WO2024099644A1 - Article moulé comprenant un homopolymère de propylène - Google Patents

Article moulé comprenant un homopolymère de propylène Download PDF

Info

Publication number
WO2024099644A1
WO2024099644A1 PCT/EP2023/077566 EP2023077566W WO2024099644A1 WO 2024099644 A1 WO2024099644 A1 WO 2024099644A1 EP 2023077566 W EP2023077566 W EP 2023077566W WO 2024099644 A1 WO2024099644 A1 WO 2024099644A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded article
propylene homopolymer
iso
measured
anyone
Prior art date
Application number
PCT/EP2023/077566
Other languages
English (en)
Inventor
Marco BOCCHINO
Claudio Cavalieri
Antonio RIEMMA
Alberta DE CAPUA
Eleonora Ciaccia
Davide TARTARI
Cristina COVA
Alessia DI CAPUA
Marco Ciarafoni
Giampaolo Pellegatti
Original Assignee
Basell Poliolefine Italia S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Poliolefine Italia S.R.L. filed Critical Basell Poliolefine Italia S.R.L.
Publication of WO2024099644A1 publication Critical patent/WO2024099644A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present disclosure relates to molded articles preferably compression molded articles comprising a polypropylene homopolymer having high molecular weight and high abrasion resistant.
  • Propylene homopolymer is widely used in the processing fields of molding such as injection molding or compression molding.
  • Abrasion resistance is an important characteristics of articles made from polymeric materials
  • Scratch and/or mar resistance are important characteristics of articles made from polymeric materials, in particular for polypropylene, for many applications.
  • Scratch and/or mar resistance are important characteristics of articles made from polymeric materials, in particular for polypropylene, for many applications.
  • automotive industry wherein there is the need of durable plastic products as exterior and interior parts especially if they are part of moving parts such as gears.
  • the present disclosure is directed to a molded article comprising a propylene homopolymer optionally containing up to 1.0 wt% of ethylene derived units characterized in that:
  • the fraction soluble in xylene at 25°C , measured according to ISO 16 152 - 2005 is comprised between 2.0 wt% and 6.0wt%;
  • the present disclosure is directed to a molded article comprising a propylene homopolymer optionally containing up to 1.0 wt% of ethylene, preferably up to 0.6 wt% of ethylene derived units characterized in that:
  • melting points are present in the DSC thermogram measured according to ISO 11357-3, with heating and cooling rate of 20°C/min; preferably the lower melting point ranges from 135°C to 150°C;
  • the higher melting point measured according to ISO 11357-3, with heating and cooling rate of 20°C/min, ranges from 155°C to 170°C; preferably from 157°C to 168°C;
  • the fraction soluble in xylene at 25°C C measured according to ISO 16 152 - 2005 is comprised between 2.0 wt% and 6.0 wt%; preferably comprised between 2.5 wt% and 5.0 wt%; more preferably comprised between 2.8 wt% and 4.0 wt%;
  • the isotactic pentads, mmmm %, measured with C 13 NMR as reported in the examples section ranges from 90.0 mol% to 96.5 mol%, .preferably from 93.0 mol% to 96.0 mol%; more preferably from 93.5 mol% to 95.5 mol%;
  • the intrinsic viscosity (IV) measured in tetrahydronaphthalene at 135 °C ranges from 5.5dl/g to 12.0 dl/g; preferably from 7.0 dl/g to 11.0 dl/g; more preferably from 8.0 dl/g to 10.0 dl/g;
  • the melt strength measured according to ISO 16790-2005 at 250°C and applying an acceleration equal to 6 mm/s 2 , is higher than 0.070 N; preferably higher than 0.080 N; more preferably higher than 0.090 N.
  • the propylene homopolymer of the present disclosure is not nucleated.
  • the homopolymer of the present disclosure shows a value of melt strength lower than 0.29 N.
  • the homopolymer of the present disclosure shows a polydispersity index, PI, measured according to ISO 6721-10, comprised between 4.5 and 7.5; more preferably between 5.0 and 7.2; more preferably from 5.5 to 6.5.
  • PI polydispersity index
  • the homopolymer of the present disclosure shows a tensile modulus ranging from 2100 MPa to 1100 MPa; preferably from 1800MPa, to 1200 Mpa.
  • the homopolymer of the present disclosure shows a charpy impact test at 23°C ranging from 4.0 kJ/m2 to 11.0 kJ/m2; preferably from 5.5 kJ/m2 to 9.0 kJ/m2.
  • the polypropylene homopolymer of the present disclosure is characterized by having an high melt strength and an high molecular weight. For this reason the homopolymer of the present disclosure preferably shows a low value of abrasion resistance measured according to ISO 15527 : 2007.
  • the value of average abrasion index measured according to ISO 15527 : 2007, on compression molded plaque can be lower than 360 ; preferably lower than 355.
  • the low value of abrasion index renders the molded article of the present disclosure particularly fits for producing automotive articles especially articles subjected to movement.
  • the propylene homopolymers disclosed herein can be prepared by a process comprising polymerizing propylene optionally with ethylene, in the presence of Ziegler-Natta catalysts.
