WO2024099230A1 - 广播安全通信的方法和装置 - Google Patents

广播安全通信的方法和装置 Download PDF

Info

Publication number
WO2024099230A1
WO2024099230A1 PCT/CN2023/129644 CN2023129644W WO2024099230A1 WO 2024099230 A1 WO2024099230 A1 WO 2024099230A1 CN 2023129644 W CN2023129644 W CN 2023129644W WO 2024099230 A1 WO2024099230 A1 WO 2024099230A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
core network
broadcast
indication information
key
Prior art date
Application number
PCT/CN2023/129644
Other languages
English (en)
French (fr)
Inventor
郭龙华
吴�荣
亨达诺阿门·本
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024099230A1 publication Critical patent/WO2024099230A1/zh

Links

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for broadcasting secure communications.
  • public land mobile network (PLMN) #a and PLMN #b can share a base station.
  • the application function (AF) transmits data to the base station through PLMN #a and PLMN #b, and the base station broadcasts a copy of the data to the user equipment (UE) of PLMN #a and the UE of PLMN #b.
  • the data can be securely protected by the multicast/broadcast service transport function (MBSTF) in PLMN #a or PLMN #b.
  • MMSTF multicast/broadcast service transport function
  • the present application provides a method and device for broadcast secure communication, which can improve user experience.
  • a method for secure broadcast communication applicable to a core network of multiple operators is provided, which can be performed by a first core network element, or can also be performed by a component (such as a chip or circuit) of the first core network element, and this application does not limit this.
  • a component such as a chip or circuit
  • the method may include: a first core network network element receives a session creation request message from an application function network element, the session creation request message is used to request the creation of a broadcast session; in response to the session creation request message, the first core network network element sends a session creation response message to the application function network element; the first core network network element obtains first indication information, the first indication information comes from an access network network element or a second core network network element, or the first indication information is pre-configured in the first core network network element; the first core network network element sends a broadcast transmission key to a terminal device according to the first indication information, the broadcast transmission key is used to securely protect first data of a broadcast service transmitted between the first core network network element and the terminal device.
  • the above scheme in which the first core network network element sends the broadcast transmission key to the terminal device according to the first indication information, can reduce the problem that the terminal device cannot decrypt the received first data when the core network or access network element does not support the key generated by the application function network element to securely protect the first data (for example, the core network securely protects the first data), thereby improving the security management capabilities of the core network and the security performance of the system, and enhancing the user experience.
  • the first indication information indicates the usage status of the multi-operator core network for the broadcast service, and the usage status includes whether the optimization of the multi-operator core network for the broadcast service is enabled or not; wherein, when the first indication information indicates that the optimization of the multi-operator core network for the broadcast service is enabled, the broadcast transmission key is the first key generated by the application function network element; or, when the first indication information indicates that the optimization of the multi-operator core network for the broadcast service is not enabled, the broadcast transmission key is the second key generated by the first core network element.
  • the broadcast transmission key is determined according to the usage status of the multi-operator core network for the broadcast service.
  • the key generated by the application function network element is used to securely protect the first data, so that the terminal devices of multiple networks that share an access network element can decrypt the first data based on the same key.
  • the key generated by the first core network network element is used to protect the first data, so that the terminal devices of multiple networks that share an access network element decrypt the received data based on the key generated by the first core network network element of their network. Therefore, whether the MOCN optimization is turned on or not, it can reduce the terminal devices’ inability to receive the received data due to the MBSTF in the two networks separately protecting the data of the broadcast service.
  • the data of the broadcast service is decrypted and/or integrity checked to improve the user experience.
  • the first indication information indicates whether the network served by the first core network network element supports a multi-operator core network architecture; wherein, when the first indication information indicates that the network supports a multi-operator core network architecture, the broadcast transmission key is a first key generated by the application function network element; or, when the first indication information indicates that the network does not support a multi-operator core network architecture, the broadcast transmission key is a second key generated by the first core network element.
  • the broadcast transmission key is determined according to whether the network served by the first core network element supports the multi-operator core network architecture.
  • the key generated by the application function element is used to securely protect the first data, so that the terminal devices of multiple networks that share an access network element can decrypt the first data based on the same key.
  • the key generated by the first core network element is used to protect the first data, so that the terminal devices of multiple networks that share an access network element decrypt the received data according to the key generated by the first core network element of the network.
  • the network whether the network supports or does not support the multi-operator core network architecture, it can reduce the situation where the terminal device cannot decrypt and/or integrity check the received broadcast service data due to the MBSTF in the two networks separately protecting the data of the broadcast service, thereby improving the user experience.
  • the first core network network element obtains first indication information, including: the first core network network element receives the first indication information from the access network network element or the second core network network element; the first indication information indicates that the optimization of the multi-operator core network network for the broadcast service is not enabled, including: the first indication information indicates that the access network network element broadcasts the first data and the second data respectively for the broadcast service from at least two networks; the first indication information indicates that the optimization of the multi-operator core network network for the broadcast service is enabled, including: the first indication information indicates that the access network network element broadcasts the first data for the broadcast service from at least two networks; wherein the at least two networks include the network served by the first core network network element.
