WO2024100771A1 - Raw material charging control device for blast furnace, method for generating opening degree command value, and program - Google Patents

Raw material charging control device for blast furnace, method for generating opening degree command value, and program Download PDF

Info

Publication number
WO2024100771A1
WO2024100771A1 PCT/JP2022/041583 JP2022041583W WO2024100771A1 WO 2024100771 A1 WO2024100771 A1 WO 2024100771A1 JP 2022041583 W JP2022041583 W JP 2022041583W WO 2024100771 A1 WO2024100771 A1 WO 2024100771A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
raw material
command value
prediction model
raw materials
Prior art date
Application number
PCT/JP2022/041583
Other languages
French (fr)
Japanese (ja)
Inventor
朋浩 池田
裕作喜 松本
春文 合志
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2022/041583 priority Critical patent/WO2024100771A1/en
Priority to PCT/JP2023/038967 priority patent/WO2024101191A1/en
Publication of WO2024100771A1 publication Critical patent/WO2024100771A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Definitions

  • This disclosure relates to a raw material charging control device for a blast furnace, a method for generating an opening command value, and a program.
  • Patent Document 1 discloses a control method in which a model formula expressing the relationship between the number of revolutions of the rotating chute and the opening degree of the flow adjustment gate is prepared, the opening degree of the flow adjustment gate is controlled based on the model formula, and the parameters of the model formula are learned by incorporating the actual results of the opening degree of the flow adjustment gate, the number of revolutions of the rotating chute, the revolution speed, and the weighing value obtained from the results after the charging of the raw materials is completed.
  • This disclosure provides an effective device for controlling the rate at which raw materials are charged from a bunker into a blast furnace with high precision.
  • a raw material charging control device for a blast furnace includes a data collection unit that accumulates learning records in a data storage unit, including the gate opening for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging rate of the raw materials from the bunker, and charging conditions including raw material characteristics; an offline learning unit that generates a prediction model that expresses the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on the multiple learning records accumulated in the data storage unit; a command generation unit that generates a gate opening command value corresponding to the charging target speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model; and a furnace top controller that corresponds the opening to the opening command value.
  • a method for generating an opening command value includes accumulating learning records in a data storage unit, including the opening of a gate for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging speed of the raw materials from the bunker, and charging conditions including raw material characteristics; generating a prediction model that represents the relationship between the opening, the charging speed, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records accumulated in the data storage unit; and generating a gate opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model.
  • a program causes the device to accumulate learning records in a data storage unit, including the gate opening for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging rate of the raw materials from the bunker, and charging conditions including the characteristics of the raw materials; generate a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records accumulated in the data storage unit; and generate a gate opening command value that corresponds to the target charging rate based on the charging conditions and target charging rate of newly added raw materials and the prediction model.
  • This disclosure provides an apparatus that is effective in controlling the speed at which raw materials are charged from a bunker into a blast furnace with high precision.
  • FIG. 2 is a schematic diagram illustrating the configuration of a raw material charging device.
  • FIG. 2 is a block diagram illustrating a functional configuration of a server device and a learning calculation device.
  • FIG. 1 is a schematic diagram illustrating a predictive model generated by deep learning.
  • FIG. 1 is a schematic diagram illustrating a prediction model generated by the random forest method or the gradient boosting method.
  • 4 is a block diagram illustrating a configuration of a command generating unit.
  • FIG. FIG. 2 is a block diagram illustrating a hardware configuration of a server device and a learning calculation device.
  • 13 is a flowchart illustrating a record accumulation procedure.
  • 1 is a flow chart illustrating an offline learning procedure.
  • 4 is a flowchart illustrating an opening control procedure.
  • the raw material charging device 1 shown in Fig. 1 is a device that charges raw materials into a blast furnace 2 used for steel production or the like.
  • the raw material charging device 1 includes a bunker 30, a gate 40, a collection hopper 50, a distribution chute 60, a hopper 10, and a conveyor 20.
  • the bunker 30 stores raw materials in an upper portion of the blast furnace 2.
  • the raw materials charged into the blast furnace 2 may include multiple types of raw materials.
  • the raw material charging device 1 may be equipped with multiple bunkers 30, and each of the multiple bunkers 30 may store raw materials in the upper part of the blast furnace 2.
  • the raw material charging device 1 has two bunkers 30A, 30B.
  • a distribution device 31 is provided above the bunkers 30A, 30B that distributes raw materials charged from above to either the bunker 30A or 30B.
  • the multiple bunkers 30 are selectively used based on a predetermined order, etc.
  • each of the multiple bunkers 30 contains multiple types of raw materials.
  • Each of the multiple bunkers 30 may be provided with a pressure sensor 32, and the blast furnace 2 may be provided with a pressure sensor 3.
  • the pressure sensor 32 detects the internal pressure of the bunker 30, and the pressure sensor 3 detects the internal pressure of the blast furnace 2.
  • the gate 40 sends out raw materials from the bunker 30.
  • the opening degree of the gate 40 can be changed by an electric actuator.
  • the opening degree is expressed, for example, as a ratio to the fully open opening degree.
  • the raw material charging device 1 When the raw material charging device 1 is equipped with multiple bunkers 30, it is equipped with multiple gates 40 corresponding to the multiple bunkers 30, respectively. Each of the multiple gates 40 is provided at the bottom of the corresponding bunker 30. In the illustrated example, the raw material charging device 1 has two gates 40A, 40B corresponding to the two bunkers 30A, 30B, respectively.
  • the collecting hopper 50 temporarily stores the raw materials sent from the multiple gates 40 and collects them at a single charging port 51.
  • the distribution chute 60 distributes the raw materials that drop from the charging port 51 into the blast furnace 2. For example, the distribution chute 60 tilts and rotates using an electric actuator, distributing the raw materials in a spiral shape inside the blast furnace 2.
  • the multiple hoppers 10 are provided outside the blast furnace and each store multiple types of raw materials.
  • the multiple hoppers 10 include a hopper 10A that stores relatively small coke lumps, a hopper 10B that stores main raw materials such as multiple types of iron ore, a hopper 10C that stores auxiliary raw materials, and a hopper 10D that stores relatively large coke lumps.
  • Each of the multiple hoppers 10 has a discharge device 11 at the bottom.
  • the discharge device 11 discharges the raw materials stored in the hopper 10 onto the conveyor 20.
  • discharged raw materials will be referred to as "discharged raw materials" to distinguish them from the raw materials stored in the hopper 10.
  • the multiple hoppers 10 may be provided with weighing scales 12 that detect the weight of each of the multiple types of discharged raw materials.
  • each of the multiple hoppers 10 further has a weighing scale 12.
  • the weighing scale 12 detects the weight of the discharged raw materials based on the difference between the weight of the hopper 10 before the material is discharged by the discharge device 11 and the weight of the hopper 10 after the material is discharged by the discharge device 11.
  • the multiple weighing scales 12 that the multiple hoppers 10 each have detect the weight of each of the multiple types of discharged raw materials before they are put into the bunker 30 described below.
  • the multiple hoppers 10 may be provided with moisture meters 13 that detect the moisture content of the multiple types of raw materials.
  • each of the multiple hoppers 10 further has a moisture meter 13.
  • the moisture meter 13 detects the moisture content of the raw materials in the hopper 10 using a non-contact method such as infrared.
  • the moisture content is expressed, for example, as the ratio of the weight of the moisture content to the total weight of the raw materials.
  • the moisture content of the raw materials is substantially the same when they are stored in the hopper 10 and when they are discharged from the hopper 10. Therefore, the moisture content detected by the moisture meter 13 represents the moisture content of the discharged raw materials.
  • the degree of influence of the moisture content on the flow characteristics, etc. may vary depending on the type of raw material. Since there may be types of raw material where the influence of the moisture content can be ignored, each of the multiple hoppers 10 does not necessarily need to have a moisture meter 13.
  • the conveyor 20 is, for example, a belt conveyor, and transports the multiple types of discharged raw materials discharged from the multiple hoppers 10 to the bunker 30.
  • the multiple types of discharged raw materials transported by the conveyor 20 are loaded into the bunker 30. If the raw material charging device 1 is equipped with multiple bunkers 30, the multiple types of discharged raw materials transported by the conveyor 20 are loaded into one of the multiple bunkers 30 by the sorting device 31.
  • the raw material charging control device 90 controls the multiple hoppers 10 and the gate 40.
  • the raw material charging control device 90 has a raw material controller 92, a furnace top controller 93, and a schedule controller 91.
  • the raw material controller 92 controls each of the multiple hoppers 10 so that the discharge device 11 discharges raw material of a weight corresponding to a predetermined target weight.
  • the raw material controller 92 may retain the elapsed time from the time the discharge device 11 starts discharging raw material to the time the discharge device 11 stops discharging raw material as information representing the discharge speed of the raw material.
  • the furnace top controller 93 adjusts the opening of the gate 40 so that the raw materials are charged (dumped) from the bunker 30 at a charging speed corresponding to a predetermined charging target speed.
  • the charging speed and the charging target speed are expressed, for example, by the weight of raw materials charged per unit time.
  • the charging speed and the charging target speed may be expressed by the charging period of the raw materials from the bunker 30 (the length of time from the start of charging to the completion of charging), assuming that information on the weight of the raw materials put into the bunker 30 is obtained separately.
  • the raw material charging period may also be expressed by the number of rotations and the rotation speed of the distribution chute 60.
  • the furnace top controller 93 may hold the elapsed time from the time when charging of the raw materials from the bunker 30 starts to the time when charging is completed, and use it as information indicating the charging period.
  • the furnace top controller 93 may control the sorting device 31 to load the raw materials transported by the conveyor 20 into one of the multiple bunkers 30.
  • the furnace top controller 93 may retain identification information of the bunker 30 into which the raw materials are loaded, among the multiple bunkers 30.
  • the schedule controller 91 communicates with the raw material controller 92 and the furnace top controller 93 via a network line 94.
  • the network line 94 may be a local area network for control or a wide area network.
  • the schedule controller 91 receives raw material status information of the multiple hoppers 10 from the raw material controller 92 and receives furnace top status information of the bunker 30 and the gate 40 from the furnace top controller 93 via the network line 94.
  • the raw material status information of the multiple hoppers 10 may include the status of the discharge device 11, the detection result by the weight meter 12, and the detection result by the moisture meter 13, etc.
  • the furnace top status information of the bunker 30 and the gate 40 may include the identification information of the bunker 30 in use, the remaining weight of raw materials in the bunker 30, and the opening degree of the gate 40, etc.
  • the schedule controller 91 calculates the above-mentioned target weight and charging target speed based on a predetermined production plan, the raw material status information of the multiple hoppers 10, and the furnace top status information of the bunker 30 and the gate 40.
  • the schedule controller 91 transmits the target weight to the raw material controller 92 and the target charging speed to the furnace top controller 93 via the network line 94.
  • the actual charging speed at the opening adjusted by the furnace top controller 93 may have an error with respect to the target charging speed. In order to distribute the raw materials evenly in the blast furnace 2, it is desirable that the error be small. However, since the relationship between the opening adjusted by the furnace top controller 93 and the actual charging speed varies greatly depending on various conditions such as the characteristics of the raw materials, it is difficult to reduce the error.
  • the raw material charging control device 90 may be configured to execute the following: storing learning records including the opening of the gate 40, the charging speed of the raw materials from the bunker 30, and the charging conditions including the characteristics of the raw materials in a data storage unit; generating a prediction model that represents the relationship between the opening, the charging speed, and the charging conditions by a multi-stage input/output relationship based on the multiple learning records stored in the data storage unit; generating a gate opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of the newly charged raw materials and the prediction model; and making the opening of the gate 40 correspond to the generated opening command value.
  • the raw material charging control device 90 further includes a server device 100 and a learning calculation device 200.
  • the server device 100 and the learning calculation device 200 communicate with each other via a network line 94, and communicate with the raw material controller 92 and the furnace top controller 93 via the network line 94.
  • the server device 100 collects the learning records from the raw material controller 92 and the furnace top controller 93 via the network line 94 and stores them in the data storage unit.
  • the learning calculation device 200 acquires multiple learning records stored in the data storage unit via the network line 94, generates the prediction model based on the acquired multiple learning records, and generates a gate opening command value corresponding to the charging target speed based on the charging conditions and charging target speed of the newly charged raw materials and the prediction model.
  • the learning calculation device 200 transmits the opening command value to the furnace top controller 93 via the network line 94.
  • the server device 100 has, as its functional configuration (hereinafter referred to as "functional blocks"), an opening information acquisition unit 111, a speed information acquisition unit 112, a weight information acquisition unit 113, a flow characteristic information acquisition unit 114, a moisture information acquisition unit 115, an environmental information acquisition unit 116, a bunker information acquisition unit 117, a data collection unit 118, and a data storage unit 119.
  • the opening information acquisition unit 111 acquires opening information representing the opening of the gate 40 from the furnace top controller 93.
  • the speed information acquisition unit 112 acquires speed information representing the actual charging speed at the opening represented by the opening information from the furnace top controller 93. For example, the speed information acquisition unit 112 acquires information on the actual charging period at the opening represented by the opening information from the furnace top controller 93.
  • the weight information acquisition unit 113 acquires type information indicating the type of each of the multiple types of charged raw materials and weight information indicating the weight of each of the multiple types of charged raw materials. For example, the weight information acquisition unit 113 acquires the detection results of the multiple weighing scales 12 from the raw material controller 92, and acquires type information and weight information based on the acquired detection results.
  • the flow characteristic information acquisition unit 114 acquires flow characteristic information indicating the flow characteristic of each of the multiple types of raw materials. For example, the flow characteristic information acquisition unit 114 acquires information indicating the discharge speed when each of the multiple types of raw materials is discharged from the corresponding hopper from the raw material controller 92 as flow characteristic information.
  • the moisture information acquisition unit 115 acquires moisture information indicating the moisture content of the multiple types of raw materials. For example, the moisture information acquisition unit 115 acquires moisture information based on the detection results of the multiple moisture meters 13 that each of the multiple hoppers 10 has from the raw material controller 92.
  • the environmental information acquisition unit 116 acquires environmental information about the inside of the bunker 30 and the inside of the blast furnace 2 from the furnace top controller 93.
  • the environmental information acquisition unit 116 acquires pressure information including the detection results by the pressure sensor 32 and the detection results by the pressure sensor 3 from the furnace top controller 93, and acquires differential pressure information indicating the pressure difference between the inside of the bunker 30 and the inside of the blast furnace 2 based on the acquired pressure information.
  • the bunker information acquisition unit 117 acquires bunker identification information from the furnace top controller 93 indicating which of the multiple bunkers 30 was used to store and charge multiple types of raw materials.
  • the bunker identification information may be represented by a categorical variable, for example.
  • the data collection unit 118 accumulates learning records in the data storage unit 119, including the opening degree of the gate 40, the loading speed of the raw materials from the bunker 30, and the loading conditions including the characteristics of the raw materials.
  • the raw material characteristics may include the above type information and weight information, may include the above flow property information, and may include the above moisture content information.
  • the charging conditions may further include the above environmental information, and may further include the above bunker identification information.
  • the data collection unit 118 acquires opening information from the opening information acquisition unit 111, speed information from the speed information acquisition unit 112, type information and weight information from the weight information acquisition unit 113, flow characteristics information from the flow characteristics information acquisition unit 114, moisture information from the moisture information acquisition unit 115, environmental information from the environmental information acquisition unit 116, bunker identification information from the bunker information acquisition unit 117, generates a learning record by associating all the acquired information, and accumulates the generated learning record in the data storage unit 119.
  • the speed information may be represented by the charging time, assuming the weight of the raw material identified based on the weight information.
  • the data collection unit 118 may be configured to perform standardization processing on at least one type of information to generate learning records. For example, one example of standardization processing on one type of information is for the data collection unit 118 to divide a numerical value representing one type of information by a specified fluctuation range to make it dimensionless.
  • the learning calculation device 200 has, as functional blocks, an offline learning unit 211, a prediction model storage unit 212, and a command generation unit 220.
  • the offline learning unit 211 generates a prediction model that expresses the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on multiple learning records stored in the data storage unit 119.
  • the input/output relationship may be expressed by a case classification process that classifies the input and generates an output according to the case classification result, or a probabilistic case classification process, etc.
  • the offline learning unit 211 may generate a prediction model using a neural network based on deep learning.
  • FIG. 3 is a schematic diagram illustrating a prediction model based on deep learning.
  • the prediction model 310 shown in FIG. 3 is a neural network, and has an input layer 311, one or more intermediate layers 313, and an output layer 312.
  • the input layer 311 outputs an input vector to the next intermediate layer 313.
  • the intermediate layer 313 transforms the input from the previous layer using an activation function and outputs it to the next layer.
  • the output layer 312 transforms the input from the intermediate layer 313, which is the furthest from the input layer 311, using an activation function and outputs the transformation result as an output vector.
  • the activation functions in each intermediate layer 313 and the activation function in the output layer 312 are an example of the multi-stage input/output relationship described above. According to the process of transforming the input using an activation function, the transformation result changes depending on the input. In other words, since the transformation result changes depending on the input case, transformation using an activation function is an example of the case classification process or probabilistic case classification process described above.
  • the offline learning unit 211 may generate a prediction model using the random forest method or the gradient boosting method.
  • FIG. 4 is a schematic diagram illustrating a prediction model using the random forest method or the gradient boosting method.
  • the prediction model 320 shown in FIG. 4 includes multiple decision trees 321 and an output selection unit 322.
  • the decision tree 321 represents the relationship between the input and the output as conditional branching in multiple stages of branches 323.
  • the output selection unit 322 selects one of the outputs of the multiple decision trees 321 by majority vote.
  • the random forest method the offline learning unit 211 generates the multiple decision trees 321 by bagging.
  • the offline learning unit 211 In the gradient boosting method, the offline learning unit 211 generates the multiple decision trees 321 by boosting.
  • the decision tree 321 and the output selection unit 322 are an example of the multi-stage input/output relationship described above.
  • the decision tree 321 the output changes depending on the input case, so the input/output conversion by the decision tree 321 is an example of case classification processing or probabilistic case classification processing.
  • the multi-stage branch 323 in the decision tree 321 is also an example of the multi-stage input/output relationship described above.
  • the branch 323 the branch 323 to which the transition is made in the subsequent stage changes depending on the input case, so the conditional branch by the branch 323 is an example of case classification processing or probabilistic case classification processing.
  • the relationship between the opening, the charging speed, and the charging conditions is expressed as a single function. Therefore, the multiple regression model does not correspond to a prediction model that expresses the relationship between the opening, the charging speed, and the charging conditions as a multi-stage input/output relationship.
