flow sensor may also be installed inside the battery cell. Because it is a thin-film heat flow sensor, it is possible to detect heat generation even if it is placed inside the battery cell as long as the terminals can be exposed. In this case, there is no problem with the installation location as long as it is somewhere chemically stable, such as between the case and the inside of the battery, or between the electrodes. In this case, there is no problem with using the electrodes, case, etc. as a heat sink. Also, the cell may be a multi-cell.
  • a heat conduction path may also be provided to conduct heat.
  • a heat conduction path is created to the heat flow sensor, the heat is conducted, and the heat flow is detected. This makes it possible to detect even in places where it is difficult to insert a sensor. It is even better if the heat conduction path and heat flow sensor are electrically insulated but use fine ceramics, semiconductors, resins, paste materials, etc. that allow heat to pass through. Even if the heat flow sensor comes into electrical contact with the heat conduction path, noise will increase, but measurements can still be made.
  • the heat conduction path may be made of existing materials such as Al electrodes, a battery material.
  • Battery charging/discharging can be cut off using the absolute value or slope of the amount of heat generated Q, or a value derived from the amount of heat generated, or a calculated value using the amount of heat generated and other parameters as the judgment value.
  • a fail-safe function By incorporating such a fail-safe function, more reliable battery management can be performed.
  • the following formula is written using an analog circuit, but digital control can also be used without any problems. The above information can also be used to provide feedback to the control of battery charging/discharging, allowing more reliable battery management.
  • the SOH State of Health
  • the SOH state of Health
  • the accuracy of the SOH can be improved. For example, it is possible to detect battery deterioration by monitoring the amount of heat generated under the same voltage and current driving conditions. Also, by comparing unit energy or similar parameters, it is possible to compare real-time DeSOH. Needless to say, it can also be used to estimate other characteristic parameters of the battery. Furthermore, this data can be used to calculate the battery's lifespan and encourage replacement.
  • the deep temperature of the battery can be measured from the amount of heat generated by the battery. This measurement information can be used in the system.
  • the model is a simple one, but an estimation model can be created to suit the system.
  • a heating element can be placed between the sensor and the battery to perform closed control and perform model prediction and measurement. Furthermore, internal parameters can be estimated from the control value, heat flow, temperature response, etc., and R1, C1, and the distance to the heat source can be estimated, making it possible to detect the degree of influence of degradation, etc. in more detail. Since information on R1 and C1 can be obtained, it becomes possible to make measurements that are resistant to disturbances (individual differences and changes over time).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

One embodiment of the present invention provides an information processing system. This information processing system comprises a thermoelectric conversion unit and a signal processing unit. The thermoelectric conversion unit is configured so as to generate a thermal gradient by exchanging heat with a device and is configured so as to generate thermoelectric power on the basis of the thermal gradient. The signal processing unit comprises an acquiring unit and a detection unit. The acquiring unit is configured so as to acquire the thermoelectric power. The detection unit is configured so as to detect, on the basis of the thermoelectric power, an abnormal operation of the device accompanied by heat generation.

Description

情報処理システム及び情報処理方法Information processing system and information processing method
 本発明は、情報処理システム及び情報処理方法に関する。 The present invention relates to an information processing system and an information processing method.
 特許文献1には、蓄電素子の内部抵抗に対応した温度を推定する技術が開示されている。 Patent document 1 discloses a technology for estimating the temperature corresponding to the internal resistance of a storage element.
 特許文献1に記載の蓄電システムは、充放電を行う蓄電素子と、蓄電素子の外部における温度を取得するための温度センサと、蓄電素子の外部における温度と、熱の移動を表す式とを用いて、蓄電素子の内部抵抗に対応した温度を示す基準点の温度を算出するコントローラと、を有する。コントローラは、蓄電素子の充放電を再開するとき、蓄電素子の内部における温度バラツキが解消しているか否かを判別する。コントローラは、温度バラツキが解消しているときには、蓄電素子の表面における表面温度を基準点の温度として用い、温度バラツキが解消していないときには、基準点の温度を算出する。 The energy storage system described in Patent Document 1 has an energy storage element that performs charging and discharging, a temperature sensor for acquiring the temperature outside the energy storage element, and a controller that calculates the temperature of a reference point indicating a temperature corresponding to the internal resistance of the energy storage element using the temperature outside the energy storage element and an equation that represents the transfer of heat. When resuming charging and discharging of the energy storage element, the controller determines whether or not the temperature variation inside the energy storage element has been eliminated. When the temperature variation has been eliminated, the controller uses the surface temperature on the surface of the energy storage element as the temperature of the reference point, and when the temperature variation has not been eliminated, calculates the temperature of the reference point.
特開2013-118056号公報JP 2013-118056 A
 ところで、温度センサを用いて機器の異常検知または制御等を行う場合、温度センサ自体の温度変化が必要となる。しかし、温度センサ自体も熱容量を有するため、当該熱容量に応じて温度センサの温度変化は、機器の温度変化に比べて遅れる傾向がある。 When using a temperature sensor to detect abnormalities or control equipment, the temperature change of the temperature sensor itself is necessary. However, because the temperature sensor itself has a heat capacity, the temperature change of the temperature sensor tends to lag behind the temperature change of the equipment depending on the heat capacity.
 本発明の一態様によれば、情報処理システムが提供される。この情報処理システムは、熱電変換部と、信号処理部とを備える。熱電変換部は、機器との熱交換によって温度勾配が生じるように構成され、当該温度勾配に基づき熱起電力を発生させるように構成される。信号処理部は、取得部と、検出部とを備える。取得部は、熱起電力を取得するように構成される。検出部は、熱起電力に基づき、発熱を伴う機器の異常動作を検出するように構成される。 According to one aspect of the present invention, an information processing system is provided. The information processing system includes a thermoelectric conversion unit and a signal processing unit. The thermoelectric conversion unit is configured to generate a temperature gradient by heat exchange with an equipment, and is configured to generate a thermoelectromotive force based on the temperature gradient. The signal processing unit includes an acquisition unit and a detection unit. The acquisition unit is configured to acquire the thermoelectromotive force. The detection unit is configured to detect abnormal operation of the equipment that generates heat based on the thermoelectromotive force.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の異常検知または制御等を行うことができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormalities or control the device with higher sensitivity than before.
情報処理システム1の概要を示す図である。FIG. 1 is a diagram showing an overview of an information processing system 1. 信号処理回路35の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a signal processing circuit 35. 蓄電ユニットBUの構造の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the structure of a power storage unit BU. 図3に示す蓄電ユニットBUの1つを第1の方向D1から平面視した場合の平面図である。4 is a plan view of one of the power storage units BU shown in FIG. 3 as viewed from a first direction D1. FIG. 図3に示す蓄電ユニットBUの1つを第3の方向D3から平面視した場合の側面図である。4 is a side view of one of the power storage units BU shown in FIG. 3 when viewed in plan from a third direction D3. FIG. 情報処理装置4のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing a hardware configuration of an information processing device 4. プロセッサ43が備える機能部の一例を示す図である。FIG. 4 is a diagram illustrating an example of a functional unit included in a processor 43. 情報処理システム1において実行される第1の情報処理の流れの一例を示すアクティビティ図である。2 is an activity diagram showing an example of a flow of a first information process executed in the information processing system 1. FIG. 情報処理システム1において実行される第2の情報処理の流れの一例を示すアクティビティ図である。11 is an activity diagram showing an example of a flow of a second information process executed in the information processing system 1. FIG. 情報処理システム1において実行される第3の情報処理の流れの一例を示すアクティビティ図である。11 is an activity diagram showing an example of a flow of a third information process executed in the information processing system 1. FIG. 蓄電装置2および蓄電装置2と接触している熱電変換部31の、第3の方向D3に垂直な面での断面図である。13 is a cross-sectional view of the power storage device 2 and a thermoelectric conversion unit 31 in contact with the power storage device 2, taken along a plane perpendicular to a third direction D3. FIG. 熱回路モデルMの一例を示す図である。FIG. 2 is a diagram showing an example of a thermal circuit model M. 熱電変換部31が蓄電装置2に対して温度調整素子6を介して接触している場合における蓄電装置2等の第3の方向D3に垂直な面での断面図である。13 is a cross-sectional view of the power storage device 2 etc. on a plane perpendicular to the third direction D3 when the thermoelectric conversion unit 31 is in contact with the power storage device 2 via a temperature adjustment element 6. FIG. 信号処理回路35の別例を示す図である。FIG. 13 is a diagram showing another example of the signal processing circuit 35. 第1の熱伝導部33を備えていない信号処理システム3の一例を示す図である。FIG. 13 is a diagram showing an example of a signal processing system 3 that does not include a first heat conducting portion 33. 熱電変換部31の取付態様の一例を示す図である。4A to 4C are diagrams showing an example of an installation mode of a thermoelectric conversion unit 31.
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。 Below, an embodiment of the present invention will be described with reference to the drawings. The various features shown in the following embodiment can be combined with each other.
 ところで、本実施形態に登場するソフトウェアを実現するためのプログラムは、コンピュータが読み取り可能な非一時的な記録媒体(Non-Transitory Computer-Readable Medium)として提供されてもよいし、外部のサーバからダウンロード可能に提供されてもよいし、外部のコンピュータで当該プログラムを起動させてクライアント端末でその機能を実現(いわゆるクラウドコンピューティング)するように提供されてもよい。 The program for implementing the software used in this embodiment may be provided as a non-transitory computer-readable recording medium, or may be provided so that it can be downloaded from an external server, or may be provided so that the program is started on an external computer and its functions are implemented on a client terminal (so-called cloud computing).
 また、本実施形態において「部」とは、例えば、広義の回路によって実施されるハードウェア資源と、これらのハードウェア資源によって具体的に実現されうるソフトウェアの情報処理とを合わせたものも含みうる。また、本実施形態においては様々な情報を取り扱うが、これら情報は、例えば電圧・電流を表す信号値の物理的な値、0または1で構成される2進数のビット集合体としての信号値の高低、または量子的な重ね合わせ(いわゆる量子ビット)によって表され、広義の回路上で通信・演算が実行されうる。 In this embodiment, a "unit" can also include, for example, hardware resources implemented by a circuit in the broad sense, and software information processing that can be specifically realized by these hardware resources. In addition, this embodiment handles various types of information, which can be represented, for example, by physical values of signal values representing voltage and current, high and low signal values as a binary bit collection consisting of 0 or 1, or quantum superposition (so-called quantum bits), and communication and calculations can be performed on a circuit in the broad sense.
 また、広義の回路とは、回路(Circuit)、回路類(Circuitry)、プロセッサ(Processor)、およびメモリ(Memory)等を少なくとも適当に組み合わせることによって実現される回路である。すなわち、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、およびフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等を含むものである。 In addition, a circuit in the broad sense is a circuit that is realized by at least appropriately combining a circuit, circuitry, a processor, and memory. In other words, it includes application specific integrated circuits (ASICs), programmable logic devices (e.g., simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), and field programmable gate arrays (FPGAs)), etc.
1.情報処理システム1の概要について
 本節では、情報処理システム1の概要について説明する。図1は、情報処理システム1の概要を示す図である。
1. Overview of Information Processing System 1 This section describes an overview of the information processing system 1. FIG.
 図1および図2に示すように、情報処理システム1は、駆動機器M1と、蓄電システムBSとを備える。駆動機器M1は、蓄電システムBSから出力される電力によって駆動するように構成され、モータ、照明、コンピュータなどが挙げられる。駆動機器M1は、自己の動作に必要な要求電力Pを外部に送信する。蓄電システムBSは、不図示の電力変換器を通じて駆動機器M1に接続されており、当該電力変換器を制御することで、要求電力Pに応じた電力を出力することができる。蓄電システムBSは、少なくとも1つ(本実施形態では3つ以上)の蓄電ユニットBUを備える。 As shown in Figures 1 and 2, the information processing system 1 includes a driving device M1 and a power storage system BS. The driving device M1 is configured to be driven by power output from the power storage system BS, and may be a motor, a light, a computer, or the like. The driving device M1 transmits a required power P required for its own operation to the outside. The power storage system BS is connected to the driving device M1 through a power converter (not shown), and can output power according to the required power P by controlling the power converter. The power storage system BS includes at least one power storage unit BU (three or more in this embodiment).
<蓄電ユニットBU>
 蓄電ユニットBUは、駆動機器M1から送信される要求電力Pに応じて駆動機器M1に電力を供給するように構成される。蓄電ユニットBUは、互いに直列に接続されており、例えば、機器としての蓄電装置2と、信号処理システム3とを備える。なお、蓄電ユニットBUの接続態様は任意であり、並列に接続されていてもよい。
<Electricity storage unit BU>
The power storage units BU are configured to supply power to the driving equipment M1 in response to a required power P transmitted from the driving equipment M1. The power storage units BU are connected in series with each other, and include, for example, a power storage device 2 as a device and a signal processing system 3. The power storage units BU may be connected in any manner, and may be connected in parallel.
<蓄電装置2>
 蓄電装置2は、駆動機器M1への電力の充放電が可能となるように構成され、例えば、筐体21と、筐体21の内部に収容される蓄電部22とを備える。筐体21は、蓄電部22からの発熱を表面の少なくとも一部に伝導するように構成され、例えば金属等の熱伝導性材料を用いて形成される。筐体21の具体的態様は後述される。蓄電部22は、起電力Vを発生させるように構成され、例えば鉛蓄電池、ニッケルカドミウム蓄電池、リチウムイオン蓄電池、空気電池などが挙げられる。特にリチウムイオン蓄電池は、リン酸鉄系、チタン酸鉄系、三元系、マンガン系、ニッケル系、コバルト系、NCA(ニッケル・コバルト・アルミニウム)系、リチウムポリマー系などがあり、これらのうちのいずれか1つであっても、これらのうちの複数の要素を組み合わせたものでもよく、特に限定されない。蓄電装置2は、当該蓄電装置2の動作状態に応じて熱を生成するように構成される。例えば、蓄電装置2は、単位時間あたりの放電量または充電量が大きくなるにつれて発熱量が大きくなるように熱を生成する。
<Electricity storage device 2>
The power storage device 2 is configured to be capable of charging and discharging power to the movable device M1, and includes, for example, a housing 21 and a power storage unit 22 housed inside the housing 21. The housing 21 is configured to conduct heat generated from the power storage unit 22 to at least a part of its surface, and is formed using a thermally conductive material such as metal. A specific embodiment of the housing 21 will be described later. The power storage unit 22 is configured to generate an electromotive force V, and examples of the battery include a lead-acid battery, a nickel-cadmium battery, a lithium-ion battery, and an air battery. In particular, the lithium-ion battery may be an iron phosphate battery, an iron titanate battery, a ternary battery, a manganese battery, a nickel battery, a cobalt battery, an NCA (nickel-cobalt-aluminum) battery, a lithium polymer battery, or the like, and may be any one of these batteries or a combination of a plurality of these batteries, and is not particularly limited. The power storage device 2 is configured to generate heat according to the operating state of the power storage device 2. For example, the power storage device 2 generates heat such that the amount of heat generated increases as the amount of discharge or charge per unit time increases.
<信号処理システム3>
 信号処理システム3は、蓄電装置2の状態に関する情報を含む信号を処理するように構成される。信号処理システム3は、熱電変換部31と、熱浴32と、第1の熱伝導部33と、第2の熱伝導部34と、信号処理回路35と、スイッチ36を備え、信号処理システム3の少なくとも一部が信号処理部として機能する。
<Signal Processing System 3>
The signal processing system 3 is configured to process a signal including information regarding the state of the power storage device 2. The signal processing system 3 includes a thermoelectric conversion unit 31, a heat bath 32, a first heat conduction unit 33, a second heat conduction unit 34, a signal processing circuit 35, and a switch 36, and at least a part of the signal processing system 3 functions as a signal processing unit.
<熱電変換部31>
 熱電変換部31は、蓄電装置2との熱交換によって温度勾配Jが生じるように構成され、当該温度勾配Jに基づき熱起電力Eを発生させるように構成される。詳細には、熱電変換部31は、蓄電装置2との熱交換によって当該熱電変換部31に生じる温度勾配Jに応じて、熱起電力Eを発生させるように構成される。これにより、本実施形態では、熱電変換部31は、蓄電装置2との熱交換による熱流を検出可能な熱流センサとして機能し得る。熱電変換部31の詳細は後述される。
<Thermoelectric conversion unit 31>
The thermoelectric conversion unit 31 is configured to generate a temperature gradient J by heat exchange with the power storage device 2, and is configured to generate a thermoelectromotive force E based on the temperature gradient J. In detail, the thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E according to the temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2. As a result, in this embodiment, the thermoelectric conversion unit 31 can function as a heat flow sensor capable of detecting a heat flow caused by heat exchange with the power storage device 2. The details of the thermoelectric conversion unit 31 will be described later.
<熱浴32>
 熱浴32は、所定の基準温度Tbに保たれている。基準温度Tbは、熱電変換部31に生じる温度勾配Jの基準となる温度である。熱浴32の具体的構成は任意であるが、例えば蓄電ユニットBUを収容する筐体や駆動機器M1の筐体など、外気との熱交換によってその温度がほぼ外気温に保たれるものや、筐体21等に比べて十分熱容量が大きい部材、例えばメタルバスやソルトバスなどが挙げられる。
<Heat bath 32>
The heat bath 32 is maintained at a predetermined reference temperature Tb. The reference temperature Tb is a temperature that is a reference for the temperature gradient J generated in the thermoelectric conversion unit 31. The specific configuration of the heat bath 32 is arbitrary, but examples of the heat bath 32 include a housing that houses the power storage unit BU and a housing of the driving device M1, whose temperature is maintained at approximately the outside air temperature by heat exchange with the outside air, and a member with a sufficiently large heat capacity compared to the housing 21, such as a metal bath or a salt bath.
<第1の熱伝導部33>
 第1の熱伝導部33は、蓄電装置2(本実施形態では筐体21)と熱電変換部31とを接続し、例えば金属等の熱伝導性材料によって形成される。筐体21と熱電変換部31とは、第1の熱伝導部33を介して熱交換を行う。これにより、温度勾配Jが熱電変換部31内に第1の熱伝導部33から熱電変換部31に向かう方向に沿って生じる。このような構成によれば、蓄電装置2と熱電変換部31との熱交換が第1の熱伝導部33を介して行われるため、蓄電装置2の発熱位置が異なることによる熱起電力Eのばらつきを低減しやすくなる。
<First heat conductive portion 33>
The first heat conducting portion 33 connects the power storage device 2 (the housing 21 in this embodiment) and the thermoelectric conversion portion 31, and is formed of a heat conducting material such as metal. The housing 21 and the thermoelectric conversion portion 31 exchange heat through the first heat conducting portion 33. As a result, a temperature gradient J is generated in the thermoelectric conversion portion 31 along a direction from the first heat conducting portion 33 toward the thermoelectric conversion portion 31. With this configuration, heat exchange between the power storage device 2 and the thermoelectric conversion portion 31 is performed through the first heat conducting portion 33, which makes it easier to reduce variations in the thermoelectromotive force E caused by different heat generation positions in the power storage device 2.
