WO2024100879A1 - 通信品質予測装置、通信品質予測方法、およびプログラム - Google Patents
通信品質予測装置、通信品質予測方法、およびプログラム Download PDFInfo
- Publication number
- WO2024100879A1 WO2024100879A1 PCT/JP2022/042052 JP2022042052W WO2024100879A1 WO 2024100879 A1 WO2024100879 A1 WO 2024100879A1 JP 2022042052 W JP2022042052 W JP 2022042052W WO 2024100879 A1 WO2024100879 A1 WO 2024100879A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication quality
- point cloud
- cloud data
- quality prediction
- prediction device
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims description 13
- 238000007781 pre-processing Methods 0.000 claims abstract description 30
- 240000004050 Pentaglottis sempervirens Species 0.000 claims description 22
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 abstract description 2
- 238000013500 data storage Methods 0.000 description 13
- 238000012549 training Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/18—Network planning tools
Definitions
- This disclosure relates to a communication quality prediction device, a communication quality prediction method, and a program.
- the Internet of Things in which various devices are connected to the Internet, is becoming a reality, and various devices such as automobiles, drones, and construction machinery vehicles are being connected wirelessly.
- IoT Internet of Things
- M2M Machine to Machine
- Next-generation mobile communications (5G, 6G) are expected to realize high-speed, large-capacity communications using frequencies above 30 GHz, known as millimeter waves.
- communications using high frequencies above the sub-6 GHz band are strongly affected by the surrounding environment.
- millimeter wave and terahertz wave communications the communication quality drops sharply due to obstructions such as human bodies.
- changes in the propagation environment due to the movement of reflecting objects and the Doppler shift caused by the movement of reflecting objects are also known to affect communications. Such abrupt changes in communication quality are a factor that significantly reduces the perceived communication quality.
- Non-patent document 1 a document on existing technology, proposes a device that predicts communication quality when the wireless communication path of millimeter wave communication is blocked by the passage of an object, using physical space information obtained from a depth camera, and controls handover and transmission power. In this way, it has been shown that physical space information is effective in predicting communication quality.
- LiDAR Light Detection And Ranging
- LiDAR can obtain detailed information about the surrounding three-dimensional space.
- the point cloud data obtained by LiDAR is huge in volume, making it difficult to handle in terms of data storage and processing.
- the technology for machine learning models (deep learning models) that target point cloud data is not yet as mature as the technology for handling two-dimensional image data.
- This disclosure has been made in consideration of the above, and aims to reduce the computational costs in predicting communication quality using physical space information.
- a communication quality prediction device is a communication quality prediction device that predicts communication quality, and includes an acquisition unit that acquires point cloud data of a wireless communication area in a time series, a preprocessing unit that converts the point cloud data into a two-dimensional image, and a prediction unit that predicts and calculates the communication quality of a wireless terminal in the wireless communication area from the two-dimensional image in a time series.
- a communication quality prediction method is a communication quality prediction method using a communication quality prediction device that predicts communication quality, which acquires point cloud data of a wireless communication area in a time series, converts the point cloud data into a two-dimensional image, and predicts and calculates the communication quality of a wireless terminal in the wireless communication area from the time-series two-dimensional image.
- FIG. 1 is a diagram showing an example of the configuration of a communication quality prediction device according to the present embodiment.
- FIG. 2 is a diagram illustrating an example of point cloud data.
- FIG. 3 is a diagram showing an example of a bird's-eye view.
- FIG. 4 is a flowchart illustrating an example of a process for learning a prediction model.
- FIG. 5 is a flowchart illustrating an example of a process for predicting communication quality.
- FIG. 6 is a diagram showing an indoor experimental environment.
- FIG. 7 is a diagram illustrating an example of a hardware configuration of the communication quality prediction device.
- the communication quality prediction device 10 is a device that predicts the communication quality of a wireless terminal 50 from physical space information obtained by a LiDAR 30 provided in the wireless terminal 50.
- the communication quality is, for example, the throughput and received signal strength (RSSI) of wireless communication between a base station 70 and the wireless terminal 50.
- the LiDAR 30 may be built into the wireless terminal 50, or the LiDAR 30 may be a device separate from the wireless terminal 50.
- the area 100 is a range in which the communication quality prediction device 10 predicts the communication quality of the wireless terminal 50.
- the area 100 may be determined based on a wireless communication area formed by a base station 70.
- a plurality of base stations 70 may be arranged, and the wireless communication areas formed by each base station 70 may overlap in part. Note that the solid arrows in FIG. 1 indicate the flow of data during inference, and the dashed arrows indicate the flow of data during learning.
- the communication quality prediction device 10 includes an acquisition unit 11, a preprocessing unit 12, a prediction unit 13, a learning unit 14, and a data storage unit 15.
