WO2024100830A1 - Power amplifier - Google Patents

Power amplifier Download PDF

Info

Publication number
WO2024100830A1
WO2024100830A1 PCT/JP2022/041857 JP2022041857W WO2024100830A1 WO 2024100830 A1 WO2024100830 A1 WO 2024100830A1 JP 2022041857 W JP2022041857 W JP 2022041857W WO 2024100830 A1 WO2024100830 A1 WO 2024100830A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
fets
terminal
power amplifier
switch
Prior art date
Application number
PCT/JP2022/041857
Other languages
French (fr)
Japanese (ja)
Inventor
和也 山本
美代 宮下
勝也 嘉藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041857 priority Critical patent/WO2024100830A1/en
Priority to JP2023516472A priority patent/JP7384318B1/en
Publication of WO2024100830A1 publication Critical patent/WO2024100830A1/en

Links

Images

Definitions

  • This disclosure relates to a stacked power amplifier.
  • GaAs HBTs Heterojunction Bipolar Transistors
  • the reasons for this include the fact that they can operate from a single power supply in a normally-off mode, can operate from a 3.7V Li-ion battery voltage, and have a higher power density than GaAs FETs (Field Effect Transistors) in the output power range up to a few watts, so the chip area is smaller when made into an integrated circuit, and they can achieve a very high yield compared to GaAs-based FETs.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • GaAs HBT chips which are not Si-based, cannot be integrated with control circuits, and are more expensive to mass-produce than CMOS chips, so there has been a strong demand for CMOS power amplifiers.
  • CMOS FET complementary metal-oxide-semiconductor
  • the standard voltage of a CMOS FET is 1.2 V for a 65 nm process and 1.8 V for a 0.18 ⁇ m process, which is significantly lower than the battery voltage (3.7 V), so a power amplifier composed of a single stage CMOS FET cannot be used.
  • Non-Patent Document 1 stacked power amplifiers, which are effective in operating CMOS as a power amplifier at as high a power supply voltage as possible, are attracting attention (see, for example, Non-Patent Document 1).
  • each amplifying FET operates evenly, it can operate with a power supply voltage of up to 4.8 V.
  • the standard voltage of a Li-ion battery is 3.7 V, but for high output power operation, it is boosted to 4.8 V by a DC-DC converter, and it is assumed to operate with an output power of 1 W.
  • the output power of a terminal is often reduced depending on the distance between the base station and the terminal. In other words, if the distance is long, the output power is often switched to maximum, and if the distance is short, the output power is switched to low. For example, in urban areas, the distance between the base station and the terminal is relatively short, so the output power of the terminal is often low, around a few to a few tens of mW.
  • This output power control is achieved by lowering the power supply voltage of the power amplifier. This is because if the output power is lowered by only reducing the input power while keeping the power supply voltage high, the efficiency of the power amplifier drops significantly.
  • the load line of the FETs remains the same and only the power supply voltage drops, so the load line of the FETs in each stage will be significantly different from the optimal state, resulting in not only a drop in output power but also a significant drop in efficiency.
  • This disclosure has been made to solve the above problems, and aims to provide a power amplifier that can suppress a decrease in efficiency even when the power supply voltage is lowered.
  • the power amplifier disclosed herein is a stacked circuit having n (n is an integer of 2 or more) FETs, where the FETs are numbered 1 to n and i is an integer between 2 and (n-1), the first FET has a gate terminal to which an input signal is input, a drain terminal connected to the source terminal of the second FET, and a source terminal connected to GND, the i-th FET has a drain terminal connected to the source terminal of the (i+1)-th FET, and the n-th FET has a drain terminal from which an output signal is output, and a drain terminal connected to a power source; resistors connected to the gate terminals of the second to n-th FETs of the stacked circuit, respectively; capacitors connected to the electrodes of the resistors on the opposite side to the gate terminals; and first switches connected in parallel to the resistors.
  • This disclosure makes it possible to obtain a power amplifier that suppresses a decrease in efficiency even when the power supply voltage drops.
  • FIG. 1 is a diagram illustrating a circuit configuration of a power amplifier according to a first embodiment
  • 4 is a diagram showing a load line of a FET of the power amplifier according to the first embodiment
  • 4 is a diagram showing a load line of a FET of the power amplifier according to the first embodiment
  • FIG. 11 is a diagram illustrating a circuit configuration of a power amplifier according to a second embodiment
  • FIG. 13 is a diagram illustrating a circuit configuration of a power amplifier according to a third embodiment.
  • Embodiment 1. 1 shows a circuit configuration of a power amplifier 10 according to a first embodiment. Assume that a 65 nm CMOS process is used to manufacture the power amplifier 10, and the maximum standard voltage of the FET is 1.2 V.
  • the maximum standard voltage refers to the maximum DC voltage that can be applied between the drain and source terminals of a FET having the finest gate length used in the CMOS process and that ensures long-term reliability of the FET.
  • FET 12 has a gate terminal to which an input signal is input from input terminal 22, and a drain terminal connected to the source terminal of FET 14, which is connected to GND.
  • FET 14 has a drain terminal connected to the source terminal of FET 16.
  • FET 16 has a drain terminal connected to the source terminal of FET 18.
  • FET 18 outputs an output signal from its drain terminal, which is connected to a power supply (Vdd).
  • a circuit consisting of these four FETs is called a stacked circuit 19.
  • FET 12, FET 14, FET 16, and FET 18 are n-type FETs.
  • an input matching circuit is connected to input terminal 22.
  • An output matching circuit 20 is connected between output terminal 24 and the drain terminal of the third FET 18.
  • Bias terminal 50, bias terminal 52, bias terminal 54 are gate bias terminals of FET 14, FET 16, FET 18, respectively, and are connected to the gate terminals of FET 14, FET 16, FET 18 via resistors 38, 40, 42 of about k ⁇ .
  • FET switches 32, 34, 36 are connected in parallel with resistors 38, 40, 42, respectively. These FET switches function as switches that bypass the resistors.
  • FET switch 32, 34, 36 are turned on/off by switch terminal 56, 58, 60, respectively.
  • Bias terminal 50, bias terminal 52, bias terminal 54 are terminals opposite the gate terminals of resistors 38, 40, and 42, and capacitors 44, 46, and 48 are connected between them and GND, respectively. Capacitors 44, 46, and 48 are variable capacitors.
  • the number of FETs in a stacked circuit is not limited to four.
  • the number of FETs in a stacked circuit is assumed to be n (n is a number equal to or greater than 2).
  • the FETs are numbered from 1 to n, and i is an integer equal to or greater than 2 and equal to or less than (n-1).
  • the first FET corresponds to FET 12 in FIG. 1, and has a gate terminal to which an input signal is input, a drain terminal connected to the source terminal of the second FET, and a source terminal connected to GND.
  • the i-th FET corresponds to FET 14 and FET 16 in FIG. 1, and has a drain terminal connected to the source terminal of the (i+1)-th FET.
  • the n-th FET corresponds to FET 18 in FIG. 1, and has a drain terminal to which an output signal is output, and a drain terminal connected to a power supply (Vdd).