  • the offline learning unit 211 stores the generated prediction model in the prediction model storage unit 212.
  • the command generation unit 220 generates an opening command value for the gate 40 corresponding to the target charging speed based on the charging conditions and target charging speed of the newly charged raw materials and the prediction model stored in the prediction model storage unit 212.
  • the newly charged raw materials refer to the raw materials that are charged into the bunker 30 after the prediction model is generated.
  • the command generation unit 220 acquires the charging conditions of the newly charged raw materials, for example, from the data collection unit 118.
  • the command generating unit 220 transmits the generated opening command value to the furnace top controller 93.
  • the furnace top controller 93 makes the opening of the gate 40 correspond to the opening command value.
  • the offline learning unit 211 may generate a prediction model based on the multiple learning records, each of which includes type information and weight information as charging conditions, and the command generating unit 220 may generate an opening command value based on the charging conditions including type information and weight information of the newly added raw materials, the charging target speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes weight information obtained from the weighing scale 12 as the charging conditions, and the command generating unit 220 may generate an opening command value based on the charging conditions including weight information obtained from the weighing scale 12 for newly added raw materials, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes flow characteristic information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including the flow characteristic information of the newly charged raw material, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes flow characteristic information obtained based on the discharge rate as the charging condition, and the command generating unit 220 may generate an opening command value for newly added raw material based on the charging condition including the flow characteristic information obtained based on the discharge rate, the charging target rate, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes moisture information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including moisture information of the newly added raw material, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes environmental information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including environmental information when the newly charged raw materials are stored in the bunker 30, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes differential pressure information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including differential pressure information when newly added raw materials are stored in the bunker 30, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes bunker identification information as a loading condition, and the command generating unit 220 may generate an opening command value based on the loading conditions including bunker identification information indicating which of the multiple bunkers 30 will be used as the bunker 30 for the newly added raw material, the loading target speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes all of the type information, weight information, flow property information, moisture information, environmental information, and bunker identification information
  • the command generating unit 220 may generate an opening command value based on the charging conditions, which include all of the type information, weight information, flow property information, moisture information, environmental information, and bunker identification information of the newly input raw material, the target charging speed, and the prediction model.
  • the offline learning unit 211 may generate a prediction model to output the opening degree according to the input of the charging conditions and the charging speed.
  • the command generating unit 220 may input the charging conditions and the charging speed of the newly added raw materials to the prediction model to calculate the opening degree command value.
  • the offline learning unit 211 may generate a prediction model to output a charging speed according to input of charging conditions and an opening degree.
  • the command generating unit 220 may input the charging conditions of newly added raw materials and an opening degree command value into the prediction model to calculate a charging speed, and may calculate an opening degree command value corresponding to a charging target speed by repeating changing the opening degree command value.
  • the command generating unit 220 may have an initial value generating unit 221, a simulation unit 222, and a command value changing unit 223.
  • the initial value generating unit 221 generates an initial value for the opening command value.
  • the simulation unit 222 inputs the charging conditions for the newly charged raw materials and the opening command value into a prediction model to calculate the charging speed.
  • the charging speed calculated by the simulation unit 222 is referred to as the "estimated speed.”
  • the command value changing unit 223 changes the opening command value.
  • the command value change unit 223 calculates the deviation between the charging target speed and the estimated speed, calculates a correction value for the opening command value so as to reduce the deviation, and adds the correction value to the opening command value to change the opening command value.
  • the command value change unit 223 may calculate the correction value by adding a sign in the direction of reducing the deviation to a predetermined absolute value for one step. For example, the command value change unit 223 may add a positive sign to the absolute value when the deviation is a positive value (when the estimated speed is smaller than the charging target speed), and may add a negative sign to the absolute value when the deviation is a negative value.
  • the command value change unit 223 may calculate the correction value by performing a proportional operation, a proportional-integral operation, or a proportional-integral-differential operation on the deviation.
  • the simulation unit 222 and the command value modification unit 223 calculate the estimated speed, calculate the deviation, and modify the opening command value to reduce the deviation, starting with the opening command value as the initial value, and repeating this process until the deviation becomes equal to or less than a predetermined threshold value.
  • the command value modification unit 223 transmits the opening command value at the point in time when the deviation becomes equal to or less than the threshold value to the furnace top controller 93 as the result of generating the opening command value.
  • the learning calculation device 200 may further include a profile generation unit 231 and a profile storage unit 232.
  • the profile generating unit 231 repeatedly inputs the charging conditions and the opening command value into the prediction model to calculate the charging speed, and changes at least one of the charging conditions and the opening command value, to generate a profile that represents the relationship between the charging conditions, the charging speed, and the opening command value, and stores the profile in the profile storage unit 232.
  • the profile generating unit 231 generates a profile that represents the relationship between the charging conditions, the charging speed, and the opening command value as a one-stage input/output relationship.
  • the profile generating unit 231 may generate the profile as a function, or may generate it as a discrete reference table.
  • the profile generating unit 231 may generate a profile that outputs an opening command value according to the input of the charging conditions and the charging speed.
  • the initial value generation unit 221 may calculate an initial value of the opening command value based on the profile stored in the profile storage unit 232 and the charging target speed. This makes it possible to reduce the number of times that the simulation unit 222 and the command value change unit 223 repeat the calculation, since the initial value is set to a value close to the opening command value that is ultimately sent to the furnace top controller 93.
  • FIG. 6 is a block diagram illustrating an example of the hardware configuration of the server device 100 and the learning calculation device 200.
  • the server device 100 has a circuit 190.
  • the circuit 190 has a processor 191, a memory 192, a storage 193, and a communication port 194.
  • the processor 191 includes one or more calculation elements
  • the memory 192 includes one or more memory elements such as a random access memory.
  • the storage 193 is a non-volatile storage device. Specific examples of the storage 193 include a hard disk, a flash memory, a read-only memory, and the like.
  • the storage 193 may be a portable storage medium such as a USB memory, an optical disk, or a magnetic disk.
  • Storage 193 stores a program for causing server device 100 to accumulate the learning records.
  • storage 193 stores a program for causing server device 100 to configure each of the functional blocks described above.
  • Memory 192 temporarily stores programs and the like loaded from storage 193.
  • Processor 191 executes the programs loaded into memory 192 while temporarily storing the results of calculations in memory 192, and configures each of the functional blocks described above in server device 100.
  • Communication port 194 communicates via network line 94 in response to a request from processor 191.
  • the learning calculation device 200 has a circuit 290.
  • the circuit 290 has a processor 291, a memory 292, a storage 293, and a communication port 294.
  • the processor 291 includes one or more calculation elements
  • the memory 292 includes one or more memory elements such as a random access memory.
  • the storage 293 is a non-volatile storage device. Specific examples of the storage 293 include a hard disk, a flash memory, a read-only memory, etc.
  • the storage 293 may be a portable storage medium such as a USB memory, an optical disk, or a magnetic disk.
  • Storage 293 stores a program for causing the learning calculation device 200 to generate the above-mentioned prediction model based on a plurality of learning records stored in storage 193 of the server device 100, and to generate an opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model.
  • storage 293 stores a program for causing the learning calculation device 200 to configure each of the above-mentioned functional blocks.
  • the memory 292 temporarily stores programs and the like loaded from the storage 293.
  • the processor 291 executes the programs loaded into the memory 292 while temporarily storing the calculation results in the memory 292, and configures each of the above-mentioned functional blocks in the learning calculation device 200.
  • the communication port 294 communicates via the network line 94 in response to a request from the processor 291.
  • the above hardware configuration is merely an example and can be changed as appropriate.
  • at least a part of the server device 100 may be incorporated into the learning calculation device 200.
  • at least a part of the server device 100 and the learning calculation device 200 may be incorporated into the furnace top controller 93 or the raw material controller 92.
  • Control Procedure The control procedure executed by the raw material charging control device 90 is illustrated.
  • This control procedure includes a procedure for generating an opening command value including storing the learning records in the data storage unit 119, generating the prediction model based on the multiple learning records stored in the data storage unit 119, generating an opening command value for the gate 40 corresponding to the charging target speed based on the charging conditions and the charging target speed of the newly charged raw materials and the prediction model, and making the opening of the gate 40 correspond to the opening command value.
  • this control procedure is illustrated by dividing it into a record storage procedure, an offline learning procedure, and an opening control procedure.
  • step S01 the loading of raw materials from the bunker 30 is executed, and the data collection unit 118 waits for various information to be acquired by the opening information acquisition unit 111, the speed information acquisition unit 112, the weight information acquisition unit 113, the flow property information acquisition unit 114, the moisture information acquisition unit 115, the environmental information acquisition unit 116, and the bunker information acquisition unit 117.
  • step S02 the data collection unit 118 acquires opening information from the opening information acquisition unit 111, speed information from the speed information acquisition unit 112, type information and weight information from the weight information acquisition unit 113, flow property information from the flow property information acquisition unit 114, moisture information from the moisture information acquisition unit 115, environmental information from the environmental information acquisition unit 116, and bunker identification information from the bunker information acquisition unit 117.
  • step S03 the data collection unit 118 performs standardization processing on at least one type of information.
  • step S04 the data collection unit 118 generates learning records by associating all information including the standardized information, and stores the generated learning records in the data storage unit 119. After that, the server device 100 returns the processing to step S01. The server device 100 repeatedly executes the above processing.
  • Step S11 the offline learning unit 211 generates a prediction model that represents the relationship between the opening degree, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on the multiple learning records accumulated in the data storage unit 119.
  • step S12 the offline learning unit 211 stores the generated prediction model in the prediction model storage unit 212.
  • step S13 the profile generation unit 231 repeatedly inputs the charging conditions and the opening command value into the prediction model to calculate the charging rate, and changes at least one of the charging conditions and the opening command value, to generate a profile that represents the relationship between the charging conditions, the charging rate, and the opening command value.
  • step S14 the profile storage unit 232 stores the generated profile in the profile storage unit 232. This completes the offline learning procedure.
  • step S21 the data collection unit 118 acquires type information and weight information from the weight information acquisition unit 113, acquires flow property information from the flow property information acquisition unit 114, acquires moisture information from the moisture information acquisition unit 115, acquires environmental information from the environmental information acquisition unit 116, and acquires bunker identification information from the bunker information acquisition unit 117 for the newly charged raw material.
  • step S22 the data collection unit 118 performs standardization processing similar to step S03 on the information acquired in step S21.
  • step S23 the initial value generation unit 221 calculates an initial value of the opening command value based on the charging target speed and the profile stored in the profile storage unit 232.
  • step S24 the simulation unit 222 inputs the charging conditions for the newly charged raw materials and the opening command value into the prediction model to calculate the charging speed (the above-mentioned estimated speed).
  • step S25 the command value change unit 223 calculates the deviation between the charging target speed and the estimated speed.
  • step S26 the command value change unit 223 checks whether the deviation is equal to or less than a threshold value.
  • step S27 the command value change unit 223 changes the opening command value so as to reduce the deviation. Thereafter, the learning calculation device 200 returns the process to step S24. Thereafter, the calculation of the estimated speed, the calculation of the deviation, and the change of the opening command value so as to reduce the deviation are repeated until the deviation becomes equal to or less than the threshold value.
  • step S31 the command value change unit 223 transmits the opening command value at the time when the deviation is equal to or less than the threshold value to the top controller 93 as the opening command value generation result.
  • step S32 the top controller 93 makes the opening of the gate 40 correspond to the opening command value. This completes the opening control procedure.
  • a raw material charging control device 90 for a blast furnace 2 comprising: a data collection unit 118 that accumulates learning records in a data storage unit, the learning records including the opening of a gate 40 through which raw materials are charged from a bunker 30 that accommodates raw materials at the top of the blast furnace 2, the charging rate of the raw materials from the bunker 30, and charging conditions including characteristics of the raw materials; an offline learning unit 211 that generates a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input-output relationship through machine learning based on the multiple learning records accumulated in the data storage unit; a command generation unit 220 that generates an opening command value for the gate 40 corresponding to the target charging speed based on the charging conditions and target charging speed of newly charged raw materials and the prediction model; and a gate 40 controller that causes the opening to correspond to the opening command value.
  • the raw materials include multiple types of raw materials
  • the offline learning unit 211 generates a prediction model based on multiple learning records each including, as charging conditions, type information representing each of the multiple types of raw materials and weight information representing each of the multiple types of raw materials
  • the command generating unit 220 generates an opening command value based on the charging conditions including the type information and weight information of the newly charged raw materials.
  • a weighing scale 12 is provided to detect the weight of each of multiple types of raw materials before the raw materials are charged into the bunker 30, the raw material charging control device 90 further includes a weight information acquisition unit that acquires weight information based on the detection results by the weighing scale 12, the offline learning unit 211 generates a predictive model based on multiple learning records each including weight information acquired from the weighing scale 12 as charging conditions, and the command generation unit 220 generates an opening command value based on the charging conditions including the weight information acquired from the weighing scale 12 for the newly charged raw materials.
  • the weight information of the raw material before it is put into the bunker 30 does not include errors caused by the environment inside the bunker 30. This improves the reliability of the weight information in each learning record. This further improves the reliability of the prediction model.
  • a raw material charging control device 90 for a blast furnace 2 described in (2) or (3) in which the offline learning unit 211 generates a prediction model based on a plurality of learning records, each of which includes the flow characteristics of a plurality of types of raw materials as charging conditions, and the command generating unit 220 generates an opening command value based on the charging conditions including the flow characteristics of the newly charged raw materials.
  • the reliability of the prediction model can be further improved by including the flow characteristics of each component in the charging conditions in addition to information describing the raw material composition.
  • a raw material charging control device 90 for a blast furnace 2 described in (4) is provided around the blast furnace 2 with a plurality of hoppers 10 each storing a plurality of types of raw materials, and a conveyor 20 for transporting the plurality of types of raw materials discharged from the plurality of hoppers 10 to a bunker 30.
  • the raw material charging control device 90 further includes a flow characteristic acquisition unit that acquires flow characteristics based on the discharge speed at which each of the plurality of types of raw materials is discharged from the corresponding hopper 10.
  • the offline learning unit 211 generates a prediction model based on a plurality of learning records each including, as a charging condition, the flow characteristics acquired based on the discharge speed.
  • the command generation unit 220 generates an opening command value for newly charged raw materials based on the charging conditions including the flow characteristics acquired based on the discharge speed.
  • the reliability of the prediction model can be further improved by including in the charging conditions the flow characteristics actually measured immediately before charging into the bunker 30.
  • the reliability of the prediction model can be further improved by including information on the moisture content of each component in the charging conditions in addition to information representing the raw material composition.
  • the reliability of the prediction model can be further improved.
  • the offline learning unit 211 generates a prediction model based on a plurality of learning records, each of which includes information on the pressure difference between the inside of the bunker 30 and the inside of the blast furnace 2 as a charging condition, and the command generating unit 220 generates an opening command value based on the charging condition including information on the pressure difference when the newly charged raw materials are contained in the bunker 30.
  • the reliability of the prediction model can be further improved.
  • the effect of individual differences between the bunkers 30 can be reflected in the prediction model, thereby further improving the reliability of the prediction model.
  • the search range of the opening command value corresponding to the charging target speed can be freely adjusted, which prevents the prediction model from generating a low-reliability opening command value in a range where the reliability of the opening command value is insufficient, and allows the opening of the gate 40 to be controlled with higher reliability.
  • the raw material charging control device 90 for the blast furnace 2 described in (10) further includes a profile generating unit 231 that generates a profile representing the relationship between the charging conditions, the charging rate, and the opening command value by repeating inputting the charging conditions and the opening command value into the prediction model to calculate the charging rate and changing at least one of the charging conditions and the opening command value, and an initial value calculating unit that calculates an initial value of the opening command value based on the profile and the target charging rate, wherein the command generating unit 220 starts the repetition of inputting the charging conditions of newly charged raw materials and the opening command value into the prediction model to calculate the charging rate and changing the opening command value of the gate 40, using the opening command value as an initial value.
  • the time required to search for the opening command value corresponding to the target charging speed can be shortened.
  • the raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the prediction model is a neural network, and the offline learning unit 211 generates the prediction model by deep learning. The reliability of the prediction model can be further improved.
  • the raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the offline learning unit 211 generates a prediction model by a gradient boosting method.
  • the reliability of the prediction model can be further improved.
  • the raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the offline learning unit 211 generates a predictive model by a random forest method. The reliability of the prediction model can be further improved.
  • a method for generating an opening command value comprising: storing learning records in a data storage unit, the learning records including the opening of a gate 40 for charging raw materials from a bunker 30 that stores raw materials in the upper part of a blast furnace 2, the charging rate of the raw materials from the bunker 30, and charging conditions including raw material characteristics; generating a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records stored in the data storage unit; and generating an opening command value for the gate 40 that corresponds to the target charging rate based on the charging conditions and target charging rate of newly added raw materials and the prediction model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