- the acquisition unit 11 acquires physical space information around the wireless terminal 50 in a time series. Specifically, the acquisition unit 11 acquires point cloud data, which is a collection of points in the three-dimensional space around the wireless terminal 50, in a time series from the LiDAR 30 that moves together with the wireless terminal 50, as physical space information. By disposing sensors other than the LiDAR 30, the acquisition unit 11 may integrate the point cloud data obtained by the LiDAR 30 with sensor data from the other sensors.
- the acquisition unit 11 may acquire position information of the wireless terminal 50 in addition to the point cloud data. For example, the acquisition unit 11 communicates with the wireless terminal 50 and receives position information of the wireless terminal 50 itself from the wireless terminal 50.
- the preprocessing unit 12 converts the physical space information (point cloud data) acquired by the acquisition unit 11 into a two-dimensional image.
- Methods for converting point cloud data into a two-dimensional image include, for example, a method of converting the point cloud data into a two-dimensional image (bird's-eye view) by parallel projection as if looking down from a high viewpoint, and a method of converting the point cloud data into a two-dimensional image by perspective projection as if looking from the position of the LiDAR 30 (wireless terminal 50).
- Figure 2 shows an example of point cloud data
- Figure 3 shows an example of a bird's-eye view converted from the point cloud data.
- point cloud data with 30,000 elements and 700 kilobytes can be compressed into a two-dimensional image with 60 x 45 elements and 3 kilobytes.
- converting physical space information into a two-dimensional image is also referred to as generation or compression.
- the preprocessing unit 12 When generating a bird's-eye view from the point cloud data, the preprocessing unit 12 generates the bird's-eye view according to the local coordinate system of the LiDAR 30 itself, centered on the position of the LiDAR 30. For example, when the LiDAR 30 is built into the wireless terminal 50 and the LiDAR 30 moves and rotates together with the wireless terminal 50, the point cloud data is obtained in the local coordinate system of the LiDAR 30.
- the bird's-eye view generated by the preprocessing unit 12 is an image rotated around the position of the LiDAR 30 according to the movement and rotation of the LiDAR 30.
- the preprocessing unit 12 may convert the point cloud data to a global coordinate system and generate a bird's-eye view from the point cloud data converted to the global coordinate system. In this case, the pattern on the bird's-eye view changes in response to objects moving within area 100.
- the pre-processing unit 12 may generate a bird's-eye view from point cloud data that satisfies a condition in the height direction (Z-axis direction) (hereinafter referred to as the Z-axis range condition).
- the Z-axis range condition is a condition that indicates the range of the point cloud data used to generate the bird's-eye view. For example, when LiDAR 30 is used indoors, the laser light is reflected by the ceiling and floor, so the obtained point cloud data includes points corresponding to the ceiling and floor. If a bird's-eye view is generated from point cloud data that includes the ceiling and floor, it becomes difficult to obtain indoor characteristics.
- the pre-processing unit 12 sets the Z-axis range condition of the point cloud data used to generate the bird's-eye view, and generates the bird's-eye view from point cloud data that satisfies the Z-axis range condition.
- the Z-axis range condition is set so as not to include the reflection point cloud from the ceiling or floor depending on the field of view of LiDAR 30 and the distance between the position of LiDAR 30 and the ceiling or floor.
- a bird's-eye view is generated from point cloud data actually acquired by LiDAR 30 while changing the Z-axis range condition, and the Z-axis range condition is empirically set by observing the change in the bird's-eye view.
- the preprocessing unit 12 acquires the position information of the LiDAR 30 and sets the Z-axis range condition based on the distance from the position of the LiDAR 30 to the ceiling and the distance from the position of the LiDAR 30 to the floor.
- the optimal Z-axis range condition can be set each time.
- the pre-processing unit 12 may generate a two-dimensional image by integrating point cloud data obtained by multiple point cloud sensors. For example, in addition to the LiDAR 30 built into the wireless terminal 50, a fixed point cloud sensor is placed in the area 100. The pre-processing unit 12 integrates the point cloud data obtained from the LiDAR 30 and the point cloud data obtained from the fixed point cloud sensor, and generates a two-dimensional image from the integrated point cloud data.
- the point cloud data may also be integrated with sensor data from a sensor other than the point cloud sensor.
- the preprocessing unit 12 may generate a two-dimensional image by integrating the point cloud data with static information of the area 100.
- the static information may be, for example, a 3D map or a 2D map of the area 100.
- the prediction unit 13 predicts and calculates the future communication quality of the wireless terminal 50 from the time-series two-dimensional images. Specifically, the prediction unit 13 inputs the time-series two-dimensional images converted by the pre-processing unit 12 into a prediction model to predict and calculate the future communication quality of the wireless terminal 50.