  • the power supply voltage of the power amplifier 10 can be raised to 4.8V DC.
  • the well of each FET is separated, and the backgate is connected to the source. If the FET is a fully depleted SOI (Silicon On Insulator) type, the backgate may be floating. Since the control FETs such as FET switch 32, FET switch 34, and FET switch 36 also need to withstand a maximum voltage of 4.8V, high-voltage FETs with a thick gate oxide film are used for the control FETs.
  • Switch mode refers to an operating state in which the gate terminal of the FET is floated by the resistor, and the input to the source terminal is output from the drain terminal with almost no loss.
  • the remaining FETs 12, 14, and 16 perform amplification. This keeps the voltage drop between the drain and source terminals of FET 18 to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FETs 12, 14, and 16 performing amplification, achieving an optimal state for power amplification.
  • the FETs operate in the saturation region so that the voltage amplitude and current amplitude during amplification can be made sufficiently large.
  • FET switch 32 is closed, and FET switch 34 and FET switch 36 are open. Therefore, resistors 40 and 42 at the gate terminals of FET 16 and FET 18 are active, and FET 16 and FET 18 operate in switch mode. The remaining FETs 12 and 14 perform an amplifying operation. In this way, the voltage drop between the drain and source terminals of FET 16 and FET 18 is kept to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FET 12 and FET 14, which perform the amplifying operation, allowing sufficient amplifying operation.
  • FET switch 32, FET switch 34, and FET switch 36 are all open. Therefore, resistors 38, 40, and 42 at the gate terminals of FET 14, FET 16, and FET 18 become active, and FET 14, FET 16, and FET 18 operate in switch mode. The remaining FET 12 performs an amplifying operation. In this way, the voltage drop between the drain and source terminals of FET 14, FET 16, and FET 18 is kept to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FET 12, which performs the amplifying operation, allowing sufficient amplifying operation.
  • n is an integer equal to or greater than 2
  • the FETs be numbered as described above.
  • the maximum standard voltage of all of these FETs be Vm
  • the voltage applied to the drain terminal of the nth FET be Vd
  • j be an integer equal to or greater than 1 and equal to or less than n. If (j-1) x Vm ⁇ Vdd ⁇ j x Vm, then (j-1) of the FET switches will be closed and the rest will be open.
  • the capacitance values of the capacitors may be set so that the load lines of FET12, FET14, FET16, and FET18 are equal.
  • Figure 2 shows a schematic of the load lines when all FETs are performing amplification.
  • Z1 Ropt
  • Z2 2 x Ropt
  • 4 x Ropt should be set to be equal to the load impedance seen from the drain terminal of FET18. For example, if the impedance of the output matching circuit 20 is 50 ⁇ , Ropt is 12.5 ⁇ . This will equalize the load lines of FET12, FET14, FET16, and FET18.
  • the capacitance values of capacitors 44, 46, and 48 can be set to predetermined values using formula 1 (see Non-Patent Document 1).
  • Cgs is the gate-source capacitance of FET14, FET16, and FET18
  • gm is the mutual conductance of FET14, FET16, and FET18. Note that here, the mutual conductance and gate-source capacitance of FET14, FET16, and FET18 are assumed to be equal, and the operating frequency is sufficiently lower than the cutoff frequency of these FETs.
  • the load line of each FET will change if left as is. For example, suppose the power supply voltage is lowered to 3.6 V, and FET switch 36 is opened to operate FET 18 in switch mode. In this case, the input impedance Z3 of FET 18 becomes 4 x Ropt. As a result, the load line of FET 18 will deviate from the optimal load line drawn with a dashed line, as shown in Figure 3.
  • n is an integer of 2 or more
  • the FETs be numbered as described above.
  • the load impedance seen from the drain terminal of the nth FET be Z0.
  • the number of FETs performing amplifying operation among the second to nth FETs be m, and let the numbers of the FETs performing amplifying operation be 1 to m, in order from the smallest FET number in the stacked circuit.
  • the input impedance seen from the source terminal of the kth FET performing amplifying operation should be set within the range of (k-0.5)/(m+1) ⁇ Z0 to (k+0.5)/(m+1) ⁇ Z0.
  • the input impedance should be set to k/(m+1) ⁇ Z0, but it is also acceptable to have a range of the above mentioned range.
  • the load line of the FET performing the amplifying operation can be made equal by appropriately setting the input impedance of the FET.
  • the load line of the FET performing the amplifying operation can be made equal. This prevents the efficiency of the power amplifier from decreasing.
  • Embodiment 2 In the power amplifier according to the second embodiment, in addition to the capacitance 44, capacitance 46, and capacitance 48 of the power amplifier 10 according to the first embodiment, an additional capacitance whose connection can be turned on/off by an FET switch is added.
  • Figure 4 shows only the vicinity of the gate terminal of FET 14.
  • a FET switch 64 in addition to capacitance 44, a FET switch 64, an additional capacitance 62, and a FET switch 70 and an additional capacitance 68 are added.
  • the additional capacitance 62 can be turned on/off by the FET switch 64.
  • the additional capacitance 68 can be turned on/off by the FET switch 70.
  • the power amplifier according to this embodiment also uses four FETs involved in amplification, so as can be seen from the explanation of the first embodiment, it is preferable that the capacitance value of the capacitance connected to the gate terminal of FET 14 can be set to one of three values. In this embodiment, the three capacitance values can be switched by turning on/off FET switch 64 and FET switch 70.
  • the capacitance value can be changed digitally using a normal FET. Therefore, compared to analog-variable capacitance, control is simpler and the circuit area can be reduced.
  • the power amplifier 110 according to the third embodiment is obtained by differentiating the circuit configuration of the power amplifier 10 according to the first embodiment. Accordingly, the input signal also becomes a differential signal, and this differential signal is input to the input terminal 122 and the input terminal 123. By differentiating, it is possible to significantly suppress the influence of gain reduction caused by GND inductance, which is often a problem in a single-phase amplifier mounted on a Si-based LSI. Also, the power amplifier according to the second embodiment may be differentiated.
  • GaAs FETs InP FETs, etc. can be used instead of CMOS.
  • the backgate is usually floating.

Landscapes

  • Amplifiers (AREA)

Abstract

This power amplifier comprises: a stack-type circuit (19) which has n FETs (n is an integer value of 2 or greater), wherein, when the number of FETs is from 1 to n and i is an integer from 2 to (n-1), a gate terminal of the first FET (12) receives an input of an input signal, a drain terminal is connected to a source terminal of the second FET, and a source terminal is connected to GND, a drain terminal of the i-th FET is connected to a source terminal of the (i+1)-th FET, and an out signal is output from a drain terminal, which is connected to power, of the n-th FET(18); resistors which are respectively connected to gate terminals of the second to n-th FETs of the stack-type circuit (19); capacitors which are respectively connected to electrodes, which are in a side opposite to the gate terminals, of the resistors; and first switches which are respectively connected to the resistors in parallel.

