WO2024100331A1 - Heat-engine vehicle equipped with an on-board co2 capture and conversion system - Google Patents

Heat-engine vehicle equipped with an on-board co2 capture and conversion system Download PDF

Info

Publication number
WO2024100331A1
WO2024100331A1 PCT/FR2023/051545 FR2023051545W WO2024100331A1 WO 2024100331 A1 WO2024100331 A1 WO 2024100331A1 FR 2023051545 W FR2023051545 W FR 2023051545W WO 2024100331 A1 WO2024100331 A1 WO 2024100331A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
vehicle
vth
pcr
vehicle according
Prior art date
Application number
PCT/FR2023/051545
Other languages
French (fr)
Inventor
Zlatina DIMITROVA
Gabriel Crehan
Original Assignee
Stellantis Auto Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stellantis Auto Sas filed Critical Stellantis Auto Sas
Publication of WO2024100331A1 publication Critical patent/WO2024100331A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0857Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/26Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust gas reservoir, e.g. emission buffer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/34Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electrolyser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides

Definitions

  • the present invention generally relates to the reduction in the atmosphere of carbon dioxide (CO2) linked to human activities. More particularly, the invention relates to a thermal vehicle equipped with an on-board system for capturing and converting CO2 emitted in the exhaust gases. The invention also relates to a system for capturing and collecting CO2 in a fleet of these equipped thermal vehicles.
  • CO2 carbon dioxide
  • Carbon neutrality is a concept that seems simple at first glance, but which in reality is very complex to implement, particularly in large industrial organizations with international activities, which is the case of the automobile industry. Carbon neutrality is achieved when the emissions balance is zero, that is to say, when CO2 emissions into the atmosphere generated by the company's activities are offset by other activities of the company. which remove CO2 from the atmosphere in equal quantities.
  • This concept applies to the complete operation of the company, which covers the entire life cycle of its products, from their manufacturing to their recycling, the supplier network, the logistics chain, the home-work transport of its employees and many other aspects.
  • Reducing CO2 emissions from various polluting processes implemented within the company is a first avenue to explore, which is immediately obvious.
  • certain sectors of activity may face insurmountable obstacles, at least in the short and medium term, taking into account, for example, the state of scientific knowledge and available technology.
  • Companies are then offered the possibility of resorting to compensatory measures such as participating in reforestation, recycling of raw materials, purchasing carbon credits from organizations carrying out concrete actions contributing to the reduction of greenhouse gases. greenhouse, and others.
  • a system for capturing CO2 in the exhaust gases of a heat engine and storing it in liquid form in a storage tank integrated into a vehicle.
  • the storage tank is designed to be emptied by means of a CO2 recovery facility which is located, for example, at a refueling service station.
  • the on-board means include a purifier tank containing a fluid which absorbs the CO2 present in the exhaust gases.
  • a compressor is also provided to liquefy the CO2 for storage.
  • the capacity of the storage tank is sized sufficient to obtain a frequency of emptying the CO2 which is of the same order as the frequency of refueling the vehicle. The driver of the vehicle can thus fill up with fuel and empty the CO2 storage tank during the same trip to the refueling service station.
  • Document US20170306825A1 describes a device for capturing and converting the CO2 emitted by a heat engine into a synthetic fuel.
  • the device includes a CO2 gas capture material and a methanization catalyst.
  • CO2 molecules desorbed by the capture material react with hydrogen H2 molecules to generate methane.
  • Hydrogen is supplied by a power source.
  • the capture device controls an increase in the temperature of the capture material, using the heat generated by the heat engine, so as to cause the desorption of the CO2.
  • Document JP2010235736A describes a system for producing synthetic fuel from captured CO2.
  • a CO2 absorption material allows it to be captured.
  • the thermal energy used to cause the desorption of CO2 is also used to cause the fuel synthesis reaction.
  • the invention relates to a vehicle equipped with a thermal engine and an on-board system for capturing and converting carbon dioxide (CO2) emitted in the exhaust gases of the engine.
  • the on-board system comprises at least one compact and removable CO2 storage tank, in which the captured CO2 is stored in the form of supercritical fluid, and a reversible fuel cell and an electro-catalytic reactor which cooperate to produce a synthetic fuel from the captured CO2, the synthetic fuel being supplied to the heat engine to power the combustion.
  • the on-board system also comprises a device for capturing the water present in the exhaust gases of the heat engine, the captured water supplying the reversible fuel cell for production of hydrogen and oxygen in an electrolyzer operating mode thereof, and the hydrogen and oxygen produced being supplied to the electro-catalytic reactor, together with the captured CO2, for the production of the synthetic fuel.
  • excess quantities of hydrogen and oxygen produced are supplied to the heat engine to power combustion, via an exhaust gas recirculation valve called "EGR" (for "Exhaust Gas”). Recirculation” in English) of it.
  • an excess quantity of the hydrogen produced is reinjected into the reversible fuel cell for regeneration of its electrodes.
  • an excess quantity of the hydrogen produced is supplied to the reversible fuel cell for production of electricity in a hydrogen fuel cell operating mode thereof.
  • the electro-catalytic reactor is a Sabatier reactor producing methane gas, as a synthetic fuel, from the captured CO2, and hydrogen and oxygen produced by the battery reversible fuel.
  • methane gas is supplied to the heat engine to power combustion, via a so-called “EGR” valve.
  • the on-board system also includes another storage tank dedicated to storing synthetic fuel.
  • the on-board system also includes an organic cycle machine, called a “Rankine machine”, and a photovoltaic solar panel, the organic cycle machine producing electricity and energy in cogeneration. hot water from the waste heat of gases exhaust and the photovoltaic solar panel producing renewable electricity, the electricity produced being used to charge an electrical energy store of the vehicle and the hot water produced being used for heating the vehicle.
  • Rankine machine an organic cycle machine
  • photovoltaic solar panel a photovoltaic solar panel
  • the invention also relates to a CO2 capture and collection system in a rolling automobile fleet comprising a plurality of vehicles as briefly described above and a collection station comprising storage, management and monitoring means CO2 storage tanks for vehicles and means of managing user accounts associated with the vehicles.
  • Figure 1 is a general block diagram illustrating a particular embodiment of the present invention.
  • VTH thermal vehicle according to the invention is now described, as well as an example of an SCC system for capturing and collecting CO2 in a rolling vehicle fleet comprising a plurality of these VTH thermal vehicles.
  • the VTH thermal vehicle comprises an on-board system which captures the gaseous CO2 present in the burnt gases of the MT thermal engine of the vehicle, stores part of the CO2 captured in a compact and removable tank in a supercritical fluid state and converts another part into a synthetic fuel.
  • the synthetic fuel is stored in another tank to be used for combustion in the heat engine. Products derived from the processes implemented, in the form of excess hydrogen and oxygen, are also used in the combustion of the thermal engine or to produce electricity.
  • An organic Rankine cycle machine called an “ORC” machine for “Organic Rankine Cycle” in English, can also be integrated into the on-board system for cogeneration of electricity and useful heat, as well as a photovoltaic solar panel, so as to improve the energy balance of the VTH thermal vehicle according to the invention.
  • the CO2 capture and conversion system on board the VTH thermal vehicle comprises in particular a DT device for CO2 capture and treatment and a DC device for CO2 conversion.
  • the CO2 capture and treatment device, DT essentially comprises a CO2 capture device CT, a CD condensation device and an RC CO2 storage tank.
  • the CO2 capture device CT is connected bidirectionally to an exhaust gas bypass device DR which is installed in the LE exhaust line of the vehicle, downstream of a three-way catalyst CAT thereof. .
  • the exhaust gases are directed by the DR bypass device to the CT device for CO2 capture by filtration, and then return to the DR bypass device for evacuation via the LE exhaust line.
  • the CT capture device captures the CO2 in the burnt gases coming from the combustion chamber of the MT thermal engine, burnt gases which have been cleaned of HC, CO and Nox by the CAT catalyst, in accordance with current emissions standards.
  • the CT capture device is formed of a CO2 filter, or CO2 trap, and typically comprises a separation membrane ensuring separation of CO2 and inorganic oxides.
  • This membrane is rigid and is covered with a layer of porous ceramic as an outer layer.
  • the CT collection device is designed to withstand the high temperature of the exhaust gas, between 300°C and 950°C.
  • the shape of the CT collection device is tubular or rectangular, which facilitates its installation in the LE exhaust line.
  • the function of the condensation device CD is to condense the gaseous CO2 recovered by the capture device CT into the form of a supercritical fluid.
  • the CD condensing device essentially comprises an ET heat exchanger and a PT compressor.
  • the ET heat exchanger and the PT compressor bring the CO2 to the required temperature and pressure conditions to obtain the condensation of the CO2 in the state of supercritical fluid.
  • the ET heat exchanger is passed through by the gaseous CO2 and is connected to the EC hot water heating and air conditioning circuits of the VTH vehicle.
  • the temperature of the gaseous CO2 is controlled through thermal exchanges of the gaseous CO2 with the hot water and the air conditioning heat transfer fluid of the EC circuits. The temperature of the gaseous CO2 is thus maintained at a temperature above 31°C which will allow a transition to the supercritical fluid state.