<第2の熱伝導部34>
 第2の熱伝導部34は、熱浴32に接続されることにより、第2の領域312の温度をほぼ当該基準温度Tbに保つように構成される。このような構成によれば、熱電変換部31の温度勾配Jをより正確に把握しやすくなる。第2の熱伝導部34は、第1の熱伝導部33と同様に、例えば金属等の熱伝導性材料によって形成される。熱電変換部31と熱浴32とは、第2の熱伝導部34を介して熱交換を行う。本実施形態では、筐体21と熱電変換部31との熱交換、および熱電変換部31と熱浴32との熱交換が、それぞれ生じるように構成されている。このような構成によれば、熱電変換部31の動作温度が安定するため、蓄電装置2の発熱状態の検出精度を向上することができる。熱浴32は、第2の熱伝導部34の温度を調整可能な温度調整部の一例である。
<Second heat conductive portion 34>
The second heat conducting portion 34 is connected to the heat bath 32 and configured to maintain the temperature of the second region 312 at approximately the reference temperature Tb. With this configuration, it becomes easier to grasp the temperature gradient J of the thermoelectric conversion portion 31 more accurately. The second heat conducting portion 34 is formed of a heat conductive material such as a metal, similar to the first heat conducting portion 33. The thermoelectric conversion portion 31 and the heat bath 32 exchange heat through the second heat conducting portion 34. In this embodiment, the heat exchange between the housing 21 and the thermoelectric conversion portion 31 and the heat exchange between the thermoelectric conversion portion 31 and the heat bath 32 are configured to occur respectively. With this configuration, the operating temperature of the thermoelectric conversion portion 31 is stabilized, so that the detection accuracy of the heat generation state of the storage device 2 can be improved. The heat bath 32 is an example of a temperature adjustment portion capable of adjusting the temperature of the second heat conducting portion 34.
<信号処理回路35>
 信号処理回路35は、熱電変換部31から生じる熱起電力Eを取得し、当該熱起電力Eに応じて蓄電装置2等を制御するように構成される。熱起電力Eは、熱起電力Eに起因する第1の信号の一例である。
<Signal Processing Circuit 35>
The signal processing circuit 35 is configured to obtain the thermoelectromotive force E generated by the thermoelectric conversion unit 31 and control the power storage device 2 and the like in accordance with the thermoelectromotive force E. The thermoelectromotive force E is an example of a first signal caused by the thermoelectromotive force E.
 ここで、信号処理回路35の構成例について説明する。図2は、信号処理回路35の構成例を示す図である。図2に示されるように、信号処理回路35は、比較部351と、AC/DCコンバータ352とを備える。 Here, an example configuration of the signal processing circuit 35 will be described. FIG. 2 is a diagram showing an example configuration of the signal processing circuit 35. As shown in FIG. 2, the signal processing circuit 35 includes a comparison unit 351 and an AC/DC converter 352.
<比較部351>
 比較部351は、熱電変換部31の熱起電力Eを、所定の基準値としての閾値電圧Vt1と比較するように構成される。本実施形態の比較部351はオペアンプによって構成され、その反転入力端子が閾値電圧Vt1を出力する基準電源に接続され、非反転入力端子が熱電変換部31に接続されている。そのため、熱電変換部31から出力される熱起電力Eが閾値電圧Vt1を超えた場合、比較部351は閾値電圧Vt1に対する熱起電力Eの差分に応じたアナログ電圧信号を出力する。
<Comparison Unit 351>
The comparison unit 351 is configured to compare the thermoelectromotive force E of the thermoelectric conversion unit 31 with a threshold voltage Vt1 as a predetermined reference value. In this embodiment, the comparison unit 351 is configured with an operational amplifier, and the inverting input terminal thereof is connected to a reference power supply that outputs the threshold voltage Vt1, and the non-inverting input terminal thereof is connected to the thermoelectric conversion unit 31. Therefore, when the thermoelectromotive force E output from the thermoelectric conversion unit 31 exceeds the threshold voltage Vt1, the comparison unit 351 outputs an analog voltage signal corresponding to the difference between the thermoelectromotive force E and the threshold voltage Vt1.
<AC/DCコンバータ352>
 AC/DCコンバータ352は、比較部351の出力端子に接続される。AC/DCコンバータ352は、比較部351から出力されるアナログ電圧信号をデジタル信号に変換するように構成される。当該デジタル信号は、例えば情報処理装置4に向けて出力される。
<AC/DC converter 352>
The AC/DC converter 352 is connected to an output terminal of the comparison unit 351. The AC/DC converter 352 is configured to convert the analog voltage signal output from the comparison unit 351 into a digital signal. The digital signal is output to the information processing device 4, for example.
<スイッチ36>
 スイッチ36は、オン状態となることで蓄電装置2の充放電を許容し、オフ状態となることで蓄電装置2の充放電を制限、詳細には停止するように構成される。スイッチ36の具体的態様は任意である。例えば、スイッチ36が単極単投型の場合、スイッチ36がオフ状態となることで全ての蓄電装置2の充放電が規制される。また、スイッチ36が単極双投型の場合、スイッチ36がオフ状態となることで当該スイッチ36に対応する蓄電装置2を迂回するような冗長回路に接続し、対応する蓄電装置2単独の充放電が規制される。
<Switch 36>
The switch 36 is configured to permit charging and discharging of the power storage device 2 when in an on state, and to restrict, more specifically, stop, charging and discharging of the power storage device 2 when in an off state. The specific form of the switch 36 is arbitrary. For example, when the switch 36 is a single-pole single-throw type, charging and discharging of all the power storage devices 2 is restricted when the switch 36 is in an off state. Also, when the switch 36 is a single-pole double-throw type, when the switch 36 is in an off state, the switch 36 is connected to a redundant circuit that bypasses the power storage device 2 corresponding to the switch 36, and charging and discharging of the corresponding power storage device 2 alone is restricted.
<情報処理装置4>
 本実施形態では、信号処理システム3の1つは、さらに情報処理装置4を備えている。情報処理装置4は、信号処理システム3のそれぞれを横断的に制御するように構成され、例えばバッテリマネジメントシステム(BMS)として機能する。また、本実施形態の情報処理装置4は、蓄電装置2以外の機器である第2の機器として、駆動機器M1を制御可能に構成される。
<Information processing device 4>
In this embodiment, one of the signal processing systems 3 further includes an information processing device 4. The information processing device 4 is configured to control each of the signal processing systems 3 across the board, and functions as, for example, a battery management system (BMS). In addition, the information processing device 4 of this embodiment is configured to be capable of controlling a driving device M1 as a second device other than the power storage device 2.
2.蓄電ユニットBUの構造の一例について
 本節では、上述した蓄電ユニットBUの構造の一例について説明する。図3は、蓄電ユニットBUの構造の一例を示す斜視図である。図4は、図3に示す蓄電ユニットBUの1つを第1の方向D1から平面視した場合の平面図である。図5は、図3に示す蓄電ユニットBUの1つを第3の方向D3から平面視した場合の側面図である。
2. An example of the structure of the power storage unit BU In this section, an example of the structure of the above-mentioned power storage unit BU will be described. Fig. 3 is a perspective view showing an example of the structure of the power storage unit BU. Fig. 4 is a plan view of one of the power storage units BU shown in Fig. 3 when viewed from a first direction D1. Fig. 5 is a side view of one of the power storage units BU shown in Fig. 3 when viewed from a third direction D3.
 図3に示されるように、蓄電ユニットBUのそれぞれは、法線が第1の方向D1に延びる平面内で平板状に構成されており、互いに第1の方向D1に積層されることで、1つのアセンブリを構成する。第1の方向D1は、積層方向ともいえる。ここでは説明の便宜上、蓄電ユニットBUから延びる種々の配線については図示を省略する。また、説明の便宜上、第1の方向D1に垂直な2つの方向を、それぞれ第2の方向D2、第3の方向D3という。第2の方向D2と第3の方向D3とは、互いに垂直である。 As shown in FIG. 3, each of the energy storage units BU is configured in a flat plate shape in a plane whose normal extends in the first direction D1, and is stacked on top of each other in the first direction D1 to form a single assembly. The first direction D1 can also be called the stacking direction. For ease of explanation, various wiring extending from the energy storage units BU is not shown. Also, for ease of explanation, the two directions perpendicular to the first direction D1 are referred to as the second direction D2 and the third direction D3, respectively. The second direction D2 and the third direction D3 are perpendicular to each other.
 図3~図5に示されるように、蓄電装置2の筐体21は、法線が第1の方向D1に延びる平板状の直方体となるように形成されており、その厚み方向は第1の方向D1に平行である。筐体21の長辺は、第2の方向D2に沿って延び、筐体21の短辺は、第3の方向D3に沿って延びる。本実施形態では、第2の方向D2は長辺方向ともいえ、第3の方向D3は短辺方向ともいえる。蓄電装置2は、充放電等の動作や、蓄電部22の故障等の異常によって発熱し、熱源Qが筐体21の内部に生じる可能性がある。本実施形態では、蓄電装置2の中央に熱源Qが生じている場合について説明する。なお、熱源Qの位置は中央に限られず任意であり、例えば蓄電装置2の表面であっても内部であってもよく、また蓄電装置の端部であってもよい。 3 to 5, the housing 21 of the storage device 2 is formed as a flat rectangular parallelepiped whose normal line extends in the first direction D1, and its thickness direction is parallel to the first direction D1. The long sides of the housing 21 extend along the second direction D2, and the short sides of the housing 21 extend along the third direction D3. In this embodiment, the second direction D2 can be said to be the long side direction, and the third direction D3 can be said to be the short side direction. The storage device 2 generates heat due to operations such as charging and discharging, or an abnormality such as a failure of the storage unit 22, and a heat source Q may be generated inside the housing 21. In this embodiment, a case where the heat source Q is generated in the center of the storage device 2 will be described. The location of the heat source Q is not limited to the center and is arbitrary, and may be, for example, on the surface or inside of the storage device 2, or at the end of the storage device.
 第1の熱伝導部33は、第1の方向D1に法線が延びるような平板状に形成されており、第1の熱伝導部33は、主面部331と、突出部332とを備える。 The first heat conductive portion 33 is formed in a flat plate shape with a normal extending in the first direction D1, and the first heat conductive portion 33 has a main surface portion 331 and a protrusion portion 332.
<主面部331>
 主面部331は、筐体21と同様に、長方形の平板状に形成されており、その厚み方向は第1の方向D1に平行である。主面部331の長辺方向は、第2の方向D2に沿って延び、主面部331の短辺方向は、第3の方向D3に沿って延びる。主面部331は、筐体21と第1の方向D1において接触しており、これにより、熱源Qから生じる熱が、筐体21を通じて筐体21の表面に伝わり、筐体21の表面から主面部331に伝わる。
<Main surface portion 331>
The main surface portion 331 is formed in a rectangular flat plate shape, similar to the housing 21, and its thickness direction is parallel to the first direction D1. The long side direction of the main surface portion 331 extends along the second direction D2, and the short side direction of the main surface portion 331 extends along the third direction D3. The main surface portion 331 is in contact with the housing 21 in the first direction D1, so that heat generated from the heat source Q is transferred through the housing 21 to the surface of the housing 21 and then from the surface of the housing 21 to the main surface portion 331.
 第1の方向D1から蓄電ユニットBUの1つを平面視した場合、第1の方向D1と垂直な平面における主面部331の外縁は、第1の方向D1と垂直な平面における主面部331の外縁の内部に含まれるように形成されている。 When one of the energy storage units BU is viewed in a plan view from the first direction D1, the outer edge of the main surface portion 331 in a plane perpendicular to the first direction D1 is formed so as to be included within the outer edge of the main surface portion 331 in the plane perpendicular to the first direction D1.
<突出部332>
 図4に示されるように、突出部332は、所定の第1の方向D1から蓄電装置2を平面視した場合に、当該蓄電装置2から突出するように構成され、主面部331の外縁の一部から第2の方向D2に延びる。そのため、複数の蓄電ユニットBUを積層した場合でも、突出部332は筐体21によって挟持されないように構成されている。このような構成によれば、熱電変換部31の熱起電力Eをより測定しやすくなるため、蓄電装置2等の配置の自由度を向上することができる。突出部332の形状は厚み方向が第1の方向D1に沿って延びる四角平板状であり、主面部331と面一となるように一体形成されている。なお、突出部332の形状は任意であり、これに限られない。また、異なる蓄電ユニットBUが有する突出部332同士は、第1の方向D1から蓄電装置2を平面視した場合に重ならないように構成されていてもよい。このような構成によれば、第1の方向D1における突出部332の近傍の空間を確保することで突出部332の近傍の熱対流を促すことができる。一方、異なる蓄電ユニットBUが有する突出部332同士は、第1の方向D1から蓄電装置2を平面視した場合に重なるように構成されていてもよい。このような構成によれば、複数の蓄電ユニットBUによって構成されるアセンブリをよりコンパクトにすることができる。
<Protrusion 332>
As shown in FIG. 4, the protrusion 332 is configured to protrude from the power storage device 2 when the power storage device 2 is viewed in a plan view from a predetermined first direction D1, and extends from a part of the outer edge of the main surface portion 331 in the second direction D2. Therefore, even when a plurality of power storage units BU are stacked, the protrusion 332 is configured not to be clamped by the housing 21. With this configuration, it becomes easier to measure the thermoelectromotive force E of the thermoelectric conversion unit 31, and the freedom of arrangement of the power storage device 2 and the like can be improved. The shape of the protrusion 332 is a rectangular flat plate whose thickness direction extends along the first direction D1, and is integrally formed so as to be flush with the main surface portion 331. The shape of the protrusion 332 is arbitrary and is not limited thereto. In addition, the protrusions 332 of different power storage units BU may be configured not to overlap with each other when the power storage device 2 is viewed in a plan view from the first direction D1. With this configuration, by securing a space near the protruding portion 332 in the first direction D1, it is possible to promote thermal convection near the protruding portion 332. Meanwhile, the protruding portions 332 of different power storage units BU may be configured to overlap with each other when the power storage device 2 is viewed in a plan view from the first direction D1. With this configuration, it is possible to make the assembly formed of the multiple power storage units BU more compact.
<熱電変換部31>
 熱電変換部31は、温度勾配Jとは異なる方向に生じる成分を含む熱起電力Eを発生させるように構成される。このような構成によれば、温度勾配Jとは異なる方向から熱起電力Eを測定しやすくなるため、蓄電装置2と熱電変換部31の間の配線等を減らすことができる。したがって、温度勾配Jに対する感度の低下を抑制することができる。本実施形態では、温度勾配Jは第1の方向D1に沿って生じ、熱起電力Eは、第1の方向D1と垂直な第2の方向D2に生じる成分を含む。そして、熱電変換部31は、発熱による蓄電装置2の表面(例えば、筐体21の表面のうち、熱電変換部31と接触する領域)の温度変化に応じて熱起電力Eが変化するように構成される。このような熱起電力Eの熱電機構は任意であるが、例えば、異常ネルンスト効果によって実現可能である。熱電変換部31は、異常ネルンスト効果によって、温度勾配Jに対して垂直な方向で特徴づけられる磁気構造によって、当該温度勾配Jと磁気構造を特徴づける方向とに垂直な方向に熱起電力Eを生じさせる。言い換えれば、異常ネルンスト効果は、熱電変換部31の熱電テンソルの非対角成分のうち、磁場に相当する物理変数に依存する量によって表現される。熱起電力Eは、磁場に対して反対称であり、温度勾配Jの第1の方向D1に垂直な面内成分に対して対称であり、第1の方向D1と平行な垂直成分に対して反対称である。
<Thermoelectric conversion unit 31>
The thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E including a component generated in a direction different from the temperature gradient J. According to such a configuration, since it becomes easier to measure the thermoelectromotive force E from a direction different from the temperature gradient J, it is possible to reduce wiring between the power storage device 2 and the thermoelectric conversion unit 31. Therefore, it is possible to suppress a decrease in sensitivity to the temperature gradient J. In this embodiment, the temperature gradient J is generated along the first direction D1, and the thermoelectromotive force E includes a component generated in a second direction D2 perpendicular to the first direction D1. Then, the thermoelectric conversion unit 31 is configured so that the thermoelectromotive force E changes according to a temperature change of the surface of the power storage device 2 (for example, a region of the surface of the housing 21 that contacts the thermoelectric conversion unit 31) due to heat generation. The thermoelectric mechanism of such a thermoelectromotive force E is arbitrary, but can be realized, for example, by the anomalous Nernst effect. The thermoelectric conversion unit 31 generates a thermoelectromotive force E in a direction perpendicular to the temperature gradient J and the direction that characterizes the magnetic structure by a magnetic structure characterized in a direction perpendicular to the temperature gradient J by the anomalous Nernst effect. In other words, the anomalous Nernst effect is expressed by a quantity that depends on a physical variable corresponding to a magnetic field among the off-diagonal components of the thermoelectric tensor of the thermoelectric conversion unit 31. The thermoelectromotive force E is antisymmetric with respect to the magnetic field, symmetric with respect to the in-plane component perpendicular to the first direction D1 of the temperature gradient J, and antisymmetric with respect to the perpendicular component parallel to the first direction D1.
