WO2024099421A1 - Precise and controlled injection for intercostal nerve block - Google Patents

Precise and controlled injection for intercostal nerve block Download PDF

Info

Publication number
WO2024099421A1
WO2024099421A1 PCT/CN2023/130902 CN2023130902W WO2024099421A1 WO 2024099421 A1 WO2024099421 A1 WO 2024099421A1 CN 2023130902 W CN2023130902 W CN 2023130902W WO 2024099421 A1 WO2024099421 A1 WO 2024099421A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
distal end
syringe barrel
floating seal
distal
Prior art date
Application number
PCT/CN2023/130902
Other languages
French (fr)
Inventor
Chan Zhao
Chuan Li
Yueguang SUN
Chaoran XIA
Original Assignee
Beijing Sightnovo Medical Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sightnovo Medical Technology Co., Ltd filed Critical Beijing Sightnovo Medical Technology Co., Ltd
Publication of WO2024099421A1 publication Critical patent/WO2024099421A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes

Definitions

  • This invention is in the technical field of medical devices for anesthesia, and in particular relates to a drug delivery and injection device for intercostal nerve block under a thoracoscope.
  • Intercostal nerve block is used for pain management in a variety of acute and chronic pain conditions affecting the thorax and upper abdomen, including breast and chest wall surgery.
  • ICNs intercostal nerves
  • the thoracoscopic-assisted ICNB is usually performed by injecting a needle very close to the ICN to ensure its blocking effect, while the flexible needle is clamped by a holding forceps.
  • the punctuation depth of the needle needs to be manually controlled, and a medical personnel has to rely on his or her experience to determine if the needle has entered the target site in the extrapleural space (EPS) (e.g. an intercostal sulcus) . If the injection needle is not accurately positioned, this procedure may result in a weaken or no effect in blocking ICNs, and/or even cause unnecessary injuries to ICNs or the surrounding important organs and large blood vessels in the thoracic cavity, e.g.
  • EPS extrapleural space
  • the present disclosure in some aspects provides methods of precisely injecting medication (s) into EPS to achieve ICNB using a kind of medical puncturing/injection/syringe devices, assemblies or systems.
  • the puncturing/injection/syringe devices, assemblies or systems of the present disclosure are especially useful for achieving precise control of puncturing depth and needle placement, as well as steady and multiple injections of defined volumes.
  • the present invention provides a method of providing an ICNB through a pressure-sensitive injection system which can achieve precise positioning of a target tissue void, cavity, or space and its needle tip is hidden until it reaches the target site.
  • the puncturing/injection/syringe device, assembly or system of the present disclosure also allows a user to externally monitor placement of the needle tip so that it can precisely reach the target site (e.g. EPS or intercostal sulcus) without overshooting or damaging the surrounding tissues e.g., blood vessels and/or nerves.
  • the puncturing/injection/syringe device, assembly or system of the present disclosure has an integrated structure with a controllable pressure-sensing injector, which can automatically dose and administer medication (s) .
  • the puncturing/injection/syringe device, assembly or system of the present disclosure has a flexible head which allows accurate positioning as well as easy and close contact with the thoracic membrane (e.g. parietal pleural) .
  • the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; and wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the syringe barrel; and wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob.
  • the pressing element is cylindrical.
  • said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site.
  • the step of 2a) is after the step of 1) and prior to the step of 2) .
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 5) retracting the needle from the first target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a’) -2) -3’) -4) -5’) ,
  • step of 2a’ comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
  • step of 3’ comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject
  • step of 5’ comprises retracting the needle from the second target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
  • step of 2a comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
  • step of 3 comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the third target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
  • step of 2a”’ comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
  • step of 3 comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the next target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the energy storage member comprises a spring and/or an elastic sheath.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the elastic element comprises a spring and/or an elastic sheath.
  • the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
  • the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the extrapleural space.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is proximal to the floating seal, wherein the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein the end opening of the needle contacts tissue (s) in the intercostal space of the subject, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the body opening of the needle is in the lumen comprising the flowable composition, wherein the end opening of the needle is in the extrapleural space of the subject, and wherein the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the extrapleural space through the body opening of the needle, the needle body passageway, and the end opening of the needle.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, thereby allowing the floating seal to succumb to the opposing force and move distally without further advancing the needle to discharge the flowable composition into the extrapleural space through the end opening of the needle.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein further comprises a step of 2a) positioning the distal end of the syringe barrel toward a target site in the intercostal space after the step of 1) and prior to the step of 2) , wherein the contacting member directly contacts a surface tissue at the target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said method is performed under a thoracoscope.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the subject suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives.
  • the one or more anesthetics are selected from the group consisting of ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, and mixtures thereof.
  • the additive is epinephrine.
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
  • the present disclosure provides the injection system as disclosed herein further comprising a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the present disclosure provides the injection system as disclosed herein further comprising a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the injection system as disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • the present disclosure provides the injection system as disclosed herein, wherein the energy storage member comprises a spring and/or an elastic sheath.
  • the present disclosure provides the injection system as disclosed herein, wherein the elastic element member comprises a spring and/or an elastic sheath.
  • the present disclosure provides the injection system as disclosed herein, wherein the needle is a hollow puncture needle.
  • the present disclosure provides the injection system as disclosed herein, wherein the contacting member is a soft cushion.
  • the present disclosure provides the injection system as disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob.
  • the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • the pressing element is cylindrical.
  • the present disclosure provides the injection system as disclosed herein, wherein the lumen formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
  • a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
  • an actuation unit comprising an actuation member, a spring and a floating seal
  • the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
  • a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle;
  • the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
  • a syringe handle positioned at the proximal end of the syringe barrel
  • the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
  • a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
  • an actuation unit comprising an actuation member, a spring and a floating seal
  • the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
  • a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel;
  • the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
  • a syringe handle positioned at the proximal end of the syringe barrel
  • the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • FIGS. 1A-1E show schematic diagrams of the different stages of operating an exemplary medical puncturing device, for example, during the punctuation and injection into an extrapleural space or intercostal space 14.
  • FIG. 1F show steps of operating an exemplary medical puncturing device without a contacting member (e.g., 1b shown in FIGS. 1A-1E) , where a distal seal (e.g., 8 shown in FIGS. 1A-1E) may directly contact a tissue.
  • a contacting member e.g., 1b shown in FIGS. 1A-1E
  • a distal seal e.g., 8 shown in FIGS. 1A-1E
  • FIGS. 2A-2F show schematic diagrams of the different stages of operating an exemplary medical puncturing device, for example, during the punctuation and injection into an extrapleural space or intercostal space 14.
  • FIG. 2F shows steps of operating an exemplary medical puncturing device without a contacting member (e.g., 1b shown in FIGS. 2A-2E) , where a distal seal (e.g., 8 shown in FIGS. 2A-2E) may directly contact a tissue.
  • FIG. 2G shows steps of operating an exemplary medical puncturing device comprising an additional pressing element 2’ engaging floating seal 3 via another spring 4’ , whereas a pressing element 2 engages floating seal 3 via spring 4.
  • FIGS. 3A-3F are partial structure diagrams of exemplary medical puncturing devices comprising floating seal 3 and one or more needle body openings (6b or 6b1, 6b2, and/or 6b3) and needle distal opening 6a.
  • FIGS. 4A-4C are partial structure diagrams of exemplary medical puncturing devices comprising floating seal 3 and needle body opening 6b.
  • FIGS. 5A-5F are partial structure diagrams of exemplary medical puncturing devices comprising floating seals 3a and 3b and one or more needle body openings (6b or 6b1 and/or 6b2) .
  • FIG. 6 shows a partial structure diagram of an exemplary medical puncturing device comprising a through angled guiding groove 3a’ and one-way valve 9.
  • FIG. 7 shows a partial structure diagram of an exemplary medical puncturing device comprising a through angled guiding groove 3a’ and one-way valve 9.
  • FIG. 8 shows a partial structure diagram of an exemplary medical puncturing device comprising a non-through angled guiding groove 3a’.
  • FIG. 9 shows a partial structure diagram of an exemplary medical puncturing device comprising an angled guiding needle hole 6c and one-way valve 9.
  • FIG. 10 shows a partial structure diagram of an exemplary medical puncturing device comprising an angled guiding needle hole 6c and needle hole plug 10.
  • FIGS. 11A-11B show schematic diagrams of implanting catheter 11 into an extrapleural space or intercostal space 14 using an exemplary medical apparatus assembly comprising a central guiding groove 2c.
  • FIG. 11A shows a contacting member 1b that contacts a tissue
  • FIG. 11B shows a distal seal 8 that contacts a tissue without an intervening contacting member.
  • references numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIGS. 1A-1E through FIGS. 11A-11B, and should not be considered limiting: 1 -syringe barrel; 1a -axial stopper; 1b -circular contacting element; 2b –push shaft; 2c -central guiding groove; 3 -floating seal; 4 -elastic sheath; 5 -spring; 6 -hollow puncture needle; 6a -needle distal opening; 6b -needle body opening; 6c -angled guiding needle hole; 7 -flowable composition lumen; 8 -distal seal; 9 -one-way valve; 10 -needle hole plug; 11 -catheter; 12 -auxiliary guiding needle; 13 -dense tissue (e.g., parietal pleural or muscles) ; 14 -extrapleural space or intercostal space.
  • 1 -syringe barrel 1a -axial
  • FIGS. 12A-12C show schematic diagrams of the different stages of operating an exemplary medical puncturing device.
  • FIGS. 13A-13B show schematic diagrams of the appearance and structure of an exemplary injection system or medical puncturing device, for example, during the punctuation and injection of medications into an extrapleural space (EPS) or an intercostal space of a subject in need thereof.
  • FIG. 13A shows the appearance diagram of the exemplary injection system or medical puncturing device.
  • FIG. 13B shows the structure diagram of the exemplary injection system or medical puncturing device which comprises a syringe barrel 1 extending from a proximal end to a distal end; a push shaft 2b extending from a proximal end to a distal end, wherein the distal end of the push shaft 2b is positioned inside the syringe barrel 1; an actuation unit comprising a pressing element 2, a spring 5 and a floating seal 3, wherein the floating seal 3 is positioned inside the syringe barrel 1, forms a seal between the floating seal 3 and the syringe barrel 1, and forms a flowable composition lumen 7 between the floating seal 3 and the distal end of the syringe barrel 1, wherein the floating seal 3 can elastically engage with the pressing element 2 via the spring 5 and wherein the pressing element 2 is configured to engage a control knob 2b; a hollow puncture needle 6 extending from a proximal end to a distal end comprising an end opening, a body opening between the
  • FIG. 14 shows schematic diagrams of the different steps of operating an exemplary injection system or medical puncturing device.
  • FIGS. 15A-15B show schematic diagrams of the appearance and structure of an exemplary injection system or medical puncturing device, for example, during the punctuation and injection of medications into an extrapleural space (EPS) or an intercostal space of a subject in need thereof.
  • FIG. 15A shows the appearance diagram of the exemplary injection system or medical puncturing device.
  • 15B shows the structure diagram of the exemplary injection system or medical puncturing device, which comprises a syringe barrel 1 extending from a proximal end to a distal end; a push shaft 2b extending from a proximal end to a distal end, wherein the distal end of the push shaft 2b is positioned inside the syringe barrel 1; an actuation unit comprising a pressing element 2, a spring 5 and a floating seal 3, wherein the floating seal 3 is positioned inside the syringe barrel 1, forms a seal between the floating seal 3 and the syringe barrel 1, and forms a flowable composition lumen 7 between the floating seal 3 and the distal end of the syringe barrel 1, wherein the floating seal 3 can elastically engage with the pressing element 2 via the spring 5, and wherein the pressing element 2 is configured to engage a control knob 2a; a hollow puncture needle 6 extending from a proximal end to a distal end comprising an end opening, wherein the proximal
  • FIG. 16 shows schematic diagrams of the different steps of operating an exemplary injection system or medical puncturing device.
  • FIGS. 17 shows schematic diagrams of different stages of operating a syringe installed with contacting member and pressing unit.
  • FIGS. 18A-18H show schematic diagrams of exemplary contacting members, second elastic elements, and connectors, as parts of add-on devices.
  • references numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIG. 18 through FIGS. 18A-18H, and should not be considered limiting: 1 -syringe barrel; 6 -hollow puncture needle (needle distal opening and needle body opening not shown) ; 25 –contacting member; 25a –first part of the contacting member; 25b –second part of the contacting member; 26 –second elastic element; 27 –connector.
  • FIGS. 19A-19B show schematic diagrams of exemplary pressing element as a part of add-on devices.
  • the positional descriptions of “front, ” “back, ” “forward, ” “backward, ” “distal, ” and “proximal, ” etc. are based on the perspective of an operator of the medical puncturing device or medical apparatus assembly. That is, when the operator is using the medical puncturing device or medical apparatus assembly, the direction pointing away and relatively far from the operator is the forward direction, and the direction pointing toward and relatively close to the operator is the backward direction.
  • proximal and distal refer to the direction closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc. ) who would insert the medical device into the patient, with the tip-end (distal end) of the device inserted inside a patient's body first.
  • an operator e.g., surgeon, physician, nurse, technician, etc.
  • the end of a needle (e.g., microneedle) described herein first inserted inside the patient's body would be the distal end, while the opposite end of the needle (e.g., the end of the medical device being manipulated by the operator) would be the proximal end of the needle.
  • puncture member As used herein, the terms “puncture member” , and “puncturing member” are used interchangeably to refer to an article configured to pierce tissue layers and deliver a substance to a target tissue layer, for example, a needle or a microneedle.
  • immediatecament container and “medicament containment chamber” are used interchangeably to refer to an article (e.g., a syringe) configured to contain a volume of a substance, for example, a medicament or drug.
  • intercostal space refers to the anatomic space between two adjacent ribs. Since there are twelve ribs on each side, there are eleven intercostal spaces, each numbered for the rib superior to it.
  • An intercostal space comprises the external intercostal muscle, the internal intercostal muscle and the innermost intercostal muscle arranged in three layers, as well as a intercostal neurovascular bundle which consists of the intercostal vein, artery and nerve, lying in between the internal intercostal muscle and the innermost intercostal muscle.
  • EPS extrapleural space
  • EPS can comprise adipose tissue (e.g. extrapleural fat) , loose connective tissue, lymph nodes, vessels, endothoracic fascia, and muscle tissue (e.g. innermost intercostal muscle) .
  • intercostal sulcus and “costal groove” are used interchangeably to refer to a groove on the inner surface of the inferior border of the rib, accommodating the intercostal neurovascular bundle which consists of the intercostal vessels and nerve.
  • the traditional thoracic surgery is an invasive surgery, creating large wounds and causing severe postoperative pain.
  • thoracoscopic surgery has the advantages of shorter operation time, less intraoperative bleeding, quicker postoperative recovery, resulting in smaller wounds and fewer complications, and being more conducive to postoperative adjuvant treatment (Tianci Chai et al. 2019) .
  • thoracic epidural block One traditional method for postoperative analgesia after thoracic surgery is thoracic epidural block. However, its use is limited due to a risk of causing a spinal cord injury. Paravertebral block and percutaneous intercostal nerve block are also used for postoperative analgesia and they require ultrasound-guided percutaneous puncture to inject local anesthetics into the paravertebral space or the lower edge of the ribs to relieve pain.
  • ICNB is used for pain management in a variety of acute and chronic pain conditions affecting the thorax and upper abdomen, including breast and chest wall surgery.
  • the ICNs innervate the major parts of the skin and musculature of the chest and abdominal wall (Anthony M.-H. Ho, et al. 2022) .
  • Each of the ICNs originates from spinal nerve roots at the same vertebral level as the rib they travel with.
  • the ICN lies between the parietal pleura and the innermost intercostal muscle.
  • the nerve dives between the internal and innermost intercostal muscles, where it remains until it terminates in the anterior chest wall or abdomen. (Caleb S. Baxter et al. 2022, Mario G Santamarina, et al. 2017) .
  • the thoracoscopic-assisted ICNB is usually performed by clamping the flexible syringe needle with a holding forceps (e.g. an oval forceps) , puncturing the parietal pleura and then reaching the target injection site. Aspiration is usually performed before an injection in order to avoid administration of the medication into blood vessels, and then multiple ICNBs can be performed in sequence (Andres Obeso 2018) . If bleeding occurs during the puncture, electrocoagulation or compression using gauze is usually performed to stop the bleeding before puncturing and injecting again.
  • a holding forceps e.g. an oval forceps
  • Performing ICNB under thoracoscopy requires extremely high operating skills for medical practitioner (s) and often requires cooperation of several people.
  • the flexible needle is clamped by a surgical forceps. After finding the blocking point, the operator needs to adjust the position of the needle, pierce the pleura, and then manually push the syringe for administration of the medication. These procedures are repeated for injecting at other positions until the blocking process is completed.
  • the punctuation depth of the needle needs to be manually controlled, and medical practitioner (s) have to rely on their experience to determine if the needle has entered the target site in the EPS (e.g. an intercostal sulcus) .
  • this procedure may result in a weaken or no effect in blocking ICNs, and/or even cause unnecessary injuries to ICNs or the surrounding important organs and large blood vessels in the thoracic cavity, e.g. the heart, aorta, vena cava, and azygos vein.
  • these organs or tissues may cause massive bleeding and bring great risks to the patient’s surgery and health. Therefore, it is of great clinical need and practical significance to provide improved injection devices and methods for medical penetration involving precise injections into the EPS at multiple target sites to achieve a safe, accurate and effective ICNB.
  • the present disclosure addressed this and other needs.
  • the present disclosure provides syringe or injection devices, kits, assemblies, or systems and methods thereof with at least the following advantages in achieving ICNB: 1) it can precisely locate and inject medication (s) into the EPS at one or more target sites to achieve an improved blocking effect; 2) the needle is in a hidden state until the syringe reaches the puncture site, minimizing potential damages to the surrounding tissues (e.g. vital organs and blood vessels) ; 3) it can has an integrated structure with a controllable pressure-sensing injector, which can quantitative dose and automatically administer medication (s) ; 4) it provides a flexible head which allows accurate positioning as well as easy and close contact with the thoracic membrane (e.g.
  • the present invention significantly reduces surgery risks and operation difficulty, simplifies the operation process and improves efficiency in ICNB and pain management.
  • the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; and wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the syringe barrel; and wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob.
  • the pressing element is cylindrical.
  • said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site.
  • the step of 2a) is after the step of 1) and prior to the step of 2) .
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 5) retracting the needle from the first target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a’) -2) -3’) -4) -5’) ,
  • step of 2a’ comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
  • step of 3’ comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject
  • step of 5’ comprises retracting the needle from the second target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
  • step of 2a comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
  • step of 3 comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the third target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
  • step of 2a”’ comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
  • step of 3 comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the next target site.
  • the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
  • the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the extrapleural space.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is proximal to the floating seal, wherein the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein the end opening of the needle contacts tissue (s) in the intercostal space of the subject, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the body opening of the needle is in the lumen comprising the flowable composition, wherein the end opening of the needle is in the extrapleural space of the subject, and wherein the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the extrapleural space through the body opening of the needle, the needle body passageway, and the end opening of the needle.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, thereby allowing the floating seal to succumb to the opposing force and move distally without further advancing the needle to discharge the flowable composition into the extrapleural space through the end opening of the needle.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the method of providing an intercostal nerve block in a subject in need thereof disclosed herein further comprises a step of 2a) positioning the distal end of the syringe barrel toward a target site in the intercostal space after the step of 1) and prior to the step of 2) , wherein the contacting member directly contacts a surface tissue at the target site.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said method is performed under a thoracoscope.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the subject suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
  • the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives.
  • the one or more anesthetics are selected from the group consisting of ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof.
  • the flowable composition further comprises one or more additives.
  • the additive is epinephrine.
  • the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
  • NSAIDs non-steroidal anti-inflammatory drugs
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is connected to the distal end of the syringe barrel.
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
  • the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • the present disclosure provides the injection system as disclosed herein further comprising a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the present disclosure provides the injection system as disclosed herein further comprising a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present disclosure provides the injection system as disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob.
  • the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • the pressing element is cylindrical.
  • the present disclosure provides the injection system as disclosed herein, wherein the lumen formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
  • the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
  • a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
  • an actuation unit comprising an actuation member, a spring and a floating seal
  • the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
  • a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle;
  • the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
  • a syringe handle positioned at the proximal end of the syringe barrel
  • the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • an injection system comprising:
  • a syringe barrel extending from a proximal end to a distal end
  • a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
  • an actuation unit comprising an actuation member, a spring and a floating seal
  • the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
  • a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel;
  • the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
  • a syringe handle positioned at the proximal end of the syringe barrel
  • the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  • described herein are systems and devices to assist in the insertion of a puncture member, for example, a needle or microneedle into the intercostal space and/or assist in injecting a medicament into target site (s) in the EPS to provide an ICNB.
  • a puncture member for example, a needle or microneedle into the intercostal space
  • systems and devices for controlling the insertion depth of a puncture member, such as, for example, a microneedle into the intercostal space to deliver anesthetic agent (s) to, for example, position (s) near an intercostal nerve in EPS.
  • an injection system or device comprising a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening for a flowable composition (e.g.
  • an anesthetic solution to flow from the lumen and through the distal end of the syringe barrel via the needle, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal.
  • the injection system disclosed herein further comprises a contacting member and optionally an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel and the distal end of the needle.
  • the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the contacting member directly contacts a surface tissue at the target site.
  • the contacting member and the elastic element engages with each other and provide an elastic buffer for the force applied to the needle, so that overshooting of the needle is prevented.
  • an injection system or device comprising a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening for a flowable composition (e.g.
  • an anesthetic solution to flow from the lumen and through the distal end of the syringe barrel via the needle, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, wherein the proximal end of the needle is connected to the distal end of the push shaft, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
  • the injection system or device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a needle base proximal to the floating seal (e.g., the needle base is closer to an operator while the floating seal is closer to a subject) , and the floating seal and the needle base are configured to elastically engage each other.
  • the system further comprises a needle comprising a needle proximal end and a needle distal end, and the needle proximal end engages the needle base.
  • the needle proximal end can be fixed to the needle base or releasably attached to (e.g., inserted in) the needle base.
  • the needle can comprise: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, and (iii) a needle body passageway connecting the needle distal opening and the needle body opening.
  • the needle body opening can be proximal to the needle distal opening.
  • the needle base can be configured to advance the needle distally toward the floating seal (e.g., when the needle distal end is proximal to the floating seal) , through the floating seal (e.g., when the needle distal end has entered or pierced into the floating seal) , and/or through the distal end of the syringe barrel.
  • the present disclosure provides an injection system or device comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
  • the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end; where
  • the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end; where
  • the lumen as disclosed herein formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
  • the energy storage member of the injection system or device as disclosed herein comprises a spring and/or an elastic sheath.
  • the actuation member of the injection system or device as disclosed herein is a pressing element configured to engage a control knob.
  • the push shaft is configured to pass through and optionally engage the pressing element.
  • the pressing element is cylindrical.
  • the injection system or device as disclosed herein further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the contacting member comprises a soft cushion.
  • the elastic element member comprises a spring and/or an elastic sheath.
  • the injection system or device as disclosed herein further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the needle can be a hollow puncture needle.
  • the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob; a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the actuation unit
  • the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob; a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push
  • a proximal lumen and a distal lumen can be provided in the syringe barrel on different sides of the floating seal.
  • the distal lumen comprises a flowable composition (e.g., a medicament, a drug, and/or a pharmaceutically acceptable carrier or excipient such as a saline)
  • the proximal lumen does not contain a non-gas flowable composition.
  • the proximal lumen may be pre-filled with a gas, such as a sterilized air, and/or capable of communicating with the outside environment such as the atmosphere when the needle is advanced in and/or through the syringe barrel.
  • the needles included in the embodiments described herein comprise a bevel, which allows for ease of penetration into a tissue such as the intercostal space or a space near intercostal nerve (s) with minimal collateral damage.
  • the needles disclosed herein can define a narrow lumen (e.g., gauge size greater than or equal to 27 gauge, 28 gauge, 29 gauge, 30 gauge, 32 gauge, 34 gauge, 36 gauge, etc. ) to allow for ICNB while minimizing the diameter of the needle track caused by the insertion of the needle.
  • the lumen and bevel aspect ratio of the needles described herein are the same or different from standard 22 gauge to 25 gauge needles commonly used for ICNB.
  • the injection system or device disclosed herein comprises or is configured to be coupled to a medicament container containing a medicament, such as a gel or the like.
  • a medicament container containing a medicament, such as a gel or the like.
  • the medicament container can be formed at least in part by the syringe barrel.
  • a needle is coupled to a distal end of a medicament container (e.g., the needle is at the distal end of a syringe) , for example, as described in US 9,180,047, US 9,539,139, US 9,572,800, US 9,636,253, US 9,636,332, US 9,770,361, US 9,937,075, US 10,555,833, and US 10,517,756, which are incorporated herein by reference for all purposes.
  • the needle prior to use, the needle is neither exposed at the distal end of the syringe barrel nor directly engages the distal end of the syringe barrel.
  • a needle is at least partially inside the syringe barrel.
  • the present disclosure utilizes a needle that is coupled to a floating seal inside a syringe barrel.
  • a needle is coupled to the distal end of a push shaft inside a syringe barrel.
  • the proximal end of the needle is directly connected to the floating seal.
  • the proximal end of the needle is connected to the distal end of the push shaft via a needle base, and the injection system disclosed herein further comprises an energy storage member (e.g., one or more springs) configured to engage the needle base with the floating seal.
  • an energy storage member e.g., one or more springs
  • a distal end portion of the energy storage member is configured to be disposed within the syringe barrel and directly or indirectly engage with the floating seal.
  • the energy storage member is configured to produce a force on a proximal end portion of the floating seal.
  • the force is sufficient to move the floating seal within the syringe barrel to convey at least a portion of a substance from the medicament container (e.g., a flowable composition lumen) via the needle when a distal tip of the needle is disposed within an apparent or potential tissue void, cavity, or space. Furthermore, the force is insufficient to move the floating seal within the syringe barrel when the distal tip of the needle is disposed within a tissue adjacent to (e.g., above or below) the apparent or potential tissue void, cavity, or space (e.g., EPS or intercostal sulcus) .
  • a tissue adjacent to e.g., above or below
  • the apparent or potential tissue void, cavity, or space e.g., EPS or intercostal sulcus
  • the apparent or potential tissue void, cavity, or EPS has a first density and the adjacent tissue has a second density, higher than the first density.
  • the apparent or potential tissue void, cavity, or space produces a first backpressure and the adjacent tissue produces a second backpressure, higher than the first backpressure.
  • a needle is coupled to a floating seal.
  • the proximal end of the needle is directly connected to the floating seal.
  • the proximal end of the needle is coupled to a push shaft inside a syringe barrel, wherein the push shaft is separately provided and is proximal to the floating seal.
  • the proximal end of a need disclosed herein is not coupled to the floating seal.
  • the needle prior to use, can be distal to the floating seal or can be through the floating seal, but the proximal end of the needle remains distal to the floating seal and is not fixedly attached to the floating seal.
  • a medicament container e.g., comprising a liquid
  • a proximal seal and a distal seal that each can move within a syringe barrel, for example, as described in US 2020/0069883 which is incorporated herein by reference for all purposes.
  • a force on the proximal side of the proximal seal is transmitted through the liquid to the distal seal which is attached to a needle.
  • the medicament container e.g., flowable composition lumen
  • the distal end of the syringe barrel comprises a distal seal and the flowable composition lumen is provided between the floating seal and the distal seal.
  • the elastic connection can facilitate the operator to apply the right force and buffer the impact of that force.
  • an operator can hold the needle base still relative to the syringe barrel and observe the movement of the floating seal in order to assess the depth of needle placement.
  • tissue void, cavity, or space e.g., EPS or intercostal sulcus
  • the floating seal can move as the flowable composition enters the tissue (e.g., EPS or intercostal space) , while the needle and the needle base do not have to move.
  • a device disclosed herein is provided and/or packaged as an integrated device comprising components engaging each other.
  • a device disclosed herein does not require an operator to assemble one or more of components prior to use.
  • a device disclosed herein comprises a pre-filled medicament container (e.g., flowable composition lumen) comprising a flowable composition, such as a medicament in the form of a liquid, a solution, a suspension, an emulsion, a gel, an oil, and/or an ointment, etc.
  • Flowable compositions include liquid (e.g., solution, suspension, or the like) or semi-solid compositions (e.g., gels) that are easy to manipulate and may be injected near the target tissue (e.g. an intercostal nerve) .
  • “Flowable” includes formulations with a low viscosity or water-like consistency to those with a high viscosity, such as a viscoelastic or a paste-like material.
  • the flowability of the flowable composition allows it to conform to irregularities, crevices, cracks, and/or voids in the tissue site.
  • the flowable composition comprises one or more medications or drugs.
  • the flowable composition comprises one or more anesthetics for ICNB.
  • anesthetics include those known in the art. For example, they include but are not limited to, ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof.
  • the flowable composition comprises one or more anesthetics for ICNB, and one or more additives.
  • the additive comprises epinephrine.
  • the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
  • alpha-2 agonists including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine
  • opioids including but not limited to, oxycodone, oxymorphone,
  • one or more components of a system or device disclosed herein are configured to be assembled with one another.
  • the system or device may comprise one or more syringe barrels.
  • the system or device may comprise two or more units, such as a first syringe unit comprising: a first syringe barrel; a needle base in the first syringe barrel; and a needle comprising a needle proximal end engaging the needle base and a needle distal end.
  • the system or device may comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising: a second syringe barrel; and a floating seal in the second syringe barrel, and when the first and second syringe units are engaged, the floating seal is configured to elastically engage the needle base.
  • the system or device may comprise a third syringe unit configured to engage a distal end of the second syringe unit, comprising a third syringe barrel enclosing a flowable composition (e.g. an anesthetic solution) , and the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition.
  • the system or device can comprise one or more syringe units, optionally a fourth syringe unit configured to engage a distal end of the third syringe unit.
  • the system or device may comprise a first syringe unit comprising: a first syringe barrel; a needle base and a floating seal in the first syringe barrel elastically engaging each other, the needle base being proximal to the floating seal; and a needle comprising a needle proximal end engaging the needle base and a needle distal end, the needle comprising: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, the needle body opening being proximal to the needle distal opening, and (iii) a needle body passageway connecting the needle distal opening and the needle body opening.
  • the system or device may further comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising a second syringe barrel enclosing a flowable composition (e.g. an anesthetic solution)
  • the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition.
  • the device can comprise one or more syringe units, optionally a third syringe unit configured to engage a distal end of the second syringe unit.
  • the system or device may comprise a first syringe unit comprising: a first syringe barrel; a needle base in the first syringe barrel; and a needle comprising a needle proximal end engaging the needle base and a needle distal end, the needle comprising: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, the needle body opening being proximal to the needle distal opening, and (iii) a needle body passageway connecting the needle distal opening and the needle body opening.
  • the system or device may further comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising: a second syringe barrel; a floating seal in the second syringe barrel, and when the first and second syringe units are engaged, the floating seal is configured to elastically engage the needle base; and a flowable composition (e.g. an anesthetic solution) , and the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition.
  • the device can comprise one or more syringe units, optionally a third syringe unit configured to engage a distal end of the second syringe unit.
  • the present disclosure provides a medical puncturing device comprising: a syringe barrel, wherein the syringe barrel comprises a distal end and a proximal open end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; and a floating seal, wherein the floating seal is positioned inside the syringe barrel and can elastically engage with the push shaft; a hollow puncture needle attached to the push shaft, wherein the hollow puncture needle comprises a needle distal opening and a needle body opening, and wherein the needle body opening is proximal to the floating seal (the needle distal opening can be proximal to the floating seal, e.g., the entire length of the needle is proximal to the floating seal, or alternatively, the needle can be through the floating seal such that the needle distal opening is distal to the floating seal) ; and a flowable composition (e.g., a
  • the distal end of the syringe barrel does not comprise a distal seal.
  • the distal end of the syringe barrel is connected to a distal seal positioned inside the syringe barrel.
  • the medical puncturing device is configured such that the hollow puncture needle can be moved forward by pressing the push shaft.
  • the hollow puncture needle sequentially pierces the floating seal and the syringe barrel distal end, thus connecting the flowable composition lumen, the needle body opening, and the needle distal opening.
  • the hollow puncture needle is pre-inserted into the floating seal.
  • the needle distal opening can be in the floating seal and blocked by the floating seal, and the needle can be advanced through the flowable composition lumen to pierce the syringe barrel end.
  • the hollow puncture needle is pre-inserted through the floating seal.
  • the distal end of the syringe barrel does not comprise a distal seal.
  • the distal end of the syringe barrel is connected to a distal seal positioned inside the syringe barrel.
  • the needle distal opening can be in the flowable composition lumen, while the needle body opening is proximal to the floating seal or in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3E) , and then the needle can be advanced to pierce the syringe barrel distal end.
  • the hollow puncture needle is pre-inserted through the floating seal and in or through the syringe barrel distal end.
  • the needle distal opening can be in a distal seal at the syringe barrel distal end (e.g., the needle distal opening can be blocked by the distal seal) or distal to the distal seal and/or the syringe barrel distal end, while the needle body opening is proximal to the floating seal (e.g., as shown in FIG. 3D, 6b1) , in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2) , or in the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) , and then the needle can be advanced through the syringe barrel distal end and exposing the needle distal opening for puncturing a tissue.
  • the floating seal e.g., as shown in FIG. 3D, 6b1
  • the floating seal e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2
  • the present disclosure provides an injection system or a medical puncturing device further comprising a contacting member extending from a proximal end to a distal end, wherein the contacting member can be assembled to a needle base connected to the distal end of the syringe barrel or can be assembled to the distal end of a syringe barrel, wherein the distal end of the contacting member is distal to the needle distal end opening and syringe the barrel distal end, and wherein the distal end of the contacting member can directly contact surface tissue (s) (e.g. parietal pleura) at a target site.
  • s surface tissue
  • the contacting member can provide a buffer to reduce the risk of overshooting the needle.
  • the proximal end of the contacting member is in direct contact with the needle base.
  • the proximal end of the contacting member is in direct contact with the distal end of the syringe barrel 1.
  • the proximal end of the contacting member is in direct contact with the needle base. In some embodiments, as illustrated in FIG.