- the prediction model can be a model of an existing machine learning technology for image processing.
- the prediction model is a machine learning model that infers future communication quality when a time-series two-dimensional image is input.
- the prediction unit 13 may input, in addition to the two-dimensional image, position information of the base station 70 in the two-dimensional image to the prediction model. Since the position of the base station 70 in the area 100 is known, if the position of the wireless terminal 50 is known, the relative position of the base station 70 as seen from the wireless terminal 50 can be known, and the position of the base station 70 in the two-dimensional image can be identified.
- the learning unit 14 uses the time-series two-dimensional images and communication quality stored in the data storage unit 15 as training data, and learns a prediction model that predicts communication quality when the time-series two-dimensional images are input. In addition to the training data, the learning unit 14 may also use location information of the base station 70 as training data.
- the data storage unit 15 holds time-series two-dimensional images and communication quality used to train the prediction model.
- the two-dimensional images are images into which the pre-processing unit 12 converts physical space information.
- the communication quality is an actual measurement value of the wireless communication quality between the wireless terminal 50 and the base station 70, and is acquired from the wireless terminal 50 or the base station 70.
- the physical space information acquired by the acquisition unit 11 is converted into a two-dimensional image by the pre-processing unit 12, and two-dimensional images from the same time or close to the time are associated with the communication quality and stored in the data storage unit 15.
- the data storage unit 15 may store position information of the base station 70 in the two-dimensional image in association with the two-dimensional image.
- the data storage unit 15 may store the prediction model (parameters) learned by the learning unit 14.
- step S11 the acquisition unit 11 acquires point cloud data from the LiDAR 30.
- step S12 the preprocessing unit 12 converts the point cloud data into a two-dimensional image and stores it in the data storage unit 15.
- the preprocessing unit 12 extracts a point cloud that satisfies the Z-axis range condition from the point cloud data and converts it into a two-dimensional image.
- the acquisition unit 11 acquires the position information of the LiDAR 30 in step S11.
- the preprocessing unit 12 sets the Z-axis range condition from the position information of the LiDAR 30.
- the data storage unit 15 stores the communication quality received from at least one of the wireless terminal 50 and the base station 70 in association with a two-dimensional image of the same time or close to the time.
- the data storage unit 15 may receive the communication quality via the acquisition unit 11.
- the data storage unit 15 acquires the location information of the wireless terminal 50, calculates the position of the base station 70 in the two-dimensional image, and stores the location information of the base station 70 in association with the two-dimensional image.
- step S14 the learning unit 14 acquires the time-series two-dimensional images and communication quality from the data storage unit 15, and learns a prediction model using the time-series two-dimensional images and communication quality as training data.
- the learning unit 14 may also use location information of the base station 70 as training data.
- step S21 the acquisition unit 11 acquires point cloud data in time series from the LiDAR 30.
- the acquisition unit 11 acquires the position information of the LiDAR 30.
- the acquisition unit 11 acquires the position information of the wireless terminal 50 itself from the wireless terminal 50, and calculates the relative position information of the base station 70.
- step S22 the preprocessing unit 12 converts the point cloud data into a two-dimensional image.
- the preprocessing unit 12 determines the Z-axis range condition from the position information of the LiDAR 30, extracts a point cloud that satisfies the Z-axis range condition from the point cloud data, and converts it into a two-dimensional image.
- the preprocessing unit 12 may integrate the sensor data of other sensors into the point cloud data, and then convert the point cloud data into a two-dimensional image.
- the sensor data of other sensors may be, for example, point cloud data obtained from a point cloud sensor fixed to the area 100.
- step S23 the prediction unit 13 inputs the time-series two-dimensional images into a prediction model to predict the future communication quality of the wireless terminal 50.
- the prediction unit 13 may input position information of the base station 70 in the two-dimensional images into the prediction model.
- the experimental environment shown in Figure 6 is an area 100 of approximately 20m x 6m installed indoors.
- a wireless terminal 50 equipped with a LiDAR 30 moves randomly between the points marked with square marks 110 and triangular marks 120 in the area 100. Specifically, the wireless terminal 50 moves according to the arrows, but always passes through the point marked with square marks 110 and skips the point marked with triangular marks 120 with a 50% probability.
- the wireless terminal 50 communicates with the base station 70 using the wireless communication standard IEEE 802.11ac.
- the frequency used for wireless communication is 5.6 GHz, with a bandwidth of 20 MHz.
- the antenna of the wireless terminal 50 is located 50 cm from the floor.
- the antenna of the base station 70 is located 70 cm from the floor.
- the transmission power is 10 dBm.
- the measurement frequency of RSSI and throughput was set to 100 ms.
- the acquisition frequency of point cloud data was set to 100 ms.