 このような異常ネルンスト効果を発現可能な組成物は、例えば、Mn3Sn、Mn3Ge、Mn3Ga、Co2MnGa、Fe3Al、Fe3Ga、Fe3Sn2、FeGa、L1_0型FePt、L1_0型FePd、L1_0型MnGa、D0_22型Mn2Ga、SmCo5、Nd2Ir2O7またはこれらの合金、元素置換物、または混合物などが挙げられるが、ここに列挙されるものに限られず任意である。また、これらの組成物には、MgO等の任意の物質を添加することにより、異常ネルンスト係数を増大させることができる場合がある。そのため、熱電変換部31は、上記組成物のみにより構成されるものに限定されない。異常ネルンスト効果の発現機構は任意であるが、例えば、非共線的のスピン構造を有する反強磁性的磁気構造に起因するもの、またはワイル点やノーダルウェブと呼ばれる特異なバンド構造に起因するものが挙げられる。これらの構造ではそのバンド構造の対称性等により幾何学的特徴を表す量(例えば、チャーン数)が有限となることが、異常ネルンスト効果を発現する要因の1つとして推測される。例えば、系を構成する電子の波動関数が当該特徴量に応じたベリー位相を獲得し、当該ベリー位相が電子に作用する仮想的な磁場として機能することによって、異常ネルンスト効果が発現すると考えられる。幾何学的な特徴量は、例えば、物質のミクロな構造(結晶構造および磁気構造を含む。)から得られるバンド計算によって得られるバンド構造等から計算される。この場合、ネルンスト係数が他の発現機構に比べて大きくなる傾向があるため、より高精度の測定や、素子の小型化などが容易となる。また、熱電変換部31を構成する物質は、これらの物質の多結晶体として実現されても、単結晶体として実現されてもよい。なお、単結晶体の結晶学的ドメインは、磁気秩序が発現することに伴う対称性の低下による非対称な物性を観測される程度に均一であればよい。熱電変換部31の第1の方向D1における厚み、詳細には熱電変換部31に含まれる異常ネルンスト効果を発現する構造の厚さ、は任意であるが、具体的には例えば、5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、これらの範囲外であってもよい。なお、異常ネルンスト効果等を発現する熱電材料を熱電変換部31として実装する方法は任意であり、スパッタリングやイオンプレーティングなどの物理蒸着法、めっき法、化学蒸着法、分子ビームエピタキシャル成長法(MBE)、上記化合物を溶解させた液滴を用いたインクジェット印刷等の種々の印刷法など、任意の方法が採用可能である。 Compositions capable of expressing such an anomalous Nernst effect include, for example, Mn3Sn, Mn3Ge, Mn3Ga, Co2MnGa, Fe3Al, Fe3Ga, Fe3Sn2, FeGa, L1_0 type FePt, L1_0 type FePd, L1_0 type MnGa, D0_22 type Mn2Ga, SmCo5, Nd2Ir2O7, or alloys, elemental substitutes, or mixtures thereof, but are not limited to those listed here and are arbitrary. In addition, by adding any substance such as MgO to these compositions, the anomalous Nernst coefficient may be increased. Therefore, the thermoelectric conversion unit 31 is not limited to those composed only of the above-mentioned compositions. The mechanism of expression of the anomalous Nernst effect is arbitrary, but examples include those due to an antiferromagnetic magnetic structure having a non-collinear spin structure, or those due to a unique band structure called a Weyl point or nodal web. In these structures, the amount (e.g., Chern number) representing the geometrical features becomes finite due to the symmetry of the band structure, etc., which is presumed to be one of the factors that manifest the anomalous Nernst effect. For example, it is considered that the anomalous Nernst effect manifests when the wave function of the electrons constituting the system acquires a Berry phase corresponding to the feature amount, and the Berry phase functions as a virtual magnetic field acting on the electrons. The geometrical feature amount is calculated from, for example, a band structure obtained by band calculation obtained from the microscopic structure (including the crystal structure and magnetic structure) of the material. In this case, since the Nernst coefficient tends to be larger than other manifestation mechanisms, it becomes easier to perform more accurate measurements and to miniaturize the element. In addition, the material constituting the thermoelectric conversion unit 31 may be realized as a polycrystalline body of these materials or as a single crystal body. Note that the crystallographic domain of the single crystal body may be uniform to the extent that asymmetric physical properties due to the reduction in symmetry associated with the manifestation of magnetic order can be observed. The thickness of the thermoelectric conversion unit 31 in the first direction D1, specifically the thickness of the structure that exhibits the anomalous Nernst effect included in the thermoelectric conversion unit 31, is arbitrary, but specifically, for example, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 nm, and may be within a range between any two of the numerical values exemplified here. It is also possible to be outside these ranges. The method of mounting the thermoelectric material that exhibits the anomalous Nernst effect or the like as the thermoelectric conversion unit 31 is arbitrary, and any method can be adopted, such as physical vapor deposition methods such as sputtering and ion plating, plating methods, chemical vapor deposition methods, molecular beam epitaxy (MBE), and various printing methods such as inkjet printing using droplets in which the above compound is dissolved.
 本実施形態の熱電変換部31は、このような異常ネルンスト効果を利用することにより、ゼーベック効果を利用した熱電変換部と比較して薄く形成して体積を小さくしつつ、その熱流に対する感度(すなわち、単位面積あたりの温度勾配Jに対する熱起電力Eの大きさ)を維持することができる。以下、説明の便宜上、ゼーベック効果を利用した熱電変換部を、ゼーベック素子ということがある。また、本実施形態の熱電変換部31は、ゼーベック素子と比較して体積を小さくすることにより、全体としての熱容量を小さくすることができる。そのため、本実施形態の熱電変換部31は、ゼーベック素子に比べて蓄電装置2等の測定対象の温度変化に対して比較的短時間で応答することができ、高い時間解像度と高い感度とを実現することができ、場合によっては、従来ではトレードオフの傾向にあったこれらの特性を両立することができる。このような構成によれば、従来の温度計や熱流センサでは検出できなかった異常発熱の発生等の瞬時的な熱の変化のダイナミクスを検出することができる。 The thermoelectric conversion unit 31 of this embodiment utilizes this anomalous Nernst effect, and can be formed thinner and have a smaller volume than a thermoelectric conversion unit that utilizes the Seebeck effect, while maintaining its sensitivity to heat flow (i.e., the magnitude of the thermoelectromotive force E relative to the temperature gradient J per unit area). Hereinafter, for convenience of explanation, the thermoelectric conversion unit that utilizes the Seebeck effect may be referred to as a Seebeck element. In addition, the thermoelectric conversion unit 31 of this embodiment can reduce the overall heat capacity by reducing the volume compared to a Seebeck element. Therefore, the thermoelectric conversion unit 31 of this embodiment can respond to temperature changes of the measurement target such as the power storage device 2 in a relatively short time compared to a Seebeck element, and can achieve high time resolution and high sensitivity, and in some cases, can achieve both of these characteristics that have traditionally tended to be traded off. With this configuration, it is possible to detect the dynamics of instantaneous heat changes such as the occurrence of abnormal heat generation that could not be detected by conventional thermometers or heat flow sensors.
 熱電変換部31は、第1の領域311と、第2の領域312とを含み、熱電変換部31の第1の領域311は、突出部332に接続されている。これにより、蓄電装置2の熱源Qからの熱が第1の熱伝導部33を主面部331、突出部332の順に伝わり、突出部332から第1の領域311を介して熱電変換部31に伝わる。このような熱伝導経路を通じて熱電変換部31と蓄電装置2との熱交換が行われる。第2の領域312は、第1の領域311から温度勾配Jの方向(すなわち第1の方向D1)に位置する。第2の領域312は、熱電変換部31の厚み方向において第1の領域311の反対に位置する領域ともいえ、第1の領域311と表裏の関係性を有する。 The thermoelectric conversion unit 31 includes a first region 311 and a second region 312, and the first region 311 of the thermoelectric conversion unit 31 is connected to the protruding portion 332. As a result, heat from the heat source Q of the storage device 2 is transferred through the first heat conducting portion 33 to the main surface portion 331 and the protruding portion 332 in that order, and is transferred from the protruding portion 332 to the thermoelectric conversion unit 31 via the first region 311. Heat exchange between the thermoelectric conversion unit 31 and the storage device 2 is performed through such a heat transfer path. The second region 312 is located in the direction of the temperature gradient J from the first region 311 (i.e., the first direction D1). The second region 312 can be said to be a region located opposite the first region 311 in the thickness direction of the thermoelectric conversion unit 31, and has a front-back relationship with the first region 311.
<第2の熱伝導部34>
 第2の熱伝導部34は、接触部341と熱輸送部342とを備え、第2の熱伝導部34の接触部341は、第2の領域312に接続される。接触部341は、第1の方向D1から蓄電装置2を平面視した場合に、熱電変換部31の第2の領域312を覆うように配置される。これにより、熱電変換部31の第2の領域312の温度が位置によってばらつくことを抑制することができる。本実施形態の接触部341は、熱電変換部31と同様に、厚み方向が第1の方向D1に沿って延びる矩形平板状に構成されている。
<Second heat conductive portion 34>
The second heat conducting portion 34 includes a contact portion 341 and a heat transport portion 342, and the contact portion 341 of the second heat conducting portion 34 is connected to the second region 312. When the power storage device 2 is viewed in a plan view from the first direction D1, the contact portion 341 is disposed so as to cover the second region 312 of the thermoelectric conversion portion 31. This makes it possible to suppress the temperature of the second region 312 of the thermoelectric conversion portion 31 from varying depending on the position. The contact portion 341 of this embodiment is configured in a rectangular flat plate shape with a thickness direction extending along the first direction D1, similar to the thermoelectric conversion portion 31.
 熱輸送部342は、接触部341の外縁に接続され、その外縁から第2の方向D2に延び、図示されない熱浴32に接続されている。熱浴32は、熱輸送部342、および接触部341を順に介して熱電変換部31の第2の領域312と熱交換を行う。これにより、熱電変換部31の第2の領域312の表面温度が、熱浴32の基準温度Tbに保たれやすくなる。一方、熱電変換部31の第1の領域311の表面温度は筐体21内の熱源Qから発生する熱によって上昇する。その結果、熱電変換部31には、第1の領域311の表面温度と第2の領域312の表面温度の差分によって、温度勾配Jが第1の方向D1に沿って生じることとなる。上述したように、第2の領域312の表面温度は基準温度Tbに保たれやすくなっているため、第2の熱伝導部34の温度に応じて熱電変換部31に生じる温度勾配Jを把握することができ、そのため、熱起電力Eから得られる情報を増やすことができる。したがって、より多様な熱に関する処理を行うことができる。 The heat transporting portion 342 is connected to the outer edge of the contact portion 341, extends from the outer edge in the second direction D2, and is connected to the heat bath 32 (not shown). The heat bath 32 exchanges heat with the second region 312 of the thermoelectric conversion portion 31 via the heat transporting portion 342 and the contact portion 341 in that order. This makes it easier for the surface temperature of the second region 312 of the thermoelectric conversion portion 31 to be maintained at the reference temperature Tb of the heat bath 32. Meanwhile, the surface temperature of the first region 311 of the thermoelectric conversion portion 31 rises due to heat generated from the heat source Q in the housing 21. As a result, a temperature gradient J is generated in the thermoelectric conversion portion 31 along the first direction D1 due to the difference between the surface temperatures of the first region 311 and the second region 312. As described above, the surface temperature of the second region 312 is easily maintained at the reference temperature Tb, so it is possible to grasp the temperature gradient J that occurs in the thermoelectric conversion unit 31 according to the temperature of the second thermal conductive unit 34, and therefore to increase the information that can be obtained from the thermoelectromotive force E. Therefore, a wider variety of heat-related processes can be performed.
 本実施形態において、接触部341における第2の領域312と接触する面と第1の方向D1において反対に位置する面は、空気に晒されている。そのため、仮に熱電変換部31の温度が過剰に高くなった場合、熱電変換部31に蓄積された熱が接触部341を介して空気に放出される。したがって、第2の熱伝導部34(特に接触部341)は、熱交換によって熱電変換部31に流入する熱の少なくとも一部を放熱可能な放熱部として機能する。言い換えれば、第2の熱伝導部34は、このような放熱部を備える。このような構成によれば、蓄電装置2の発熱により生じた熱を放熱部から放出することができるため、熱電変換部31の過度な温度上昇を抑制することができる。 In this embodiment, the surface of the contact portion 341 that is in contact with the second region 312 and that is opposite in the first direction D1 are exposed to air. Therefore, if the temperature of the thermoelectric conversion portion 31 becomes excessively high, the heat accumulated in the thermoelectric conversion portion 31 is released to the air via the contact portion 341. Therefore, the second heat conducting portion 34 (particularly the contact portion 341) functions as a heat dissipation portion that can dissipate at least a portion of the heat that flows into the thermoelectric conversion portion 31 by heat exchange. In other words, the second heat conducting portion 34 has such a heat dissipation portion. With this configuration, the heat generated by the heat generation of the power storage device 2 can be released from the heat dissipation portion, thereby suppressing an excessive temperature rise in the thermoelectric conversion portion 31.
3.情報処理装置4のハードウェア構成について
 本節では、上述した情報処理装置4のハードウェア構成の一例について説明する。図6は、情報処理装置4のハードウェア構成を示すブロック図である。情報処理装置4は、通信バス40と、通信部41と、記憶部42と、制御部としてのプロセッサ43と、表示部44と、入力部45とを備える。これらの構成要素は、情報処理装置4の内部において通信バス40を介して電気的に接続されている。
3. Hardware Configuration of Information Processing Device 4 In this section, an example of the hardware configuration of the above-mentioned information processing device 4 will be described. Fig. 6 is a block diagram showing the hardware configuration of the information processing device 4. The information processing device 4 includes a communication bus 40, a communication unit 41, a storage unit 42, a processor 43 as a control unit, a display unit 44, and an input unit 45. These components are electrically connected via the communication bus 40 inside the information processing device 4.
<通信部41>
 通信部41は、USB、IEEE1394、Thunderbolt(登録商標)、有線LANネットワーク通信等といった有線型の通信手段が好ましいものの、無線LANネットワーク通信、3G/LTE/5G等のモバイル通信、BLUETOOTH(登録商標)通信等を必要に応じて含めてもよい。すなわち、これら複数の通信手段の集合として実施することがより好ましい。すなわち、情報処理装置4は、通信部41およびネットワークを介して、外部から種々の情報を通信してもよい。
<Communication unit 41>
The communication unit 41 is preferably a wired communication means such as USB, IEEE 1394, Thunderbolt (registered trademark), wired LAN network communication, etc., but may also include wireless LAN network communication, mobile communication such as 3G/LTE/5G, BLUETOOTH (registered trademark) communication, etc. as necessary. In other words, it is more preferable to implement it as a collection of multiple communication means. In other words, the information processing device 4 may communicate various information from the outside via the communication unit 41 and the network.
<記憶部42>
 記憶部42は、上述の記載により定義される様々な情報を記憶する。これは、例えば、プロセッサ43によって実行される情報処理装置4に係る種々のプログラム等を記憶するソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、あるいは、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施されうる。記憶部42は、プロセッサ43によって実行される情報処理装置4に係る種々のプログラムや変数等を記憶している。
<Storage unit 42>
The storage unit 42 stores various information defined by the above description. This can be implemented, for example, as a storage device such as a solid state drive (SSD) that stores various programs and the like related to the information processing device 4 executed by the processor 43, or as a memory such as a random access memory (RAM) that stores temporarily required information (arguments, arrays, etc.) related to the program calculations. The storage unit 42 stores various programs, variables, etc. related to the information processing device 4 executed by the processor 43.
<プロセッサ43>
 プロセッサ43は、情報処理装置4に関連する全体動作の処理・制御を行う。プロセッサ43は、例えば不図示の中央処理装置(Central Processing Unit:CPU)である。プロセッサ43は、記憶部42に記憶された所定のプログラムを読み出すことによって、情報処理装置4に係る種々の機能を実現する。すなわち、記憶部42に記憶されているソフトウェアによる情報処理が、ハードウェアの一例であるプロセッサ43によって具体的に実現されることで、プロセッサ43に含まれる各機能部として実行されうる。これらについては、次節においてさらに詳述する。なお、プロセッサ43は単一であることに限定されず、機能ごとに複数のプロセッサ43を有するように実施してもよい。またそれらの組合せであってもよい。
<Processor 43>
The processor 43 processes and controls the overall operation related to the information processing device 4. The processor 43 is, for example, a central processing unit (CPU) not shown. The processor 43 realizes various functions related to the information processing device 4 by reading out a predetermined program stored in the storage unit 42. That is, information processing by software stored in the storage unit 42 can be specifically realized by the processor 43, which is an example of hardware, and executed as each functional unit included in the processor 43. These will be described in more detail in the next section. The processor 43 is not limited to being single, and may be implemented to have multiple processors 43 for each function. Also, a combination of these may be used.
<表示部44>
 表示部44は、情報処理装置4の筐体に含まれるものであってもよいし、外付けされるものであってもよい。表示部44は、ユーザが操作可能なグラフィカルユーザインターフェース(Graphical User Interface:GUI)の画面を表示する。これは例えば、CRTディスプレイ、液晶ディスプレイ、有機ELディスプレイおよびプラズマディスプレイ等の表示デバイスを、情報処理装置4の種類に応じて使い分けて実施することが好ましい。
<Display unit 44>
The display unit 44 may be included in the housing of the information processing device 4 or may be externally attached. The display unit 44 displays a screen of a graphical user interface (GUI) that can be operated by a user. This is preferably implemented by using display devices such as a CRT display, a liquid crystal display, an organic EL display, and a plasma display according to the type of the information processing device 4.
<入力部45>
 入力部45は、情報処理装置4の筐体に含まれるものであってもよいし、外付けされるものであってもよい。例えば、入力部45は、表示部44と一体となってタッチパネルとして実施されてもよい。タッチパネルであれば、ユーザは、タップ操作、スワイプ操作等を入力することができる。もちろん、タッチパネルに代えて、スイッチボタン、マウス、QWERTYキーボード等を採用してもよい。すなわち、入力部45がユーザによってなされた操作入力を受け付ける。当該入力が命令信号として、通信バス40を介してプロセッサ43に転送され、プロセッサ43が必要に応じて所定の制御や演算を実行しうる。
<Input unit 45>
The input unit 45 may be included in the housing of the information processing device 4, or may be externally attached. For example, the input unit 45 may be implemented as a touch panel integrated with the display unit 44. If it is a touch panel, the user can input a tap operation, a swipe operation, or the like. Of course, a switch button, a mouse, a QWERTY keyboard, or the like may be adopted instead of the touch panel. That is, the input unit 45 accepts an operation input made by the user. The input is transferred as a command signal to the processor 43 via the communication bus 40, and the processor 43 can execute a predetermined control or calculation as necessary.
4.情報処理装置4の機能構成について
 本節では、上述されたプロセッサ43の機能構成の一例を示す。図7は、プロセッサ43が備える機能部の一例を示す図である。プロセッサ43は、取得部431と、検出部432と、判定部433と、変更部434と、推定部435と、機器制御部436と、表示処理部437とを備える。
4. Functional configuration of the information processing device 4 This section shows an example of the functional configuration of the above-mentioned processor 43. Fig. 7 is a diagram showing an example of functional units included in the processor 43. The processor 43 includes an acquisition unit 431, a detection unit 432, a determination unit 433, a change unit 434, an estimation unit 435, a device control unit 436, and a display processing unit 437.