  • the proximal end of the contacting member is in direct contact with the needle base or the syringe barrel, and the contacting member 25 is made of one or more materials with low elastic modulus (e.g., Young’s modulus) .
  • the contacting member has a Young’s modulus of about 0.001 GPa to about 10 GPa.
  • the injection system or medical puncturing device as disclosed herein further comprises a contacting member described herein and a second elastic element (e.g., 26 in FIG. 18C-18E) , wherein after assembling the contacting member to the distal end of the syringe barrel or a needle base which is connected to the distal end of the syringe barrel, the second elastic element elastically connects the proximal end of the contacting member to the distal end of the syringe barrel or the needle base.
  • a second elastic element e.g., 26 in FIG. 18C-18E
  • the contacting element 25 has a high elastic modulus (e.g., Young’s modulus) , and is elastically engaged with the needle base or the distal end of the syringe barrel via the second elastic element 26.
  • the contacting element has a Young’s modulus of more than 10 GPa.
  • the contacting element has an elastic modulus larger than that of the second elastic element.
  • the contacting member comprises a first part and a second part, wherein the first part is distal to the second part.
  • the first part and the second part have different elasticity.
  • the first part is more elastic than the second part.
  • the first part is less elastic than the second part.
  • the contacting member 25 comprises a first part 25a and a second part 25b, wherein the first part 25a is more elastic than the second part 25b, the first part 25a is distal to the second part 25b, and proximal end of the second part 25b is connected to the needle base or syringe barrel via the second elastic element 26.
  • the injection system or medical puncturing device as disclosed herein further comprises a contacting member described herein and a connector (e.g., 27 in FIG. 18F) , wherein after assembling the contacting member to the distal end of the needle, the connector connects the proximal end of the contacting member to the needle base or the distal end of the syringe barrel, and wherein the connector is less elastic than the contacting member.
  • the contacting member has a low elastic modulus.
  • the contacting member has a Young’s modulus of about 0.001 GPa to about 10 GPa.
  • the connector has a high elastic modulus.
  • the connector has a Young’s modulus of more than 10 GPa.
  • the contacting member takes the form of a sheath or a sleeve around the needle.
  • the contacting member is an elastic sheath or sleeve around the needle (e.g., 25 in FIG. 18A) .
  • the contacting member takes the form of a block (e.g., 25 in FIG. 18B) .
  • the contacting member takes the form of a block and the distal end of the needle can pierce through the block.
  • the contacting member is an elastic block and the distal end of the contacting member has a surface shape adapted for surface tissues at a target injection position.
  • the distal end of the contacting member may have certain patterns (e.g., FIG. 18G) .
  • the distal end of the contacting member may be oblique (e.g., FIG. 18H) .
  • the second elastic element takes the form of a spring (e.g., 26 in FIG. 18B and FIG. 18D) .
  • the second elastic element takes the form of a sheath or a sleeve around the needle (e.g., 26 in FIG. 18C and FIG. 18E) .
  • the second elastic element is an elastic sheath around the needle.
  • the connector takes the form of a sheath or a sleeve around the needle (e.g., 27 in FIG. 18F) .
  • an injection system or a medical puncturing device comprising:
  • a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening; wherein a flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal;
  • a contacting member extending from a proximal end to a distal end, and a pressing unit comprising a first elastic element
  • the distal end of the contacting member is distal to the needle distal end opening, and the distal end of the contacting member can directly contact surface tissues at a target injection position; and wherein the pressing unit elastically engages the push shaft and the syringe barrel via the first elastic element.
  • the contacting member can be any of the contacting members described herein.
  • the injection device or the medical puncturing device may further comprise a second elastic element, wherein the second elastic element can be any of the second elastic elements described herein.
  • the injection device or the medical puncturing device may further comprises a connector, wherein the connector can be any of the connectors described herein.
  • the pressing unit elastically engages the push shaft and the syringe barrel via the first elastic element.
  • the first elastic element takes the form of a spring (e.g., 31 in FIG. 19A and 19B) .
  • the first elastic element can apply a force on the push shaft and push the push shaft distally.
  • the pressing unit can restrict a movement of the syringe barrel of a regular syringe, especially a distal movement.
  • the pressing unit has a pair of stoppers (e.g., 32 in FIG. 19A) or a locking element (e.g., 33 in FIG. 19B) , and after assembling the pressing unit to asyringe, and the stoppers or locking element can prevent the movement of the syringe barrel distally.
  • the medical puncturing device comprises a state wherein the flowable composition lumen, the needle body opening, and the needle distal opening are in fluidic communication.
  • the needle body opening can be proximal to the floating seal, while the needle distal opening is distal to the floating seal and in the flowable composition lumen.
  • the needle and/or the floating seal can be moved.
  • the floating seal can be moved under the elastic resilience between the floating seal and the push shaft such as that the floating seal seals or blocks the needle body opening, thereby preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening.
  • the floating seal in the fluidic communication state, can seal the needle body opening when it moves forward and contacts the syringe barrel distal end, thereby preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening.
  • the device or system of the present disclosure further comprises a distal seal inside the syringe barrel and at the distal end of the syringe barrel.
  • the floating seal can seal the needle body opening when it moves forward and contacts the distal seal at the distal end of the syringe barrel, thereby preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening.
  • a stopper such as an axial stopper can be provided inside the syringe lumen, distal to the floating seal.
  • the stopper can be used to limit the forward movement of the floating seal.
  • the injection system or medical puncturing device as disclosed herein comprises a fluidic communication state, wherein the flowable composition lumen is connected to the needle body opening and the needle distal opening.
  • the needle body opening can be at the distal end of the stopper (e.g., as shown in FIG. 2D) , and the floating seal can move forward due to the elastic engagement with the push shaft.
  • the injection system or medical puncturing device as disclosed herein comprises a manual control element, which is attached to the floating seal and is extended outside of the syringe barrel.
  • the injection system or medical puncturing device as disclosed herein comprises a pre-puncture state after the hollow puncture needle pierces the syringe barrel distal closed end, a surface tissue puncture state, and a fluidic communication state after the puncture.
  • the length range of the hollow puncture needle extended outside of the syringe barrel distal closed end can correspond to a pre-puncture length range, a surface tissue puncture length range, and a fluidic communication length range, respectively, wherein: when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the pre-puncture length range, the needle body opening remains above the flowable composition lumen (e.g., the needle body opening can be proximal to and within the floating seal) ; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the surface tissue puncture length range, at least part of the needle body opening is connected to the flowable composition lumen; and/or, when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the fluidic communication length range, the needle body opening is
  • an axially extended circular contacting element is formed at the syringe barrel distal closed end, wherein the difference between the upper and lower limits of the pre-puncture length range equals to the axial length of the circular contacting element.
  • the elastic movement unit comprises a elastic sheath covering the outside of the hollow puncture needle.
  • the elastic sheath can seal the needle body opening.
  • the injection system or medical puncturing device as disclosed herein comprises a catheter guiding structure through which a catheter can be placed into a target site (e.g. in EPS) for continuous ICNB.
  • the catheter guiding structure is used to thread the catheter into a cavity (e.g., a needle body passageway connected to the needle distal opening and/or the needle body opening of the hollow puncture needle) .
  • the catheter guiding structure comprises an angled guiding groove which is formed on the floating seal and extends towards the hollow puncture needle in an angle.
  • the angled guiding groove is set to be through the floating seal in the front and back direction.
  • the catheter guiding structure further comprises a one-way valve which is embedded in the angled guiding groove and can be opened and closed, and/or a guiding groove plug inserted in the angled guiding groove.
  • the angled guiding groove is set to be on the upper surface of the floating seal and is a non-through groove.
  • the needle body opening is formed as an angled opening which opens obliquely backwards.
  • the catheter guiding structure comprises an angled guiding needle hole formed on the body wall of the hollow puncture needle and opens obliquely backwards.
  • the medical puncturing device comprises a fluidic communication state wherein the flowable composition lumen is in connection with the needle body opening and the needle distal opening. In the fluidic communication state, the angled guiding needle hole is positioned proximal to the floating seal.
  • the catheter guiding structure further comprises a one-way valve which is embedded in the angled guiding needle hole and can be opened and closed, or a guiding groove plug inserted in the angled guiding needle hole.
  • the catheter guiding structure comprises a puncturable central guiding groove that is formed on the center of the proximal surface of a pressing element.
  • a needle proximal opening is formed on the hollow puncture needle and the needle proximal opening is set to axially align with the central guiding groove.
  • the injection system or medical puncturing device as disclosed herein comprises a puncture control module and a fluid storage module that are independently manufactured and formed, wherein: the puncture control module comprises a first syringe unit and the elastic movement unit and the hollow puncture needle provided inside the first syringe unit; the fluid storage module comprises a second syringe unit, the flowable composition lumen formed inside the barrel of the second syringe unit, and a module packaging component which is removably packaged to the proximal end of the second syringe unit; and a removable connection structure is formed between the first syringe unit and the second syringe unit.
  • the present disclosure provides a medical apparatus assembly.
  • the medical apparatus assembly comprises a catheter and the medical puncturing device comprising a catheter guiding structure.
  • the medical apparatus assembly further comprises a hollow auxiliary guiding needle which is matched to use with the catheter guiding structure.
  • the catheter when the auxiliary guiding needle is connected to the catheter guiding structure, the catheter can sequentially go through the needle body passageway of the auxiliary guiding needle and the catheter guiding structure and be threaded into the needle body passageway of the hollow puncture needle.
  • a user when using the injection system or the medical puncturing device of the present disclosure, can first apply pressure to the push shaft to drive the hollow puncture needle, which is connected to floating seal, towards an intercostal space of a subject.
  • the needle distal opening of the hollow puncture needle reaches apparent or potential tissue gaps, cavity systems, and spaces (e.g, EPS or intercostal sulcus)
  • the flowable composition e.g.
  • the flowable composition pressure in the flowable composition lumen can be made higher than the pressure inside the an apparent or potential tissue void, cavity, or space.
  • a user when using the injection system or the medical puncturing device of the present disclosure, can first apply pressure to the push shaft to drive the hollow puncture needle sequentially through the floating seal and the syringe barrel distal closed end.
  • the needle distal opening of the hollow puncture needle reaches apparent or potential tissue gaps, cavity systems, and spaces
  • the needle body opening has already been positioned in the flowable composition lumen
  • the floating seal has already formed an elastic engagement with the push shaft.
  • the pressure of the flowable composition in the flowable composition lumen can be made higher than the pressure inside the an apparent or potential tissue void, cavity, or spaces.
  • the flowable composition inside the flowable composition lumen can flow into the an apparent or potential tissue void, cavity, or space through the needle body opening and the needle distal opening.
  • the flowable composition inside the flowable composition lumen can flow into the needle body opening (and then through the needle body passageway and out of the needle distal opening) , thereby achieving injection, penetration, and/or expansion of the an apparent or potential tissue void, cavity, or space.
  • the medical apparatus assembly as describe in the present disclosure can achieve implantation of catheter and other medical device through the medical puncturing device, e.g., through a catheter guiding structure and a cavity of the needle described herein.
  • the external pressure on the needle distal opening is higher than the pressure of a flowable composition in the flowable composition lumen, thus the flowable composition cannot flow out of the needle distal opening.
  • the injection process Since the injection is controlled by fluid pressure changes in the flowable composition lumen, the injection process does not require an operator to manually apply thrust or force during the injection process, thus fluctuations in the flow speed can be prevented and stable injection can be achieved.
  • provided herein is a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
  • proximal end of the needle is connected to the distal end of the push shaft
  • the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • provided herein is a method providing an intercostal nerve block in a subject in need thereof , comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • a method of providing an intercostal nerve block in a subject in need thereof In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of providing an intercostal nerve block in a subject in need thereof. In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of delivering a flowable composition (e.g. an anesthetic solution) near an intercostal nerve in a subject in need thereof.
  • a flowable composition e.g. an anesthetic solution
  • EPS extrapleural space
  • a method of delivering a flowable composition into an intercostal sulcus in a subject in need thereof is provided herein.
  • a method comprising advancing the distal end of the needle toward an intercostal space of the subject, which comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the EPS.
  • the injection system is configured such that the needle can be moved forward by applying a force to the push shaft.
  • the proximal end of the needle is connected to the floating seal, and said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft, which is transmitted through the flowable composition into the floating seal which is attached to a needle.
  • the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  • the proximal end of the needle is connected to the floating seal, and pierces the syringe barrel distal closed end when advanced towards an intercostal space. In some embodiments, the proximal end of the needle is connected to the floating seal, and the distal end of the needle is distal to the distal end of the syringe barrel before being advanced.
  • the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and the needle sequentially pierces the floating seal and the syringe barrel distal closed end (or a distal seal which is located inside the syringe barrel and at the syringe barrel distal end and then the syringe barrel closed end) , thus connecting the flowable composition lumen, the needle body opening, and the needle distal opening.
  • the needle is pre-inserted into the floating seal.
  • the needle distal opening can be in the floating seal and blocked by the floating seal, and the needle can be advanced through the flowable composition lumen to pierce the syringe barrel distal closed end (or pierce the distal end disclosed herein first and then the syringe barrel distal closed end) .
  • the hollow puncture needle is pre-inserted through the floating seal.
  • the needle distal opening can be in the flowable composition lumen, while the needle body opening is proximal to the floating seal or in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG.
  • the needle can be advanced to pierce the syringe barrel distal closed end (or pierce the distal end disclosed herein first and then the syringe barrel distal closed end) .
  • the needle is pre-inserted through the floating seal and in or through the syringe barrel distal closed end.
  • the needle distal opening can be in a distal seal at the syringe barrel distal closed end (e.g., the needle distal opening can be blocked by the distal seal) or distal to the distal seal and/or the syringe barrel distal closed end, while the needle body opening is proximal to the floating seal (e.g., as shown in FIG.
  • the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2) , or in the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) , and then the needle can be advanced through the syringe barrel distal closed end and exposing the needle distal opening for puncturing a tissue.
  • the floating seal e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2
  • the flowable composition lumen e.g., as shown in FIG. 3D, 6b3
  • a method comprising advancing the needle distally and into the intercostal space of a subject without discharging a flowable composition (e.g. an anesthetic solution) .
  • a flowable composition e.g. an anesthetic solution
  • the injection system is configured such that when moving the needle distally and into the intercostal space of a subject, no fluid is discharged into the parietal pleura or the EPS.
  • the flowable composition arranged in the lumen is restricted from being exiting the lumen through the needle distal end because the tissue in contact with (e.g., the parietal pleura) restricts the flow of the flowable composition from the opening at the distal end of the needle.
  • said advancing the distal end of the needle toward an intercostal space of the subject comprises advancing the push shaft, and floating seal, and the distal end of the needle together towards an intercostal space of the subject, therefore the volume of the flowable composition lumen remains substantially the same.
  • the needle base and the floating seal are configured to elastically engage each other, and when advancing the distal end of the needle towards the intercostal space of a subject, the body opening of the needle is proximal to the floating seal and the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein discharge of the flowable composition from the needle end opening is prevented.
  • the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, wherein discharge of the flowable composition from the needle end opening is prevented.
  • the body opening of the needle when advancing the distal end of the needle towards the intercostal space of a subject, the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and the end opening of the needle contacts a surface tissue at a target site in the intercostal space of the subject, wherein discharge of the flowable composition from the needle end opening is prevented because of pressure from the surface tissue in the target site (e.g., the parietal pleura) .
  • the medical puncturing device comprises a state wherein the flowable composition lumen, the needle body opening, and the needle distal opening are in fluidic communication.
  • the needle body opening can be proximal to the floating seal, while the needle distal opening is distal to the floating seal and in the flowable composition lumen.
  • the needle and/or the floating seal can be moved.
  • the floating seal can be moved under the elastic resilience between the floating seal and the pressing element such as that the floating seal seals or blocks the needle body opening, thereby preventing or terminating discharge of the flowable composition (e.g. an anesthetic solution) from the needle body opening and/or from the needle distal opening.
  • the flowable composition e.g. an anesthetic solution
  • the floating seal in the fluidic communication state, can seal the needle body opening when it moves forward and contacts the syringe barrel distal closed end, thereby preventing or terminating discharge of the flowable composition (e.g. an anesthetic solution) from the needle body opening and/or from the needle distal opening.
  • the flowable composition e.g. an anesthetic solution
  • a method comprising continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS, allowing the flowable composition flow into the EPS through the end opening of the needle.
  • the injection system is configured such that the flowable composition is discharged when the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS.
  • the injection system is configured such that the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, and the proximal end of the needle is connected to the floating seal, and when the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS, the floating seal succumbs to the opposing force and moves distally without the needle being actively advanced, so that the flowable composition is discharged into the EPS through the end opening of the needle.
  • the injection system is configured such that the body opening of the needle is in the lumen comprising the flowable composition, the end opening of the needle extends beyond the parietal pleura of the subject and into the EPS, and the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the EPS through the body opening of the needle, the needle body passageway, and the end opening of the needle.
  • the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is:
  • the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the elastic element comprises a spring and/or an elastic sheath.
  • the energy storage member comprises a spring and/or an elastic sheath.
  • the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the elastic element comprises a spring and/or an elastic sheath.
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • proximal end of the needle is connected to the distal end of the syringe barrel
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the elastic element comprises a spring and/or an elastic sheath.
  • the energy storage member comprises a spring and/or an elastic sheath.
  • the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  • the injection system further comprises a distal seal, and the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
  • an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
  • a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
  • the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  • the elastic element comprises a spring and/or an elastic sheath.
  • the energy storage member comprises a spring and/or an elastic sheath.
  • the method of providing an intercostal nerve block as disclosed herein wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  • the method of providing an intercostal nerve block as disclosed herein wherein said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
  • the actuation member as disclosed herein is a pressing element configured to engage a control knob.
  • the pressing element is cylindrical.
  • said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
  • the method of providing an intercostal nerve block in a subject in need further comprises a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site.
  • the step of 2a) is after the step of 1) and prior to the step of 2) .
  • the method of providing an intercostal nerve block in a subject in need further comprises further comprising a step of 5) retracting the needle from the first target site.
  • the method of providing an intercostal nerve block as disclosed herein further comprises a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a-2) -3’) -4) -5’) ,
  • step of 2a’ comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
  • step of 3’ comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject
  • step of 5’ comprises retracting the needle from the second target site.
  • the method of providing an intercostal nerve block as disclosed herein further comprises a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
  • step of 2a comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
  • step of 3 comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the third target site.
  • the method of providing an intercostal nerve block as disclosed herein further comprises a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
  • step of 2a”’ comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
  • step of 3 comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject;
  • step of 5 comprises retracting the needle from the next target site.
  • the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprising: step 1) providing the exemplary injection system or medical puncturing device as seen in FIGS. 13 and 14; step 2) positioning the injection system or medical puncturing device to make the contacting member 25 contact a surface tissue at a first target site in the intercostal space, and controlling the pressing element 2 (e.g.
  • step 3) advancing the distal end of the needle 6 toward the first target site in the intercostal space by applying a force to the push shaft 2b without discharging the flowable composition from the flowable composition lumen 7, and continuing advancing the distal end of the needle 6 until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the spring 5 to release energy which makes the floating seal 3 move distally and thereby automatically makes the flowable composition flow into the extrapleural space through the end opening of the needle 6, and step 4) retracting the needle 6 from the first target site, and moving to the next target site and repeating the steps 1) -4) above for one or more rounds as needed until all of the target injection points are injected with the flowable composition (e.g. an anesthetic solution for ICNB) , and optionally removing the injection system or medical puncturing device from the subject.
  • the flowable composition e.g. an anesthetic solution for ICNB
  • the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprising: step 1) providing the exemplary injection system or medical puncturing device as seen in FIGS. 15 and 16; step 2) positioning the injection system or medical puncturing device to make the contacting member 25 contact a surface tissue at a first target site in the intercostal space, and controlling the pressing element 2 (e.g.
  • step 3) advancing the distal end of the needle 6 toward the first target site in the intercostal space by controlling the syringe handle 41 to compress the elastic element 26 and thereby advancing the distal end of the needle 6 to pierce through the contacting member 25 and into the parietal pleura of the subject without discharging the flowable composition from the flowable composition lumen 7, and continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the spring 5 to release energy which makes the floating seal 3 move distally and thereby automatically makes the flowable composition flow into the extrapleural space through the end opening of the needle, and step 4) retracting the needle 6 from the first target site, and moving to the next target site and repeating the steps above for one or more rounds as needed until all of the target injection points are injected with the flowable composition (e.
  • the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein, the method of delivering a flowable composition near an intercostal nerve of a subject in need thereof as disclosed herein, or the method of delivering a flowable composition into an intercostal space/an EPS/an intercostal sulcus of a subject in need thereof as disclosed herein is performed under a thoracoscope.
  • the subject as disclosed herein suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
  • the flowable composition as disclosed herein comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives.
  • said one or more anesthetics are anesthetics known in the art.
  • said one or more anesthetics comprise ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof.
  • the additive comprises epinephrine.
  • the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
  • alpha-2 agonists including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine
  • opioids including but not limited to, oxycodone, oxymorphone,
  • the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprises providing the injection system which is further configured such that a stopper such as an axial stopper can be provided inside the syringe lumen, distal to the floating seal.
  • the stopper can be used to limit the forward movement of the floating seal.
  • the injection system comprises a fluidic communication state, wherein the flowable composition lumen is connected to the needle body opening and the needle distal opening. When the medical puncturing device is in the fluidic communication state, the needle body opening can be at the distal end of the stopper (e.g., as shown in FIG. 2D) , and the floating seal can move forward due to the elastic engagement with pressing element.
  • the injection system comprises a manual control element, which is attached to the floating seal and is extended outside of the syringe barrel.
  • the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprises providing the injection system which comprises a pre-puncture state after the needle pierces the syringe barrel distal closed end, a surface tissue puncture state, and a fluidic communication state after the puncture.
  • the length range of the hollow puncture needle extended outside of the syringe barrel distal closed end can correspond to a pre-puncture length range, a surface tissue puncture length range, and a fluidic communication length range, respectively, wherein: when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the pre-puncture length range, the needle body opening remains above the flowable composition lumen (e.g., the needle body opening can be proximal to and within the floating seal) ; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the surface tissue puncture length range, at least part of the needle body opening is connected to the flowable composition lumen; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the fluidic communication length range, the needle body opening is positioned
  • an axially extended circular contacting element is formed at the syringe barrel distal closed end, wherein the difference between the upper and lower limits of the pre-puncture length range equals to the axial length of the circular contacting element.
  • the elastic movement unit comprises a elastic sheath covering the outside of the hollow puncture needle.
  • the elastic sheath can seal the needle body opening.
  • provided herein is a method of delivering a flowable composition near an intercostal nerve of a subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an intercostal space of a subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an EPS of a subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an intercostal sulcus of a subject in need thereof. In some embodiments, provide herein is a method of providing an intercostal nerve block in a subject in need thereof by delivering one or more anesthetics into an intercostal space.
  • one or more anesthetics are preloaded in the flowable composition lumen of the injection system or device as described herein. After the tip of the needle of the injection device or system extends beyond parietal pleura of the subject and into an EPS, one or more anesthetics are automatically injected to the EPS. Additional details of the device, system, and method are disclosed below.
  • the present disclosure provides a method of providing an intercostal nerve block by utilizing a medical puncturing or penetration device which comprises syringe barrel 1, an actuation unit (e.g., an elastic movement unit for pushing a needle) , hollow puncture needle 6, and flowable composition lumen 7.
  • syringe barrel 1 comprises a distal closed end and a proximal open end.
  • syringe barrel 1 can be designed to have two open ends in an axial direction, and sealing of the distal end can be achieved by installing distal seal 8 at the distal opening of syringe barrel 1.
  • distal seal 8 can be made of a material that can be punctured by hollow puncture needle 6, such as rubber or the like.
  • the actuation unit (e.g., elastic movement unit) as disclosed herein comprises a pressing element 2 and a floating seal 3, where the floating seal 3 sealingly engages an inside wall of the syringe barrel and is configured to move in an axial direction, e.g., toward the distal end or the proximal end of the syringe barrel.
  • the pressing element 2 or a portion thereof is located outside the proximal opening of the syringe barrel, so that an operator can press on the pressing element or portion thereof manually.
  • floating seal 3 elastically engages the pressing element 2, and when pressure is applied on the pressing element 2, floating seal 3 can move forward or backward relative to the pressing element.
  • floating seal 3 is configured to move toward the distal end of the syringe barrel. In some embodiments, floating seal 3 is configured to move toward the proximal end of the syringe barrel. In some embodiments, the position of the pressing element relative to the syringe barrel is kept still, floating seal 3 is configured to move forward (e.g., in a distal direction) under elastic resilience due to the elastic engagement with the pressing element.
  • hollow puncture needle 6 is fixedly connected to the pressing element 2. When no pressure is applied to the pressing element 2, hollow puncture needle 6 remains proximal to floating seal 3 and the two do not come into contact.
  • hollow puncture needle 6 itself comprises needle distal opening 6a and needle body opening 6b.
  • needle distal opening 6a and needle body opening 6b are connected through a needle cavity or needle body passageway of hollow puncture needle 6.
  • flowable composition lumen 7 is used for storage, e.g., of a liquid medicine.
  • the flowable composition lumen is enclosed by a distal closed end of the syringe barrel, a lumen wall of the syringe barrel, and floating seal 3; that is, the flowable composition lumen occupies a distal portion of a syringe barrel lumen.
  • floating seal 3 can move along in an axial direction, flowable composition lumen 7 is configured to have a variable volume, thus the fluid pressure inside flowable composition lumen 7 can change due to an axial movement of floating seal 3.
  • provided herein is a method of providing an intercostal nerve block by using the medical puncturing device or the injection system as disclosed herein, comprising applying pressure on pressing element 2, thereby advancing the hollow puncture needle 6 forward in a distal direction, sequentially through floating seal 3 (e.g., by puncturing the floating seal or forcing open an existing aperture or slit through the floating seal) and through a distal closed end (e.g., by puncturing the distal closed end or forcing open an existing aperture or slit through the distal closed end) of the syringe barrel.
  • floating seal 3 e.g., by puncturing the floating seal or forcing open an existing aperture or slit through the floating seal
  • a distal closed end e.g., by puncturing the distal closed end or forcing open an existing aperture or slit through the distal closed end
  • the existing aperture or slit may be through the floating seal, e.g., from a proximal surface of the floating seal to a distal surface of the floating seal, thereby providing a through hole in the floating seal.
  • the existing aperture or slit may be not through the entire floating seal, and advancing the needle distal end through the floating seal may comprise advancement through the existing aperture or slit and puncturing a portion of the floating seal in any suitable combination.
  • the needle distal end may first advance through an existing aperture or slit from a proximal surface and then puncture the floating seal before emerging from a distal surface of the floating seal, or vice versa.
  • hollow puncture needle 6 pierces into an apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) , thereby placing needle distal opening 6a in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • needle body opening 6b is positioned inside flowable composition lumen 7, and floating seal 3 is elastically engaged with a pressing element 2.
  • the fluid pressure in flowable composition lumen 7 is higher than the pressure inside the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • the flowable composition inside flowable composition lumen 7 can flow through needle body opening 6b and needle distal opening 6a and into the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • EPS tissue void, cavity, or space
  • a user can simply maintain the pressure on pressing element 2, e.g., without further increasing the pressure.
  • the flowable composition (e.g., one or more anesthetics) inside flowable composition lumen 7 can enter needle body opening 6b and through the needle body passageway, thus achieving injection, penetration, and/or expansion of the apparent or potential tissue void, cavity, or space.
  • the hollow puncture needle 6 when the hollow puncture needle 6 has already pierced the parietal pleural 13 but has not yet extended beyond the parietal pleural and into EPS14, regardless of whether the needle body opening 6b is in fluid communication with the flowable composition lumen 7 or not, the flowable composition would not exit from the needle distal opening 6a. This is because a relatively high external pressure is applied on the needle distal opening 6a. When the external pressure is higher than the fluid pressure in flowable composition lumen 7, the dense tissue (such as the parietal pleural) which the needle distal end closely contacts essentially functions as a plug that prevents the flowable composition from flowing out.
  • the dense tissue such as the parietal pleural
  • an operator can determine whether hollow puncture needle 6 has already pierced into an apparent or potential tissue void, cavity, or space (e.g., EPS) , thereby informing the operator of the current needle depth and/or location of the needle distal opening and ensure accurate needle placement.
  • tissue void, cavity, or space e.g., EPS
  • the injection process since the injection is controlled by fluid pressure changes in flowable composition lumen 7, the injection process does not require manually applying a force that is transmitted via relatively rigid medium (e.g., solid or liquid) in order to advance and precisely place the needle tip into an apparent or potential tissue void, cavity, or space (e.g., EPS) Rather, an abrupt force applied to the pressing element 2 can be buffered due to the elastic engagement between the pressing element 2 and floating seal 3, thus allowing more controllable and steady movement of the floating seal. In some embodiments, using a device disclosed herein, fluctuations in the flow speed can be prevented or reduced and steady injection can be achieved.
  • relatively rigid medium e.g., solid or liquid
  • EPS tissue void, cavity, or space
  • the medical puncturing device when hollow puncture needle 6 pierces through the syringe barrel distal closed end, can be in at least three states: a pre-puncture state, a surface tissue puncture state, and a fluidic communication state.
  • the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is a pre-puncture length range. Within this range, hollow puncture needle 6 has not yet started puncturing an organism or a tissue thereof.
  • a system or device of the present disclosure comprises a flowable composition lumen pre-filled with a flowable composition.
  • the needle prior to use of the system or device, the needle is already through the floating seal.
  • the needle prior to use of the system or device, the needle is already through the floating seal and the syringe barrel distal end, e.g., a distal seal sealing the syringe barrel distal end.
  • needle distal opening 6a can be outside the flowable composition lumen, while needle body opening 6b can be proximal to the floating seal (e.g., as shown in FIG. 3C, 6b1) or within the floating seal (e.g., as shown in FIG. 3C, 6b2) .
  • Discharge of the flowable composition from the needle distal opening can be prevented due to viscosity of the composition, until the needle distal opening reaches a target tissue, such as an apparent or potential tissue void, cavity, or space.
  • needle distal opening 6a can be within a distal seal at the syringe barrel distal closed end (e.g., the needle distal opening can be blocked by the distal seal)
  • needle body opening 6b can be proximal to the floating seal (e.g., as shown in FIG. 3D, 6b1) , within the floating seal (e.g., as shown in FIG. 3D, 6b2) , or within the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) . Discharge of the flowable composition from the needle distal opening and the needle body opening can be prevented.
  • needle distal opening 6a can be within the flowable composition lumen, while needle body opening 6b can be within the floating seal (e.g., as shown in FIG. 3E, 6b1) or within the flowable composition lumen (e.g., as shown in FIG. 3E, 6b2) . Discharge of the flowable composition from the needle body opening can be prevented.
  • needle distal opening 6a can be within the floating seal, while needle body opening 6b can be proximal to the floating seal (e.g., as shown in FIG. 3F, 6b) . Discharge of the flowable composition from the needle body opening can be prevented.
  • the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is a surface tissue puncture length range. Within this range, the distal end of hollow puncture needle 6 has entered a surface tissue (for example, parietal pleura) but has not yet entered the apparent or potential tissue void, cavity, or space (for example, EPS 14) .
  • a surface tissue for example, parietal pleura
  • EPS 14 apparent or potential tissue void, cavity, or space
  • the surface tissue e.g., parietal pleura
  • the surface tissue e.g., parietal pleura
  • external pressure on needle distal opening 6a is higher than the fluid pressure in flowable composition lumen 7, therefore, no matter whether needle body opening 6b is connected to flowable composition lumen 7 or not, the flowable composition does not enter needle body opening 6b and/or exit needle distal opening 6a.
  • the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is the a fluidic communication. Within this range, the distal end of hollow puncture needle 6 has pierced into the apparent or potential tissue void, cavity, or space.
  • the device can be designed such that in the fluidic communication state, the fluid pressure in flowable composition lumen 7 is higher than the pressure inside the apparent or potential tissue void, cavity, or space (e.g., EPS) .
  • needle body opening 6b in the fluidic communication state, needle body opening 6b has already positioned inside flowable composition lumen 7, and due to a difference in the internal (e.g., in the apparent or potential tissue void, cavity, or space) and external (e.g., in flowable composition lumen 7) pressures, the flowable composition inside lumen 7 can flow into the apparent or potential tissue void, cavity, or space (e.g., EPS) through needle body opening 6b, the needle body passageway, and then needle distal opening 6a.
  • the apparent or potential tissue void, cavity, or space e.g., EPS
  • floating seal 3 moves distally due to the elastic engagement with the pressing element 2 (e.g., due to the pressure in the flowable composition lumen being higher than a backpressure at the needle distal opening in the EPS or an intercostal space) until the floating seal seals needle body opening 6b (e.g., as shown in FIGS. 4A-4B) .
  • the axial dimension of the needle body opening is no greater than the thickness of the floating seal.
  • the needle body opening can be completely sealed or blocked by the floating seal, at which time no more flowable composition exits needle distal opening 6a to enter the tissue void.
  • the floating seal blocks the needle body opening, only a portion of the total volume of flowable composition has exited needle distal opening 6a (e.g., as shown in FIG. 4A) . In some embodiments, when the floating seal blocks the needle body opening, the total volume of flowable composition in the lumen has exited needle distal opening 6a (e.g., as shown in FIG. 4B) .
  • the flowable composition when the needle body opening can be in the distal seal or in a tissue of a subject, the flowable composition will stop existing needle distal opening 6a (e.g., as shown in FIG. 4C) .
  • the distance between needle distal opening 6a and needle body opening 6b can be keep constant.
  • the distance between needle distal opening 6a and needle body opening 6b can be varied.
  • a needle having a suitable distance between needle distal opening 6a and needle body opening 6b can be selected based on a known or estimated depth of the tissue to be accessed.
  • stopper 1a is provided inside the syringe lumen and can be used to limit the forward movement of floating seal 3 in order to achieve precise injection, for example, injection of a pre-determined volume.
  • a method of providing intercostal nerve block comprising utilizing a system or device disclosed herein comprises two or more floating seals.
  • a first lumen is formed between floating seal 3b and the distal seal of the syringe barrel
  • a second lumen is formed between floating seal 3a and floating seal 3b.
  • the first lumen and the second lumen comprise the same flowable material.
  • the first lumen and the second lumen comprise different flowable compositions.
  • the first lumen and the second lumen comprise the same medicament (e.g., an anesthetic) in the same or different flowable carriers or excipients.
  • the first lumen and the second lumen comprise different medicaments (e.g., different anesthetics) in the same or different flowable carriers or excipients.
  • the first lumen comprises a medicament and the second lumen comprises a pharmaceutically acceptable carrier or excipient such as a saline, or vice versa.