  • An essential component of said catalysts is a solid catalyst component comprising a titanium compound having at least one titanium-halogen bond, and an electron-donor compound, both supported on a magnesium halide in active form.
  • Another essential component co-catalyst is an organoaluminium compound, such as an aluminium alkyl compound.
  • An external donor is optionally added.
  • Catalysts having the above mentioned characteristics are well known in the patent literature; particularly advantageous are the catalysts described in US patent 4,399,054 and European patent 45977. Other examples can be found in US patent 4,472,524.
  • the solid catalyst components used in said catalysts comprise, as electron-donors (internal donors), compounds selected from the group consisting of ethers, ketones, lactones, compounds containing N, P and/or S atoms, and esters of mono- and dicarboxylic acids.
  • Particularly suitable electron-donor compounds are esters of succinic acid (succinates)
  • succinates succinates
  • radicals R1 and R2 equal to, or different from, each other are a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group, optionally containing heteroatoms; and the radicals R3 and R4 equal to, or different from, each other, are C1-C20 alkyl, C3-C20 cycloalkyl, C5-C20 aryl, arylalkyl or alkylaryl group with the proviso that at least one of them is a branched alkyl; said compounds being, with respect to the two asymmetric carbon atoms identified in the structure of formula (I), stereoisomers of the type (S,R) or (R,S)
  • R1 and R2 are preferably C1-C8 alkyl, cycloalkyl, aryl, arylalkyl and alkylaryl groups. Particularly preferred are the compounds in which R1 and R2 are selected from primary alkyls and in particular branched primary alkyls. Examples of suitable R1 and R2 groups are methyl, ethyl, n-propyl, n-butyl, isobutyl, neopentyl, 2-ethylhexyl. Particularly preferred are ethyl, isobutyl, and neopentyl.
  • R3 and/or R4 radicals are secondary alkyls like isopropyl, sec-butyl, 2-pentyl, 3 -pentyl or cy cl oaky Is like cyclohexyl, cyclopentyl, cyclohexylmethyl.
  • Examples of the above-mentioned compounds are the (S,R) (S,R) forms pure or in mixture, optionally in racemic form, of diethyl 2,3-bis(trimethylsilyl)succinate, diethyl 2,3-bis(2- ethylbutyl)succinate, diethyl 2,3 -dibenzylsuccinate, diethyl 2,3 -diisopropylsuccinate, diisobutyl
  • Particularly suitable electron-donor compounds are esters of phtalic acid and 1,3- diethers of formula:
  • RI and RII are the same or different and are C1-C18 alkyl, C3-C18 cycloalkyl or C7-C18 aryl radicals; RIII and RIV are the same or different and are C1-C4 alkyl radicals; or are the 1,3 -di ethers in which the carbon atom in position 2 belongs to a cyclic or polycyclic structure made up of 5, 6, or 7 carbon atoms, or of 5-n or 6-n' carbon atoms, and respectively n nitrogen atoms and n' heteroatoms selected from the group consisting of N, O, S and Si, where n is 1 or 2 and n' is 1, 2, or 3, said structure containing two or three unsaturations (cyclopolyenic structure), and optionally being condensed with other cyclic structures, or substituted with one or more substituents selected from the group consisting of linear or branched alkyl radicals; cycloalkyl, aryl, aralkyl
  • diethers are 2-methyl-2-isopropyl-l,3- dimethoxypropane, 2,2-diisobutyl-l,3-dimethoxypropane, 2-isopropyl-2-cyclopentyl-l,3- dimethoxypropane, 2-isopropyl-2-isoamyl-l,3-dimethoxypropane, 9,9-bis (methoxymethyl) fluorene.
  • Suitable electron-donor compounds are phthalic acid esters, such as diisobutyl, dioctyl, diphenyl and benzylbutyl phthalate.
  • a MgC12»nROH adduct (in particular in the form of spheroidal particles) wherein n is generally from 1 to 3 and ROH is ethanol, butanol or isobutanol, is reacted with an excess of TiC14 containing the electron-donor compound.
  • the reaction temperature is generally from 80 to 120° C.
  • the solid is then isolated and reacted once more with TiC14, in the presence or absence of the electron-donor compound, after which it is separated and washed with aliquots of a hydrocarbon until all chlorine ions have disappeared.
  • the titanium compound expressed as Ti
  • the quantity of electron-donor compound which remains fixed on the solid catalyst component generally is 5 to 20% by moles with respect to the magnesium dihalide.
  • the titanium compounds which can be used for the preparation of the solid catalyst component, are the halides and the halogen alcoholates of titanium. Titanium tetrachloride is the preferred compound.
  • the Al-alkyl compounds used as co-catalysts comprise the Al-trialkyls, such as Al- triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO4 or SO3 groups.
  • Al-trialkyls such as Al- triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO4 or SO3 groups.
  • the Al-alkyl compound is generally used in such a quantity that the Al/Ti ratio be from 1 to 1000.
  • the electron-donor compounds that can be used as external donors include aromatic acid esters such as alkyl benzoates, and in particular silicon compounds containing at least one Si-OR bond, where R is a hydrocarbon radical.