  • the PT compressor is supplied with electricity by an EL electrical supply network of the VTH vehicle.
  • the PT compressor receives as input the gaseous CO2 conditioned by the ET exchanger at the appropriate temperature, above 31°C, and compresses it to cause its condensation to the state of supercritical fluid.
  • the CO2 in the state of supercritical fluid is brought to the RC storage tank to fill it.
  • the function of the PT compressor may in certain embodiments of the invention be provided by the air conditioning compressor of the VTH vehicle operating on a time-shared basis.
  • the RC storage tank can thus be produced in a more compact form.
  • the RC storage tank is a removable tank which, once full, must be removed from the vehicle and replaced with an empty tank.
  • the RC storage tank is equipped with a DH filling detector which controls the activation on the vehicle dashboard of a full tank indicator for the driver.
  • the capacity of the RC tank typically between approximately 10 and 20 liters, is a standard capacity which is sized to obtain a tank change frequency which is of the same order as the frequency of refueling of the vehicle. The driver of the vehicle can thus fill up with fuel and change his RC tank during the same trip to a refueling service station.
  • the CO2 conversion device, DC essentially comprises a water capture device CE, a reversible fuel cell PCR, an electro-catalytic reactor REC and an RF synthesis fuel storage tank.
  • the CE water capture device is a water trap (H2O) which supplies water in the liquid state from the water vapor present in the exhaust gases of the MT heat engine.
  • the CE water capture device is connected bidirectionally to the DR exhaust gas bypass device. The exhaust gases are directed by the DR bypass device to the CE device for water capture, and then return to the DR bypass device for evacuation via the LE exhaust line.
  • the reversible PCR fuel cell has two operating modes, namely, a first mode in which it operates as an electrolyzer and a second mode in which it operates as a hydrogen fuel cell.
  • the PCR battery consumes water (H2O) supplied by the water trap CE and electrical energy supplied by the electrical supply network EL and produces hydrogen (H2) and oxygen (02).
  • the hydrogen (H2) and oxygen (02) produced are used by the electro-catalytic reactor REC, together with CO2 from the storage tank RC, to produce synthetic fuel, namely here, methane (CH4 ).
  • the excess hydrogen (H2) and oxygen (02) are supplied to the MT thermal engine, via a V_EGR valve of the “EGR” type for “Exhaust Gas Recirculation” in English, to improve the combustion of the MT thermal engine. and, correlatively, its performance.
  • the excess hydrogen (H2) is also used for the regeneration of the cell, by cleaning its electrodes, as well as for the production of electricity in the hydrogen fuel cell mode.
  • the PCR cell consumes the aforementioned excess hydrogen (H2), oxygen (02) from the air and produces electricity and water (H2O).
  • H2O excess hydrogen
  • the electricity produced contributes to recharging a high-voltage electrical energy store STK, typically of the Lithuim-ion (Li-ion) type, via means of electrical conversion and CH recharging.
  • the REC electro-catalytic reactor here is of the Sabatier reactor type.
  • the REC reactor consumes hydrogen (H2) and oxygen (02) produced by the PCR stack in electrolyzer mode, as well as CO2 coming from the RC storage tank and electrical energy supplied by the electricity network.
  • EL power supply and produces methane gas (CH4) as a synthetic fuel. Electricity provided to the REC reactor allows it to be heated to the appropriate temperature for the catalytic reaction, by means of an electrical heating resistance included in the REC reactor.
  • the methane (CH4) produced by the REC electro-catalytic reactor is stored in an RF synthesis fuel storage tank.
  • the methane (CH4) produced is supplied to the MT heat engine for combustion, via the aforementioned V_EGR valve.
  • the methane gas (CH4) directed to the V_EGR valve comes directly from the REC electro-catalytic reactor or the RF storage tank.
  • the V_EGR valve is controlled using measurement information provided by Lambda probes LB1 and LB2 placed at the inlet and outlet of the engine combustion chamber.
  • the Lambda LB1 probe is typically positioned directly downstream of the V_EGR valve.
  • the Lambda LB2 probe is typically positioned in the gas recirculation loop.
  • the V_EGR valve controlled from the Lambda probes LB1 and LB2, allows optimal dosing of the recirculation of exhaust gases, as well as hydrogen (H2), oxygen (02) and methane (CH4) provided by the DC CO2 conversion device, to the AIR air intake loop of the MT heat engine.
  • the CO2 capture and conversion system also includes an organic cycle machine MR and a photovoltaic solar panel PS.
  • the organic cycle machine MR is a Rankine machine comprising a heat exchanger EH, called “hot”, a heat exchanger EF, called “cold”, an electric pump PO and a turbo-alternator TA.
  • the heat exchangers EH, EF, the PO pump and the TA turbo-alternator are integrated into a phase change heat transfer fluid circuit (liquid/gas).
  • the phase changes of the heat transfer fluid are generated by the temperature difference existing between the heat exchangers EH, EF.
  • the heat transfer fluid is heated in the heat exchanger EH crossed by the exhaust gases of the heat engine MT.
  • the heat transfer fluid is cooled in the EF heat exchanger integrated into an EC hot water heating circuit.
  • the work generated in the MR machine is converted into electricity by the TA turbo-alternator, which is driven in rotation by the mechanical torque exerted on its turbine by the heat transfer fluid in the gas phase.
  • the electricity produced contributes to recharging the high-voltage electrical energy store STK, via the means of electrical conversion and CH recharge.
  • the calories extracted from the EF heat exchanger heat the water in the EC heating circuit, thus contributing to the comfort of the people present in the VTH vehicle.
  • the photovoltaic solar panel PS is typically arranged on the roof of the vehicle and produces electricity which also contributes to recharging the high voltage electrical energy store STK, via the means of electrical conversion and recharging CH.
  • the organic cycle machine MR and the photovoltaic solar panel PS contribute to better recharging of the high voltage electrical energy store STK, from waste heat from exhaust gases and renewable solar energy.
  • a PG electrical charging socket is also provided in the VTH vehicle to complete the recharging of the high voltage electrical energy store STK, preferably from an electrical charging station providing renewable electrical energy.
  • the CO2 storage tank, RC is a removable tank which, once full, must be removed from the VTH vehicle and replaced by an empty tank.
  • the synthetic fuel storage tank will also be a removable tank replaceable by an empty tank.
  • the RC tank is of a standard interchangeable type. When full, the RC tank has a weight compatible with handling directly by the user for replacement.
  • the SCC system comprises an SCR station for collecting and replacing full RC tanks.
  • the SCR station includes means for storing, managing and monitoring storage tanks and means for managing user accounts associated with said vehicles.
  • the SCR station is present on the site of an SRC service station for refueling and recharging an electric vehicle.
  • the SCR station is in the form of a double automated DRA rack, self-service storage, which is controlled by a local BGI computerized control and management terminal including a MOD management software module with which the user can interact, for example via a dedicated software application on their smartphone or via human-machine interface means (screen, keyboard and others) of the terminal.
  • VTH vehicles arriving at the SCR station are identified automatically, for example, from a license plate image taken by a CM camera.
  • the BGI terminal calculator interacts with a remote IT server SID hosting DBs databases of registered users/vehicles and tank management and traceability.
  • the tanks are identified individually, for example by a unique QR code.
  • the QR code is scanned for traceability when removing a full tank and when removing an empty tank.
  • Validation of a user/vehicle by consulting the remote computer server SID by the BGI terminal leads to sequential unlocking for the user of two sections SRP and SRV of the double automated DRA rack.
  • the SRP section is for removing a full RC tank and is unlocked first. Then, once the full tank has been removed, the SRV section containing empty RC replacement tanks is unlocked and the user can remove an empty RC tank and install it in their HTV vehicle.
  • Each deposit of a full tank by a user validates a credit on their user account, for example, for a reduction on a fuel purchase or on the price of electrically recharging your vehicle.
  • the filling level of the tank deposited by a user can be controlled and guaranteed by different means. Thus, removal of the tank from the vehicle may only be authorized when the filling detector (DH) of the vehicle indicates that the tank is full.
  • the tank deposited in the SRP deposit section can also be weighed on a scale in the automated double rack before being accepted.
  • CO2 coming from the reservoirs can be treated by different FT channels represented schematically in Figure 1.
  • the conversion of CO2 from reservoirs into synthetic fuel can be done on a large scale by synthetic fuel production plants.
  • CO2 can also be used in aquaculture, for example, for the growth of edible algae or microalgae used in the composition of high value-added products.
  • CO2, reduced to carbon powder can also be sequestered in the ground by burial.
  • several other sectors of CO2 use, with or without transformation are known such as carbon dioxide for carbonated drinks, dry ice, refrigerating liquids, urea in the fertilizer industry , polycarbonates and others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The vehicle (VTH) is equipped with an on-board system for capturing and converting carbon dioxide (CO2) emitted in the exhaust gases of its heat engine (MT). According to the invention, the system comprises at least one compact and removable CO2 storage tank (RC), in which the captured CO2 is stored in the form of supercritical fluid, and a reversible fuel cell (PCR) and an electro-catalytic reactor (REC) which cooperate to produce a synthesis fuel from the captured CO2, the synthesis fuel being supplied to the heat engine to fuel the combustion.