  • the flowable compositions in the first lumen and the second lumen can be sequentially delivered to an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • the flowable compositions in the first lumen and the second lumen can be mixed in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • the flowable composition in the first lumen enters the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) in order to access and/or expand the tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • the flowable composition in the second lumen comprising a medicament can enter the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • tissue void, cavity, or space e.g., intercostal space or EPS
  • the flowable composition in the first lumen is delivered to the intercostal space or EPS.
  • FIG. 5A when needle distal opening 6a is in the intercostal space or EPS while needle body opening 6b is in the first lumen (between floating seal 3b and the distal seal of the syringe barrel) , the flowable composition in the first lumen is delivered to the intercostal space or EPS.
  • needle distal opening 6a can be held still in the intercostal space or EPS, when floating seal 3b moves distally and needle body opening 6b contacts the second lumen (between floating seal 3a and floating seal 3b) .
  • the flowable composition in the second lumen starts to be delivered to the intercostal space or EPS until a volume is delivered and/or floating seal 3a (or floating seal 3a and floating seal 3b together) blocks needle body opening 6b, as shown in FIG. 5C.
  • a set (e.g., predetermined) volume of the flowable composition in the first lumen and/or a set (e.g., predetermined) volume of the flowable composition in the second lumen can be delivered to the intercostal space or EPS.
  • the dimension of needle body opening 6b along the needle axis is greater than the thickness of floating seal 3b such that a first flowable composition (between floating seal 3b and the distal seal of the syringe barrel) and a second flowable composition (between floating seal 3b and floating seal 3a) can be sequentially and continuously delivered to intercostal space or EPS through the needle distal opening.
  • the dimension of needle body opening 6b along the needle axis is no greater than the thickness of floating seal 3a and floating seal 3b combined.
  • the dimension of needle body opening 6b along the needle axis is greater than the thickness of floating seal 3b and less than the thickness of floating seal 3a and floating seal 3b combined.
  • a system or device disclosed herein comprises one or more additional floating seals (e.g., a third floating seal, 3c) that are proximal to floating seal 3a, distal to floating seal 3b, and/or between floating seal 3a and floating seal 3b, such that a third flowable composition may be delivered before the first flowable composition, after the second flowable composition, or between the first and second flowable compositions.
  • additional floating seals e.g., a third floating seal, 3c
  • a system or device disclosed herein comprises two or more needle body openings. In some embodiments, a system or device disclosed herein comprises two or more needle body openings and two or more floating seals.
  • a system or device disclosed herein comprises two or more needle body openings and two or more floating seals.
  • FIG. 5D when needle distal opening 6a is in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) while needle body opening 6b1 is in the first lumen (between floating seal 3b and the distal seal of the syringe barrel) and needle body opening 6b2 is blocked by floating seal 3b, the flowable composition in the first lumen is delivered to the tissue (e.g., intercostal space or EPS) .
  • tissue e.g., intercostal space or EPS
  • needle distal opening 6a can be held still in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) , when floating seal 3b moves distally to block needle body opening 6b1, allowing needle body opening 6b2 to contact the second lumen (between floating seal 3a and floating seal 3b) .
  • tissue e.g., intercostal space or EPS
  • the flowable composition in the second lumen starts to be delivered to the tissue (e.g., intercostal space or EPS) until a volume is delivered and/or floating seal 3a (or floating seal 3a and floating seal 3b together) blocks needle body opening 6b2 (and/or needle body opening 6b1) as shown in FIG. 5F.
  • a set (e.g., predetermined) volume of the flowable composition in the first lumen and/or a set (e.g., predetermined) volume of the flowable composition in the second lumen can be delivered to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • EPS intercostal space
  • the distance between needle body opening 6b1 and needle body opening 6b2 along the needle axis is greater than the thickness of floating seal 3b such that a first flowable composition (between floating seal 3b and the distal seal of the syringe barrel) and a second flowable composition (between floating seal 3b and floating seal 3a) can be sequentially and continuously delivered to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) through the needle distal opening.
  • the distance between needle body opening 6b1 and needle body opening 6b2 along the needle axis is no greater than the thickness of floating seal 3a and floating seal 3b combined.
  • a system or device disclosed herein comprises one or more additional needle body openings (e.g., a third needle body opening, 6b3) that are proximal to needle body opening 6b2, distal to needle body opening 6b1, and/or between needle body openings 6b1 and 6b2, such that a third flowable composition may be delivered before the first flowable composition, after the second flowable composition, or between the first and second flowable compositions.
  • additional needle body openings e.g., a third needle body opening, 6b3
  • a third needle body opening, 6b3 that are proximal to needle body opening 6b2, distal to needle body opening 6b1, and/or between needle body openings 6b1 and 6b2, such that a third flowable composition may be delivered before the first flowable composition, after the second flowable composition, or between the first and second flowable compositions.
  • provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein, wherein the injection systems and devices can control the termination of the injection process.
  • a floating seal 3 moves forward due to the elastic engagement with a pressing element 2 until it seals needle body opening 6b. Once needle body opening 6b is sealed, the injection process is terminated.
  • the axial position of needle body opening 6b within the flowable composition lumen 7 limits the maximum injection volume of the injection device or system.
  • floating seal 3 has not contacted a wall at the syringe barrel distal closed end.
  • flowable composition lumen 7 is not completely emptied and there is still flowable composition between floating seal 3 and the wall at the syringe barrel distal closed end.
  • floating seal 3 when flowable composition lumen 7 needs to be emptied, floating seal 3 can be designed to seal needle body opening 6b when the floating seal contacts the syringe barrel distal closed end. In some embodiments, needle body opening 6b is at the distal end of flowable composition lumen 7. In some embodiments, floating seal 3 contacts a wall at the syringe barrel distal closed end and needle body opening 6b is blocked or sealed by floating seal 3 and/or the wall at the syringe barrel distal closed end. In some embodiments, flowable composition lumen 7 is emptied and there is no or little flowable composition between floating seal 3 and the wall at the syringe barrel distal closed end.
  • the flowable composition inside flowable composition lumen 7 gradually enters the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) .
  • the fluid pressure inside flowable composition lumen 7 reaches equilibrium with the pressure in the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) .
  • floating seal 3 no longer moves, due to the balance of forces.
  • additional force is needed on floating seal 3 in order to move it forward toward the syringe barrel distal closed end.
  • one, two, or more axially extending sliding grooves can be provided on a body wall of syringe barrel 1.
  • a slider matching a sliding groove can be provided on pressing element 2 (e.g., a slider can comprise a portion of pressing element 2 extending outside of syringe barrel 1) , thus increasing the upper limit of the movement distance or stroke of pressing element 2 since the movement is not limited by the proximal end of pressing element 2.
  • other drive structures can be used to move floating seal 3 further until it contacts a wall of the syringe barrel distal closed end. Exemplary drive structures are described below.
  • an axially extending sliding groove can be provided on a peripheral wall of syringe barrel 1, proximal to floating sealing 3.
  • a manual control part can include an pressing element 2’ (which may be in the form of a slider) that is slidingly matched with the sliding groove of the peripheral wall of the syringe barrel.
  • a portion of pressing element (e.g., slider) 2’ extends outside of the syringe barrel through the sliding groove, which is convenient for a user to manipulate.
  • floating sealing 3 and pressing element (e.g., slider) 2’ form an elastic connection.
  • floating sealing 3 and pressing element (e.g., slider) 2’ can engage each other via elastic piece (e.g., spring) 4’ as shown in Step 1, FIG. 2G, whereas floating sealing 3 and pressing element (e.g., slider) 2 can engage each other via elastic piece (e.g., spring) 4.
  • pressing element 2 may comprise a rod that is configured to insert through a space between portions of pressing element 2’s uch that pressing elements 2 and 2’ do not interfere with each other.
  • elastic piece (e.g., spring) 4 and elastic piece (e.g., spring) 4’ may function independently and do not interfere with each other.
  • spring 4 is smaller than spring 4’ , for instance, the average diameter of spring 4 can be can be smaller than the average diameter of spring 4’.
  • elastic piece 4’ is nested inside elastic piece 4.
  • Step 2 a force can be applied to pressing element 2 to move the needle distally while maintaining the position of floating sealing 3.
  • a force can be applied on pressing element 2’ to move it distally along the axial direction of the sliding groove on the peripheral wall of the syringe barrel.
  • elastic piece (e.g., spring) 4’ between floating sealing 3 and pressing element (e.g., slider) 2’ can be elastically compressed.
  • pressing element e.g., slider
  • floating sealing 3 can break the equilibrium of forces and continue to move distally until the volume of discharged flowable composition reaches a target volume.
  • pressing element e.g., slider
  • pressing element 2’ can be moved distally as shown in Step 4, FIG. 2G, to move floating sealing 3 further distally in order to discharge the flowable composition from the needle.
  • the injection system or device comprises an element configured for an operator to manually control movement of the floating seal using one or both hands.
  • the manual control element can be moved using one or more fingers, for example, one finger of the same hand holding the syringe barrel.
  • the manual control element is fixed to floating seal 3 and partially extends outside the syringe barrel.
  • the operator can drive further movement of floating seal 3 forward by moving the portion of the manual control element that extends outside the syringe barrel, until the expelled flowable composition volume reaches the target volume.
  • using the manual control element helps empty flowable composition lumen 7.
  • the injection device system or can achieve delivery (e.g., via injection) of a flowable composition of a defined volume with precision, and/or the ability to control the volume to be delivered.
  • the defined volume is a preset volume prior to the delivery.
  • the defined volume is one of multiple volumes that an operator can select during the delivery, and the delivered volume may be different from a preset volume.
  • axial stopper 1a is provided inside the syringe lumen and distal to floating seal 3, and is used to limit the forward movement of floating seal 3.
  • needle body opening 6b can be distal to axial stopper 1a, and floating seal 3 can move forward due to the elastic engagement with the pressing element 2.
  • floating seal 3 is moved to the position limited by axial stopper 1a. In some embodiments, when floating seal 3 moves to the position limited by axial stopper 1a, pressure in flowable composition lumen 7 is still no less than the pressure inside the apparent or potential tissue void, cavity, or space. In some embodiments, floating seal 3 can be pushed forward to the position limited by axial stopper 1a by the elastic resilience between floating seal 3 and pressing element 2, and there is no need to rely on additional driving structure or force to move floating seal 3 to the position limited by axial stopper 1a.
  • one or more additional driving structure or mechanism can be employed to further push forward floating seal 3.
  • the additional driving structure or mechanism can comprise a manual control element described herein (e.g., as shown in FIGS. 2A-2E) .
  • axial stopper 1a provides a mechanism for achieving fluid injection of set volumes.
  • provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems and devices described herein, wherein in some embodiments, the injection systems and devices can automatically control the timing of puncture and injection.
  • needle body opening 6b remains above (e.g., proximal to) flowable composition lumen 7.
  • corresponding structure (s) can be provided on the device to prevent early leakage before hollow puncture needle 6 punctures the tissue and/or before needle distal opening 6a reaches the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • tissue void, cavity, or space e.g., intercostal space or EPS
  • axially extending circular contacting element 1b can be formed at the syringe barrel distal closed end.
  • the axial length of circular contacting element 1b is set to be the same as the difference between the upper and lower limits of the pre-puncture length range of hollow puncture needle 6 (that is, the difference in needle pre-puncture lengths between when hollow puncture needle 6 pierces the syringe barrel distal closed end and when it starts puncturing the organism or tissue) .
  • the distal end of hollow puncture needle 6 is still within the axial length range of circular contacting element 1b, early leakage will not happen at needle distal opening 6a.
  • circular contacting element 1b can come into contact with the surface of the organism or tissue first to stabilize the medical puncturing device. Then, pressure can be applied to the pressing element 2 to start the puncture operation.
  • needle body opening 6b is at least partially connected to flowable composition lumen 7.
  • EPS tissue void, cavity, or space
  • the flowable composition in lumen 7 can enter the needle body passageway (via needle body opening 6b) of hollow puncture needle 6 in advance, removing at least part of the air that may be in the needle body passageway, thereby reducing the amount of air entering the apparent or potential tissue void, cavity, or space (e.g., EPS) .
  • EPS tissue void, cavity, or space
  • needle body opening 6b starts to connect with flowable composition lumen 7.
  • the needle body passageway of hollow puncture needle 6 has already been filled with the flowable composition, thereby eliminating or reducing the possibility of air entering the apparent or potential tissue void, cavity, or space (e.g., EPS) .
  • needle body opening 6b when the injection system or device is in the fluidic communication state, that is, when the length of hollow puncture needle 6 extending from the syringe barrel distal closed end is within the fluidic communication length range (or when the distal end of hollow puncture needle 6 has pierced into the apparent or potential tissue void, cavity, or space) , needle body opening 6b has been positioned inside flowable composition lumen 7, achieving maximum flow at needle body opening 6b and thereby increasing injection speed.
  • provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein, wherein in some embodiments, the injection systems or devices can prevent fluid backflow and/or reverse spill through needle body opening 6b.
  • tissue void, cavity, or space e.g., intercostal space or EPS
  • an elastic sheath 4 covering the outside of hollow puncture needle 6 can be provided within the actuation unit (e.g., elastic movement unit) , e.g., between the needle base and floating seal 3.
  • the actuation unit e.g., elastic movement unit
  • elastic sheath 4 can keep the needle body opening 6b sealed, thereby effectively avoiding backflow and/or reverse spill of the flowable composition, preventing contamination of the area proximal to floating seal 3, reducing fluid loss, and improving product reliability.
  • an elastic sheath 4 is not used to seal needle body opening 6b, but simply as an elastic engagement part between a floating seal 3 and a pressing element 2.
  • the elastic sheath 4 between the floating seal 3 and the pressing element 2 can become compressed, thereby forming elastic resilience between the floating seal 3 and the pressing element 2, which can in turn drive floating seal 3 forward.
  • the elastic engagement part between the floating seal 3 and the pressing element 2 can comprise or be a spring 5, which is attached to the floating seal 3 and the pressing element 2 at its two axial ends, respectively.
  • the attachment at either or both ends of the spring can be direct or indirect.
  • the attachment at either or both ends of the spring can be releasable or not releasable.
  • the spring, the floating seal, and the pressing element can be separately manufactured and then assembled in any suitable order.
  • any two or more of the spring, the floating seal, and the pressing element can be integral, e.g., made as one piece.
  • Spring 5 and the elastic sheath 4 can be implemented separately or in combination.
  • the elastic engagement between the floating seal 3 and the pressing element 2 can be achieved through other methods besides providing one or more elastic engagement parts.
  • the floating seal 3 and the pressing element 2 can be provided as a one-piece integrated actuation unit (e.g., elastic movement unit) .
  • a method disclosed herein comprises using a catheter guiding structure for guiding catheter 11 into the needle body passageway of hollow puncture needle 6 to be placed into a target site (e.g. in EPS) for continuous ICNB.
  • a catheter guiding structure is provided in a medical puncturing device disclosed herein.
  • the catheter guiding structure comprises an angled guiding groove 3a’ , which is provided in or engages floating seal 3 and extends towards hollow puncture needle 6 at an angle.
  • a flowable composition can enter and expand the apparent or potential tissue void, cavity, or space.
  • catheter 11 can be implanted through angled guiding groove 3a’ , needle body opening 6b, the needle body passageway of hollow puncture needle 6, and needle distal opening 6a into the expanded apparent or potential tissue void, cavity, or space.
  • angled guiding groove 3a’ can be provided as a groove through floating seal 3 in a proximal/distal direction, or as a non-through groove formed on a proximal surface of floating seal 3.
  • angled guiding groove 3a’ is a through groove.
  • the catheter guiding structure further comprises valve 9 provided in or engages angled guiding groove 3a’ , and the valve may be a one-way valve configured to open and close.
  • the valve comprises a plurality of leaflets configured to open or close the valve.
  • one-way valve 9 is closed and prevents a flowable composition inside flowable composition lumen 7 from leaking through the valve.
  • the plurality of leaflets of the valve in the presence of an opening force, the plurality of leaflets of the valve can be forced open so that catheter 11 can thread into needle body opening 6b through the opened valve.
  • the catheter guiding structure further comprises a guiding groove plug configured to be removably inserted in angled guiding groove 3a’ , and the guiding groove plug can be pulled out when catheter 11 needs to be implanted.
  • angled guiding groove 3a’ is a non-through groove. In some embodiments, the angled guiding groove is punctured directly by catheter 11 to be implanted. In some embodiments, the angled guiding groove is punctured by a piercing component other than the catheter, and catheter 11 can be threaded through the punctured opening into needle body opening 6b.
  • needle body opening 6b can be provided as an angled opening, which opens obliquely backwards, so that needle body opening 6b can align with angled guiding groove 3a’ , thereby precisely guiding catheter 11 through the angled guiding groove and into the needle body opening.
  • the catheter guiding structure comprises an angled guiding needle hole 6c which is formed or provided on the body wall of hollow puncture needle 6 and opens obliquely backwards.
  • angled guiding needle hole 6c remains proximal to floating seal 3, for example, when the medical puncturing device is in a fluidic communication state.
  • catheter 11 can be threaded into the needle body passageway of hollow puncture needle 6 through angled guiding needle hole 6c.
  • catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space (or an apparent or potential tissue void, cavity, or space that has been expanded with a flowable composition) through needle distal opening 6a.
  • the catheter guiding structure can further comprise valve 9 provided in or engages angled guiding needle hole 6c, and the valve may be a one-way valve configured to open and close.
  • the valve comprises a plurality of leaflets configured to open or close the valve.
  • one-way valve 9 in the absence of external force, one-way valve 9 is closed and prevents a flowable composition inside flowable composition lumen 7 from leaking through the valve.
  • the plurality of leaflets of the valve in the presence of an opening force, can be forced open so that catheter 11 can thread into a needle body passageway (which may be connected to or separate from the needle body passageway connecting needle body opening 6b and needle distal opening 6a) through the opened valve and angled guiding needle hole 6c.
  • the catheter guiding structure can further comprise needle hole plug 10 configured to be removably inserted in angled guiding needle hole 6c, and needle hole plug 10 can be pulled out for the implantation operation of catheter 11 to begin.
  • guiding needle hole 6c is connected needle distal opening 6a.
  • the needle body passageway connecting needle distal opening 6a and needle body opening 6b can be the same as or separate from the needle body passageway connecting needle distal opening 6a and guiding needle hole 6c.
  • guiding needle hole 6c is connected to a needle distal opening other than needle distal opening 6a connected to needle body opening 6b.
  • the needle body passageway connecting needle body opening 6b to a needle distal end can be completely separate from the needle body passageway connecting guiding needle hole 6c to a needle distal end.
  • the needle body passageway connecting needle body opening 6b to a needle distal end can be at least partially overlapping or in fluidic communication with the needle body passageway connecting guiding needle hole 6c to a needle distal end.
  • the catheter guiding structure comprises a central guiding groove 2c that is formed or provided on a proximal surface of a pressing element 2.
  • central guiding groove 2c comprises an aperture or can form an aperture in the center of the proximal surface of the pressing element 2.
  • central guiding groove 2c can be punctured to provide an aperture.
  • a needle proximal opening is provided on hollow puncture needle 6 and is aligned with central guiding groove 2c along the axis.
  • central guiding groove 2c when catheter 11 needs to be implanted, central guiding groove 2c can be punctured and catheter 11 can be threaded into a needle body passageway (which may be connected to or separate from the needle body passageway connecting needle body opening 6b and needle distal opening 6a) through the punctured opening of central guiding groove 2c and the needle proximal opening of hollow puncture needle 6.
  • catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space (or an apparent or potential tissue void, cavity, or space that has been expanded with a flowable composition) through a needle distal opening, such as needle distal opening 6a or a different needle distal opening.
  • provided herein is a method of providing an intercostal nerve block comprising using a kit comprising components configured to be assembled to form any of the injection systems or devices disclosed herein.
  • the kit for assembling an injection system or device comprises a puncture control module and a flowable composition storage module (e.g., a fluid storage module) .
  • the puncture control module and the flowable composition storage module are independently manufactured and/or provided.
  • the puncture control module comprises a first syringe unit, as well as an actuation unit (e.g., elastic movement unit) , and hollow puncture needle 6, which are provided inside a syringe barrel of the first syringe unit. It can be seen based on the embodiments disclosed herein that the puncture control module can further comprise other parts or components, such as elastic sheath 4 and spring 5.
  • the fluid storage module comprises a second syringe unit, flowable composition lumen 7 which is formed inside a syringe barrel of the second syringe unit, and a module packaging component which is removably provided at the proximal end of the second syringe unit.
  • a removable connection structure is formed between the first syringe unit and the second syringe unit.
  • the first syringe unit and the second syringe unit form syringe barrel 1 after being connected with each other. It can be seen based on the embodiments disclosed herein that the fluid storage module can further comprise other parts such as distal seal 8.
  • the puncture control module and the fluid storage module can be manufactured, assembled, and/or packaged separately, and then assembled with each other and optionally with other modules, components, and/or parts into the medical puncturing device disclosed herein.
  • the module packaging component is used to seal the proximal end of flowable composition lumen 7. In some embodiments, when assembling the puncture control module and the fluid storage module, the module packaging component can be removed.
  • a method of providing an intercostal nerve block comprising using a medical apparatus assembly and a system comprising the same.
  • the medical apparatus assembly comprises catheter 11 and the medical puncturing device comprising the catheter guiding structure disclosed herein.
  • catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space by the medical puncturing device.
  • the medical apparatus assembly described herein can have all of the technical effects provided by the medical puncturing device .
  • the medical apparatus assembly comprises hollow auxiliary guiding needle 12, which is matched to be used with the catheter guiding structure.
  • the needle body passageway diameter of auxiliary guiding needle 12 is large enough to accommodate catheter 11 and allow the catheter to thread in.
  • auxiliary guiding needle 12 is connected to the catheter guiding structure so that catheter 11 can sequentially go through the needle body passageway of auxiliary guiding needle 12, the catheter guiding structure, the needle body passageway of hollow puncture needle 6, and then into an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) through needle distal opening 6a.
  • the apparent or potential tissue void, cavity, or space is expanded with a flowable composition using a medical puncturing device disclosed herein, prior to the implant of the catheter.
  • the catheter is implanted as the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) is being expanded with a flowable composition using a medical puncturing device disclosed herein.
  • the catheter is implanted prior to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) being expanded with a flowable composition using a medical puncturing device disclosed herein.
  • the catheter guiding structure comprises through angled guiding groove 3a’ and one-way valve 9, which is embedded in angled guiding groove 3a’ and can be opened and closed.
  • needle body opening 6b is provided as an angled opening which opens obliquely backwards.
  • auxiliary guiding needle 12 is used to open one-way valve 9 so that the auxiliary guiding needle can be positioned inside angled guiding groove 3a’.
  • auxiliary guiding needle 12 advances into needle body opening 6b, and catheter 11 can sequentially advance through the needle body passageway of auxiliary guiding needle 12, the needle body passageway of hollow puncture needle 6, and the needle distal opening 6a and then be implanted into an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
  • an apparent or potential tissue void, cavity, or space e.g., intercostal space or EPS
  • the catheter guiding structure comprises a central guiding groove 2c.
  • a needle proximal opening is formed on hollow puncture needle 6, which is aligned with central guiding groove 2c along its axis.
  • central guiding groove 2c can be punctured by auxiliary guiding needle 12, such that auxiliary guiding needle 12 is axially aligned with the proximal opening of hollow puncture needle 6.
  • catheter 11 is threaded into a needle body passageway of hollow puncture needle 6 by sequentially advancing through a needle body passageway of auxiliary guiding needle 12, and a proximal opening of hollow puncture needle 6, and is then implanted into an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) through a needle distal opening such as needle distal opening 6a.
  • tissue void, cavity, or space e.g., intercostal space or EPS
  • a pressing element (e.g., pressing element 2 in FIG. 13B or FIG. 15B) comprises a threaded portion configured to be in threaded engagement with a control knob (e.g., the control knob 2a in FIG. 13B or FIG. 15B) .
  • the control knob can comprises an internal helical thread configured to engage a threaded portion of the pressing element.
  • the control knob can be rotated along a central axis, and through the threaded engagement, rotation of the control knob can drive translation of the pressing element in an axial direction.
  • the pressing element is moved along a helical path having a rotatory component and a translational component in an axial direction relative to the housing (or shell) (e.g., main housing 40 in FIG. 13B or FIG. 15B) .
  • the translational movement of the pressing element can be in a distal direction (e.g., towards the subject) or in a proximal direction (e.g., towards an operator) .
  • clockwise rotation of the control knob advances the pressing element in a distal direction
  • counterclockwise rotation of the control knob retracts the pressing element in a proximal direction.
  • counterclockwise rotation of the control knob advances the pressing element in a distal direction
  • clockwise rotation of the control knob retracts the pressing element in a proximal direction.
  • the pressing element is coupled to the syringe needle such that movement of the pressing element in an axial direction can lead to and/or allow movement of the syringe needle.
  • the pressing element and the syringe needle are directly coupled.
  • the pressing element and the syringe needle are indirectly coupled.
  • the pressing element and the syringe needle are elastically coupled.
  • the pressing element and the syringe needle elastically engage each other.
  • the pressing element and the syringe needle are coupled via an elastic connection.
  • the pressing element and the syringe needle are fixedly or removably coupled.
  • the pressing element and the syringe needle fixedly or removably engage each other.
  • the pressing element and the syringe needle are coupled via a fixed connection.
  • the connection between the pressing element and the syringe needle is sufficiently rigid such that the pressing element can drive advancement or retraction of the syringe needle.
  • the syringe needle is provided on a needle base or seat that is part of the pressing element or that is directly or indirectly coupled to the pressing element.
  • the needle base or seat is elongated axially and has a smaller cross-sectional area than the cross-sectional area of a portion of the pressing element that directly abuts the needle base or seat.
  • the needle base or seat is fixedly coupled to the pressing element. In some embodiments, the needle base or seat is integral to the pressing element. In some embodiments, the pressing element and the syringe needle are coupled via a needle base or seat that is sufficiently rigid in at least an axial direction, such that the pressing element can be moved axially distally or proximally in order to advance or retract the syringe needle relative to the housing or shell.
  • the pressing element e.g., pressing element 2 in FIG. 13B or FIG. 15B
  • the push shaft are coupled via an elastic element or piece, such as a spring.
  • the elastic element or piece is directly or indirectly coupled to the pressing element and/or the needle base or seat, or a portion thereof.
  • a portion e.g., a proximal end
  • the elastic element or piece can fixedly or removably engage a proximal portion of the needle base or seat.
  • the elastic element or piece is directly or indirectly coupled to the piston rod.
  • a portion (e.g., a distal end) of the elastic element or piece can directly or indirectly engage a portion (e.g., a proximal end) of the piston rod.
  • the elastic element or piece is fixedly or removably coupled to the piston rod.
  • the pressing element can be pushed distally relative to the housing in order to exert a force on the elastic element or piece (e.g., spring) , which in turn exerts a force on the piston rod, while the syringe needle is advanced distally by the pressing element.
  • the needle base or seat or a portion thereof is elongated axially, providing space between a portion of the pressing shaft and the piston rod configured to accommodate one or more elastic elements or pieces.
  • any two or more of the elastic elements or pieces can be arranged in tandem or in parallel.
  • Each elastic element or piece can be in the form of a flexible sheath or tube, a spring, an annular ring, an elongated rod or stripe, or any combination thereof.
  • the elastic element or piece can be arranged in parallel with the needle base or seat, and/or allow the needle base or seat to pass through.
  • an elongated needle base or seat can pass through the coils of a spring, where a proximal end of the spring engages a proximal portion of the elongated needle base or seat, and a distal end of the spring engages a proximal portion of the piston rod.
  • a distal portion of the elongated needle base or seat may be inserted in an internal lumen of the push shaft, and all or a portion of the syringe needle can be housed in the internal lumen of the push shaft.
  • the syringe needle prior to medical penetration using the syringe needle, is positioned in the internal lumen without pass through the distal end of the push shaft or the a seal attached thereto.
  • the pressing element e.g., comprising or connected to elongated needle base or seat
  • the pressing element can be configured to elastically engage the push shaft, a distal portion of the push shaft engaging a seal such that the seal can be configured as a floating seal.
  • a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein.
  • the injection systems and devices can achieve precise control of the syringe needle as it advances through parietal pleura, and is particular useful for accessing the EPS or an intercostal sulcus.
  • a device disclosed herein achieves precise access of EPS and/or an intercostal sulcus, while reducing or minimizing the risk of insufficient penetration and/or the risk of overshooting, e.g., the needle going too deep and damaging the surrounding tissues e.g., blood vessels and/or nerves.
  • the axial movement of the syringe needle can be controlled and reach micron precision as it advances in the EPS or intercostal space. In some examples, the axial movement of the syringe needle in the tissue can be set to be within any distance that meets the requirement of the tip of the syringe needle penetrating from parietal pleura into EPS or an intercostal space.
  • the axial movement distance of the syringe needle in the tissue can be set to be within a length of between about 0 and about 3.0 mm, e.g., between about 0 and about 0.2 mm, between about 0 and about 0.5 mm, between about 0 and about 0.8 mm, between about 0 and about 1.0 mm, between about 0 and about 1.2 mm, between about 0 and about 1.5 mm, between about 0 and about 1.8 mm or between about 0 and about 2.0 mm.
  • a device disclosed herein comprises a syringe needle of a size and configuration disclosed herein, e.g., the syringe needle having a bevel angle between about 0 degree and about 40 degrees, particularly between about 5 degrees and about 30 degrees, such as between about 15 degree and about 25 degrees.
  • the volume of the flowable composition to be delivered (e.g., via injection) using a device disclosed herein can be selected based on the conditions of a particular subject, and can be adjusted according to changes in the conditions.
  • the energy stored in the energy storage member e.g., spring
  • the energy stored in the energy storage member is automatically released to advance the floating seal, thereby discharging a volume of the flowable composition into an apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) .
  • an energy storage member e.g., spring
  • the devices and methods disclosed herein can achieve precise, safe, and controllable delivery of agents (e.g. anesthetics) into a target tissue of a subject, such as an intercostal space or EPS.
  • a flowable composition such as an anesthetic solution can be injected via the syringe needle of an injection device disclosed herein into an intercostal space or EPS, thereby injecting the flowable composition near the intercostal nerve to be blocked.
  • the distal tip of the syringe needle is inserted through surface tissues at a target site, and advanced beyond the parietal pleural and into EPS.
  • the composition such as anesthetic (s) can be delivered into the EPS.
  • the composition such as anesthetic (s) can be delivered through one or more openings of the syringe needle.
  • any suitable medical puncture device may be used in a method for providing an intercostal nerve block disclosed herein.
  • a medical puncture device shown in FIG. 12A may be used.
  • the medical puncture device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a puncture member such as a needle at the distal end of the syringe barrel, wherein the puncture member is not attached to the floating seal; and an actuation member configured to elastically engage the floating seal via an energy storage member such as a spring or the like and/or another suitable elastic member.
  • the puncture member comprises a distal end opening configured to form a fluidic communication with a lumen in the syringe barrel containing a flowable composition.
  • the medical puncture device further comprises a stopper in the syringe barrel, between the floating seal and the distal end of the syringe barrel. As shown in FIG. 12A, Step 1, the medical puncture device is in an initial state where the distal end opening of the puncture member has not entered a tissue of a subject, and the distance between the actuation member and the floating seal is x1. In FIG.
  • Step 2 the distal end opening of the puncture member has entered a relatively dense tissue (e.g., parietal pleura or muscles) , where the distance between the actuation member and the floating seal remains the same (x1) .
  • Step 3 the distal end opening of the puncture member remains in the relatively dense tissue, when the energy storage member is compressed, e.g., by reducing the distance between the actuation member and the floating seal from x1 to x2. This way, the energy storage member applies a force on the floating seal and maintains the force.
  • a pressure is in turn applied to the relatively dense tissue (e.g., parietal pleura or muscles) .
  • the relatively dense tissue e.g., parietal pleura or muscles
  • the puncture member is advanced distally into a less dense tissue, such as an apparent or potential tissue void, cavity, or space (for instance, an intercostal space for EPS) .
  • the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue, such as the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) .
  • the flowable composition is discharged from the distal end opening of the puncture member, energy in the energy storage member is released, thereby increasing the distance between the actuation member and the floating seal from x2 to x3, as shown in FIG. 12A, Step 5.
  • Distal movement of the floating seal in the syringe barrel may be stopped by the stopper, for example, in order to control the volume of the flowable composition delivered into the less dense tissue (e.g., an intercostal space or EPS) .
  • FIG. 12B Step 1
  • the medical puncture device is in an initial state where the distal end opening of the puncture member has not entered a tissue of a subject
  • Step 2 the energy storage member can be compressed, whereas the distal end opening of the puncture member remains outside a tissue and the floating seal is not advanced distally to discharge the flowable composition from the distal end opening.
  • Step 3 the distal end opening of the puncture member has entered a relatively dense tissue (e.g., parietal pleura or muscles) .
  • the energy storage member applies a force on the floating seal and maintains the force.
  • a pressure is in turn applied to the relatively dense tissue (e.g., parietal pleura or muscles) . Due to the tissue density, the relatively dense tissue (e.g., parietal pleura or muscles) applies a back pressure on the distal opening of the puncture member, thereby preventing discharge of the flowable composition into the tissue.
  • the distal end opening of the puncture member starts to enter a less dense tissue (e.g., EPS) , such as an apparent or potential tissue void, cavity, or space (e.g., EPS) , whereas the energy storage member remains compressed.
  • EPS less dense tissue
  • the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) .
  • Energy in the energy storage member is released, as the flowable composition is discharged from the distal end opening of the puncture member.
  • distal movement of the floating seal in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue (e.g., EPS) may be controlled.
  • the force applied onto the actuation member may be released as shown in FIG. 12B, Step 6.
  • the medical puncture device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a puncture member such as a needle at the distal end of the syringe barrel, wherein the puncture member is not attached to the floating seal; and an energy storage member configured to elastically engage the floating seal and the proximal end of the syringe barrel.
  • the medical puncture device further comprises a stopper in the syringe barrel, between the floating seal and the distal end of the syringe barrel.
  • the medical puncture device comprises a contacting member.
  • Step 1 the medical puncture device is in an initial state where the distal end opening of the puncture member in the contacting member which prevents discharge of the flowable composition from the distal end opening.
  • the energy storage member applies a force onto the floating seal, and through the flowable composition and the distal opening of the puncture member, a pressure is in turn applied to the contacting member. Due to the density of the contacting member, the back pressure on the distal opening of the puncture member prevents leakage of the flowable composition from the syringe barrel.
  • Step 2 the distal end opening of the puncture member has entered a relatively dense tissue (e.g., parietal pleura or muscles) , and the back pressure of the relatively dense tissue on the distal opening prevents leakage of the flowable composition into the relatively dense tissue (e.g., parietal pleura or muscles) .
  • Step 3 the distal end opening of the puncture member starts to enter a less dense tissue, such as an apparent or potential tissue void, cavity, or space (e.g., EPS) .
  • EPS tissue e.g., apparent or potential tissue void, cavity, or space
  • the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) .
  • Energy in the energy storage member is released, as the flowable composition is discharged from the distal end opening of the puncture member.
  • distal movement of the floating seal in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue may be controlled.
  • Step a-c the add-on devices are installed on a regular syringe and the flowable composition is drawn to the lumen.
  • Step d and e the syringe with add-on devices is in an initial state where the distal end opening of the needle is in the contacting member, which prevents discharge of the flowable composition from the distal end opening.
  • the first elastic element applies a force onto the pushing shaft, and through the flowable composition and the distal opening of the needle, a pressure is in turn applied to the contacting member. Due to the density of the contacting member 25, the back pressure on the distal opening of the needle prevents leakage of the flowable composition from the syringe barrel.
  • the distal end opening of the needle has entered a relatively dense tissue A (e.g., parietal pleural) , and the back pressure of the relatively dense tissue on the distal opening prevents leakage of the flowable composition into the tissue.
  • the contacting member, optionally the second elastic element, and optionally the connector can increase the resistance of advancing the needle distally, thereby reducing the risk of overshooting the needle.
  • the distal end opening of the needle starts to enter a less dense tissue B, such as an apparent or potential tissue void, cavity, or space (e.g., EPS) .
  • EPS tissue e.g., apparent or potential tissue void, cavity, or space
  • Step i due to the decrease in tissue density, the back pressure on the distal opening of the needle becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) .
  • Energy stored in the first elastic element is released, pushing the push shaft to move distally, while the contacting member blocks the distal movement of the floating seal 3. Therefore, the flowable composition is discharged from the distal end opening of the puncture member.
  • distal movement of the push shaft in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue may be controlled.
  • the method of providing an intercostal nerve block, the method of delivering a flowable composition near an intercostal nerve, or the method of delivering a flowable composition into an intercostal space/EPS/intercostal sulcus of a subject in need thereof as disclosed herein comprises injection (s) of the flowable composition (e.g. an anesthetic solution) as a single shot at one target site or multiple injections at different target sites.
  • injection (s) of the flowable composition e.g. an anesthetic solution