Description

電力増幅器Power Amplifiers
 本開示は、スタック型の電力増幅器に関する。 This disclosure relates to a stacked power amplifier.
 携帯端末用電力増幅器には、現在主としてGaAs HBT(Heterojunction Bipolar Transistor)を用いた電力増幅器が使われている。その理由として、ノーマリオフで単一電源動作が可能であること、3.7VのLiイオンバッテリ電圧で動作可能で、数W程度までの出力電力範囲ならGaAs FET(Field Effect Transistor)に比べて電力密度が高いため、集積回路にした場合のチップ面積が小さいこと、そしてGaAs系FETに比べて非常に高い歩留を実現できることなどが挙げられる。 Currently, power amplifiers for mobile devices mainly use GaAs HBTs (Heterojunction Bipolar Transistors). The reasons for this include the fact that they can operate from a single power supply in a normally-off mode, can operate from a 3.7V Li-ion battery voltage, and have a higher power density than GaAs FETs (Field Effect Transistors) in the output power range up to a few watts, so the chip area is smaller when made into an integrated circuit, and they can achieve a very high yield compared to GaAs-based FETs.
 しかし、近年の電力増幅器、バンド切替スイッチおよびアンテナスイッチには、端末内の制御を簡便にするために、GaAs HBTとは別にディジタル制御を可能にするCMOS(Complementary Metal-Oxide-Semiconductor)制御回路を増幅器、スイッチに搭載している。またSi系ではないGaAs HBTチップは、制御回路との集積化はできない、またCMOSチップに比べて量産時にはコスト高になるという背景から、電力増幅器のCMOS化が強く望まれてきた。 However, in recent years, power amplifiers, band changeover switches, and antenna switches have been equipped with CMOS (Complementary Metal-Oxide-Semiconductor) control circuits that enable digital control in addition to the GaAs HBTs in order to simplify control within the terminal. Furthermore, GaAs HBT chips, which are not Si-based, cannot be integrated with control circuits, and are more expensive to mass-produce than CMOS chips, so there has been a strong demand for CMOS power amplifiers.
 CMOS FETの標準電圧は65nmプロセスで1.2V、0.18μmプロセスで1.8Vであり、バッテリ電圧(3.7V)に比べてかなり低いため、1段のCMOS FETで構成された電力増幅器を用いることはできない。 The standard voltage of a CMOS FET is 1.2 V for a 65 nm process and 1.8 V for a 0.18 μm process, which is significantly lower than the battery voltage (3.7 V), so a power amplifier composed of a single stage CMOS FET cannot be used.
 そのような背景の中で、できるだけ高電源電圧でCMOSを電力増幅器として動作させることに有効なスタック型の電力増幅器が注目を集めている(例えば非特許文献1参照)。 Against this background, stacked power amplifiers, which are effective in operating CMOS as a power amplifier at as high a power supply voltage as possible, are attracting attention (see, for example, Non-Patent Document 1).
 次にFETの標準電圧が1.2Vの65nm CMOSプロセスを用いた4段スタックのスタック型電力増幅器を例に課題を説明する。この例の場合、各増幅用FETが均等に動作すると仮定すると、電源電圧4.8Vまで動作可能である。Liイオンバッテリの標準電圧は3.7Vであるが、高出力電力動作のために、DC-DCコンバータで4.8Vまでブーストされ、1Wの出力電力で動作すると仮定する。 Next, the issues will be explained using as an example a four-stage stacked power amplifier using a 65 nm CMOS process with a standard FET voltage of 1.2 V. In this example, assuming that each amplifying FET operates evenly, it can operate with a power supply voltage of up to 4.8 V. The standard voltage of a Li-ion battery is 3.7 V, but for high output power operation, it is boosted to 4.8 V by a DC-DC converter, and it is assumed to operate with an output power of 1 W.
 移動体通信では、端末の出力電力は、基地局と端末の距離に応じて、出力電力を下げる場合がしばしば起こる。つまり距離が遠ければ最大出力電力に、距離が近ければ低出力電力に切り替えることが頻繁に行われる。例えば、都市部の場合では、比較的基地局と端末間の距離が近いため、端末の出力電力が数~数十mW程度と低くなることが多い。この出力電力制御は、電力増幅器の電源電圧を低下させることで実現される。高い電源電圧のままで入力電力だけ小さくして出力電力を低下させると、電力増幅器の効率が著しく低下するためである。 In mobile communications, the output power of a terminal is often reduced depending on the distance between the base station and the terminal. In other words, if the distance is long, the output power is often switched to maximum, and if the distance is short, the output power is switched to low. For example, in urban areas, the distance between the base station and the terminal is relatively short, so the output power of the terminal is often low, around a few to a few tens of mW. This output power control is achieved by lowering the power supply voltage of the power amplifier. This is because if the output power is lowered by only reducing the input power while keeping the power supply voltage high, the efficiency of the power amplifier drops significantly.
 しかし、スタック型電力増幅器の電源電圧を4.8Vから例えば2.4Vに下げてしまうと、FETの負荷線が同じままで電源電圧だけ低下するので、各段のFETの負荷線は最良の状態とは大きく異なり、出力電力の低下だけでなく、効率も大幅に低下してしまうという問題点が生じる。 However, if the power supply voltage of a stacked power amplifier is reduced from 4.8V to, for example, 2.4V, the load line of the FETs remains the same and only the power supply voltage drops, so the load line of the FETs in each stage will be significantly different from the optimal state, resulting in not only a drop in output power but also a significant drop in efficiency.
 本開示は上記の問題を解決するためになされたもので、電源電圧を下げても効率の低下が抑えられる電力増幅器を得ることを目的としている。 This disclosure has been made to solve the above problems, and aims to provide a power amplifier that can suppress a decrease in efficiency even when the power supply voltage is lowered.
 本開示にかかる電力増幅器は、n(nは2以上の整数)個のFETを有するスタック型回路であって、FETの番号を1からnとし、iを2以上かつ(n-1)以下の整数とすると、1番目のFETは、ゲート端子に入力信号が入力され、ドレイン端子が2番目のFETのソース端子に接続され、ソース端子はGNDに接続される端子であり、i番目のFETは、ドレイン端子が(i+1)番目のFETのソース端子に接続され、n番目のFETは、ドレイン端子から出力信号が出力され、ドレイン端子は電源に接続される端子であるスタック型回路と、スタック型回路の2番目からn番目のFETのゲート端子にそれぞれ接続された抵抗と、抵抗のゲート端子とは反対側の電極にそれぞれ接続された容量と、抵抗と並列してそれぞれ接続された第1のスイッチと、を備える。 The power amplifier disclosed herein is a stacked circuit having n (n is an integer of 2 or more) FETs, where the FETs are numbered 1 to n and i is an integer between 2 and (n-1), the first FET has a gate terminal to which an input signal is input, a drain terminal connected to the source terminal of the second FET, and a source terminal connected to GND, the i-th FET has a drain terminal connected to the source terminal of the (i+1)-th FET, and the n-th FET has a drain terminal from which an output signal is output, and a drain terminal connected to a power source; resistors connected to the gate terminals of the second to n-th FETs of the stacked circuit, respectively; capacitors connected to the electrodes of the resistors on the opposite side to the gate terminals; and first switches connected in parallel to the resistors.
 本開示によれば、電源電圧が低下した場合でも、効率の低下が抑えられる電力増幅器を得ることができる。 This disclosure makes it possible to obtain a power amplifier that suppresses a decrease in efficiency even when the power supply voltage drops.
実施の形態1にかかる電力増幅器の回路構成を示す図である。1 is a diagram illustrating a circuit configuration of a power amplifier according to a first embodiment; 実施の形態1にかかる電力増幅器のFETの負荷線を示す図である。4 is a diagram showing a load line of a FET of the power amplifier according to the first embodiment; 実施の形態1にかかる電力増幅器のFETの負荷線を示す図である。4 is a diagram showing a load line of a FET of the power amplifier according to the first embodiment; 実施の形態2にかかる電力増幅器の回路構成を示す図である。FIG. 11 is a diagram illustrating a circuit configuration of a power amplifier according to a second embodiment. 実施の形態3にかかる電力増幅器の回路構成を示す図である。FIG. 13 is a diagram illustrating a circuit configuration of a power amplifier according to a third embodiment.