  • the first core network network element obtains first indication information, including: the first core network network element sends a subscription request message to the access network network element or the second core network element, and the subscription request message is used to subscribe to the event of the usage status change; the first core network network element receives a subscription response message from the access network network element or the second core network element, and the subscription response message includes the first indication information.
  • the method when the first indication information indicates that optimization of the multi-operator core network for the broadcast service is not enabled, the method further includes: the first core network element generates a second key based on the first indication information.
  • the method also includes: the first core network element receives second indication information, the second indication information indicates the usage status of the multi-operator core network network for the broadcast service, the usage status including whether the optimization of the multi-operator core network network for the broadcast service is enabled or not; the first core network element determines whether to update the broadcast transmission key based on the second indication information.
  • the first core network element determines whether to update the broadcast transmission key according to whether the optimization is enabled and the current broadcast transmission key, so that the broadcast transmission key can be flexibly changed according to whether the optimization is enabled, thereby further improving security performance.
  • the first core network network element determines whether to update the broadcast transmission key based on the first indication information, including: when the second indication information indicates that the optimization of the multi-operator core network network for the broadcast service is not enabled and the broadcast transmission key is the first key, the first core network network element updates the broadcast transmission key to the second key; or, when the second indication information indicates that the optimization of the multi-operator core network network for the broadcast service is not enabled and the broadcast transmission key is the second key, the first core network network element does not update the broadcast transmission key; or, when the second indication information indicates that the optimization of the multi-operator core network network for the broadcast service is enabled and the broadcast transmission key is the first key, the first core network network element does not update the broadcast transmission key; or, when the second indication information indicates that the optimization of the multi-operator core network network for the broadcast service is enabled and the broadcast transmission key is the first key, the first core network network element updates the broadcast transmission key to the first key.
  • the broadcast transmission key when the first indication information indicates that the key generated by the first core network network element is used to securely protect the first data, the broadcast transmission key is the second key generated by the first core network network element; or, when the first indication information indicates that the key generated by the application function network element is used to securely protect the first data, the broadcast transmission key is the first key generated by the application function network element.
  • the first indication information is a local configuration or a local policy.
  • the network served by the first core network element supports a multi-operator network architecture.
  • the first core network element determines the broadcast transmission key according to the local policy or local configuration.
  • the local policy or local configuration does not support the use of keys generated by the application function network element, multiple networks supporting the multi-operator core network architecture use different The key can be isolated and the security performance can be improved.
  • the first indication information indicates that the first network shall perform security protection on the first data, including: the first indication information indicates not to use the key generated by the application function network element or indicates that only the key generated by the first core network network element shall be used; the first indication information indicates that the application function network element shall perform security protection on the data, including: the first indication information indicates that the key generated by the application function network element is allowed to be used or indicates that the key generated by the first core network network element shall not be used.
  • the method when the first indication information indicates that the first network performs security protection on the first data, the method further includes: the first core network element generates a second key based on the first indication information.
  • the method when the first indication information indicates that the first network performs security protection on the first data, the method also includes: the first core network network element sends third indication information to the access network network element, the third indication information instructing the access network element to broadcast the first data and the second data respectively for the broadcast service from different networks, or indicating that the first network performs security protection on the first data, or indicating that the broadcast transmission key is generated by the first core network network element.
  • the method when the first indication information indicates that the application function network element performs security protection on the data, the method also includes: the first core network network element sends third indication information to the access network element, and the third indication information indicates that the access network element broadcasts the first data for the broadcast service from different networks, or indicates that the application function network element performs security protection on the first data, or indicates that the broadcast transmission key is generated by the application function network element.
  • the first core network element also notifies the access network element whether to enable multi-operator core network optimization according to whether the broadcast transmission key uses the first key or the second key, thereby realizing the core network's control over whether multi-operator core network optimization is enabled.
  • the security performance is further improved.
  • the session creation request message includes the identifier of the broadcast session and the first key, and is characterized in that the method also includes: the first core network network element stores the identifier of the broadcast session and the first key.
  • the first core network element is a broadcast service function network element or a broadcast service transmission function network element.
  • a method for secure broadcast communication applicable to a core network of multiple operators is provided, which can be executed by a first core network element, or can also be executed by a component (such as a chip or circuit) of the first core network element, and this application does not limit this.
  • a component such as a chip or circuit
  • the method may include: a first core network element receives a notification message from a third core network element, the notification message includes a third key generated by the third core network element, the first core network element belongs to a first network, the third core network element belongs to a second network, and the third network and the second network share the same access network element; the first core network element obtains fourth indication information, the fourth indication information indicates the usage status of the multi-operator core network network for the broadcast service, the usage status includes whether the optimization of the multi-operator core network network for the broadcast service is enabled or not; the first core network element sends a broadcast transmission key to the terminal device according to the fourth indication information, and the broadcast transmission key is used to securely protect the first data of the broadcast service transmitted between the first core network element and the terminal device.