- a prediction model was trained using approximately 80,000 samples (equivalent to 2 hours) of training data, approximately 10,000 samples (equivalent to 15 minutes) of validation data, and approximately 10,000 samples (equivalent to 15 minutes) of test data, using Gradient Boosting Decision Tree (GBRT) and Neural Network (NN).
- the two-dimensional image used for training is a bird's-eye view converted from point cloud data obtained by the LiDAR 30 equipped in the wireless terminal 50.
- Table 1 shows the root mean square error (RMSE) when predicting RSSI and throughput one second later using a prediction model using GBRT or NN.
- RMSE root mean square error
- Table 1 shows that both prediction models can accurately predict communication quality.
- the communication quality prediction device 10 for predicting communication quality in this embodiment includes an acquisition unit 11 that acquires point cloud data of the area 100 in a time series, a preprocessing unit 12 that converts the point cloud data into a two-dimensional image, and a prediction unit 13 that predicts and calculates the communication quality of the wireless terminal 50 in the area 100 from the time-series two-dimensional image.
- an acquisition unit 11 that acquires point cloud data of the area 100 in a time series
- a preprocessing unit 12 that converts the point cloud data into a two-dimensional image
- a prediction unit 13 that predicts and calculates the communication quality of the wireless terminal 50 in the area 100 from the time-series two-dimensional image.
- the communication quality prediction device 10 described above can be, for example, a general-purpose computer system including a central processing unit (CPU) 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device 906, as shown in FIG. 7.
- the communication quality prediction device 10 is realized by the CPU 901 executing a predetermined program loaded onto the memory 902.
- This program can be recorded on a non-transitory computer-readable recording medium such as a magnetic disk, optical disk, or semiconductor memory, or can be distributed via a network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
通信品質予測装置10は、エリア100の点群データを時系列に取得する取得部11と、点群データを2次元画像に変換する前処理部12と、時系列の2次元画像からエリア100内の無線端末50の通信品質を予測計算する予測部13を備える。
Description
本開示は、通信品質予測装置、通信品質予測方法、およびプログラムに関する。
様々なデバイスがインターネットにつながるInternet of Things (IoT)の実現が進んでおり、自動車、ドローン、建設機械車両等、様々な機器が無線で接続されつつある。インターネット、IoT、およびMachine to Machine (M2M)トラヒックの増加に伴い、無線通信帯域は逼迫し、より高い周波数の利活用が検討されている。次世代移動体通信(5G,6G)では、ミリ波と呼ばれる30GHz以上の周波数を用いた高速大容量通信の実現が期待される。一方、サブ6GHz帯以上の高い周波数を用いた通信は周囲の環境の影響を強く受ける。特に、ミリ波通信やテラヘルツ波通信では、人体等の遮蔽によって通信品質が急峻に低下する。また、反射物の動きによる伝搬環境の変化や、反射物が動くことによって生じるドップラーシフトも通信に影響を与えるものとして知られている。このような通信品質の急峻な変化は体感通信品質大きく低下させる要因となる。
通信品質の急峻な変化は体感通信品質大きく低下させる要因となるため、通信品質の大きな変化を事前に検知し、対策を行う必要がある。既存技術の非特許文献1では、オブジェクト通過によるミリ波通信の無線通信路遮蔽時における通信品質を、深度カメラから取得したフィジカル空間情報で予測し、ハンドオーバ制御や送信電力制御する装置が提案されている。このようにフィジカル空間情報は通信品質予測に有効であることが示されている。
また、近年、ロボットおよび車などの機器の自動運転技術発展に伴い、機器周辺のフィジカル空間情報を認識するために、Light Detection And Ranging (LiDAR)やカメラなどのセンサを設置することが増えている。
T. Nishio, H. Okamoto, K. Nakashima, Y. Koda, K. Yamamoto, M. Morikura, Y. Asai, and R. Miyatake, "Proactive Received Power Prediction Using Machine Learning and Depth Images for mmWave Networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 11, pp. 2413-2427, Nov. 2019.