実施の形態1.
 実施の形態1にかかる電力増幅器10の回路構成を図1に示す。電力増幅器10の製造には65nm CMOSプロセスが用いられ、FETの最大標準電圧は1.2Vであるとする。ここで最大標準電圧とは、そのCMOSプロセスで用いられる最も微細なゲート長を持つFETのドレイン・ソース端子間に印加可能であり、FETの長期信頼性が得られる最大直流電圧のことである。
Embodiment 1.
1 shows a circuit configuration of a power amplifier 10 according to a first embodiment. Assume that a 65 nm CMOS process is used to manufacture the power amplifier 10, and the maximum standard voltage of the FET is 1.2 V. Here, the maximum standard voltage refers to the maximum DC voltage that can be applied between the drain and source terminals of a FET having the finest gate length used in the CMOS process and that ensures long-term reliability of the FET.
 FET12は、入力端子22からゲート端子に入力信号が入力され、ドレイン端子がFET14のソース端子に接続され、ソース端子はGNDに接続される端子である。FET14は、ドレイン端子がFET16のソース端子に接続される。FET16は、ドレイン端子がFET18のソース端子に接続される。FET18は、ドレイン端子から出力信号が出力され、ドレイン端子は電源(Vdd)に接続される。これらの4つのFETからなる回路をスタック型回路19と称す。FET12、FET14、FET16およびFET18はn型FETである。図示しないが、入力端子22には入力整合回路が接続されている。出力端子24と第3のFET18のドレイン端子の間には出力整合回路20が接続されている。 FET 12 has a gate terminal to which an input signal is input from input terminal 22, and a drain terminal connected to the source terminal of FET 14, which is connected to GND. FET 14 has a drain terminal connected to the source terminal of FET 16. FET 16 has a drain terminal connected to the source terminal of FET 18. FET 18 outputs an output signal from its drain terminal, which is connected to a power supply (Vdd). A circuit consisting of these four FETs is called a stacked circuit 19. FET 12, FET 14, FET 16, and FET 18 are n-type FETs. Although not shown, an input matching circuit is connected to input terminal 22. An output matching circuit 20 is connected between output terminal 24 and the drain terminal of the third FET 18.
 バイアス端子50、バイアス端子52、バイアス端子54はそれぞれFET14、FET16、FET18のゲートバイアス端子であり、kΩ程度の抵抗38、抵抗40、抵抗42を介してFET14、FET16、FET18のゲート端子に接続されている。抵抗38、抵抗40、抵抗42のそれぞれと並列してFETスイッチ32、FETスイッチ34、FETスイッチ36が接続されている。これらのFETスイッチは抵抗をバイパスするスイッチとして機能する。FETスイッチ32、FETスイッチ34、FETスイッチ36はそれぞれスイッチ端子56、スイッチ端子58、スイッチ端子60によりオン/オフされる。 Bias terminal 50, bias terminal 52, bias terminal 54 are gate bias terminals of FET 14, FET 16, FET 18, respectively, and are connected to the gate terminals of FET 14, FET 16, FET 18 via resistors 38, 40, 42 of about kΩ. FET switches 32, 34, 36 are connected in parallel with resistors 38, 40, 42, respectively. These FET switches function as switches that bypass the resistors. FET switch 32, 34, 36 are turned on/off by switch terminal 56, 58, 60, respectively.
 バイアス端子50、バイアス端子52、バイアス端子54は、抵抗38、抵抗40、抵抗42のゲート端子とは反対側の端子であり、GNDとの間にそれぞれ容量44、容量46、容量48が接続されている。容量44、容量46、容量48は可変容量である。 Bias terminal 50, bias terminal 52, bias terminal 54 are terminals opposite the gate terminals of resistors 38, 40, and 42, and capacitors 44, 46, and 48 are connected between them and GND, respectively. Capacitors 44, 46, and 48 are variable capacitors.
 なお、スタック型回路が有するFETの数は4個に限らない。ここではスタック型回路が有するFETの数をn(nは2以上の数)として説明する。これらのFETの番号を1からnとし、iを2以上かつ(n-1)以下の整数とする。1番目のFETは図1におけるFET12に対応し、ゲート端子に入力信号が入力され、ドレイン端子が2番目のFETのソース端子に接続され、ソース端子はGNDに接続される端子である。i番目のFETは図1におけるFET14およびFET16に対応し、ドレイン端子が(i+1)番目のFETのソース端子に接続される。n番目のFETは図1におけるFET18に対応し、ドレイン端子から出力信号が出力され、ドレイン端子は電源(Vdd)に接続される端子である。 The number of FETs in a stacked circuit is not limited to four. Here, the number of FETs in a stacked circuit is assumed to be n (n is a number equal to or greater than 2). The FETs are numbered from 1 to n, and i is an integer equal to or greater than 2 and equal to or less than (n-1). The first FET corresponds to FET 12 in FIG. 1, and has a gate terminal to which an input signal is input, a drain terminal connected to the source terminal of the second FET, and a source terminal connected to GND. The i-th FET corresponds to FET 14 and FET 16 in FIG. 1, and has a drain terminal connected to the source terminal of the (i+1)-th FET. The n-th FET corresponds to FET 18 in FIG. 1, and has a drain terminal to which an output signal is output, and a drain terminal connected to a power supply (Vdd).
 スタック型回路が有するFETの数が4個の場合に戻り、説明を続ける。FETの最大標準電圧は1.2Vであるため、電力増幅器10の電源電圧は直流電圧で4.8Vまで上げられる。各FETのウェルは分離され、バックゲートがソースに接続されている。FETが完全空乏型のSOI(Silicon On Insulator)の場合は、バックゲートはフローティングでもよい。FETスイッチ32、FETスイッチ34、FETスイッチ36などの制御用FETも最大4.8Vの耐圧が必要であるため、制御用FETにはゲート酸化膜が厚い高耐圧のFETを使用する。 Let's go back to the case where the stacked circuit has four FETs and continue the explanation. Since the maximum standard voltage of a FET is 1.2V, the power supply voltage of the power amplifier 10 can be raised to 4.8V DC. The well of each FET is separated, and the backgate is connected to the source. If the FET is a fully depleted SOI (Silicon On Insulator) type, the backgate may be floating. Since the control FETs such as FET switch 32, FET switch 34, and FET switch 36 also need to withstand a maximum voltage of 4.8V, high-voltage FETs with a thick gate oxide film are used for the control FETs.
 電源電圧が最大の4.8Vの場合、電圧降下がなければFET18のドレイン端子には4.8Vの電圧が印加される。電圧降下がある場合はその分印加電圧は低下するが、ここでは電圧降下がないとして説明する。電源電圧が4.8Vの場合はFETスイッチ32、FETスイッチ34、FETスイッチ36を全て閉じ、抵抗38、抵抗40、抵抗42をバイパスする。こうすることでFET12、FET14、FET16、FET18のそれぞれのドレイン・ソース端子間に1.2Vの電圧が印加され、これらのFETが全て増幅動作をする。 When the power supply voltage is the maximum 4.8V and there is no voltage drop, a voltage of 4.8V is applied to the drain terminal of FET 18. If there is a voltage drop, the applied voltage will decrease by that amount, but here we will explain it as if there is no voltage drop. When the power supply voltage is 4.8V, FET switch 32, FET switch 34, and FET switch 36 are all closed, bypassing resistors 38, 40, and 42. In this way, a voltage of 1.2V is applied between the drain-source terminals of FET 12, FET 14, FET 16, and FET 18, and all of these FETs perform an amplifying operation.
 次に電源電圧を3.6Vに下げた場合を考える。この場合、FETスイッチ32、FETスイッチ34を閉じ、FETスイッチ36は開く。よって抵抗42が有効になり、FET18はスイッチモードで動作する。ここでスイッチモードとは、FETのゲート端子が抵抗によりフローティングになることにより、ソース端子への入力がドレイン端子からほぼ損失無しで出力される動作状態のことである。残りのFET12、FET14、FET16は増幅動作をする。こうすることでFET18のドレイン・ソース端子間の電圧降下が最小に抑えられ、増幅動作をするFET12、FET14、FET16のドレイン・ソース端子間にはそれぞれほぼ1.2Vの電圧が印加されることになり、電力増幅動作に最適な状態を実現できる。すなわち、増幅時の電圧振幅及び電流振幅を十分に大きくできるようにFETが飽和領域で動作する。 Next, consider the case where the power supply voltage is lowered to 3.6V. In this case, FET switch 32 and FET switch 34 are closed, and FET switch 36 is open. Resistor 42 is therefore enabled, and FET 18 operates in switch mode. Switch mode here refers to an operating state in which the gate terminal of the FET is floated by the resistor, and the input to the source terminal is output from the drain terminal with almost no loss. The remaining FETs 12, 14, and 16 perform amplification. This keeps the voltage drop between the drain and source terminals of FET 18 to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FETs 12, 14, and 16 performing amplification, achieving an optimal state for power amplification. In other words, the FETs operate in the saturation region so that the voltage amplitude and current amplitude during amplification can be made sufficiently large.