A raw material charging control device 90 comprises: a data collection unit 118 that accumulates, in a data storage unit, records for learning including the opening degree of a gate 40 for charging raw materials from a bunker 30 containing raw materials at the top of a blast furnace 2, the charging speed of raw materials from the bunker 30, and charging conditions which include characteristics of the raw materials; an off-line learning unit 211 that generates a prediction model representing the relationship between the opening degree, the charging speed, and the charging conditions by means of a multi-stage input-output relationship through machine learning based on a plurality of the records for learning stored in the data storage unit; a command generation unit 220 that generates an opening degree command value for the gate 40 corresponding to a charging target speed on the basis of the charging conditions of newly fed raw material, the charging target speed therefor, and the prediction model; and a gate 40 controller that causes the opening degree to correspond to the opening degree command value.

Description

高炉の原料装入制御装置、開度指令値の生成方法、及びプログラムBlast furnace raw material charging control device, opening command value generation method, and program
 本開示は、高炉の原料装入制御装置、開度指令値の生成方法、及びプログラムに関する。 This disclosure relates to a raw material charging control device for a blast furnace, a method for generating an opening command value, and a program.
 特許文献1には、旋回シュートの旋回数と流調ゲート開度との関係を表すモデル式を用意しておき、モデル式に基づいて流調ゲート開度を制御し、原料の装入完了後の結果から得られる流調ゲート開度、旋回シュートの旋回数、旋回速度及び秤量値の各実績を取り込み、モデル式のパラメータを学習する制御方法が開示されている。 Patent Document 1 discloses a control method in which a model formula expressing the relationship between the number of revolutions of the rotating chute and the opening degree of the flow adjustment gate is prepared, the opening degree of the flow adjustment gate is controlled based on the model formula, and the parameters of the model formula are learned by incorporating the actual results of the opening degree of the flow adjustment gate, the number of revolutions of the rotating chute, the revolution speed, and the weighing value obtained from the results after the charging of the raw materials is completed.
特開平10-251719号公報Japanese Patent Application Laid-Open No. 10-251719
 本開示は、バンカから高炉内への原料の装入速度を高い精度で制御するのに有効な装置を提供する。 This disclosure provides an effective device for controlling the rate at which raw materials are charged from a bunker into a blast furnace with high precision.
 本開示の一側面に係る高炉の原料装入制御装置は、高炉の上部において原料を収容するバンカから、原料を装入するゲートの開度と、バンカからの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させるデータ収集部と、データ記憶部に蓄積された複数の学習用レコードに基づく機械学習により、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成するオフライン学習部と、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲートの開度指令値を生成する指令生成部と、開度を開度指令値に対応させる炉頂コントローラと、を備える。 A raw material charging control device for a blast furnace according to one aspect of the present disclosure includes a data collection unit that accumulates learning records in a data storage unit, including the gate opening for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging rate of the raw materials from the bunker, and charging conditions including raw material characteristics; an offline learning unit that generates a prediction model that expresses the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on the multiple learning records accumulated in the data storage unit; a command generation unit that generates a gate opening command value corresponding to the charging target speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model; and a furnace top controller that corresponds the opening to the opening command value.
 本開示の他の側面に係る開度指令値の生成方法は、高炉の上部において原料を収容するバンカから、原料を装入するゲートの開度と、バンカからの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させることと、データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲートの開度指令値を生成することと、を含む。 A method for generating an opening command value according to another aspect of the present disclosure includes accumulating learning records in a data storage unit, including the opening of a gate for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging speed of the raw materials from the bunker, and charging conditions including raw material characteristics; generating a prediction model that represents the relationship between the opening, the charging speed, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records accumulated in the data storage unit; and generating a gate opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model.
 本開示の更に他の側面に係るプログラムは、高炉の上部において原料を収容するバンカから、原料を装入するゲートの開度と、バンカからの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させることと、データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲートの開度指令値を生成することと、を装置に実行させる。 A program according to yet another aspect of the present disclosure causes the device to accumulate learning records in a data storage unit, including the gate opening for charging raw materials from a bunker that stores raw materials in the upper part of the blast furnace, the charging rate of the raw materials from the bunker, and charging conditions including the characteristics of the raw materials; generate a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records accumulated in the data storage unit; and generate a gate opening command value that corresponds to the target charging rate based on the charging conditions and target charging rate of newly added raw materials and the prediction model.
 本開示によれば、バンカから高炉内への原料の装入速度を高い精度で制御するのに有効な装置を提供することができる。 This disclosure provides an apparatus that is effective in controlling the speed at which raw materials are charged from a bunker into a blast furnace with high precision.
原料装入装置の構成を例示する模式図である。FIG. 2 is a schematic diagram illustrating the configuration of a raw material charging device. サーバ装置及び学習演算装置の機能的な構成を例示するブロック図である。FIG. 2 is a block diagram illustrating a functional configuration of a server device and a learning calculation device. ディープラーニングにより生成される予測モデルを例示する模式図である。FIG. 1 is a schematic diagram illustrating a predictive model generated by deep learning. ランダムフォレスト法又は勾配ブースティング法により生成される予測モデルを例示する模式図である。FIG. 1 is a schematic diagram illustrating a prediction model generated by the random forest method or the gradient boosting method. 指令生成部の構成を例示するブロック図である。4 is a block diagram illustrating a configuration of a command generating unit. FIG. サーバ装置及び学習演算装置のハードウェア構成を例示するブロック図である。FIG. 2 is a block diagram illustrating a hardware configuration of a server device and a learning calculation device. レコード蓄積手順を例示するフローチャートである。13 is a flowchart illustrating a record accumulation procedure. オフライン学習手順を例示するフローチャートである。1 is a flow chart illustrating an offline learning procedure. 開度制御手順を例示するフローチャートである。4 is a flowchart illustrating an opening control procedure.
 以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 The following describes the embodiments in detail with reference to the drawings. In the description, the same elements or elements having the same functions are given the same reference numerals, and duplicate descriptions are omitted.
〔原料装入装置〕
 図1に示す原料装入装置1は、鉄鋼生産等に用いられる高炉2に原料を装入する装置である。原料装入装置1は、バンカ30と、ゲート40と、集合ホッパ50と、分配シュート60と、ホッパ10と、コンベヤ20とを備える。バンカ30は、高炉2の上部において原料を収容する。高炉2に装入される原料は、複数種類の原料を含んでいてもよい。
[Raw material charging device]
The raw material charging device 1 shown in Fig. 1 is a device that charges raw materials into a blast furnace 2 used for steel production or the like. The raw material charging device 1 includes a bunker 30, a gate 40, a collection hopper 50, a distribution chute 60, a hopper 10, and a conveyor 20. The bunker 30 stores raw materials in an upper portion of the blast furnace 2. The raw materials charged into the blast furnace 2 may include multiple types of raw materials.
 原料装入装置1は、複数のバンカ30を備えていてもよく、複数のバンカ30のそれぞれが高炉2の上部において原料を収容してもよい。図示の例でにおいて、原料装入装置1は、2のバンカ30A,30Bを有する。バンカ30A,30Bの上方には、上方から投入された原料をバンカ30A,30Bのいずれかに振り分ける振り分け装置31が設けられている。 The raw material charging device 1 may be equipped with multiple bunkers 30, and each of the multiple bunkers 30 may store raw materials in the upper part of the blast furnace 2. In the illustrated example, the raw material charging device 1 has two bunkers 30A, 30B. Above the bunkers 30A, 30B, a distribution device 31 is provided that distributes raw materials charged from above to either the bunker 30A or 30B.
 複数のバンカ30は、予め定められた順序等に基づいて選択的に用いられる。原料が複数種類の原料を含む場合、複数のバンカ30のそれぞれが、複数種類の原料を収容する。 The multiple bunkers 30 are selectively used based on a predetermined order, etc. When the raw materials include multiple types of raw materials, each of the multiple bunkers 30 contains multiple types of raw materials.
 複数のバンカ30のそれぞれには、圧力センサ32が設けられ、高炉2には圧力センサ3が設けられていてもよい。圧力センサ32はバンカ30の内圧を検出し、圧力センサ3は高炉2の内圧を検出する。 Each of the multiple bunkers 30 may be provided with a pressure sensor 32, and the blast furnace 2 may be provided with a pressure sensor 3. The pressure sensor 32 detects the internal pressure of the bunker 30, and the pressure sensor 3 detects the internal pressure of the blast furnace 2.
 ゲート40は、バンカ30から原料を送り出す。ゲート40の開度は、電動式のアクチュエータにより変更可能である。開度は、例えば全開開度に対する比率等で表される。 The gate 40 sends out raw materials from the bunker 30. The opening degree of the gate 40 can be changed by an electric actuator. The opening degree is expressed, for example, as a ratio to the fully open opening degree.
 原料装入装置1は、複数のバンカ30を備える場合、複数のバンカ30にそれぞれ対応する複数のゲート40を備える。複数のゲート40のそれぞれは、対応するバンカ30の下部に設けられている。図示の例において、原料装入装置1は、2のバンカ30A,30Bにそれぞれ対応する2のゲート40A,40Bを有する。 When the raw material charging device 1 is equipped with multiple bunkers 30, it is equipped with multiple gates 40 corresponding to the multiple bunkers 30, respectively. Each of the multiple gates 40 is provided at the bottom of the corresponding bunker 30. In the illustrated example, the raw material charging device 1 has two gates 40A, 40B corresponding to the two bunkers 30A, 30B, respectively.
 集合ホッパ50は、複数のゲート40から送り出された原料を一時的に収容し、一箇所の装入口51に集合させる。分配シュート60は、装入口51から落下した原料を高炉2内に分配する。例えば分配シュート60は、電動式のアクチュエータにより傾動及び旋回し、原料を高炉2内に螺旋状に分配する。 The collecting hopper 50 temporarily stores the raw materials sent from the multiple gates 40 and collects them at a single charging port 51. The distribution chute 60 distributes the raw materials that drop from the charging port 51 into the blast furnace 2. For example, the distribution chute 60 tilts and rotates using an electric actuator, distributing the raw materials in a spiral shape inside the blast furnace 2.
 複数のホッパ10は、高炉の外に設けられ、複数種類の原料をそれぞれ収容する。例えば、複数のホッパ10は、比較的小さなコークス塊を収容するホッパ10Aと、複数種類の鉄鉱石等の主原料を収容するホッパ10Bと、副原料を収容するホッパ10Cと、比較的大きなコークス塊を収容するホッパ10Dとを含む。複数のホッパ10のそれぞれは、下部に排出装置11を有する。排出装置11は、ホッパ10が収容する原料をコンベヤ20に排出する。以下、説明における必要性に応じ、排出装置11により排出された原料を「排出済み原料」といい、ホッパ10に収容されている原料と区別する。 The multiple hoppers 10 are provided outside the blast furnace and each store multiple types of raw materials. For example, the multiple hoppers 10 include a hopper 10A that stores relatively small coke lumps, a hopper 10B that stores main raw materials such as multiple types of iron ore, a hopper 10C that stores auxiliary raw materials, and a hopper 10D that stores relatively large coke lumps. Each of the multiple hoppers 10 has a discharge device 11 at the bottom. The discharge device 11 discharges the raw materials stored in the hopper 10 onto the conveyor 20. Hereinafter, as necessary in the explanation, the raw materials discharged by the discharge device 11 will be referred to as "discharged raw materials" to distinguish them from the raw materials stored in the hopper 10.
 複数のホッパ10には、複数種類の排出済み原料のそれぞれの重量を検出する重量計12が設けられていてもよい。例えば、複数のホッパ10のそれぞれが重量計12を更に有する。例えば重量計12は、排出装置11により材料が排出される前のホッパ10の重量と、排出装置11により材料が排出された後のホッパ10の重量との差分に基づいて、排出済み原料の重量を検出する。複数のホッパ10がそれぞれ有する複数の重量計12によれば、複数種類の排出済み原料が後述のバンカ30に投入される前に、複数種類の排出済み原料のそれぞれの重量が検出されることとなる。 The multiple hoppers 10 may be provided with weighing scales 12 that detect the weight of each of the multiple types of discharged raw materials. For example, each of the multiple hoppers 10 further has a weighing scale 12. For example, the weighing scale 12 detects the weight of the discharged raw materials based on the difference between the weight of the hopper 10 before the material is discharged by the discharge device 11 and the weight of the hopper 10 after the material is discharged by the discharge device 11. The multiple weighing scales 12 that the multiple hoppers 10 each have detect the weight of each of the multiple types of discharged raw materials before they are put into the bunker 30 described below.
 複数のホッパ10には、複数種類の原料の含有水分量を検出する水分計13が設けられていてもよい。例えば、複数のホッパ10のそれぞれが水分計13を更に有する。例えば水分計13は、赤外線式等の非接触方式により、ホッパ10内の原料の含有水分量を検出する。含有水分量は、例えば原料の総重量に対する含有水分の重量の比率等で表される。ホッパ10内に収容されている状態と、ホッパ10から排出された状態とで、原料の含有水分量は実質的に変わらない。このため、水分計13により検出された含有水分量は、排出済み原料の含有水分量を表すこととなる。 The multiple hoppers 10 may be provided with moisture meters 13 that detect the moisture content of the multiple types of raw materials. For example, each of the multiple hoppers 10 further has a moisture meter 13. For example, the moisture meter 13 detects the moisture content of the raw materials in the hopper 10 using a non-contact method such as infrared. The moisture content is expressed, for example, as the ratio of the weight of the moisture content to the total weight of the raw materials. The moisture content of the raw materials is substantially the same when they are stored in the hopper 10 and when they are discharged from the hopper 10. Therefore, the moisture content detected by the moisture meter 13 represents the moisture content of the discharged raw materials.
 なお、原料の種類によって、含有水分量が流動特性等に及ぼす影響度が変わり得る。含有水分量の影響を無視し得る種類も存在し得るので、必ずしも複数のホッパ10のそれぞれが水分計13を有していなくてもよい。 The degree of influence of the moisture content on the flow characteristics, etc., may vary depending on the type of raw material. Since there may be types of raw material where the influence of the moisture content can be ignored, each of the multiple hoppers 10 does not necessarily need to have a moisture meter 13.
 コンベヤ20は、例えばベルトコンベヤであり、複数のホッパ10からそれぞれ排出された複数種類の排出済み原料をバンカ30に搬送する。コンベヤ20により搬送された複数種類の排出済み原料は、バンカ30に投入される。原料装入装置1が複数のバンカ30を備える場合、コンベヤ20により搬送された複数種類の排出済み原料は、振り分け装置31により複数のバンカ30のいずれかに投入される。 The conveyor 20 is, for example, a belt conveyor, and transports the multiple types of discharged raw materials discharged from the multiple hoppers 10 to the bunker 30. The multiple types of discharged raw materials transported by the conveyor 20 are loaded into the bunker 30. If the raw material charging device 1 is equipped with multiple bunkers 30, the multiple types of discharged raw materials transported by the conveyor 20 are loaded into one of the multiple bunkers 30 by the sorting device 31.
 以上においては、集合ホッパ50の入側において、複数のバンカ30に対して複数のゲート40がそれぞれ設けられる場合を例示したが、ゲート40が集合ホッパ50の出側に設けられていてもよい。バンカ30の数が1でよい場合、バンカ30と集合ホッパ50とが一体にまとめられていてもよい。 In the above, an example was given of a case in which multiple gates 40 are provided for multiple bunkers 30 at the entrance side of the collecting hopper 50, but the gates 40 may also be provided at the exit side of the collecting hopper 50. If only one bunker 30 is required, the bunker 30 and the collecting hopper 50 may be integrated together.
 原料装入制御装置90は、複数のホッパ10と、ゲート40とを制御する。例えば原料装入制御装置90は、原料コントローラ92と、炉頂コントローラ93と、スケジュールコントローラ91とを有する。原料コントローラ92は、予め定められた目標重量に対応する重量の原料を排出装置11により排出するように、複数のホッパ10のそれぞれを制御する。原料コントローラ92は、排出装置11による原料の排出を開始させた時刻から、排出装置11による原料の排出を停止させた時刻までの経過時間を、原料の排出速度を表す情報として保持してもよい。 The raw material charging control device 90 controls the multiple hoppers 10 and the gate 40. For example, the raw material charging control device 90 has a raw material controller 92, a furnace top controller 93, and a schedule controller 91. The raw material controller 92 controls each of the multiple hoppers 10 so that the discharge device 11 discharges raw material of a weight corresponding to a predetermined target weight. The raw material controller 92 may retain the elapsed time from the time the discharge device 11 starts discharging raw material to the time the discharge device 11 stops discharging raw material as information representing the discharge speed of the raw material.
 炉頂コントローラ93は、予め定められた装入目標速度に対応する装入速度で原料をバンカ30から装入(ダンプ)するようにゲート40の開度を調節する。装入速度、及び装入目標速度は、例えば単位時間あたりに装入される原料の重量で表される。装入速度、及び装入目標速度は、バンカ30に投入される原料の重量の情報が別途取得されることを前提として、バンカ30からの原料の装入期間(装入開始から装入完了までの時間の長さ)により表されていてもよい。また、原料の装入期間は分配シュート60の回転回数及び回転速度により表されていてもよい。炉頂コントローラ93は、バンカ30からの原料の装入が開始された時刻から、装入が完了した時刻までの経過時間を保持し、装入期間を表す情報として使用してもよい。 The furnace top controller 93 adjusts the opening of the gate 40 so that the raw materials are charged (dumped) from the bunker 30 at a charging speed corresponding to a predetermined charging target speed. The charging speed and the charging target speed are expressed, for example, by the weight of raw materials charged per unit time. The charging speed and the charging target speed may be expressed by the charging period of the raw materials from the bunker 30 (the length of time from the start of charging to the completion of charging), assuming that information on the weight of the raw materials put into the bunker 30 is obtained separately. The raw material charging period may also be expressed by the number of rotations and the rotation speed of the distribution chute 60. The furnace top controller 93 may hold the elapsed time from the time when charging of the raw materials from the bunker 30 starts to the time when charging is completed, and use it as information indicating the charging period.
 原料装入装置1が複数のバンカ30を備える場合、炉頂コントローラ93は、コンベヤ20により搬送された原料を複数のバンカ30のいずれかに投入するように振り分け装置31を制御してもよい。炉頂コントローラ93は、複数のバンカ30のうち、原料を投入するバンカ30の識別情報を保持してもよい。 If the raw material charging device 1 is equipped with multiple bunkers 30, the furnace top controller 93 may control the sorting device 31 to load the raw materials transported by the conveyor 20 into one of the multiple bunkers 30. The furnace top controller 93 may retain identification information of the bunker 30 into which the raw materials are loaded, among the multiple bunkers 30.
 スケジュールコントローラ91は、ネットワーク回線94を介して原料コントローラ92及び炉頂コントローラ93と通信する。ネットワーク回線94は、制御用のローカルエリアネットワークであってもよく、ワイドエリアネットワークであってもよい。例えばスケジュールコントローラ91は、ネットワーク回線94を介して、複数のホッパ10の原料ステータス情報を原料コントローラ92から受信し、バンカ30及びゲート40の炉頂ステータス情報を炉頂コントローラ93から受信する。複数のホッパ10の原料ステータス情報は、排出装置11のステータス、重量計12による検出結果、及び水分計13による検出結果等を含んでもよい。バンカ30及びゲート40の炉頂ステータス情報は、使用中のバンカ30の識別情報、バンカ30内の原料の残重量、及びゲート40の開度等を含んでいてもよい。スケジュールコントローラ91は、予め定められた生産計画と、複数のホッパ10の原料ステータス情報と、バンカ30及びゲート40の炉頂ステータス情報とに基づいて上述の目標重量及び装入目標速度を算出する。スケジュールコントローラ91は、ネットワーク回線94を介して、原料コントローラ92に目標重量を送信し、炉頂コントローラ93に装入目標速度を送信する。 The schedule controller 91 communicates with the raw material controller 92 and the furnace top controller 93 via a network line 94. The network line 94 may be a local area network for control or a wide area network. For example, the schedule controller 91 receives raw material status information of the multiple hoppers 10 from the raw material controller 92 and receives furnace top status information of the bunker 30 and the gate 40 from the furnace top controller 93 via the network line 94. The raw material status information of the multiple hoppers 10 may include the status of the discharge device 11, the detection result by the weight meter 12, and the detection result by the moisture meter 13, etc. The furnace top status information of the bunker 30 and the gate 40 may include the identification information of the bunker 30 in use, the remaining weight of raw materials in the bunker 30, and the opening degree of the gate 40, etc. The schedule controller 91 calculates the above-mentioned target weight and charging target speed based on a predetermined production plan, the raw material status information of the multiple hoppers 10, and the furnace top status information of the bunker 30 and the gate 40. The schedule controller 91 transmits the target weight to the raw material controller 92 and the target charging speed to the furnace top controller 93 via the network line 94.