  • silicon compounds are (tert-butyl)2Si(OCH3)2, (cyclohexyl)(methyl)Si (OCH3)2, (cyclopentyl)2Si(OCH3)2 and (phenyl)2Si(OCH3)2 and (1,1,2- trimethy Ipropy 1) S i(O CH3 ) 3.
  • 1,3 -diethers having the formulae described above can also be used advantageously. If the internal donor is one of these diethers, the external donors can be omitted.
  • the component A) are preferably prepared by using catalysts containing a phthalate as internal donor and (cyclopentyl)2Si(OCH3)2 as outside donor, or the said 1,3-diethers as internal donors.
  • the polymerization is generally carried out at temperatures of from 20 to 120°C, preferably of from 40 to 80°C.
  • the operating pressure is generally between 0.5 and 5 MPa, preferably between 1 and 4 MPa. In bulk polymerization, the operating pressure is generally between 1 and 8 MPa, preferably between 1.5 and 5 MPa.
  • Hydrogen is typically used as a molecular weight regulator.
  • the polymerization can be in gas phase or in slurry or in solution. In one or more reactors. Preferably the polymerizaiotn is carried put in two slurry reactors operating in series.
  • the molded article of the present disclosure can be for example an injection molded article, a blow molded article or a compression molded article.
  • the molded article of the present disclosure is a compression molded article.
  • Xylene Solubles fraction has been measured according to ISO 16 152 - 2005; with solution volume of 250 ml, precipitation at 25°C for 20 minutes, 10 of which with the solution in agitation (magnetic stirrer), and drying at 70°.
  • the weighted sample was sealed into aluminium pans and heated to 200°C at 20°C/minute.
  • the sample was kept at 200°C for 2 minutes to allow a complete melting of all the crystallites, then cooled to 5°C at 20°C/minute.
  • the sample was heated for the second run time to 200°C at 20°C/min. In this second heating run, the peak temperature (Tp,m) was taken as the melting temperature.
  • the tacticity of Propylene sequences was calculated as mm content from the ratio of the PPP mmTpp (28.90-29.65 ppm) and the whole Tpp (29.80-28.37 ppm).
  • the sample is dissolved by tetrahydronaphthalene at 135 °C and then it is poured into the capillary viscometer.
  • the viscometer tube (Ubbelohde type) is surrounded by a cylindrical glass jacket; this setup allows temperature control with a circulating thermostated liquid.
  • the downward passage of the meniscus is timed by a photoelectric device.
  • the passage of the meniscus in front of the upper lamp starts the counter which has a quartz crystal oscillator.
  • the meniscus stops the counter as it passes the lower lamp and the efflux time is registered: this is converted into a value of intrinsic viscosity through Huggins' equation, provided that the flow time of the pure solvent is known at the same experimental conditions (same viscometer and same temperature).
  • One single polymer solution is used to determine IV]
  • the melt strength is measured according to ISO 16790-2005, by Haul-off Melt Strength Meter produced by Geottfert Maschinenstoff Pruefmaschinen, Germany. This system measures the extensional properties of polymer melts by drawing a vertical melt strand at a constant pull-off speed or with a linear or exponetially accelerating velocity.
  • the HAUL-OFF system measures the force needed to elongate the strand, and calculates elongation stress, draw ratio and apparent elongation rate and viscosity. Polymer is melt and plasticized through a capillary rheometer, then is extruded from a hole die with a 1 mm of diameter, 30 mm of length and 180° inlet angle. The test is performed at 250°C.
  • the distance from the capillary outlet to the center of the transducer pulley is 150 mm.
  • the monofilament is stretched at each temperature test applying an acceleration equal to 6 mm/s 2 and, passing through an angular transducer, its tension is measured.
  • the draw ratio (dimensionless value) and force (cN) values are recorded as the final result in addition to the entire curve.
  • the value of the melt strength is the maximum force value of the curve.
  • the solid catalyst used in the following examples was prepared according to the Example 10 of the International Patent Application WO 00/63261.
  • Triethylaluminium (TEAL) was used as co-catalyst and dicyclopentyldimethoxysilane as external donor, with the weight ratios indicated in Table 1.
  • the polymerization run is carried out in continuous mode in a series of two reactors equipped with devices to transfer the product from one reactor to the one immediately next to it.
  • the two reactors are liquid phase loop reactors.
  • Propylene is the main solvent, hydrogen is used as molecular weight regulator.
  • the gas phase is continuously analyzed via gaschromatography.
  • Comparative example 2 is PP H2150 is a nucleated propylene homopolymer sold by LyondellBasell. nm not measured
  • Abrasion test according to ISO 15527:2007, has been measure on compression molded plaque at 250°C, produced with polymers of example 1 and comparative example 2. The results are reported on table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