 次に電源電圧を2.4Vに下げた場合を考える。この場合、FETスイッチ32を閉じ、FETスイッチ34、FETスイッチ36は開く。よってFET16、FET18のゲート端子の抵抗40、抵抗42が有効になり、FET16、FET18はスイッチモードで動作する。残りのFET12、FET14は増幅動作をする。こうすることでFET16、FET18のドレイン・ソース端子間の電圧降下が最小に抑えられ、増幅動作をするFET12、FET14のドレイン・ソース端子間にはそれぞれほぼ1.2Vの電圧が印加されることになり、十分に増幅動作できる。 Next, consider the case where the power supply voltage is lowered to 2.4V. In this case, FET switch 32 is closed, and FET switch 34 and FET switch 36 are open. Therefore, resistors 40 and 42 at the gate terminals of FET 16 and FET 18 are active, and FET 16 and FET 18 operate in switch mode. The remaining FETs 12 and 14 perform an amplifying operation. In this way, the voltage drop between the drain and source terminals of FET 16 and FET 18 is kept to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FET 12 and FET 14, which perform the amplifying operation, allowing sufficient amplifying operation.
 次に電源電圧を1.2Vに下げた場合を考える。この場合、FETスイッチ32、FETスイッチ34、FETスイッチ36を全て開く。よってFET14、FET16、FET18のゲート端子の抵抗38、抵抗40、抵抗42が有効になり、FET14、FET16、FET18はスイッチモードで動作する。残りのFET12は増幅動作をする。こうすることでFET14、FET16、FET18のドレイン・ソース端子間の電圧降下が最小に抑えられ、増幅動作をするFET12のドレイン・ソース端子間にはほぼ1.2Vの電圧が印加されることになり、十分に増幅動作できる。 Next, consider the case where the power supply voltage is lowered to 1.2V. In this case, FET switch 32, FET switch 34, and FET switch 36 are all open. Therefore, resistors 38, 40, and 42 at the gate terminals of FET 14, FET 16, and FET 18 become active, and FET 14, FET 16, and FET 18 operate in switch mode. The remaining FET 12 performs an amplifying operation. In this way, the voltage drop between the drain and source terminals of FET 14, FET 16, and FET 18 is kept to a minimum, and a voltage of approximately 1.2V is applied between the drain and source terminals of FET 12, which performs the amplifying operation, allowing sufficient amplifying operation.
 なお、電源電圧を下げた場合にFETスイッチを開く順番は、上記のように上段のFETスイッチ36からでなくてもよい。 When the power supply voltage is lowered, the order in which the FET switches are opened does not have to start from the upper FET switch 36 as described above.
 これまでの説明を一般化する。スタック型回路が有するFETの数をn(nは2以上の整数)とし、前述のようにFETに番号を付すとする。これらのFETはいずれも最大標準電圧がVmであるとし、n番目のFETのドレイン端子に印加される電圧をVdとし、jを1以上かつn以下の整数とすると、(j-1)×Vm<Vdd≦j×Vmの場合に、FETスイッチのうち(j-1)個を閉じ、残りを開く。 Let us generalize the explanation so far. Let the number of FETs in the stacked circuit be n (n is an integer equal to or greater than 2), and let the FETs be numbered as described above. Let the maximum standard voltage of all of these FETs be Vm, let the voltage applied to the drain terminal of the nth FET be Vd, and let j be an integer equal to or greater than 1 and equal to or less than n. If (j-1) x Vm < Vdd ≤ j x Vm, then (j-1) of the FET switches will be closed and the rest will be open.
 このように電源電圧を下げても、電源電圧の低下のレベルに応じてFETスイッチ32、FETスイッチ34、FETスイッチ36を適切に開くことで、増幅動作をするFETのドレイン・ソース端子間にFETが飽和領域で動作するのに十分な電圧が印加されるようにすることができる。 Even if the power supply voltage is reduced in this way, by appropriately opening FET switch 32, FET switch 34, and FET switch 36 according to the level of the reduction in the power supply voltage, it is possible to apply a voltage sufficient for the FET to operate in the saturation region between the drain and source terminals of the FET performing the amplifying operation.
 FET12、FET14、FET16、FET18の各FETの負荷線が等しくなるように容量の容量値を設定してもよい。各FETが全て増幅動作をする場合の負荷線を模式的に表したのが図2である。各FETの負荷線を等しくするには、FET14、FET16、FET18の入力インピーダンスをZi(i=1,2,3)とし、1段のFETの最適な負荷抵抗をRoptとすると、Z1=Ropt、Z2=2×Ropt、Z3=3×Roptとするのがよい。4×Roptは、FET18のドレイン端子から見た負荷インピーダンスと等しくなるようにする。例えば出力整合回路20のインピーダンスが50Ωであれば、Roptは12.5Ωである。こうするとFET12、FET14、FET16、FET18の負荷線が等しくなる。 The capacitance values of the capacitors may be set so that the load lines of FET12, FET14, FET16, and FET18 are equal. Figure 2 shows a schematic of the load lines when all FETs are performing amplification. To equalize the load lines of each FET, if the input impedance of FET14, FET16, and FET18 is Zi (i = 1, 2, 3) and the optimal load resistance of one FET is Ropt, then Z1 = Ropt, Z2 = 2 x Ropt, and Z3 = 3 x Ropt should be set. 4 x Ropt should be set to be equal to the load impedance seen from the drain terminal of FET18. For example, if the impedance of the output matching circuit 20 is 50 Ω, Ropt is 12.5 Ω. This will equalize the load lines of FET12, FET14, FET16, and FET18.
 Zi(i=1,2,3)を上記の値に設定するには、数1式を用いて、容量44、容量46、容量48の容量値を所定の値に設定すればよい(非特許文献1参照)。 To set Zi (i = 1, 2, 3) to the above value, the capacitance values of capacitors 44, 46, and 48 can be set to predetermined values using formula 1 (see Non-Patent Document 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでCgsはFET14、FET16、FET18のゲート・ソース間容量、Ci(i=1,2,3)は容量44、容量46、容量48の容量値、gmはFET14、FET16、FET18の相互コンダクタンスである。なおここでは、FET14、FET16、FET18の相互コンダクタンスおよびゲート・ソース間容量は等しく、動作周波数はこれらのFETの遮断周波数より十分低いとしている。 Here, Cgs is the gate-source capacitance of FET14, FET16, and FET18, Ci (i=1, 2, 3) is the capacitance value of capacitance 44, capacitance 46, and capacitance 48, and gm is the mutual conductance of FET14, FET16, and FET18. Note that here, the mutual conductance and gate-source capacitance of FET14, FET16, and FET18 are assumed to be equal, and the operating frequency is sufficiently lower than the cutoff frequency of these FETs.
 電源電圧を下げた場合、そのままでは各FETの負荷線が変化する。例えば電源電圧を3.6Vに下げ、FETスイッチ36は開いてFET18をスイッチモードで動作させたとする。この場合、FET18の入力インピーダンスZ3は4×Roptになる。すると、FET18の負荷線は図3のように、破線で描かれた最適な負荷線からずれてしまう。 If the power supply voltage is lowered, the load line of each FET will change if left as is. For example, suppose the power supply voltage is lowered to 3.6 V, and FET switch 36 is opened to operate FET 18 in switch mode. In this case, the input impedance Z3 of FET 18 becomes 4 x Ropt. As a result, the load line of FET 18 will deviate from the optimal load line drawn with a dashed line, as shown in Figure 3.