 炉頂コントローラ93により調節された開度における実際の装入速度には、装入目標速度に対する誤差が生じ得る。高炉2内に原料を均等に分配するために、上記誤差は小さいことが望ましい。しかしながら、炉頂コントローラ93により調節された開度と、実際の装入速度との関係は、原料の特性等の諸条件によって大きく変わるので、上記誤差を縮小するのは難しい。そこで、原料装入制御装置90は、ゲート40の開度と、バンカ30からの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させることと、データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲートの開度指令値を生成することと、生成した開度指令値にゲート40の開度を対応させることと、を実行するように構成されていてもよい。 The actual charging speed at the opening adjusted by the furnace top controller 93 may have an error with respect to the target charging speed. In order to distribute the raw materials evenly in the blast furnace 2, it is desirable that the error be small. However, since the relationship between the opening adjusted by the furnace top controller 93 and the actual charging speed varies greatly depending on various conditions such as the characteristics of the raw materials, it is difficult to reduce the error. Therefore, the raw material charging control device 90 may be configured to execute the following: storing learning records including the opening of the gate 40, the charging speed of the raw materials from the bunker 30, and the charging conditions including the characteristics of the raw materials in a data storage unit; generating a prediction model that represents the relationship between the opening, the charging speed, and the charging conditions by a multi-stage input/output relationship based on the multiple learning records stored in the data storage unit; generating a gate opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of the newly charged raw materials and the prediction model; and making the opening of the gate 40 correspond to the generated opening command value.
 開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルに基づくことで、装入目標速度に対応する開度指令値をより高い精度で生成することができる。高い精度で生成された開度指令値に開度を対応させることで、装入目標速度に対する装入速度の誤差を抑制することができる。従って、バンカから高炉の炉内への原料の装入速度を高い精度で制御するのに有効である。 By using a prediction model that represents the relationship between the opening, charging speed, and charging conditions using a multi-stage input/output relationship, it is possible to generate an opening command value that corresponds to the target charging speed with higher accuracy. By making the opening correspond to the opening command value generated with high accuracy, it is possible to suppress errors in the charging speed relative to the target charging speed. This is therefore effective in controlling the charging speed of raw materials from the bunker into the blast furnace with high accuracy.
 例えば原料装入制御装置90は、サーバ装置100と、学習演算装置200とを更に有する。サーバ装置100及び学習演算装置200は、ネットワーク回線94を介して互いに通信し、ネットワーク回線94を介して原料コントローラ92及び炉頂コントローラ93と通信する。サーバ装置100は、ネットワーク回線94を介して、原料コントローラ92及び炉頂コントローラ93から上記学習用レコードを収集し、データ記憶部に蓄積させる。学習演算装置200は、ネットワーク回線94を介して、データ記憶部に蓄積された複数の学習用レコードを取得し、取得した複数の学習用レコードに基づいて上記予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲートの開度指令値を生成することと、を実行する。学習演算装置200は、ネットワーク回線94を介して、開度指令値を炉頂コントローラ93に送信する。 For example, the raw material charging control device 90 further includes a server device 100 and a learning calculation device 200. The server device 100 and the learning calculation device 200 communicate with each other via a network line 94, and communicate with the raw material controller 92 and the furnace top controller 93 via the network line 94. The server device 100 collects the learning records from the raw material controller 92 and the furnace top controller 93 via the network line 94 and stores them in the data storage unit. The learning calculation device 200 acquires multiple learning records stored in the data storage unit via the network line 94, generates the prediction model based on the acquired multiple learning records, and generates a gate opening command value corresponding to the charging target speed based on the charging conditions and charging target speed of the newly charged raw materials and the prediction model. The learning calculation device 200 transmits the opening command value to the furnace top controller 93 via the network line 94.
 図2は、サーバ装置100及び学習演算装置200の機能的な構成を例示するブロック図である。図2に示すように、サーバ装置100は、機能上の構成(以下、「機能ブロック」という。)として、開度情報取得部111と、速度情報取得部112と、重量情報取得部113と、流動特性情報取得部114と、含水情報取得部115と、環境情報取得部116と、バンカ情報取得部117と、データ収集部118と、データ記憶部119とを有する。開度情報取得部111は、ゲート40の開度を表す開度情報を炉頂コントローラ93から取得する。速度情報取得部112は、上記開度情報が表す開度における実際の装入速度を表す速度情報を炉頂コントローラ93から取得する。例えば速度情報取得部112は、上記開度情報が表す開度における実際の装入期間の情報を炉頂コントローラ93から取得する。 2 is a block diagram illustrating the functional configuration of the server device 100 and the learning calculation device 200. As shown in FIG. 2, the server device 100 has, as its functional configuration (hereinafter referred to as "functional blocks"), an opening information acquisition unit 111, a speed information acquisition unit 112, a weight information acquisition unit 113, a flow characteristic information acquisition unit 114, a moisture information acquisition unit 115, an environmental information acquisition unit 116, a bunker information acquisition unit 117, a data collection unit 118, and a data storage unit 119. The opening information acquisition unit 111 acquires opening information representing the opening of the gate 40 from the furnace top controller 93. The speed information acquisition unit 112 acquires speed information representing the actual charging speed at the opening represented by the opening information from the furnace top controller 93. For example, the speed information acquisition unit 112 acquires information on the actual charging period at the opening represented by the opening information from the furnace top controller 93.
 重量情報取得部113は、複数種類の装入原料のそれぞれの種別を表す種別情報と、複数種類の装入原料のそれぞれの重量を表す重量情報とを取得する。例えば重量情報取得部113は、複数の重量計12の検出結果を原料コントローラ92から取得し、取得した検出結果に基づいて種別情報及び重量情報を取得する。流動特性情報取得部114は、複数種類の原料のそれぞれの流動特性を表す流動特性情報を取得する。例えば流動特性情報取得部114は、複数種類の原料のそれぞれが、対応するホッパから排出される際の排出速度を表す情報を、流動特性情報として原料コントローラ92から取得する。含水情報取得部115は、複数種類の原料の含有水分量を表す含水情報を取得する。例えば含水情報取得部115は、複数のホッパ10が夫々有する複数の水分計13の検出結果に基づく含水情報を原料コントローラ92から取得する。 The weight information acquisition unit 113 acquires type information indicating the type of each of the multiple types of charged raw materials and weight information indicating the weight of each of the multiple types of charged raw materials. For example, the weight information acquisition unit 113 acquires the detection results of the multiple weighing scales 12 from the raw material controller 92, and acquires type information and weight information based on the acquired detection results. The flow characteristic information acquisition unit 114 acquires flow characteristic information indicating the flow characteristic of each of the multiple types of raw materials. For example, the flow characteristic information acquisition unit 114 acquires information indicating the discharge speed when each of the multiple types of raw materials is discharged from the corresponding hopper from the raw material controller 92 as flow characteristic information. The moisture information acquisition unit 115 acquires moisture information indicating the moisture content of the multiple types of raw materials. For example, the moisture information acquisition unit 115 acquires moisture information based on the detection results of the multiple moisture meters 13 that each of the multiple hoppers 10 has from the raw material controller 92.
 環境情報取得部116は、バンカ30内及び高炉2の炉内の環境情報を炉頂コントローラ93から取得する。例えば環境情報取得部116は、圧力センサ32による検出結果と、圧力センサ3による検出結果とを含む圧力情報を炉頂コントローラ93から取得し、取得した圧力情報に基づいて、バンカ30内と高炉2の炉内との差圧を表す差圧情報を取得する。バンカ情報取得部117は、複数のバンカ30のいずれが複数種類の原料の収容及び装入に使われたかを表すバンカ識別情報を炉頂コントローラ93から取得する。バンカ識別情報は、例えばカテゴリ変数により表されていてもよい。 The environmental information acquisition unit 116 acquires environmental information about the inside of the bunker 30 and the inside of the blast furnace 2 from the furnace top controller 93. For example, the environmental information acquisition unit 116 acquires pressure information including the detection results by the pressure sensor 32 and the detection results by the pressure sensor 3 from the furnace top controller 93, and acquires differential pressure information indicating the pressure difference between the inside of the bunker 30 and the inside of the blast furnace 2 based on the acquired pressure information. The bunker information acquisition unit 117 acquires bunker identification information from the furnace top controller 93 indicating which of the multiple bunkers 30 was used to store and charge multiple types of raw materials. The bunker identification information may be represented by a categorical variable, for example.
 データ収集部118は、ゲート40の開度と、バンカ30からの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部119に蓄積させる。 The data collection unit 118 accumulates learning records in the data storage unit 119, including the opening degree of the gate 40, the loading speed of the raw materials from the bunker 30, and the loading conditions including the characteristics of the raw materials.
 原料の特性は、上記種別情報及び重量情報を含んでもよく、上記流動特性情報を含んでもよく、上記含水情報を含んでもよい。装入条件は、上記環境情報を更に含んでもよく、上記バンカ識別情報を更に含んでもよい。 The raw material characteristics may include the above type information and weight information, may include the above flow property information, and may include the above moisture content information. The charging conditions may further include the above environmental information, and may further include the above bunker identification information.
 例えばデータ収集部118は、開度情報取得部111から開度情報を取得し、速度情報取得部112から速度情報を取得し、重量情報取得部113から種別情報及び重量情報を取得し、流動特性情報取得部114から流動特性情報を取得し、含水情報取得部115から含水情報を取得し、環境情報取得部116から環境情報を取得し、バンカ情報取得部117からバンカ識別情報を取得し、取得した全情報を対応付けて学習用レコードを生成し、生成した学習用レコードをデータ記憶部119に蓄積させる。このように、原料の特性が重量情報を含む場合、重量情報に基づき特定される原料の重量を前提として、速度情報は上記装入時間により表されていてもよい。 For example, the data collection unit 118 acquires opening information from the opening information acquisition unit 111, speed information from the speed information acquisition unit 112, type information and weight information from the weight information acquisition unit 113, flow characteristics information from the flow characteristics information acquisition unit 114, moisture information from the moisture information acquisition unit 115, environmental information from the environmental information acquisition unit 116, bunker identification information from the bunker information acquisition unit 117, generates a learning record by associating all the acquired information, and accumulates the generated learning record in the data storage unit 119. In this way, when the characteristics of the raw material include weight information, the speed information may be represented by the charging time, assuming the weight of the raw material identified based on the weight information.
 複数種類の数値を含む学習用レコードに基づく機械学習を行う場合、絶対値の変動レンジの大きい数値が、絶対値の変動レンジの小さい数値に比較して、学習結果に大きな影響を及ぼす傾向がある。しかし、絶対値の変動レンジの大きさと、機械学習における重要度とは必ずしも相関しない。そこで、データ収集部118は、少なくとも一種の情報に対して標準化処理を行って学習用レコードを生成するように構成されていてもよい。例えばデータ収集部118は、一種の情報に対する標準化処理の一例としては、一種の情報を表す数値を、所定の変動レンジで除算して無次元化すること等が挙げられる。 When performing machine learning based on learning records containing multiple types of numerical values, numerical values with a large absolute value fluctuation range tend to have a greater impact on the learning results than numerical values with a small absolute value fluctuation range. However, the size of the absolute value fluctuation range does not necessarily correlate with importance in machine learning. Therefore, the data collection unit 118 may be configured to perform standardization processing on at least one type of information to generate learning records. For example, one example of standardization processing on one type of information is for the data collection unit 118 to divide a numerical value representing one type of information by a specified fluctuation range to make it dimensionless.
 学習演算装置200は、機能ブロックとして、オフライン学習部211と、予測モデル記憶部212と、指令生成部220とを有する。オフライン学習部211は、データ記憶部119に蓄積された複数の学習用レコードに基づく機械学習により、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成する。入出力関係は、入力を場合分けし、場合分け結果に応じた出力を生成する場合分け処理、又は確率的場合分け処理等によって表されてもよい。 The learning calculation device 200 has, as functional blocks, an offline learning unit 211, a prediction model storage unit 212, and a command generation unit 220. The offline learning unit 211 generates a prediction model that expresses the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on multiple learning records stored in the data storage unit 119. The input/output relationship may be expressed by a case classification process that classifies the input and generates an output according to the case classification result, or a probabilistic case classification process, etc.
 オフライン学習部211は、ディープラーニングに基づくニューラルネットワークによる予測モデルを生成してもよい。図3は、ディープラーニングに基づく予測モデルを例示する模式図である。図3に示す予測モデル310は、ニューラルネットワークであり、入力層311と、一層以上の中間層313と、出力層312とを有する。 The offline learning unit 211 may generate a prediction model using a neural network based on deep learning. FIG. 3 is a schematic diagram illustrating a prediction model based on deep learning. The prediction model 310 shown in FIG. 3 is a neural network, and has an input layer 311, one or more intermediate layers 313, and an output layer 312.
 入力層311は、入力ベクトルを次の中間層313に出力する。中間層313は、一つ前の層からの入力を活性化関数により変換して次の層に出力する。出力層312は、入力層311から最も遠い中間層313からの入力を活性化関数により変換し、変換結果を出力ベクトルとして出力する。予測モデル310においては、各中間層313における活性化関数と、出力層312における活性化関数とが、上述した多段階の入出力関係の一例である。入力を活性化関数により変換する処理によれば、入力に応じて変換結果が変わることとなる。すなわち、入力の場合に応じて変換結果が変わることとなるので、活性化関数による変換は上述した場合分け処理又は確率的場合分け処理の一例である。 The input layer 311 outputs an input vector to the next intermediate layer 313. The intermediate layer 313 transforms the input from the previous layer using an activation function and outputs it to the next layer. The output layer 312 transforms the input from the intermediate layer 313, which is the furthest from the input layer 311, using an activation function and outputs the transformation result as an output vector. In the prediction model 310, the activation functions in each intermediate layer 313 and the activation function in the output layer 312 are an example of the multi-stage input/output relationship described above. According to the process of transforming the input using an activation function, the transformation result changes depending on the input. In other words, since the transformation result changes depending on the input case, transformation using an activation function is an example of the case classification process or probabilistic case classification process described above.
 オフライン学習部211は、ランダムフォレスト法又は勾配ブースティング法による予測モデルを生成してもよい。図4は、ランダムフォレスト法又は勾配ブースティング法による予測モデルを例示する模式図である。図4に示す予測モデル320は、複数の決定木321と、出力選択部322とを含む。決定木321は、入力と出力との関係を、多段階の枝323における条件分岐で表す。出力選択部322は、複数の決定木321の出力のいずれかを多数決によって選択する。ランダムフォレスト法において、オフライン学習部211は、バギングによって複数の決定木321を生成する。勾配ブースティング法において、オフライン学習部211は、ブースティングによって複数の決定木321を生成する。 The offline learning unit 211 may generate a prediction model using the random forest method or the gradient boosting method. FIG. 4 is a schematic diagram illustrating a prediction model using the random forest method or the gradient boosting method. The prediction model 320 shown in FIG. 4 includes multiple decision trees 321 and an output selection unit 322. The decision tree 321 represents the relationship between the input and the output as conditional branching in multiple stages of branches 323. The output selection unit 322 selects one of the outputs of the multiple decision trees 321 by majority vote. In the random forest method, the offline learning unit 211 generates the multiple decision trees 321 by bagging. In the gradient boosting method, the offline learning unit 211 generates the multiple decision trees 321 by boosting.
 予測モデル320においては、決定木321と、出力選択部322とが、上述した多段階の入出力関係の一例である。決定木321によれば、入力の場合に応じて出力が変わることとなるので、決定木321による入出力変換は、場合分け処理又は確率的場合分け処理の一例である。また、決定木321における多段階の枝323も、上述した多段階の入出力関係の一例である。枝323によれば、入力の場合に応じて後段のいずれの枝323に移行するかが変わるので、枝323による条件分岐は、場合分け処理又は確率的場合分け処理の一例である。 In the prediction model 320, the decision tree 321 and the output selection unit 322 are an example of the multi-stage input/output relationship described above. According to the decision tree 321, the output changes depending on the input case, so the input/output conversion by the decision tree 321 is an example of case classification processing or probabilistic case classification processing. Furthermore, the multi-stage branch 323 in the decision tree 321 is also an example of the multi-stage input/output relationship described above. According to the branch 323, the branch 323 to which the transition is made in the subsequent stage changes depending on the input case, so the conditional branch by the branch 323 is an example of case classification processing or probabilistic case classification processing.
 なお、重回帰モデル等によれば、開度と、装入速度と、装入条件との関係が一関数で表されることとなる。このため、重回帰モデル等は、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルには該当しない。 In addition, according to the multiple regression model, the relationship between the opening, the charging speed, and the charging conditions is expressed as a single function. Therefore, the multiple regression model does not correspond to a prediction model that expresses the relationship between the opening, the charging speed, and the charging conditions as a multi-stage input/output relationship.
 オフライン学習部211は、生成した予測モデルを予測モデル記憶部212に記憶させる。指令生成部220は、新たに投入される原料の装入条件及び装入目標速度と、予測モデル記憶部212が記憶する予測モデルとに基づいて、装入目標速度に対応するゲート40の開度指令値を生成する。新たに投入される原料とは、予測モデルが生成された後に、バンカ30に投入される原料を意味する。指令生成部220は、新たに投入される原料の装入条件を、例えば上記データ収集部118から取得する。 The offline learning unit 211 stores the generated prediction model in the prediction model storage unit 212. The command generation unit 220 generates an opening command value for the gate 40 corresponding to the target charging speed based on the charging conditions and target charging speed of the newly charged raw materials and the prediction model stored in the prediction model storage unit 212. The newly charged raw materials refer to the raw materials that are charged into the bunker 30 after the prediction model is generated. The command generation unit 220 acquires the charging conditions of the newly charged raw materials, for example, from the data collection unit 118.
 指令生成部220は、生成した開度指令値を炉頂コントローラ93に送信する。炉頂コントローラ93は、ゲート40の開度を開度指令値に対応させる。 The command generating unit 220 transmits the generated opening command value to the furnace top controller 93. The furnace top controller 93 makes the opening of the gate 40 correspond to the opening command value.
 オフライン学習部211は、上述したように、装入条件として種別情報と重量情報とをそれぞれが含む前記複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料の種別情報及び重量情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on the multiple learning records, each of which includes type information and weight information as charging conditions, and the command generating unit 220 may generate an opening command value based on the charging conditions including type information and weight information of the newly added raw materials, the charging target speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として、重量計12から取得された重量情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料について重量計12から取得された重量情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes weight information obtained from the weighing scale 12 as the charging conditions, and the command generating unit 220 may generate an opening command value based on the charging conditions including weight information obtained from the weighing scale 12 for newly added raw materials, the target charging speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として流動特性情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料の流動特性情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes flow characteristic information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including the flow characteristic information of the newly charged raw material, the target charging speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として、排出速度に基づいて取得された流動特性情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料について、排出速度に基づいて取得された流動特性情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes flow characteristic information obtained based on the discharge rate as the charging condition, and the command generating unit 220 may generate an opening command value for newly added raw material based on the charging condition including the flow characteristic information obtained based on the discharge rate, the charging target rate, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として含水情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料の含水情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes moisture information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including moisture information of the newly added raw material, the target charging speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として環境情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入された原料がバンカ30に収容された状態における環境情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes environmental information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including environmental information when the newly charged raw materials are stored in the bunker 30, the target charging speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件として差圧の情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入された原料がバンカ30に収容された状態における差圧の情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes differential pressure information as a charging condition, and the command generating unit 220 may generate an opening command value based on the charging conditions including differential pressure information when newly added raw materials are stored in the bunker 30, the target charging speed, and the prediction model.