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

An injection system comprising: a syringe barrel (1) extending from a proximal end to a distal end; a push shaft (2b) extending from a proximal end to a distal end, wherein the distal end of the push shaft (2b) is positioned inside the syringe barrel (1); an actuation unit comprising an actuation member, an energy storage member and a floating seal (3), wherein the floating seal (3) is positioned inside the syringe barrel (1), forms a seal between the floating seal and the syringe barrel (1), and forms a lumen between the floating seal (3) and the distal end of the syringe barrel (1), and wherein the floating seal (3) can elastically engage with the actuation member via the energy storage member; and a needle (6) extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft (2b) is proximal to the floating seal (3); wherein a flowable composition is located within the lumen formed between the floating seal (3) and the distal end of the syringe barrel (1); wherein the proximal end of the needle (6) is: a) connected to the distal end of the syringe barrel (1), or b) connected to the distal end of the push shaft (2b), wherein the needle (6) further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.

Description

PRECISE AND CONTROLLED INJECTION FOR INTERCOSTAL NERVE BLOCK
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to International Application No. PCT/CN2022/131456, filed on Nov. 11, 2022, which are incorporated herein by reference in their entireties.
FIELD
This invention is in the technical field of medical devices for anesthesia, and in particular relates to a drug delivery and injection device for intercostal nerve block under a thoracoscope.
BACKGROUND
Intercostal nerve block (ICNB) is used for pain management in a variety of acute and chronic pain conditions affecting the thorax and upper abdomen, including breast and chest wall surgery. With the increasing popularity of minimally invasive surgical techniques such as thoracoscopy, blocking intercostal nerves (ICNs) performed by thoracic surgeons under their direct vision through thoracoscopy has gradually increased.
The thoracoscopic-assisted ICNB is usually performed by injecting a needle very close to the ICN to ensure its blocking effect, while the flexible needle is clamped by a holding forceps. When performing the puncture, the punctuation depth of the needle needs to be manually controlled, and a medical personnel has to rely on his or her experience to determine if the needle has entered the target site in the extrapleural space (EPS) (e.g. an intercostal sulcus) . If the injection needle is not accurately positioned, this procedure may result in a weaken or no effect in blocking ICNs, and/or even cause unnecessary injuries to ICNs or the surrounding important organs and large blood vessels in the thoracic cavity, e.g. the heart, aorta, vena cava, and azygos vein. Once punctured, these organs or tissues may cause massive bleeding and bring great risks to the patient’s surgery and health. As such, there is a need for improved devices and methods for medical penetration involving precise and multiple injections into the EPS to achieve a safe, accurate and effective ICNB. The present disclosure addressed this and other needs.
SUMMARY
To address at least one of the defects or shortcomings in existing devices and methods, the present disclosure in some aspects provides methods of precisely injecting medication (s) into EPS to achieve ICNB using a kind of medical puncturing/injection/syringe devices, assemblies or systems. The puncturing/injection/syringe devices, assemblies or systems of the present disclosure are especially useful for achieving precise control of puncturing depth and needle placement, as well as steady and multiple injections of defined volumes.
In some aspects, the present invention provides a method of providing an ICNB through a pressure-sensitive injection system which can achieve precise positioning of a target tissue void, cavity, or space and its needle tip is hidden until it reaches the target site. The puncturing/injection/syringe device, assembly or system of the present disclosure also allows a user to externally monitor placement of the needle tip so that it can precisely reach the target site (e.g. EPS or intercostal sulcus) without overshooting or damaging the surrounding tissues e.g., blood vessels and/or nerves. In some embodiments, the puncturing/injection/syringe device, assembly or system of the present disclosure has an integrated structure with a controllable pressure-sensing injector, which can automatically dose and administer medication (s) . In some embodiments, the puncturing/injection/syringe device, assembly or system of the present disclosure has a flexible head which allows accurate positioning as well as easy and close contact with the thoracic membrane (e.g. parietal pleural) .
In one aspect, the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting  the needle distal opening and the needle body opening; and wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel. In some embodiments, wherein said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the syringe barrel; and wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob. In some embodiments, the pressing element is cylindrical. In some embodiments, said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site. In some embodiments, the step of 2a) is after the step of 1) and prior to the step of 2) .
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 5) retracting the needle from the first target site.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of  6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a’) -2) -3’) -4) -5’) ,
wherein the step of 2a’) comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
wherein the step of 3’) comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject; and
wherein the step of 5’) comprises retracting the needle from the second target site.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
wherein the step of 2a”) comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
wherein the step of 3”) comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject; and
wherein the step of 5”) comprises retracting the needle from the third target site.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
wherein the step of 2a”’) comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
wherein the step of 3”’) comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject; and
wherein the step of 5”’) comprises retracting the needle from the next target site.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the energy storage member comprises a spring and/or an elastic sheath.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the elastic element comprises a spring and/or an elastic sheath.
In a further aspect, the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein a flowable composition is located:
a) within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, or
b) within the lumen between the floating seal and the distal end of the syringe barrel, wherein the proximal end of the needle is connected to the distal end of the push shaft, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) advancing the distal end of the needle toward an intercostal space of the subject; and
3) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the flowable composition flow from the lumen into the extrapleural space through the end opening of the needle.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the  intercostal space of the subject without discharging the flowable composition in the parietal pleura or the extrapleural space.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft. In some embodiments, wherein prior to said advancing the distal end of the needle, the body opening and the distal opening of the needle are both proximal to the floating seal. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is proximal to the floating seal, wherein the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein the end opening of the needle contacts tissue (s) in the intercostal space of the subject, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable  composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the body opening of the needle is in the lumen comprising the flowable composition, wherein the end opening of the needle is in the extrapleural space of the subject, and wherein the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the extrapleural space through the body opening of the needle, the needle body passageway, and the end opening of the needle.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, thereby allowing the floating seal to succumb to the opposing force and move distally without further advancing the needle to discharge the flowable composition into the extrapleural space through the end opening of the needle.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system  further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein further comprises a step of 2a) positioning the distal end of the syringe barrel toward a target site in the intercostal space after the step of 1) and prior to the step of 2) , wherein the contacting member directly contacts a surface tissue at the target site.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said method is performed under a thoracoscope.
In a further aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the subject suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
In an additional aspect, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives. In some embodiments, the one or more anesthetics are selected from the group consisting of ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, and mixtures thereof. In some embodiments, the additive is epinephrine.
In a further aspect, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal  between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
In an additional aspect, the present disclosure provides the injection system as disclosed herein further comprising a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
In a further aspect, the present disclosure provides the injection system as disclosed herein further comprising a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In an additional aspect, the present disclosure provides the injection system as disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
In a further aspect, the present disclosure provides the injection system as disclosed herein, wherein the energy storage member comprises a spring and/or an elastic sheath.
In an additional aspect, the present disclosure provides the injection system as disclosed herein, wherein the elastic element member comprises a spring and/or an elastic sheath.
In a further aspect, the present disclosure provides the injection system as disclosed herein, wherein the needle is a hollow puncture needle.
In an additional aspect, the present disclosure provides the injection system as disclosed herein, wherein the contacting member is a soft cushion.
In a further aspect, the present disclosure provides the injection system as disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob. In some embodiments, the push shaft is configured to pass through and optionally engage the cylindrical pressing element. In some embodiments, the pressing element is cylindrical.
In an additional aspect, the present disclosure provides the injection system as disclosed herein, wherein the lumen formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
In a further aspect, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle;
a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
a syringe handle positioned at the proximal end of the syringe barrel;
wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
In an additional aspect, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel;
a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
a syringe handle positioned at the proximal end of the syringe barrel;
wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings illustrate certain embodiments of the features and advantages of this disclosure. These embodiments are not intended to limit the scope of the appended claims in any manner.
FIGS. 1A-1E show schematic diagrams of the different stages of operating an exemplary medical puncturing device, for example, during the punctuation and injection into an extrapleural space or intercostal space 14. FIG. 1F show steps of operating an exemplary medical puncturing device without a contacting member (e.g., 1b shown in FIGS. 1A-1E) , where a distal seal (e.g., 8 shown in FIGS. 1A-1E) may directly contact a tissue.
FIGS. 2A-2F show schematic diagrams of the different stages of operating an exemplary medical puncturing device, for example, during the punctuation and injection into an extrapleural space or intercostal space 14. FIG. 2F shows steps of operating an exemplary medical puncturing device without a contacting member (e.g., 1b shown in FIGS. 2A-2E) , where a distal seal (e.g., 8 shown in FIGS. 2A-2E) may directly contact a tissue. FIG. 2G shows steps of operating an exemplary medical puncturing device comprising an additional pressing element 2’ engaging floating seal 3 via another spring 4’ , whereas a pressing element 2 engages floating seal 3 via spring 4.
FIGS. 3A-3F are partial structure diagrams of exemplary medical puncturing devices comprising floating seal 3 and one or more needle body openings (6b or 6b1, 6b2, and/or 6b3) and needle distal opening 6a.
FIGS. 4A-4C are partial structure diagrams of exemplary medical puncturing devices comprising floating seal 3 and needle body opening 6b.
FIGS. 5A-5F are partial structure diagrams of exemplary medical puncturing devices comprising floating seals 3a and 3b and one or more needle body openings (6b or 6b1 and/or 6b2) .
FIG. 6 shows a partial structure diagram of an exemplary medical puncturing device comprising a through angled guiding groove 3a’ and one-way valve 9.
FIG. 7 shows a partial structure diagram of an exemplary medical puncturing device comprising a through angled guiding groove 3a’ and one-way valve 9.
FIG. 8 shows a partial structure diagram of an exemplary medical puncturing device comprising a non-through angled guiding groove 3a’.
FIG. 9 shows a partial structure diagram of an exemplary medical puncturing device comprising an angled guiding needle hole 6c and one-way valve 9.
FIG. 10 shows a partial structure diagram of an exemplary medical puncturing device comprising an angled guiding needle hole 6c and needle hole plug 10.
FIGS. 11A-11B show schematic diagrams of implanting catheter 11 into an extrapleural space or intercostal space 14 using an exemplary medical apparatus assembly comprising a central guiding groove 2c. FIG. 11A shows a contacting member 1b that contacts a tissue, while FIG. 11B shows a distal seal 8 that contacts a tissue without an intervening contacting member.
Reference numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIGS. 1A-1E through FIGS. 11A-11B, and should not be considered limiting: 1 -syringe barrel; 1a -axial stopper; 1b -circular contacting element; 2b –push shaft; 2c -central guiding groove; 3 -floating seal; 4 -elastic sheath; 5 -spring; 6 -hollow puncture needle; 6a -needle distal opening; 6b -needle body opening; 6c -angled guiding needle hole; 7 -flowable composition lumen; 8 -distal seal; 9 -one-way valve; 10 -needle hole plug; 11 -catheter; 12 -auxiliary guiding needle; 13 -dense tissue (e.g., parietal pleural or muscles) ; 14 -extrapleural space or intercostal space.
FIGS. 12A-12C show schematic diagrams of the different stages of operating an exemplary medical puncturing device.
FIGS. 13A-13B show schematic diagrams of the appearance and structure of an exemplary injection system or medical puncturing device, for example, during the punctuation and injection of medications into an extrapleural space (EPS) or an intercostal space of a subject in need thereof. FIG. 13A shows the appearance diagram of the exemplary injection system or medical puncturing device. FIG. 13B shows the structure diagram of the exemplary injection system or medical puncturing device which comprises a syringe barrel 1 extending from a proximal end to a distal end; a push shaft 2b extending from a proximal end to a distal end, wherein the distal end of the push shaft 2b is positioned inside the syringe barrel 1; an actuation unit comprising a pressing element 2, a spring 5 and a floating seal 3, wherein the floating seal 3 is positioned inside the syringe barrel 1, forms a seal between the floating seal 3 and the syringe barrel 1, and forms a flowable composition lumen 7 between the floating seal 3 and the distal end of the syringe barrel 1, wherein the floating seal 3 can elastically engage with the pressing element 2 via the spring 5 and wherein the pressing element 2 is configured to engage a control knob 2b; a hollow puncture needle 6 extending from a proximal end to a distal end comprising an end opening, a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body  passageway connecting the needle distal opening and the needle body opening, wherein the proximal end of the needle 6 is connected to the distal end of the push shaft 2b; a distal seal 8 positioned inside the syringe barrel 1 and at the distal end of the syringe barrel 1; a contacting element 25 and an elastic element 26, wherein the contacting element 25 is configured to elastically engage with the distal end of the syringe barrel 1 via the elastic element 26; and a syringe handle 41; wherein the contacting element 25 may directly contact a tissue.
FIG. 14 shows schematic diagrams of the different steps of operating an exemplary injection system or medical puncturing device.
FIGS. 15A-15B show schematic diagrams of the appearance and structure of an exemplary injection system or medical puncturing device, for example, during the punctuation and injection of medications into an extrapleural space (EPS) or an intercostal space of a subject in need thereof. FIG. 15A shows the appearance diagram of the exemplary injection system or medical puncturing device. FIG. 15B shows the structure diagram of the exemplary injection system or medical puncturing device, which comprises a syringe barrel 1 extending from a proximal end to a distal end; a push shaft 2b extending from a proximal end to a distal end, wherein the distal end of the push shaft 2b is positioned inside the syringe barrel 1; an actuation unit comprising a pressing element 2, a spring 5 and a floating seal 3, wherein the floating seal 3 is positioned inside the syringe barrel 1, forms a seal between the floating seal 3 and the syringe barrel 1, and forms a flowable composition lumen 7 between the floating seal 3 and the distal end of the syringe barrel 1, wherein the floating seal 3 can elastically engage with the pressing element 2 via the spring 5, and wherein the pressing element 2 is configured to engage a control knob 2a; a hollow puncture needle 6 extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle 6 is connected to the distal end of the syringe barrel 1; a contacting element 25 and an elastic element 26, wherein the contacting element 25 is configured to elastically engage with the distal end of the syringe barrel 1 via the elastic element 26; and a syringe handle 41; wherein the contacting element 25 may directly contact a tissue..
FIG. 16 shows schematic diagrams of the different steps of operating an exemplary injection system or medical puncturing device.
Reference numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIGS. 13 to 16, and should not be considered  limiting: 1 -syringe barrel; 2 -Pressing element, 2a -Control knob, 2b -Push shaft; 3 -Floating seal; 5 -Spring; 6 -Hollow puncture needle; 7 -Flowable composition lumen; 8 -Distal seal; 25 -Contacting element; 26 -Elastic element; 40 -Main housing; 41 -Syringe Handle.
FIGS. 17 shows schematic diagrams of different stages of operating a syringe installed with contacting member and pressing unit.
Reference numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIG. 17, and should not be considered limiting: 1 -syringe barrel; 2b –push shaft; 3 –floating seal; 25 –contacting member; A –a denser tissue; B –a less dense tissue.
FIGS. 18A-18H show schematic diagrams of exemplary contacting members, second elastic elements, and connectors, as parts of add-on devices.
Reference numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIG. 18 through FIGS. 18A-18H, and should not be considered limiting: 1 -syringe barrel; 6 -hollow puncture needle (needle distal opening and needle body opening not shown) ; 25 –contacting member; 25a –first part of the contacting member; 25b –second part of the contacting member; 26 –second elastic element; 27 –connector.
FIGS. 19A-19B show schematic diagrams of exemplary pressing element as a part of add-on devices.
Reference numerals and exemplary corresponding structures are provided below for illustration only, for instance, with reference to FIG. 19 through FIGS. 19A-19B, and should not be considered limiting: 1 -syringe barrel; 2b –push shaft; 30 –pressing unit; 31 –first elastic element; 32 –stopper or locking element.
Reference numerals and exemplary corresponding structures are provided below for illustration only and should not be considered limiting:
1 -syringe barrel;
1a -axial stopper;
1b -circular contacting element;
2 -pressing element;
2’-additional pressing element;
2a –control knob;
2b –push shaft;
2c -central guiding groove;
3 -floating seal;
3a –first floating seal;
3b –second floating seal;
3a’ -angled guiding groove;
4 -elastic sheath;
4’-spring;
5 -spring;
6 -hollow puncture needle;
6a -needle distal opening;
6b, 6b1, 6b2 –needle body opening;
6c -angled guiding needle hole;
7 -flowable composition lumen;
8 -distal seal;
9 -one-way valve;
10 -needle hole plug;
11 -catheter;
12 -auxiliary guiding needle;
13 –dense tissue (e.g., parietal pleural or muscles)
14 -extrapleural space (EPS) or intercostal space;
25 -contacting member;
25a -first part of contacting member
25b -second part of contacting member
26 –elastic element;
27 –connector (e.g., connector in pressing unit) ;
30 -pressing unit;
31 –first elastic element (e.g., first elastic element in pressing unit) ;
32 –stopper or locking element (e.g., stopper or locking element in pressing unit) ;
40 –main housing;
41 –syringe handle.
DETAILED DESCRIPTION
Below is a detailed description of some embodiments of the present disclosure. It should be understood that the specific implementations described herein are meant to illustrate and explain the embodiments of the present disclosure, and should not be considered limiting.
It should be noted that, when not in conflict, the embodiments of the present disclosure and the features of the embodiments may be combined in any suitable manner.
In some embodiments, the positional descriptions of “front, ” “back, ” “forward, ” “backward, ” “distal, ” and “proximal, ” etc. are based on the perspective of an operator of the medical puncturing device or medical apparatus assembly. That is, when the operator is using the medical puncturing device or medical apparatus assembly, the direction pointing away and relatively far from the operator is the forward direction, and the direction pointing toward and relatively close to the operator is the backward direction.
As used herein, the words “proximal” and “distal” refer to the direction closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc. ) who would insert the medical device into the patient, with the tip-end (distal end) of the device inserted inside a patient's body first. Thus, for example, the end of a needle (e.g., microneedle) described herein first inserted inside the patient's body would be the distal end, while the opposite end of the needle (e.g., the end of the medical device being manipulated by the operator) would be the proximal end of the needle.
As used herein, the singular forms "a, " "an, " and "the" include plural referents unless the context clearly dictates otherwise. For example, "a" or "an" means "at least one" or "one or more. "  Likewise, the term “amember” is intended to mean a single member or a combination of members, “amaterial” is intended to mean one or more materials, or a combination thereof.
The term "about" or “approximately” as used herein refers to the usual error range for the respective value readily known to the skilled person in this technical field. Reference to "about" a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the relevant field. Alternatively, “about” can mean a range of up to 20%, up to 10%, up to 5%, or up to 1%of a given value.
Throughout the present disclosure, various aspects are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the present disclosure. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, where a range of values is provided, it is understood that each intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the present disclosure. The upper and lower limits of these smaller ranges may independently be comprised in the smaller ranges, and are also encompassed within the present disclosure, subject to any specifically excluded limit in the stated range. Where the stated range comprises one or both of the limits, ranges excluding either or both of those comprised limits are also comprised in the present disclosure. This applies regardless of the breadth of the range.
Use of ordinal terms such as “first” , “second” , “third” , etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. Similarly, use of a) , b) , etc., or i) , ii) , etc. does not by itself connote any priority, precedence, or order of steps in the claims. Similarly, the use of these terms in the specification does not by itself connote any required priority, precedence, or order.
As used herein, the terms “puncture member” , and “puncturing member” are used interchangeably to refer to an article configured to pierce tissue layers and deliver a substance to a target tissue layer, for example, a needle or a microneedle.
As used herein, the terms “medicament container” , and “medicament containment chamber” are used interchangeably to refer to an article (e.g., a syringe) configured to contain a volume of a substance, for example, a medicament or drug.
As used herein, the term “intercostal space” refers to the anatomic space between two adjacent ribs. Since there are twelve ribs on each side, there are eleven intercostal spaces, each numbered for the rib superior to it. An intercostal space comprises the external intercostal muscle, the internal intercostal muscle and the innermost intercostal muscle arranged in three  layers, as well as a intercostal neurovascular bundle which consists of the intercostal vein, artery and nerve, lying in between the internal intercostal muscle and the innermost intercostal muscle.
As used herein, the term “extrapleural space” or its abbreviation “EPS” refers to an anatomic region between the inner surface of the ribs and the parietal pleura. EPS can comprise adipose tissue (e.g. extrapleural fat) , loose connective tissue, lymph nodes, vessels, endothoracic fascia, and muscle tissue (e.g. innermost intercostal muscle) .
As used herein, the terms “intercostal sulcus” and “costal groove” are used interchangeably to refer to a groove on the inner surface of the inferior border of the rib, accommodating the intercostal neurovascular bundle which consists of the intercostal vessels and nerve.
All publications, comprising patent documents, scientific articles and databases, referred to in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication were individually incorporated by reference. If a definition set forth herein is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications and other publications that are herein incorporated by reference, the definition set forth herein prevails over the definition that is incorporated herein by reference.
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
I. Overview
Pain, once regarded as the fifth vital sign of the human body after respiration, pulse, blood pressure and body temperature, has received increasing attention due to its impact on physical and mental health as well as quality of life (Clara Scher et al. 2018) . The traditional thoracic surgery is an invasive surgery, creating large wounds and causing severe postoperative pain. Compared with the traditional thoracic surgery, thoracoscopic surgery has the advantages of shorter operation time, less intraoperative bleeding, quicker postoperative recovery, resulting in smaller wounds and fewer complications, and being more conducive to postoperative adjuvant treatment (Tianci Chai et al. 2019) . However, most patients still experience varying levels of pain after the thoracoscopic surgery.
Pain after thoracic surgery can cause patients refuse to cough, expectorate, or breathe deeply, which can lead to postoperative dysfunction of the respiratory system and induce complications, e.g. hypoxemia, hypercapnia, pulmonary infection, atelectasis, arrhythmia, thereby affecting the postoperative recovery, prolonging hospitalization time, increasing hospitalization costs, etc. Therefore, postoperative analgesia is a necessary treatment procedure.
One traditional method for postoperative analgesia after thoracic surgery is thoracic epidural block. However, its use is limited due to a risk of causing a spinal cord injury. Paravertebral block and percutaneous intercostal nerve block are also used for postoperative analgesia and they require ultrasound-guided percutaneous puncture to inject local anesthetics into the paravertebral space or the lower edge of the ribs to relieve pain. However, their clinical applications also have limitations, for example, there is a high requirement of technical expertise in positioning; it needs to be performed or guided by an experienced anesthesiologist, and at the same time, a bedside ultrasound is required, which increases human and material cost; and there is a high incidence rate of complications, e.g., iatrogenic pneumothorax, hematoma, inaccurate analgesic effect, and even serious local anesthetic toxicity.
ICNB is used for pain management in a variety of acute and chronic pain conditions affecting the thorax and upper abdomen, including breast and chest wall surgery. The ICNs innervate the major parts of the skin and musculature of the chest and abdominal wall (Anthony M.-H. Ho, et al. 2022) . Each of the ICNs originates from spinal nerve roots at the same vertebral level as the rib they travel with. Immediately on exiting the intervertebral foramen, the ICN lies between the parietal pleura and the innermost intercostal muscle. Within a few centimeters, the nerve dives between the internal and innermost intercostal muscles, where it remains until it terminates in the anterior chest wall or abdomen. (Caleb S. Baxter et al. 2022, Mario G Santamarina, et al. 2017) .
With the increased use of minimally invasive surgical techniques such as thoracoscopy, blocking ICNs performed by medical practitioners, e.g. thoracic surgeons under their direct vision through thoracoscopy has gradually increased. The thoracoscopic-assisted ICNB is usually performed by clamping the flexible syringe needle with a holding forceps (e.g. an oval forceps) , puncturing the parietal pleura and then reaching the target injection site. Aspiration is usually performed before an injection in order to avoid administration of the medication into blood vessels, and then multiple ICNBs can be performed in sequence (Andres Obeso 2018) . If  bleeding occurs during the puncture, electrocoagulation or compression using gauze is usually performed to stop the bleeding before puncturing and injecting again.
Performing ICNB under thoracoscopy requires extremely high operating skills for medical practitioner (s) and often requires cooperation of several people. When performing the puncture, the flexible needle is clamped by a surgical forceps. After finding the blocking point, the operator needs to adjust the position of the needle, pierce the pleura, and then manually push the syringe for administration of the medication. These procedures are repeated for injecting at other positions until the blocking process is completed. As such, the punctuation depth of the needle needs to be manually controlled, and medical practitioner (s) have to rely on their experience to determine if the needle has entered the target site in the EPS (e.g. an intercostal sulcus) . If the injection needle is not accurately positioned, this procedure may result in a weaken or no effect in blocking ICNs, and/or even cause unnecessary injuries to ICNs or the surrounding important organs and large blood vessels in the thoracic cavity, e.g. the heart, aorta, vena cava, and azygos vein. Once punctured, these organs or tissues may cause massive bleeding and bring great risks to the patient’s surgery and health. Therefore, it is of great clinical need and practical significance to provide improved injection devices and methods for medical penetration involving precise injections into the EPS at multiple target sites to achieve a safe, accurate and effective ICNB. The present disclosure addressed this and other needs.
To solve the existing technical problems such as those mentioned above, the present disclosure provides syringe or injection devices, kits, assemblies, or systems and methods thereof with at least the following advantages in achieving ICNB: 1) it can precisely locate and inject medication (s) into the EPS at one or more target sites to achieve an improved blocking effect; 2) the needle is in a hidden state until the syringe reaches the puncture site, minimizing potential damages to the surrounding tissues (e.g. vital organs and blood vessels) ; 3) it can has an integrated structure with a controllable pressure-sensing injector, which can quantitative dose and automatically administer medication (s) ; 4) it provides a flexible head which allows accurate positioning as well as easy and close contact with the thoracic membrane (e.g. parietal pleural) ; and 5) it provides an injection device or system that can be easily accessed through a surgical incision or Trocar allowing convenient and quick injection (s) of medication (s) (e.g. analgesic drugs) . The present invention significantly reduces surgery risks and operation difficulty, simplifies the operation process and improves efficiency in ICNB and pain management.
In some embodiments, the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system  further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; and wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel. In some embodiments, wherein said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the proximal end of the needle is connected to the distal end of the syringe barrel; and wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob. In some embodiments, the pressing element is cylindrical. In some embodiments, said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site. In some embodiments, the step of 2a) is after the step of 1) and prior to the step of 2) .
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 5) retracting the needle from the first target site.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a’) -2) -3’) -4) -5’) ,
wherein the step of 2a’) comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
wherein the step of 3’) comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject; and
wherein the step of 5’) comprises retracting the needle from the second target site.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
wherein the step of 2a”) comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
wherein the step of 3”) comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject; and
wherein the step of 5”) comprises retracting the needle from the third target site.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, further comprising a step of  8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
wherein the step of 2a”’) comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
wherein the step of 3”’) comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject; and
wherein the step of 5”’) comprises retracting the needle from the next target site.
In some embodiments, the present disclosure provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein a flowable composition is located:
a) within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, or
b) within the lumen between the floating seal and the distal end of the syringe barrel, wherein the proximal end of the needle is connected to the distal end of the push shaft, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) advancing the distal end of the needle toward an intercostal space of the subject; and
3) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the flowable composition flow from the lumen into the extrapleural space through the end opening of the needle.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the extrapleural space.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft. In some embodiments, wherein prior to said advancing the distal end of the needle, the body opening and the distal opening of the needle are both proximal to the floating seal. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is proximal to the floating seal, wherein the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said advancing the distal end of the needle, wherein the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein the end opening of the needle contacts tissue (s) in the intercostal space of the subject,  and wherein discharge of the flowable composition from the end opening of the needle is prevented.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; wherein the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein comprises said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the body opening of the needle is in the lumen comprising the flowable composition, wherein the end opening of the needle is in the extrapleural space of the subject, and wherein the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the extrapleural space through the body opening of the needle, the needle body passageway, and the end opening of the needle.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, wherein the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, thereby allowing the floating seal to succumb to the opposing force and move distally without further advancing the needle to discharge the flowable composition into the extrapleural space through the end opening of the needle.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the method of providing an intercostal nerve block in a subject in need thereof disclosed herein further comprises a step of 2a) positioning the distal end of the syringe barrel toward a target site in the intercostal space after the step of 1) and prior to the step of 2) , wherein the contacting member directly contacts a surface tissue at the target site.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein said method is performed under a thoracoscope.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the subject suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
In some embodiments, the present disclosure provides the method of providing an intercostal nerve block in a subject in need thereof disclosed herein, wherein the flowable composition comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives. In some embodiments, the one or more anesthetics are selected from the group consisting of ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof. In some embodiments, the flowable  composition further comprises one or more additives. In some embodiments, the additive is epinephrine. In some embodiments, the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
In some embodiments, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is connected to the distal end of the syringe barrel.
In some embodiments, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening. In some embodiments, the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
In some embodiments, the present disclosure provides the injection system as disclosed herein further comprising a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
In some embodiments, the present disclosure provides the injection system as disclosed herein further comprising a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In some embodiments, the present disclosure provides the injection system as disclosed herein, wherein the actuation member is a pressing element configured to engage a control knob. In some embodiments, the push shaft is configured to pass through and optionally engage the cylindrical pressing element. In some embodiments, the pressing element is cylindrical.
In some embodiments, the present disclosure provides the injection system as disclosed herein, wherein the lumen formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
In some embodiments, the present disclosure provides an injection system comprising: a syringe barrel extending from a proximal end to a distal end;
a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation  member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle;
a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
a syringe handle positioned at the proximal end of the syringe barrel;
wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
In some embodiments, the present disclosure provides an injection system comprising:
a syringe barrel extending from a proximal end to a distal end;
a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel;
a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured  to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
a syringe handle positioned at the proximal end of the syringe barrel;
wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
Other features and advantages of the present disclosure will be described in the detailed description below.
Some embodiments of the present disclosure will be described with reference to the several views of the accompanying drawings.
II. Systems and Devices
In some embodiments, described herein are systems and devices to assist in the insertion of a puncture member, for example, a needle or microneedle into the intercostal space and/or assist in injecting a medicament into target site (s) in the EPS to provide an ICNB. In some embodiments, described herein are systems and devices for controlling the insertion depth of a puncture member, such as, for example, a microneedle, into the intercostal space to deliver anesthetic agent (s) to, for example, position (s) near an intercostal nerve in EPS.
In some embodiments, provided herein is an injection system or device comprising a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening for a flowable composition (e.g. an anesthetic solution) to flow from the lumen and through the distal end of the syringe barrel via the needle, wherein the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal.
In some embodiments, the injection system disclosed herein further comprises a contacting member and optionally an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel and the distal end of the needle. In some embodiments, the  contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the contacting member directly contacts a surface tissue at the target site. In some embodiments, the contacting member and the elastic element engages with each other and provide an elastic buffer for the force applied to the needle, so that overshooting of the needle is prevented.
In some embodiments, provided herein is an injection system or device comprising a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening for a flowable composition (e.g. an anesthetic solution) to flow from the lumen and through the distal end of the syringe barrel via the needle, wherein the flowable composition is located within the lumen between the floating seal and the distal end of the syringe barrel, wherein the proximal end of the needle is connected to the distal end of the push shaft, and wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
In some embodiments, the injection system or device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a needle base proximal to the floating seal (e.g., the needle base is closer to an operator while the floating seal is closer to a subject) , and the floating seal and the needle base are configured to elastically engage each other. In some embodiments, the system further comprises a needle comprising a needle proximal end and a needle distal end, and the needle proximal end engages the needle base. In any of the embodiments herein, the needle proximal end can be fixed to the needle base or releasably attached to (e.g., inserted in) the needle base. In any of the embodiments herein, the needle can comprise: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, and (iii) a needle body passageway connecting the needle distal opening and the needle body opening. In any of the embodiments herein, the needle body opening can be proximal to the needle distal opening. In any of the embodiments  herein, the needle base can be configured to advance the needle distally toward the floating seal (e.g., when the needle distal end is proximal to the floating seal) , through the floating seal (e.g., when the needle distal end has entered or pierced into the floating seal) , and/or through the distal end of the syringe barrel.