L'invention concerne un article moulé comprenant un homopolymère de propylène contenant éventuellement jusqu'à 1,0 % en poids d'unités dérivées de l'éthylène, caractérisé en ce que : deux points de fusion sont présents, le point de fusion supérieur est compris entre 155 °C et 170 °C; la fraction soluble dans le xylène à 25 °C est comprise entre 6,0 % en poids et 2,0 % en poids; les pentades isotactiques mmmm % sont compris entre 96,5 % en moles et 90,0 % en moles, la viscosité intrinsèque (IV) mesurée dans le tétrahydronaphtalène à 135 °C est comprise entre 5,5 et 12,0 dl/g, la résistance à l'état fondu est supérieure à 0,70 N.
PCT/EP2023/077566 2022-11-07 2023-10-05 Article moulé comprenant un homopolymère de propylène WO2024099644A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP22205915 2022-11-07
EP22205915.6 2022-11-07
EP23168225 2023-04-17
EP23168225.3 2023-04-17

Publications (1)

Publication Number Publication Date
WO2024099644A1 true WO2024099644A1 (fr) 2024-05-16

Family

ID=88241068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/077566 WO2024099644A1 (fr) 2022-11-07 2023-10-05 Article moulé comprenant un homopolymère de propylène

Country Status (1)