 負荷線の変化を小さくするには、容量44、容量46の可変容量の容量値を変化させるのがよい。具体的には、容量44の容量値C1を、Z1=1/3×4×Roptとなるように設定し、容量46の容量値C2を、Z2=2/3×4×Roptとなるように設定する。こうすることで、FET12、FET14、FET16の負荷線の変化を抑えられる。 In order to reduce the change in the load line, it is advisable to change the capacitance values of the variable capacitances of capacitors 44 and 46. Specifically, the capacitance value C1 of capacitor 44 is set so that Z1 = 1/3 x 4 x Ropt, and the capacitance value C2 of capacitor 46 is set so that Z2 = 2/3 x 4 x Ropt. In this way, the change in the load line of FET12, FET14, and FET16 can be suppressed.
 同様に、電源電圧を2.4Vに下げ、FETスイッチ34、FETスイッチ36は開いてFET16、FET18をスイッチモードで動作させた場合は、容量44の容量値C1を、Z1=1/2×4×Roptとなるように設定する。 Similarly, when the power supply voltage is lowered to 2.4 V and FET switch 34 and FET switch 36 are opened to operate FET 16 and FET 18 in switch mode, the capacitance value C1 of capacitor 44 is set to Z1 = 1/2 x 4 x Ropt.
 これまでの説明を一般化する。スタック型回路が有するFETの数をn(nは2以上の整数)とし、前述のようにFETに番号を付すとする。n番目のFETのドレイン端子から見た負荷インピーダンスをZ0とする。2番目からn番目のFETの中で増幅動作をするFETの数をmとし、増幅動作をするFETの番号を、スタック型回路のFETの番号の小さいほうから順に、1からmとする。kを1以上かつm以下の整数とすると、増幅動作をするk番目のFETのソース端子から見た入力インピーダンスを(k-0.5)/(m+1)×Z0から(k+0.5)/(m+1)×Z0の範囲内に設定すればよい。入力インピーダンスはk/(m+1)×Z0に設定するのが理想だが、上記程度の幅を持たせてもよい。  Generalizing the explanation so far. Let the number of FETs in the stacked circuit be n (n is an integer of 2 or more), and let the FETs be numbered as described above. Let the load impedance seen from the drain terminal of the nth FET be Z0. Let the number of FETs performing amplifying operation among the second to nth FETs be m, and let the numbers of the FETs performing amplifying operation be 1 to m, in order from the smallest FET number in the stacked circuit. If k is an integer of 1 or more and m or less, then the input impedance seen from the source terminal of the kth FET performing amplifying operation should be set within the range of (k-0.5)/(m+1)×Z0 to (k+0.5)/(m+1)×Z0. Ideally, the input impedance should be set to k/(m+1)×Z0, but it is also acceptable to have a range of the above mentioned range.
 このように電源電圧を下げても、FETの入力インピーダンスを適切に設定することで、増幅動作をするFETの負荷線を等しくすることが出来る。 Even if the power supply voltage is lowered in this way, the load line of the FET performing the amplifying operation can be made equal by appropriately setting the input impedance of the FET.
 以上より、この実施の形態によれば、電源電圧を下げた場合でも、増幅動作をするFETのドレイン・ソース端子間にFETが飽和領域で動作するのに十分な電圧が印加されるようにすることができる。そのため電力増幅器の効率の低下が抑えられる。 As described above, according to this embodiment, even if the power supply voltage is lowered, it is possible to apply a voltage between the drain and source terminals of the FET performing the amplifying operation that is sufficient for the FET to operate in the saturation region. This prevents a decrease in the efficiency of the power amplifier.
 また、電源電圧を下げた場合でも、増幅動作をするFETの負荷線を等しくすることができる。そのため電力増幅器の効率の低下が抑えられる。 In addition, even if the power supply voltage is lowered, the load line of the FET performing the amplifying operation can be made equal. This prevents the efficiency of the power amplifier from decreasing.
 また、FETスイッチによる切り替えを採用しているため、高周波信号を伝達する箇所に高周波バイパス回路のような付加経路が不要である。そのため回路面積を縮小できる。 In addition, because switching is performed using FET switches, there is no need for additional paths such as high-frequency bypass circuits in the areas where high-frequency signals are transmitted. This allows the circuit area to be reduced.
実施の形態2.
 実施の形態2にかかる電力増幅器では、実施の形態1にかかる電力増幅器10の容量44、容量46、容量48に加えて、FETスイッチで接続をオン/オフ可能な追加容量を追加している。
Embodiment 2.
In the power amplifier according to the second embodiment, in addition to the capacitance 44, capacitance 46, and capacitance 48 of the power amplifier 10 according to the first embodiment, an additional capacitance whose connection can be turned on/off by an FET switch is added.
 ここではFET14のゲート端子付近のみを示した図4を用いて説明する。図4のように、容量44に加えて、FETスイッチ64と追加容量62、およびFETスイッチ70と追加容量68が追加されている。追加容量62はFETスイッチ64でオン/オフ可能である。追加容量68はFETスイッチ70でオン/オフ可能である。 Here, an explanation will be given using Figure 4, which shows only the vicinity of the gate terminal of FET 14. As shown in Figure 4, in addition to capacitance 44, a FET switch 64, an additional capacitance 62, and a FET switch 70 and an additional capacitance 68 are added. The additional capacitance 62 can be turned on/off by the FET switch 64. The additional capacitance 68 can be turned on/off by the FET switch 70.
 実施の形態1にかかる電力増幅器10と同様に、この実施の形態にかかる電力増幅器も増幅に関わるFETは4つとしているため、実施の形態1での説明から分かるように、FET14のゲート端子に接続される容量の容量値は3つの値のいずれかに設定できるとよい。この実施の形態では、FETスイッチ64とFETスイッチ70のオン/オフにより、3つの容量値の切り替えが可能である。 Similar to the power amplifier 10 according to the first embodiment, the power amplifier according to this embodiment also uses four FETs involved in amplification, so as can be seen from the explanation of the first embodiment, it is preferable that the capacitance value of the capacitance connected to the gate terminal of FET 14 can be set to one of three values. In this embodiment, the three capacitance values can be switched by turning on/off FET switch 64 and FET switch 70.
 なお、上記はFET14だけでなく、FET16、FET18においても同様に適用可能である。 The above is applicable not only to FET 14, but also to FET 16 and FET 18.
 以上により、この実施の形態では容量値の切り替えを通常のFETを用い、ディジタル的に変化させることができる。そのため、アナログ的に可変な容量に比べ、制御が簡単であり、回路面積も縮小できる。 As described above, in this embodiment, the capacitance value can be changed digitally using a normal FET. Therefore, compared to analog-variable capacitance, control is simpler and the circuit area can be reduced.
実施の形態3.
 実施の形態3にかかる電力増幅器110は、図5に示すように、実施の形態1にかかる電力増幅器10の回路構成を差動化したものである。これに伴い、入力信号も差動信号になり、この差動信号が入力端子122、入力端子123に入力される。差動化することで、Si系LSI上に搭載した単相の増幅器でしばしば問題になるGNDインダクタンスによる利得低下の影響を大幅に抑制できる。また、実施の形態2にかかる電力増幅器を差動化してもよい。
Embodiment 3.
As shown in Fig. 5, the power amplifier 110 according to the third embodiment is obtained by differentiating the circuit configuration of the power amplifier 10 according to the first embodiment. Accordingly, the input signal also becomes a differential signal, and this differential signal is input to the input terminal 122 and the input terminal 123. By differentiating, it is possible to significantly suppress the influence of gain reduction caused by GND inductance, which is often a problem in a single-phase amplifier mounted on a Si-based LSI. Also, the power amplifier according to the second embodiment may be differentiated.
 なお、全ての実施の形態にかかる電力増幅器において、CMOSに替えてGaAs FET、InP FETなどを用いることもできる。GaAs、InPを用いる場合、通常バックゲートはフローティングである。 In addition, in the power amplifiers according to all the embodiments, GaAs FETs, InP FETs, etc. can be used instead of CMOS. When GaAs or InP is used, the backgate is usually floating.
12,14,16,18 FET、38,40,42 抵抗、44,46,48 容量、32,34,36,64,70 FETスイッチ、20 出力整合回路、62,68 追加容量、19 スタック型回路 12, 14, 16, 18 FET, 38, 40, 42 Resistor, 44, 46, 48 Capacitor, 32, 34, 36, 64, 70 FET switch, 20 Output matching circuit, 62, 68 Additional capacitor, 19 Stacked circuit