Description

DESCRIPTION DESCRIPTION
TITRE DE L’INVENTION : VÉHICULE THERMIQUE ÉQUIPÉ D’UN SYSTÈME EMBARQUÉ DE CAPTAGE ET CONVERSION DU CO2 TITLE OF THE INVENTION: THERMAL VEHICLE EQUIPPED WITH AN ON-BOARD CO2 CAPTURE AND CONVERSION SYSTEM
[0001] La présente invention revendique la priorité de la demande française N°2211716 déposée le 10.11.2022 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. [0001] The present invention claims the priority of French application No. 2211716 filed on 10.11.2022, the content of which (text, drawings and claims) is here incorporated by reference.
[0002] La présente invention concerne de manière générale la réduction dans l’atmosphère du dioxyde de carbone (CO2) lié aux activités humaines. Plus particulièrement, l’invention se rapporte à un véhicule thermique équipé d’un système embarqué de captage et de conversion du CO2 émis dans les gaz d’échappement. L’invention se rapporte aussi à un système de captage et collecte du CO2 dans un parc automobile roulant de ces véhicules thermiques équipés. [0002] The present invention generally relates to the reduction in the atmosphere of carbon dioxide (CO2) linked to human activities. More particularly, the invention relates to a thermal vehicle equipped with an on-board system for capturing and converting CO2 emitted in the exhaust gases. The invention also relates to a system for capturing and collecting CO2 in a fleet of these equipped thermal vehicles.
[0003] Plusieurs constructeurs automobiles ont annoncé des objectifs d’engagement volontaire ambitieux, s’échelonnant entre 2035 et 2050, vis-à-vis de la neutralité carbone de leurs activités et de leurs parcs automobiles roulants. Les constructeurs automobiles participent ainsi aux efforts nécessaires visant à limiter le réchauffement climatique à 2°C maximum d’ici 2100, conformément aux accords de Paris de 2015. [0004] La neutralité carbone est un concept qui paraît simple au premier abord, mais qui en réalité est très complexe à mettre en œuvre notamment dans les grandes organisations industrielles ayant des activités internationales, ce qui est le cas de l’industrie automobile. La neutralité carbone est atteinte lorsque le bilan d’émission est nul, c’est-à-dire, lorsque les rejets de CO2 dans l’atmosphère générés par les activités de l’entreprise sont compensés par d’autres activités de celle-ci qui retirent du CO2 de l’atmosphère en quantité égale. Ce concept s’applique au fonctionnement complet de l’entreprise, ce qui recouvre l’ensemble du cycle de vie de ses produits, de leur fabrication à leur recyclage, le réseau des fournisseurs, la chaîne logistique, le transport domicile-travail de ses salariés et bien d’autres aspects. Réduire les émissions de CO2 de différents processus polluants en œuvre dans l’entreprise est une première voie à explorer, qui s’impose de prime abord. Certains secteurs d’activité peuvent cependant être confrontés à des obstacles insurmontables, du moins sur les court et moyen termes, compte-tenu par exemple de l’état des connaissances scientifiques et de la technologie disponible. S’offre alors aux entreprises la possibilité d’avoir recours à des mesures compensatoires comme par exemple participer à la reforestation, au recyclage des matières premières, acheter des crédits carbone à des organismes effectuant des actions concrètes contribuant à la réduction des gaz à effets de serre, et autres. [0003] Several automobile manufacturers have announced ambitious voluntary commitment objectives, spanning between 2035 and 2050, with respect to the carbon neutrality of their activities and their vehicle fleets. Automobile manufacturers are thus participating in the necessary efforts aimed at limiting global warming to a maximum of 2°C by 2100, in accordance with the 2015 Paris agreements. [0004] Carbon neutrality is a concept that seems simple at first glance, but which in reality is very complex to implement, particularly in large industrial organizations with international activities, which is the case of the automobile industry. Carbon neutrality is achieved when the emissions balance is zero, that is to say, when CO2 emissions into the atmosphere generated by the company's activities are offset by other activities of the company. which remove CO2 from the atmosphere in equal quantities. This concept applies to the complete operation of the company, which covers the entire life cycle of its products, from their manufacturing to their recycling, the supplier network, the logistics chain, the home-work transport of its employees and many other aspects. Reducing CO2 emissions from various polluting processes implemented within the company is a first avenue to explore, which is immediately obvious. However, certain sectors of activity may face insurmountable obstacles, at least in the short and medium term, taking into account, for example, the state of scientific knowledge and available technology. Companies are then offered the possibility of resorting to compensatory measures such as participating in reforestation, recycling of raw materials, purchasing carbon credits from organizations carrying out concrete actions contributing to the reduction of greenhouse gases. greenhouse, and others.
[0005] Pour les constructeurs automobiles, la réduction des rejets de CO2 par les gaz d’échappement des motorisations thermiques est un objectif prioritaire, compte- tenu de l’importance du parc automobile mondial, parc qui devrait atteindre un pic en 2039 selon les prévisions de l’institut Bloomberg New Energy Finance (BNEF). Les perfectionnements apportés aux moteurs thermiques essence et Diesel, pour améliorer leurs rendements et réduire les rejets, ainsi que l’électrification des véhicules, via l’hybridation et le tout-électrique, conduisent d’ores et déjà à des réductions considérables des rejets de CO2 par les véhicules de nouvelle génération. Par ailleurs, les améliorations apportées aux motorisations des véhicules de nouvelle génération permettent aux constructeurs de respecter, à court et moyen termes, les réglementations contraignantes et évolutives sur les émissions de rejets polluants. [0005] For automobile manufacturers, the reduction of CO2 emissions from the exhaust gases of thermal engines is a priority objective, taking into account the importance of the global automobile fleet, a fleet which should reach a peak in 2039 according to the forecasts from the Bloomberg New Energy Finance (BNEF) institute. THE improvements made to gasoline and diesel thermal engines, to improve their efficiency and reduce emissions, as well as the electrification of vehicles, via hybridization and all-electric, are already leading to considerable reductions in CO2 emissions by new generation vehicles. Furthermore, improvements made to the engines of new generation vehicles allow manufacturers to comply, in the short and medium term, with restrictive and evolving regulations on pollutant emissions.
[0006] Cependant, bien que les avancées techniques réalisées cette dernière décennie vers une mobilité verte, respectueuse du climat et de l’environnement, soient encourageantes, il reste encore beaucoup de progrès à faire à l’industrie automobile pour atteindre la neutralité carbone. [0006] However, although the technical advances made over the last decade towards green mobility, respectful of the climate and the environment, are encouraging, there is still a lot of progress to be made in the automobile industry to achieve carbon neutrality.
[0007] Dans l’état de la technique, il est connu des dispositifs embarqués dans des véhicules thermiques pour capter et stocker le CO2 émis par le moteur thermique. Il est aussi connu d’autres dispositifs pour convertir le CO2 émis par le moteur thermique en un carburant de synthèse. [0007] In the state of the art, devices on board thermal vehicles are known to capture and store the CO2 emitted by the thermal engine. Other devices are also known to convert the CO2 emitted by the heat engine into a synthetic fuel.
[0008] Ainsi, par le document EP2472077A1 , il est connu un système pour capturer le CO2 dans les gaz d'échappement d'un moteur thermique et le stocker sous forme liquide dans un réservoir de stockage intégré dans un véhicule. Le réservoir de stockage est conçu pour être vidé au moyen d’une installation de récupération de CO2 qui est située, par exemple, dans une station-service de ravitaillement en carburant. Outre le réservoir de stockage, les moyens embarqués comprennent un réservoir d'épurateur contenant un fluide qui absorbe le CO2 présent dans les gaz d’échappement. Un compresseur est également prévu pour liquéfier la CO2 en vue de son stockage. La capacité du réservoir de stockage est dimensionnée suffisante pour obtenir une fréquence de vidage du CO2 qui soit du même ordre que la fréquence du plein en carburant du véhicule. Le conducteur du véhicule peut ainsi effectuer son plein de carburant et vider le réservoir de stockage de CO2 lors d’un même passage à la station-service de ravitaillement en carburant. [0008] Thus, from document EP2472077A1, a system is known for capturing CO2 in the exhaust gases of a heat engine and storing it in liquid form in a storage tank integrated into a vehicle. The storage tank is designed to be emptied by means of a CO2 recovery facility which is located, for example, at a refueling service station. In addition to the storage tank, the on-board means include a purifier tank containing a fluid which absorbs the CO2 present in the exhaust gases. A compressor is also provided to liquefy the CO2 for storage. The capacity of the storage tank is sized sufficient to obtain a frequency of emptying the CO2 which is of the same order as the frequency of refueling the vehicle. The driver of the vehicle can thus fill up with fuel and empty the CO2 storage tank during the same trip to the refueling service station.