 取得部431は、蓄電装置2または他のデバイスからの情報を取得し、取得ステップを実行するように構成される。取得部431は、記憶部42の少なくとも一部であるストレージ領域に記憶されている種々の情報を読み出し、読み出された情報を記憶部42の少なくとも一部である作業領域に書き込むことで、種々の情報を取得可能に構成されている。ストレージ領域とは、例えば、記憶部42のうち、SSD等のストレージデバイスとして実施される領域である。作業領域とは、例えば、RAM等のメモリとして実施される領域である。 The acquisition unit 431 is configured to acquire information from the power storage device 2 or other devices and execute an acquisition step. The acquisition unit 431 is configured to be able to acquire various pieces of information by reading out various pieces of information stored in a storage area that is at least a part of the memory unit 42 and writing the read out information in a working area that is at least a part of the memory unit 42. The storage area is, for example, an area of the memory unit 42 that is implemented as a storage device such as an SSD. The working area is, for example, an area that is implemented as a memory such as a RAM.
 検出部432は、取得された種々の情報等に基づき、蓄電装置2等の機器の異常を検出し、検出ステップを実行するように構成される。 The detection unit 432 is configured to detect abnormalities in devices such as the power storage device 2 based on various acquired information, and to execute a detection step.
 判定部433は、取得された種々の情報等に基づき、蓄電装置2等の機器の動作状態を判定し、判定ステップを実行するように構成される。 The determination unit 433 is configured to determine the operating state of devices such as the power storage device 2 based on the various acquired information, and to execute a determination step.
 変更部434は、取得された種々の情報等に基づき、蓄電装置2等の機器の動作を変更し、変更ステップを実行するように構成される。 The modification unit 434 is configured to modify the operation of devices such as the power storage device 2 based on various acquired information and execute modification steps.
 推定部435は、取得された種々の情報等に基づき、蓄電装置2等の機器の状態や、機器の動作によって生じる熱源Qの位置など、種々の情報を推定し、第1の推定ステップおよび第2の推定ステップを実行するように構成される。 The estimation unit 435 is configured to estimate various information, such as the state of the equipment, such as the power storage device 2, and the position of the heat source Q generated by the operation of the equipment, based on the various acquired information, and to execute a first estimation step and a second estimation step.
 機器制御部436は、種々の情報に基づき、機器としての蓄電装置2や、駆動機器M1等の動作を制御するように構成される。 The device control unit 436 is configured to control the operation of the devices such as the power storage device 2 and the driving device M1 based on various information.
 表示処理部437は、種々の情報を表示させるように構成される。当該情報は、表示部44または他のデバイスを介して、ユーザに提示可能である。かかる場合、例えば、表示処理部437は、画面、静止画または動画を含む画像、アイコン、メッセージ等の視覚情報を、表示部44に表示させるように制御する。表示処理部437は、視覚情報を情報処理装置4や図示されないユーザ端末などに表示させるためのレンダリング情報だけを生成してもよい。なお、表示処理部437は、他のデバイスを介さずに、出力された情報をユーザに対して提示してもよい。 The display processing unit 437 is configured to display various information. The information can be presented to the user via the display unit 44 or another device. In such a case, for example, the display processing unit 437 controls the display unit 44 to display visual information such as a screen, an image including a still image or a video, an icon, a message, etc. The display processing unit 437 may generate only rendering information for displaying the visual information on the information processing device 4 or a user terminal (not shown). Note that the display processing unit 437 may present the output information to the user without going through another device.
5.情報処理について
 本節では、上述した情報処理システム1において実行される情報処理について説明する。なお、当該情報処理は、図示されない任意の例外処理を含みうる。例外処理は、当該情報処理の中断や、各処理の省略を含む。当該情報処理にて行われる選択または入力は、ユーザによる操作に基づくものでも、ユーザの操作に依らず自動で行われるものでもよい。
5. Information Processing In this section, information processing executed in the above-mentioned information processing system 1 will be described. The information processing may include any exception processing not shown. Exception processing includes interruption of the information processing and omission of each process. Selection or input performed in the information processing may be based on a user operation or may be performed automatically without relying on a user operation.
5.1.第1の情報処理について
 本節では、上述した情報処理システム1によって実行される情報処理の一例である第1の情報処理について説明する。図8は、情報処理システム1において実行される第1の情報処理の流れの一例を示すアクティビティ図である。情報処理システム1は、第1の情報処理を行うことにより、蓄電装置2の異常動作を検出することができる。
5.1. First Information Processing In this section, a first information processing, which is an example of information processing executed by the above-described information processing system 1, will be described. Fig. 8 is an activity diagram showing an example of the flow of the first information processing executed in the information processing system 1. The information processing system 1 can detect an abnormal operation of the power storage device 2 by performing the first information processing.
[アクティビティA1]
 まず、アクティビティA1にて、取得部431は、熱起電力Eを取得する。本実施形態では、取得部431は、熱起電力Eに基づいて比較部351から出力される出力信号を取得する。言い換えれば、取得部431は、間接的に熱起電力Eを取得する。その後、判定部433は、取得された熱起電力Eが閾値電圧Vt1以下か否かを判定する。本実施形態では、熱起電力Eが閾値電圧Vt1より大きい場合に比較部351が出力信号を出力するため、判定部433は、取得部431が当該出力信号を取得したか否かに基づいて当該判定を行ってもよい。本実施形態では、当該判定は複数の蓄電装置2のそれぞれに対して行われるが、これに限られず少なくとも一部の蓄電装置2に対して一括で行われてもよい。
[Activity A1]
First, in activity A1, the acquisition unit 431 acquires the thermoelectromotive force E. In this embodiment, the acquisition unit 431 acquires an output signal output from the comparison unit 351 based on the thermoelectromotive force E. In other words, the acquisition unit 431 indirectly acquires the thermoelectromotive force E. Thereafter, the determination unit 433 determines whether the acquired thermoelectromotive force E is equal to or lower than the threshold voltage Vt1. In this embodiment, the comparison unit 351 outputs an output signal when the thermoelectromotive force E is greater than the threshold voltage Vt1, so the determination unit 433 may make the determination based on whether the acquisition unit 431 has acquired the output signal. In this embodiment, the determination is made for each of the multiple power storage devices 2, but is not limited thereto and may be made collectively for at least some of the power storage devices 2.
[アクティビティA2]
 熱起電力Eが閾値電圧Vt1以下と判定された場合、処理がアクティビティA2に進み、判定部433は蓄電装置2が正常であると判定し、蓄電装置2の動作を継続させる。その後、処理がアクティビティA1に戻り、熱起電力Eの取得と判定が繰り返される。
[Activity A2]
If it is determined that the thermoelectromotive force E is equal to or lower than the threshold voltage Vt1, the process proceeds to activity A2, where the determination unit 433 determines that the power storage device 2 is normal, and continues the operation of the power storage device 2. Thereafter, the process returns to activity A1, and the acquisition and determination of the thermoelectromotive force E are repeated.
[アクティビティA3]
 一方、熱起電力Eが閾値電圧Vt1より大きいと判定された場合、処理がアクティビティA3に進み、検出部432は、熱起電力Eに基づき、発熱を伴う蓄電装置2の異常動作を検出する。このような構成によれば、蓄電装置2の発熱による温度勾配Jの変化は、蓄電装置2の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で蓄電装置2の異常発熱を検出することができる。
[Activity A3]
On the other hand, when it is determined that the thermoelectromotive force E is greater than the threshold voltage Vt1, the process proceeds to activity A3, and the detection unit 432 detects an abnormal operation of the power storage device 2 accompanied by heat generation based on the thermoelectromotive force E. According to such a configuration, the change in the temperature gradient J due to the heat generation of the power storage device 2 changes in a short time compared to the change in temperature due to the heat generation of the power storage device 2, so that abnormal heat generation of the power storage device 2 can be detected with higher sensitivity than in the past.
[アクティビティA4]
 次に、処理がアクティビティA4に進み、プロセッサ43は、異常動作が検出された蓄電装置2に対応するスイッチ36をオフ状態にする。これにより、少なくともオフ状態となった蓄電装置2の充放電が規制される。動作異常を検出することは、蓄電装置2の動作状態を判定することでもある。したがって、判定部は、熱起電力Eに応じて蓄電装置2の動作状態を判定する。このような構成によれば、蓄電装置2の発熱による温度勾配Jの変化は、蓄電装置2の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で蓄電装置2の動作状態を区別することができる。
[Activity A4]
Next, the process proceeds to activity A4, where the processor 43 turns off the switch 36 corresponding to the power storage device 2 in which abnormal operation has been detected. This restricts charging and discharging of at least the power storage device 2 that has been turned off. Detecting an operational abnormality also means determining the operating state of the power storage device 2. Therefore, the determination unit determines the operating state of the power storage device 2 according to the thermoelectromotive force E. According to this configuration, the change in temperature gradient J due to heat generation of the power storage device 2 changes in a short period of time compared to the change in temperature due to heat generation of the power storage device 2, so that the operating state of the power storage device 2 can be distinguished with higher sensitivity than before.
[アクティビティA5]
 次に、処理がアクティビティA5に進み、表示処理部437は、異常動作の検出結果をユーザに通知する。表示処理部437は、例えば、表示部44を介して異常動作が検出された蓄電装置2に関する情報をユーザに視覚的に通知する。当該蓄電装置2に関する情報は、例えば、蓄電装置2の異常動作の内容を含む。また、通知方法はこれに限られず任意であり、音、光などを用いて行われてもよい。その後、第1の情報処理が終了する。
[Activity A5]
Next, the process proceeds to activity A5, and the display processing unit 437 notifies the user of the detection result of the abnormal operation. The display processing unit 437 visually notifies the user of information related to the power storage device 2 in which the abnormal operation has been detected, for example, via the display unit 44. The information related to the power storage device 2 includes, for example, the details of the abnormal operation of the power storage device 2. The notification method is not limited to this and may be arbitrary, and may be performed using sound, light, etc. Then, the first information process ends.
 以上をまとめると、情報処理システム1は、熱電変換部31と、信号処理部としての信号処理回路35および情報処理装置4とを備える。熱電変換部31は、機器としての蓄電装置2との熱交換によって温度勾配Jが生じるように構成され、当該温度勾配Jに基づき熱起電力Eを発生させるように構成される。信号処理部に含まれる情報処理装置4のプロセッサ43は、取得部431と、検出部432とを備える。取得部431は、熱起電力Eを取得するように構成される。検出部432は、熱起電力Eに基づき、発熱を伴う蓄電装置2の異常動作を検出するように構成される。 To summarise the above, the information processing system 1 comprises a thermoelectric conversion unit 31, a signal processing circuit 35 as a signal processing unit, and an information processing device 4. The thermoelectric conversion unit 31 is configured to generate a temperature gradient J by heat exchange with the power storage device 2 as a device, and is configured to generate a thermoelectromotive force E based on the temperature gradient J. The processor 43 of the information processing device 4 included in the signal processing unit comprises an acquisition unit 431 and a detection unit 432. The acquisition unit 431 is configured to acquire the thermoelectromotive force E. The detection unit 432 is configured to detect abnormal operation of the power storage device 2 involving heat generation based on the thermoelectromotive force E.
 このような構成によれば、機器の発熱による温度勾配Jの変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の異常発熱を検出することができる。 With this configuration, the change in temperature gradient J caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
5.2.第2の情報処理について
 本節では、上述した情報処理システム1によって実行される情報処理の一例である第2の情報処理について説明する。図9は、情報処理システム1において実行される第2の情報処理の流れの一例を示すアクティビティ図である。情報処理システム1は、第2の情報処理を行うことにより、取得された熱起電力Eに基づき蓄電装置2等の動作を制御することができる。なお、蓄電装置2を制御することは、蓄電装置2に対して直接信号を送信することで蓄電装置2を制御することに限られず、蓄電装置2と異なる機器(例えば電力変換器や駆動機器M1)に対して信号を送信し、当該機器の動作を制御することによって間接的に蓄電装置2を制御することを含む。
5.2. Second Information Processing In this section, the second information processing, which is an example of the information processing executed by the above-mentioned information processing system 1, will be described. FIG. 9 is an activity diagram showing an example of the flow of the second information processing executed in the information processing system 1. By performing the second information processing, the information processing system 1 can control the operation of the power storage device 2 and the like based on the acquired thermoelectromotive force E. Note that controlling the power storage device 2 is not limited to controlling the power storage device 2 by directly transmitting a signal to the power storage device 2, but also includes indirectly controlling the power storage device 2 by transmitting a signal to a device (e.g., a power converter or a driving device M1) different from the power storage device 2 and controlling the operation of the device.
[アクティビティA11]
 まず、アクティビティA11にて、取得部431は、駆動機器M1の要求電力Pと熱起電力Eとを取得する。熱起電力Eの取得態様は任意であり、信号処理回路35が熱起電力Eを測定可能な電圧測定部を備えている場合、取得部431は当該電圧測定部から熱起電力Eの値を取得してもよい。また、信号処理回路35が熱起電力Eを複数の閾値電圧と比較可能となるような態様で複数の比較部351を備えている場合、取得部431は熱起電力Eと複数の閾値のそれぞれとの比較結果を取得してもよい。
[Activity A11]
First, in activity A11, the acquisition unit 431 acquires the required power P and the thermoelectromotive force E of the moving device M1. The manner of acquiring the thermoelectromotive force E is arbitrary, and if the signal processing circuit 35 includes a voltage measuring unit capable of measuring the thermoelectromotive force E, the acquisition unit 431 may acquire the value of the thermoelectromotive force E from the voltage measuring unit. Also, if the signal processing circuit 35 includes a plurality of comparison units 351 in a manner that allows the thermoelectromotive force E to be compared with a plurality of threshold voltages, the acquisition unit 431 may acquire the comparison results between the thermoelectromotive force E and each of the plurality of thresholds.
[アクティビティA12]
 次に、処理がアクティビティA12に進み、プロセッサ43は、予め定められた参照情報IF0に基づき熱起電力Eに対応する最大出力電力Pmaxを探索する。参照情報IF0は、熱起電力Eと最大出力電力Pmaxとの対応関係を規定する情報であり、記憶部42等に格納されている。熱起電力Eは温度勾配Jに伴う熱流を表す情報であるため、熱起電力Eは蓄電装置2の温度、詳細には温度の時間変化、を示唆する情報である。そのため、参照情報IF0は、蓄電装置2の温度と、当該温度の場合に蓄電装置2が出力可能な最大出力電力Pmaxを示す情報である。参照情報IF0は、例えば予め行われた試験結果や、所定のシミュレーションの結果に基づき生成可能であり、その形式は、関数、ルックアップテーブル、学習済みモデルなど任意である。
[Activity A12]
Next, the process proceeds to activity A12, and the processor 43 searches for the maximum output power Pmax corresponding to the thermoelectromotive force E based on the predetermined reference information IF0. The reference information IF0 is information that specifies the correspondence between the thermoelectromotive force E and the maximum output power Pmax, and is stored in the storage unit 42 or the like. Since the thermoelectromotive force E is information that indicates the heat flow associated with the temperature gradient J, the thermoelectromotive force E is information that indicates the temperature of the storage device 2, specifically, the change in temperature over time. Therefore, the reference information IF0 is information that indicates the temperature of the storage device 2 and the maximum output power Pmax that the storage device 2 can output at that temperature. The reference information IF0 can be generated based on, for example, the results of a test performed in advance or the results of a predetermined simulation, and the format of the reference information IF0 can be any format, such as a function, a lookup table, or a learned model.
 その後、判定部433は、取得した要求電力Pを、探索によって得られた最大出力電力Pmaxと比較し、その大小関係を判定する。本実施形態では、比較部351が第1の電気信号としての熱起電力Eの比較結果を出力し、変更部434が、当該熱起電力Eの比較結果に基づき、蓄電装置2の動作を変更する。このような構成によれば、熱電変換部31から生じる熱起電力Eを基準値との差異として把握することができる。したがって、熱電変換部31から出力される電気信号によって蓄電装置2の動作を安定的に変更しやすくなる。変更部434は、例えば、当該熱起電力Eの比較結果に基づき、次のアクティビティA13またはアクティビティA14のいずれの処理を行うかを変更する。 Then, the determination unit 433 compares the acquired required power P with the maximum output power Pmax obtained by the search, and determines which is larger. In this embodiment, the comparison unit 351 outputs the comparison result of the thermoelectromotive force E as a first electrical signal, and the change unit 434 changes the operation of the power storage device 2 based on the comparison result of the thermoelectromotive force E. With this configuration, the thermoelectromotive force E generated by the thermoelectric conversion unit 31 can be grasped as a difference from a reference value. Therefore, it becomes easier to stably change the operation of the power storage device 2 by the electrical signal output from the thermoelectric conversion unit 31. The change unit 434 changes whether to perform the next process, activity A13 or activity A14, based on the comparison result of the thermoelectromotive force E, for example.
[アクティビティA13]
 要求電力Pが最大出力電力Pmax以下の場合、処理がアクティビティA13に進み、機器制御部436は、駆動機器M1の要求電力Pに応じて蓄電装置2から電力を出力させる。蓄電装置2の出力電力は、例えば、不図示の電力変換器の制御を通じて行われる。その後、処理がアクティビティA11に戻る。
[Activity A13]
If the required power P is equal to or less than the maximum output power Pmax, the process proceeds to activity A13, where the device control unit 436 causes the power storage device 2 to output power according to the required power P of the driving device M1. The output power of the power storage device 2 is controlled, for example, through the control of a power converter (not shown). Then, the process returns to activity A11.
[アクティビティA14]
 一方、要求電力Pが最大出力電力Pmaxより大きい場合、処理がアクティビティA14に進み、機器制御部436は、駆動機器M1の要求電力Pが最大出力電力Pmax以下となるように駆動機器M1を制限し、制限された要求電力Pに応じて蓄電装置2から電力を出力させる。これにより、蓄電装置2は、その温度状態に適した電力を出力することができるため、蓄電装置2の劣化の進行を抑制することができる。このように、情報処理システム1は、熱起電力Eに基づき最大出力電力Pmaxを探索し、蓄電装置2の出力電力が当該最大出力電力Pmaxを上回らないように制御を行う。
[Activity A14]
On the other hand, if the required power P is greater than the maximum output power Pmax, the process proceeds to activity A14, where the device control unit 436 limits the driving device M1 so that the required power P of the driving device M1 is equal to or less than the maximum output power Pmax, and causes the power storage device 2 to output power according to the limited required power P. This allows the power storage device 2 to output power appropriate for its temperature state, thereby suppressing the progression of deterioration of the power storage device 2. In this way, the information processing system 1 searches for the maximum output power Pmax based on the thermoelectromotive force E, and controls the output power of the power storage device 2 so that it does not exceed the maximum output power Pmax.