  • the above scheme for multiple networks sharing the same base station, generates security data by one of the networks and then sends it to other networks, so that different networks can use the same broadcast transmission key to securely protect the data of broadcast services, reduce the situation where the terminal device is unable to decrypt and/or integrity check the received broadcast service data due to the two networks separately protecting the data of the broadcast services, and improve the user experience.
  • the method also includes: the first core network element sends a request message to the second core network element, the request message is used to request a key generated by the second core network element; and the notification message is used to respond to the request message.
  • the first core network element receives a notification message from a third core network element, including: the first core network element receives the notification message from the second core network element through a security edge protection agent element.
  • the broadcast transmission key when the fourth indication information indicates that optimization of the multi-operator core network for the broadcast service has been enabled, the broadcast transmission key is the third key; when the fourth indication information indicates that optimization of the multi-operator core network for the broadcast service has not been enabled, the broadcast transmission key is the second key generated by the first core network element.
  • a method for secure broadcast communication applicable to a core network of multiple operators is provided, which can be performed by a third core network element, or can also be performed by a component (such as a chip or circuit) of the third core network element, and this application does not limit this.
  • a component such as a chip or circuit
  • the method may include: a third core network element generating a third key; the third core network element sending a notification message to a first core network element, the notification message including the third key, the first core network element belonging to the first network, the third core network element belonging to the second network, The third network and the second network share the same access network element.
  • the above scheme for multiple networks sharing the same base station, generates security data by one of the networks and then sends it to other networks, so that different networks can use the same broadcast transmission key to securely protect the data of broadcast services, reduce the situation where the terminal device is unable to decrypt and/or integrity check the received broadcast service data due to the two networks separately protecting the data of the broadcast services, and improve the user experience.
  • the first core network network element is a broadcast service function network element or a broadcast service transmission function network element of the first network
  • the third core network network element is a broadcast service function network element or a broadcast service transmission function network element of the second network.
  • a method for secure broadcast communication applicable to a multi-operator core network is provided, which can be performed by a first core network element, or can also be performed by a component (such as a chip or circuit) of a fourth core network element, and this application does not limit this.
  • a component such as a chip or circuit
  • the following is an example of execution by the fourth core network element.
  • the method may include: an application function network element obtains fifth indication information, the fifth indication information indicating whether the first network supports the architecture of multiple operator core networks; the application function network element sends a broadcast session creation request message to a fourth core network element of the first network; wherein, when the fifth indication information indicates that the first network supports the architecture of multiple operator core networks, the broadcast session creation request message includes security data, the security data includes an identifier of the broadcast session and a first key, the first key is generated by the application function network element, and the security data indicates that the first key is applied to perform security protection on data corresponding to the broadcast session.
  • the application function network element determines whether to carry security data in the broadcast session creation request message according to whether the network supports the multi-operator core network architecture. This can avoid the problem of wasting signaling overhead when the application function network element sends security data to the network when the network does not support the multi-operator core network architecture.
  • the application function network element makes the judgment first, which can also avoid the network notifying the application function network element that it does not support the multi-operator core network architecture during the broadcast session creation process, further saving signaling overhead.
  • the fourth core network element is a broadcast service function network element or a broadcast service transmission function network element.
  • a method for secure broadcast communication applicable to a multi-operator core network is provided, which can be performed by a fourth core network element, or can also be performed by a component (such as a chip or circuit) of the fourth core network element, and this application does not limit this.
  • a component such as a chip or circuit
  • the method may include: a fourth core network element receives a broadcast session creation request message from an application function element, the broadcast session creation request message being used to request the creation of a broadcast session; the fourth core network element obtains sixth indication information and seventh indication information; in response to the broadcast session creation request message, the fourth core network element sends a broadcast session creation response message to the application function element according to the sixth indication information; wherein, if the sixth indication information and the seventh indication information satisfy the following conditions, the broadcast session creation response message indicates the rejection of the request to create a broadcast session; the sixth indication information indicates that the first network to which the fourth core network element belongs performs security protection on the data corresponding to the broadcast session; the seventh indication information indicates that the first network supports the architecture of multiple operator core networks, or instructs the access network element to broadcast the same data for broadcast services from at least two networks including the first network, or instructs the first network to only use keys generated by network elements of the first network, or instructs the first network not to use keys generated by the application function element.
  • the fourth core network element determines whether to approve the broadcast session creation request from the application function element based on the local policy or local configuration. Since the network supports a multi-operator core network architecture or multi-operator core network optimization is turned on, if the local policy or local configuration of the network requires the core network to perform security protection on the broadcast session, the fourth core network element will reject the broadcast session creation request. Before the network starts to establish a broadcast session, the fourth core network element first determines whether to create a broadcast session. Compared with the network determining whether the local policy or local configuration supports the creation of a broadcast session in the broadcast session creation process, signaling overhead can be saved.
  • the fourth core network element is a broadcast service function network element or a broadcast service transmission function network element.
  • a communication device comprising: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation of the first to fifth aspects above.
  • the device further comprises a memory, configured to store a computer program or instruction.