In some embodiments, the present disclosure provides an injection system or device comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
In some embodiments, the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to  the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel; wherein the proximal end of the needle is connected to the distal end of the syringe barrel.
In some embodiments, the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel; wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening. In some embodiments, the injection system or device as disclosed herein further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
In some embodiments, the lumen as disclosed herein formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
In some embodiments, the energy storage member of the injection system or device as disclosed herein comprises a spring and/or an elastic sheath.
In some embodiments, the actuation member of the injection system or device as disclosed herein is a pressing element configured to engage a control knob. In some embodiments, the push shaft is configured to pass through and optionally engage the pressing element. In some embodiments, the pressing element is cylindrical.
In some embodiments, the injection system or device as disclosed herein further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and  wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the contacting member comprises a soft cushion. In some embodiments, the elastic element member comprises a spring and/or an elastic sheath.
In some embodiments, the injection system or device as disclosed herein further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In any of the embodiments disclosed herein, the needle can be a hollow puncture needle.
In some embodiments, the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob; a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle; a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and a syringe handle positioned at the proximal end of the syringe barrel; wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
In some embodiments, the injection system or device as disclosed herein comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal  and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob; a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening; a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel; a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and a syringe handle positioned at the proximal end of the syringe barrel; wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
In any of the embodiments disclosed herein, a proximal lumen and a distal lumen can be provided in the syringe barrel on different sides of the floating seal. In some embodiments, the distal lumen comprises a flowable composition (e.g., a medicament, a drug, and/or a pharmaceutically acceptable carrier or excipient such as a saline) , while the proximal lumen does not contain a non-gas flowable composition. The proximal lumen may be pre-filled with a gas, such as a sterilized air, and/or capable of communicating with the outside environment such as the atmosphere when the needle is advanced in and/or through the syringe barrel.
In some embodiments, the needles included in the embodiments described herein comprise a bevel, which allows for ease of penetration into a tissue such as the intercostal space or a space near intercostal nerve (s) with minimal collateral damage. In some embodiments, the needles disclosed herein can define a narrow lumen (e.g., gauge size greater than or equal to 27 gauge, 28 gauge, 29 gauge, 30 gauge, 32 gauge, 34 gauge, 36 gauge, etc. ) to allow for ICNB while minimizing the diameter of the needle track caused by the insertion of the needle. In some embodiments, the lumen and bevel aspect ratio of the needles described herein are the same or different from standard 22 gauge to 25 gauge needles commonly used for ICNB.
In some embodiments, the injection system or device disclosed herein comprises or is configured to be coupled to a medicament container containing a medicament, such as a gel or the like. The medicament container can be formed at least in part by the syringe barrel.
In some embodiments, a needle is coupled to a distal end of a medicament container (e.g., the needle is at the distal end of a syringe) , for example, as described in US 9,180,047, US 9,539,139, US 9,572,800, US 9,636,253, US 9,636,332, US 9,770,361, US 9,937,075, US 10,555,833, and US 10,517,756, which are incorporated herein by reference for all purposes. In some embodiments, prior to use, the needle is neither exposed at the distal end of the syringe barrel nor directly engages the distal end of the syringe barrel. In some embodiments, a needle is at least partially inside the syringe barrel. In some embodiments, the present disclosure utilizes a needle that is coupled to a floating seal inside a syringe barrel. In some embodiments, a needle is coupled to the distal end of a push shaft inside a syringe barrel.
In some embodiments, the proximal end of the needle is directly connected to the floating seal. In other embodiments, the proximal end of the needle is connected to the distal end of the push shaft via a needle base, and the injection system disclosed herein further comprises an energy storage member (e.g., one or more springs) configured to engage the needle base with the floating seal. In some embodiments, a distal end portion of the energy storage member is configured to be disposed within the syringe barrel and directly or indirectly engage with the floating seal. In some embodiments, the energy storage member is configured to produce a force on a proximal end portion of the floating seal. In some embodiments, the force is sufficient to move the floating seal within the syringe barrel to convey at least a portion of a substance from the medicament container (e.g., a flowable composition lumen) via the needle when a distal tip of the needle is disposed within an apparent or potential tissue void, cavity, or space. Furthermore, the force is insufficient to move the floating seal within the syringe barrel when the distal tip of the needle is disposed within a tissue adjacent to (e.g., above or below) the apparent or potential tissue void, cavity, or space (e.g., EPS or intercostal sulcus) . In some embodiments, the apparent or potential tissue void, cavity, or EPS has a first density and the adjacent tissue has a second density, higher than the first density. In some embodiments, the apparent or potential tissue void, cavity, or space produces a first backpressure and the adjacent tissue produces a second backpressure, higher than the first backpressure.
In some embodiments, a needle is coupled to a floating seal. In some embodiments, the proximal end of the needle is directly connected to the floating seal. In other embodiments, the proximal end of the needle is coupled to a push shaft inside a syringe barrel, wherein the push shaft is separately provided and is proximal to the floating seal. In some embodiments, the proximal end of a need disclosed herein is not coupled to the floating seal. In some embodiments, prior to use, the needle can be distal to the floating seal or can be through the floating seal, but the proximal end of the needle remains distal to the floating seal and is not fixedly attached to the floating seal.
In some embodiments, a medicament container (e.g., comprising a liquid) is provided between a proximal seal and a distal seal that each can move within a syringe barrel, for example, as described in US 2020/0069883 which is incorporated herein by reference for all purposes. In those devices, a force on the proximal side of the proximal seal is transmitted through the liquid to the distal seal which is attached to a needle.
In some other embodiments of the present disclosure, the medicament container (e.g., flowable composition lumen) is provided between a floating seal and the distal end of a syringe barrel (where the distal end does not move relative to the syringe barrel) . In some embodiments, the distal end of the syringe barrel comprises a distal seal and the flowable composition lumen is provided between the floating seal and the distal seal. In some embodiments, since the needle base is elastically connected to the floating seal (and therefore the flowable composition) , the elastic connection can facilitate the operator to apply the right force and buffer the impact of that force. In addition, an operator can hold the needle base still relative to the syringe barrel and observe the movement of the floating seal in order to assess the depth of needle placement. Once fluidic communication is established between the flowable composition and an apparent or potential tissue void, cavity, or space (e.g., EPS or intercostal sulcus) , and the pressure in the flowable composition is greater than that in the apparent or potential tissue void, cavity, or space (e.g., EPS or intercostal sulcus) , the floating seal can move as the flowable composition enters the tissue (e.g., EPS or intercostal space) , while the needle and the needle base do not have to move. Thus, precise needle placement and steady injection can be achieved and chances of needle overshooting can be effectively reduced or eliminated.
In some embodiments, which can be combined with any of the embodiments described above or below, a device disclosed herein is provided and/or packaged as an integrated device  comprising components engaging each other. In some embodiments, a device disclosed herein does not require an operator to assemble one or more of components prior to use. In some embodiments, a device disclosed herein comprises a pre-filled medicament container (e.g., flowable composition lumen) comprising a flowable composition, such as a medicament in the form of a liquid, a solution, a suspension, an emulsion, a gel, an oil, and/or an ointment, etc.
Flowable compositions include liquid (e.g., solution, suspension, or the like) or semi-solid compositions (e.g., gels) that are easy to manipulate and may be injected near the target tissue (e.g. an intercostal nerve) . “Flowable” includes formulations with a low viscosity or water-like consistency to those with a high viscosity, such as a viscoelastic or a paste-like material. In various embodiments, the flowability of the flowable composition allows it to conform to irregularities, crevices, cracks, and/or voids in the tissue site. In some embodiments, the flowable composition comprises one or more medications or drugs. In some embodiments, the flowable composition comprises one or more anesthetics for ICNB. Exemplary anesthetics include those known in the art. For example, they include but are not limited to, ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof. In some embodiments, the flowable composition comprises one or more anesthetics for ICNB, and one or more additives. In some embodiments, the additive comprises epinephrine. In some embodiments, the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
In some embodiments, which can be combined with any of the embodiments described herein, one or more components of a system or device disclosed herein are configured to be assembled with one another. For example, the system or device may comprise one or more syringe barrels.
In some embodiments, the system or device may comprise two or more units, such as a first syringe unit comprising: a first syringe barrel; a needle base in the first syringe barrel; and a  needle comprising a needle proximal end engaging the needle base and a needle distal end. In some embodiments, the system or device may comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising: a second syringe barrel; and a floating seal in the second syringe barrel, and when the first and second syringe units are engaged, the floating seal is configured to elastically engage the needle base. In some embodiments, the system or device may comprise a third syringe unit configured to engage a distal end of the second syringe unit, comprising a third syringe barrel enclosing a flowable composition (e.g. an anesthetic solution) , and the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition. In any of the embodiments herein, the system or device can comprise one or more syringe units, optionally a fourth syringe unit configured to engage a distal end of the third syringe unit.
In some embodiments, the system or device may comprise a first syringe unit comprising: a first syringe barrel; a needle base and a floating seal in the first syringe barrel elastically engaging each other, the needle base being proximal to the floating seal; and a needle comprising a needle proximal end engaging the needle base and a needle distal end, the needle comprising: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, the needle body opening being proximal to the needle distal opening, and (iii) a needle body passageway connecting the needle distal opening and the needle body opening. In some embodiments, the system or device may further comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising a second syringe barrel enclosing a flowable composition (e.g. an anesthetic solution) , and the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition. In any of the embodiments herein, the device can comprise one or more syringe units, optionally a third syringe unit configured to engage a distal end of the second syringe unit.
In some embodiments, the system or device may comprise a first syringe unit comprising: a first syringe barrel; a needle base in the first syringe barrel; and a needle comprising a needle proximal end engaging the needle base and a needle distal end, the needle comprising: (i) a needle distal opening, (ii) a needle body opening between the needle proximal end and the needle distal end, the needle body opening being proximal to the needle distal opening, and (iii) a needle body passageway connecting the needle distal opening and the needle  body opening. In some embodiments, the system or device may further comprise a second syringe unit configured to engage a distal end of the first syringe unit, comprising: a second syringe barrel; a floating seal in the second syringe barrel, and when the first and second syringe units are engaged, the floating seal is configured to elastically engage the needle base; and a flowable composition (e.g. an anesthetic solution) , and the needle base can be configured to advance the needle to place the needle proximal end and/or the needle distal end in the flowable composition. In any of the embodiments herein, the device can comprise one or more syringe units, optionally a third syringe unit configured to engage a distal end of the second syringe unit.
In some embodiments, the present disclosure provides a medical puncturing device comprising: a syringe barrel, wherein the syringe barrel comprises a distal end and a proximal open end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; and a floating seal, wherein the floating seal is positioned inside the syringe barrel and can elastically engage with the push shaft; a hollow puncture needle attached to the push shaft, wherein the hollow puncture needle comprises a needle distal opening and a needle body opening, and wherein the needle body opening is proximal to the floating seal (the needle distal opening can be proximal to the floating seal, e.g., the entire length of the needle is proximal to the floating seal, or alternatively, the needle can be through the floating seal such that the needle distal opening is distal to the floating seal) ; and a flowable composition (e.g. an anesthetic solution) lumen formed by the syringe barrel distal end, a syringe barrel lumen wall (e.g., a portion of the syringe barrel) , and the floating seal. In some embodiments, the distal end of the syringe barrel does not comprise a distal seal. In some embodiments, the distal end of the syringe barrel is connected to a distal seal positioned inside the syringe barrel.
In some embodiments, the medical puncturing device is configured such that the hollow puncture needle can be moved forward by pressing the push shaft. In some embodiments, the hollow puncture needle sequentially pierces the floating seal and the syringe barrel distal end, thus connecting the flowable composition lumen, the needle body opening, and the needle distal opening. In some embodiments, the hollow puncture needle is pre-inserted into the floating seal. For example, the needle distal opening can be in the floating seal and blocked by the floating seal, and the needle can be advanced through the flowable composition lumen to pierce the syringe barrel end. In some embodiments, the hollow puncture needle is pre-inserted  through the floating seal. In some embodiments, the distal end of the syringe barrel does not comprise a distal seal. In some embodiments, the distal end of the syringe barrel is connected to a distal seal positioned inside the syringe barrel. For example, the needle distal opening can be in the flowable composition lumen, while the needle body opening is proximal to the floating seal or in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3E) , and then the needle can be advanced to pierce the syringe barrel distal end. In some embodiments, the hollow puncture needle is pre-inserted through the floating seal and in or through the syringe barrel distal end. For example, the needle distal opening can be in a distal seal at the syringe barrel distal end (e.g., the needle distal opening can be blocked by the distal seal) or distal to the distal seal and/or the syringe barrel distal end, while the needle body opening is proximal to the floating seal (e.g., as shown in FIG. 3D, 6b1) , in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2) , or in the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) , and then the needle can be advanced through the syringe barrel distal end and exposing the needle distal opening for puncturing a tissue.
In some embodiments, which may be combined with any of the embodiments herein, the present disclosure provides an injection system or a medical puncturing device further comprising a contacting member extending from a proximal end to a distal end, wherein the contacting member can be assembled to a needle base connected to the distal end of the syringe barrel or can be assembled to the distal end of a syringe barrel, wherein the distal end of the contacting member is distal to the needle distal end opening and syringe the barrel distal end, and wherein the distal end of the contacting member can directly contact surface tissue (s) (e.g. parietal pleura) at a target site. In some embodiments, the contacting member can provide a buffer to reduce the risk of overshooting the needle. In some embodiments, the proximal end of the contacting member is in direct contact with the needle base. In some embodiments, as shown in FIG. 18A, after assembling the contacting member 25 to a regular syringe, the proximal end of the contacting member is in direct contact with the distal end of the syringe barrel 1. In some embodiments, after assembling the contacting member to a regular syringe, the proximal end of the contacting member is in direct contact with the needle base. In some embodiments, as illustrated in FIG. 18A, after assembling the contacting member to a regular syringe, the proximal end of the contacting member is in direct contact with the needle base or the syringe  barrel, and the contacting member 25 is made of one or more materials with low elastic modulus (e.g., Young’s modulus) . In some embodiments, the contacting member has a Young’s modulus of about 0.001 GPa to about 10 GPa.
In some embodiments, the injection system or medical puncturing device as disclosed herein further comprises a contacting member described herein and a second elastic element (e.g., 26 in FIG. 18C-18E) , wherein after assembling the contacting member to the distal end of the syringe barrel or a needle base which is connected to the distal end of the syringe barrel, the second elastic element elastically connects the proximal end of the contacting member to the distal end of the syringe barrel or the needle base. In some embodiments of the foregoing, as illustrated in FIG. 18B, the contacting element 25 has a high elastic modulus (e.g., Young’s modulus) , and is elastically engaged with the needle base or the distal end of the syringe barrel via the second elastic element 26. In some embodiments, the contacting element has a Young’s modulus of more than 10 GPa. In some embodiments, the contacting element has an elastic modulus larger than that of the second elastic element. In some embodiments, the contacting member comprises a first part and a second part, wherein the first part is distal to the second part. In some embodiments, the first part and the second part have different elasticity. In some embodiment, the first part is more elastic than the second part. In some embodiment, the first part is less elastic than the second part. In some embodiments, as illustrated in FIG. 18D, the contacting member 25 comprises a first part 25a and a second part 25b, wherein the first part 25a is more elastic than the second part 25b, the first part 25a is distal to the second part 25b, and proximal end of the second part 25b is connected to the needle base or syringe barrel via the second elastic element 26.
In some embodiments, the injection system or medical puncturing device as disclosed herein further comprises a contacting member described herein and a connector (e.g., 27 in FIG. 18F) , wherein after assembling the contacting member to the distal end of the needle, the connector connects the proximal end of the contacting member to the needle base or the distal end of the syringe barrel, and wherein the connector is less elastic than the contacting member. In some embodiments of the foregoing, the contacting member has a low elastic modulus. In some embodiments, the contacting member has a Young’s modulus of about 0.001 GPa to about 10 GPa. In some embodiments, the connector has a high elastic modulus. In some embodiments, the connector has a Young’s modulus of more than 10 GPa.
In some embodiments, the contacting member takes the form of a sheath or a sleeve around the needle. In some embodiments, the contacting member is an elastic sheath or sleeve around the needle (e.g., 25 in FIG. 18A) . In some embodiments, the contacting member takes the form of a block (e.g., 25 in FIG. 18B) . In some embodiments, the contacting member takes the form of a block and the distal end of the needle can pierce through the block. In some embodiments, the contacting member is an elastic block and the distal end of the contacting member has a surface shape adapted for surface tissues at a target injection position. For example, the distal end of the contacting member may have certain patterns (e.g., FIG. 18G) . For another example, the distal end of the contacting member may be oblique (e.g., FIG. 18H) . In some embodiments, the second elastic element takes the form of a spring (e.g., 26 in FIG. 18B and FIG. 18D) . In some embodiments, the second elastic element takes the form of a sheath or a sleeve around the needle (e.g., 26 in FIG. 18C and FIG. 18E) . In some embodiments, the second elastic element is an elastic sheath around the needle. In some embodiments, the connector takes the form of a sheath or a sleeve around the needle (e.g., 27 in FIG. 18F) .
In some embodiments, provided herein comprises an injection system or a medical puncturing device comprising:
a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening; wherein a flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal;
a contacting member extending from a proximal end to a distal end, and a pressing unit comprising a first elastic element;
wherein the distal end of the contacting member is distal to the needle distal end opening, and the distal end of the contacting member can directly contact surface tissues at a target injection position; and wherein the pressing unit elastically engages the push shaft and the syringe barrel via the first elastic element.
In some embodiments of the foregoing, the contacting member can be any of the contacting members described herein. In some embodiments, the injection device or the medical puncturing device may further comprise a second elastic element, wherein the second elastic element can be any of the second elastic elements described herein. In some embodiments, the injection device or the medical puncturing device may further comprises a connector, wherein the connector can be any of the connectors described herein.
In some embodiments of the foregoing, the pressing unit elastically engages the push shaft and the syringe barrel via the first elastic element. In some embodiments, the first elastic element takes the form of a spring (e.g., 31 in FIG. 19A and 19B) . In some embodiments, the first elastic element can apply a force on the push shaft and push the push shaft distally. In some embodiments, the pressing unit can restrict a movement of the syringe barrel of a regular syringe, especially a distal movement. In some embodiments, the pressing unit has a pair of stoppers (e.g., 32 in FIG. 19A) or a locking element (e.g., 33 in FIG. 19B) , and after assembling the pressing unit to asyringe, and the stoppers or locking element can prevent the movement of the syringe barrel distally.
Optionally, the medical puncturing device comprises a state wherein the flowable composition lumen, the needle body opening, and the needle distal opening are in fluidic communication. For example, in a fluidic communication state, the needle body opening can be proximal to the floating seal, while the needle distal opening is distal to the floating seal and in the flowable composition lumen. In the fluidic communication state, the needle and/or the floating seal can be moved. For example, the floating seal can be moved under the elastic resilience between the floating seal and the push shaft such as that the floating seal seals or blocks the needle body opening, thereby preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening.
Optionally, in the fluidic communication state, the floating seal can seal the needle body opening when it moves forward and contacts the syringe barrel distal end, thereby preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening. In some embodiments, the device or system of the present disclosure further comprises a distal seal inside the syringe barrel and at the distal end of the syringe barrel. In some embodiments, the floating seal can seal the needle body opening when it moves forward and contacts the distal seal at the distal end of the syringe barrel, thereby  preventing or terminating discharge of the flowable composition from the needle body opening and/or from the needle distal opening.
Optionally, in some embodiments, which can be combined with any of the embodiments described above or below, a stopper such as an axial stopper can be provided inside the syringe lumen, distal to the floating seal. In some embodiments, the stopper can be used to limit the forward movement of the floating seal.
In some embodiments, the injection system or medical puncturing device as disclosed herein comprises a fluidic communication state, wherein the flowable composition lumen is connected to the needle body opening and the needle distal opening. When the medical puncturing device is in the fluidic communication state, the needle body opening can be at the distal end of the stopper (e.g., as shown in FIG. 2D) , and the floating seal can move forward due to the elastic engagement with the push shaft.
Optionally, the injection system or medical puncturing device as disclosed herein comprises a manual control element, which is attached to the floating seal and is extended outside of the syringe barrel.
Optionally, the injection system or medical puncturing device as disclosed herein comprises a pre-puncture state after the hollow puncture needle pierces the syringe barrel distal closed end, a surface tissue puncture state, and a fluidic communication state after the puncture. In the pre-puncture state, the surface tissue puncture state, and the fluidic communication state, the length range of the hollow puncture needle extended outside of the syringe barrel distal closed end can correspond to a pre-puncture length range, a surface tissue puncture length range, and a fluidic communication length range, respectively, wherein: when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the pre-puncture length range, the needle body opening remains above the flowable composition lumen (e.g., the needle body opening can be proximal to and within the floating seal) ; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the surface tissue puncture length range, at least part of the needle body opening is connected to the flowable composition lumen; and/or, when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the fluidic communication length range, the needle body opening is positioned within the flowable composition lumen.
Optionally, an axially extended circular contacting element is formed at the syringe barrel distal closed end, wherein the difference between the upper and lower limits of the pre-puncture length range equals to the axial length of the circular contacting element.
Optionally, the elastic movement unit comprises a elastic sheath covering the outside of the hollow puncture needle. When the needle body opening is proximal to the floating seal, the elastic sheath can seal the needle body opening.
In some embodiments, the injection system or medical puncturing device as disclosed herein comprises a catheter guiding structure through which a catheter can be placed into a target site (e.g. in EPS) for continuous ICNB. In some embodiments, the catheter guiding structure is used to thread the catheter into a cavity (e.g., a needle body passageway connected to the needle distal opening and/or the needle body opening of the hollow puncture needle) .
Optionally, the catheter guiding structure comprises an angled guiding groove which is formed on the floating seal and extends towards the hollow puncture needle in an angle.
Optionally, the angled guiding groove is set to be through the floating seal in the front and back direction. In some embodiments, the catheter guiding structure further comprises a one-way valve which is embedded in the angled guiding groove and can be opened and closed, and/or a guiding groove plug inserted in the angled guiding groove.
Optionally, the angled guiding groove is set to be on the upper surface of the floating seal and is a non-through groove.
Optionally, the needle body opening is formed as an angled opening which opens obliquely backwards.
Optionally, the catheter guiding structure comprises an angled guiding needle hole formed on the body wall of the hollow puncture needle and opens obliquely backwards. In some embodiments, the medical puncturing device comprises a fluidic communication state wherein the flowable composition lumen is in connection with the needle body opening and the needle distal opening. In the fluidic communication state, the angled guiding needle hole is positioned proximal to the floating seal.
Optionally, the catheter guiding structure further comprises a one-way valve which is embedded in the angled guiding needle hole and can be opened and closed, or a guiding groove plug inserted in the angled guiding needle hole.
Optionally, the catheter guiding structure comprises a puncturable central guiding groove that is formed on the center of the proximal surface of a pressing element. In some embodiments, a needle proximal opening is formed on the hollow puncture needle and the needle proximal opening is set to axially align with the central guiding groove.
Optionally, the injection system or medical puncturing device as disclosed herein comprises a puncture control module and a fluid storage module that are independently manufactured and formed, wherein: the puncture control module comprises a first syringe unit and the elastic movement unit and the hollow puncture needle provided inside the first syringe unit; the fluid storage module comprises a second syringe unit, the flowable composition lumen formed inside the barrel of the second syringe unit, and a module packaging component which is removably packaged to the proximal end of the second syringe unit; and a removable connection structure is formed between the first syringe unit and the second syringe unit.
In another aspect, the present disclosure provides a medical apparatus assembly. In some embodiments, the medical apparatus assembly comprises a catheter and the medical puncturing device comprising a catheter guiding structure.
Optionally, the medical apparatus assembly further comprises a hollow auxiliary guiding needle which is matched to use with the catheter guiding structure. In some embodiments, when the auxiliary guiding needle is connected to the catheter guiding structure, the catheter can sequentially go through the needle body passageway of the auxiliary guiding needle and the catheter guiding structure and be threaded into the needle body passageway of the hollow puncture needle.
In some embodiments, when using the injection system or the medical puncturing device of the present disclosure, a user can first apply pressure to the push shaft to drive the hollow puncture needle, which is connected to floating seal, towards an intercostal space of a subject. When the needle distal opening of the hollow puncture needle reaches apparent or potential tissue gaps, cavity systems, and spaces (e.g, EPS or intercostal sulcus) , the flowable composition (e.g. an anesthetic solution) is no longer restricted against exiting the distal opening of the needle, and the opposing force (e.g., the resistance between the floating seal and the barrel) is sufficient to maintain the current position of the distal end of the needle while allow the flowable composition being injected into the tissue gaps (e.g., intercostal sulcus) . In some  embodiments, the flowable composition pressure in the flowable composition lumen can be made higher than the pressure inside the an apparent or potential tissue void, cavity, or space.
In some embodiments, when using the injection system or the medical puncturing device of the present disclosure, a user can first apply pressure to the push shaft to drive the hollow puncture needle sequentially through the floating seal and the syringe barrel distal closed end. When the needle distal opening of the hollow puncture needle reaches apparent or potential tissue gaps, cavity systems, and spaces, the needle body opening has already been positioned in the flowable composition lumen, and the floating seal has already formed an elastic engagement with the push shaft. In some embodiments, the pressure of the flowable composition in the flowable composition lumen can be made higher than the pressure inside the an apparent or potential tissue void, cavity, or spaces. At this time, the flowable composition inside the flowable composition lumen can flow into the an apparent or potential tissue void, cavity, or space through the needle body opening and the needle distal opening. During the injection process, just by maintaining the position of the push shaft, under the action of the elastic engagement between the floating seal and the push shaft, the flowable composition inside the flowable composition lumen can flow into the needle body opening (and then through the needle body passageway and out of the needle distal opening) , thereby achieving injection, penetration, and/or expansion of the an apparent or potential tissue void, cavity, or space. Additionally, the medical apparatus assembly as describe in the present disclosure can achieve implantation of catheter and other medical device through the medical puncturing device, e.g., through a catheter guiding structure and a cavity of the needle described herein.
In some embodiments, before the hollow puncture needle pierces into an apparent or potential tissue void, cavity, or space, the external pressure on the needle distal opening is higher than the pressure of a flowable composition in the flowable composition lumen, thus the flowable composition cannot flow out of the needle distal opening. Thus, by observing whether the floating seal moves forward due to the elastic engagement with the push shaft, it is possible to determine whether the hollow puncture needle has already pierced into an apparent or potential tissue void, cavity, or space, thereby reminding the operator of the current punctuation depth to ensure accurate puncture. Since the injection is controlled by fluid pressure changes in the flowable composition lumen, the injection process does not require an operator to manually  apply thrust or force during the injection process, thus fluctuations in the flow speed can be prevented and stable injection can be achieved.
III. Methods for Medical Penetration
In some aspects, provided herein is a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein a flowable composition is located:
a) within the lumen between the distal end of the push shaft and the floating seal,
wherein the proximal end of the needle is connected to the floating seal, or
b) within the lumen between the floating seal and the distal end of the syringe barrel,
wherein the proximal end of the needle is connected to the distal end of the push shaft, and
wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) advancing the distal end of the needle toward an intercostal space of the subject; and
3) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the flowable composition flow from the lumen into the extrapleural space through the end opening of the needle.
In some embodiments, provided herein is a method providing an intercostal nerve block in a subject in need thereof , comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation  member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening; wherein the distal end of the push shaft is proximal to the floating seal; wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In some embodiments, which can be combined with any of the injection systems and/or devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of providing an intercostal nerve block in a subject in need thereof. In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of delivering a flowable composition (e.g. an anesthetic solution) near an intercostal nerve in a subject in need thereof. In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below,  provided herein is a method of delivering a flowable composition into an intercostal space in a subject in need thereof. In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of delivering a flowable composition into an extrapleural space (EPS) in a subject in need thereof. In some embodiments, which can be combined with any of the injection systems and devices described above and below, and can comprise any of the procedures and steps described above below, provided herein is a method of delivering a flowable composition into an intercostal sulcus in a subject in need thereof.
In some embodiments, provided herein is a method comprising advancing the distal end of the needle toward an intercostal space of the subject, which comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the EPS.
In some embodiments, the injection system is configured such that the needle can be moved forward by applying a force to the push shaft. In some embodiments, the proximal end of the needle is connected to the floating seal, and said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft, which is transmitted through the flowable composition into the floating seal which is attached to a needle. In some embodiments, the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
In some embodiments, the proximal end of the needle is connected to the floating seal, and pierces the syringe barrel distal closed end when advanced towards an intercostal space. In some embodiments, the proximal end of the needle is connected to the floating seal, and the distal end of the needle is distal to the distal end of the syringe barrel before being advanced.
In some embodiments, the proximal end of the needle is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and the needle sequentially pierces the floating seal and the syringe barrel distal closed end (or a distal seal which is located inside the syringe barrel and at the syringe barrel distal end and then the syringe barrel closed end) , thus connecting the flowable  composition lumen, the needle body opening, and the needle distal opening. In some embodiments, the needle is pre-inserted into the floating seal. For example, the needle distal opening can be in the floating seal and blocked by the floating seal, and the needle can be advanced through the flowable composition lumen to pierce the syringe barrel distal closed end (or pierce the distal end disclosed herein first and then the syringe barrel distal closed end) . In some embodiments, the hollow puncture needle is pre-inserted through the floating seal. For example, the needle distal opening can be in the flowable composition lumen, while the needle body opening is proximal to the floating seal or in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3E) , and then the needle can be advanced to pierce the syringe barrel distal closed end (or pierce the distal end disclosed herein first and then the syringe barrel distal closed end) . In some embodiments, the needle is pre-inserted through the floating seal and in or through the syringe barrel distal closed end. For example, the needle distal opening can be in a distal seal at the syringe barrel distal closed end (e.g., the needle distal opening can be blocked by the distal seal) or distal to the distal seal and/or the syringe barrel distal closed end, while the needle body opening is proximal to the floating seal (e.g., as shown in FIG. 3D, 6b1) , in the floating seal (e.g., the needle body opening can be blocked by the floating seal as shown in FIG. 3D, 6b2) , or in the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) , and then the needle can be advanced through the syringe barrel distal closed end and exposing the needle distal opening for puncturing a tissue.
In some embodiments, provided herein is a method comprising advancing the needle distally and into the intercostal space of a subject without discharging a flowable composition (e.g. an anesthetic solution) . In some embodiments, the injection system is configured such that when moving the needle distally and into the intercostal space of a subject, no fluid is discharged into the parietal pleura or the EPS.
In some embodiments, wherein the needle is connected to the floating seal, when advancing the distal end of the needle towards the intercostal space of a subject, the flowable composition arranged in the lumen is restricted from being exiting the lumen through the needle distal end because the tissue in contact with (e.g., the parietal pleura) restricts the flow of the flowable composition from the opening at the distal end of the needle. In some embodiments, said advancing the distal end of the needle toward an intercostal space of the subject comprises advancing the push shaft, and floating seal, and the distal end of the needle together towards an  intercostal space of the subject, therefore the volume of the flowable composition lumen remains substantially the same.