[0009] Le document US20170306825A1 décrit un dispositif de captage et de conversion en un carburant de synthèse du CO2 émis par un moteur thermique. Le dispositif comprend un matériau de capture du CO2 gazeux et un catalyseur de méthanisation. Dans le catalyseur, les molécules du CO2 désorbé par le matériau de capture réagissent avec des molécules d’hydrogène H2 pour générer du méthane. L’hydrogène est fourni par une source d’alimentation. Le dispositif de captage pilote une élévation de la température du matériau de capture, en utilisant la chaleur générée par le moteur thermique, de façon à provoquer la désorption du CO2. [0009] Document US20170306825A1 describes a device for capturing and converting the CO2 emitted by a heat engine into a synthetic fuel. The device includes a CO2 gas capture material and a methanization catalyst. In the catalyst, CO2 molecules desorbed by the capture material react with hydrogen H2 molecules to generate methane. Hydrogen is supplied by a power source. The capture device controls an increase in the temperature of the capture material, using the heat generated by the heat engine, so as to cause the desorption of the CO2.
[0010] Le document JP2010235736A décrit un système de production de carburant de synthèse à partir de CO2 capté. Un matériau d’absorption du CO2 permet le captage de celui-ci. L’énergie thermique utilisée pour provoquer la désorption du CO2 est aussi utilisée pour provoquer la réaction de synthèse du carburant. [0010] Document JP2010235736A describes a system for producing synthetic fuel from captured CO2. A CO2 absorption material allows it to be captured. The thermal energy used to cause the desorption of CO2 is also used to cause the fuel synthesis reaction.
[0011] Il est souhaitable de proposer une nouvelle conception d’un véhicule thermique équipé d’un système embarqué de captage et de conversion du CO2 émis dans les gaz d’échappement, ainsi qu’un système de captage et collecte de CO2 adapté à un parc automobile roulant de ces véhicules, de façon à aider les industriels de l’automobile à atteindre la neutralité carbone. [0011] It is desirable to propose a new design of a thermal vehicle equipped with an on-board system for capturing and converting the CO2 emitted in the exhaust gases, as well as a CO2 capture and collection system adapted to a fleet of these vehicles, in order to help the automobile industry achieve carbon neutrality.
[0012] Selon un premier aspect, l’invention concerne un véhicule équipé d’un moteur thermique et d’un système embarqué de captage et de conversion du dioxyde de carbone (CO2) émis dans les gaz d’échappement du moteur. Conformément à l’invention, le système embarqué comprend au moins un réservoir de stockage de CO2, compact et amovible, dans lequel le CO2 capté est stocké sous la forme de fluide supercritique, et une pile à combustible réversible et un réacteur électro-catalytique qui coopèrent pour produire un carburant de synthèse à partir du CO2 capté, le carburant de synthèse étant fourni au moteur thermique pour alimenter la combustion. [0013] Selon une caractéristique particulière, le système embarqué comprend également un dispositif de captage de l’eau présente dans les gaz d’échappement du moteur thermique, l’eau capté alimentant la pile à combustible réversible pour une production d’hydrogène et d’oxygène dans un mode de fonctionnement en électrolyseur de celle-ci, et l’hydrogène et l’oxygène produits étant fournis au réacteur électro-catalytique, conjointement au CO2 capté, pour la production du carburant de synthèse. [0014] Selon une autre caractéristique particulière, des quantités excédentaires de l’hydrogène et l’oxygène produits sont fournies au moteur thermique pour alimenter la combustion, via une vanne de recirculation des gaz d’échappement dite « EGR » (pour « Exhaust Gas Recirculation » en anglais) de celui-ci. [0012] According to a first aspect, the invention relates to a vehicle equipped with a thermal engine and an on-board system for capturing and converting carbon dioxide (CO2) emitted in the exhaust gases of the engine. According to the invention, the on-board system comprises at least one compact and removable CO2 storage tank, in which the captured CO2 is stored in the form of supercritical fluid, and a reversible fuel cell and an electro-catalytic reactor which cooperate to produce a synthetic fuel from the captured CO2, the synthetic fuel being supplied to the heat engine to power the combustion. [0013] According to a particular characteristic, the on-board system also comprises a device for capturing the water present in the exhaust gases of the heat engine, the captured water supplying the reversible fuel cell for production of hydrogen and oxygen in an electrolyzer operating mode thereof, and the hydrogen and oxygen produced being supplied to the electro-catalytic reactor, together with the captured CO2, for the production of the synthetic fuel. [0014] According to another particular characteristic, excess quantities of hydrogen and oxygen produced are supplied to the heat engine to power combustion, via an exhaust gas recirculation valve called "EGR" (for "Exhaust Gas"). Recirculation” in English) of it.
[0015] Selon encore une autre caractéristique particulière, une quantité excédentaire de l’hydrogène produit est réinjectée dans la pile à combustible réversible pour une régénération d’électrodes de celle-ci. [0015] According to yet another particular characteristic, an excess quantity of the hydrogen produced is reinjected into the reversible fuel cell for regeneration of its electrodes.
[0016] Selon encore une autre caractéristique particulière, une quantité excédentaire de l’hydrogène produit est fournie à la pile à combustible réversible pour une production d’électricité dans un mode de fonctionnement de pile à combustible à hydrogène de celle-ci. [0016] According to yet another particular characteristic, an excess quantity of the hydrogen produced is supplied to the reversible fuel cell for production of electricity in a hydrogen fuel cell operating mode thereof.
[0017] Selon encore une autre caractéristique particulière, le réacteur électro-catalytique est un réacteur de Sabatier produisant du gaz méthane, en tant que carburant de synthèse, à partir du CO2 capté, et d’hydrogène et d’oxygène produits par la pile à combustible réversible. [0017] According to yet another particular characteristic, the electro-catalytic reactor is a Sabatier reactor producing methane gas, as a synthetic fuel, from the captured CO2, and hydrogen and oxygen produced by the battery reversible fuel.
[0018] Selon encore une autre caractéristique particulière, le gaz méthane est fourni au moteur thermique pour alimenter la combustion, via une vanne dite « EGR ». [0019] Selon encore une autre caractéristique particulière, le système embarqué comprend également un autre réservoir de stockage dédié à un stockage du carburant de synthèse. [0018] According to yet another particular characteristic, methane gas is supplied to the heat engine to power combustion, via a so-called “EGR” valve. [0019] According to yet another particular characteristic, the on-board system also includes another storage tank dedicated to storing synthetic fuel.
[0020] Selon encore une autre caractéristique particulière, le système embarqué comprend également une machine à cycle organique, dite « machine de Rankine », et un panneau solaire photovoltaïque, la machine à cycle organique produisant en cogénération de l’électricité et de l’eau chaude à partir de la chaleur fatale des gaz d’échappement et le panneau solaire photovoltaïque produisant de l’électricité renouvelable, l’électricité produite étant utilisée pour charger un stockeur d’énergie électrique du véhicule et l’eau chaude produite étant utilisée pour le chauffage du véhicule. [0020] According to yet another particular characteristic, the on-board system also includes an organic cycle machine, called a “Rankine machine”, and a photovoltaic solar panel, the organic cycle machine producing electricity and energy in cogeneration. hot water from the waste heat of gases exhaust and the photovoltaic solar panel producing renewable electricity, the electricity produced being used to charge an electrical energy store of the vehicle and the hot water produced being used for heating the vehicle.
[0021] L’invention concerne aussi un système de captage et collecte de CO2 dans un parc automobile roulant comprenant une pluralité de véhicules tels que décrits brièvement ci-dessus et une station de collecte comprenant des moyens d’entreposage, de gestion et de suivi des réservoirs de stockage de CO2 des véhicules et des moyens de gestion de comptes utilisateurs associés aux véhicules. [0021] The invention also relates to a CO2 capture and collection system in a rolling automobile fleet comprising a plurality of vehicles as briefly described above and a collection station comprising storage, management and monitoring means CO2 storage tanks for vehicles and means of managing user accounts associated with the vehicles.
[0022] D’autres avantages et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description détaillée ci-dessous d’une forme de réalisation particulière de l’invention, en référence au dessin unique annexé, dans lequel : [0022] Other advantages and characteristics of the present invention will appear more clearly on reading the detailed description below of a particular embodiment of the invention, with reference to the single appended drawing, in which:
[0023] [Fig.1] La Figure 1 est bloc-diagramme général illustrant une mode de réalisation particulier de la présente invention. [0023] [Fig.1] Figure 1 is a general block diagram illustrating a particular embodiment of the present invention.
[0024] En référence à la Figure 1 , il est maintenant décrit une forme de réalisation particulière d’un véhicule thermique VTH selon l’invention, ainsi qu’un exemple de réalisation d’un système SCC de captage et collecte de CO2 dans un parc automobile roulant comprenant une pluralité de ces véhicules thermiques VTH. [0024] With reference to Figure 1, a particular embodiment of a VTH thermal vehicle according to the invention is now described, as well as an example of an SCC system for capturing and collecting CO2 in a rolling vehicle fleet comprising a plurality of these VTH thermal vehicles.