  • the device further comprises a communication interface, and the processor reads the computer program or instruction stored in the memory through the communication interface.
  • the apparatus is a communication device (such as a first core network element, a third core network element, or an application function network element).
  • the apparatus is used for a communication device (such as a first core network element, a third core network element, and an application A chip, chip system or circuit that uses a functional network element.
  • a communication device such as a first core network element, a third core network element, and an application A chip, chip system or circuit that uses a functional network element.
  • the present application provides a processor for executing the methods provided in the first to fifth aspects above.
  • a system for broadcast secure communication comprising a first core network element, an application function network element and a terminal device, wherein the first core network element is used for the method in any possible implementation of the first aspect.
  • a computer-readable storage medium which stores a program code for execution by a device, wherein the program code includes a method for executing any possible implementation of the first to fifth aspects above.
  • a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute a method in any possible implementation of the first to fifth aspects.
  • FIG1 shows a 5G system to which an embodiment of the present application is applicable.
  • FIG2 is a schematic diagram of a multicast broadcast service architecture applicable to the method provided in an embodiment of the present application.
  • FIG3 shows a schematic diagram of a scenario to which the present application is applicable.
  • FIG4 shows another schematic diagram of a scenario to which the present application is applicable.
  • FIG5 shows a schematic diagram of a method 100 for broadcasting secure communications provided by the present application.
  • FIG. 6A shows a schematic diagram of a method 110 for broadcasting secure communications provided by the present application.
  • FIG6B shows a schematic diagram of a method 200 for broadcasting secure communications provided by the present application.
  • FIG. 7 shows a schematic diagram of a method 300 for broadcasting secure communications provided by the present application.
  • FIG8A shows a schematic diagram of a method 120 for broadcasting secure communications provided by the present application.
  • FIG8B shows a schematic diagram of a method 400 for broadcasting secure communications provided by the present application.
  • FIG. 9 is a schematic diagram showing a method 500 for broadcasting secure communications provided by the present application.
  • FIG. 10A is a schematic diagram showing a method 130 for broadcasting secure communications provided by the present application.
  • FIG. 10B shows a schematic diagram of a method 600 for broadcasting secure communications provided by the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided in the present application.
  • FIG. 12 is another schematic block diagram of the communication device provided in the present application.
  • the technical solution provided by the present application can be applied to various communication systems, such as: fifth generation (5G) or new radio (NR) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by the present application can also be applied to various communication systems, such as fifth generation (5G) or new radio (NR) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type communication
  • IoT Internet of Things
  • the network architecture is, for example, the 5G system (5GS) defined in the 3rd Generation Partnership Project (3GPP) protocol TS23.501.
  • the network architecture can be divided into two parts: access network (AN) and core network (CN).
  • the access network can be used to implement functions related to wireless access
  • the core network mainly includes the following key logical network elements: access and mobility management function (AMF), session management function (SMF), user plane function (UPF), policy control function (PCF) and unified data management (UDM), etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • UDM unified data management
  • Terminal equipment It can be called terminal equipment, terminal device, access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • Terminal equipment can be a device that provides voice/data connectivity to users, such as handheld devices with wireless connection function, vehicle-mounted devices, etc.
  • terminals can be: mobile phones, tablet computers, computers with wireless transceiver functions (such as laptops, PDAs, etc.), mobile Internet devices (mobile internet devices, MIDs), virtual reality (virtual reality, VR) devices, augmented reality (augmented reality, AR) devices, wireless terminals in industrial control (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety (transportation safety), etc.
  • mobile phones mobile phones, tablet computers, computers with wireless transceiver functions
  • mobile Internet devices mobile internet devices, MIDs
  • virtual reality virtual reality
  • VR augmented reality
  • wireless terminals in industrial control industrial control
  • wireless terminals in self-driving wireless terminals in remote medical
  • wireless terminals in smart grids wireless terminals in transportation safety (transportation safety), etc.
  • the present invention relates to wireless terminals in the smart city, wireless terminals in the smart home, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile networks (PLMN), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolved public land mobile networks (PLMN) etc.
  • the terminal device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-machine interconnection and object-object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • terminal devices can also include smart printers, train detectors, etc. Their main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • the user equipment can be any device that can access the network.
  • the terminal equipment and the access network equipment can communicate with each other using a certain air interface technology.
  • the user equipment can be used to act as a base station.
  • the user equipment can act as a scheduling entity that provides sidelink signals between user equipment in V2X or D2D, etc.
  • a cell phone and a car communicate with each other using sidelink signals.
  • a cell phone and a smart home device communicate with each other without relaying the communication signal through a base station.
  • Radio access network (R)AN) equipment used to provide network access for authorized user devices in a specific area, and can use transmission tunnels with different service qualities according to the level of user equipment and business requirements.
  • (R)AN can manage wireless resources, provide access services for user equipment, and then complete the forwarding of control signals and user equipment data between user equipment and the core network.
  • (R)AN can also be understood as a base station in a traditional network.
  • the access network device in the embodiment of the present application can be any communication device with wireless transceiver function for communicating with user equipment.