LiDARにより周囲の3次元空間情報を詳細に得ることができる。しかしながら、LiDARで得られる点群データはデータ量が膨大なため、データの保管や処理の面で取り扱いが困難である。また、点群データを対象とした機械学習モデル(深層学習モデル)の技術は2次元画像データを扱う技術と比較してまだ成熟していない。
本開示は、上記に鑑みてなされたものであり、フィジカル空間情報を用いた通信品質の予測において計算コストの削減を目的とする。
本開示の一態様の通信品質予測装置は、通信品質を予測する通信品質予測装置であって、無線通信エリアの点群データを時系列に取得する取得部と、前記点群データを2次元画像に変換する前処理部と、時系列の前記2次元画像から前記無線通信エリア内の無線端末の通信品質を予測計算する予測部と、を備える。
本開示の一態様の通信品質予測方法は、通信品質を予測する通信品質予測装置による通信品質予測方法であって、無線通信エリアの点群データを時系列に取得し、前記点群データを2次元画像に変換し、時系列の前記2次元画像から前記無線通信エリア内の無線端末の通信品質を予測計算する。
本開示によれば、フィジカル空間情報を用いた通信品質の予測において計算コストの削減を図ることができる。
以下、本開示の実施の形態について図面を用いて説明する。
図1は、本実施形態の通信品質予測装置10の構成の一例を示す図である。通信品質予測装置10は、無線端末50が備えるLiDAR30で得られたフィジカル空間情報から無線端末50の通信品質を予測する装置である。通信品質とは、例えば、基地局70と無線端末50との間の無線通信のスループット、受信信号強度(RSSI)である。LiDAR30は無線端末50に内蔵されてもよいし、LiDAR30は無線端末50とは別の装置であってもよい。エリア100は、通信品質予測装置10が無線端末50の通信品質を予測する範囲である。エリア100は、基地局70によって形成される無線通信エリアに基づいて定められてもよい。複数の基地局70を配置し、各基地局70が形成する無線通信エリアの一部を重複させてもよい。なお、図1の実線の矢印は推論時のデータの流れを示し、破線の矢印は学習時のデータの流れを示す。
通信品質予測装置10は、取得部11、前処理部12、予測部13、学習部14、およびデータ記憶部15を備える。
取得部11は、無線端末50の周囲のフィジカル空間情報を時系列に取得する。具体的には、取得部11は、フィジカル空間情報として、無線端末50とともに移動するLiDAR30から、無線端末50周囲の3次元空間の点の集合である点群データを時系列に取得する。LiDAR30以外の他のセンサを配置して、取得部11は、LiDAR30で得られる点群データと他のセンサからのセンサデータとを統合してもよい。
取得部11は、点群データに加えて、無線端末50の位置情報を取得してもよい。例えば、取得部11が無線端末50と通信を行い、無線端末50から無線端末50自身の位置情報を受信する。
前処理部12は、取得部11の取得したフィジカル空間情報(点群データ)を2次元画像に変換する。点群データを2次元画像に変換する方法として、例えば、点群データを高い視点から俯瞰するように平行投影して2次元画像(鳥瞰図)に変換する方法と、点群データをLiDAR30(無線端末50)の位置から見るように透視投影して2次元画像に変換する方法がある。図2に点群データの一例を示し、図3に点群データから変換した鳥瞰図の一例を示す。フィジカル空間情報を前処理することで、例えば、要素数が30000点で700キロバイトの点群データを要素数が60×45で3キロバイトの2次元画像に圧縮できる。以下、フィジカル空間情報を2次元画像に変換することを生成または圧縮ともいう。
点群データから鳥瞰図を生成する際、前処理部12は、LiDAR30の位置を中心に、LiDAR30自身のローカル座標系に沿って鳥瞰図を生成する。例えば、LiDAR30が無線端末50に内蔵されており、無線端末50とともにLiDAR30が移動および回転する場合、LiDAR30のローカル座標系で点群データが得られる。前処理部12の生成する鳥瞰図は、LiDAR30の移動と回転に応じて、LiDAR30の位置を中心に回転した画像となる。LiDAR30が固定されている場合、前処理部12の生成する鳥瞰図は回転しないが、エリア100内で移動する物体(無線端末50を含む)に対応して鳥瞰図の模様が変化する。LiDAR30が移動および回転する場合、前処理部12は、点群データをグローバル座標系に変換し、グローバル座標系に変換した点群データから鳥瞰図を生成してもよい。この場合、エリア100内で移動する物体に対応して鳥瞰図の模様が変化する。
前処理部12は、高さ方向(Z軸方向)の条件(以下、Z軸範囲条件と称する)を満たす点群データから鳥瞰図を生成してもよい。Z軸範囲条件とは、鳥瞰図の生成に用いる点群データの範囲を示す条件である。例えば、屋内でLiDAR30を用いる場合、レーザ光が天井や床で反射するため、得られる点群データは天井や床に対応する点を含む。天井や床を含む点群データから鳥瞰図を生成すると、屋内の特徴が得にくくなる。そこで、前処理部12は、鳥瞰図の生成に用いる点群データのZ軸範囲条件を設定し、Z軸範囲条件を満たす点群データから鳥瞰図を生成する。Z軸範囲条件は、LiDAR30の視野およびLiDAR30の位置と天井や床との距離に応じて、天井や床からの反射点群を含まないように設定する。例えば、Z軸範囲条件を変えながら、LiDAR30で実際に取得した点群データから鳥瞰図を生成し、鳥瞰図の変化を見て、Z軸範囲条件を経験的に設定する。あるいは、LiDAR30が移動する場合は、前処理部12は、LiDAR30の位置情報を取得し、LiDAR30の位置から天井までの距離とLiDAR30の位置から床までの距離に基づいてZ軸範囲条件を設定する。LiDAR30が傾斜のある床を移動したり、天井の高さが変化する屋内を移動したりする際に、都度最適なZ軸範囲条件を設定できる。