Claims (7)

  1.  n(nは2以上の整数)個のFETを有するスタック型回路であって、
     前記FETの番号を1からnとし、iを2以上かつ(n-1)以下の整数とすると、
     1番目のFETは、ゲート端子に入力信号が入力され、ドレイン端子が2番目のFETのソース端子に接続され、ソース端子はGNDに接続される端子であり、
     i番目のFETは、ドレイン端子が(i+1)番目のFETのソース端子に接続され、
     n番目のFETは、ドレイン端子から出力信号が出力され、ドレイン端子は電源に接続される端子である
     スタック型回路と、
     前記スタック型回路の2番目からn番目のFETのゲート端子にそれぞれ接続された抵抗と、
     前記抵抗の前記ゲート端子とは反対側の電極にそれぞれ接続された容量と、
     前記抵抗と並列してそれぞれ接続された第1のスイッチと、
     を備えた電力増幅器。
    A stacked circuit having n (n is an integer of 2 or more) FETs,
    Let the FET numbers be 1 to n, and i be an integer between 2 and (n-1), inclusive.
    The first FET has a gate terminal to which an input signal is input, a drain terminal connected to the source terminal of the second FET, and a source terminal connected to GND.
    The drain terminal of the i-th FET is connected to the source terminal of the (i+1)-th FET,
    a stacked circuit in which an output signal is output from a drain terminal of the n-th FET, the drain terminal being a terminal connected to a power supply;
    resistors connected to gate terminals of the second to n-th FETs in the stacked circuit, respectively;
    a capacitance connected to an electrode of each of the resistors on the opposite side to the gate terminal;
    a first switch connected in parallel with each of the resistors;
    A power amplifier comprising:
  2.  前記第1のスイッチはFETスイッチで構成された
     請求項1に記載の電力増幅器。
    The power amplifier according to claim 1 , wherein the first switch is a FET switch.
  3.  前記スタック型回路のFETはいずれも最大標準電圧がVmであるとし、
     前記スタック型回路のn番目のFETのドレイン端子に印加される電圧をVdとし、
     jを1以上かつn以下の整数とすると、
     (j-1)×Vm<Vd≦j×Vmの場合に、前記スイッチのうち(j-1)個を閉じ、残りを開く
     請求項1または2に記載の電力増幅器。
    The FETs in the stacked circuit all have a maximum standard voltage of Vm.
    The voltage applied to the drain terminal of the n-th FET in the stacked circuit is Vd,
    Let j be an integer greater than or equal to 1 and less than or equal to n.
    3. The power amplifier according to claim 1, wherein if (j-1) x Vm < Vd ≦ j x Vm, then (j-1) of the switches are closed and the remaining switches are opened.
  4.  前記スタック型回路のn番目のFETのドレイン端子から見た負荷インピーダンスをZ0とし、
     前記スタック型回路の2番目からn番目のFETの中で増幅動作をするFETの数をmとし、
     前記増幅動作をするFETの番号を、前記スタック型回路のFETの番号の小さいほうから順に、1からmとし、
     kを1以上かつm以下の整数とすると、
     前記増幅動作をするk番目のFETのソース端子から見た入力インピーダンスを(k-0.5)/(m+1)×Z0から(k+0.5)/(m+1)×Z0の範囲内に設定する
     請求項1から3のいずれか1項に記載の電力増幅器。
    The load impedance seen from the drain terminal of the n-th FET in the stacked circuit is Z0,
    The number of FETs performing an amplifying operation among the second to n-th FETs of the stacked circuit is defined as m,
    The numbers of the FETs performing the amplifying operation are numbered from 1 to m in ascending order of the numbers of the FETs in the stacked circuit,
    Let k be an integer greater than or equal to 1 and less than or equal to m.
    The input impedance seen from the source terminal of the kth FET performing the amplifying operation is set within a range from (k-0.5)/(m+1)×Z0 to (k+0.5)/(m+1)×Z0. The power amplifier according to any one of claims 1 to 3.
  5.  前記容量と並列に、第2のスイッチによってオン/オフ可能な追加容量を備え、
     前記第2のスイッチのオン/オフによって前記入力インピーダンスを設定する
     請求項4に記載の電力増幅器。
    an additional capacitance that can be turned on/off by a second switch is provided in parallel with the capacitance;
    The power amplifier according to claim 4 , wherein the input impedance is set by turning on/off the second switch.
  6.  前記第2のスイッチはFETスイッチで構成された
     請求項5に記載の電力増幅器。
    The power amplifier according to claim 5 , wherein the second switch is a FET switch.
  7.  前記入力信号は差動信号であり、
     回路構成が差動化された
     請求項1から6のいずれか1項に記載の電力増幅器。
    the input signal is a differential signal;
    The power amplifier according to claim 1 , wherein the circuit configuration is differentiated.
PCT/JP2022/041857 2022-11-10 2022-11-10 Power amplifier WO2024100830A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/041857 WO2024100830A1 (en) 2022-11-10 2022-11-10 Power amplifier
JP2023516472A JP7384318B1 (en) 2022-11-10 2022-11-10 power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041857 WO2024100830A1 (en) 2022-11-10 2022-11-10 Power amplifier