  • the access network device includes but is not limited to an evolved Node B (eNB) or a gNB in a 5G, such as NR, system, or a transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system, or a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU).
  • eNB evolved Node B
  • TRP transmission point
  • TP transmission point
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include active antennas.
  • Unit active antenna unit, AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, and implementing the functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of radio link control (RLC) layer, media access control (MAC) layer and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU implements some physical layer processing functions, RF processing and related functions of active antennas.
  • the access network device can be a device including one or more of CU node, DU node and AAU node.
  • the CU may be classified as an access network device in a radio access network (RAN), or may be classified as an access network device in a core network (CN), which is not limited in the present application.
  • RAN radio access network
  • CN core network
  • UPF User plane function
  • QoS quality of service
  • the user plane network element may still be a UPF network element, or may have other names, which is not limited in this application.
  • Access and mobility management function (AMF) network element The access and mobility management function network element is mainly used for mobility management and access management, etc., and can be used to implement other functions of MME functions except session management, such as access authorization/authentication and other functions.
  • AMF Access and mobility management function
  • the access and mobility management device may still be AMF, or may have other names, which are not limited in this application.
  • Session management function (SMF) network element mainly used for session management, allocation and management of Internet protocol (IP) addresses of user equipment, selection of endpoints of manageable user plane functions, policy control and charging function interfaces, and downlink data notification.
  • IP Internet protocol
  • the session management function network element is referred to as "SMF”.
  • SMF is a type of session management network element.
  • the session management network element may still be SMF, or may have other names, which are not limited in this application.
  • PCF Policy control function
  • the policy control network element may still be a PCF network element, or may have other names, which are not limited in this application.
  • Application function (AF) network element used for data routing affected by applications, wireless access network open function network element, interacting with the policy framework for policy control, etc.
  • AF application function
  • the application function network element may still be an AF network element, or may have other names, which is not limited in this application.
  • Unified data management (UDM) network element used to process UE identification, access authentication, registration and mobility management, etc.
  • unified data management may still be a UDM network element, or it may have other names, which is not limited in this application.
  • AUSF Authentication server function
  • the authentication server function network element may still be an AUSF network element, or may have other names, which is not limited in this application.
  • NWDAF Network data analytics function
  • the network data analysis function network element may still be an NWDAF network element, or may have other names, which is not limited in this application.
  • DN is a network outside the operator network.
  • the operator network can access multiple DNs.
  • Various services can be deployed on DN, which can provide data and/or voice services to terminal devices.
  • DN is the private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensors is deployed in DN, and the control server can provide services for the sensors.
  • the sensors can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is the internal office network of a company.
  • the mobile phones or computers of the company's employees can be terminal devices. Employees' mobile phones or computers can access information, data resources, etc. on the company's internal office network.
  • each network element can communicate with each other through the interface shown in the figure.
  • the UE and AMF can interact through the N1 interface, and the interaction message can be called N1 message (N1Message).
  • the RAN and AMF can interact through the N2 interface, and the N2 interface can be used for sending non-access stratum (NAS) messages, etc.
  • the RAN and UPF can interact through the N3 interface, and the N3 interface can be used to transmit user plane data, etc.
  • the SMF and UPF can interact through the N4 interface, and the N4 interface can be used to transmit information such as tunnel identification information of the N3 connection, data cache indication information, and downlink data notification messages.
  • the UPF and DN can interact through the N6 interface, and the N6 interface can be used to transmit user plane data, etc.
  • the relationship between other interfaces and each network element is shown in Figure 1. For the sake of brevity, they are not described in detail here. The following is a brief introduction to the interface names and functions between each network element as follows:
  • N7 The interface between PCF and SMF, used to issue control policies for corresponding protocol data unit (PDU) sessions or corresponding business data flows.
  • PDU protocol data unit
  • N15 Interface between PCF and AMF, used to deliver UE policies and access control related policies.
  • N5 Interface between AF and PCF, used for issuing application service requests and reporting network events.
  • N4 The interface between SMF and UPF is used to transfer information between the control plane and the user plane, including the control of the forwarding rules, QoS control rules, traffic statistics rules, etc. for the user plane and the reporting of information on the user plane.
  • N11 The interface between SMF and AMF, used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to UE, transfer radio resource control information sent to RAN, etc.
  • N2 The interface between AMF and RAN, used to transmit radio bearer control information from the core network side to the RAN.
  • N1 The interface between AMF and UE, access-independent, used to deliver QoS control rules, etc. to UE.
  • N8 Interface between AMF and UDM, used by AMF to obtain access and mobility management related subscription data and authentication data from UDM, and AMF to register UE's current mobility management related information with UDM.
  • N10 The interface between SMF and UDM, used by SMF to obtain session management related subscription data from UDM, and SMF to register UE current session related information with UDM.
  • N35 Interface between UDM and UDR, used by UDM to obtain user contract data information from UDR.
  • N36 Interface between PCF and UDR, used by PCF to obtain policy-related contract data and application data-related information from UDR.