 オフライン学習部211は、上述したように、装入条件としてバンカ識別情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、複数のバンカ30のいずれが新たに投入される原料のバンカ30として用いられるかを表すバンカ識別情報を含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 As described above, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes bunker identification information as a loading condition, and the command generating unit 220 may generate an opening command value based on the loading conditions including bunker identification information indicating which of the multiple bunkers 30 will be used as the bunker 30 for the newly added raw material, the loading target speed, and the prediction model.
 例えばオフライン学習部211は、種別情報と、重量情報と、流動特性情報と、含水情報と、環境情報と、バンカ識別情報との全てをそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成してもよく、指令生成部220は、新たに投入される原料の種別情報と、重量情報と、流動特性情報と、含水情報と、環境情報と、バンカ識別情報との全てを含む装入条件と、装入目標速度と、予測モデルとに基づいて開度指令値を生成してもよい。 For example, the offline learning unit 211 may generate a prediction model based on multiple learning records, each of which includes all of the type information, weight information, flow property information, moisture information, environmental information, and bunker identification information, and the command generating unit 220 may generate an opening command value based on the charging conditions, which include all of the type information, weight information, flow property information, moisture information, environmental information, and bunker identification information of the newly input raw material, the target charging speed, and the prediction model.
 オフライン学習部211は、装入条件と、装入速度との入力に応じて開度を出力するように予測モデルを生成してもよい。指令生成部220は、新たに投入される原料の装入条件と、装入速度とを予測モデルに入力して開度指令値を算出してもよい。 The offline learning unit 211 may generate a prediction model to output the opening degree according to the input of the charging conditions and the charging speed. The command generating unit 220 may input the charging conditions and the charging speed of the newly added raw materials to the prediction model to calculate the opening degree command value.
 オフライン学習部211は、装入条件と、開度との入力に応じて装入速度を出力するように予測モデルを生成してもよい。指令生成部220は、新たに投入される原料の装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、開度指令値を変更することとを繰り返して、装入目標速度に対応する開度指令値を算出してもよい。例えば図5に示すように、指令生成部220は、初期値生成部221と、シミュレーション部222と、指令値変更部223とを有してもよい。 The offline learning unit 211 may generate a prediction model to output a charging speed according to input of charging conditions and an opening degree. The command generating unit 220 may input the charging conditions of newly added raw materials and an opening degree command value into the prediction model to calculate a charging speed, and may calculate an opening degree command value corresponding to a charging target speed by repeating changing the opening degree command value. For example, as shown in FIG. 5, the command generating unit 220 may have an initial value generating unit 221, a simulation unit 222, and a command value changing unit 223.
 初期値生成部221は、開度指令値の初期値を生成する。シミュレーション部222は、新たに投入される原料の装入条件と、開度指令値とを予測モデルに入力して装入速度を算出する。以下、シミュレーション部222が算出する装入速度を「推定速度」という。指令値変更部223は、開度指令値を変更する。 The initial value generating unit 221 generates an initial value for the opening command value. The simulation unit 222 inputs the charging conditions for the newly charged raw materials and the opening command value into a prediction model to calculate the charging speed. Hereinafter, the charging speed calculated by the simulation unit 222 is referred to as the "estimated speed." The command value changing unit 223 changes the opening command value.
 例えば指令値変更部223は、装入目標速度と推定速度との偏差を算出し、偏差を縮小するように開度指令値の補正値を算出し、補正値を開度指令値に加算して開度指令値を変更する。指令値変更部223は、予め定められた1ステップ分の絶対値に偏差を縮小する方向の符号を付して補正値を算出してもよい。例えば指令値変更部223は、偏差が正の値である場合(推定速度が装入目標速度よりも小さい場合)に、絶対値に正の符号を付し、偏差が負の値である場合に、絶対値に負の符号を付してもよい。指令値変更部223は、偏差に比例演算、比例・積分演算、又は比例・積分・微分演算等を行って補正値を算出してもよい。 For example, the command value change unit 223 calculates the deviation between the charging target speed and the estimated speed, calculates a correction value for the opening command value so as to reduce the deviation, and adds the correction value to the opening command value to change the opening command value. The command value change unit 223 may calculate the correction value by adding a sign in the direction of reducing the deviation to a predetermined absolute value for one step. For example, the command value change unit 223 may add a positive sign to the absolute value when the deviation is a positive value (when the estimated speed is smaller than the charging target speed), and may add a negative sign to the absolute value when the deviation is a negative value. The command value change unit 223 may calculate the correction value by performing a proportional operation, a proportional-integral operation, or a proportional-integral-differential operation on the deviation.
 シミュレーション部222と指令値変更部223とは、推定速度を算出することと、偏差を算出することと、偏差を縮小するように開度指令値を変更することとを、開度指令値を初期値として開始し、偏差が所定の閾値以下となるまで繰り返す。指令値変更部223は、偏差が閾値以下となった時点における開度指令値を、開度指令値の生成結果として炉頂コントローラ93に送信する。 The simulation unit 222 and the command value modification unit 223 calculate the estimated speed, calculate the deviation, and modify the opening command value to reduce the deviation, starting with the opening command value as the initial value, and repeating this process until the deviation becomes equal to or less than a predetermined threshold value. The command value modification unit 223 transmits the opening command value at the point in time when the deviation becomes equal to or less than the threshold value to the furnace top controller 93 as the result of generating the opening command value.
 上記初期値を、最終的に炉頂コントローラ93に送信される開度指令値に近い値とすることによって、シミュレーション部222と指令値変更部223とによる演算の繰り返し回数を削減することができる。そこで、学習演算装置200は、プロファイル生成部231と、プロファイル記憶部232とを更に有してもよい。 By setting the above initial value close to the opening command value that is ultimately sent to the furnace top controller 93, the number of times that the simulation unit 222 and the command value change unit 223 repeat the calculation can be reduced. Therefore, the learning calculation device 200 may further include a profile generation unit 231 and a profile storage unit 232.
 プロファイル生成部231は、装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、装入条件及び開度指令値の少なくともいずれかを変更することとを繰り返して、装入条件と、装入速度と、開度指令値との関係を表すプロファイルを生成し、プロファイル記憶部232に記憶させる。例えばプロファイル生成部231は、装入条件と、装入速度と、開度指令値との関係を一段階の入出力関係で表すプロファイルを生成する。例えばプロファイル生成部231は、プロファイルを関数として生成してもよく、離散的な参照テーブルとして生成してもよい。プロファイル生成部231は、装入条件と、装入速度との入力に応じて開度指令値を出力するプロファイルを生成してもよい。 The profile generating unit 231 repeatedly inputs the charging conditions and the opening command value into the prediction model to calculate the charging speed, and changes at least one of the charging conditions and the opening command value, to generate a profile that represents the relationship between the charging conditions, the charging speed, and the opening command value, and stores the profile in the profile storage unit 232. For example, the profile generating unit 231 generates a profile that represents the relationship between the charging conditions, the charging speed, and the opening command value as a one-stage input/output relationship. For example, the profile generating unit 231 may generate the profile as a function, or may generate it as a discrete reference table. The profile generating unit 231 may generate a profile that outputs an opening command value according to the input of the charging conditions and the charging speed.
 学習演算装置200がプロファイル生成部231とプロファイル記憶部232とを更に有する構成において、初期値生成部221は、プロファイル記憶部232が記憶するプロファイルと、装入目標速度とに基づいて、開度指令値の初期値を算出してもよい。これにより、上記初期値が、最終的に炉頂コントローラ93に送信される開度指令値に近い値とされるので、シミュレーション部222と指令値変更部223とによる演算の繰り返し回数を削減することができる。 In a configuration in which the learning calculation device 200 further includes a profile generation unit 231 and a profile storage unit 232, the initial value generation unit 221 may calculate an initial value of the opening command value based on the profile stored in the profile storage unit 232 and the charging target speed. This makes it possible to reduce the number of times that the simulation unit 222 and the command value change unit 223 repeat the calculation, since the initial value is set to a value close to the opening command value that is ultimately sent to the furnace top controller 93.
 図6は、サーバ装置100及び学習演算装置200のハードウェア構成を例示するブロック図である。図6に示すように、サーバ装置100は、回路190を有する。回路190は、プロセッサ191と、メモリ192と、ストレージ193と、通信ポート194とを有する。プロセッサ191は、一以上の演算素子を含み、メモリ192は例えばランダムアクセスメモリ等の一以上のメモリ素子を含む。ストレージ193は、不揮発性の記憶装置である。ストレージ193の具体例としては、ハードディスク、フラッシュメモリ、リードオンリメモリ等が挙げられる。ストレージ193は、USBメモリ、光ディスク、又は磁気ディスク等の可搬型の記憶媒体であってもよい。 FIG. 6 is a block diagram illustrating an example of the hardware configuration of the server device 100 and the learning calculation device 200. As shown in FIG. 6, the server device 100 has a circuit 190. The circuit 190 has a processor 191, a memory 192, a storage 193, and a communication port 194. The processor 191 includes one or more calculation elements, and the memory 192 includes one or more memory elements such as a random access memory. The storage 193 is a non-volatile storage device. Specific examples of the storage 193 include a hard disk, a flash memory, a read-only memory, and the like. The storage 193 may be a portable storage medium such as a USB memory, an optical disk, or a magnetic disk.
 ストレージ193は、上記学習用レコードを蓄積することをサーバ装置100に実行させるためのプログラムを記憶する。例えばストレージ193は、上述した各機能ブロックをサーバ装置100に構成させるためのプログラムを記憶する。 Storage 193 stores a program for causing server device 100 to accumulate the learning records. For example, storage 193 stores a program for causing server device 100 to configure each of the functional blocks described above.
 メモリ192は、ストレージ193からロードされたプログラム等を一時的に記憶する。プロセッサ191は、演算結果をメモリ192に一時的に記憶させながら、メモリ192にロードされたプログラムを実行し、上述した各機能ブロックをサーバ装置100に構成させる。通信ポート194は、プロセッサ191からの要求に応じて、ネットワーク回線94を介した通信を行う。 Memory 192 temporarily stores programs and the like loaded from storage 193. Processor 191 executes the programs loaded into memory 192 while temporarily storing the results of calculations in memory 192, and configures each of the functional blocks described above in server device 100. Communication port 194 communicates via network line 94 in response to a request from processor 191.
 学習演算装置200は、回路290を有する。回路290は、プロセッサ291と、メモリ292と、ストレージ293と、通信ポート294とを有する。プロセッサ291は、一以上の演算素子を含み、メモリ292は例えばランダムアクセスメモリ等の一以上のメモリ素子を含む。ストレージ293は、不揮発性の記憶装置である。ストレージ293の具体例としては、ハードディスク、フラッシュメモリ、リードオンリメモリ等が挙げられる。ストレージ293は、USBメモリ、光ディスク、又は磁気ディスク等の可搬型の記憶媒体であってもよい。 The learning calculation device 200 has a circuit 290. The circuit 290 has a processor 291, a memory 292, a storage 293, and a communication port 294. The processor 291 includes one or more calculation elements, and the memory 292 includes one or more memory elements such as a random access memory. The storage 293 is a non-volatile storage device. Specific examples of the storage 293 include a hard disk, a flash memory, a read-only memory, etc. The storage 293 may be a portable storage medium such as a USB memory, an optical disk, or a magnetic disk.
 ストレージ293は、サーバ装置100のストレージ193に蓄積された複数の学習用レコードに基づいて上記予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応する開度指令値を生成することと、を学習演算装置200に実行させるためのプログラムを記憶する。例えばストレージ293は、上述した各機能ブロックを学習演算装置200に構成させるためのプログラムを記憶する。 Storage 293 stores a program for causing the learning calculation device 200 to generate the above-mentioned prediction model based on a plurality of learning records stored in storage 193 of the server device 100, and to generate an opening command value corresponding to the target charging speed based on the charging conditions and target charging speed of newly added raw materials and the prediction model. For example, storage 293 stores a program for causing the learning calculation device 200 to configure each of the above-mentioned functional blocks.
 メモリ292は、ストレージ293からロードされたプログラム等を一時的に記憶する。プロセッサ291は、演算結果をメモリ292に一時的に記憶させながら、メモリ292にロードされたプログラムを実行し、上述した各機能ブロックを学習演算装置200に構成させる。通信ポート294は、プロセッサ291からの要求に応じて、ネットワーク回線94を介した通信を行う。以上のハードウェア構成はあくまで一例であり、適宜変更可能である。例えば、サーバ装置100の少なくとも一部が学習演算装置200に組み込まれていてもよい。また、サーバ装置100及び学習演算装置200の少なくとも一部が炉頂コントローラ93又は原料コントローラ92に組み込まれていてもよい。 The memory 292 temporarily stores programs and the like loaded from the storage 293. The processor 291 executes the programs loaded into the memory 292 while temporarily storing the calculation results in the memory 292, and configures each of the above-mentioned functional blocks in the learning calculation device 200. The communication port 294 communicates via the network line 94 in response to a request from the processor 291. The above hardware configuration is merely an example and can be changed as appropriate. For example, at least a part of the server device 100 may be incorporated into the learning calculation device 200. Furthermore, at least a part of the server device 100 and the learning calculation device 200 may be incorporated into the furnace top controller 93 or the raw material controller 92.
〔制御手順〕
 原料装入制御装置90が実行する制御手順を例示する。この制御手順は、上記学習用レコードをデータ記憶部119に蓄積させることと、データ記憶部119に蓄積された複数の学習用レコードに基づいて上記予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲート40の開度指令値を生成することと、を含む開度指令値の生成手順と、開度指令値にゲート40の開度を対応させることとを含む。以下、この制御手順を、レコード蓄積手順と、オフライン学習手順と、開度制御手順とに分けて例示する。
[Control Procedure]
The control procedure executed by the raw material charging control device 90 is illustrated. This control procedure includes a procedure for generating an opening command value including storing the learning records in the data storage unit 119, generating the prediction model based on the multiple learning records stored in the data storage unit 119, generating an opening command value for the gate 40 corresponding to the charging target speed based on the charging conditions and the charging target speed of the newly charged raw materials and the prediction model, and making the opening of the gate 40 correspond to the opening command value. Below, this control procedure is illustrated by dividing it into a record storage procedure, an offline learning procedure, and an opening control procedure.
(レコード蓄積手順)
 図7に示すように、サーバ装置100は、ステップS01,S02,S03,S04を実行する。ステップS01では、バンカ30からの原料の装入が実行され、開度情報取得部111、速度情報取得部112、重量情報取得部113、流動特性情報取得部114、含水情報取得部115、環境情報取得部116、及びバンカ情報取得部117により各種情報が取得されるのをデータ収集部118が待機する。ステップS02では、データ収集部118が、開度情報取得部111から開度情報を取得し、速度情報取得部112から速度情報を取得し、重量情報取得部113から種別情報及び重量情報を取得し、流動特性情報取得部114から流動特性情報を取得し、含水情報取得部115から含水情報を取得し、環境情報取得部116から環境情報を取得し、バンカ情報取得部117からバンカ識別情報を取得する。ステップS03では、データ収集部118が、少なくとも一種の情報に対して標準化処理を行う。ステップS04では、データ収集部118が、標準化処理済みの情報を含む全情報を対応付けて学習用レコードを生成し、生成した学習用レコードをデータ記憶部119に蓄積させる。その後、サーバ装置100は処理をステップS01に戻す。サーバ装置100は以上の処理を繰り返し実行する。
(Record Storage Procedure)
As shown in Fig. 7, the server device 100 executes steps S01, S02, S03, and S04. In step S01, the loading of raw materials from the bunker 30 is executed, and the data collection unit 118 waits for various information to be acquired by the opening information acquisition unit 111, the speed information acquisition unit 112, the weight information acquisition unit 113, the flow property information acquisition unit 114, the moisture information acquisition unit 115, the environmental information acquisition unit 116, and the bunker information acquisition unit 117. In step S02, the data collection unit 118 acquires opening information from the opening information acquisition unit 111, speed information from the speed information acquisition unit 112, type information and weight information from the weight information acquisition unit 113, flow property information from the flow property information acquisition unit 114, moisture information from the moisture information acquisition unit 115, environmental information from the environmental information acquisition unit 116, and bunker identification information from the bunker information acquisition unit 117. In step S03, the data collection unit 118 performs standardization processing on at least one type of information. In step S04, the data collection unit 118 generates learning records by associating all information including the standardized information, and stores the generated learning records in the data storage unit 119. After that, the server device 100 returns the processing to step S01. The server device 100 repeatedly executes the above processing.
(オフライン学習手順)
 この手順は、機械学習のために十分な数の学習用レコードがデータ記憶部119に蓄積された後に実行される。図8に示すように、学習演算装置200は、まずステップS11,S12を実行する。ステップS11では、オフライン学習部211が、データ記憶部119に蓄積された複数の学習用レコードに基づく機械学習により、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成する。ステップS12では、オフライン学習部211が、生成済みの予測モデルを予測モデル記憶部212に記憶させる。
(Offline learning procedure)
This procedure is executed after a sufficient number of learning records for machine learning are accumulated in the data storage unit 119. As shown in Fig. 8, the learning calculation device 200 first executes steps S11 and S12. In step S11, the offline learning unit 211 generates a prediction model that represents the relationship between the opening degree, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on the multiple learning records accumulated in the data storage unit 119. In step S12, the offline learning unit 211 stores the generated prediction model in the prediction model storage unit 212.
 次に、学習演算装置200は、ステップS13,S14を実行する。ステップS13では、プロファイル生成部231が、装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、装入条件及び開度指令値の少なくともいずれかを変更することとを繰り返して、装入条件と、装入速度と、開度指令値との関係を表すプロファイルを生成する。ステップS14では、プロファイル記憶部232が、生成済みのプロファイルをプロファイル記憶部232に記憶させる。以上でオフライン学習手順が完了する。 Next, the learning calculation device 200 executes steps S13 and S14. In step S13, the profile generation unit 231 repeatedly inputs the charging conditions and the opening command value into the prediction model to calculate the charging rate, and changes at least one of the charging conditions and the opening command value, to generate a profile that represents the relationship between the charging conditions, the charging rate, and the opening command value. In step S14, the profile storage unit 232 stores the generated profile in the profile storage unit 232. This completes the offline learning procedure.
(開度制御手順)
 図9に示すように、学習演算装置200は、まずステップS21,S22,S23を実行する。ステップS21では、データ収集部118が、新たに投入される原料について、重量情報取得部113から種別情報及び重量情報を取得し、流動特性情報取得部114から流動特性情報を取得し、含水情報取得部115から含水情報を取得し、環境情報取得部116から環境情報を取得し、バンカ情報取得部117からバンカ識別情報を取得する。ステップS22では、データ収集部118が、ステップS21で取得された情報に対してステップS03と同様の標準化処理を行う。ステップS23では、初期値生成部221が、装入目標速度と、プロファイル記憶部232が記憶するプロファイルとに基づいて、開度指令値の初期値を算出する。
(Opening control procedure)
As shown in Fig. 9, the learning calculation device 200 first executes steps S21, S22, and S23. In step S21, the data collection unit 118 acquires type information and weight information from the weight information acquisition unit 113, acquires flow property information from the flow property information acquisition unit 114, acquires moisture information from the moisture information acquisition unit 115, acquires environmental information from the environmental information acquisition unit 116, and acquires bunker identification information from the bunker information acquisition unit 117 for the newly charged raw material. In step S22, the data collection unit 118 performs standardization processing similar to step S03 on the information acquired in step S21. In step S23, the initial value generation unit 221 calculates an initial value of the opening command value based on the charging target speed and the profile stored in the profile storage unit 232.