前処理部12は、複数の点群センサで得られた点群データを統合して2次元画像を生成してもよい。例えば、無線端末50が内蔵するLiDAR30に加えて、エリア100に固定の点群センサを配置する。前処理部12は、LiDAR30から取得した点群データと固定の点群センサから取得した点群データを統合し、統合した点群データから2次元画像を生成する。点群データと点群センサ以外のセンサのセンサデータとを統合してもよい。
前処理部12は、エリア100の静的情報に点群データを統合して2次元画像を生成してもよい。静的情報とは、例えば、エリア100の3Dマップあるいは2Dマップである。
予測部13は、時系列の2次元画像から無線端末50の未来の通信品質を予測計算する。具体的には、予測部13は、前処理部12で変換した時系列の2次元画像を予測モデルに入力して無線端末50の未来の通信品質を予測計算する。予測モデルには、既存の画像処理用機械学習技術のモデルを用いることができる。予測モデルは、時系列の2次元画像を入力すると未来の通信品質を推論する機械学習モデルである。
予測部13は、2次元画像に加えて、2次元画像における基地局70の位置情報を予測モデルに入力してもよい。エリア100内の基地局70の位置は既知であるから、無線端末50の位置が分かれば、無線端末50から見た基地局70の相対位置が分かり、2次元画像における基地局70の位置は特定できる。
学習部14は、データ記憶部15の保持する時系列の2次元画像と通信品質を教師データとして用い、時系列の2次元画像を入力すると通信品質を予測する予測モデルを学習する。学習部14は、上記教師データに加えて、基地局70の位置情報を教師データとして用いてもよい。
データ記憶部15は、予測モデルの学習に用いる時系列の2次元画像と通信品質を保持する。2次元画像は、前処理部12がフィジカル空間情報を変換した画像である。通信品質は、無線端末50と基地局70との間の無線通信品質の実測値であり、無線端末50または基地局70から取得する。教師データを収集する際、取得部11の取得したフィジカル空間情報は、前処理部12で2次元画像に変換され、同時刻または時刻の近い2次元画像と通信品質とが関連付けられてデータ記憶部15に格納される。
データ記憶部15は、2次元画像に関連付けて、2次元画像における基地局70の位置情報を保持してもよい。
データ記憶部15は、学習部14において学習した予測モデル(パラメータ)を保持してもよい。
次に、図4のフローチャートを参照し、予測モデルを学習する処理の一例について説明する。
ステップS11にて、取得部11は、LiDAR30から点群データを取得する。
ステップS12にて、前処理部12は、点群データを2次元画像に変換して、データ記憶部15に格納する。Z軸範囲条件を適用して点群データを2次元画像に変換する場合、前処理部12は、点群データからZ軸範囲条件を満たす点群を抽出して2次元画像に変換する。Z軸範囲条件をLiDAR30の位置に応じて設定する場合、ステップS11において取得部11はLiDAR30の位置情報を取得する。前処理部12は、LiDAR30の位置情報からZ軸範囲条件を設定する。
ステップS13にて、データ記憶部15は、無線端末50と基地局70の少なくともいずれか一方から受信した通信品質を、同時刻または時刻が近い2次元画像に関連付けて格納する。データ記憶部15は、取得部11を介して通信品質を受信してもよい。
基地局70の位置情報を通信品質の予測に用いる場合、データ記憶部15は、無線端末50の位置情報を取得し、2次元画像における基地局70の位置を算出し、2次元画像に関連付けて基地局70の位置情報を格納する。
ステップS14にて、学習部14は、データ記憶部15から時系列の2次元画像と通信品質を取得し、時系列の2次元画像と通信品質を教師データとして、予測モデルを学習する。学習部14は、上記教師データに加えて、基地局70の位置情報を教師データとして用いてもよい。
次に、図5のフローチャートを参照し、通信品質を予測する処理の一例について説明する。
ステップS21にて、取得部11は、LiDAR30から点群データを時系列に取得する。Z軸範囲条件を設定する場合、取得部11は、LiDAR30の位置情報を取得する。基地局70の位置情報を通信品質の予測に用いる場合、取得部11は、無線端末50から無線端末50自身の位置情報を取得し、基地局70の相対位置情報を求める。
ステップS22にて、前処理部12は、点群データを2次元画像に変換する。Z軸範囲条件を適用して点群データを2次元画像に変換する場合、前処理部12は、LiDAR30の位置情報からZ軸範囲条件を決定し、点群データからZ軸範囲条件を満たす点群を抽出して2次元画像に変換する。
前処理部12は、点群データに他のセンサのセンサデータを統合した後、点群データを2次元画像に変換してもよい。他のセンサのセンサデータとは、例えばエリア100に固定された点群センサから得られる点群データである。
ステップS23にて、予測部13は、時系列の2次元画像を予測モデルに入力して無線端末50の未来の通信品質を予測する。予測部13は、時系列の2次元画像に加えて、2次元画像における基地局70の位置情報を予測モデルに入力してもよい。
次に、図6に示す実験環境における本実施形態の通信品質予測装置10の実験結果について説明する。
図6に示す実験環境は、屋内に設置した20m×6m程度のエリア100である。LiDAR30を備えた無線端末50が、エリア100に定めた四角形のマーク110の地点と三角形のマーク120の地点をランダムに移動する。具体的には、無線端末50は、矢印に従って移動するが、四角形のマーク110の地点を必ず通り、三角形のマーク120の地点は50%の確率でスキップする。
無線端末50は、無線通信規格IEEE 802.11acで、基地局70と通信する。無線通信に用いる周波数は5.6GHzであり、帯域幅は20MHzである。無線端末50のアンテナの位置は床から50cmである。基地局70のアンテナの位置は床から70cmである。送信電力は10dBmである。RSSIとスループットの測定頻度は100msとした。点群データの取得頻度は100msとした。