  • N12 Interface between AMF and AUSF, used by AMF to initiate an authentication process to AUSF, which can carry SUCI as a contract identifier;
  • N13 Interface between UDM and AUSF, used by AUSF to obtain the user authentication vector from UDM to execute the authentication process.
  • FIG2 is a schematic diagram of a multicast broadcast service architecture applicable to the method provided in an embodiment of the present application.
  • the multicast broadcast service architecture and functions shown in FIG2 are defined by enhancing the unicast network architecture and functions. The following is a brief introduction to the functions of each network element in FIG2 that are specific to the multicast broadcast service.
  • UE The main functions of UE are to receive multicast data through PTM/PTP, receive group/broadcast data through PTM, process QoS, initiate session join and session leave, and manage resources on the terminal side of 5G MBS.
  • RAN is mainly responsible for processing MBS QoS flows, sending data to UE through point to multipoint (PTM) and point to point (PTP), configuring the AS layer to receive broadcast streams, switching between PTM and PTP, supporting Xn and N2 switching of multicast sessions, processing session signaling, and establishing air interface broadcast and multicast resources.
  • PTM point to multipoint
  • PTP point to point
  • AMF is mainly responsible for signaling routing (NG-RAN ⁇ MB-SMF) and selecting broadcast NG-RANs.
  • SMF To support 5G MBS features, unicast SMF needs to be enhanced, mainly by adding functions such as discovering MB-SMF, authentication of UE joining, interaction with MB-SMF to manage multicast session context, and interaction with RAN to establish multicast transmission resources.
  • UPF is mainly responsible for interacting with MB-UPF to receive multicast data transmitted in a separate delivery mode and transmitting multicast data transmitted in a separate delivery mode to UE through PDU session.
  • PCF is mainly responsible for QoS processing of multicast and broadcast service (MBS) sessions, providing policy information to multicast and broadcast SMF (MB-SMF), and interacting with user data repository (UDR) to obtain QoS information.
  • MMS multicast and broadcast service
  • UDR user data repository
  • PCF is an optional network element and is only required when dynamic policy charging control (PCC) is used.
  • Multicast/broadcast-session management function network element: MB-SMF is an entity that supports broadcast features. MB-SMF can also have the function of unicast SMF. Specifically, MB-SMF is responsible for Responsibilities: MBS session management, including QoS control, etc.; configuration of multicast and broadcast UPF (MB-UPF); interaction with RAN to control broadcast flow transmission (broadcast session specific function); interaction with SMF to associate protocol data unit (PDU) session; interaction with RAN to control multicast flow transmission (multicast session specific function), etc.
  • MBS session management including QoS control, etc.
  • MB-UPF multicast and broadcast UPF
  • PDU protocol data unit
  • multicast session specific function multicast session specific function
  • the multicast/broadcast session management function network element is referred to as the multicast session management function network element, or "MB-SMF".
  • MB-SMF is a type of multicast session management network element.
  • the multicast session management network element can still be MB-SMF, or it can have other names, which are not limited in the present application.
  • Multicast/broadcast-user plane function (MB-UPF) network element MB-UPF is the gateway of the data plane of 5G MBS, and is mainly responsible for: interacting with MB-SMF to obtain data forwarding rules, transmitting multicast data to RAN through a shared delivery method, and transmitting multicast data to UPF through an individual delivery method.
  • the multicast/broadcast-user plane function network element is referred to as the multicast user plane function network element or "MB-UPF".
  • Multicast and broadcast service function MBSF mainly supports the following functions: service layer functions, intercommunication with LTE MBS, interaction with AF and MB-SMF to support the operation of MBS session, determination of transmission parameters and type of MBS session, selection of MB-SMF to control MBSTF, and determination of sender's IP multicast address, etc.
  • MBSF is an optional network element.
  • the multicast and broadcast service function network element is referred to as the multicast service function network element or "MBSF".
  • Multicast/broadcast service transport function MBSTF mainly supports the following functions: anchor point of MBS data, source of IP multicast, support for general transport functions such as frames, multi-stream, forward error correction (FEC), sending input files as objects or object flows in multicast or broadcast mode, etc.
  • MBSTF is an optional network element.
  • the multicast/broadcast service transport function network element is referred to as the multicast service transport function network element or "MBSTF".
  • AF mainly supports the following functions: providing service information to the 5G core network (5GC) and requesting multicast or broadcast services, as well as instructing MBS session operations with 5GC. AF in this application can also be understood as a content provider.
  • 5GC 5G core network
  • AF in this application can also be understood as a content provider.
  • UDM UDM mainly supports subscription/contract management of multicast sessions.
  • NRF Network repository function mainly contains the information of core network elements. In terms of supporting MBS features, it mainly includes the following functions: Supporting the management of MB-SMF that serves MBS sessions, specifically including saving the MBS session ID of MB-SMF services.
  • NEF Network exposure function
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers. The meanings of these interface serial numbers can be found in the meanings defined in the 3GPP standard protocol and are not limited here.
  • the above-mentioned network architecture applied to the embodiments of the present application is merely an example of a network architecture described from the perspective of a traditional point-to-point architecture and a service-oriented architecture.