[0025] De manière générale, le véhicule thermique VTH selon l’invention comprend un système embarqué qui capte le CO2 gazeux présent dans les gaz brûlés du moteur thermique MT du véhicule, stocke une partie du CO2 capté dans un réservoir compact et amovible dans un état de fluide supercritique et en convertit une autre partie en un carburant de synthèse. Le carburant de synthèse est stocké dans un autre réservoir pour être utilisé pour la combustion dans le moteur thermique. Des produits dérivés des processus mis en œuvre, sous la forme d’hydrogène et d’oxygène excédentaires, sont aussi exploités dans la combustion du moteur thermique ou pour produire de l’électricité. Une machine à cycle organique de Rankine, dite machine « ORC » pour « Organic Rankine Cycle » en anglais, peut également être intégrée dans le système embarqué pour une cogénération d’électricité et de chaleur utile, ainsi qu’un panneau solaire photovoltaïque, de façon à améliorer le bilan énergétique du véhicule thermique VTH selon l’invention. [0025] Generally speaking, the VTH thermal vehicle according to the invention comprises an on-board system which captures the gaseous CO2 present in the burnt gases of the MT thermal engine of the vehicle, stores part of the CO2 captured in a compact and removable tank in a supercritical fluid state and converts another part into a synthetic fuel. The synthetic fuel is stored in another tank to be used for combustion in the heat engine. Products derived from the processes implemented, in the form of excess hydrogen and oxygen, are also used in the combustion of the thermal engine or to produce electricity. An organic Rankine cycle machine, called an “ORC” machine for “Organic Rankine Cycle” in English, can also be integrated into the on-board system for cogeneration of electricity and useful heat, as well as a photovoltaic solar panel, so as to improve the energy balance of the VTH thermal vehicle according to the invention.
[0026] Comme montré schématiquement à la Figure 1 , le système de captage et de conversion du CO2 embarqué dans le véhicule thermique VTH comprend notamment un dispositif DT de captage et traitement de CO2 et un dispositif DC de conversion de CO2. [0026] As shown schematically in Figure 1, the CO2 capture and conversion system on board the VTH thermal vehicle comprises in particular a DT device for CO2 capture and treatment and a DC device for CO2 conversion.
[0027] Le dispositif de captage et traitement de CO2, DT, comprend essentiellement un dispositif CT de captage de CO2, un dispositif de condensation CD et un réservoir RC de stockage de CO2. The CO2 capture and treatment device, DT, essentially comprises a CO2 capture device CT, a CD condensation device and an RC CO2 storage tank.
[0028] Le dispositif CT de captage de CO2 est raccordé bidirectionnellement à un dispositif DR de dérivation des gaz d’échappement qui est implanté dans la ligne d’échappement LE du véhicule, en aval d’un catalyseur trois voies CAT de celle-ci. Les gaz d’échappement sont dirigés par le dispositif de dérivation DR vers le dispositif CT pour le captage du CO2 par filtration, et reviennent ensuite vers le dispositif de dérivation DR pour une évacuation via la ligne d’échappement LE. Le dispositif de captage CT capte le CO2 dans les gaz brûlés provenant de la chambre de combustion du moteur thermique MT, gaz brûlés qui ont été dépollués des HC, CO et Nox par le catalyseur CAT, conformément aux normes d’émissions en vigueur. Le dispositif de captage CT est formé d’un filtre à CO2, ou piège à CO2, et comprend typiquement une membrane de séparation assurant une séparation du CO2 et des oxydes inorganiques. Cette membrane est rigide et est couverte d’une couche de céramique poreuse en couche externe. Le dispositif de captage CT est conçu pour résister à la température élevée des gaz d’échappement, comprise entre 300°C et 950°C. De préférence, la forme du dispositif de captage CT est tubulaire ou rectangulaire, ce qui facilite l’implantation de celui-ci dans la ligne d’échappement LE. The CO2 capture device CT is connected bidirectionally to an exhaust gas bypass device DR which is installed in the LE exhaust line of the vehicle, downstream of a three-way catalyst CAT thereof. . The exhaust gases are directed by the DR bypass device to the CT device for CO2 capture by filtration, and then return to the DR bypass device for evacuation via the LE exhaust line. The CT capture device captures the CO2 in the burnt gases coming from the combustion chamber of the MT thermal engine, burnt gases which have been cleaned of HC, CO and Nox by the CAT catalyst, in accordance with current emissions standards. The CT capture device is formed of a CO2 filter, or CO2 trap, and typically comprises a separation membrane ensuring separation of CO2 and inorganic oxides. This membrane is rigid and is covered with a layer of porous ceramic as an outer layer. The CT collection device is designed to withstand the high temperature of the exhaust gas, between 300°C and 950°C. Preferably, the shape of the CT collection device is tubular or rectangular, which facilitates its installation in the LE exhaust line.
[0029] Le dispositif de condensation CD a pour fonction de condenser sous la forme d’un fluide supercritique le CO2 gazeux récupéré par le dispositif de captage CT. Le dispositif de condensation CD comprend essentiellement un échangeur thermique ET et un compresseur PT. L’échangeur thermique ET et le compresseur PT permettent d’amener le CO2 dans les conditions requises de température et de pression pour l’obtention de la condensation du CO2 à l’état de fluide supercritique. L’échangeur thermique ET est traversé par le CO2 gazeux et est raccordé à des circuits EC de chauffage par eau chaude et de climatisation du véhicule VTH. Dans l’échangeur ET, la température du CO2 gazeux est pilotée grâce à des échanges thermiques du CO2 gazeux avec l’eau chaude et le fluide caloporteur de climatisation des circuits EC. La température du CO2 gazeux est ainsi maintenue à une température supérieure à 31 °C qui autorisera une transition vers l’état de fluide supercritique. The function of the condensation device CD is to condense the gaseous CO2 recovered by the capture device CT into the form of a supercritical fluid. The CD condensing device essentially comprises an ET heat exchanger and a PT compressor. The ET heat exchanger and the PT compressor bring the CO2 to the required temperature and pressure conditions to obtain the condensation of the CO2 in the state of supercritical fluid. The ET heat exchanger is passed through by the gaseous CO2 and is connected to the EC hot water heating and air conditioning circuits of the VTH vehicle. In the ET exchanger, the temperature of the gaseous CO2 is controlled through thermal exchanges of the gaseous CO2 with the hot water and the air conditioning heat transfer fluid of the EC circuits. The temperature of the gaseous CO2 is thus maintained at a temperature above 31°C which will allow a transition to the supercritical fluid state.
[0030] Le compresseur PT est alimenté en électricité par un réseau d’alimentation électrique EL du véhicule VTH. Le compresseur PT reçoit en entrée le CO2 gazeux conditionné par l’échangeur ET à la température adéquate, supérieure à 31 °C, et comprime celui-ci pour provoquer sa condensation à l’état de fluide supercritique. En sortie du compresseur PT, le CO2 à l’état de fluide supercritique est amené jusqu’au réservoir de stockage RC pour remplir celui-ci. On notera que la fonction du compresseur PT pourra dans certaines formes de réalisation de l’invention être assurée par le compresseur de climatisation du véhicule VTH fonctionnant en temps partagée. The PT compressor is supplied with electricity by an EL electrical supply network of the VTH vehicle. The PT compressor receives as input the gaseous CO2 conditioned by the ET exchanger at the appropriate temperature, above 31°C, and compresses it to cause its condensation to the state of supercritical fluid. At the outlet of the PT compressor, the CO2 in the state of supercritical fluid is brought to the RC storage tank to fill it. It will be noted that the function of the PT compressor may in certain embodiments of the invention be provided by the air conditioning compressor of the VTH vehicle operating on a time-shared basis.
[0031] La condensation du CO2 à l’état de fluide supercritique entraîne une augmentation de sa densité, ce qui autorise le stockage d’une plus grande quantité de CO2 dans un volume donné. Le réservoir de stockage RC peut ainsi être réalisé sous une forme plus compacte. Dans la présente invention, le réservoir de stockage RC est un réservoir amovible qui, une fois plein, doit être retiré du véhicule et remplacé par un réservoir vide. Comme visible à la Figure 1 , le réservoir de stockage RC est équipé d’un détecteur de remplissage DH qui commande l’activation sur le tableau de bord du véhicule d’un indicateur de réservoir plein à l’intention du conducteur. La capacité du réservoir RC, typiquement comprise entre 10 et 20 litres environ, est une capacité standard qui est dimensionnée pour obtenir une fréquence de changement de réservoir qui soit du même ordre que la fréquence du plein en carburant du véhicule. Le conducteur du véhicule peut ainsi effectuer son plein de carburant et changer son réservoir RC lors d’un même passage à une station-service de ravitaillement en carburant. The condensation of CO2 in the state of supercritical fluid causes an increase in its density, which allows the storage of a greater quantity of CO2 in a given volume. The RC storage tank can thus be produced in a more compact form. In the present invention, the RC storage tank is a removable tank which, once full, must be removed from the vehicle and replaced with an empty tank. As visible in Figure 1, the RC storage tank is equipped with a DH filling detector which controls the activation on the vehicle dashboard of a full tank indicator for the driver. The capacity of the RC tank, typically between approximately 10 and 20 liters, is a standard capacity which is sized to obtain a tank change frequency which is of the same order as the frequency of refueling of the vehicle. The driver of the vehicle can thus fill up with fuel and change his RC tank during the same trip to a refueling service station.