 以上をまとめると、情報処理システム1は、熱電変換部31と、信号処理部としての信号処理回路35および情報処理装置4とを備える。熱電変換部31は、機器としての蓄電装置2との熱交換によって当該熱電変換部31に生じる温度勾配Jに応じて、熱起電力Eを発生させるように構成される。信号処理部に含まれる情報処理装置4のプロセッサ43は、取得部431と、機器制御部436とを備える。取得部431は、熱起電力Eを取得するように構成される。機器制御部436は、取得された熱起電力Eに基づき機器の動作を制御するように構成される。 To summarise the above, the information processing system 1 comprises a thermoelectric conversion unit 31, a signal processing circuit 35 as a signal processing unit, and an information processing device 4. The thermoelectric conversion unit 31 is configured to generate a thermoelectromotive force E in response to a temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2 as a device. The processor 43 of the information processing device 4 included in the signal processing unit comprises an acquisition unit 431 and a device control unit 436. The acquisition unit 431 is configured to acquire the thermoelectromotive force E. The device control unit 436 is configured to control the operation of the device based on the acquired thermoelectromotive force E.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して速い応答速度で機器の制御を行うことができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to control the device with a faster response speed than before.
5.2.第3の情報処理について
 本節では、上述した情報処理システム1によって実行される情報処理の一例である第3の情報処理について説明する。図10は、情報処理システム1において実行される第3の情報処理の流れの一例を示すアクティビティ図である。情報処理システム1は、第3の情報処理を行うことにより、さらに、蓄電装置2の充電状態または健康状態を推定することができる。
5.2. Third Information Processing In this section, a third information processing, which is an example of information processing executed by the above-described information processing system 1, will be described. Fig. 10 is an activity diagram showing an example of the flow of the third information processing executed in the information processing system 1. By performing the third information processing, the information processing system 1 can further estimate the state of charge or the state of health of the power storage device 2.
[アクティビティA21]
 まず、アクティビティA21にて、取得部431は、駆動機器M1の要求電力Pと熱起電力Eとを取得する。処理の詳細はアクティビティA11と同様である。
[Activity A21]
First, in activity A21, the acquisition unit 431 acquires the required power P and the thermoelectromotive force E of the moving machine M1. The details of the process are similar to those of activity A11.
[アクティビティA22]
 次に、処理がアクティビティA22に進み、プロセッサ43は、予め定められた参照情報IF0に基づき熱起電力Eに対応する最大出力電力Pmaxを探索する。処理の詳細はアクティビティA12と同様である。その後、判定部433は、取得した要求電力Pを、探索によって得られた最大出力電力Pmaxと比較し、その大小関係を判定する。
[Activity A22]
Next, the process proceeds to activity A22, where the processor 43 searches for the maximum output power Pmax corresponding to the thermoelectromotive force E based on the predetermined reference information IF0. The details of the process are similar to those of activity A12. Thereafter, the determination unit 433 compares the acquired required power P with the maximum output power Pmax obtained by the search, and determines which is larger.
[アクティビティA23]
 要求電力Pが最大出力電力Pmax以下の場合、処理がアクティビティA23に進み、機器制御部436は、駆動機器M1の要求電力Pに応じて蓄電装置2から電力を出力させる。処理の詳細はアクティビティA13と同様である。その後、処理がアクティビティA25に進む。
[Activity A23]
If the required power P is equal to or less than the maximum output power Pmax, the process proceeds to activity A23, where the appliance control unit 436 controls the power storage device 2 to output power in accordance with the required power P of the driving appliance M1. The details of the process are similar to those of activity A13. Then, the process proceeds to activity A25.
[アクティビティA24]
 一方、要求電力Pが最大出力電力Pmaxより大きい場合、処理がアクティビティA24に進み、機器制御部436は、駆動機器M1の要求電力Pが最大出力電力Pmax以下となるように駆動機器M1を制限し、制限された要求電力Pに応じて蓄電装置2から電力を出力させる。処理の詳細はアクティビティA14と同様である。その後、処理がアクティビティA25に進む。
[Activity A24]
On the other hand, if the required power P is greater than the maximum output power Pmax, the process proceeds to activity A24, where the device control unit 436 limits the driving device M1 so that the required power P of the driving device M1 is equal to or less than the maximum output power Pmax, and causes the power storage device 2 to output power according to the limited required power P. The details of the process are similar to those of activity A14. Then, the process proceeds to activity A25.
[アクティビティA25]
 アクティビティA25にて、取得部431は、蓄電装置2の出力電力を取得し、その出力電力の履歴を記憶部42等に記憶する。蓄電装置2の出力電力は、蓄電装置2から出力される第2の電気信号に関する情報の一例であり、出力電圧、出力電流などであってもよい。その後、処理がアクティビティA21に戻る。
[Activity A25]
In activity A25, the acquisition unit 431 acquires the output power of the storage device 2 and stores the history of the output power in the storage unit 42, etc. The output power of the storage device 2 is an example of information about the second electric signal output from the storage device 2, and may be an output voltage, an output current, etc. Then, the process returns to activity A21.
[アクティビティA26]
 一方、アクティビティA25の後、アクティビティA26にて、推定部435は、蓄電装置2の出力電力の出力履歴と、熱起電力Eとに基づき、蓄電装置2の充電状態(SOC:State of Charge)または健康状態(SOH:State of Health)を推定し、既存のSOCおよびSOHを推定された値に更新する。このような構成によれば、蓄電装置2の動作をより安定させることができる。これらの蓄電装置2の状態を推定する手法は任意であるが、例えば、推定部435は、熱起電力Eに基づき蓄電装置2の温度および温度変化を推定する。次に、推定部435は、推定された温度変化と出力電力の出力履歴とを比較することにより、当該温度において蓄電装置2の放電等によって蓄電装置2の内部での消費電力を推定する。次に、推定部435は、蓄電装置2の内部での消費電力と蓄電装置2の出力電圧とに基づき、蓄電装置2の内部抵抗を推定する。当該内部抵抗は、蓄電装置2のSOHを表す指標の1つである。このような内部抵抗を温度で補正することにより、推定部435は、蓄電装置2の温度を反映したSOHを推定することができる。同様に、推定部435は、駆動機器M1に出力された電力と蓄電装置2の内部で消費された電力とを積算し、満充電状態における電力容量から差し引く等の計算を行うことにより、蓄電装置2の温度状態を考慮した上で蓄電装置2の現在のSOCを推定することができる。
[Activity A26]
On the other hand, after activity A25, in activity A26, the estimation unit 435 estimates the state of charge (SOC) or state of health (SOH) of the power storage device 2 based on the output history of the output power of the power storage device 2 and the thermoelectromotive force E, and updates the existing SOC and SOH to the estimated values. With this configuration, the operation of the power storage device 2 can be made more stable. Any method can be used to estimate the state of the power storage device 2. For example, the estimation unit 435 estimates the temperature and temperature change of the power storage device 2 based on the thermoelectromotive force E. Next, the estimation unit 435 compares the estimated temperature change with the output history of the output power to estimate the power consumption inside the power storage device 2 due to the discharge of the power storage device 2 at the temperature. Next, the estimation unit 435 estimates the internal resistance of the power storage device 2 based on the power consumption inside the power storage device 2 and the output voltage of the power storage device 2. The internal resistance is one of the indexes representing the SOH of the power storage device 2. By correcting such internal resistance with temperature, the estimation unit 435 can estimate the SOH reflecting the temperature of the power storage device 2. Similarly, the estimation unit 435 can estimate the current SOC of the power storage device 2 taking into consideration the temperature state of the power storage device 2 by performing calculations such as integrating the power output to the driving device M1 and the power consumed inside the power storage device 2 and subtracting the integrated value from the power capacity in the fully charged state.
[アクティビティA27、アクティビティA28]
 また、第3の情報処理が行われている場合に、アクティビティA27にて検出部432が、熱起電力Eが閾値電圧Vt1を上回ったことを検出することがある。この場合、例外的に処理がアクティビティA28に進み、検出部432は、検出部432は、熱起電力Eに基づき、発熱を伴う蓄電装置2の異常動作を検出する。
[Activity A27, Activity A28]
Furthermore, when the third information processing is being performed, the detection unit 432 may detect in activity A27 that the thermoelectromotive force E has exceeded the threshold voltage Vt1. In this case, the processing exceptionally proceeds to activity A28, and the detection unit 432 detects an abnormal operation of the power storage device 2 involving heat generation based on the thermoelectromotive force E.
[アクティビティA29]
 その後、処理がアクティビティA29に進み、プロセッサ43は、異常動作が検出された蓄電装置2に対応するスイッチ36をオフ状態にする。処理の詳細はアクティビティA4と同様である。
[Activity A29]
Thereafter, the process proceeds to activity A29, where the processor 43 turns off the switch 36 corresponding to the power storage device 2 in which the abnormal operation has been detected. The details of the process are similar to those of activity A4.
[アクティビティA30]
 その後、処理がアクティビティA30に進み、表示処理部437は、異常動作の検出結果をユーザに通知する。処理の詳細はアクティビティA5と同様である。その後、第3の情報処理が終了する。
[Activity A30]
Then, the process proceeds to activity A30, where the display processing unit 437 notifies the user of the abnormal operation detection result. The details of the process are the same as those of activity A5. Then, the third information process ends.
 なお、上記情報処理は、単独で行われても複数で行われてもよい。また、上記情報処理は、それぞれ独立して行われても、並列して行われても、協調して行われてもよい。 The above information processing may be performed individually or in combination. The above information processing may be performed independently, in parallel, or in cooperation.
5.蓄電装置2の発熱位置の位置情報等を推定するための情報処理システム1の構成例について
 本節では、蓄電装置2の発熱位置の位置情報等を推定するための情報処理システム1の構成例について説明する。なお、説明の便宜上、熱電変換部31が第1の熱伝導部33を介さず第1の領域311に接触するように蓄電ユニットBUが構成されているが、上述したように、熱電変換部31が第1の熱伝導部33を介して筐体21と接触している場合も同様である。図11は、蓄電装置2および蓄電装置2と接触している熱電変換部31の、第3の方向D3に垂直な面での断面図である。
5. Configuration example of information processing system 1 for estimating position information, etc. of heat generation position of power storage device 2 In this section, a configuration example of information processing system 1 for estimating position information, etc. of heat generation position of power storage device 2 will be described. For convenience of explanation, power storage unit BU is configured so that thermoelectric conversion unit 31 contacts first region 311 without first heat conduction unit 33, but as described above, the same applies to the case where thermoelectric conversion unit 31 contacts housing 21 via first heat conduction unit 33. Fig. 11 is a cross-sectional view of power storage device 2 and thermoelectric conversion unit 31 in contact with power storage device 2, taken along a plane perpendicular to third direction D3.
 図11に示されるように、熱源Qは、筐体21の表面から第1の方向D1に離れた位置に存在することがある。そのため、熱源Qの温度は、筐体21の表面温度(言い換えれば、第1の領域311の温度)から温度差ΔTだけ乖離がある。そのため、温度勾配Jから推定される筐体21の表面温度は、その温度差ΔTだけ乖離が生じることとなる。 As shown in FIG. 11, heat source Q may be located at a position away from the surface of housing 21 in first direction D1. Therefore, the temperature of heat source Q deviates from the surface temperature of housing 21 (in other words, the temperature of first region 311) by a temperature difference ΔT. Therefore, the surface temperature of housing 21 estimated from temperature gradient J deviates by that temperature difference ΔT.
 これに対し、本実施形態の推定部435は、第1の領域311の温度を検出温度Tdとし、第1の領域311から熱源Qに至るまでの熱の伝導経路を、熱回路モデルMをシミュレーション等により構築する。図12は、熱回路モデルMの一例を示す図である。推定部435は、当該熱回路モデルMを用いて熱起電力Eから熱源Qの深部温度、およびその位置情報(例えば、筐体21の表面から熱源Qまでの第1の方向D1の距離)などの種々の情報を推定してもよい。熱回路モデルMは、例えば熱抵抗R1と、熱容量C1との並列接続体として表現され、推定部435は、これらのパラメータをシミュレーション等によって推定する。温度差ΔTと熱抵抗と熱容量C1との関係は、例えば、以下の関係式によって表される。なお、Qは熱源Qの発熱量を表し、nは熱源Qの発熱量の時間変化を表すステップ数を表す自然数である。
In contrast, the estimation unit 435 of this embodiment sets the temperature of the first region 311 as the detection temperature Td, and constructs a thermal circuit model M of a heat conduction path from the first region 311 to the heat source Q by simulation or the like. FIG. 12 is a diagram showing an example of the thermal circuit model M. The estimation unit 435 may estimate various information such as the deep temperature of the heat source Q from the thermoelectromotive force E and its position information (for example, the distance in the first direction D1 from the surface of the housing 21 to the heat source Q) using the thermal circuit model M. The thermal circuit model M is expressed as, for example, a parallel connection of a thermal resistance R1 and a thermal capacity C1, and the estimation unit 435 estimates these parameters by simulation or the like. The relationship between the temperature difference ΔT, the thermal resistance, and the thermal capacity C1 is expressed, for example, by the following relational expression. Note that Q represents the amount of heat generated by the heat source Q, and n is a natural number representing the number of steps representing the time change in the amount of heat generated by the heat source Q.
 ただし、α=t_sampling/(R1×C1)であり、k=t_sampling/C1である。t_samplingは、サンプリング周期の時間を示す。 where α = t_sampling/(R1 x C1) and k = t_sampling/C1. t_sampling indicates the sampling period.
 以上をまとめると、推定部435は、予め定められた蓄電装置2の熱伝導モデルと、熱起電力Eに基づく蓄電装置2の表面の温度とに基づき、蓄電装置2の表面に対する蓄電装置2の発熱位置の位置情報を推定するように構成される。このような構成によれば、蓄電装置2の内部に存在する熱源の位置を把握しやすくなる。 To summarise the above, the estimation unit 435 is configured to estimate position information of the heat generation position of the storage device 2 relative to the surface of the storage device 2, based on a predetermined thermal conduction model of the storage device 2 and the temperature of the surface of the storage device 2 based on the thermoelectromotive force E. With such a configuration, it becomes easier to grasp the position of a heat source present inside the storage device 2.
 なお、温度変化等の補正を行う場合、情報処理システム1は、さらに温度調整素子6を備えていてもよい。図13は、熱電変換部31が蓄電装置2に対して温度調整素子6を介して接触している場合における蓄電装置2等の第3の方向D3に垂直な面での断面図である。温度調整素子6は、情報処理装置4等の制御に基づいて熱電変換部31の第1の領域311の温度を調整するように構成され、例えばシートヒータやペルチェ素子などを用いて実装される。温度調整素子6は、筐体21と、熱電変換部31の第1の領域311との間に配置される。なお、温度調整素子6は、筐体21から第1の領域311への熱流の伝導経路を含むことが好ましい。情報処理装置4は、温度勾配Jに伴う熱起電力Eに基づき温度調整素子6を制御し、当該熱起電力Eが減少するように、温度調整素子6を駆動させる。その結果、温度調整素子6は、第1の領域311と第2の領域312との温度勾配Jが所定の値未満となるように、第1の領域311の温度を調整する。このように、熱電変換部31と、情報処理装置4と、温度調整素子6とによるクローズドループ制御を行うことにより、コンパクトな制御システムを構築することができる。また、推定部435は、このときの温度調整素子6の温度等の制御値、熱流(温度勾配J)、および温度応答などから、上記熱回路モデルMの内部パラメータ(例えば、熱抵抗R1や熱容量C1など)、熱源Qの位置情報、蓄電装置2の劣化度合いなど種々の情報を推定してもよい。 When correcting temperature changes, etc., the information processing system 1 may further include a temperature adjustment element 6. FIG. 13 is a cross-sectional view of the power storage device 2 and the like in a plane perpendicular to the third direction D3 when the thermoelectric conversion unit 31 is in contact with the power storage device 2 via the temperature adjustment element 6. The temperature adjustment element 6 is configured to adjust the temperature of the first region 311 of the thermoelectric conversion unit 31 based on the control of the information processing device 4 and the like, and is implemented using, for example, a seat heater or a Peltier element. The temperature adjustment element 6 is disposed between the housing 21 and the first region 311 of the thermoelectric conversion unit 31. It is preferable that the temperature adjustment element 6 includes a conduction path of heat flow from the housing 21 to the first region 311. The information processing device 4 controls the temperature adjustment element 6 based on the thermoelectromotive force E associated with the temperature gradient J, and drives the temperature adjustment element 6 so that the thermoelectromotive force E decreases. As a result, the temperature adjustment element 6 adjusts the temperature of the first region 311 so that the temperature gradient J between the first region 311 and the second region 312 is less than a predetermined value. In this way, a compact control system can be constructed by performing closed-loop control using the thermoelectric conversion unit 31, the information processing device 4, and the temperature adjustment element 6. The estimation unit 435 may also estimate various information such as the internal parameters of the thermal circuit model M (e.g., thermal resistance R1 and heat capacity C1), position information of the heat source Q, and the degree of deterioration of the power storage device 2 from the control value of the temperature of the temperature adjustment element 6 at this time, the heat flow (temperature gradient J), and the temperature response.
6.信号処理回路35の別例について
 本節では、上述した信号処理回路35の別例について説明する。図14は、信号処理回路35の別例を示す図である。図14に示されるように、信号処理回路35は、さらにキャパシタ353を備えていてもよい。キャパシタ353は、熱電変換部31と比較部351の非反転入力端子との間に配置され、比較部351に入力される第1の電気信号を、熱起電力Eから当該熱起電力Eの時間微分、すなわち単位時間あたりの温度勾配Jの変化率に相当する信号に変換する。この場合、情報処理装置4は、このような熱起電力Eの時間微分に対応する信号に基づき、上述の制御を行うことができる。当該信号は、特に蓄電部22の電解液が漏れる等により、急激に熱が生じる傾向を検出することに適している。
6. Another example of the signal processing circuit 35 In this section, another example of the signal processing circuit 35 described above will be described. FIG. 14 is a diagram showing another example of the signal processing circuit 35. As shown in FIG. 14, the signal processing circuit 35 may further include a capacitor 353. The capacitor 353 is disposed between the thermoelectric conversion unit 31 and the non-inverting input terminal of the comparison unit 351, and converts the first electric signal input to the comparison unit 351 from the thermoelectromotive force E into a signal corresponding to the time differential of the thermoelectromotive force E, that is, the rate of change of the temperature gradient J per unit time. In this case, the information processing device 4 can perform the above-mentioned control based on the signal corresponding to the time differential of such thermoelectromotive force E. The signal is particularly suitable for detecting a tendency for heat to be generated suddenly due to leakage of the electrolyte of the power storage unit 22, etc.