  • the network architecture applicable to the embodiments of the present application is not limited to this. Any network architecture that can realize the functions of the above-mentioned network elements is applicable to the embodiments of the present application.
  • core network elements shown in Figures 1 and 2 can be understood as network elements used to implement different functions in the core network, for example, they can be combined into network slices as needed. These core network elements can be independent devices or integrated into the same device to implement different functions. This application does not limit the specific form of the above network elements.
  • the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (e.g., a cloud platform).
  • a platform e.g., a cloud platform.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. It is known to those skilled in the art that with the evolution of network architecture and new business scenarios, The technical solution provided in the embodiments of the present application is also applicable to similar technical problems.
  • a computer-readable medium may include, but is not limited to: a magnetic storage device (e.g., a hard disk, a floppy disk, or a tape, etc.), an optical disk (e.g., a compact disc (CD), a digital versatile disc (DVD), etc.), a smart card and a flash memory device (e.g., an erasable programmable read-only memory (EPROM), a card, a stick or a key drive, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • FIG3 shows a schematic diagram of a scenario to which the present application is applicable.
  • operators when deploying a network, in order to reduce the cost of deploying a wireless access network, operators generally choose to share wireless access network equipment while retaining their respective core networks (in the following description, base stations are used as wireless access network equipment for explanation).
  • the multi-operator core network (MOCN) scenario defined in TS23.501.
  • FIG3 it is assumed that there are three operators, among which operator #A, operator #B and operator #C each have their own core network, but in order to save costs (for example, the cost of deploying base stations), the three operators may share base stations.
  • the broadcast message contains information about the public land mobile network (PLMN).
  • PLMN public land mobile network
  • the cell information sent by the base station includes information about the PLMN to which the cell belongs.
  • FIG 4 shows another scenario schematic diagram to which the present application is applicable.
  • the content of certain broadcast services for example, weather forecasts, high-precision map updates, etc.
  • the data of the same broadcast service needs to be transmitted multiple times on the core networks of different operators and base stations shared by operators.
  • the content provider of the multicast/broadcast service (MBS content provider) sends broadcast data to PLMN#a and PLMN#b respectively. Since PLMN#a and PLMN#b share a base station, the data of the same broadcast service will be sent twice in the base station (it can also be understood that the base station needs to allocate air interface resources twice to transmit the same broadcast service in different operator networks).
  • a multicast/broadcast session can provide services for multicast/broadcast services.
  • a multicast/broadcast session includes a unicast or multicast tunnel from the data network to the core network device and then to the access network device, as well as the unicast or multicast/broadcast air interface resources allocated by the access network device for sending the multicast/broadcast service.
  • services/applications have the need to send multicast/broadcast services to multiple user equipments (UEs), that is, they need to transmit the same data from one point to multiple points.
  • Such services/applications include multimedia messaging services, data streaming services, group communication services, etc.
  • the network By establishing a multicast/broadcast/unicast session, the network provides a bearer shared by multiple receivers. The sender only needs to send one copy of the data, and the network side will copy and transmit the sent data to multiple receivers as needed, or use multicast transmission to send one copy of the data to multiple receivers.
  • a service can be carried by one or more sessions.
  • One service identifier corresponds to one or more MBS session identifiers.
  • At least two networks (PLMN#a and PLMN#b are used as examples below) share an access network element, and respectively send data of a broadcast service (the first broadcast service is used as an example below) to terminal devices of the respective networks through the access network element.
  • the AF transmits the data to the base station through PLMN#a and PLMN#b, and the base station broadcasts a copy of the data to the UE of PLMN#a and the UE of PLMN#b.
  • the AF or the service provider establishes an MBS session through PLMN#a and PLMN#b respectively, and sends data to PLMN#a and/or PLMN#b respectively through the MBS session.
  • the MBS session is identified by a corresponding MBS session identifier.
  • the MBS session identifier can be a specific IP address or a temporary mobile group identity (TMGI).
  • TMGI temporary mobile group identity
  • the MBS session identifier or session identifier involved in the present application is an identifier of an MBS session for carrying data of the first broadcast service.
  • the first broadcast service may be marked by a service identifier, which is a globally unique identifier.
  • the service identifier may be sent by the core network to the base station during the session creation process, or may be a correspondence between a preconfigured service identifier and a session identifier of the base station, which is not limited here.
  • the MBS session identifier established by the AF or the service provider in PLMN#a is TMGI x, and the service identifier is w.
  • the MBS session identifier established by the AF or the service provider in PLMN#b is TMGI y, and the service identifier is w.
  • the base station determines that the service data carried/delivered by different broadcast sessions is the same according to the service identifier.
  • At least two networks (hereinafter PLMN#a and PLMN#b are used as examples) share an access network element, and respectively send data of a broadcast service (hereinafter hereinafter the first broadcast service is used as an example) to terminal devices of the respective networks through the access network element.
  • the AF transmits data to the base station through PLMN#a and PLMN#b, and the base station broadcasts one or more copies of data to the UE of PLMN#a and the UE of PLMN#b.