訓練データに約80000サンプル(2時間相当)のデータを用い、バリデーションデータに約10000サンプル(15分相当)のデータを用い、テストデータに約10000サンプル(15分相当)のデータを用いて、Gradient Boosting Decision Tree (GBRT)とNeural Network (NN)のそれぞれを利用して予測モデルを学習した。学習に用いた2次元画像は、無線端末50の備えるLiDAR30で得られた点群データを変換した鳥瞰図である。
GBRTまたはNNを用いた予測モデルにより1秒後のRSSIとスループットを予測したときの二乗平均平方根誤差(RMSE)を表1に示す。
表1から、いずれの予測モデルも精度よく通信品質を予測できることがわかる。
以上説明したように、本実施形態の通信品質を予測する通信品質予測装置10は、エリア100の点群データを時系列に取得する取得部11と、点群データを2次元画像に変換する前処理部12と、時系列の2次元画像からエリア100内の無線端末50の通信品質を予測計算する予測部13を備える。点群データを2次元画像に圧縮することで、通信品質予測の計算コストを低減できる。また、圧縮後のデータが2次元画像であるため、予測モデルに既存の画像処理アルゴリズムを適用できる。
上記説明した通信品質予測装置10には、例えば、図7に示すような、中央演算処理装置(CPU)901と、メモリ902と、ストレージ903と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、通信品質予測装置10が実現される。このプログラムは磁気ディスク、光ディスク、半導体メモリなどの、コンピュータが読み取り可能な非一時的な記録媒体に記録することも、ネットワークを介して配信することもできる。
10 通信品質予測装置
11 取得部
12 前処理部
13 予測部
14 学習部
15 データ記憶部
30 LiDAR
50 無線端末
70 基地局
11 取得部
12 前処理部
13 予測部
14 学習部
15 データ記憶部
30 LiDAR
50 無線端末
70 基地局
Claims (8)
- 通信品質を予測する通信品質予測装置であって、
無線通信エリアの点群データを時系列に取得する取得部と、
前記点群データを2次元画像に変換する前処理部と、
時系列の前記2次元画像から前記無線通信エリア内の無線端末の通信品質を予測計算する予測部と、を備える
通信品質予測装置。 - 請求項1に記載の通信品質予測装置であって、
前記前処理部は、前記点群データを前記無線通信エリアを高い位置から見た鳥瞰図に変換する
通信品質予測装置。 - 請求項2に記載の通信品質予測装置であって、
前記前処理部は、前記点群データのうち鳥瞰図の作成に用いる高さ方向の範囲を設定し、当該高さ方向の範囲内の点群データを前記鳥瞰図に変換する
通信品質予測装置。 - 請求項2に記載の通信品質予測装置であって、
前記予測部は、前記鳥瞰図における基地局の位置を入力する
通信品質予測装置。 - 請求項1に記載の通信品質予測装置であって、
前記取得部は、前記無線端末とともに移動するセンサから前記点群データを取得する
通信品質予測装置。 - 請求項1に記載の通信品質予測装置であって、
前記取得部は、他のセンサからのセンサデータを取得し、
前記前処理部は、前記点群データと前記センサデータとを統合して前記2次元画像に変換する
通信品質予測装置。 - 通信品質を予測する通信品質予測装置による通信品質予測方法であって、
無線通信エリアの点群データを時系列に取得し、
前記点群データを2次元画像に変換し、
時系列の前記2次元画像から前記無線通信エリア内の無線端末の通信品質を予測計算する
通信品質予測方法。 - 請求項1ないし6のいずれかに記載の通信品質予測装置の各部としてコンピュータを動作させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042052 WO2024100879A1 (ja) | 2022-11-11 | 2022-11-11 | 通信品質予測装置、通信品質予測方法、およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042052 WO2024100879A1 (ja) | 2022-11-11 | 2022-11-11 | 通信品質予測装置、通信品質予測方法、およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024100879A1 true WO2024100879A1 (ja) | 2024-05-16 |
Family
ID=91032186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042052 WO2024100879A1 (ja) | 2022-11-11 | 2022-11-11 | 通信品質予測装置、通信品質予測方法、およびプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024100879A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112528979A (zh) * | 2021-02-10 | 2021-03-19 | 成都信息工程大学 | 变电站巡检机器人障碍物判别方法及系统 |
WO2022102064A1 (ja) * | 2020-11-12 | 2022-05-19 | 日本電信電話株式会社 | 情報出力システム、情報出力方法、情報出力装置、およびプログラム |
-
2022
- 2022-11-11 WO PCT/JP2022/042052 patent/WO2024100879A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022102064A1 (ja) * | 2020-11-12 | 2022-05-19 | 日本電信電話株式会社 | 情報出力システム、情報出力方法、情報出力装置、およびプログラム |