[0032] Le dispositif de conversion de CO2, DC, comprend essentiellement un dispositif de captage d’eau CE, une pile à combustible réversible PCR, un réacteur électro-catalytique REC et un réservoir de stockage de carburant de synthèse RF. The CO2 conversion device, DC, essentially comprises a water capture device CE, a reversible fuel cell PCR, an electro-catalytic reactor REC and an RF synthesis fuel storage tank.
[0033] Le dispositif CE de captage d’eau est un piège à eau (H2O) qui fournit de l’eau à l’état liquide à partir de la vapeur d’eau présente dans les gaz d’échappement du moteur thermique MT. Le dispositif CE de captage d’eau est raccordé bidirection- nellement au dispositif DR de dérivation des gaz d’échappement. Les gaz d’échappement sont dirigés par le dispositif de dérivation DR vers le dispositif CE pour le captage de l’eau, et reviennent ensuite vers le dispositif de dérivation DR pour une évacuation via la ligne d’échappement LE. The CE water capture device is a water trap (H2O) which supplies water in the liquid state from the water vapor present in the exhaust gases of the MT heat engine. The CE water capture device is connected bidirectionally to the DR exhaust gas bypass device. The exhaust gases are directed by the DR bypass device to the CE device for water capture, and then return to the DR bypass device for evacuation via the LE exhaust line.
[0034] La pile à combustible réversible PCR comporte deux modes de fonctionnement, à savoir, un premier mode dans lequel elle fonctionne comme un électrolyseur et un second mode dans lequel elle fonctionne comme une pile à combustible à hydrogène. The reversible PCR fuel cell has two operating modes, namely, a first mode in which it operates as an electrolyzer and a second mode in which it operates as a hydrogen fuel cell.
[0035] Dans le mode électrolyseur, la pile PCR consomme de l’eau (H2O) fournie par le piège à eau CE et de l’énergie électrique fournie par le réseau d’alimentation électrique EL et produit de l’hydrogène (H2) et de l’oxygène (02). L’hydrogène (H2) et l’oxygène (02) produits sont exploités par le réacteur électro-catalytique REC, conjointement avec du CO2 provenant du réservoir de stockage RC, pour produire du carburant de synthèse, à savoir ici, du méthane (CH4). L’hydrogène (H2) et l’oxygène (02) excédentaires sont fournis au moteur thermique MT, via une vanne V_EGR de type « EGR » pour « Exhaust Gas Recirculation » en anglais, pour l’amélioration de la combustion du moteur thermique MT et, corrélativement, des performances de celui-ci. L’hydrogène (H2) excédentaire est aussi utilisé pour la régénération de la pile, par nettoyage de ses électrodes, ainsi que pour la production d’électricité dans le mode pile à combustible à hydrogène. [0035] In the electrolyzer mode, the PCR battery consumes water (H2O) supplied by the water trap CE and electrical energy supplied by the electrical supply network EL and produces hydrogen (H2) and oxygen (02). The hydrogen (H2) and oxygen (02) produced are used by the electro-catalytic reactor REC, together with CO2 from the storage tank RC, to produce synthetic fuel, namely here, methane (CH4 ). The excess hydrogen (H2) and oxygen (02) are supplied to the MT thermal engine, via a V_EGR valve of the “EGR” type for “Exhaust Gas Recirculation” in English, to improve the combustion of the MT thermal engine. and, correlatively, its performance. The excess hydrogen (H2) is also used for the regeneration of the cell, by cleaning its electrodes, as well as for the production of electricity in the hydrogen fuel cell mode.
[0036] Dans le mode pile à combustible à hydrogène, la pile PCR consomme l’hydrogène (H2) excédentaire susmentionné, l’oxygène (02) de l’air et produit de l’électricité et de l’eau (H2O). L’électricité produite contribue à la recharge d’un stockeur d’énergie électrique haute tension STK, typiquement du type Lithuim-ion (Li-ion), via des moyens de conversion électrique et recharge CH. [0036] In the hydrogen fuel cell mode, the PCR cell consumes the aforementioned excess hydrogen (H2), oxygen (02) from the air and produces electricity and water (H2O). The electricity produced contributes to recharging a high-voltage electrical energy store STK, typically of the Lithuim-ion (Li-ion) type, via means of electrical conversion and CH recharging.
[0037] Le réacteur électro-catalytique REC est ici du type réacteur de Sabatier. Le réacteur REC consomme de l’hydrogène (H2) et de l’oxygène (02) produits par la pile PCR en mode électrolyseur, ainsi que du CO2 provenant du réservoir de stockage RC et de l’énergie électrique fournie par le réseau d’alimentation électrique EL, et produit du gaz méthane (CH4) en tant que carburant de synthèse. L’électricité fournie au réacteur REC permet de chauffer celui-ci à la température adéquate pour la réaction catalytique, au moyen d’une résistance électrique chauffante incluse dans le réacteur REC. Le méthane (CH4) produit par le réacteur électro-catalytique REC est stocké dans un réservoir de stockage de carburant de synthèse RF. The REC electro-catalytic reactor here is of the Sabatier reactor type. The REC reactor consumes hydrogen (H2) and oxygen (02) produced by the PCR stack in electrolyzer mode, as well as CO2 coming from the RC storage tank and electrical energy supplied by the electricity network. EL power supply, and produces methane gas (CH4) as a synthetic fuel. Electricity provided to the REC reactor allows it to be heated to the appropriate temperature for the catalytic reaction, by means of an electrical heating resistance included in the REC reactor. The methane (CH4) produced by the REC electro-catalytic reactor is stored in an RF synthesis fuel storage tank.
[0038] Le méthane (CH4) produit est fourni au moteur thermique MT pour la combustion, via la vanne V_EGR susmentionnée. Le gaz méthane (CH4) dirigé vers la vanne V_EGR provient directement du réacteur électro-catalytique REC ou du réservoir de stockage RF. La vanne V_EGR est pilotée à partir d’informations de mesure fournies par des sondes Lambda LB1 et LB2 disposées en entrée et sortie de la chambre de combustion du moteur. La sonde Lambda LB1 est positionnée typiquement directement en aval de la vanne V_EGR. La sonde Lambda LB2 est positionnée typiquement dans la boucle de recirculation des gaz. La vanne V_EGR , pilotée à partir les sondes Lambda LB1 et LB2, permet un dosage optimal de la recirculation des gaz d’échappement, ainsi que de l’hydrogène (H2), de l’oxygène (02) et du méthane (CH4) procurés par le dispositif DC de conversion de CO2, vers la boucle d’admission d’air AIR du moteur thermique MT. The methane (CH4) produced is supplied to the MT heat engine for combustion, via the aforementioned V_EGR valve. The methane gas (CH4) directed to the V_EGR valve comes directly from the REC electro-catalytic reactor or the RF storage tank. The V_EGR valve is controlled using measurement information provided by Lambda probes LB1 and LB2 placed at the inlet and outlet of the engine combustion chamber. The Lambda LB1 probe is typically positioned directly downstream of the V_EGR valve. The Lambda LB2 probe is typically positioned in the gas recirculation loop. The V_EGR valve, controlled from the Lambda probes LB1 and LB2, allows optimal dosing of the recirculation of exhaust gases, as well as hydrogen (H2), oxygen (02) and methane (CH4) provided by the DC CO2 conversion device, to the AIR air intake loop of the MT heat engine.
[0039] Comme visible aussi à la Figure 1 , le système de captage et de conversion du CO2 comprend également une machine à cycle organique MR et un panneau solaire photovoltaïque PS. [0039] As also visible in Figure 1, the CO2 capture and conversion system also includes an organic cycle machine MR and a photovoltaic solar panel PS.
[0040] La machine à cycle organique MR est une machine de Rankine comprenant un échangeur thermique EH, dit « chaud », un échangeur thermique EF, dit « froid », une pompe électrique PO et un turbo-alternateur TA. Les échangeurs thermiques EH, EF, la pompe PO et le turbo-alternateur TA sont intégrés dans un circuit de fluide caloporteur à changement de phase (liquide/gaz). Les changements de phase du fluide caloporteur sont générés par la différence de température existant entre les échangeurs thermiques EH, EF. Le fluide caloporteur est chauffé dans l’échangeur thermique EH traversé par les gaz d’échappement du moteur thermique MT. Le fluide caloporteur est refroidi dans l’échangeur thermique EF intégré dans un circuit EC de chauffage par eau chaude. Le travail généré dans la machine MR est converti en électricité par le turbo-alternateur TA, qui est entraîné en rotation par le couple mécanique exercé sur sa turbine par le fluide caloporteur en phase gazeuse. L’électricité produite contribue à la recharge du stockeur d’énergie électrique haute tension STK, via les moyens de conversion électrique et recharge CH. Les calories extraites de l’échangeur thermique EF chauffent l’eau du circuit de chauffage EC, contribuant ainsi au confort des personnes présentes dans le véhicule VTH. The organic cycle machine MR is a Rankine machine comprising a heat exchanger EH, called “hot”, a heat exchanger EF, called “cold”, an electric pump PO and a turbo-alternator TA. The heat exchangers EH, EF, the PO pump and the TA turbo-alternator are integrated into a phase change heat transfer fluid circuit (liquid/gas). The phase changes of the heat transfer fluid are generated by the temperature difference existing between the heat exchangers EH, EF. The heat transfer fluid is heated in the heat exchanger EH crossed by the exhaust gases of the heat engine MT. The heat transfer fluid is cooled in the EF heat exchanger integrated into an EC hot water heating circuit. The work generated in the MR machine is converted into electricity by the TA turbo-alternator, which is driven in rotation by the mechanical torque exerted on its turbine by the heat transfer fluid in the gas phase. The electricity produced contributes to recharging the high-voltage electrical energy store STK, via the means of electrical conversion and CH recharge. The calories extracted from the EF heat exchanger heat the water in the EC heating circuit, thus contributing to the comfort of the people present in the VTH vehicle.