In some embodiments, when the proximal end of the needle is connected to the distal end of the push shaft via a needle base, and the needle base and the floating seal are configured to elastically engage each other, and when advancing the distal end of the needle towards the intercostal space of a subject, the body opening of the needle is proximal to the floating seal and the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, wherein discharge of the flowable composition from the needle end opening is prevented. In some embodiments, when advancing the distal end of the needle towards the intercostal space of a subject, the body opening and the end opening of the needle are both distal to the floating seal and in the lumen comprising the flowable composition, wherein discharge of the flowable composition from the needle end opening is prevented. In some embodiments, when advancing the distal end of the needle towards the intercostal space of a subject, the body opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and the end opening of the needle contacts a surface tissue at a target site in the intercostal space of the subject, wherein discharge of the flowable composition from the needle end opening is prevented because of pressure from the surface tissue in the target site (e.g., the parietal pleura) . Optionally, the medical puncturing device comprises a state wherein the flowable composition lumen, the needle body opening, and the needle distal opening are in fluidic communication. For example, in a fluidic communication state, the needle body opening can be proximal to the floating seal, while the needle distal opening is distal to the floating seal and in the flowable composition lumen. In the fluidic communication state, the needle and/or the floating seal can be moved. For example, the floating seal can be moved under the elastic resilience between the floating seal and the pressing element such as that the floating seal seals or blocks the needle body opening, thereby preventing or terminating discharge of the flowable composition (e.g. an anesthetic solution) from the needle body opening and/or from the needle distal opening. Optionally, in the fluidic communication state, the floating seal can seal the needle body opening when it moves forward and contacts the syringe barrel distal closed end, thereby preventing or terminating discharge of the flowable composition (e.g. an anesthetic solution) from the needle body opening and/or from the needle distal opening.
In some embodiments, provided herein is a method comprising continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS, allowing the flowable composition flow into the EPS through the end opening of the needle. In some embodiments, the injection system is configured such that the flowable composition is discharged when the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS.
In some embodiments, the injection system is configured such that the flowable composition is located within the lumen between the distal end of the push shaft and the floating seal, and the proximal end of the needle is connected to the floating seal, and when the distal end of the needle extends beyond the parietal pleura of the subject and into the EPS, the floating seal succumbs to the opposing force and moves distally without the needle being actively advanced, so that the flowable composition is discharged into the EPS through the end opening of the needle.
In some embodiments, the injection system is configured such that the body opening of the needle is in the lumen comprising the flowable composition, the end opening of the needle extends beyond the parietal pleura of the subject and into the EPS, and the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the EPS through the body opening of the needle, the needle body passageway, and the end opening of the needle.
In some embodiments, the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is:
a) connected to the distal end of the syringe barrel, or
b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the elastic element comprises a spring and/or an elastic sheath. In some embodiments, the energy storage member comprises a spring and/or an elastic sheath. In some embodiments, the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel. In some embodiments, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a contacting member and an elastic  element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the elastic element comprises a spring and/or an elastic sheath.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
In some embodiments, the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel; and
wherein the proximal end of the needle is connected to the distal end of the syringe barrel;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the elastic element comprises a spring and/or an elastic sheath. In some embodiments, the energy storage member comprises a spring and/or an elastic sheath. In some embodiments, the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel. In some embodiments, the injection system further comprises a distal seal, and the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel. In some embodiments, said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
In some embodiments, the present invention provides a method of providing an intercostal nerve block in a subject in need thereof comprising:
1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
wherein the distal end of the push shaft is proximal to the floating seal;
wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
2) controlling the actuation member to compress the energy storage member without moving the floating seal;
3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element. In some embodiments, the elastic element comprises a spring and/or an elastic sheath. In some embodiments, the energy storage member comprises a spring and/or an elastic sheath. In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel. In some embodiments, the method of providing an intercostal nerve block as disclosed herein, wherein said advancing the distal end of the needle toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
In some embodiments, the actuation member as disclosed herein is a pressing element configured to engage a control knob. In some embodiments, the pressing element is cylindrical. In some embodiments, said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
In some embodiments, the method of providing an intercostal nerve block in a subject in need further comprises a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the  step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site. In some embodiments, the step of 2a) is after the step of 1) and prior to the step of 2) . In some embodiments, the method of providing an intercostal nerve block in a subject in need further comprises further comprising a step of 5) retracting the needle from the first target site.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein further comprises a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a-2) -3’) -4) -5’) ,
wherein the step of 2a’) comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
wherein the step of 3’) comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject; and
wherein the step of 5’) comprises retracting the needle from the second target site.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein further comprises a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) ,
wherein the step of 2a”) comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
wherein the step of 3”) comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject; and
wherein the step of 5”) comprises retracting the needle from the third target site.
In some embodiments, the method of providing an intercostal nerve block as disclosed herein further comprises a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) ,
wherein the step of 2a”’) comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
wherein the step of 3”’) comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject; and
wherein the step of 5”’) comprises retracting the needle from the next target site.
In some embodiments, the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprising: step 1) providing the exemplary injection system or medical puncturing device as seen in FIGS. 13 and 14; step 2) positioning the injection system or medical puncturing device to make the contacting member 25 contact a surface tissue at a first target site in the intercostal space, and controlling the pressing element 2 (e.g. by dialing the control knob 2a to actuate the pressing element 2) to compress the spring 5 without moving the floating seal 3; step 3) advancing the distal end of the needle 6 toward the first target site in the intercostal space by applying a force to the push shaft 2b without discharging the flowable composition from the flowable composition lumen 7, and continuing advancing the distal end of the needle 6 until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the spring 5 to release energy which makes the floating seal 3 move distally and thereby automatically makes the flowable composition flow into the extrapleural space through the end opening of the needle 6, and step 4) retracting the needle 6 from the first target site, and moving to the next target site and repeating the steps 1) -4) above for one or more rounds as needed until all of the target injection points are injected with the flowable composition (e.g. an anesthetic solution for ICNB) , and optionally removing the injection system or medical puncturing device from the subject.
In some embodiments, the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprising: step 1) providing the exemplary injection system or medical puncturing device as seen in FIGS. 15 and 16; step 2) positioning the injection system or medical puncturing device to make the contacting member 25 contact a surface tissue at a first target site in the intercostal space, and controlling the pressing element 2 (e.g. by dialing the control knob 2a to actuate the pressing element 2) to compress the spring 5 without moving the floating seal 3; step 3) advancing the distal end of the needle 6 toward the first target site in the intercostal space by controlling the syringe handle 41 to compress the elastic element 26 and thereby advancing the distal end of the needle 6 to pierce through the contacting member 25 and into the parietal pleura of the subject without discharging the flowable composition from the flowable composition lumen 7, and continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the spring 5 to release energy which makes the floating seal 3 move distally and  thereby automatically makes the flowable composition flow into the extrapleural space through the end opening of the needle, and step 4) retracting the needle 6 from the first target site, and moving to the next target site and repeating the steps above for one or more rounds as needed until all of the target injection points are injected with the flowable composition (e.g. an anesthetic solution for ICNB) , and optionally removing the injection system or medical puncturing device from the subject.
In some embodiments, the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein, the method of delivering a flowable composition near an intercostal nerve of a subject in need thereof as disclosed herein, or the method of delivering a flowable composition into an intercostal space/an EPS/an intercostal sulcus of a subject in need thereof as disclosed herein is performed under a thoracoscope.
In some embodiments, the subject as disclosed herein suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
In some embodiments, the flowable composition as disclosed herein comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives. In some embodiments, said one or more anesthetics are anesthetics known in the art. In some embodiments, said one or more anesthetics comprise ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, bupivacaine, levobupivacaine, marcaine, naropin, sensorcaine or any combination thereof. In some embodiments, the additive comprises epinephrine. In some embodiments, the additive (s) comprise pain relievers known in the art, for example, including but not limited to alpha-2 agonists (including but not limited to, clonidine, dexmedetomidine, dexamethasone, and tizanidine) ; opioids (including but not limited to, oxycodone, oxymorphone, hydrocodone, hydromorphone, fentanyl, morphine, codeine, methadone, tramadol, and buprenorphine) ; and non-steroidal anti-inflammatory drugs (NSAIDs) (including but not limited to COX-1 inhibitors, COX-2 inhibitors, COX-1+2 inhibitors, ketorolac, diclofenac, parecoxib, and ibuprofen) .
Optionally, the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprises providing the injection system which is further configured such that a stopper such as an axial stopper can be provided inside the syringe lumen, distal to the floating seal. In some embodiments, the stopper can be used to limit the forward movement of the floating seal. In some embodiments, the injection system comprises a fluidic  communication state, wherein the flowable composition lumen is connected to the needle body opening and the needle distal opening. When the medical puncturing device is in the fluidic communication state, the needle body opening can be at the distal end of the stopper (e.g., as shown in FIG. 2D) , and the floating seal can move forward due to the elastic engagement with pressing element. Optionally, the injection system comprises a manual control element, which is attached to the floating seal and is extended outside of the syringe barrel.
Optionally, the method of providing an intercostal nerve block to a subject in need thereof as disclosed herein comprises providing the injection system which comprises a pre-puncture state after the needle pierces the syringe barrel distal closed end, a surface tissue puncture state, and a fluidic communication state after the puncture. In the pre-puncture state, the surface tissue puncture state, and the fluidic communication state, the length range of the hollow puncture needle extended outside of the syringe barrel distal closed end can correspond to a pre-puncture length range, a surface tissue puncture length range, and a fluidic communication length range, respectively, wherein: when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the pre-puncture length range, the needle body opening remains above the flowable composition lumen (e.g., the needle body opening can be proximal to and within the floating seal) ; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the surface tissue puncture length range, at least part of the needle body opening is connected to the flowable composition lumen; and/or when the length of the of the hollow puncture needle extended outside of the syringe barrel distal closed end is within the fluidic communication length range, the needle body opening is positioned within the flowable composition lumen.
Optionally, an axially extended circular contacting element is formed at the syringe barrel distal closed end, wherein the difference between the upper and lower limits of the pre-puncture length range equals to the axial length of the circular contacting element.
Optionally, the elastic movement unit comprises a elastic sheath covering the outside of the hollow puncture needle. When the needle body opening is proximal to the floating seal, the elastic sheath can seal the needle body opening.
In some embodiments, provided herein is a method of delivering a flowable composition near an intercostal nerve of a subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an intercostal space of a  subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an EPS of a subject in need thereof. In some embodiments, provided herein is a method of delivering a flowable composition into an intercostal sulcus of a subject in need thereof. In some embodiments, provide herein is a method of providing an intercostal nerve block in a subject in need thereof by delivering one or more anesthetics into an intercostal space. In some embodiments, one or more anesthetics are preloaded in the flowable composition lumen of the injection system or device as described herein. After the tip of the needle of the injection device or system extends beyond parietal pleura of the subject and into an EPS, one or more anesthetics are automatically injected to the EPS. Additional details of the device, system, and method are disclosed below.
As shown in FIGS. 1-11B, in some embodiments the present disclosure provides a method of providing an intercostal nerve block by utilizing a medical puncturing or penetration device which comprises syringe barrel 1, an actuation unit (e.g., an elastic movement unit for pushing a needle) , hollow puncture needle 6, and flowable composition lumen 7. In some embodiments, syringe barrel 1 comprises a distal closed end and a proximal open end. In some embodiments, syringe barrel 1 can be designed to have two open ends in an axial direction, and sealing of the distal end can be achieved by installing distal seal 8 at the distal opening of syringe barrel 1. In some embodiments, distal seal 8 can be made of a material that can be punctured by hollow puncture needle 6, such as rubber or the like.
In some embodiments, the actuation unit (e.g., elastic movement unit) as disclosed herein comprises a pressing element 2 and a floating seal 3, where the floating seal 3 sealingly engages an inside wall of the syringe barrel and is configured to move in an axial direction, e.g., toward the distal end or the proximal end of the syringe barrel. In some embodiments, the pressing element 2 or a portion thereof is located outside the proximal opening of the syringe barrel, so that an operator can press on the pressing element or portion thereof manually. In some embodiments, floating seal 3 elastically engages the pressing element 2, and when pressure is applied on the pressing element 2, floating seal 3 can move forward or backward relative to the pressing element. In some embodiments, floating seal 3 is configured to move toward the distal end of the syringe barrel. In some embodiments, floating seal 3 is configured to move toward the proximal end of the syringe barrel. In some embodiments, the position of the pressing element relative to the syringe barrel is kept still, floating seal 3 is configured to move forward  (e.g., in a distal direction) under elastic resilience due to the elastic engagement with the pressing element.
In some embodiments, hollow puncture needle 6 is fixedly connected to the pressing element 2. When no pressure is applied to the pressing element 2, hollow puncture needle 6 remains proximal to floating seal 3 and the two do not come into contact. In some embodiments, hollow puncture needle 6 itself comprises needle distal opening 6a and needle body opening 6b. In some embodiments, needle distal opening 6a and needle body opening 6b are connected through a needle cavity or needle body passageway of hollow puncture needle 6.
In some embodiments, flowable composition lumen 7 is used for storage, e.g., of a liquid medicine. In some embodiments, the flowable composition lumen is enclosed by a distal closed end of the syringe barrel, a lumen wall of the syringe barrel, and floating seal 3; that is, the flowable composition lumen occupies a distal portion of a syringe barrel lumen. In some embodiments, since floating seal 3 can move along in an axial direction, flowable composition lumen 7 is configured to have a variable volume, thus the fluid pressure inside flowable composition lumen 7 can change due to an axial movement of floating seal 3.
In some embodiments, provided herein is a method of providing an intercostal nerve block by using the medical puncturing device or the injection system as disclosed herein, comprising applying pressure on pressing element 2, thereby advancing the hollow puncture needle 6 forward in a distal direction, sequentially through floating seal 3 (e.g., by puncturing the floating seal or forcing open an existing aperture or slit through the floating seal) and through a distal closed end (e.g., by puncturing the distal closed end or forcing open an existing aperture or slit through the distal closed end) of the syringe barrel. The existing aperture or slit may be through the floating seal, e.g., from a proximal surface of the floating seal to a distal surface of the floating seal, thereby providing a through hole in the floating seal. The existing aperture or slit may be not through the entire floating seal, and advancing the needle distal end through the floating seal may comprise advancement through the existing aperture or slit and puncturing a portion of the floating seal in any suitable combination. For instance, the needle distal end may first advance through an existing aperture or slit from a proximal surface and then puncture the floating seal before emerging from a distal surface of the floating seal, or vice versa. In some embodiments, hollow puncture needle 6 pierces into an apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) , thereby placing needle distal opening 6a in the  apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . In some embodiments, needle body opening 6b is positioned inside flowable composition lumen 7, and floating seal 3 is elastically engaged with a pressing element 2. In some embodiments, the fluid pressure in flowable composition lumen 7 is higher than the pressure inside the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
At this time, the flowable composition inside flowable composition lumen 7 can flow through needle body opening 6b and needle distal opening 6a and into the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . In some embodiments, during an injection process, a user can simply maintain the pressure on pressing element 2, e.g., without further increasing the pressure. Under the action of the elastic engagement between floating seal 3 and pressing element 2, the flowable composition (e.g., one or more anesthetics) inside flowable composition lumen 7 can enter needle body opening 6b and through the needle body passageway, thus achieving injection, penetration, and/or expansion of the apparent or potential tissue void, cavity, or space.
In some embodiments, when the hollow puncture needle 6 enters parietal pleural but does not extend beyond parietal pleural, external pressure on needle distal opening 6a is higher than the fluid pressure in flowable composition lumen 7, e.g., due to the needle distal opening being in a tissue (e.g., parietal pleural) that is denser, harder, and/or less deformable than the apparent or potential tissue void, cavity, or space (e.g., EPS) . Thus, the flowable composition inside the flowable composition lumen cannot exist needle distal opening 6a and into the denser tissue. For example, when the hollow puncture needle 6 has already pierced the parietal pleural 13 but has not yet extended beyond the parietal pleural and into EPS14, regardless of whether the needle body opening 6b is in fluid communication with the flowable composition lumen 7 or not, the flowable composition would not exit from the needle distal opening 6a. This is because a relatively high external pressure is applied on the needle distal opening 6a. When the external pressure is higher than the fluid pressure in flowable composition lumen 7, the dense tissue (such as the parietal pleural) which the needle distal end closely contacts essentially functions as a plug that prevents the flowable composition from flowing out.
In some embodiments, by observing whether floating seal 3 moves forward due to the elastic engagement when pressing element 2 is held still under pressure, an operator can determine whether hollow puncture needle 6 has already pierced into an apparent or potential  tissue void, cavity, or space (e.g., EPS) , thereby informing the operator of the current needle depth and/or location of the needle distal opening and ensure accurate needle placement. In some embodiments, since the injection is controlled by fluid pressure changes in flowable composition lumen 7, the injection process does not require manually applying a force that is transmitted via relatively rigid medium (e.g., solid or liquid) in order to advance and precisely place the needle tip into an apparent or potential tissue void, cavity, or space (e.g., EPS) Rather, an abrupt force applied to the pressing element 2 can be buffered due to the elastic engagement between the pressing element 2 and floating seal 3, thus allowing more controllable and steady movement of the floating seal. In some embodiments, using a device disclosed herein, fluctuations in the flow speed can be prevented or reduced and steady injection can be achieved.
In some embodiments, when hollow puncture needle 6 pierces through the syringe barrel distal closed end, the medical puncturing device can be in at least three states: a pre-puncture state, a surface tissue puncture state, and a fluidic communication state.
In some embodiments, in the pre-puncture state, the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is a pre-puncture length range. Within this range, hollow puncture needle 6 has not yet started puncturing an organism or a tissue thereof.
In some embodiments, a system or device of the present disclosure comprises a flowable composition lumen pre-filled with a flowable composition. In some embodiments, prior to use of the system or device, the needle is already through the floating seal. In some embodiments, prior to use of the system or device, the needle is already through the floating seal and the syringe barrel distal end, e.g., a distal seal sealing the syringe barrel distal end.
In some embodiments, for example prior to or during the use of the system or device, needle distal opening 6a can be outside the flowable composition lumen, while needle body opening 6b can be proximal to the floating seal (e.g., as shown in FIG. 3C, 6b1) or within the floating seal (e.g., as shown in FIG. 3C, 6b2) . Discharge of the flowable composition from the needle distal opening can be prevented due to viscosity of the composition, until the needle distal opening reaches a target tissue, such as an apparent or potential tissue void, cavity, or space.
In some embodiments, for example, prior to or during the use of the system or device, needle distal opening 6a can be within a distal seal at the syringe barrel distal closed end (e.g., the needle distal opening can be blocked by the distal seal) , while needle body opening 6b can be  proximal to the floating seal (e.g., as shown in FIG. 3D, 6b1) , within the floating seal (e.g., as shown in FIG. 3D, 6b2) , or within the flowable composition lumen (e.g., as shown in FIG. 3D, 6b3) . Discharge of the flowable composition from the needle distal opening and the needle body opening can be prevented.
In some embodiments, for example, prior to or during the use of the system or device, needle distal opening 6a can be within the flowable composition lumen, while needle body opening 6b can be within the floating seal (e.g., as shown in FIG. 3E, 6b1) or within the flowable composition lumen (e.g., as shown in FIG. 3E, 6b2) . Discharge of the flowable composition from the needle body opening can be prevented.
In some embodiments, for example prior to or during the use of the system or device, needle distal opening 6a can be within the floating seal, while needle body opening 6b can be proximal to the floating seal (e.g., as shown in FIG. 3F, 6b) . Discharge of the flowable composition from the needle body opening can be prevented.
In some embodiments, in the surface tissue puncture state, the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is a surface tissue puncture length range. Within this range, the distal end of hollow puncture needle 6 has entered a surface tissue (for example, parietal pleura) but has not yet entered the apparent or potential tissue void, cavity, or space (for example, EPS 14) . In some embodiments, because the surface tissue (e.g., parietal pleura) is relatively dense, external pressure on needle distal opening 6a is higher than the fluid pressure in flowable composition lumen 7, therefore, no matter whether needle body opening 6b is connected to flowable composition lumen 7 or not, the flowable composition does not enter needle body opening 6b and/or exit needle distal opening 6a.
In some embodiments, while in the fluidic communication state, the length range of hollow puncture needle 6 extending from the syringe barrel distal closed end is the a fluidic communication. Within this range, the distal end of hollow puncture needle 6 has pierced into the apparent or potential tissue void, cavity, or space. In some embodiments, the device can be designed such that in the fluidic communication state, the fluid pressure in flowable composition lumen 7 is higher than the pressure inside the apparent or potential tissue void, cavity, or space (e.g., EPS) . In some embodiments, in the fluidic communication state, needle body opening 6b has already positioned inside flowable composition lumen 7, and due to a difference in the internal (e.g., in the apparent or potential tissue void, cavity, or space) and external (e.g., in  flowable composition lumen 7) pressures, the flowable composition inside lumen 7 can flow into the apparent or potential tissue void, cavity, or space (e.g., EPS) through needle body opening 6b, the needle body passageway, and then needle distal opening 6a.
In some embodiments, floating seal 3 moves distally due to the elastic engagement with the pressing element 2 (e.g., due to the pressure in the flowable composition lumen being higher than a backpressure at the needle distal opening in the EPS or an intercostal space) until the floating seal seals needle body opening 6b (e.g., as shown in FIGS. 4A-4B) . In some embodiments, the axial dimension of the needle body opening is no greater than the thickness of the floating seal. In some embodiments, the needle body opening can be completely sealed or blocked by the floating seal, at which time no more flowable composition exits needle distal opening 6a to enter the tissue void. In some embodiments, when the floating seal blocks the needle body opening, only a portion of the total volume of flowable composition has exited needle distal opening 6a (e.g., as shown in FIG. 4A) . In some embodiments, when the floating seal blocks the needle body opening, the total volume of flowable composition in the lumen has exited needle distal opening 6a (e.g., as shown in FIG. 4B) .
In some embodiments, when the needle body opening can be in the distal seal or in a tissue of a subject, the flowable composition will stop existing needle distal opening 6a (e.g., as shown in FIG. 4C) . In some embodiments, the distance between needle distal opening 6a and needle body opening 6b can be keep constant. In some embodiments, the distance between needle distal opening 6a and needle body opening 6b can be varied. For example, a needle having a suitable distance between needle distal opening 6a and needle body opening 6b can be selected based on a known or estimated depth of the tissue to be accessed. In some embodiments, stopper 1a is provided inside the syringe lumen and can be used to limit the forward movement of floating seal 3 in order to achieve precise injection, for example, injection of a pre-determined volume.
In some embodiments, once floating seal 3 contacts stopper 1a, further distal movement of the floating seal is limited, thereby stabilizing floating seal 3 for subsequent operation, for example, as shown in FIGS. 6-11B.
In some embodiments, provided herein is a method of providing intercostal nerve block comprising utilizing a system or device disclosed herein comprises two or more floating seals. For example, as shown in FIG. 5A, a first lumen is formed between floating seal 3b and the  distal seal of the syringe barrel, and a second lumen is formed between floating seal 3a and floating seal 3b. In some embodiments, the first lumen and the second lumen comprise the same flowable material. In some embodiments, the first lumen and the second lumen comprise different flowable compositions. In some embodiments, the first lumen and the second lumen comprise the same medicament (e.g., an anesthetic) in the same or different flowable carriers or excipients. In some embodiments, the first lumen and the second lumen comprise different medicaments (e.g., different anesthetics) in the same or different flowable carriers or excipients. In some embodiments, the first lumen comprises a medicament and the second lumen comprises a pharmaceutically acceptable carrier or excipient such as a saline, or vice versa.
In some embodiments, the flowable compositions in the first lumen and the second lumen can be sequentially delivered to an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . In some embodiments, the flowable compositions in the first lumen and the second lumen can be mixed in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . In some embodiments, the flowable composition in the first lumen enters the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) in order to access and/or expand the tissue void, cavity, or space (e.g., intercostal space or EPS) . Subsequently, the flowable composition in the second lumen comprising a medicament can enter the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . For example, as shown in FIG. 5A, when needle distal opening 6a is in the intercostal space or EPS while needle body opening 6b is in the first lumen (between floating seal 3b and the distal seal of the syringe barrel) , the flowable composition in the first lumen is delivered to the intercostal space or EPS. In FIG. 5B, needle distal opening 6a can be held still in the intercostal space or EPS, when floating seal 3b moves distally and needle body opening 6b contacts the second lumen (between floating seal 3a and floating seal 3b) . This way, the flowable composition in the second lumen starts to be delivered to the intercostal space or EPS until a volume is delivered and/or floating seal 3a (or floating seal 3a and floating seal 3b together) blocks needle body opening 6b, as shown in FIG. 5C. In some embodiments, a set (e.g., predetermined) volume of the flowable composition in the first lumen and/or a set (e.g., predetermined) volume of the flowable composition in the second lumen can be delivered to the intercostal space or EPS. In some embodiments, the dimension of needle body opening 6b along the needle axis is greater than the thickness of floating seal 3b such that a first flowable composition (between floating  seal 3b and the distal seal of the syringe barrel) and a second flowable composition (between floating seal 3b and floating seal 3a) can be sequentially and continuously delivered to intercostal space or EPS through the needle distal opening. In some embodiments, the dimension of needle body opening 6b along the needle axis is no greater than the thickness of floating seal 3a and floating seal 3b combined. In some embodiments, the dimension of needle body opening 6b along the needle axis is greater than the thickness of floating seal 3b and less than the thickness of floating seal 3a and floating seal 3b combined. In some embodiments, a system or device disclosed herein comprises one or more additional floating seals (e.g., a third floating seal, 3c) that are proximal to floating seal 3a, distal to floating seal 3b, and/or between floating seal 3a and floating seal 3b, such that a third flowable composition may be delivered before the first flowable composition, after the second flowable composition, or between the first and second flowable compositions.
In some embodiments, a system or device disclosed herein comprises two or more needle body openings. In some embodiments, a system or device disclosed herein comprises two or more needle body openings and two or more floating seals. For example, as shown in FIG. 5D, when needle distal opening 6a is in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) while needle body opening 6b1 is in the first lumen (between floating seal 3b and the distal seal of the syringe barrel) and needle body opening 6b2 is blocked by floating seal 3b, the flowable composition in the first lumen is delivered to the tissue (e.g., intercostal space or EPS) . In FIG. 5E, needle distal opening 6a can be held still in the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) , when floating seal 3b moves distally to block needle body opening 6b1, allowing needle body opening 6b2 to contact the second lumen (between floating seal 3a and floating seal 3b) . This way, the flowable composition in the second lumen starts to be delivered to the tissue (e.g., intercostal space or EPS) until a volume is delivered and/or floating seal 3a (or floating seal 3a and floating seal 3b together) blocks needle body opening 6b2 (and/or needle body opening 6b1) as shown in FIG. 5F. In some embodiments, a set (e.g., predetermined) volume of the flowable composition in the first lumen and/or a set (e.g., predetermined) volume of the flowable composition in the second lumen can be delivered to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . In some embodiments, the distance between needle body opening 6b1 and needle body opening 6b2 along the needle axis is greater than the thickness of floating seal 3b such that  a first flowable composition (between floating seal 3b and the distal seal of the syringe barrel) and a second flowable composition (between floating seal 3b and floating seal 3a) can be sequentially and continuously delivered to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) through the needle distal opening. In some embodiments, the distance between needle body opening 6b1 and needle body opening 6b2 along the needle axis is no greater than the thickness of floating seal 3a and floating seal 3b combined. In some embodiments, the distance between needle body opening 6b1 and needle body opening 6b2 along the needle axis is greater than the thickness of floating seal 3b and less than the thickness of floating seal 3a and floating seal 3b combined. In some embodiments, a system or device disclosed herein comprises one or more additional needle body openings (e.g., a third needle body opening, 6b3) that are proximal to needle body opening 6b2, distal to needle body opening 6b1, and/or between needle body openings 6b1 and 6b2, such that a third flowable composition may be delivered before the first flowable composition, after the second flowable composition, or between the first and second flowable compositions.
In some embodiments, provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein, wherein the injection systems and devices can control the termination of the injection process.
In some embodiments, when the injection device or system used in the method of providing an intercostal nerve block as disclosed herein is in a fluidic communication state, a floating seal 3 moves forward due to the elastic engagement with a pressing element 2 until it seals needle body opening 6b. Once needle body opening 6b is sealed, the injection process is terminated. In some embodiments, the axial position of needle body opening 6b within the flowable composition lumen 7 limits the maximum injection volume of the injection device or system. In some embodiments, when needle body opening 6b is blocked or sealed by floating seal 3, floating seal 3 has not contacted a wall at the syringe barrel distal closed end. In some embodiments, flowable composition lumen 7 is not completely emptied and there is still flowable composition between floating seal 3 and the wall at the syringe barrel distal closed end.
In some embodiments, when flowable composition lumen 7 needs to be emptied, floating seal 3 can be designed to seal needle body opening 6b when the floating seal contacts the syringe barrel distal closed end. In some embodiments, needle body opening 6b is at the distal end of flowable composition lumen 7. In some embodiments, floating seal 3 contacts a  wall at the syringe barrel distal closed end and needle body opening 6b is blocked or sealed by floating seal 3 and/or the wall at the syringe barrel distal closed end. In some embodiments, flowable composition lumen 7 is emptied and there is no or little flowable composition between floating seal 3 and the wall at the syringe barrel distal closed end.
In some embodiments, as the flowable composition inside flowable composition lumen 7 gradually enters the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) , there can be a state wherein the fluid pressure inside flowable composition lumen 7 reaches equilibrium with the pressure in the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) . At this time, floating seal 3 no longer moves, due to the balance of forces. In order to continue injection and/or empty flowable composition lumen 7, additional force is needed on floating seal 3 in order to move it forward toward the syringe barrel distal closed end.
For example, as shown in FIGS. 2A-2E, one, two, or more axially extending sliding grooves (not shown) can be provided on a body wall of syringe barrel 1. A slider matching a sliding groove can be provided on pressing element 2 (e.g., a slider can comprise a portion of pressing element 2 extending outside of syringe barrel 1) , thus increasing the upper limit of the movement distance or stroke of pressing element 2 since the movement is not limited by the proximal end of pressing element 2. When floating seal 3 can no longer move due to the equilibrium of forces (e.g., between pressure inside flowable composition lumen 7 and the apparent or potential tissue void, cavity, or space) , more pressure can be applied on a slider of pressing element 2 to drive pressing element 2 forward distally, which in turn can increase the elastic resilience between floating seal 3 and pressing element 2, thus breaking the force equilibrium and moving floating seal 3 forward toward the distal end of the syringe barrel. This way, more flowable composition can be expelled from flowable composition lumen 7, in some embodiments emptying flowable composition lumen 7.
In some embodiments, other drive structures can be used to move floating seal 3 further until it contacts a wall of the syringe barrel distal closed end. Exemplary drive structures are described below.
In some embodiments, an axially extending sliding groove can be provided on a peripheral wall of syringe barrel 1, proximal to floating sealing 3. In some embodiments, a manual control part can include an pressing element 2’ (which may be in the form of a slider)  that is slidingly matched with the sliding groove of the peripheral wall of the syringe barrel. In some embodiments, a portion of pressing element (e.g., slider) 2’ extends outside of the syringe barrel through the sliding groove, which is convenient for a user to manipulate. In some embodiments, floating sealing 3 and pressing element (e.g., slider) 2’ form an elastic connection. For example, floating sealing 3 and pressing element (e.g., slider) 2’ can engage each other via elastic piece (e.g., spring) 4’ as shown in Step 1, FIG. 2G, whereas floating sealing 3 and pressing element (e.g., slider) 2 can engage each other via elastic piece (e.g., spring) 4. In some embodiments, pressing element 2 may comprise a rod that is configured to insert through a space between portions of pressing element 2’s uch that pressing elements 2 and 2’ do not interfere with each other. In some embodiments, elastic piece (e.g., spring) 4 and elastic piece (e.g., spring) 4’ may function independently and do not interfere with each other. In some embodiments, spring 4 is smaller than spring 4’ , for instance, the average diameter of spring 4 can be can be smaller than the average diameter of spring 4’. In some embodiments, elastic piece 4’ is nested inside elastic piece 4. In Step 2, FIG. 2G, a force can be applied to pressing element 2 to move the needle distally while maintaining the position of floating sealing 3. In some embodiments, as shown in Step 3, FIG. 2G, a force can be applied on pressing element 2’ to move it distally along the axial direction of the sliding groove on the peripheral wall of the syringe barrel. This way, elastic piece (e.g., spring) 4’ between floating sealing 3 and pressing element (e.g., slider) 2’ can be elastically compressed. In some embodiments, when the position of pressing element (e.g., slider) 2’ is maintained, under the action of an elastic force, floating sealing 3 can break the equilibrium of forces and continue to move distally until the volume of discharged flowable composition reaches a target volume. In some embodiments, pressing element (e.g., slider) 2’ can be moved distally as shown in Step 4, FIG. 2G, to move floating sealing 3 further distally in order to discharge the flowable composition from the needle.
In some embodiments, the injection system or device comprises an element configured for an operator to manually control movement of the floating seal using one or both hands. In some embodiment, the manual control element can be moved using one or more fingers, for example, one finger of the same hand holding the syringe barrel. In some embodiments, the manual control element is fixed to floating seal 3 and partially extends outside the syringe barrel. In some embodiments, when the flowable composition volume injected into the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) does not reach a target  volume, while floating seal 3 is no longer moving due to the equilibrium of forces, the operator can drive further movement of floating seal 3 forward by moving the portion of the manual control element that extends outside the syringe barrel, until the expelled flowable composition volume reaches the target volume. In some embodiments, using the manual control element helps empty flowable composition lumen 7. These embodiments are not limited to situations where flowable composition lumen 7 needs to be emptied.