Publications (1)

Publication Number Publication Date
WO2024100830A1 true WO2024100830A1 (en) 2024-05-16

Family

ID=88833351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041857 WO2024100830A1 (en) 2022-11-10 2022-11-10 Power amplifier

Country Status (2)

Country Link
JP (1) JP7384318B1 (en)
WO (1) WO2024100830A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261925A (en) * 1997-03-17 1998-09-29 Toshiba Corp High frequency amplifier
JP2001094357A (en) * 1999-09-21 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> Linear high output amplifier
WO2012164794A1 (en) * 2011-06-01 2012-12-06 パナソニック株式会社 Low-noise amplifier with through mode
JP2017126950A (en) * 2016-01-15 2017-07-20 三菱電機株式会社 Power amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261925A (en) * 1997-03-17 1998-09-29 Toshiba Corp High frequency amplifier
JP2001094357A (en) * 1999-09-21 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> Linear high output amplifier
WO2012164794A1 (en) * 2011-06-01 2012-12-06 パナソニック株式会社 Low-noise amplifier with through mode
JP2017126950A (en) * 2016-01-15 2017-07-20 三菱電機株式会社 Power amplifier

Also Published As

Publication number Publication date
JP7384318B1 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US11870405B2 (en) Optimized multi gain LNA enabling low current and high linearity including highly linear active bypass
US5408198A (en) Semiconductor power amplifier integrated circuit
US20180234094A1 (en) System and Method for a Driving a Radio Frequency Switch
US7619482B1 (en) Compact low voltage low noise amplifier
CN108574464B (en) Low-power-consumption high-linearity dual-mode millimeter wave broadband stacked low-noise amplifier
US20220263469A1 (en) Turn on time acceleration of a cascode amplifier
US11990874B2 (en) Device stack with novel gate capacitor topology
US20230216490A1 (en) Switching time reduction of an rf switch
CN117501622A (en) Stacked multi-stage programmable LNA architecture
US11777451B2 (en) Cascode gain boosting and linear gain control using gate resistor
EP1796202B1 (en) High power, high frequency switch circuits using strings of power transistors
US11095256B2 (en) Semiconductor device
US7102444B2 (en) Method and apparatus for compensating and improving efficiency in a variable power amplifier
US6664842B1 (en) FET active load and current source
US20230246639A1 (en) Switching time reduction of an rf switch
WO2024100830A1 (en) Power amplifier
Abey et al. A single supply high performance PA MMIC for GSM handsets using quasi-enhancement mode PHEMT
JPH0738404A (en) Output changeover amplifier
CN114079428B (en) Tunable differential input cascode low-noise amplifier based on CMOS
CN116915193B (en) Millimeter wave reconfigurable power amplifier with high linearity and high output power
US11973470B2 (en) Impedance control in merged stacked FET amplifiers
Fraser et al. A wide-band RF Front-end module for 5G mMIMO applications
CN220798223U (en) Gain-digitally controllable low noise amplifier
CN109660215B (en) Integrated circuit of broadband radio frequency low noise amplifier
JPH09294026A (en) Semiconductor circuit