[0041] Le panneau solaire photovoltaïque PS est typiquement agencé sur le toit du véhicule est produit une électricité qui contribue également à la recharge du stockeur d’énergie électrique haute tension STK, via les moyens de conversion électrique et recharge CH. [0041] The photovoltaic solar panel PS is typically arranged on the roof of the vehicle and produces electricity which also contributes to recharging the high voltage electrical energy store STK, via the means of electrical conversion and recharging CH.
[0042] La machine à cycle organique MR et le panneau solaire photovoltaïque PS contribuent à une meilleure recharge du stockeur d’énergie électrique haute tension STK, à partir de la chaleur fatale de gaz d’échappement et de l’énergie solaire renouvelable. Une prise de charge électrique PG est également prévue dans le véhicule VTH pour compléter la recharge du stockeur d’énergie électrique haute tension STK, de préférence à partir d’une borne de recharge électrique procurant une énergie électrique renouvelable. [0042] The organic cycle machine MR and the photovoltaic solar panel PS contribute to better recharging of the high voltage electrical energy store STK, from waste heat from exhaust gases and renewable solar energy. A PG electrical charging socket is also provided in the VTH vehicle to complete the recharging of the high voltage electrical energy store STK, preferably from an electrical charging station providing renewable electrical energy.
[0043] Le réservoir de stockage de CO2, RC, est un réservoir amovible qui, une fois plein, doit être retiré du véhicule VTH et remplacé par un réservoir vide. Dans certaines formes de réalisation, le réservoir de stockage de carburant de synthèse sera également un réservoir amovible remplaçable par un réservoir vide. Avantageusement, le réservoir RC est d’un type standard interchangeable. Lorsqu’il est plein, le réservoir RC a un poids compatible avec une manutention directement par l’utilisateur pour leur remplacement. The CO2 storage tank, RC, is a removable tank which, once full, must be removed from the VTH vehicle and replaced by an empty tank. In certain embodiments, the synthetic fuel storage tank will also be a removable tank replaceable by an empty tank. Advantageously, the RC tank is of a standard interchangeable type. When full, the RC tank has a weight compatible with handling directly by the user for replacement.
[0044] Comme représenté schématiquement à la Figure 1 , le système SCC selon l’invention comprend une station SCR de collecte et de remplacement des réservoirs RC pleins. La station SCR comprend des moyens d’entreposage, de gestion et de suivi des réservoirs de stockage et des moyens de gestion de comptes utilisateurs associés auxdits véhicules. As shown schematically in Figure 1, the SCC system according to the invention comprises an SCR station for collecting and replacing full RC tanks. The SCR station includes means for storing, managing and monitoring storage tanks and means for managing user accounts associated with said vehicles.
[0045] Ainsi, dans cet exemple de réalisation, la station SCR est présente sur le site d’une station-service SRC de ravitaillement en carburant et de recharge de véhicule électrique. La station SCR se présente sous la forme d’un double rack automatisé DRA, d’entreposage libre-service, qui est piloté par une borne locale de commande et de gestion informatisée BGI comprenant un module logiciel de gestion MOD avec lequel l’utilisateur peut interagir, par exemple via une application logicielle dédiée sur son téléphone intelligent (smartphone) ou via des moyens d’interface homme-machine (écran, clavier et autres) de la borne. [0045] Thus, in this exemplary embodiment, the SCR station is present on the site of an SRC service station for refueling and recharging an electric vehicle. The SCR station is in the form of a double automated DRA rack, self-service storage, which is controlled by a local BGI computerized control and management terminal including a MOD management software module with which the user can interact, for example via a dedicated software application on their smartphone or via human-machine interface means (screen, keyboard and others) of the terminal.
[0046] Les véhicules VTH arrivant à la station SCR sont identifiés automatiquement, par exemple, à partir d’une image de plaque d’immatriculation prise par une caméra CM. Une fois identifié le véhicule VTH, le calculateur de la borne BGI interagit avec un serveur informatique distant SID hébergeant des bases de données DBs des utili- sateurs/véhicules enregistrés et de gestion et traçabilité des réservoirs. Les réservoirs sont identifiés individuellement, par exemple par un QR code unique. Le QR code est scanné pour la traçabilité lors de la dépose d’un réservoir plein et lors du retrait d’un réservoir vide. La validation d’un utilisateur/véhicule par consultation du serveur informatique distant SID par la borne BGI conduit à un déverrouillage séquentiel pour l’utilisateur de deux sections SRP et SRV du double rack automatisé DRA. La section SRP sert à la dépose d’un réservoir RC plein et est déverrouillée en premier lieu. Ensuite, une fois déposé le réservoir plein, la section SRV contenant des réservoirs de remplacement RC vides est déverrouillée et l’utilisateur peut ainsi retirer un réservoir RC vide et l’installer dans son véhicule VTH. [0046] VTH vehicles arriving at the SCR station are identified automatically, for example, from a license plate image taken by a CM camera. Once the VTH vehicle has been identified, the BGI terminal calculator interacts with a remote IT server SID hosting DBs databases of registered users/vehicles and tank management and traceability. The tanks are identified individually, for example by a unique QR code. The QR code is scanned for traceability when removing a full tank and when removing an empty tank. Validation of a user/vehicle by consulting the remote computer server SID by the BGI terminal leads to sequential unlocking for the user of two sections SRP and SRV of the double automated DRA rack. The SRP section is for removing a full RC tank and is unlocked first. Then, once the full tank has been removed, the SRV section containing empty RC replacement tanks is unlocked and the user can remove an empty RC tank and install it in their HTV vehicle.
[0047] Les utilisateurs sont récompensés pour leur comportement éco-responsable. Chaque dépôt d’un réservoir plein par un utilisateur valide un crédit sur un compte utilisateur de celui-ci, par exemple, pour une réduction sur un achat de carburant ou sur le prix d’une recharge électrique de son véhicule. [0047] Users are rewarded for their eco-responsible behavior. Each deposit of a full tank by a user validates a credit on their user account, for example, for a reduction on a fuel purchase or on the price of electrically recharging your vehicle.
[0048] Le niveau de remplissage du réservoir déposé par un utilisateur pourra être contrôlé et garanti par différents moyens. Ainsi, le retrait du réservoir du véhicule pourra n’être autorisé que lorsque le détecteur de remplissage (DH) du véhicule indique un état plein du réservoir. De plus, le réservoir déposé dans la section de dépose SRP pourra aussi être pesé sur une balance du double rack automatisé avant d’être accepté. [0048] The filling level of the tank deposited by a user can be controlled and guaranteed by different means. Thus, removal of the tank from the vehicle may only be authorized when the filling detector (DH) of the vehicle indicates that the tank is full. In addition, the tank deposited in the SRP deposit section can also be weighed on a scale in the automated double rack before being accepted.
[0049] Le CO2 provenant des réservoirs peut être traité par différentes filières FT représentées schématiquement à la Figure 1 . La valorisation en carburant de synthèse du CO2 provenant des réservoirs peut être faite à grande échelle par des usines de production de carburants synthétiques. Le CO2 peut aussi être utilisés dans l’aquaculture, par exemple, pour la croissance d’algues comestibles ou de microalgues entrant dans la composition de produits à forte valeur ajoutée. Le CO2, réduit en poudre de carbone, peut également être séquestré dans le sol par enfouissement. Outre les exemples ci-dessus, plusieurs autres filières de d’utilisation du CO2, avec ou sans transformation, sont connues comme le gaz carbonique pour les boissons gazéifiées, la neige carboniques, les liquides réfrigérants, l’urée dans l’industrie des engrais, les polycarbonates et autres. [0049] The CO2 coming from the reservoirs can be treated by different FT channels represented schematically in Figure 1. The conversion of CO2 from reservoirs into synthetic fuel can be done on a large scale by synthetic fuel production plants. CO2 can also be used in aquaculture, for example, for the growth of edible algae or microalgae used in the composition of high value-added products. CO2, reduced to carbon powder, can also be sequestered in the ground by burial. In addition to the examples above, several other sectors of CO2 use, with or without transformation, are known such as carbon dioxide for carbonated drinks, dry ice, refrigerating liquids, urea in the fertilizer industry , polycarbonates and others.
[0050] L’invention ne se limite pas à la forme de réalisation particulière qui a été décrite ici à titre d’exemple. L’homme du métier, selon les applications de l’invention, pourra apporter différentes modifications et variantes entrant dans le champ de protection de l’invention. The invention is not limited to the particular embodiment which has been described here by way of example. A person skilled in the art, depending on the applications of the invention, may make different modifications and variants falling within the scope of protection of the invention.