CN112528979A (zh) * | 2021-02-10 | 2021-03-19 | 成都信息工程大学 | 变电站巡检机器人障碍物判别方法及系统 |
Non-Patent Citations (1)
Title |
---|
SHOKI OHTA, SATOSHI NISHIO (TOKYO INSTITUTE OF TECHNOLOGY), RIICHI KUDO, AND KAORUKO TAKAHASHI: "B-15-36 A Experimental Evaluation of Fine-tuning in mmWave Received Power Prediction Using Point Cloud Data", COMMUNICATION LECTURE PROCEEDINGS 1 OF 2022 IEICE GENERAL CONFERENCE; MARCH 15-18, 2022, IEICE, JP, 1 March 2022 (2022-03-01) - 18 March 2022 (2022-03-18), JP, pages 474, XP009555174 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220026905A1 (en) | Object modeling with adversarial learning | |
US10962979B2 (en) | System and method for multitask processing for autonomous vehicle computation and control | |
CN111148112B (zh) | 一种无线网络部署方法、装置、电子设备以及存储介质 | |
WO2017038100A1 (ja) | 監視サーバ、分散処理決定方法、及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
JP7226575B2 (ja) | 通信端末及び通信品質予測方法 | |
Marasinghe et al. | LiDAR aided human blockage prediction for 6G | |
CN116719339A (zh) | 一种基于无人机的电力线路巡检控制方法及系统 | |
CN109387856A (zh) | 用于lidar阵列中的并行采集的方法和设备 | |
BelMannoubi et al. | Deep neural networks for indoor localization using WiFi fingerprints | |
CN111026115A (zh) | 一种基于深度学习的机器人避障控制方法及装置 | |
Qi et al. | ACT-GAN: Radio map construction based on generative adversarial networks with ACT blocks | |
WO2024100879A1 (ja) | 通信品質予測装置、通信品質予測方法、およびプログラム | |
Al Saadi et al. | Ground Level Mobile Signal Prediction Using Higher Altitude UAV Measurements and ANN | |
El Boudani et al. | Positioning as service for 5g iot networks | |
WO2024100889A1 (ja) | 通信品質予測装置、通信品質予測方法、およびプログラム | |
US20220036053A1 (en) | Method and apparatus for identifying animal species | |
KR102016835B1 (ko) | 이동체의 자기 위치 추정 방법 및 그 이동체 | |
US20220371606A1 (en) | Streaming object detection and segmentation with polar pillars | |
Mukhtar | Machine learning enabled-localization in 5g and lte using image classification and deep learning | |
Yapar et al. | On the Effective Usage of Priors in RSS-based Localization | |
JP7505569B2 (ja) | 通信情報予測装置、通信情報予測方法、および通信情報予測プログラム | |
JP2021077951A (ja) | 運動状態についての対象との対応度に基づき端末を同定する装置、プログラム及び方法 | |
WO2022102069A1 (ja) | 情報出力システム、情報出力方法、推定装置、およびプログラム | |
Waheed et al. | Highly Accurate Multi-Modal LTE Channel Prediction via Semantic Segmentation of Satellite Images | |
Ali et al. | A Comprehensive Review of Radio Signal Propagation Prediction for Terrestrial Wireless Communication Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965203 Country of ref document: EP Kind code of ref document: A1 |