 次に、学習演算装置200はステップS24,S25,S26を実行する。ステップS24では、シミュレーション部222が、新たに投入される原料の装入条件と、開度指令値とを予測モデルに入力して装入速度(上記推定速度)を算出する。ステップS25では、指令値変更部223が、装入目標速度と推定速度との偏差を算出する。ステップS26では、指令値変更部223が、偏差が閾値以下であるか否かを確認する。 Next, the learning calculation device 200 executes steps S24, S25, and S26. In step S24, the simulation unit 222 inputs the charging conditions for the newly charged raw materials and the opening command value into the prediction model to calculate the charging speed (the above-mentioned estimated speed). In step S25, the command value change unit 223 calculates the deviation between the charging target speed and the estimated speed. In step S26, the command value change unit 223 checks whether the deviation is equal to or less than a threshold value.
 ステップS26において、偏差は閾値を超えていると判定した場合、学習演算装置200はステップS27を実行する。ステップS27では、指令値変更部223が、偏差を縮小するように開度指令値を変更する。その後、学習演算装置200は処理をステップS24に戻す。以後、偏差が閾値以下となるまで、推定速度を算出することと、偏差を算出することと、偏差を縮小するように開度指令値を変更することとが繰り返される。 If it is determined in step S26 that the deviation exceeds the threshold value, the learning calculation device 200 executes step S27. In step S27, the command value change unit 223 changes the opening command value so as to reduce the deviation. Thereafter, the learning calculation device 200 returns the process to step S24. Thereafter, the calculation of the estimated speed, the calculation of the deviation, and the change of the opening command value so as to reduce the deviation are repeated until the deviation becomes equal to or less than the threshold value.
 ステップS26において、偏差は閾値以下であると判定した場合、学習演算装置200はステップS31,S32を実行する。ステップS31では、指令値変更部223が、偏差が閾値以下となった時点における開度指令値を、開度指令値の生成結果として炉頂コントローラ93に送信する。ステップS32では、炉頂コントローラ93が、ゲート40の開度を開度指令値に対応させる。以上で開度制御手順が完了する。 If it is determined in step S26 that the deviation is equal to or less than the threshold value, the learning calculation device 200 executes steps S31 and S32. In step S31, the command value change unit 223 transmits the opening command value at the time when the deviation is equal to or less than the threshold value to the top controller 93 as the opening command value generation result. In step S32, the top controller 93 makes the opening of the gate 40 correspond to the opening command value. This completes the opening control procedure.
〔まとめ〕
 上述した実施形態は、以下の構成を含む。
(1) 高炉2の上部において原料を収容するバンカ30から、原料を装入するゲート40の開度と、バンカ30からの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させるデータ収集部118と、データ記憶部に蓄積された複数の学習用レコードに基づく機械学習により、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成するオフライン学習部211と、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲート40の開度指令値を生成する指令生成部220と、開度を開度指令値に対応させるゲート40コントローラと、を備える高炉2の原料装入制御装置90。
 開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルに基づくことで、装入目標速度に対応する開度指令値をより高い精度で生成することができる。高い精度で生成された開度指令値に開度を対応させることで、装入目標速度に対する装入速度の誤差を抑制することができる。従って、バンカ30から高炉2の炉内への原料の装入速度を高い精度で制御するのに有効である。
〔summary〕
The above-described embodiment includes the following configurations.
(1) A raw material charging control device 90 for a blast furnace 2, comprising: a data collection unit 118 that accumulates learning records in a data storage unit, the learning records including the opening of a gate 40 through which raw materials are charged from a bunker 30 that accommodates raw materials at the top of the blast furnace 2, the charging rate of the raw materials from the bunker 30, and charging conditions including characteristics of the raw materials; an offline learning unit 211 that generates a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions by a multi-stage input-output relationship through machine learning based on the multiple learning records accumulated in the data storage unit; a command generation unit 220 that generates an opening command value for the gate 40 corresponding to the target charging speed based on the charging conditions and target charging speed of newly charged raw materials and the prediction model; and a gate 40 controller that causes the opening to correspond to the opening command value.
By using a prediction model that expresses the relationship between the opening, the charging speed, and the charging conditions as a multi-stage input/output relationship, it is possible to generate an opening command value corresponding to the target charging speed with higher accuracy. By making the opening correspond to the opening command value generated with high accuracy, it is possible to suppress the error of the charging speed relative to the target charging speed. Therefore, it is effective in controlling the charging speed of the raw materials from the bunker 30 into the blast furnace 2 with high accuracy.
(2) 原料は、複数種類の原料を含み、オフライン学習部211は、装入条件として、複数種類の原料のそれぞれの種別を表す種別情報と、複数種類の原料のそれぞれの重量を表す重量情報とをそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入される原料の種別情報及び重量情報を含む装入条件に基づいて開度指令値を生成する、(1)記載の高炉2の原料装入制御装置90。
 原料の組成が開度と装入速度との関係に及ぼす影響を予測モデルに反映させることができる。従って、予測モデルの信頼性を更に向上させることができる。
(2) The raw materials include multiple types of raw materials, the offline learning unit 211 generates a prediction model based on multiple learning records each including, as charging conditions, type information representing each of the multiple types of raw materials and weight information representing each of the multiple types of raw materials, and the command generating unit 220 generates an opening command value based on the charging conditions including the type information and weight information of the newly charged raw materials.
The effect of the raw material composition on the relationship between the opening and the charging rate can be reflected in the prediction model, thereby further improving the reliability of the prediction model.
(3) 原料がバンカ30に投入される前に、複数種類の原料のそれぞれの重量を検出する重量計12が設けられ、原料装入制御装置90は、重量計12による検出結果に基づいて重量情報を取得する重量情報取得部を更に備え、オフライン学習部211は、装入条件として、重量計12から取得された重量情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入される原料について重量計12から取得された重量情報を含む装入条件に基づいて開度指令値を生成する、(2)記載の高炉2の原料装入制御装置90。
 バンカ30に投入される前における原料の重量情報には、バンカ30内の環境に起因する誤差が含まれない。このため、個々の学習用レコードにおける重量情報の信頼性が向上する。従って、予測モデルの信頼性を更に向上させることができる。
(3) A weighing scale 12 is provided to detect the weight of each of multiple types of raw materials before the raw materials are charged into the bunker 30, the raw material charging control device 90 further includes a weight information acquisition unit that acquires weight information based on the detection results by the weighing scale 12, the offline learning unit 211 generates a predictive model based on multiple learning records each including weight information acquired from the weighing scale 12 as charging conditions, and the command generation unit 220 generates an opening command value based on the charging conditions including the weight information acquired from the weighing scale 12 for the newly charged raw materials.
The weight information of the raw material before it is put into the bunker 30 does not include errors caused by the environment inside the bunker 30. This improves the reliability of the weight information in each learning record. This further improves the reliability of the prediction model.
(4) オフライン学習部211は、装入条件として、複数種類の原料のそれぞれの流動特性をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入される原料の流動特性を含む装入条件に基づいて開度指令値を生成する、(2)又は(3)記載の高炉2の原料装入制御装置90。
 原料の組成を表す情報に加えて、構成材ごとの流動特性を装入条件に含めることで、予測モデルの信頼性を更に向上させることができる。
(4) A raw material charging control device 90 for a blast furnace 2 described in (2) or (3), in which the offline learning unit 211 generates a prediction model based on a plurality of learning records, each of which includes the flow characteristics of a plurality of types of raw materials as charging conditions, and the command generating unit 220 generates an opening command value based on the charging conditions including the flow characteristics of the newly charged raw materials.
The reliability of the prediction model can be further improved by including the flow characteristics of each component in the charging conditions in addition to information describing the raw material composition.
(5) 高炉2の周辺には、複数種類の原料をそれぞれ収容する複数のホッパ10と、複数のホッパ10からそれぞれ排出された複数種類の原料をバンカ30に搬送するコンベヤ20とが設けられ、原料装入制御装置90は、複数種類の原料のそれぞれが、対応するホッパ10から排出される際の排出速度に基づいて、流動特性を取得する流動特性取得部を更に備え、オフライン学習部211は、装入条件として、排出速度に基づいて取得された流動特性をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入される原料について、排出速度に基づいて取得された流動特性を含む装入条件に基づいて開度指令値を生成する、(4)記載の高炉2の原料装入制御装置90。
 バンカ30への投入直前に実測された流動特性を装入条件に含めることで、予測モデルの信頼性を更に向上させることができる。
(5) A raw material charging control device 90 for a blast furnace 2 described in (4) is provided around the blast furnace 2 with a plurality of hoppers 10 each storing a plurality of types of raw materials, and a conveyor 20 for transporting the plurality of types of raw materials discharged from the plurality of hoppers 10 to a bunker 30. The raw material charging control device 90 further includes a flow characteristic acquisition unit that acquires flow characteristics based on the discharge speed at which each of the plurality of types of raw materials is discharged from the corresponding hopper 10. The offline learning unit 211 generates a prediction model based on a plurality of learning records each including, as a charging condition, the flow characteristics acquired based on the discharge speed. The command generation unit 220 generates an opening command value for newly charged raw materials based on the charging conditions including the flow characteristics acquired based on the discharge speed.
The reliability of the prediction model can be further improved by including in the charging conditions the flow characteristics actually measured immediately before charging into the bunker 30.
(6) オフライン学習部211は、装入条件として、複数種類の原料のそれぞれの含有水分量を表す含水情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入される原料の含水情報を含む装入条件に基づいて開度指令値を生成する、(2)~(5)のいずれか一項記載の高炉2の原料装入制御装置90。
 原料の組成を表す情報に加えて、構成材ごとの含有水分量の情報を装入条件に含めることで、予測モデルの信頼性を更に向上させることができる。
(6) A raw material charging control device 90 for a blast furnace 2 described in any one of (2) to (5), in which the offline learning unit 211 generates a prediction model based on a plurality of learning records, each of which includes moisture content information representing the moisture content of each of a plurality of types of raw materials as a charging condition, and the command generating unit 220 generates an opening command value based on the charging conditions including the moisture content information of newly charged raw materials.
The reliability of the prediction model can be further improved by including information on the moisture content of each component in the charging conditions in addition to information representing the raw material composition.
(7) オフライン学習部211は、装入条件として、バンカ30内及び高炉2の炉内の環境情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入された原料がバンカ30に収容された状態における環境情報を含む装入条件に基づいて開度指令値を生成する、(1)~(6)のいずれか一項記載の高炉2の原料装入制御装置90。
  バンカ30内及び高炉2の炉内の環境情報を抽出条件に含めることで、予測モデルの信頼性を更に向上させることができる。
(7) A raw material charging control device 90 for a blast furnace 2 described in any one of (1) to (6), in which the offline learning unit 211 generates a prediction model based on a plurality of learning records each including environmental information inside the bunker 30 and inside the blast furnace 2 as charging conditions, and the command generating unit 220 generates an opening command value based on the charging conditions including environmental information when the newly charged raw materials are contained in the bunker 30.
By including environmental information inside the bunker 30 and inside the blast furnace 2 in the extraction conditions, the reliability of the prediction model can be further improved.
(8) オフライン学習部211は、装入条件として、バンカ30内と高炉2の炉内との差圧の情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、新たに投入された原料がバンカ30に収容された状態における差圧の情報を含む装入条件に基づいて開度指令値を生成する、(7)記載の高炉2の原料装入制御装置90。
 差圧の情報を抽出条件に含めることで、予測モデルの信頼性を更に向上させることができる。
(8) The offline learning unit 211 generates a prediction model based on a plurality of learning records, each of which includes information on the pressure difference between the inside of the bunker 30 and the inside of the blast furnace 2 as a charging condition, and the command generating unit 220 generates an opening command value based on the charging condition including information on the pressure difference when the newly charged raw materials are contained in the bunker 30.
By including differential pressure information in the extraction conditions, the reliability of the prediction model can be further improved.
(9) 高炉2の上部には複数のバンカ30が設けられ、オフライン学習部211は、装入条件として、複数のバンカ30のいずれがバンカ30として用いられたかを表すバンカ30識別情報をそれぞれが含む複数の学習用レコードに基づいて予測モデルを生成し、指令生成部220は、複数のバンカ30のいずれが新たに投入される原料のバンカ30として用いられるかを表すバンカ30識別情報を含む装入条件に基づいて開度指令値を生成する、(1)~(8)のいずれか一項記載の高炉2の原料装入制御装置90。
  バンカ30ごとの個体差の影響を予測モデルに反映させることができる。従って、予測モデルの信頼性を更に向上させることができる。
(9) A raw material charging control device 90 for a blast furnace 2 described in any one of (1) to (8), in which a plurality of bunkers 30 are provided at the upper part of the blast furnace 2, an offline learning unit 211 generates a predictive model based on a plurality of learning records, each of which includes bunker 30 identification information indicating which of the plurality of bunkers 30 has been used as the bunker 30 as a charging condition, and a command generating unit 220 generates an opening command value based on the charging conditions including bunker 30 identification information indicating which of the plurality of bunkers 30 will be used as the bunker 30 for newly charged raw materials.
The effect of individual differences between the bunkers 30 can be reflected in the prediction model, thereby further improving the reliability of the prediction model.
(10) オフライン学習部211は、装入条件と、開度との入力に応じて装入速度を出力するように予測モデルを生成し、指令生成部220は、新たに投入される原料の装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、開度指令値を変更することとを繰り返して、装入目標速度に対応する開度指令値を算出する、(1)~(9)のいずれか一項記載の高炉2の原料装入制御装置90。
  装入目標速度に対応する開度指令値の探索範囲を自在に調節することができる。このため、予測モデルが、開度指令値の信頼性が不十分なレンジにおいて、信頼性の低い開度指令値を生成することを防止し、ゲート40の開度をより高い信頼性で制御することができる。
(10) A raw material charging control device 90 for a blast furnace 2 described in any one of (1) to (9), in which an offline learning unit 211 generates a prediction model to output a charging speed according to inputs of charging conditions and an opening degree, and a command generating unit 220 inputs the charging conditions of newly added raw materials and an opening degree command value into the prediction model to calculate a charging speed and changes the opening degree command value, thereby calculating an opening degree command value corresponding to a target charging speed.
The search range of the opening command value corresponding to the charging target speed can be freely adjusted, which prevents the prediction model from generating a low-reliability opening command value in a range where the reliability of the opening command value is insufficient, and allows the opening of the gate 40 to be controlled with higher reliability.
(11) 装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、装入条件及び開度指令値の少なくともいずれかを変更することとを繰り返して、装入条件と、装入速度と、開度指令値との関係を表すプロファイルを生成するプロファイル生成部231と、プロファイルと、装入目標速度とに基づいて、開度指令値の初期値を算出する初期値算出部と、を更に備え、指令生成部220は、新たに投入される原料の装入条件と、開度指令値とを予測モデルに入力して装入速度を算出することと、ゲート40の開度指令値を変更することとの繰り返しを、開度指令値を初期値として開始する、(10)記載の高炉2の原料装入制御装置90。
 装入目標速度に対応する開度指令値の探索時間を短縮することができる。
(11) The raw material charging control device 90 for the blast furnace 2 described in (10) further includes a profile generating unit 231 that generates a profile representing the relationship between the charging conditions, the charging rate, and the opening command value by repeating inputting the charging conditions and the opening command value into the prediction model to calculate the charging rate and changing at least one of the charging conditions and the opening command value, and an initial value calculating unit that calculates an initial value of the opening command value based on the profile and the target charging rate, wherein the command generating unit 220 starts the repetition of inputting the charging conditions of newly charged raw materials and the opening command value into the prediction model to calculate the charging rate and changing the opening command value of the gate 40, using the opening command value as an initial value.
The time required to search for the opening command value corresponding to the target charging speed can be shortened.
(12) 予測モデルはニューラルネットワークであり、オフライン学習部211は、ディープラーニングにより予測モデルを生成する、(1)~(11)のいずれか一項記載の高炉2の原料装入制御装置90。
 予測モデルの信頼性を更に向上させることができる。
(12) The raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the prediction model is a neural network, and the offline learning unit 211 generates the prediction model by deep learning.
The reliability of the prediction model can be further improved.
(13) オフライン学習部211は、勾配ブースティング法により予測モデルを生成する、(1)~(11)のいずれか一項記載の高炉2の原料装入制御装置90。
 予測モデルの信頼性を更に向上させることができる。
(13) The raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the offline learning unit 211 generates a prediction model by a gradient boosting method.
The reliability of the prediction model can be further improved.
(14) オフライン学習部211は、ランダムフォレスト法により予測モデルを生成する、(1)~(11)のいずれか一項記載の高炉2の原料装入制御装置90。
 予測モデルの信頼性を更に向上させることができる。
(14) The raw material charging control device 90 for a blast furnace 2 according to any one of (1) to (11), wherein the offline learning unit 211 generates a predictive model by a random forest method.
The reliability of the prediction model can be further improved.
(15) 高炉2の上部において原料を収容するバンカ30から、原料を装入するゲート40の開度と、バンカ30からの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させることと、データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲート40の開度指令値を生成することと、を含む開度指令値の生成方法。 (15) A method for generating an opening command value, comprising: storing learning records in a data storage unit, the learning records including the opening of a gate 40 for charging raw materials from a bunker 30 that stores raw materials in the upper part of a blast furnace 2, the charging rate of the raw materials from the bunker 30, and charging conditions including raw material characteristics; generating a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records stored in the data storage unit; and generating an opening command value for the gate 40 that corresponds to the target charging rate based on the charging conditions and target charging rate of newly added raw materials and the prediction model.
(16) 高炉2の上部において原料を収容するバンカ30から、原料を装入するゲート40の開度と、バンカ30からの原料の装入速度と、原料の特性を含む装入条件と、を含む学習用レコードをデータ記憶部に蓄積させることと、データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、装入速度と、装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、新たに投入される原料の装入条件及び装入目標速度と、予測モデルとに基づいて、装入目標速度に対応するゲート40の開度指令値を生成することと、を装置に実行させるためのプログラム。 (16) A program for causing an apparatus to execute the following: accumulating learning records in a data storage unit, including the opening of a gate 40 through which raw materials are charged from a bunker 30 that stores raw materials in the upper part of a blast furnace 2, the charging rate of the raw materials from the bunker 30, and charging conditions including the characteristics of the raw materials; generating a prediction model that represents the relationship between the opening, the charging rate, and the charging conditions using a multi-stage input/output relationship based on the multiple learning records stored in the data storage unit; and generating an opening command value for the gate 40 that corresponds to the target charging rate based on the charging conditions and target charging rate of newly added raw materials and the prediction model.
 2…高炉、90…原料装入制御装置、30…バンカ、40…ゲート、10…ホッパ、12…重量計、20…コンベヤ、118…データ収集部、211…オフライン学習部、220…指令生成部、221…初期値生成部、231…プロファイル生成部。 2... blast furnace, 90... raw material charging control device, 30... bunker, 40... gate, 10... hopper, 12... weighing scale, 20... conveyor, 118... data collection unit, 211... offline learning unit, 220... command generation unit, 221... initial value generation unit, 231... profile generation unit.