In some embodiments, the injection device system or can achieve delivery (e.g., via injection) of a flowable composition of a defined volume with precision, and/or the ability to control the volume to be delivered. In some embodiments, the defined volume is a preset volume prior to the delivery. In some embodiments, the defined volume is one of multiple volumes that an operator can select during the delivery, and the delivered volume may be different from a preset volume. In some embodiments, as shown in FIGS. 1A-1F, FIGS. 2A-2F, and FIG. 11, axial stopper 1a is provided inside the syringe lumen and distal to floating seal 3, and is used to limit the forward movement of floating seal 3. In some embodiments, when the medical puncturing device is in the fluidic communication state, needle body opening 6b can be distal to axial stopper 1a, and floating seal 3 can move forward due to the elastic engagement with the pressing element 2.
In some embodiments, floating seal 3 is moved to the position limited by axial stopper 1a. In some embodiments, when floating seal 3 moves to the position limited by axial stopper 1a, pressure in flowable composition lumen 7 is still no less than the pressure inside the apparent or potential tissue void, cavity, or space. In some embodiments, floating seal 3 can be pushed forward to the position limited by axial stopper 1a by the elastic resilience between floating seal 3 and pressing element 2, and there is no need to rely on additional driving structure or force to move floating seal 3 to the position limited by axial stopper 1a.
In some embodiments, before floating seal 3 is moved to the position limited by axial stopper 1a by the elastic resilience between the floating seal and pressing element 2, pressure in flowable composition lumen 7 has already become equal with the pressure inside the apparent or potential tissue void, cavity, or space (that is, due to balance of forces, floating seal 3 is no longer moving before it reaches axial stopper 1a) . At this time, just by the elastic resilience between floating seal 3 and pressing element 2, floating seal 3 is not pushed forward to the position limited by axial stopper 1a. Thus, in some embodiments, one or more additional driving  structure or mechanism can be employed to further push forward floating seal 3. For example, the additional driving structure or mechanism can comprise a manual control element described herein (e.g., as shown in FIGS. 2A-2E) . In some embodiments, axial stopper 1a provides a mechanism for achieving fluid injection of set volumes.
In some embodiments, provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems and devices described herein, wherein in some embodiments, the injection systems and devices can automatically control the timing of puncture and injection.
In some embodiments, when the injection system or device is in pre-puncture state, that is, when the length of hollow puncture needle 6 extending from the syringe barrel distal closed end is within the pre-puncture length range (or when hollow puncture needle 6 has already pierced the syringe barrel distal closed end but has not yet started puncturing the organism or a tissue thereof) , needle body opening 6b remains above (e.g., proximal to) flowable composition lumen 7. When provided in this way, early leakage from needle distal opening 6a can be prevented and the reliability of the medical puncturing device can be improved.
In some embodiments, corresponding structure (s) can be provided on the device to prevent early leakage before hollow puncture needle 6 punctures the tissue and/or before needle distal opening 6a reaches the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) . For example, axially extending circular contacting element 1b can be formed at the syringe barrel distal closed end. In some embodiments, the axial length of circular contacting element 1b is set to be the same as the difference between the upper and lower limits of the pre-puncture length range of hollow puncture needle 6 (that is, the difference in needle pre-puncture lengths between when hollow puncture needle 6 pierces the syringe barrel distal closed end and when it starts puncturing the organism or tissue) . Under this setting, as long as the distal end of hollow puncture needle 6 is still within the axial length range of circular contacting element 1b, early leakage will not happen at needle distal opening 6a. When puncturing, circular contacting element 1b can come into contact with the surface of the organism or tissue first to stabilize the medical puncturing device. Then, pressure can be applied to the pressing element 2 to start the puncture operation.
In some embodiments, when the medical puncturing device is in the surface tissue puncture state, that is, when the length of hollow puncture needle 6 extending from the syringe  barrel distal closed end is within the surface tissue puncture length range (or when the distal end of hollow puncture needle 6 has pierced the surface tissue, extended towards parietal pleura, but has not yet entered the EPS, needle body opening 6b is at least partially connected to flowable composition lumen 7. In some embodiments, before the distal end of hollow puncture needle 6 pierces into the apparent or potential tissue void, cavity, or space (e.g., EPS) , fluidic communication among flowable composition lumen 7, needle distal opening 6a and needle body opening 6b is established. In some embodiments, the flowable composition in lumen 7 can enter the needle body passageway (via needle body opening 6b) of hollow puncture needle 6 in advance, removing at least part of the air that may be in the needle body passageway, thereby reducing the amount of air entering the apparent or potential tissue void, cavity, or space (e.g., EPS) .
In some embodiments, when the distal end of hollow puncture needle 6 starts to pierce into the surface tissue, needle body opening 6b starts to connect with flowable composition lumen 7. In some embodiments, when the distal end of hollow puncture needle 6 pierces into the apparent or potential tissue void, cavity, or space (e.g., EPS) , the needle body passageway of hollow puncture needle 6 has already been filled with the flowable composition, thereby eliminating or reducing the possibility of air entering the apparent or potential tissue void, cavity, or space (e.g., EPS) .
In some embodiments, when the injection system or device is in the fluidic communication state, that is, when the length of hollow puncture needle 6 extending from the syringe barrel distal closed end is within the fluidic communication length range (or when the distal end of hollow puncture needle 6 has pierced into the apparent or potential tissue void, cavity, or space) , needle body opening 6b has been positioned inside flowable composition lumen 7, achieving maximum flow at needle body opening 6b and thereby increasing injection speed.
In some embodiments, provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein, wherein in some embodiments, the injection systems or devices can prevent fluid backflow and/or reverse spill through needle body opening 6b.
In some embodiments, there is a risk for fluid backflow and/or reverse spill from needle body opening 6b when needle distal opening 6a is connected with flowable composition lumen  7, while needle body opening 6b is still at the proximal end of floating seal 3. In some embodiments, there is a risk for fluid backflow and/or reverse spill from needle body opening 6b when needle distal opening 6a is inside the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) , while needle body opening 6b is still at the proximal end of floating seal 3. In some embodiments, an elastic sheath 4 covering the outside of hollow puncture needle 6 can be provided within the actuation unit (e.g., elastic movement unit) , e.g., between the needle base and floating seal 3. In some embodiments, when needle body opening 6b is at the proximal end of floating seal 3 (e.g., when needle body opening 6b is not connected to flowable composition lumen 7) , elastic sheath 4 can keep the needle body opening 6b sealed, thereby effectively avoiding backflow and/or reverse spill of the flowable composition, preventing contamination of the area proximal to floating seal 3, reducing fluid loss, and improving product reliability.
In some embodiments, an elastic sheath 4 is not used to seal needle body opening 6b, but simply as an elastic engagement part between a floating seal 3 and a pressing element 2. In some embodiments, by moving the pressing element 2 forward, the elastic sheath 4 between the floating seal 3 and the pressing element 2 can become compressed, thereby forming elastic resilience between the floating seal 3 and the pressing element 2, which can in turn drive floating seal 3 forward. In some embodiments, the elastic engagement part between the floating seal 3 and the pressing element 2 can comprise or be a spring 5, which is attached to the floating seal 3 and the pressing element 2 at its two axial ends, respectively. The attachment at either or both ends of the spring can be direct or indirect. The attachment at either or both ends of the spring can be releasable or not releasable. The spring, the floating seal, and the pressing element can be separately manufactured and then assembled in any suitable order. Alternatively, any two or more of the spring, the floating seal, and the pressing element can be integral, e.g., made as one piece. Spring 5 and the elastic sheath 4 can be implemented separately or in combination.
In some embodiments, the elastic engagement between the floating seal 3 and the pressing element 2 can be achieved through other methods besides providing one or more elastic engagement parts. For example, the floating seal 3 and the pressing element 2 can be provided as a one-piece integrated actuation unit (e.g., elastic movement unit) .
In some embodiments, provided herein are devices and methods for implantation into apparent or potential tissue gaps, cavity systems, and spaces (e.g., intercostal space or EPS)  using a medical puncturing device disclosed herein. In some embodiments, a method disclosed herein comprises using a catheter guiding structure for guiding catheter 11 into the needle body passageway of hollow puncture needle 6 to be placed into a target site (e.g. in EPS) for continuous ICNB. In some embodiments, a catheter guiding structure is provided in a medical puncturing device disclosed herein.
In some embodiments, as shown in FIGS. 6-8, the catheter guiding structure comprises an angled guiding groove 3a’ , which is provided in or engages floating seal 3 and extends towards hollow puncture needle 6 at an angle. In some embodiments, when flowable composition lumen 7, needle body opening 6b, and needle distal opening 6a are connected, a flowable composition can enter and expand the apparent or potential tissue void, cavity, or space. In some embodiments, catheter 11 can be implanted through angled guiding groove 3a’ , needle body opening 6b, the needle body passageway of hollow puncture needle 6, and needle distal opening 6a into the expanded apparent or potential tissue void, cavity, or space.
It should be noted that, angled guiding groove 3a’ can be provided as a groove through floating seal 3 in a proximal/distal direction, or as a non-through groove formed on a proximal surface of floating seal 3.
In some embodiments, angled guiding groove 3a’ is a through groove. In some embodiments, the catheter guiding structure further comprises valve 9 provided in or engages angled guiding groove 3a’ , and the valve may be a one-way valve configured to open and close. In some embodiments, the valve comprises a plurality of leaflets configured to open or close the valve. In some embodiments, in the absence of external force, one-way valve 9 is closed and prevents a flowable composition inside flowable composition lumen 7 from leaking through the valve. In some embodiments, in the presence of an opening force, the plurality of leaflets of the valve can be forced open so that catheter 11 can thread into needle body opening 6b through the opened valve. In some embodiments, the catheter guiding structure further comprises a guiding groove plug configured to be removably inserted in angled guiding groove 3a’ , and the guiding groove plug can be pulled out when catheter 11 needs to be implanted.
In some embodiments, angled guiding groove 3a’ is a non-through groove. In some embodiments, the angled guiding groove is punctured directly by catheter 11 to be implanted. In some embodiments, the angled guiding groove is punctured by a piercing component other than  the catheter, and catheter 11 can be threaded through the punctured opening into needle body opening 6b.
In some embodiments, to match the guiding direction of angled guiding groove 3a’ , needle body opening 6b can be provided as an angled opening, which opens obliquely backwards, so that needle body opening 6b can align with angled guiding groove 3a’ , thereby precisely guiding catheter 11 through the angled guiding groove and into the needle body opening.
In some embodiments, for example as shown in FIG. 9 and FIG. 10, the catheter guiding structure comprises an angled guiding needle hole 6c which is formed or provided on the body wall of hollow puncture needle 6 and opens obliquely backwards. In some embodiments, angled guiding needle hole 6c remains proximal to floating seal 3, for example, when the medical puncturing device is in a fluidic communication state. In some embodiments, catheter 11 can be threaded into the needle body passageway of hollow puncture needle 6 through angled guiding needle hole 6c. In some embodiments, catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space (or an apparent or potential tissue void, cavity, or space that has been expanded with a flowable composition) through needle distal opening 6a.
In some embodiments, the catheter guiding structure can further comprise valve 9 provided in or engages angled guiding needle hole 6c, and the valve may be a one-way valve configured to open and close. In some embodiments, the valve comprises a plurality of leaflets configured to open or close the valve. In some embodiments, in the absence of external force, one-way valve 9 is closed and prevents a flowable composition inside flowable composition lumen 7 from leaking through the valve. In some embodiments, in the presence of an opening force, the plurality of leaflets of the valve can be forced open so that catheter 11 can thread into a needle body passageway (which may be connected to or separate from the needle body passageway connecting needle body opening 6b and needle distal opening 6a) through the opened valve and angled guiding needle hole 6c. In some embodiments, the catheter guiding structure can further comprise needle hole plug 10 configured to be removably inserted in angled guiding needle hole 6c, and needle hole plug 10 can be pulled out for the implantation operation of catheter 11 to begin. In some embodiments, guiding needle hole 6c is connected needle distal opening 6a. The needle body passageway connecting needle distal opening 6a and needle body opening 6b can be the same as or separate from the needle body passageway connecting needle  distal opening 6a and guiding needle hole 6c. In some embodiments, guiding needle hole 6c is connected to a needle distal opening other than needle distal opening 6a connected to needle body opening 6b. The needle body passageway connecting needle body opening 6b to a needle distal end can be completely separate from the needle body passageway connecting guiding needle hole 6c to a needle distal end. The needle body passageway connecting needle body opening 6b to a needle distal end can be at least partially overlapping or in fluidic communication with the needle body passageway connecting guiding needle hole 6c to a needle distal end.
In some embodiments, for example as shown in FIG. 11, the catheter guiding structure comprises a central guiding groove 2c that is formed or provided on a proximal surface of a pressing element 2. In some embodiments, central guiding groove 2c comprises an aperture or can form an aperture in the center of the proximal surface of the pressing element 2. In some embodiments, central guiding groove 2c can be punctured to provide an aperture. In some embodiments, a needle proximal opening is provided on hollow puncture needle 6 and is aligned with central guiding groove 2c along the axis. In some embodiments, when catheter 11 needs to be implanted, central guiding groove 2c can be punctured and catheter 11 can be threaded into a needle body passageway (which may be connected to or separate from the needle body passageway connecting needle body opening 6b and needle distal opening 6a) through the punctured opening of central guiding groove 2c and the needle proximal opening of hollow puncture needle 6. In some embodiments, catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space (or an apparent or potential tissue void, cavity, or space that has been expanded with a flowable composition) through a needle distal opening, such as needle distal opening 6a or a different needle distal opening.
In some embodiments, provided herein is a method of providing an intercostal nerve block comprising using a kit comprising components configured to be assembled to form any of the injection systems or devices disclosed herein.
In some embodiments, the kit for assembling an injection system or device comprises a puncture control module and a flowable composition storage module (e.g., a fluid storage module) . In some embodiments, the puncture control module and the flowable composition storage module are independently manufactured and/or provided. In some embodiments, the puncture control module comprises a first syringe unit, as well as an actuation unit (e.g., elastic  movement unit) , and hollow puncture needle 6, which are provided inside a syringe barrel of the first syringe unit. It can be seen based on the embodiments disclosed herein that the puncture control module can further comprise other parts or components, such as elastic sheath 4 and spring 5. In some embodiments, the fluid storage module comprises a second syringe unit, flowable composition lumen 7 which is formed inside a syringe barrel of the second syringe unit, and a module packaging component which is removably provided at the proximal end of the second syringe unit. In some embodiments, a removable connection structure is formed between the first syringe unit and the second syringe unit. In some embodiments, the first syringe unit and the second syringe unit form syringe barrel 1 after being connected with each other. It can be seen based on the embodiments disclosed herein that the fluid storage module can further comprise other parts such as distal seal 8.
In some embodiments, the puncture control module and the fluid storage module can be manufactured, assembled, and/or packaged separately, and then assembled with each other and optionally with other modules, components, and/or parts into the medical puncturing device disclosed herein. In some embodiments, the module packaging component is used to seal the proximal end of flowable composition lumen 7. In some embodiments, when assembling the puncture control module and the fluid storage module, the module packaging component can be removed.
In some embodiments, a method of providing an intercostal nerve block comprising using a medical apparatus assembly and a system comprising the same. As shown in FIG. 7 and FIG. 11, in some embodiments the medical apparatus assembly comprises catheter 11 and the medical puncturing device comprising the catheter guiding structure disclosed herein. In some embodiments, catheter 11 can be implanted into an apparent or potential tissue void, cavity, or space by the medical puncturing device. The medical apparatus assembly described herein can have all of the technical effects provided by the medical puncturing device .
In some embodiments, the medical apparatus assembly comprises hollow auxiliary guiding needle 12, which is matched to be used with the catheter guiding structure. In some embodiments, the needle body passageway diameter of auxiliary guiding needle 12 is large enough to accommodate catheter 11 and allow the catheter to thread in. In some embodiments, during an operation to implant catheter 11, auxiliary guiding needle 12 is connected to the catheter guiding structure so that catheter 11 can sequentially go through the needle body  passageway of auxiliary guiding needle 12, the catheter guiding structure, the needle body passageway of hollow puncture needle 6, and then into an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) through needle distal opening 6a. In some embodiment, the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) is expanded with a flowable composition using a medical puncturing device disclosed herein, prior to the implant of the catheter. In some embodiment, the catheter is implanted as the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) is being expanded with a flowable composition using a medical puncturing device disclosed herein. In some embodiment, the catheter is implanted prior to the apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) being expanded with a flowable composition using a medical puncturing device disclosed herein.
In some embodiments, as shown in FIG. 7, the catheter guiding structure comprises through angled guiding groove 3a’ and one-way valve 9, which is embedded in angled guiding groove 3a’ and can be opened and closed. In some embodiments, needle body opening 6b is provided as an angled opening which opens obliquely backwards. In some embodiments, when implanting catheter 11, auxiliary guiding needle 12 is used to open one-way valve 9 so that the auxiliary guiding needle can be positioned inside angled guiding groove 3a’. In some embodiments, the distal end of auxiliary guiding needle 12 advances into needle body opening 6b, and catheter 11 can sequentially advance through the needle body passageway of auxiliary guiding needle 12, the needle body passageway of hollow puncture needle 6, and the needle distal opening 6a and then be implanted into an apparent or potential tissue void, cavity, or space (e.g., intercostal space or EPS) .
In some embodiments, as shown in FIG. 11, the catheter guiding structure comprises a central guiding groove 2c. In some embodiments, a needle proximal opening is formed on hollow puncture needle 6, which is aligned with central guiding groove 2c along its axis. In some embodiments, when implanting catheter 11, central guiding groove 2c can be punctured by auxiliary guiding needle 12, such that auxiliary guiding needle 12 is axially aligned with the proximal opening of hollow puncture needle 6. In some embodiments, catheter 11 is threaded into a needle body passageway of hollow puncture needle 6 by sequentially advancing through a needle body passageway of auxiliary guiding needle 12, and a proximal opening of hollow puncture needle 6, and is then implanted into an apparent or potential tissue void, cavity, or  space (e.g., intercostal space or EPS) through a needle distal opening such as needle distal opening 6a.
In some embodiments, a pressing element (e.g., pressing element 2 in FIG. 13B or FIG. 15B) comprises a threaded portion configured to be in threaded engagement with a control knob (e.g., the control knob 2a in FIG. 13B or FIG. 15B) . For example, the control knob can comprises an internal helical thread configured to engage a threaded portion of the pressing element. In some embodiments, the control knob can be rotated along a central axis, and through the threaded engagement, rotation of the control knob can drive translation of the pressing element in an axial direction. In some embodiments, the pressing element is moved along a helical path having a rotatory component and a translational component in an axial direction relative to the housing (or shell) (e.g., main housing 40 in FIG. 13B or FIG. 15B) . In some embodiments, depending on whether the control knob is rotated clockwise or counterclockwise, the translational movement of the pressing element can be in a distal direction (e.g., towards the subject) or in a proximal direction (e.g., towards an operator) . In some examples, clockwise rotation of the control knob advances the pressing element in a distal direction, whereas counterclockwise rotation of the control knob retracts the pressing element in a proximal direction. In other examples, counterclockwise rotation of the control knob advances the pressing element in a distal direction, whereas clockwise rotation of the control knob retracts the pressing element in a proximal direction.
In some embodiments, the pressing element is coupled to the syringe needle such that movement of the pressing element in an axial direction can lead to and/or allow movement of the syringe needle. In some embodiments, the pressing element and the syringe needle are directly coupled. In some embodiments, the pressing element and the syringe needle are indirectly coupled. In some embodiments, the pressing element and the syringe needle are elastically coupled. In some embodiments, the pressing element and the syringe needle elastically engage each other. In some embodiments, the pressing element and the syringe needle are coupled via an elastic connection. In some embodiments, the pressing element and the syringe needle are fixedly or removably coupled. In some embodiments, the pressing element and the syringe needle fixedly or removably engage each other. In some embodiments, the pressing element and the syringe needle are coupled via a fixed connection. In some embodiments, the connection between the pressing element and the syringe needle is sufficiently rigid such that the pressing  element can drive advancement or retraction of the syringe needle. In some embodiments, the syringe needle is provided on a needle base or seat that is part of the pressing element or that is directly or indirectly coupled to the pressing element. In some embodiments, the needle base or seat is elongated axially and has a smaller cross-sectional area than the cross-sectional area of a portion of the pressing element that directly abuts the needle base or seat. In some embodiments, the needle base or seat is fixedly coupled to the pressing element. In some embodiments, the needle base or seat is integral to the pressing element. In some embodiments, the pressing element and the syringe needle are coupled via a needle base or seat that is sufficiently rigid in at least an axial direction, such that the pressing element can be moved axially distally or proximally in order to advance or retract the syringe needle relative to the housing or shell.
In some embodiments, the pressing element (e.g., pressing element 2 in FIG. 13B or FIG. 15B) and the push shaft are coupled via an elastic element or piece, such as a spring. In some embodiments, the elastic element or piece is directly or indirectly coupled to the pressing element and/or the needle base or seat, or a portion thereof. For example, a portion (e.g., a proximal end) of the elastic element or piece can directly or indirectly engage a portion of the pressing element or needle base or seat. The elastic element or piece can fixedly or removably engage a proximal portion of the needle base or seat. In some embodiments, the elastic element or piece is directly or indirectly coupled to the piston rod. For example, a portion (e.g., a distal end) of the elastic element or piece can directly or indirectly engage a portion (e.g., a proximal end) of the piston rod. In some embodiments, the elastic element or piece is fixedly or removably coupled to the piston rod. In some embodiments, the pressing element can be pushed distally relative to the housing in order to exert a force on the elastic element or piece (e.g., spring) , which in turn exerts a force on the piston rod, while the syringe needle is advanced distally by the pressing element.
In some embodiments, the needle base or seat or a portion thereof is elongated axially, providing space between a portion of the pressing shaft and the piston rod configured to accommodate one or more elastic elements or pieces. In embodiments where multiple elastic elements or pieces are used, any two or more of the elastic elements or pieces can be arranged in tandem or in parallel. Each elastic element or piece can be in the form of a flexible sheath or tube, a spring, an annular ring, an elongated rod or stripe, or any combination thereof. The elastic element or piece can be arranged in parallel with the needle base or seat, and/or allow the needle  base or seat to pass through. For example, an elongated needle base or seat can pass through the coils of a spring, where a proximal end of the spring engages a proximal portion of the elongated needle base or seat, and a distal end of the spring engages a proximal portion of the piston rod. A distal portion of the elongated needle base or seat may be inserted in an internal lumen of the push shaft, and all or a portion of the syringe needle can be housed in the internal lumen of the push shaft. In some embodiments, prior to medical penetration using the syringe needle, the syringe needle is positioned in the internal lumen without pass through the distal end of the push shaft or the a seal attached thereto. As such, in some embodiments, the pressing element (e.g., comprising or connected to elongated needle base or seat) can be configured to elastically engage the push shaft, a distal portion of the push shaft engaging a seal such that the seal can be configured as a floating seal.
In some embodiments, provided herein is a method of providing an intercostal nerve block comprising using any of the injection systems or devices described herein. In some embodiments, the injection systems and devices can achieve precise control of the syringe needle as it advances through parietal pleura, and is particular useful for accessing the EPS or an intercostal sulcus. In some embodiments, a device disclosed herein achieves precise access of EPS and/or an intercostal sulcus, while reducing or minimizing the risk of insufficient penetration and/or the risk of overshooting, e.g., the needle going too deep and damaging the surrounding tissues e.g., blood vessels and/or nerves. In some examples, the axial movement of the syringe needle can be controlled and reach micron precision as it advances in the EPS or intercostal space. In some examples, the axial movement of the syringe needle in the tissue can be set to be within any distance that meets the requirement of the tip of the syringe needle penetrating from parietal pleura into EPS or an intercostal space. In some examples, the axial movement distance of the syringe needle in the tissue can be set to be within a length of between about 0 and about 3.0 mm, e.g., between about 0 and about 0.2 mm, between about 0 and about 0.5 mm, between about 0 and about 0.8 mm, between about 0 and about 1.0 mm, between about 0 and about 1.2 mm, between about 0 and about 1.5 mm, between about 0 and about 1.8 mm or between about 0 and about 2.0 mm. In some embodiments, a device disclosed herein comprises a syringe needle of a size and configuration disclosed herein, e.g., the syringe needle having a bevel angle between about 0 degree and about 40 degrees, particularly between about 5 degrees and about 30 degrees, such as between about 15 degree and about 25 degrees. In some  embodiments, the volume of the flowable composition to be delivered (e.g., via injection) using a device disclosed herein can be selected based on the conditions of a particular subject, and can be adjusted according to changes in the conditions. In some embodiments, the energy stored in the energy storage member (e.g., spring) is automatically released to advance the floating seal, thereby discharging a volume of the flowable composition into an apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) . Given the combination of various features disclosed herein, the devices and methods disclosed herein can achieve precise, safe, and controllable delivery of agents (e.g. anesthetics) into a target tissue of a subject, such as an intercostal space or EPS.
In some embodiments, a flowable composition such as an anesthetic solution can be injected via the syringe needle of an injection device disclosed herein into an intercostal space or EPS, thereby injecting the flowable composition near the intercostal nerve to be blocked. In some embodiments, the distal tip of the syringe needle is inserted through surface tissues at a target site, and advanced beyond the parietal pleural and into EPS.
In some embodiments, after the distal end of the syringe needle reaches the EPS, the composition such as anesthetic (s) can be delivered into the EPS. In some embodiments, the composition such as anesthetic (s) can be delivered through one or more openings of the syringe needle.
It should be appreciated that any suitable medical puncture device, including but not limited to those described herein in connection with the figures, may be used in a method for providing an intercostal nerve block disclosed herein. For instance, a medical puncture device shown in FIG. 12A may be used. In some embodiments, the medical puncture device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a puncture member such as a needle at the distal end of the syringe barrel, wherein the puncture member is not attached to the floating seal; and an actuation member configured to elastically engage the floating seal via an energy storage member such as a spring or the like and/or another suitable elastic member. In some embodiments, the puncture member comprises a distal end opening configured to form a fluidic communication with a lumen in the syringe barrel containing a flowable composition. In some embodiments, the medical puncture device further comprises a stopper in the syringe barrel, between the floating seal and the distal end of the syringe barrel. As shown in FIG. 12A, Step 1, the medical puncture device is in an initial state  where the distal end opening of the puncture member has not entered a tissue of a subject, and the distance between the actuation member and the floating seal is x1. In FIG. 12A, Step 2, the distal end opening of the puncture member has entered a relatively dense tissue (e.g., parietal pleura or muscles) , where the distance between the actuation member and the floating seal remains the same (x1) . In FIG. 12A, Step 3, the distal end opening of the puncture member remains in the relatively dense tissue, when the energy storage member is compressed, e.g., by reducing the distance between the actuation member and the floating seal from x1 to x2. This way, the energy storage member applies a force on the floating seal and maintains the force. Through the flowable composition and the distal opening of the puncture member, a pressure is in turn applied to the relatively dense tissue (e.g., parietal pleura or muscles) . Due to the tissue density, the relatively dense tissue (e.g., parietal pleura or muscles) applies a back pressure on the distal opening of the puncture member, thereby preventing discharge of the flowable composition into the tissue. In FIG. 12A, Step 4, the puncture member is advanced distally into a less dense tissue, such as an apparent or potential tissue void, cavity, or space (for instance, an intercostal space for EPS) . In some embodiments, due to the decrease in tissue density, the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue, such as the apparent or potential tissue void, cavity, or space (e.g., an intercostal space or EPS) . As the flowable composition is discharged from the distal end opening of the puncture member, energy in the energy storage member is released, thereby increasing the distance between the actuation member and the floating seal from x2 to x3, as shown in FIG. 12A, Step 5. Distal movement of the floating seal in the syringe barrel may be stopped by the stopper, for example, in order to control the volume of the flowable composition delivered into the less dense tissue (e.g., an intercostal space or EPS) .
Another example is shown in FIG. 12B, Step 1, where the medical puncture device is in an initial state where the distal end opening of the puncture member has not entered a tissue of a subject, and in FIG. 12B, Step 2, the energy storage member can be compressed, whereas the distal end opening of the puncture member remains outside a tissue and the floating seal is not advanced distally to discharge the flowable composition from the distal end opening. In FIG. 12B, Step 3, the distal end opening of the puncture member has entered a relatively dense tissue (e.g., parietal pleura or muscles) . The energy storage member applies a force on the  floating seal and maintains the force. Through the flowable composition and the distal opening of the puncture member, a pressure is in turn applied to the relatively dense tissue (e.g., parietal pleura or muscles) . Due to the tissue density, the relatively dense tissue (e.g., parietal pleura or muscles) applies a back pressure on the distal opening of the puncture member, thereby preventing discharge of the flowable composition into the tissue. In FIG. 12B, Step 4, the distal end opening of the puncture member starts to enter a less dense tissue (e.g., EPS) , such as an apparent or potential tissue void, cavity, or space (e.g., EPS) , whereas the energy storage member remains compressed. In FIG. 12B, Step 5, due to the decrease in tissue density, the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) . Energy in the energy storage member is released, as the flowable composition is discharged from the distal end opening of the puncture member. In some embodiments, distal movement of the floating seal in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue (e.g., EPS) may be controlled. The force applied onto the actuation member may be released as shown in FIG. 12B, Step 6.
Yet another example is shown in FIG. 12C. In some embodiments, the medical puncture device comprises a syringe barrel comprising a proximal end and a distal end; a floating seal in the syringe barrel; a puncture member such as a needle at the distal end of the syringe barrel, wherein the puncture member is not attached to the floating seal; and an energy storage member configured to elastically engage the floating seal and the proximal end of the syringe barrel. In some embodiments, the medical puncture device further comprises a stopper in the syringe barrel, between the floating seal and the distal end of the syringe barrel. In some embodiments, the medical puncture device comprises a contacting member. In FIG. 12C, Step 1, the medical puncture device is in an initial state where the distal end opening of the puncture member in the contacting member which prevents discharge of the flowable composition from the distal end opening. The energy storage member applies a force onto the floating seal, and through the flowable composition and the distal opening of the puncture member, a pressure is in turn applied to the contacting member. Due to the density of the contacting member, the back pressure on the distal opening of the puncture member prevents leakage of the flowable composition from the syringe barrel. In FIG. 12C, Step 2, the distal end opening of the puncture  member has entered a relatively dense tissue (e.g., parietal pleura or muscles) , and the back pressure of the relatively dense tissue on the distal opening prevents leakage of the flowable composition into the relatively dense tissue (e.g., parietal pleura or muscles) . In FIG. 12C, Step 3, the distal end opening of the puncture member starts to enter a less dense tissue, such as an apparent or potential tissue void, cavity, or space (e.g., EPS) . In FIG. 12C, Step 4, due to the decrease in tissue density, the back pressure on the distal opening of the puncture member becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) . Energy in the energy storage member is released, as the flowable composition is discharged from the distal end opening of the puncture member. In some embodiments, distal movement of the floating seal in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue may be controlled.
Yet another example is shown in FIG. 17. As shown in FIG. 17, Step a-c, the add-on devices are installed on a regular syringe and the flowable composition is drawn to the lumen. As shown in FIG. 17, Step d and e, the syringe with add-on devices is in an initial state where the distal end opening of the needle is in the contacting member, which prevents discharge of the flowable composition from the distal end opening. The first elastic element applies a force onto the pushing shaft, and through the flowable composition and the distal opening of the needle, a pressure is in turn applied to the contacting member. Due to the density of the contacting member 25, the back pressure on the distal opening of the needle prevents leakage of the flowable composition from the syringe barrel. In FIG. 17, Step f and g, the distal end opening of the needle has entered a relatively dense tissue A (e.g., parietal pleural) , and the back pressure of the relatively dense tissue on the distal opening prevents leakage of the flowable composition into the tissue. In the meanwhile, the contacting member, optionally the second elastic element, and optionally the connector, can increase the resistance of advancing the needle distally, thereby reducing the risk of overshooting the needle. In FIG. 17, Step h, the distal end opening of the needle starts to enter a less dense tissue B, such as an apparent or potential tissue void, cavity, or space (e.g., EPS) . In FIG. 17, Step i, due to the decrease in tissue density, the back pressure on the distal opening of the needle becomes less than the pressure of the flowable composition, thereby allowing release of the flowable composition into the less dense tissue (e.g., EPS) . Energy stored in the first elastic element is released, pushing the push shaft to move distally,  while the contacting member blocks the distal movement of the floating seal 3. Therefore, the flowable composition is discharged from the distal end opening of the puncture member. In some embodiments, distal movement of the push shaft in the syringe barrel may be stopped by the stopper to stop the flow of the flowable composition. This way, the volume of the flowable composition delivered into the less dense tissue may be controlled.
In some embodiments, the method of providing an intercostal nerve block, the method of delivering a flowable composition near an intercostal nerve, or the method of delivering a flowable composition into an intercostal space/EPS/intercostal sulcus of a subject in need thereof as disclosed herein comprises injection (s) of the flowable composition (e.g. an anesthetic solution) as a single shot at one target site or multiple injections at different target sites.
The exemplary embodiments and optional implementations of the present disclosure are described in detail above in combination with the figures. However, the present disclosure is not limited to the details described in the embodiments described above. Simple variants can be applied to the embodiments of the present disclosure, all of which are within the scope of the present disclosure.
It should be noted that, the embodiments described herein can be implemented separately or in any suitable combination. Each of the technical features described in the embodiments above, when not in conflict, can be combined in any reasonable manner. To avoid unnecessary repetition, the possible combinations are not described separately in the embodiments.
Additionally, the different implementations of the embodiments of the present disclosure can be freely combined. As long as they do not go against the ideas of the present disclosure, they should also be considered part of this disclosure.
References
Andres Obeso. 2018. Selective thoracoscopic intercostal block through a transbronchial aspiration needle: an alternative analgesic tool for pain control after video-assisted thoracic surgery. Pulm Resp Med Int J. 1 (1) : 6–7.
Anthony M. -H. Ho, et al. 2022. Intercostal Nerve Block –Landmarks and Nerve Stimulator Technique. NYSO RA.
Caleb S. Baxter, Abhishek Singh, Fayez A. Ajib, and Brian M. Fitzgerald 2022. Intercostal Nerve Block. Treasure Island (FL) : StatPearls Publishing.
Clara Scher, Lauren Meador, Janet H. Van Cleave, and M. Carrington Reid. 2018. Moving beyond pain as the fifth vital sign and patient satisfaction scores to improve pain care in the 21st Century. Pain Manag Nurs. 19 (2) : 125–129.
Mario G Santamarina, Ignacio Beddings, Guillermo V Lermanda Holmgren, Hector Opazo Sanchez, and Mariano M Volpacchio 2017. Multidetector CT for Evaluation of the Extrapleural Space. Radiographics 37 (5) : 1352-1370.
Tianci Chai, Yuhan Lin, Mingqiang Kang, and Jiangbo Lin. 2019. Thoracotomy versus video-assisted thoracoscopic resection of lung cancer. Medicine (Baltimore) . 98 (10) : e14646.