 また、信号処理回路35の機能は、情報処理装置4によって実現されていてもよい。すなわち、情報処理装置4は、信号処理部として機能してもよい。言い換えれば、上述した信号処理回路35は、アナログ回路によって実装されるものに限られず、情報処理装置4のプロセッサ43が所定のプログラムを実行することにより実現されていてもよい。なお、信号処理回路35の具体的構成は任意であり、上述したものに限られない。 The function of the signal processing circuit 35 may be realized by the information processing device 4. That is, the information processing device 4 may function as a signal processing unit. In other words, the above-mentioned signal processing circuit 35 is not limited to being implemented by an analog circuit, but may be realized by the processor 43 of the information processing device 4 executing a predetermined program. The specific configuration of the signal processing circuit 35 is arbitrary and is not limited to the above-mentioned one.
[その他]
 上記情報処理システム1の態様はあくまで一例であり、これに限られない。
[others]
The above-described embodiment of the information processing system 1 is merely an example, and the present invention is not limited to this.
 上記各情報処理のアクティビティA2にて、検出部432は、熱起電力Eと閾値電圧Vt1との比較結果に基づき、発熱を伴う蓄電装置2の異常動作を検出しているが、異常動作の検出態様はこれに限られず任意である。例えば、検出部432は、取得された熱起電力Eに関する情報が、予め特定された、異常動作を表す条件を満たすか否かに基づいて、当該蓄電装置2の異常動作を検出してもよい。当該条件は、試験結果、シミュレーション結果等に基づき特定されてもよい。当該特定方法は任意であり、当該試験結果等を任意の統計手法を用いて処理することにより特定されても、当該試験結果等を入力することにより学習される学習済みモデルを用いて特定されてもよい。学習済みモデルの学習アルゴリズムは任意であり、例えば、教師あり学習、半教師あり学習、教師なし学習、強化学習などが挙げられる。熱起電力Eに関する情報は、熱起電力Eそのものに限られず、熱起電力Eの微分値、積分値、時系列情報等の種々の態様を含み得る。特に、検出部432は、熱起電力Eの時系列情報に基づき蓄電装置2の異常動作を検出してもよい。これにより、例えば蓄電装置2等の機器の継続的な使用態様の影響を考慮して異常動作の検出を行うことができるため、利便性を向上することができる。 In the activity A2 of each of the above information processing, the detection unit 432 detects an abnormal operation of the power storage device 2 accompanied by heat generation based on the comparison result between the thermoelectromotive force E and the threshold voltage Vt1, but the detection manner of the abnormal operation is not limited to this and is arbitrary. For example, the detection unit 432 may detect an abnormal operation of the power storage device 2 based on whether or not the acquired information on the thermoelectromotive force E satisfies a condition indicating an abnormal operation that is specified in advance. The condition may be specified based on a test result, a simulation result, or the like. The specification method is arbitrary, and may be specified by processing the test result, etc. using an arbitrary statistical method, or may be specified using a trained model that is trained by inputting the test result, etc. The learning algorithm of the trained model is arbitrary, and examples include supervised learning, semi-supervised learning, unsupervised learning, reinforcement learning, etc. The information on the thermoelectromotive force E is not limited to the thermoelectromotive force E itself, and may include various aspects such as a differential value, an integral value, and time-series information of the thermoelectromotive force E. In particular, the detection unit 432 may detect an abnormal operation of the power storage device 2 based on the time-series information of the thermoelectromotive force E. This allows for the detection of abnormal operation to be performed while taking into account the effects of continuous usage of equipment such as the power storage device 2, thereby improving convenience.
 アクティビティA2の場合と同様に、変更部434は、アクティビティA12等にて、熱起電力Eを最大出力電力Pmax等の種々の基準値との比較結果以外に基づき、蓄電装置2の動作を変更してもよい。変更部434は、熱起電力Eが、変更後の動作に対応する熱起電力Eの範囲に含まれているか否かに基づいて、当該蓄電装置2の動作を変更してもよい。特に、変更部434は、熱起電力Eの時系列情報に基づき蓄電装置2の動作を変更してもよい。これにより、例えば蓄電装置2等の機器の継続的な使用態様の影響を考慮して蓄電装置2等の機器の動作を変更することができるため、機器にかかる負担の軽減等を図ることができる。 Similar to the case of activity A2, the modification unit 434 may modify the operation of the power storage device 2 in activity A12, etc., based on something other than the result of comparing the thermoelectromotive force E with various reference values such as the maximum output power Pmax. The modification unit 434 may modify the operation of the power storage device 2 based on whether the thermoelectromotive force E is included in the range of thermoelectromotive force E corresponding to the modified operation. In particular, the modification unit 434 may modify the operation of the power storage device 2 based on time-series information on the thermoelectromotive force E. This makes it possible to modify the operation of a device such as the power storage device 2, for example, taking into account the influence of the continuous usage mode of the device such as the power storage device 2, thereby reducing the burden on the device, etc.
 温度調整部は、熱浴32に限られず、放熱板、水冷装置などであってもよく、第2の熱伝導部34、または熱電変換部31の第2の領域312の温度を調整可能であれば任意である。このような温度調整部を含む構成によれば、蓄電装置2の発熱による温度勾配Jの変化は、蓄電装置2の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で蓄電装置2の異常発熱を検出することができる。 The temperature adjustment unit is not limited to the heat bath 32, but may be a heat sink, a water cooling device, etc., and may be any unit capable of adjusting the temperature of the second thermal conduction unit 34 or the second region 312 of the thermoelectric conversion unit 31. With a configuration including such a temperature adjustment unit, the change in temperature gradient J due to heat generation from the storage device 2 changes in a shorter time than the change in temperature due to heat generation from the storage device 2, making it possible to detect abnormal heat generation from the storage device 2 with higher sensitivity than in the past.
 第1の信号は、熱起電力Eに限られず、熱起電力Eに起因する電流、電力などの電気信号であっても、当該電流によって誘起される磁力などであってもよい。 The first signal is not limited to the thermoelectromotive force E, but may be an electrical signal such as a current or power caused by the thermoelectromotive force E, or a magnetic force induced by the current.
 第2の信号は、電圧、電流、および電力に限られず、各蓄電装置2の蓄電部22のSOCまたはSOHを推定可能な情報を含むものであれば任意である。 The second signal is not limited to voltage, current, and power, but may be any signal that includes information that can estimate the SOC or SOH of the storage unit 22 of each storage device 2.
 主面部331は、筐体21の外縁に沿って配置されていなくてもよく、主面部331の形状は熱源Qからの熱を熱電変換部31に伝えることができれば任意である。例えば、主面部331は、筐体21を第1の方向D1から平面視した場合に、主面部331の外縁が蓄電部22が存在する可能性がある領域を包含するように形成されていてもよい。 The main surface portion 331 does not have to be arranged along the outer edge of the housing 21, and the shape of the main surface portion 331 is arbitrary as long as it can transmit heat from the heat source Q to the thermoelectric conversion unit 31. For example, the main surface portion 331 may be formed such that, when the housing 21 is viewed in a plan view from the first direction D1, the outer edge of the main surface portion 331 encompasses an area where the power storage unit 22 may be present.
 信号処理システム3は、第1の熱伝導部33を備えていなくてもよい。図15は、第1の熱伝導部33を備えていない信号処理システム3の一例を示す図である。図15に示されるように、熱電変換部31は、第1の領域311が第1の熱伝導部33を介さず直接筐体21に接触するように配置される。このとき、熱電変換部31の形状は上述した第1の熱伝導部33の主面部331と同様に、第1の方向D1から平面視した場合における筐体21の外縁が熱電変換部31の外縁を包含するように、熱電変換部31が形成される。これにより、より広い範囲で熱源Qが生じていることを検出することができる。 The signal processing system 3 does not have to include the first heat conducting section 33. FIG. 15 is a diagram showing an example of a signal processing system 3 not including the first heat conducting section 33. As shown in FIG. 15, the thermoelectric conversion section 31 is arranged so that the first region 311 is in direct contact with the housing 21 without going through the first heat conducting section 33. In this case, the shape of the thermoelectric conversion section 31 is similar to the main surface section 331 of the first heat conducting section 33 described above, and the thermoelectric conversion section 31 is formed so that the outer edge of the housing 21 encompasses the outer edge of the thermoelectric conversion section 31 when viewed in a plan view from the first direction D1. This makes it possible to detect the generation of the heat source Q over a wider range.
 第1の熱伝導部33は、主面部331を備えず、突出部332を備えていてもよい。この場合、突出部332は、筐体21の外縁の少なくとも一部と接触するように配置される。 The first heat conducting portion 33 may not have a main surface portion 331, but may have a protruding portion 332. In this case, the protruding portion 332 is positioned so as to be in contact with at least a portion of the outer edge of the housing 21.
 信号処理システム3は、第2の熱伝導部34を備えていなくてもよい。例えば、熱電変換部31は、第2の領域312が第2の熱伝導部34を介さず直接熱浴32と接触するように構成されていてもよい。例えば、熱浴32は、熱電変換部31の第2の領域312を第1の方向D1から覆うように配置されていればよい。また、信号処理システム3は、熱浴32を備えていなくてもよい。 The signal processing system 3 may not include the second heat conducting section 34. For example, the thermoelectric conversion section 31 may be configured so that the second region 312 is in direct contact with the heat bath 32 without going through the second heat conducting section 34. For example, the heat bath 32 may be arranged so as to cover the second region 312 of the thermoelectric conversion section 31 from the first direction D1. In addition, the signal processing system 3 may not include the heat bath 32.
 熱電変換部31を取り付ける位置は、熱源Qの存在を検出可能であれば任意であり、筐体21の表面に限られない。図16は、熱電変換部31の取付態様の一例を示す図である。図16に示されるように、熱電変換部31は、筐体21の内部に収容されていてもよい。このとき、熱電変換部31の形状は任意であり、例えば、図15で示したような平板状である。 The position where the thermoelectric conversion unit 31 is attached is arbitrary as long as it is possible to detect the presence of the heat source Q, and is not limited to the surface of the housing 21. Figure 16 is a diagram showing an example of an attachment mode of the thermoelectric conversion unit 31. As shown in Figure 16, the thermoelectric conversion unit 31 may be housed inside the housing 21. In this case, the shape of the thermoelectric conversion unit 31 is arbitrary, and is, for example, a flat plate shape as shown in Figure 15.
 熱電変換部31は、上述のような異常ネルンスト効果を発現するものに限られず、ゼーベック効果等を発現するように構成されていてもよい。この場合、熱電変換部31は、温度勾配Jが、温度勾配Jと平行な成分を含む熱起電力Eを誘起するため、温度勾配Jに平行な方向に熱起電力Eを取り出すように配線を行う必要がある。 Thermoelectric conversion unit 31 is not limited to one that exhibits the anomalous Nernst effect as described above, and may be configured to exhibit the Seebeck effect, etc. In this case, the thermoelectric conversion unit 31 needs to be wired so that the thermoelectromotive force E is extracted in a direction parallel to the temperature gradient J, since the temperature gradient J induces a thermoelectromotive force E that includes a component parallel to the temperature gradient J.
 蓄電ユニットBUとの接続対象は、上記駆動機器M1のように蓄電ユニットBUからの電力によって駆動するものに限られない。例えば、蓄電ユニットBUは、蓄電ユニットBUに電力を供給する充電装置に接続されていてもよい。充電装置は、例えば、商用電源等の電源、および当該電源からの電力を変換する電力変換器を備える。この場合、蓄電ユニットBUの情報処理装置4は、充電装置に対して要求電力Pを送信し、蓄電ユニットBUは、当該要求電力Pに対応する電力を蓄電ユニットBUに送信する。上述した情報処理は、このように構成された情報処理システム1に対しても適用可能である。  The object to be connected to the power storage unit BU is not limited to the above-mentioned driving device M1, which is driven by power from the power storage unit BU. For example, the power storage unit BU may be connected to a charging device that supplies power to the power storage unit BU. The charging device includes, for example, a power source such as a commercial power source, and a power converter that converts the power from the power source. In this case, the information processing device 4 of the power storage unit BU transmits the required power P to the charging device, and the power storage unit BU transmits power corresponding to the required power P to the power storage unit BU. The information processing described above can also be applied to an information processing system 1 configured in this way.
 上記実施形態では蓄電装置2が熱源Qから発熱する場合について説明したが、蓄電装置2が熱源Qから吸熱する場合であっても同様に成り立つ。すなわち、筐体21の温度が熱浴32等の温度より低い等の事情により、熱電変換部31の第1の領域311の温度が第2の領域312の温度より低い場合についても同様に成り立つ。したがって、蓄電装置2と熱電変換部31との熱交換は、蓄電装置2から熱電変換部31に熱が伝わる場合に限られず、熱電変換部31から蓄電装置2に熱が伝わる場合を含み得る。 In the above embodiment, the case where the power storage device 2 generates heat from the heat source Q has been described, but the same applies when the power storage device 2 absorbs heat from the heat source Q. In other words, the same applies when the temperature of the first region 311 of the thermoelectric conversion unit 31 is lower than the temperature of the second region 312 due to circumstances such as the temperature of the housing 21 being lower than the temperature of the heat bath 32, etc. Therefore, the heat exchange between the power storage device 2 and the thermoelectric conversion unit 31 is not limited to the case where heat is transferred from the power storage device 2 to the thermoelectric conversion unit 31, but can also include the case where heat is transferred from the thermoelectric conversion unit 31 to the power storage device 2.
 情報処理システム1で行われる情報処理は、オンプレミス形態であってもよく、クラウド形態であってもよい。クラウド形態の外部機器としては、例えば、SaaS(Software as a Service)、クラウドコンピューティングという形態で、上述の機能や処理を提供してもよい。 The information processing performed by the information processing system 1 may be on-premise or in cloud form. As an external device in cloud form, the above-mentioned functions and processing may be provided in the form of, for example, SaaS (Software as a Service) or cloud computing.
 上記実施形態では、信号処理システム3および情報処理装置4が種々の記憶・制御を行ったが、信号処理システム3および情報処理装置4に代えて、複数の外部装置が用いられてもよい。すなわち、種々の情報やプログラムは、ブロックチェーン技術等を用いて複数の外部装置に分散して記憶されてもよい。 In the above embodiment, the signal processing system 3 and the information processing device 4 performed various storage and control operations, but multiple external devices may be used instead of the signal processing system 3 and the information processing device 4. In other words, various information and programs may be distributed and stored in multiple external devices using blockchain technology, etc.
 上記実施形態は、情報処理システム1に限定されず、情報処理方法であっても、情報処理プログラムであってもよい。 The above embodiment is not limited to the information processing system 1, but may be an information processing method or an information processing program.
 したがって、以上をまとめると、情報処理システム1が実行する情報処理方法は、次の各ステップを含む。熱電変換ステップは、機器としての蓄電装置2との熱交換によって熱電変換部31に生じる温度勾配Jに応じて熱起電力Eを発生させる。機器としての蓄電装置2は、当該機器の動作状態に応じて熱を生成するように構成される。判定部433は、熱起電力Eに応じて機器の動作状態を判定する。 Therefore, to summarize the above, the information processing method executed by the information processing system 1 includes the following steps. The thermoelectric conversion step generates a thermoelectromotive force E according to a temperature gradient J generated in the thermoelectric conversion unit 31 by heat exchange with the power storage device 2 as a device. The power storage device 2 as a device is configured to generate heat according to the operating state of the device. The determination unit 433 determines the operating state of the device according to the thermoelectromotive force E.
 また、以上をまとめると、情報処理システム1が実行する情報処理方法は、次の各ステップを含む。熱電変換ステップでは、蓄電装置2との熱交換によって温度勾配Jが生じるように構成され、当該温度勾配Jに基づき熱起電力Eを発生させる。取得ステップでは、熱起電力Eを取得する。検出ステップでは、熱起電力Eに基づき、発熱を伴う蓄電装置2の異常動作を検出する。 In addition, to summarize the above, the information processing method executed by the information processing system 1 includes the following steps. In the thermoelectric conversion step, a temperature gradient J is generated by heat exchange with the power storage device 2, and a thermoelectromotive force E is generated based on the temperature gradient J. In the acquisition step, the thermoelectromotive force E is acquired. In the detection step, an abnormal operation of the power storage device 2 involving heat generation is detected based on the thermoelectromotive force E.
 このような構成によれば、蓄電装置2の発熱による温度勾配Jの変化は、蓄電装置2の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で蓄電装置2の異常発熱を検出することができる。 With this configuration, the change in temperature gradient J due to heat generation from the storage device 2 changes in a shorter time than the change in temperature due to heat generation from the storage device 2, so abnormal heat generation from the storage device 2 can be detected with higher sensitivity than in the past.
 次に記載の各態様で提供されてもよい。  May be provided in any of the following forms:
(1)情報処理システムであって、熱電変換部と、信号処理部とを備え、前記熱電変換部は、機器との熱交換によって温度勾配が生じるように構成され、当該温度勾配に基づき熱起電力を発生させるように構成され、前記信号処理部は、取得部と、検出部とを備え、前記取得部は、前記熱起電力を取得するように構成され、前記検出部は、前記熱起電力に基づき、発熱を伴う前記機器の異常動作を検出するように構成される、もの。 (1) An information processing system comprising a thermoelectric conversion unit and a signal processing unit, the thermoelectric conversion unit configured to generate a temperature gradient by heat exchange with an equipment and configured to generate a thermoelectromotive force based on the temperature gradient, the signal processing unit comprising an acquisition unit and a detection unit, the acquisition unit configured to acquire the thermoelectromotive force, and the detection unit configured to detect abnormal operation of the equipment involving heat generation based on the thermoelectromotive force.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の異常発熱を検出することができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
(2)情報処理システムであって、熱電変換部と、信号処理部とを備え、前記熱電変換部は、機器との熱交換によって当該熱電変換部に生じる温度勾配に応じて、熱起電力を発生させるように構成され、前記信号処理部は、取得部と、機器制御部とを備え、前記取得部は、前記熱起電力を取得するように構成され、前記機器制御部は、取得された前記熱起電力に基づき前記機器の動作を制御するように構成される、もの。 (2) An information processing system comprising a thermoelectric conversion unit and a signal processing unit, the thermoelectric conversion unit configured to generate a thermoelectromotive force in response to a temperature gradient generated in the thermoelectric conversion unit by heat exchange with an equipment, the signal processing unit comprising an acquisition unit and an equipment control unit, the acquisition unit configured to acquire the thermoelectromotive force, and the equipment control unit configured to control the operation of the equipment based on the acquired thermoelectromotive force.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して速い応答速度で機器の制御を行うことができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to control the device with a faster response speed than before.
(3)上記(1)又は(2)に記載の情報処理システムにおいて、前記熱電変換部は、前記温度勾配とは異なる方向に生じる成分を含む前記熱起電力を発生させるように構成される、もの。 (3) In the information processing system described in (1) or (2) above, the thermoelectric conversion unit is configured to generate the thermoelectromotive force including a component that occurs in a direction different from the temperature gradient.