Claims (16)

  1.   高炉の上部において原料を収容するバンカから、前記原料を装入するゲートの開度と、
      前記バンカからの前記原料の装入速度と、
      原料の特性を含む装入条件と、
    を含む学習用レコードをデータ記憶部に蓄積させるデータ収集部と、
     前記データ記憶部に蓄積された複数の学習用レコードに基づく機械学習により、開度と、前記装入速度と、前記装入条件との関係を多段階の入出力関係により表す予測モデルを生成するオフライン学習部と、
     新たに投入される前記原料の前記装入条件及び装入目標速度と、前記予測モデルとに基づいて、前記装入目標速度に対応する前記ゲートの開度指令値を生成する指令生成部と、
     開度を開度指令値に対応させる炉頂コントローラと、
    を備える高炉の原料装入制御装置。
    The opening degree of a gate for charging raw materials from a bunker that stores raw materials at the top of the blast furnace;
    The charging rate of the raw material from the bunker; and
    Charging conditions including raw material characteristics;
    A data collection unit that accumulates learning records including the above in a data storage unit;
    An offline learning unit that generates a prediction model that represents the relationship between the opening degree, the charging rate, and the charging conditions by a multi-stage input/output relationship through machine learning based on a plurality of learning records stored in the data storage unit;
    A command generating unit that generates an opening command value of the gate corresponding to the target charging speed based on the charging conditions and the target charging speed of the newly charged raw material and the prediction model;
    a furnace top controller that causes the opening to correspond to an opening command value;
    A raw material charging control device for a blast furnace.
  2.  前記原料は、複数種類の原料を含み、
     前記オフライン学習部は、前記装入条件として、前記複数種類の原料のそれぞれの種別を表す種別情報と、前記複数種類の原料のそれぞれの重量を表す重量情報とをそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料の前記種別情報及び前記重量情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項1記載の高炉の原料装入制御装置。
    The raw material includes a plurality of raw materials,
    The offline learning unit generates the prediction model based on the plurality of learning records, each of which includes type information representing the type of each of the plurality of types of raw materials and weight information representing the weight of each of the plurality of types of raw materials, as the charging conditions;
    The command generating unit generates the opening command value based on the charging conditions including the type information and the weight information of the newly charged raw material.
    The raw material charging control device for a blast furnace according to claim 1.
  3.  前記原料が前記バンカに投入される前に、前記複数種類の原料のそれぞれの前記重量を検出する重量計が設けられ、
     前記原料装入制御装置は、前記重量計による検出結果に基づいて前記重量情報を取得する重量情報取得部を更に備え、
     前記オフライン学習部は、前記装入条件として、前記重量計から取得された前記重量情報をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料について前記重量計から取得された前記重量情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項2記載の高炉の原料装入制御装置。
    a weight scale is provided to detect the weight of each of the plurality of types of raw materials before the raw materials are put into the bunker;
    The raw material charging control device further includes a weight information acquisition unit that acquires the weight information based on the detection result by the weighing scale,
    The offline learning unit generates the prediction model based on the plurality of learning records each including the weight information acquired from the weighing scale as the charging condition,
    The command generating unit generates the opening command value based on the charging conditions including the weight information acquired from the weighing scale for the newly charged raw material.
    The raw material charging control device for a blast furnace according to claim 2.
  4.  前記オフライン学習部は、前記装入条件として、前記複数種類の原料のそれぞれの流動特性をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料の前記流動特性を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項2記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model based on the plurality of learning records, each of which includes flow characteristics of the plurality of types of raw materials as the charging conditions, and
    The command generating unit generates the opening command value based on the charging conditions including the flow characteristics of the newly charged raw material.
    The raw material charging control device for a blast furnace according to claim 2.
  5.  前記高炉の周辺には、前記複数種類の原料をそれぞれ収容する複数のホッパと、前記複数のホッパからそれぞれ排出された前記複数種類の原料を前記バンカに搬送するコンベヤとが設けられ、
     前記原料装入制御装置は、前記複数種類の原料のそれぞれが、対応するホッパから排出される際の排出速度に基づいて、前記流動特性を取得する流動特性取得部を更に備え、
     前記オフライン学習部は、前記装入条件として、前記排出速度に基づいて取得された前記流動特性をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料について、前記排出速度に基づいて取得された前記流動特性を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項4記載の高炉の原料装入制御装置。
    A plurality of hoppers for accommodating the plurality of types of raw materials, respectively, and a conveyor for transporting the plurality of types of raw materials discharged from the plurality of hoppers to the bunker are provided around the blast furnace,
    The raw material charging control device further includes a flow characteristic acquisition unit that acquires the flow characteristics based on the discharge speed when each of the plurality of types of raw materials is discharged from the corresponding hopper,
    The offline learning unit generates the prediction model based on the plurality of learning records, each of which includes the flow characteristics acquired based on the discharge rate as the charging condition;
    The command generating unit generates the opening command value based on the charging conditions including the flow characteristics acquired based on the discharge rate for the newly charged raw material.
    The raw material charging control device for a blast furnace according to claim 4.
  6.  前記オフライン学習部は、前記装入条件として、前記複数種類の原料のそれぞれの含有水分量を表す含水情報をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料の前記含水情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項2記載の高炉の原料装入制御装置。
    the offline learning unit generates the prediction model based on the plurality of learning records, each of which includes moisture content information representing a moisture content of each of the plurality of types of raw materials as the charging conditions;
    The command generating unit generates the opening command value based on the charging conditions including the moisture information of the newly charged raw material.
    The raw material charging control device for a blast furnace according to claim 2.
  7.  前記オフライン学習部は、前記装入条件として、前記バンカ内及び前記高炉の炉内の環境情報をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入された前記原料が前記バンカに収容された状態における前記環境情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model based on the plurality of learning records each including environmental information in the bunker and in the blast furnace as the charging conditions,
    The command generating unit generates the opening command value based on the charging conditions including the environmental information in a state in which the newly charged raw material is stored in the bunker.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  8.  前記オフライン学習部は、前記装入条件として、前記バンカ内と前記高炉の炉内との差圧の情報をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、新たに投入された前記原料が前記バンカに収容された状態における前記差圧の情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項7記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model based on the plurality of learning records each including information on a differential pressure between the inside of the bunker and the inside of the blast furnace as the charging condition,
    The command generating unit generates the opening command value based on the charging conditions including information on the differential pressure in a state in which the newly charged raw material is stored in the bunker.
    The raw material charging control device for a blast furnace according to claim 7.
  9.  前記高炉の上部には複数のバンカが設けられ、
     前記オフライン学習部は、前記装入条件として、前記複数のバンカのいずれが前記バンカとして用いられたかを表すバンカ識別情報をそれぞれが含む前記複数の学習用レコードに基づいて前記予測モデルを生成し、
     前記指令生成部は、前記複数のバンカのいずれが新たに投入される前記原料の前記バンカとして用いられるかを表す前記バンカ識別情報を含む前記装入条件に基づいて前記開度指令値を生成する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    A plurality of bunkers are provided at the upper portion of the blast furnace,
    The offline learning unit generates the prediction model based on the plurality of learning records, each of which includes bunker identification information indicating which of the plurality of bunkers was used as the bunker as the charging condition,
    The command generating unit generates the opening command value based on the charging conditions including the bunker identification information indicating which of the plurality of bunkers is to be used as the bunker for the newly charged raw material.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  10.  前記オフライン学習部は、前記装入条件と、開度との入力に応じて前記装入速度を出力するように前記予測モデルを生成し、
     前記指令生成部は、新たに投入される前記原料の前記装入条件と、前記開度指令値とを前記予測モデルに入力して前記装入速度を算出することと、前記開度指令値を変更することとを繰り返して、前記装入目標速度に対応する前記開度指令値を算出する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model so as to output the charging rate in response to input of the charging conditions and the opening degree,
    The command generating unit calculates the charging speed by inputting the charging conditions of the newly charged raw material and the opening command value into the prediction model, and repeats changing the opening command value to calculate the opening command value corresponding to the charging target speed.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  11.  前記装入条件と、前記開度指令値とを前記予測モデルに入力して前記装入速度を算出することと、前記装入条件及び前記開度指令値の少なくともいずれかを変更することとを繰り返して、前記装入条件と、前記装入速度と、前記開度指令値との関係を表すプロファイルを生成するプロファイル生成部と、
     前記プロファイルと、前記装入目標速度とに基づいて、前記開度指令値の初期値を算出する初期値算出部と、を更に備え、
     前記指令生成部は、新たに投入される前記原料の前記装入条件と、前記開度指令値とを前記予測モデルに入力して前記装入速度を算出することと、前記ゲートの開度指令値を変更することとの繰り返しを、前記開度指令値を初期値として開始する、
    請求項10記載の高炉の原料装入制御装置。
    A profile generating unit that generates a profile representing the relationship between the charging condition, the charging rate, and the opening command value by repeatedly inputting the charging condition and the opening command value into the prediction model to calculate the charging rate and changing at least one of the charging condition and the opening command value;
    Further provided is an initial value calculation unit that calculates an initial value of the opening command value based on the profile and the charging target speed;
    The command generating unit inputs the charging conditions of the newly charged raw material and the opening command value into the prediction model to calculate the charging speed and changes the gate opening command value, and starts repeating the process of changing the gate opening command value with the opening command value as an initial value.
    The raw material charging control device for a blast furnace according to claim 10.
  12.  前記予測モデルはニューラルネットワークであり、
     前記オフライン学習部は、ディープラーニングにより前記予測モデルを生成する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    the predictive model is a neural network;
    The offline learning unit generates the prediction model by deep learning.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  13.  前記オフライン学習部は、勾配ブースティング法により前記予測モデルを生成する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model by a gradient boosting method.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  14.  前記オフライン学習部は、ランダムフォレスト法により前記予測モデルを生成する、
    請求項1~6のいずれか一項記載の高炉の原料装入制御装置。
    The offline learning unit generates the prediction model by a random forest method.
    The raw material charging control device for a blast furnace according to any one of claims 1 to 6.
  15.   高炉の上部において原料を収容するバンカから、前記原料を装入するゲートの開度と、
      前記バンカからの前記原料の装入速度と、
      原料の特性を含む装入条件と、
    を含む学習用レコードをデータ記憶部に蓄積させることと、
     前記データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、前記装入速度と、前記装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、
     新たに投入される前記原料の前記装入条件及び装入目標速度と、前記予測モデルとに基づいて、前記装入目標速度に対応する前記ゲートの開度指令値を生成することと、
    を含む開度指令値の生成方法。
    The opening degree of a gate for charging raw materials from a bunker that stores raw materials at the top of the blast furnace;
    The charging rate of the raw material from the bunker; and
    Charging conditions including raw material characteristics;
    storing a learning record including the learning record in a data storage unit;
    Generating a prediction model that represents the relationship between the opening degree, the charging speed, and the charging conditions by a multi-stage input/output relationship based on a plurality of learning records stored in the data storage unit;
    Generating an opening command value of the gate corresponding to the target charging speed based on the charging conditions and the target charging speed of the newly charged raw material and the prediction model;
    A method for generating an opening command value, comprising:
  16.   高炉の上部において原料を収容するバンカから、前記原料を装入するゲートの開度と、
      前記バンカからの前記原料の装入速度と、
      原料の特性を含む装入条件と、
    を含む学習用レコードをデータ記憶部に蓄積させることと、
     前記データ記憶部に蓄積された複数の学習用レコードに基づいて、開度と、前記装入速度と、前記装入条件との関係を多段階の入出力関係により表す予測モデルを生成することと、
     新たに投入される前記原料の前記装入条件及び装入目標速度と、前記予測モデルとに基づいて、前記装入目標速度に対応する前記ゲートの開度指令値を生成することと、
    を装置に実行させるためのプログラム。
    The opening degree of a gate for charging raw materials from a bunker that stores raw materials at the top of the blast furnace;
    The charging rate of the raw material from the bunker; and
    Charging conditions including raw material characteristics;
    accumulating a learning record including the above in a data storage unit;
    Generating a prediction model that represents the relationship between the opening degree, the charging speed, and the charging conditions by a multi-stage input/output relationship based on a plurality of learning records stored in the data storage unit;
    Generating an opening command value of the gate corresponding to the target charging speed based on the charging conditions and the target charging speed of the newly charged raw material and the prediction model;
    A program for causing a device to execute the above.
PCT/JP2022/041583 2022-11-08 2022-11-08 Raw material charging control device for blast furnace, method for generating opening degree command value, and program WO2024100771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/041583 WO2024100771A1 (en) 2022-11-08 2022-11-08 Raw material charging control device for blast furnace, method for generating opening degree command value, and program
PCT/JP2023/038967 WO2024101191A1 (en) 2022-11-08 2023-10-27 Raw material charging control device for blast furnace, method for generating opening degree command value, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041583 WO2024100771A1 (en) 2022-11-08 2022-11-08 Raw material charging control device for blast furnace, method for generating opening degree command value, and program