Country Link
WO (1) WO2024099644A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045977A2 (fr) 1980-08-13 1982-02-17 Montedison S.p.A. Composants et catalyseurs pour la polymérisation d'oléfines
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
US4472524A (en) 1982-02-12 1984-09-18 Montedison S.P.A. Components and catalysts for the polymerization of olefins
EP0361493A1 (fr) 1988-09-30 1990-04-04 Himont Incorporated Diéthers utilisables dans la préparation des catalyseurs Ziegler-Natta et leur préparation
EP0728769A1 (fr) 1995-02-21 1996-08-28 Montell North America Inc. Composants et catalyseurs pour la polymérisation d'oléfines
WO2000063261A1 (fr) 1999-04-15 2000-10-26 Basell Technology Company B.V. Constituants et catalyseurs de polymerisation d'olefines
US10023667B2 (en) * 2012-06-27 2018-07-17 Total Research & Technology Feluy Propylene homopolymer for high-tenacity fibers and nonwovens
EP2995641B1 (fr) * 2014-09-11 2019-12-25 Borealis AG Composition de polypropylène pour un film de condensateur
EP2984112B1 (fr) * 2013-04-09 2020-06-03 Borealis AG Processus de fabrication de polypropylène
WO2021167850A1 (fr) * 2020-02-17 2021-08-26 Exxonmobil Chemical Patents Inc. Compositions de polymère à base de propylène ayant une queue de masse moléculaire élevée

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
EP0045977A2 (fr) 1980-08-13 1982-02-17 Montedison S.p.A. Composants et catalyseurs pour la polymérisation d'oléfines
US4472524A (en) 1982-02-12 1984-09-18 Montedison S.P.A. Components and catalysts for the polymerization of olefins
EP0361493A1 (fr) 1988-09-30 1990-04-04 Himont Incorporated Diéthers utilisables dans la préparation des catalyseurs Ziegler-Natta et leur préparation
EP0728769A1 (fr) 1995-02-21 1996-08-28 Montell North America Inc. Composants et catalyseurs pour la polymérisation d'oléfines
WO2000063261A1 (fr) 1999-04-15 2000-10-26 Basell Technology Company B.V. Constituants et catalyseurs de polymerisation d'olefines
US10023667B2 (en) * 2012-06-27 2018-07-17 Total Research & Technology Feluy Propylene homopolymer for high-tenacity fibers and nonwovens
EP2984112B1 (fr) * 2013-04-09 2020-06-03 Borealis AG Processus de fabrication de polypropylène
EP2995641B1 (fr) * 2014-09-11 2019-12-25 Borealis AG Composition de polypropylène pour un film de condensateur
WO2021167850A1 (fr) * 2020-02-17 2021-08-26 Exxonmobil Chemical Patents Inc. Compositions de polymère à base de propylène ayant une queue de masse moléculaire élevée

Similar Documents

Publication Publication Date Title
US6800710B2 (en) Polyolefin sheets for thermoforming
EP3523370A1 (fr) Composition à base de propylène pour canalisations
KR102134550B1 (ko) 프로필렌계 중합체 조성물
US10323141B2 (en) Propylene polymer compositions
EP2764048A1 (fr) Compositions de polymère du propylène
US11174379B2 (en) Compositions obtained from recycled polyolefins
WO2012098086A1 (fr) Composition de polyoléfine
WO2024099644A1 (fr) Article moulé comprenant un homopolymère de propylène
WO2024099643A1 (fr) Article moulé comprenant une composition d'homopolymère de propylène
WO2024099628A1 (fr) Homopolymère de propylène
WO2024099626A1 (fr) Homopolymère de propylène
EP2825593B1 (fr) Compositions de polymère en propylène
WO2023198643A1 (fr) Composition de copolymère à base de propylène
WO2023237341A1 (fr) Composition de copolymère à base de propylène
WO2023198642A1 (fr) Composition de copolymères à base de propylène
WO2023237374A1 (fr) Composition de copolymère à base de propylène
CN116209686B (zh) 聚丙烯组合物
EP4323448A1 (fr) Compositions de polypropylène
WO2023057054A1 (fr) Composition de polypropylène
WO2023025622A1 (fr) Copolymère de propylène-éthylène
WO2023052083A1 (fr) Compositions de polypropylène souples
EP4339240A1 (fr) Compositions de polyoléfines obtenues à partir de polyoléfines recyclées
US20230265273A1 (en) Polyolefin composition for roofing applications
WO2013010927A1 (fr) Lanière de polyoléfine contenant un copolymère aléatoire de propylène avec 1-hexène
CZ20002844A3 (cs) Polyolefinový materiál