 このような構成によれば、温度勾配とは異なる方向から熱起電力を測定しやすくなるため、機器と熱電変換部の間の配線等を減らすことができる。したがって、温度勾配に対する感度の低下を抑制することができる。 This configuration makes it easier to measure the thermoelectromotive force from a direction different from the temperature gradient, which reduces the amount of wiring between the device and the thermoelectric conversion unit. This makes it possible to suppress a decrease in sensitivity to temperature gradients.
(4)上記(1)~(3)の何れか1つに記載の情報処理システムにおいて、さらに、第1の熱伝導部を備え、前記第1の熱伝導部は、前記機器と前記熱電変換部とを接続する、もの。 (4) The information processing system according to any one of (1) to (3) above, further comprising a first heat conducting unit, the first heat conducting unit connecting the device and the thermoelectric conversion unit.
 このような構成によれば、機器と熱電変換部との熱交換が第1の熱伝導部を介して行われるため、機器の発熱位置が異なることによる熱起電力のばらつきを低減しやすくなる。 With this configuration, heat exchange between the device and the thermoelectric conversion unit occurs via the first thermal conduction unit, making it easier to reduce variations in thermoelectromotive force due to different heat generation positions in the device.
(5)上記(4)に記載の情報処理システムにおいて、前記第1の熱伝導部は、突出部を備え、前記突出部は、所定の第1の方向から前記機器を平面視した場合に、当該機器から突出するように構成され、前記熱電変換部は、前記突出部に接続されている、もの。 (5) In the information processing system described in (4) above, the first thermal conduction section has a protrusion, the protrusion is configured to protrude from the device when the device is viewed in a plan view from a predetermined first direction, and the thermoelectric conversion section is connected to the protrusion.
 このような構成によれば、熱電変換部の熱起電力をより測定しやすくなるため、機器等の配置の自由度を向上することができる。 This configuration makes it easier to measure the thermoelectromotive force of the thermoelectric conversion unit, improving the freedom of arrangement of equipment, etc.
(6)上記(1)~(5)の何れか1つに記載の情報処理システムにおいて、さらに、第2の熱伝導部を備え、前記熱電変換部は、前記機器との熱交換が行われる第1の領域と、前記第1の領域から前記温度勾配の方向に位置する第2の領域とを含み、前記第2の熱伝導部は、前記第2の領域に接続される、もの。 (6) The information processing system according to any one of (1) to (5) above, further comprising a second heat conducting unit, the thermoelectric conversion unit including a first region in which heat exchange with the device takes place and a second region located from the first region in the direction of the temperature gradient, and the second heat conducting unit connected to the second region.
 このような構成によれば、第2の熱伝導部の温度に応じて熱電変換部に生じる温度勾配を把握することができるため、熱起電力から得られる情報を増やすことができる。したがって、より多様な熱に関する処理を行うことができる。 With this configuration, it is possible to grasp the temperature gradient that occurs in the thermoelectric conversion section according to the temperature of the second thermal conduction section, and therefore to increase the information that can be obtained from the thermoelectromotive force. Therefore, it is possible to perform a wider variety of heat-related processing.
(7)上記(6)に記載の情報処理システムにおいて、前記第2の熱伝導部は、前記第2の熱伝導部の温度を調整可能な温度調整部に接続される、もの。 (7) In the information processing system described in (6) above, the second heat conducting unit is connected to a temperature adjustment unit capable of adjusting the temperature of the second heat conducting unit.
 このような構成によれば、熱電変換部の温度勾配をより正確に把握しやすくなる。 This configuration makes it easier to grasp the temperature gradient of the thermoelectric conversion section more accurately.
(8)上記(6)または(7)に記載の情報処理システムにおいて、前記第2の熱伝導部は、前記熱交換によって前記熱電変換部に流入する熱の少なくとも一部を放熱可能な放熱部を備える、もの。 (8) In the information processing system described in (6) or (7) above, the second thermal conduction section is provided with a heat dissipation section capable of dissipating at least a portion of the heat that flows into the thermoelectric conversion section by the heat exchange.
 このような構成によれば、機器の発熱により生じた熱を放熱部から放出することができるため、熱電変換部の過度な温度上昇を抑制することができる。 With this configuration, heat generated by the device can be released from the heat dissipation section, preventing excessive temperature rise in the thermoelectric conversion section.
(9)上記(6)~(8)の何れか1つに記載の情報処理システムにおいて、前記第2の熱伝導部は、所定の基準温度の熱浴に接続されることにより、前記第2の領域の温度をほぼ当該基準温度に保つように構成される、もの。 (9) In the information processing system described in any one of (6) to (8) above, the second thermal conduction section is configured to be connected to a heat bath having a predetermined reference temperature, thereby maintaining the temperature of the second region at approximately the reference temperature.
 このような構成によれば、熱電変換部の動作温度が安定するため、機器の発熱状態の検出精度を向上することができる。 With this configuration, the operating temperature of the thermoelectric conversion unit is stabilized, improving the accuracy of detecting the heat generation state of the device.
(10)上記(9)に記載の情報処理システムにおいて、前記信号処理部は、さらに比較部と、変更部とを備え、前記比較部は、前記熱電変換部の前記熱起電力に起因する第1の信号を、所定の基準値と比較するように構成され、前記変更部は、前記第1の信号の比較結果に基づき、前記機器の動作を変更するように構成される、もの。 (10) In the information processing system described in (9) above, the signal processing unit further includes a comparison unit and a change unit, the comparison unit is configured to compare a first signal caused by the thermoelectromotive force of the thermoelectric conversion unit with a predetermined reference value, and the change unit is configured to change the operation of the device based on the comparison result of the first signal.
 このような構成によれば、熱電変換部から生じる熱起電力を基準値との差異として把握することができる。したがって、熱電変換部から出力される信号によって機器の動作を安定的に変更しやすくなる。 With this configuration, the thermoelectromotive force generated by the thermoelectric conversion unit can be understood as the difference from a reference value. Therefore, it becomes easier to stably change the operation of the device using the signal output from the thermoelectric conversion unit.
(11)上記(1)~(10)の何れか1つに記載の情報処理システムにおいて、前記機器は電力の充放電が可能な蓄電装置であり、前記信号処理部は、さらに第1の推定部を備え、前記取得部は、前記蓄電装置から出力される第2の信号に関する情報を取得可能に構成され、前記第1の推定部は、前記第2の信号の出力履歴と、前記熱起電力とに基づき、前記蓄電装置の充電状態または健康状態を推定するように構成される、もの。 (11) In the information processing system described in any one of (1) to (10) above, the device is a power storage device capable of charging and discharging power, the signal processing unit further includes a first estimation unit, the acquisition unit is configured to be able to acquire information about a second signal output from the power storage device, and the first estimation unit is configured to estimate the charge state or health state of the power storage device based on the output history of the second signal and the thermoelectromotive force.
 このような構成によれば、蓄電装置の動作をより安定させることができる。 This configuration makes it possible to make the operation of the power storage device more stable.
(12)上記(1)~(11)の何れか1つに記載の情報処理システムにおいて、前記熱電変換部は、発熱による前記機器の表面の温度変化に応じて前記熱起電力が変化するように構成され、前記信号処理部は、さらに第2の推定部を備え、前記第2の推定部は、予め定められた前記機器の熱伝導モデルと、前記熱起電力に基づく前記機器の表面の温度とに基づき、前記機器の表面に対する前記機器の発熱位置の位置情報を推定するように構成される、もの。 (12) In the information processing system described in any one of (1) to (11) above, the thermoelectric conversion unit is configured to change the thermoelectromotive force in response to a change in temperature of the surface of the device due to heat generation, and the signal processing unit further includes a second estimation unit, and the second estimation unit is configured to estimate position information of the heat generation position of the device relative to the surface of the device based on a predetermined thermal conduction model of the device and the temperature of the surface of the device based on the thermoelectromotive force.
 このような構成によれば、機器の内部に存在する熱源の位置を把握しやすくなる。 This configuration makes it easier to determine the location of heat sources inside the device.
(13)上記(1)~(12)の何れか1つに記載の情報処理システムにおいて、さらに、前記機器を含む、もの。 (13) An information processing system according to any one of (1) to (12) above, further comprising the device.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の異常発熱を検出することができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to detect abnormal heat generation in the device with higher sensitivity than before.
(14)情報処理方法であって、次の各ステップを含み、熱電変換ステップでは、機器との熱交換によって熱電変換部に生じる温度勾配に応じて熱起電力を発生させ、ここで、前記機器は、当該機器の動作状態に応じて熱を生成するように構成され、判定ステップでは、前記熱起電力に応じて前記機器の動作状態を判定する、もの。 (14) An information processing method, comprising the following steps: in the thermoelectric conversion step, a thermoelectromotive force is generated in response to a temperature gradient generated in a thermoelectric conversion unit by heat exchange with an equipment, the equipment being configured to generate heat in response to the operating state of the equipment; and in the determination step, the operating state of the equipment is determined in response to the thermoelectromotive force.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の動作状態を判定することができる。 With this configuration, the change in temperature gradient caused by heat generation from the device changes in a shorter time than the change in temperature caused by heat generation from the device, making it possible to determine the operating state of the device with higher sensitivity than before.
(15)情報処理方法であって、次の各ステップを含み、熱電変換ステップでは、機器との熱交換によって温度勾配が生じるように構成され、当該温度勾配に基づき熱起電力を発生させ、取得ステップでは、前記熱起電力を取得し、検出ステップでは、前記熱起電力に基づき、発熱を伴う前記機器の異常動作を検出する、方法。 (15) An information processing method, comprising the following steps: in the thermoelectric conversion step, a temperature gradient is generated by heat exchange with an equipment, a thermoelectromotive force is generated based on the temperature gradient, in the acquisition step, the thermoelectromotive force is acquired, and in the detection step, abnormal operation of the equipment accompanied by heat generation is detected based on the thermoelectromotive force.
 このような構成によれば、機器の発熱による温度勾配の変化は、機器の発熱による温度の変化に比べて短時間で変化するため、従来に比して高い感度で機器の異常発熱を検出することができる。
 もちろん、この限りではない。
With this configuration, the change in temperature gradient due to heat generation in the equipment changes in a short time compared to the change in temperature due to heat generation in the equipment, so abnormal heat generation in the equipment can be detected with higher sensitivity than in the past.
Of course, this is not the case.
 最後に、本開示に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Finally, various embodiments of the present disclosure have been described, but these are presented as examples and are not intended to limit the scope of the invention. The novel embodiments can be embodied in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. The embodiments and modifications thereof are within the scope and gist of the invention, and are included in the scope of the invention and its equivalents as set forth in the claims.
 さらに、以下の観点にも留意されたい。 In addition, please take note of the following points:
 従来までは、一点の温度でシステムの安全性を作る取り組みを行っていた。現状、温度センサを用いて、バッテリの異常発熱を検知している。この為、温度が上がった異常状態になった場合の検知しかできない。また、局所的な温度上昇しかわからないため、かなりの発熱にならないとわからない可能性がある。現状、温度で異常発熱を測定している為、温まらないと異常がわからない。局所的な温度しかわからない。  Previously, efforts were made to ensure the safety of a system by measuring the temperature at a single point. Currently, a temperature sensor is used to detect abnormal heat generation in the battery. Because of this, it is only possible to detect when the temperature rises and an abnormal condition occurs. Also, since it only detects localized temperature increases, there is a possibility that it will not be detected until the temperature becomes significant. Currently, since abnormal heat generation is measured by temperature, an abnormality cannot be detected until the battery warms up. Only localized temperature can be detected.
 発熱量のわかる薄膜熱流センサを用いることにより、異常状態が進行する前に、電池の放電・充電を止めることができる。また、面や電熱路を用いて範囲計測が可能なため、異常個所を見逃しにくい構成が可能となる。発熱量を直接計測できるため、より早い計測が可能であり、また、網羅的な異常発熱検知が可能である。 By using a thin-film heat flow sensor that can measure the amount of heat generated, it is possible to stop the discharge or charging of the battery before an abnormal condition progresses. In addition, because range measurements are possible using a surface or heat path, it is possible to create a configuration that makes it difficult to overlook abnormal areas. As the amount of heat generated can be measured directly, faster measurements are possible, and comprehensive abnormal heat generation detection is also possible.
 本実施形態について説明する。本実施形態では、発熱量をモニターする熱流センサを電池パックにつけることにより、温度よりも、俊敏に異常検知ができる。さらに、大きい面積に取り付けることにより、より大きな範囲で異常検知が可能となる。 This embodiment will be described. In this embodiment, a heat flow sensor that monitors the amount of heat generated is attached to the battery pack, allowing for more immediate abnormality detection than temperature detection. Furthermore, by attaching the sensor to a large area, abnormalities can be detected over a larger range.
 本実施形態に係る熱流センサは、応答性の観点から、薄膜型の異常ネルンスト効果に基づく熱流センサであることが好ましい。熱流センサ(すなわち熱電変換デバイス)の素子は、異常ネルンスト効果を示す化合物により構成されてもよい。該素子は、例えば、ワイル半金属と呼ばれる、トポロジカル強磁性体やトポロジカル反強磁性体により構成されるものであってもよいし、フェリ磁性体により構成されるものであってもよいし、これらの組み合わせであってもよい。トポロジカル強磁性体は、CoMnGa等のCoTX組成の金属(XはSi、Ge、Sn、Al、及びGaの何れか一つ)であってもよいし、組成式がFeXで表される金属(XはAlやGa等の典型元素若しくは遷移元素であるストイキオメトリックな組成)など、公知のトポロジカル強磁性体の合金であってよい。また、トポロジカル反強磁性体はMnX(XはSn、Ge、Ga、Pt、Ir、Rhから選ばれる1種以上の元素、またはこれらの化合物)など、公知のトポロジカル反強磁性体であってよい。素子を構成する化合物は、例えば、遷移金属を有する合金からなり、合金は、遷移金属によるカゴメ格子面を備えた結晶構造を有する化合物であり、異常ネルンスト効果を示すものであってもよい。フェリ磁性体も、異常ネルンスト効果が発現するものであれば特に限定されない。素子の構造については特に限定されず、公知のものを利用できる。 From the viewpoint of responsiveness, the heat flow sensor according to this embodiment is preferably a thin-film type heat flow sensor based on the anomalous Nernst effect. The element of the heat flow sensor (i.e., thermoelectric conversion device) may be composed of a compound exhibiting the anomalous Nernst effect. The element may be composed of, for example, a topological ferromagnet or a topological antiferromagnet called a Weyl semimetal, or may be composed of a ferrimagnetic material, or may be a combination of these. The topological ferromagnet may be a metal having a composition of Co2TX such as Co2MnGa (X is any one of Si, Ge, Sn, Al, and Ga), or may be an alloy of a known topological ferromagnet such as a metal having a composition formula of Fe3X (X is a stoichiometric composition in which a typical element or a transition element such as Al or Ga is used). The topological antiferromagnet may be a known topological antiferromagnet such as Mn3X (X is one or more elements selected from Sn, Ge, Ga, Pt, Ir, and Rh, or a compound thereof). The compound constituting the element may be, for example, an alloy containing a transition metal, and the alloy may be a compound having a crystal structure with a kagome lattice plane of the transition metal, and may exhibit the anomalous Nernst effect. The ferrimagnetic material is also not particularly limited as long as it exhibits the anomalous Nernst effect. The structure of the element is not particularly limited, and a known one may be used.
 また、直接電池パックに熱流センサが設けられても良い。薄膜熱流センサであるため、センサ用のPCB等の基板は必要ない。熱流センサの設置場所は、各々のセルにつけてもよく、マルチセルの場合はセルごとに設置してもよい。 Alternatively, the heat flow sensor may be installed directly on the battery pack. Because it is a thin-film heat flow sensor, a PCB or other substrate for the sensor is not required. The heat flow sensor may be installed on each cell, or in the case of a multi-cell battery, it may be installed on each cell.
 また、ヒートシンクが熱流センサに設けられてもよい。ヒートシンクは公知のものでよいが、構造は適宜設計が必要である。熱流センサはヒートシンクにより、熱流を調整できるため、ヒートシンクをつけた熱設計をしてもよい。ヒートシンクは熱流路が担保されておればよく、各々の設計ごとに最適な形状を使ってもよいことは言うまでもない。また、ヒートシンクを使う場合に限らず、空冷・水冷等の冷却手段を使って、熱状態を管理するとなおよく、その際温度センサを用いて、熱流センサの温度管理をするとさらに性能がよくなることは言うまでもない。また、このセルがマルチセルになってもよいことは言うまでもない。 A heat sink may also be provided for the heat flow sensor. The heat sink may be a publicly known type, but the structure must be designed appropriately. The heat flow sensor can adjust the heat flow using a heat sink, so a thermal design with a heat sink may be used. As long as the heat flow path is guaranteed, it goes without saying that the optimal shape may be used for each design. In addition, it is not limited to using a heat sink, but it is even better to use a cooling means such as air cooling or water cooling to manage the thermal state, and it goes without saying that performance will be further improved if a temperature sensor is used to manage the temperature of the heat flow sensor. It also goes without saying that this cell may be a multi-cell.
 また、熱流センサが電池セルの内部に設けられてもよい。薄膜熱流センサであるため、端子を外に出せれば電池セル内部に入れても、発熱検知をすることが可能である。その際の設置場所は、ケースと電池内部、電極間、など化学的に安定入れる場所であれば問題ない。その際、電極・ケースなどをヒートシンクとして使っても問題ない。また、そのセルがマルチセルになっていてもよい。 The heat flow sensor may also be installed inside the battery cell. Because it is a thin-film heat flow sensor, it is possible to detect heat generation even if it is placed inside the battery cell as long as the terminals can be exposed. In this case, there is no problem with the installation location as long as it is somewhere chemically stable, such as between the case and the inside of the battery, or between the electrodes. In this case, there is no problem with using the electrodes, case, etc. as a heat sink. Also, the cell may be a multi-cell.
 また、熱を導く導熱路が設けられてもよい。熱流センサに対して、熱を導く導熱路を作り、熱を導き、熱流を検出する。この為、センサを入れにくいところでも、検出することが可能になる。また、導熱路と熱流センサは電気的絶縁されつつも、熱は通すファインセラミックス・半導体・樹脂・ペースト材料などを用いるとなおよい。また、導熱路に熱流センサが、電気的に接触してもノイズが大きくなるが、測定はできる。導熱路は、電池材料のAl電極などの既存の物質を使ってもよい。 A heat conduction path may also be provided to conduct heat. A heat conduction path is created to the heat flow sensor, the heat is conducted, and the heat flow is detected. This makes it possible to detect even in places where it is difficult to insert a sensor. It is even better if the heat conduction path and heat flow sensor are electrically insulated but use fine ceramics, semiconductors, resins, paste materials, etc. that allow heat to pass through. Even if the heat flow sensor comes into electrical contact with the heat conduction path, noise will increase, but measurements can still be made. The heat conduction path may be made of existing materials such as Al electrodes, a battery material.