Publications (1)

Publication Number Publication Date
WO2024100771A1 true WO2024100771A1 (en) 2024-05-16

Family

ID=91032440

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/041583 WO2024100771A1 (en) 2022-11-08 2022-11-08 Raw material charging control device for blast furnace, method for generating opening degree command value, and program
PCT/JP2023/038967 WO2024101191A1 (en) 2022-11-08 2023-10-27 Raw material charging control device for blast furnace, method for generating opening degree command value, and program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038967 WO2024101191A1 (en) 2022-11-08 2023-10-27 Raw material charging control device for blast furnace, method for generating opening degree command value, and program

Country Status (1)

Country Link
WO (2) WO2024100771A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320729A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Method for controlling segmenting raw material into blast furnace
JPH10251719A (en) * 1997-03-17 1998-09-22 Nippon Steel Corp Method for controlling bell-less type charging apparatus
JP2006265688A (en) * 2005-03-25 2006-10-05 Jfe Steel Kk Method for controlling charge of raw materials into blast furnace
JP2013119638A (en) * 2011-12-06 2013-06-17 Jfe Steel Corp Control method for charging blast furnace raw material and controller for charging blast furnace raw material
CN109146233A (en) * 2018-06-29 2019-01-04 首钢京唐钢铁联合有限责任公司 A kind of method and device of bell-less furnace top ore self study cloth
JP2020154565A (en) * 2019-03-19 2020-09-24 株式会社 日立産業制御ソリューションズ Production facility operational support system and production facility operational support method
JP2021174125A (en) * 2020-04-22 2021-11-01 株式会社 日立産業制御ソリューションズ Information processing device, and information processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126301A (en) * 1975-04-28 1976-11-04 Yaskawa Electric Mfg Co Ltd An electric arrangement for charging raw materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320729A (en) * 1992-05-26 1993-12-03 Kawasaki Steel Corp Method for controlling segmenting raw material into blast furnace
JPH10251719A (en) * 1997-03-17 1998-09-22 Nippon Steel Corp Method for controlling bell-less type charging apparatus
JP2006265688A (en) * 2005-03-25 2006-10-05 Jfe Steel Kk Method for controlling charge of raw materials into blast furnace
JP2013119638A (en) * 2011-12-06 2013-06-17 Jfe Steel Corp Control method for charging blast furnace raw material and controller for charging blast furnace raw material
CN109146233A (en) * 2018-06-29 2019-01-04 首钢京唐钢铁联合有限责任公司 A kind of method and device of bell-less furnace top ore self study cloth
JP2020154565A (en) * 2019-03-19 2020-09-24 株式会社 日立産業制御ソリューションズ Production facility operational support system and production facility operational support method
JP2021174125A (en) * 2020-04-22 2021-11-01 株式会社 日立産業制御ソリューションズ Information processing device, and information processing method

Also Published As

Publication number Publication date
WO2024101191A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US5119893A (en) Method for correcting and taring an output of a dosing belt weigher
CN101175976B (en) Combination balance for mixture weighing
US4775949A (en) Weigh feeding system with stochastic control
EP3859287B1 (en) Intelligent system control and dosing device
CN108393146B (en) Self-adaptive optimal decoupling control method for coal pulverizing system of steel ball coal mill
WO2024100771A1 (en) Raw material charging control device for blast furnace, method for generating opening degree command value, and program
CN112986491A (en) Mixture water detection value correction method based on feedback adaptive prediction model
EP0488318B1 (en) Control method of and apparatus for material charging at top of blast furnace
CN114326630A (en) Intelligent weighing and batching control method for asphalt mixture
CN110577091A (en) method, system and medium for stabilizing quality of blended ore based on artificial intelligence
US5043925A (en) Method and apparatus for modeling bunker flow
CN113299352A (en) Material layer thickness dynamic prediction system and method of sintering trolley
CN102317479B (en) Method and system for adjusting the flow rate of charge material in a charging process of a shaft furnace
Chadha et al. Optimal dosing of bulk material using mass-flow estimation and DEM simulation
JP6143442B2 (en) Control device and filling device provided with the same
CN114846422A (en) Optimizing powder production
JP2602367B2 (en) Raw material discharge control method for blast furnace raw material
JP2005327118A (en) Multivariable control optimization program and volumetric feeder
JP2942349B2 (en) Blast furnace feed control method
SU897677A1 (en) Method of control of charging hoppers with loose materials
JPH079006B2 (en) Blast furnace bellless charging equipment control method
SU1035077A1 (en) Device for mating flows of bulk materials in production process
SU1178488A1 (en) Method of automatic controlling of a group of crushers operated in parallel
JPH05215596A (en) Method for controlling amount of raw material weighing hopper to be taken out
JP3981918B2 (en) Weighing calculation processing method for blast furnace equipment