Claims

REVENDICATIONS
[Revendication 1] Véhicule (VTH) équipé d’un moteur thermique (MT) et d’un système embarqué de captage et de conversion du dioxyde de carbone (CO2) émis dans les gaz d’échappement dudit moteur (MT), caractérisé en ce que ledit système embarqué comprend au moins un réservoir de stockage de CO2 (RC), compact et amovible, dans lequel le CO2 capté est stocké sous la forme de fluide supercritique, et en ce que le ledit système embarqué comprend également une pile à combustible réversible (PCR) et un réacteur électro-catalytique (REC) qui coopèrent pour produire un carburant de synthèse à partir du CO2 capté, ledit carburant de synthèse étant fourni audit moteur thermique (MT) pour alimenter la combustion. [Claim 1] Vehicle (VTH) equipped with a thermal engine (MT) and an on-board system for capturing and converting carbon dioxide (CO2) emitted in the exhaust gases of said engine (MT), characterized in that said on-board system comprises at least one CO2 storage tank (RC), compact and removable, in which the captured CO2 is stored in the form of supercritical fluid, and in that said on-board system also comprises a fuel cell reversible (PCR) and an electro-catalytic reactor (REC) which cooperate to produce a synthetic fuel from the captured CO2, said synthetic fuel being supplied to said thermal engine (MT) to power the combustion.
[Revendication 2] Véhicule selon la revendication 1 , caractérisé en ce que ledit système embarqué comprend également un dispositif (CE) de captage de l’eau présente dans les gaz d’échappement dudit moteur thermique (MT), l’eau capté alimentant ladite pile à combustible réversible (PCR) pour une production d’hydrogène et d’oxygène dans un mode de fonctionnement en électrolyseur de celle-ci (PCR), et l’hydrogène et l’oxygène produits étant fournis audit réacteur électro-catalytique (REC), conjointement au CO2 capté, pour la production dudit carburant de synthèse. [Claim 2] Vehicle according to claim 1, characterized in that said on-board system also comprises a device (CE) for capturing the water present in the exhaust gases of said thermal engine (MT), the captured water supplying said reversible fuel cell (PCR) for producing hydrogen and oxygen in an electrolyzer mode of operation thereof (PCR), and the hydrogen and oxygen produced being supplied to said electro-catalytic reactor (REC ), together with the captured CO2, for the production of said synthetic fuel.
[Revendication 3] Véhicule selon la revendication 2, caractérisé en ce que des quantités excédentaires de l’hydrogène et l’oxygène produits sont fournies audit moteur thermique (MT) pour alimenter la combustion, via une vanne dite « EGR » (V_EGR) de celui-ci. [Claim 3] Vehicle according to claim 2, characterized in that excess quantities of hydrogen and oxygen produced are supplied to said heat engine (MT) to power combustion, via a so-called “EGR” valve (V_EGR) of this one.
[Revendication 4] Véhicule selon la revendication 2 ou 3, caractérisé en ce qu’une quantité excédentaire de l’hydrogène produit est réinjectée dans ladite pile à combustible réversible (PCR) pour une régénération d’électrodes de celle-ci. [Claim 4] Vehicle according to claim 2 or 3, characterized in that an excess quantity of the hydrogen produced is reinjected into said reversible fuel cell (PCR) for regeneration of the electrodes thereof.
[Revendication 5] Véhicule selon la revendication 2 ou 3, caractérisé en ce qu’une quantité excédentaire de l’hydrogène produit est fournie à ladite pile à combustible réversible (PCR) pour une production d’électricité dans un mode de fonctionnement de pile à combustible à hydrogène de celle-ci (PCR). [Claim 5] Vehicle according to claim 2 or 3, characterized in that an excess quantity of the hydrogen produced is supplied to said reversible fuel cell (PCR) for electricity production in a fuel cell operating mode. hydrogen fuel thereof (PCR).
[Revendication 6] Véhicule selon l’une quelconque des revendications 2 à 5, caractérisé en ce que ledit réacteur électro-catalytique (REC) est un réacteur de Sabatier produisant du gaz méthane, en tant que ledit carburant de synthèse, à partir du CO2 capté, et d’hydrogène et d’oxygène produits par ladite pile à combustible réversible (PCR). [Claim 6] Vehicle according to any one of claims 2 to 5, characterized in that said electro-catalytic reactor (REC) is a Sabatier reactor producing methane gas, as said synthetic fuel, from CO2 captured, and hydrogen and oxygen produced by said reversible fuel cell (PCR).
[Revendication 7] Véhicule selon la revendication 6, caractérisé en ce que ledit gaz méthane est fourni audit moteur thermique (MT) pour alimenter la combustion, via une vanne dite « EGR » (V_EGR) de celui-ci. [Claim 7] Vehicle according to claim 6, characterized in that said methane gas is supplied to said heat engine (MT) to power combustion, via a so-called “EGR” valve (V_EGR) thereof.
[Revendication 8] Véhicule selon l’une quelconque des revendications 1 à 7, caractérisé en ce que ledit système embarqué comprend également un autre réservoir de stockage (RF) dédié à un stockage dudit carburant de synthèse. [Claim 8] Vehicle according to any one of claims 1 to 7, characterized in that said on-board system also comprises another storage tank (RF) dedicated to storage of said synthetic fuel.
[Revendication 9] Véhicule selon l’une quelconque des revendications 1 à 8, caractérisé en ce que ledit système embarqué comprend également une machine à cycle organique (MR), dite « machine de Rankine », et un panneau solaire photovoltaïque (PS), ladite machine à cycle organique (MR) produisant en cogénération de l’électricité et de l’eau chaude à partir de la chaleur fatale des gaz d’échappement et ledit panneau solaire photovoltaïque (PS) produisant de l’électricité renouvelable, l’électricité produite étant utilisée pour charger un stockeur d’énergie électrique (STK) du véhicule (VTH) et l’eau chaude produite étant utilisée pour le chauffage (EC) du véhicule (VTH). [Claim 9] Vehicle according to any one of claims 1 to 8, characterized in that said on-board system also comprises an organic cycle machine (MR), called a “Rankine machine”, and a photovoltaic solar panel (PS), said organic cycle machine (MR) producing electricity and hot water in cogeneration from the waste heat of exhaust gases and said photovoltaic solar panel (PS) producing renewable electricity, electricity produced being used to charge an electrical energy store (STK) of the vehicle (VTH) and the hot water produced being used for heating (EC) of the vehicle (VTH).
[Revendication 10] Système (SCC) de captage et collecte de dioxyde de carbone (CO2) dans un parc automobile roulant, caractérisé en ce qu’il comprend une pluralité de véhicules (VTH) selon l’une quelconque des revendications 1 à 9 et une station de collecte (SCR) comprenant des moyens (DRA, BGI, SDI, DBs) d’entreposage, de gestion et de suivi des réservoirs de stockage de CO2 (RC) desdits véhicules (VTH) et des moyens (BGI, SDI, DBs) de gestion de comptes utilisateurs associés auxdits véhicules (VTH). [Claim 10] System (SCC) for capturing and collecting carbon dioxide (CO2) in a rolling automobile fleet, characterized in that it comprises a plurality of vehicles (VTH) according to any one of claims 1 to 9 and a collection station (SCR) comprising means (DRA, BGI, SDI, DBs) for storage, management and monitoring of the CO2 storage tanks (RC) of said vehicles (VTH) and means (BGI, SDI, DBs) for managing user accounts associated with said vehicles (VTH).
PCT/FR2023/051545 2022-11-10 2023-10-05 Heat-engine vehicle equipped with an on-board co2 capture and conversion system WO2024100331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2211716 2022-11-10
FR2211716A FR3141967A1 (en) 2022-11-10 2022-11-10 THERMAL VEHICLE EQUIPPED WITH AN ON-BOARD CO2 CAPTURE AND CONVERSION SYSTEM

Publications (1)

Publication Number Publication Date
WO2024100331A1 true WO2024100331A1 (en) 2024-05-16

Family

ID=85122236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051545 WO2024100331A1 (en) 2022-11-10 2023-10-05 Heat-engine vehicle equipped with an on-board co2 capture and conversion system

Country Status (2)

Country Link
FR (1) FR3141967A1 (en)
WO (1) WO2024100331A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2211716A1 (en) 1972-12-27 1974-07-19 Commissariat Energie Atomique Composite heat transport medium - using a solid e.g. graphite dispersed in a gas e.g. helium for high temperature heat transmission e.g. from nuclear reactors
JP2010235736A (en) 2009-03-31 2010-10-21 Toyota Motor Corp System for producing synthetic fuel
EP2472077A1 (en) 2010-12-29 2012-07-04 Delphi Technologies, Inc. Vehicle system to separate and store carbon dioxide from engine exhaust
US20170306825A1 (en) 2014-11-13 2017-10-26 Hitachi, Ltd. Co2 recovery device of internal combustion engine
EP2994626B1 (en) * 2013-04-25 2018-01-10 Christian Mair Modular storage system for fuel and carbon dioxide and corresponding storage method
US11022078B1 (en) * 2020-12-29 2021-06-01 Michael Moses Schechter Methods for operating and controlling an internal combustion engine that exhausts no gas into outside atmosphere
CA3160239A1 (en) * 2022-05-25 2022-08-15 Benjamin Fultz Exhaust system carbon capture/scrubbing device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2211716A1 (en) 1972-12-27 1974-07-19 Commissariat Energie Atomique Composite heat transport medium - using a solid e.g. graphite dispersed in a gas e.g. helium for high temperature heat transmission e.g. from nuclear reactors
JP2010235736A (en) 2009-03-31 2010-10-21 Toyota Motor Corp System for producing synthetic fuel
EP2472077A1 (en) 2010-12-29 2012-07-04 Delphi Technologies, Inc. Vehicle system to separate and store carbon dioxide from engine exhaust
EP2472077B1 (en) * 2010-12-29 2015-04-01 Delphi Technologies, Inc. Vehicle system to separate and store carbon dioxide from engine exhaust
EP2994626B1 (en) * 2013-04-25 2018-01-10 Christian Mair Modular storage system for fuel and carbon dioxide and corresponding storage method
US20170306825A1 (en) 2014-11-13 2017-10-26 Hitachi, Ltd. Co2 recovery device of internal combustion engine
US11022078B1 (en) * 2020-12-29 2021-06-01 Michael Moses Schechter Methods for operating and controlling an internal combustion engine that exhausts no gas into outside atmosphere
CA3160239A1 (en) * 2022-05-25 2022-08-15 Benjamin Fultz Exhaust system carbon capture/scrubbing device therefor

Also Published As

Publication number Publication date
FR3141967A1 (en) 2024-05-17

Similar Documents

Publication Publication Date Title
Hasan et al. Development of an integrated wind and PV system for ammonia and power production for a sustainable community
Erixno et al. Energy management of renewable energy-based combined heat and power systems: A review
Sandaka et al. Alternative vehicular fuels for environmental decarbonization: A critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel
US7191736B2 (en) Low emission energy source
US9511663B2 (en) Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US20080248353A1 (en) Energy conversion device including a solid oxide fuel cell fueled by ammonia
Zappini et al. Performance analysis of energy recovery in an Italian municipal solid waste landfill
US20230187964A1 (en) Dispatchable Flexible Electricity Generation For Reliable Decarbonized Grids Using Multiplexed Low-Cost Engines
Di Marcoberardino et al. Optimization of a micro-CHP system based on polymer electrolyte membrane fuel cell and membrane reactor from economic and life cycle assessment point of view
JP2004099359A (en) Energy supply system using hydrogen energy and various systems as its applied patterns
Seyam et al. An innovative study on a hybridized ship powering system with fuel cells using hydrogen and clean fuel blends
Abu et al. Recent progress in electrolyser control technologies for hydrogen energy production: A patent landscape analysis and technology updates
WO2024100331A1 (en) Heat-engine vehicle equipped with an on-board co2 capture and conversion system
Zhang et al. Evaluation of carbon dioxide emission reduction in an energy cycle based on biomass gasification and molten carbonate fuel cell: exergoeconomic and environmental analyses
WO2024089321A1 (en) System for capturing and collecting the co2 in a number of motor vehicles
Ehlig-Economides et al. Energy Analysis of Low Carbon Hydrogen from Methane and End Use Implications
CN110073157B (en) System and method for sustainable energy production
Basu Optimum dynamic dispatch of clean water, methane, electricity and heat considering carbon capture
Singh et al. Study of Compressed Air as an alternative to fossil fuel for Automobile Engines
Czyrnek‐Delêtre et al. Is small‐scale upgrading of landfill gas to biomethane for use as a cellulosic transport biofuel economically viable?
Martínez et al. Life cycle greenhouse emissions of compressed natural gas–hydrogen mixtures for transportation in Argentina
Hidy et al. Energy supplies and future engines for land, sea, and air
EP2288574B1 (en) System for the autonomous generation of hydrogen for an on-board system
Forsberg Hydrogen, electricity, and nuclear power
Azarabadi Techno-Economic Analysis of Capturing Carbon Dioxide from the Air: Positioning the Technology in the Energy Infrastructure of the Future

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794443

Country of ref document: EP

Kind code of ref document: A1