Claims (49)

  1. A method of providing an intercostal nerve block in a subject in need thereof comprising:
    1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
    wherein the distal end of the push shaft is proximal to the floating seal;
    wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
    wherein the proximal end of the needle is:
    a) connected to the distal end of the syringe barrel, or
    b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
    2) controlling the actuation member to compress the energy storage member without moving the floating seal;
    3) advancing the distal end of the needle toward a first target site in the intercostal space of the subject; and
    4) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the energy storage member to release energy which makes the floating seal move distally and thereby makes the flowable composition flow into the extrapleural space through the end opening of the needle.
  2. The method of claim 1, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  3. The method of claim 1 or claim 2, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  4. The method of any one of the preceding claims, wherein the injection system of 1) -b) further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  5. The method of any one of the preceding claims, wherein said advancing the distal end of the needle of 1) -b) toward the intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally toward and into the parietal pleura of the subject without discharging the flowable composition.
  6. The method of claim 3, wherein said advancing the distal end of the needle of 1) -a) toward an intercostal space of the subject comprises controlling the syringe handle to compress the elastic element and thereby advancing the distal end of the needle toward and into the parietal pleura of the subject without discharging the flowable composition.
  7. The method of any one of the preceding claims, wherein the actuation member is a pressing element configured to engage a control knob.
  8. The method of claim 7, wherein the pressing element is cylindrical.
  9. The method of claim 7 or claim 8, wherein said controlling the actuation member to compress the energy storage member without moving the floating seal comprises dialing the  control knob to actuate the pressing element, thereby applying a force to the energy storage member and compress the energy storage member.
  10. The method of any one of claims 2-9, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a first target site in the intercostal space after the step of 1) and prior to the step of 2) , or after the step of 2) and prior to the step of 3) ; wherein the contacting member directly contacts a surface tissue at the first target site.
  11. The method of claim 10, wherein the step of 2a) is after the step of 1) and prior to the step of 2) .
  12. The method of any one of the preceding claims, further comprising a step of 5) retracting the needle from the first target site.
  13. The method of claim 12, further comprising a step of 6) moving the injection system close to a second target site followed by performing steps in the sequence of 2a’) -2) -3’) -4) -5’) , wherein the step of 2a’) comprises positioning the distal end of the syringe barrel toward the second target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the second target site;
    wherein the step of 3’) comprises advancing the distal end of the needle toward the second target site in the intercostal space of the subject; and
    wherein the step of 5’) comprises retracting the needle from the second target site.
  14. The method of claim 13, further comprising a step of 7) moving the injection system close to a third target site followed by performing steps in the sequence of 2a”) -2) -3”) -4) -5”) , wherein the step of 2a”) comprises positioning the distal end of the syringe barrel toward the third target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the third target site;
    wherein the step of 3”) comprises advancing the distal end of the needle toward the third target site in the intercostal space of the subject; and
    wherein the step of 5”) comprises retracting the needle from the third target site.
  15. The method of claim 14, further comprising a step of 8) moving the injection system close to a next target site followed by performing steps in the sequence of 2a”’) -2) -3”’) -4) -5”’) , wherein the step of 2a”’) comprises positioning the distal end of the syringe barrel toward the next target site in the intercostal space, wherein the contacting member directly contacts a surface tissue at the next target site;
    wherein the step of 3”’) comprises advancing the distal end of the needle toward the next target site in the intercostal space of the subject; and
    wherein the step of 5”’) comprises retracting the needle from the next target site.
  16. The method of any one of the preceding claims, wherein the energy storage member comprises a spring and/or an elastic sheath.
  17. The method of any one of claims 2-16, wherein the elastic element comprises a spring and/or an elastic sheath.
  18. A method of providing an intercostal nerve block in a subject in need thereof comprising:
    1) providing an injection system comprising: a syringe barrel extending from a proximal end to a distal end and forming a lumen extending from the proximal end to the distal end; a push shaft extending from a proximal end to a distal end and forming a seal between the distal end of the push shaft and the syringe barrel; a floating seal arranged within the lumen proximal to the distal end of the syringe barrel and forming a seal between the floating seal and the distal end of syringe barrel; and a needle extending from a proximal end to a distal end comprising an end opening;
    wherein a flowable composition is located:
    a) within the lumen between the distal end of the push shaft and the floating seal, wherein the proximal end of the needle is connected to the floating seal, or
    b) within the lumen between the floating seal and the distal end of the syringe barrel, wherein the proximal end of the needle is connected to the distal end of the push shaft, and
    wherein the needle further comprises: a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
    2) advancing the distal end of the needle toward an intercostal space of the subject; and
    3) continuing advancing the distal end of the needle until the distal end of the needle extends beyond parietal pleura of the subject and into an extrapleural space, allowing the flowable composition flow from the lumen into the extrapleural space through the end opening of the needle.
  19. The method of claim 18, wherein said advancing the distal end of the needle toward an intercostal space of the subject comprises applying a force to the push shaft so that an opposing force is overcome to move the needle distally and into the intercostal space of the subject without discharging the flowable composition in the parietal pleura or the extrapleural space.
  20. The method of claim 18 or claim 19, wherein the proximal end of the needle of 1) -b) is connected to the distal end of the push shaft via a needle base, wherein the needle base and the floating seal are configured to elastically engage each other, and wherein the needle base is configured to advance the needle distally when a force is applied to the push shaft.
  21. The method of any one of claims 18-20, wherein prior to said advancing the distal end of the needle, the body opening and the distal opening of the needle of 1) -b) are both proximal to the floating seal.
  22. The method of any one of claims 18-21 comprising said advancing the distal end of the needle, wherein the body opening of the needle of 1) -b) is proximal to the floating seal, wherein the end opening of the needle is distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  23. The method of any one of claims 18-21 comprising said advancing the distal end of the needle, wherein the body opening and the end opening of the needle of 1) -b) are both distal to the floating seal and in the lumen comprising the flowable composition, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  24. The method of any one of claims 18-21 comprising said advancing the distal end of the needle, wherein the body opening of the needle of 1) -b) is distal to the floating seal and in the lumen comprising the flowable composition, wherein the end opening of the needle contacts tissue (s) in the intercostal space of the subject, and wherein discharge of the flowable composition from the end opening of the needle is prevented.
  25. The method of any one of claims 18-22 comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space,
    wherein the body opening of the needle of 1) -b) is in the lumen comprising the flowable composition,
    wherein the end opening of the needle is in the extrapleural space of the subject, and
    wherein the floating seal is moved distally without further advancing the needle, thereby allowing the flowable composition flow into the extrapleural space through the body opening of the needle, the needle body passageway, and the end opening of the needle.
  26. The method of claim 18 or claim 19 comprising said continuing advancing the distal end of the needle until the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space,
    wherein the flowable composition of 1) -a) is located within the lumen between the distal end of the push shaft and the floating seal, and wherein the proximal end of the needle is connected to the floating seal; and
    wherein the distal end of the needle extends beyond the parietal pleura of the subject and into the extrapleural space, thereby allowing the floating seal to succumb to the opposing force and move distally without further advancing the needle to discharge the flowable composition into the extrapleural space through the end opening of the needle.
  27. The method of any one of claims 18-26, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  28. The method of any one of claims 18-27, wherein the injection system further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  29. The method of any one of claims 18-28, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  30. The method of claim 29, further comprising a step of 2a) positioning the distal end of the syringe barrel toward a target site in the intercostal space after the step of 1) and prior to the step of 2) , wherein the contacting member directly contacts a surface tissue at the target site.
  31. The method of any one of the preceding claims, wherein said method is performed under a thoracoscope.
  32. The method of any one of the preceding claims, wherein the subject suffers pain from a traumatic injury, a cancer, and/or a surgery in an abdominal or thoracic region of the subject.
  33. The method of any one of the preceding claims, wherein the flowable composition comprises one or more anesthetics for intercostal nerve block, and optionally one or more additives.
  34. The method of claim 33, wherein the one or more anesthetics are selected from the group consisting of ropivacaine, dibucaine, bupivacaine, etidocaine, tetracaine, procaine, chloroprocaine, prilocaine, mepivacaine, lidocaine, xylocaine, and mixtures thereof.
  35. The method of claim 33 or claim 34, wherein the additive is epinephrine.
  36. An injection system comprising: a syringe barrel extending from a proximal end to a distal end; a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel; an actuation unit comprising an actuation member, an energy storage member and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a lumen between the floating seal and the distal end of the syringe barrel, and wherein the floating seal can elastically engage with the actuation member via the energy storage member; and a needle extending from a proximal end to a distal end comprising an end opening;
    wherein the distal end of the push shaft is proximal to the floating seal;
    wherein a flowable composition is located within the lumen formed between the floating seal and the distal end of the syringe barrel;
    wherein the proximal end of the needle is:
    a) connected to the distal end of the syringe barrel, or
    b) connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening.
  37. The injection system of claim 36, wherein the injection system further comprises a contacting member and an elastic element, wherein the contacting member is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the contacting member is configured to elastically engage with the distal end of the syringe barrel via the elastic element.
  38. The injection system of claim 36 or claim 37, wherein the injection system further comprises a syringe handle, wherein the syringe handle is connected to the syringe barrel.
  39. The injection system of any one of claims 36-38, wherein the injection system of 1) -b) further comprises a distal seal, and wherein the distal seal is positioned inside the syringe barrel and at the distal end of the syringe barrel.
  40. The injection system of any one of claims 36-39, wherein the energy storage member comprises a spring and/or an elastic sheath.
  41. The injection system of any one of claims 37-39, wherein the elastic element member comprises a spring and/or an elastic sheath.
  42. The injection system of any one of claims 36-41, wherein the needle is a hollow puncture needle.
  43. The injection system of any one of claims 37-42, the contacting member is a soft cushion.
  44. The injection system of any one of claims 36-43, wherein the actuation member is a pressing element configured to engage a control knob.
  45. The injection system of claim 44, wherein the pressing element is cylindrical.
  46. The injection system of claim 44 or claim 45, wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  47. The injection system of any one of claims 36-46, wherein the lumen formed between the floating seal and the distal end of the syringe barrel is a flowable composition lumen.
  48. An injection system comprising:
    a syringe barrel extending from a proximal end to a distal end;
    a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
    an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
    a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the syringe barrel and wherein the needle is a hollow puncture needle;
    a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
    a syringe handle positioned at the proximal end of the syringe barrel;
    wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
  49. An injection system comprising:
    a syringe barrel extending from a proximal end to a distal end;
    a push shaft extending from a proximal end to a distal end, wherein the distal end of the push shaft is positioned inside the syringe barrel;
    an actuation unit comprising an actuation member, a spring and a floating seal, wherein the floating seal is positioned inside the syringe barrel, forms a seal between the floating seal and the syringe barrel, and forms a flowable composition lumen between the floating seal and the distal end of the syringe barrel, wherein the floating seal can elastically engage with the actuation member via the spring, and wherein the actuation member is a cylindrical pressing element configured to engage a control knob;
    a needle extending from a proximal end to a distal end comprising an end opening, wherein the proximal end of the needle is connected to the distal end of the push shaft, wherein the needle further comprises a body opening between the needle proximal end and the needle  distal end, wherein the needle body opening is proximal to the needle distal opening, and a needle body passageway connecting the needle distal opening and the needle body opening;
    a distal seal positioned inside the syringe barrel and at the distal end of the syringe barrel;
    a cushion and an elastic element, wherein the cushion is distal to the distal end of the syringe barrel, the distal end of the needle and the elastic element; and wherein the cushion is configured to elastically engage with the distal end of the syringe barrel via the elastic element, wherein the elastic element is a spring; and
    a syringe handle positioned at the proximal end of the syringe barrel;
    wherein the distal end of the push shaft is proximal to the floating seal, and wherein the push shaft is configured to pass through and optionally engage the cylindrical pressing element.
PCT/CN2023/130902 2022-11-11 2023-11-10 Precise and controlled injection for intercostal nerve block WO2024099421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/131456 2022-11-11
CN2022131456 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024099421A1 true WO2024099421A1 (en) 2024-05-16

Family

ID=91031958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130902 WO2024099421A1 (en) 2022-11-11 2023-11-10 Precise and controlled injection for intercostal nerve block

Country Status (1)

Country Link
WO (1) WO2024099421A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032389A1 (en) * 2011-08-31 2013-03-07 Shl Group Ab Injection device
CN106137528A (en) * 2010-03-31 2016-11-23 奥库杰克特有限责任公司 Equipment and method for intraocular drug delivery
CN215273198U (en) * 2021-05-13 2021-12-24 中国医学科学院北京协和医院 Medical instrument assembly
CN215307335U (en) * 2021-05-13 2021-12-28 中国医学科学院北京协和医院 Eye implantation instrument assembly
CN215349934U (en) * 2021-05-13 2021-12-31 中国医学科学院北京协和医院 Eye puncture device and eye implantation instrument assembly
CN215349326U (en) * 2021-05-13 2021-12-31 中国医学科学院北京协和医院 Medical puncturing device and medical instrument assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106137528A (en) * 2010-03-31 2016-11-23 奥库杰克特有限责任公司 Equipment and method for intraocular drug delivery
WO2013032389A1 (en) * 2011-08-31 2013-03-07 Shl Group Ab Injection device
CN215273198U (en) * 2021-05-13 2021-12-24 中国医学科学院北京协和医院 Medical instrument assembly
CN215307335U (en) * 2021-05-13 2021-12-28 中国医学科学院北京协和医院 Eye implantation instrument assembly
CN215349934U (en) * 2021-05-13 2021-12-31 中国医学科学院北京协和医院 Eye puncture device and eye implantation instrument assembly
CN215349326U (en) * 2021-05-13 2021-12-31 中国医学科学院北京协和医院 Medical puncturing device and medical instrument assembly

Similar Documents

Publication Publication Date Title
US11065382B2 (en) Apparatus to inject fluids into bone marrow and other target sites
US8480632B2 (en) Cartridge apparatus for injecting fluids into bone
US8529541B2 (en) Infiltration cannula
US5620419A (en) Port stabilizer ring
US8419683B2 (en) Intraosseous device and methods for accessing bone marrow in the sternum and other target areas
US5052999A (en) Liposuction method and apparatus
US20050119613A1 (en) Fluid delivery trocar-cannula complex, fluid delivery accessory, and method for delivering fluids during minimally invasive surgery
US20210128899A1 (en) Atraumatic subcutaneous medication delivery
JP2014180570A (en) Neural injection system and related method
WO2024099421A1 (en) Precise and controlled injection for intercostal nerve block
US20240180745A1 (en) Medical penetration device and system
US20220226018A1 (en) Minimally traumatic trocar apparatus and kit for subcutaneous medication delivery
WO2024099427A1 (en) Integrated device and system for epidural injection
CN114390913A (en) Bone penetrating manual driver and stabilizer assembly for intraosseous access
US20240091504A1 (en) Kit and method intended for prostate surgery
RU199439U1 (en) Intraosseous access device
US20220331573A1 (en) Minimally traumatic trocar method for subcutaneous medication delivery
US20230338705A1 (en) Kit and method intended for prostate surgery
US20220226019A1 (en) Minimally traumatic trocar apparatus and kit for subcutaneous medication delivery
CN118215514A (en) Vascular access device with effective needle length adjustment