 本実施形態に係る熱流検出のシステムに基づく電池のフェールセーフシステムの一例を示す。発熱量Qの絶対値または傾き、または、発熱量から導き出される値、または、発熱量とほかのパラメータを使った演算値を判定値として、電池の充電・放電を切ることができる。かかるフェールセーフ機能を搭載することで、より確実なバッテリーマネージメントを行う。以下の式はアナログ回路で記載しているが、デジタル制御を行っても問題ない。また、上記情報を使い、電池の充電・放電の制御にフィードバックを行い、より確実なバッテリーマネージメントを行うこともできる。 An example of a battery fail-safe system based on the heat flow detection system of this embodiment is shown below. Battery charging/discharging can be cut off using the absolute value or slope of the amount of heat generated Q, or a value derived from the amount of heat generated, or a calculated value using the amount of heat generated and other parameters as the judgment value. By incorporating such a fail-safe function, more reliable battery management can be performed. The following formula is written using an analog circuit, but digital control can also be used without any problems. The above information can also be used to provide feedback to the control of battery charging/discharging, allowing more reliable battery management.
 また、複数の電池については、バッテリ充電または放電時に、発熱が大きいと検出されるものは、充電または放電を一時的に止め、熱流が小さくなるようなDUTYでスイッチングを行うことで、複数の電池から必要な電力を取り出す。バランシングできれば、これ以外の方法でも構わない。 Furthermore, for multiple batteries, if a large amount of heat is detected during battery charging or discharging, charging or discharging is temporarily stopped and switching is performed at a duty ratio that reduces the heat flow, thereby extracting the necessary power from the multiple batteries. Other methods are also acceptable as long as balancing is possible.
 また、従来まで、電池内部インピーダンス・電流・電圧・充放電回数・温度履歴の情報で、電池のSOH(State of Health)を推定していたが、そこに発熱量を入れることにより、よりSOHの精度を上げることができる。例えば、同じ状態の電圧・電流駆動条件での発熱量をモニターすることにより、電池の劣化を検出することは可能である。また、単位エネルギーやそれに類似するパラメータで比較をすれば、リアルタイムDeSOHの比較が可能である。また、それ以外の電池の特徴パラメータの推定に使えるのは言うまでもない。また、このデータから、電池の寿命を算出し、交換を促すことができる。 Also, up until now, the SOH (State of Health) of a battery has been estimated using information on the battery's internal impedance, current, voltage, number of charge/discharge cycles, and temperature history, but by adding the amount of heat generated, the accuracy of the SOH can be improved. For example, it is possible to detect battery deterioration by monitoring the amount of heat generated under the same voltage and current driving conditions. Also, by comparing unit energy or similar parameters, it is possible to compare real-time DeSOH. Needless to say, it can also be used to estimate other characteristic parameters of the battery. Furthermore, this data can be used to calculate the battery's lifespan and encourage replacement.
 また、他の実施形態として、電池の発熱量から、電池の深部温度を計測することができる。この計測情報をシステムに用いてもよい。モデルは簡易モデルだが、システムに合わせて推定モデルを作ればよい。 In another embodiment, the deep temperature of the battery can be measured from the amount of heat generated by the battery. This measurement information can be used in the system. The model is a simple one, but an estimation model can be created to suit the system.
 また、センサと電池の間に発熱体を設けてクローズド制御を行い、モデル予測・測定してもよい。さらにその制御値や熱流、温度応答などから、内部パラメータを推定し、R1、C1の推定及び、発熱源までの距離などの推定をし、劣化等の影響度をより詳細に検知することができる。R1、C1に対する情報が取れるようになるので、外乱(個体差・経年変化)に強い測定が可能となる。 Also, a heating element can be placed between the sensor and the battery to perform closed control and perform model prediction and measurement. Furthermore, internal parameters can be estimated from the control value, heat flow, temperature response, etc., and R1, C1, and the distance to the heat source can be estimated, making it possible to detect the degree of influence of degradation, etc. in more detail. Since information on R1 and C1 can be obtained, it becomes possible to make measurements that are resistant to disturbances (individual differences and changes over time).
1:情報処理システム,2:蓄電装置,3:信号処理システム,4:情報処理装置,6:温度調整素子,21:筐体,22:蓄電部,31:熱電変換部,32:熱浴,33:第1の熱伝導部,34:第2の熱伝導部,35:信号処理回路,36:スイッチ,40:通信バス,41:通信部,42:記憶部,43:プロセッサ,44:表示部,45:入力部,311:第1の領域,312:第2の領域,331:主面部,332:突出部,341:接触部,342:熱輸送部,351:比較部,352:AC/DCコンバータ,353:キャパシタ,431:取得部,432:検出部,433:判定部,434:変更部,435:推定部,436:機器制御部,437:表示処理部,BS:蓄電システム,BU:蓄電ユニット,C1:熱容量,D1:第1の方向,D2:第2の方向,D3:第3の方向,E:熱起電力,J:温度勾配,M:熱回路モデル,M1:駆動機器,P:要求電力,Pmax:最大出力電力,Q:熱源,R1:熱抵抗,Tb:基準温度,Td:検出温度,Vt1:閾値電圧,ΔT:温度差 1: Information processing system, 2: Power storage device, 3: Signal processing system, 4: Information processing device, 6: Temperature adjustment element, 21: Housing, 22: Power storage section, 31: Thermoelectric conversion section, 32: Heat bath, 33: First heat conduction section, 34: Second heat conduction section, 35: Signal processing circuit, 36: Switch, 40: Communication bus, 41: Communication section, 42: Memory section, 43: Processor, 44: Display section, 45: Input section, 311: First region, 312: Second region, 331: Main surface section, 332: Protrusion section, 341: Contact section, 342: Heat transport section, 351: Comparison section, 352: A C/DC converter, 353: capacitor, 431: acquisition unit, 432: detection unit, 433: judgment unit, 434: change unit, 435: estimation unit, 436: device control unit, 437: display processing unit, BS: power storage system, BU: power storage unit, C1: heat capacity, D1: first direction, D2: second direction, D3: third direction, E: thermoelectromotive force, J: temperature gradient, M: thermal circuit model, M1: driving device, P: required power, Pmax: maximum output power, Q: heat source, R1: thermal resistance, Tb: reference temperature, Td: detection temperature, Vt1: threshold voltage, ΔT: temperature difference

Claims (15)

  1. 情報処理システムであって、
     熱電変換部と、信号処理部とを備え、
     前記熱電変換部は、機器との熱交換によって温度勾配が生じるように構成され、当該温度勾配に基づき熱起電力を発生させるように構成され、
     前記信号処理部は、取得部と、検出部とを備え、
     前記取得部は、前記熱起電力を取得するように構成され、
     前記検出部は、前記熱起電力に基づき、発熱を伴う前記機器の異常動作を検出するように構成される、もの。
    An information processing system,
    The device includes a thermoelectric conversion unit and a signal processing unit.
    The thermoelectric conversion unit is configured to generate a temperature gradient by heat exchange with the device, and to generate a thermoelectromotive force based on the temperature gradient,
    The signal processing unit includes an acquisition unit and a detection unit.
    The acquisition unit is configured to acquire the thermoelectromotive force,
    The detection unit is configured to detect abnormal operation of the device accompanied by heat generation based on the thermoelectromotive force.
  2. 情報処理システムであって、
     熱電変換部と、信号処理部とを備え、
     前記熱電変換部は、機器との熱交換によって当該熱電変換部に生じる温度勾配に応じて、熱起電力を発生させるように構成され、
     前記信号処理部は、取得部と、機器制御部とを備え、
     前記取得部は、前記熱起電力を取得するように構成され、
     前記機器制御部は、取得された前記熱起電力に基づき前記機器の動作を制御するように構成される、もの。
    An information processing system,
    The device includes a thermoelectric conversion unit and a signal processing unit.
    the thermoelectric conversion unit is configured to generate a thermoelectromotive force in response to a temperature gradient generated in the thermoelectric conversion unit by heat exchange with the device;
    The signal processing unit includes an acquisition unit and an equipment control unit.
    The acquisition unit is configured to acquire the thermoelectromotive force,
    The equipment control unit is configured to control an operation of the equipment based on the acquired thermoelectromotive force.
  3. 請求項1又は請求項2に記載の情報処理システムにおいて、
     前記熱電変換部は、前記温度勾配とは異なる方向に生じる成分を含む前記熱起電力を発生させるように構成される、もの。
    3. The information processing system according to claim 1,
    The thermoelectric conversion unit is configured to generate the thermoelectromotive force including a component generated in a direction different from the temperature gradient.
  4. 請求項1~請求項3の何れか1つに記載の情報処理システムにおいて、
     さらに、第1の熱伝導部を備え、
     前記第1の熱伝導部は、前記機器と前記熱電変換部とを接続する、もの。
    In the information processing system according to any one of claims 1 to 3,
    Further, a first heat conductive portion is provided,
    The first thermal conductive portion connects the device and the thermoelectric conversion portion.
  5. 請求項4に記載の情報処理システムにおいて、
     前記第1の熱伝導部は、突出部を備え、
     前記突出部は、所定の第1の方向から前記機器を平面視した場合に、当該機器から突出するように構成され、
     前記熱電変換部は、前記突出部に接続されている、もの。
    5. The information processing system according to claim 4,
    the first thermally conductive portion includes a protrusion;
    The protrusion is configured to protrude from the device when the device is viewed in a plan view from a predetermined first direction,
    The thermoelectric conversion portion is connected to the protrusion.
  6. 請求項1~請求項5の何れか1つに記載の情報処理システムにおいて、
     さらに、第2の熱伝導部を備え、
     前記熱電変換部は、前記機器との熱交換が行われる第1の領域と、前記第1の領域から前記温度勾配の方向に位置する第2の領域とを含み、
     前記第2の熱伝導部は、前記第2の領域に接続される、もの。
    In the information processing system according to any one of claims 1 to 5,
    Further, a second heat conductive portion is provided,
    the thermoelectric conversion unit includes a first region in which heat exchange with the device occurs, and a second region located in a direction of the temperature gradient from the first region,
    The second thermally conductive portion is connected to the second region.
  7. 請求項6に記載の情報処理システムにおいて、
     前記第2の熱伝導部は、前記第2の熱伝導部の温度を調整可能な温度調整部に接続される、もの。
    7. The information processing system according to claim 6,
    The second thermal conductive portion is connected to a temperature adjustment portion capable of adjusting a temperature of the second thermal conductive portion.
  8. 請求項6または請求項7に記載の情報処理システムにおいて、
     前記第2の熱伝導部は、前記熱交換によって前記熱電変換部に流入する熱の少なくとも一部を放熱可能な放熱部を備える、もの。
    8. The information processing system according to claim 6,
    The second thermal conduction portion includes a heat dissipation portion capable of dissipating at least a portion of the heat that flows into the thermoelectric conversion portion by the heat exchange.
  9. 請求項6~請求項8の何れか1つに記載の情報処理システムにおいて、
     前記第2の熱伝導部は、所定の基準温度の熱浴に接続されることにより、前記第2の領域の温度をほぼ当該基準温度に保つように構成される、もの。
    In the information processing system according to any one of claims 6 to 8,
    The second thermally conductive portion is configured to be connected to a heat bath at a predetermined reference temperature, thereby maintaining the temperature of the second region at approximately the reference temperature.
  10. 請求項9に記載の情報処理システムにおいて、
     前記信号処理部は、さらに比較部と、変更部とを備え、
     前記比較部は、前記熱電変換部の前記熱起電力に起因する第1の信号を、所定の基準値と比較するように構成され、
     前記変更部は、前記第1の信号の比較結果に基づき、前記機器の動作を変更するように構成される、もの。
    10. The information processing system according to claim 9,
    The signal processing unit further includes a comparison unit and a change unit.
    the comparison unit is configured to compare a first signal caused by the thermoelectromotive force of the thermoelectric conversion unit with a predetermined reference value;
    The modification unit is configured to modify an operation of the device based on a comparison result of the first signal.
  11. 請求項1~請求項10の何れか1つに記載の情報処理システムにおいて、
     前記機器は電力の充放電が可能な蓄電装置であり、
     前記信号処理部は、さらに第1の推定部を備え、
     前記取得部は、前記蓄電装置から出力される第2の信号に関する情報を取得可能に構成され、
     前記第1の推定部は、前記第2の信号の出力履歴と、前記熱起電力とに基づき、前記蓄電装置の充電状態または健康状態を推定するように構成される、もの。
    In the information processing system according to any one of claims 1 to 10,
    The device is an electricity storage device capable of charging and discharging electricity,
    The signal processing unit further includes a first estimation unit,
    the acquisition unit is configured to be able to acquire information regarding a second signal output from the power storage device,
    The first estimation unit is configured to estimate a state of charge or a state of health of the power storage device based on an output history of the second signal and the thermoelectromotive force.
  12. 請求項1~請求項11の何れか1つに記載の情報処理システムにおいて、
     前記熱電変換部は、発熱による前記機器の表面の温度変化に応じて前記熱起電力が変化するように構成され、
     前記信号処理部は、さらに第2の推定部を備え、
     前記第2の推定部は、予め定められた前記機器の熱伝導モデルと、前記熱起電力に基づく前記機器の表面の温度とに基づき、前記機器の表面に対する前記機器の発熱位置の位置情報を推定するように構成される、もの。
    In the information processing system according to any one of claims 1 to 11,
    The thermoelectric conversion unit is configured so that the thermoelectromotive force changes in response to a temperature change on a surface of the device due to heat generation,
    The signal processing unit further includes a second estimation unit,
    The second estimation unit is configured to estimate position information of a heat generation position of the equipment relative to a surface of the equipment based on a predetermined thermal conduction model of the equipment and a temperature of the surface of the equipment based on the thermoelectromotive force.
  13. 請求項1~請求項12の何れか1つに記載の情報処理システムにおいて、
     さらに、前記機器を含む、もの。
    In the information processing system according to any one of claims 1 to 12,
    Further, the present invention relates to an apparatus including the above-mentioned device.
  14. 情報処理方法であって、
     次の各ステップを含み、
     熱電変換ステップでは、機器との熱交換によって熱電変換部に生じる温度勾配に応じて熱起電力を発生させ、ここで、前記機器は、当該機器の動作状態に応じて熱を生成するように構成され、
     判定ステップでは、前記熱起電力に応じて前記機器の動作状態を判定する、もの。
    1. An information processing method, comprising:
    It includes the following steps:
    In the thermoelectric conversion step, a thermoelectromotive force is generated in response to a temperature gradient generated in the thermoelectric conversion unit by heat exchange with an equipment, and the equipment is configured to generate heat in response to an operating state of the equipment;
    In the determining step, an operating state of the device is determined in accordance with the thermoelectromotive force.
  15. 情報処理方法であって、
     次の各ステップを含み、
     熱電変換ステップでは、機器との熱交換によって温度勾配が生じるように構成され、当該温度勾配に基づき熱起電力を発生させ、
     取得ステップでは、前記熱起電力を取得し、
     検出ステップでは、前記熱起電力に基づき、発熱を伴う前記機器の異常動作を検出する、方法。
    1. An information processing method, comprising:
    It includes the following steps:
    In the thermoelectric conversion step, a temperature gradient is generated by heat exchange with the device, and a thermoelectromotive force is generated based on the temperature gradient;
    In the acquisition step, the thermoelectromotive force is acquired,
    In the detection step, an abnormal operation of the device accompanied by heat generation is detected based on the thermoelectromotive force.
PCT/JP2023/015905 2022-11-09 2023-04-21 Information processing system and information processing method WO2024100916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179710 2022-11-09
JP2022-179710 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024100916A1 true WO2024100916A1 (en) 2024-05-16

Family

ID=91032485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015905 WO2024100916A1 (en) 2022-11-09 2023-04-21 Information processing system and information processing method

Country Status (1)

Country Link
WO (1) WO2024100916A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197144A (en) * 1987-10-05 1989-04-14 Murata Mfg Co Ltd Charge completion detector
JPH0998504A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Detector for residual capacity of battery
WO2020090638A1 (en) * 2018-11-01 2020-05-07 日本電気株式会社 Exterior body, abnormality detector, and abnormality detection system
JP2021125320A (en) * 2020-02-03 2021-08-30 トヨタ自動車株式会社 Battery control, method, program, and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197144A (en) * 1987-10-05 1989-04-14 Murata Mfg Co Ltd Charge completion detector
JPH0998504A (en) * 1995-10-03 1997-04-08 Mitsubishi Motors Corp Detector for residual capacity of battery
WO2020090638A1 (en) * 2018-11-01 2020-05-07 日本電気株式会社 Exterior body, abnormality detector, and abnormality detection system
JP2021125320A (en) * 2020-02-03 2021-08-30 トヨタ自動車株式会社 Battery control, method, program, and vehicle

Similar Documents

Publication Publication Date Title
EP2841956B1 (en) An imbedded chip for battery applications
CN110521051B (en) Battery management system and method for optimizing internal resistance of battery
US9093847B2 (en) Temperature controlled parallel balancing
US20160380313A1 (en) Battery pack, control circuit, and control method
US20160336762A1 (en) An instrumented super-cell
WO2019117198A1 (en) Apparatus and method for estimating economic feasibility of storage battery
WO2011133309A1 (en) Systems, methods and computer readable media to model kinetic performance of rechargeable electrochemical devices
KR20190051482A (en) Apparatus and method for estimating temperature of battery
JP5942882B2 (en) Battery system
WO2018079164A1 (en) Battery control device
JP2012198175A (en) Battery state monitor device
US20130332103A1 (en) Cell based temperature monitoring
JP2021039939A (en) Estimation device and estimation method
US10587139B2 (en) Method and apparatus for controlling battery
KR102072247B1 (en) Temperature management system of battery pack and method thereof
WO2024100916A1 (en) Information processing system and information processing method
JP7062870B2 (en) Battery management device, battery management method and battery pack
WO2020022463A1 (en) Electric storage device and temperature estimation method
Murashko et al. Cylindrical li-ion battery state of health evaluation by differential heat analysis during calendar ageing
JP6889401B2 (en) Alkaline secondary battery state estimator
JP6365820B2 (en) Secondary battery abnormality determination device
KR102401539B1 (en) Apparatus and method for cell balancing
KR20170142451A (en) Battery management system, battery pack and method for charging battery
WO2021039906A1 (en) Estimation device and estimation method
JP2023045804A (en) battery unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888274

Country of ref document: EP

Kind code of ref document: A1