  • the MOCN status can be understood as the usage status of the multi-operator core network for the first broadcast service, and the usage status includes whether MOCN optimization is enabled or not.
  • MOCN optimization is turned on and can also be called MOCN optimization is turned on or MOCN optimization can be turned on.
  • MOCN optimization is not turned on and can also be called MOCN optimization is not turned on or MOCN optimization is turned off or MOCN optimization cannot be turned on.
  • MOCN optimization is enabled, which means that MOCN optimization for the first broadcast service is enabled.
  • multiple PLMNs can broadcast the same data of the first broadcast service based on the same base station.
  • MOCN optimization is not enabled, which means that MOCN optimization for the first broadcast service is not enabled.
  • each of the multiple PLMNs broadcasts the data of the first broadcast service based on the same base station.
  • the first indication information in the present application may also be referred to as MOCN optimization indication information, and the MOCN optimization indication information may indicate whether the optimization of the multi-operator core network for the broadcast service is turned on or not.
  • broadcast service sessions and transmission of broadcast service data are taken as examples for explanation. All embodiments in this application can be applied to scenarios of multicast service sessions and transmission of multi-service data.
  • PLMN#a and PLMN#b have different core networks, but share a base station.
  • AF transmits data to the base station through PLMN#a and/or PLMN#b, and the base station broadcasts a copy of the data to the UE of PLMN#a and the UE of PLMN#b. Since PLMN#a and PLMN#b independently maintain their own keys and provide them to the UE of this network for use.
  • the data sent by PLMN#a to the base station is the data processed by MBSTF#a using the key of PLMN#a for the broadcast service.
  • the data sent by PLMN#b to the base station is the data processed by MBSTF#b using the key of PLMN#b for the broadcast service.
  • the base station only broadcasts one copy of the data, some UEs may not be able to decrypt and/or perform integrity verification on the received broadcast service data, resulting in communication being affected and poor user experience.
  • the data broadcast by the base station is data protected by PLMN#b, the UE of PLMN#a will not be able to parse the received broadcast service data.
  • Fig. 5 shows a schematic diagram of a broadcast secure communication method 100 provided by the present application.
  • the multicast session secure communication method 100 provided by the present application is described in detail below.
  • an application function network element sends a session creation request message to a first core network network element, and correspondingly, the first core network network element receives the session creation request message from the application function network element.
  • the first core network network element may be a control plane network element or a user plane network element.
  • the application function network element may directly send a session establishment request message to the first core network network element, and the application function network element may also send a session establishment request message to the first core network network element through other network elements in the network served by the first core network network element.
  • the first core network network element may be an MBSTF
  • the application function network element may be an AF.
  • the AF sends a broadcast session creation request message to the MBSF/NEF
  • the MBSF/NEF sends a session creation request message to the MBSTF.
  • the first core network network element may be an MBSF/NEF
  • the application function network element may be an AF
  • the session creation request message is a broadcast session creation request message.
  • the AF sends a broadcast session creation request message to the MBSF/NEF.
  • the session creation request message is used to request the creation of a broadcast session.
  • the session creation request message includes an identifier of the broadcast session and a first key
  • the first core network element stores the identifier of the broadcast session and the first key.
  • the first key corresponds to the session indicated by the broadcast session identifier.
  • the first core network network element in response to the session creation request message, sends a session creation response message to the application function network element, and correspondingly, the application function network element receives the session creation response message from the first core network network element.
  • the first core network element obtains first indication information.
  • the first indication information comes from the access network element or the second core network element, or the first indication information is pre-configured in the first core network element.
  • the second core network element may be MBSF, MB-SMF, SMF, AMF or a network management network element (eg, OAM).
  • MBSF MB-SMF
  • SMF Serving Mobility Management Function
  • AMF Access Management Function
  • OAM network management network element
  • the first core network element sends a broadcast transmission key to the terminal device according to the first indication information, and correspondingly, the terminal device receives the broadcast transmission key from the first core network element.
  • the broadcast transmission key is used to securely protect the first data of the broadcast service transmitted between the first core network element and the terminal device.
  • S101 to S104 may be implemented in a variety of ways, and two possible implementations are described below as examples.
  • the first indication information indicates the usage status of the multi-operator core network for broadcast services, and the usage status includes whether the optimization of the multi-operator core network for broadcast services is enabled or disabled.
  • the first indication information indicates whether the network served by the first core network element (referred to as the first network for convenience of explanation) supports the multi-operator core network architecture.
  • the usage status being turned on corresponds to the first network supporting a multi-operator core network architecture
  • the usage status being turned off corresponds to the first network not supporting a multi-operator core network architecture
  • the broadcast transmission key is the first key generated by the application function network element.
  • the first indication information indicates that the optimization of the multi-operator core network for broadcast services has been turned on, which can be understood as: the first indication information indicates that the access network element broadcasts the first data for the broadcast services from at least two networks; wherein, the at least two networks include the network served by the first core network element.
  • the first indication information indicates that when the optimization of the multi-operator core network for broadcast services is not enabled, the broadcast transmission key is the second key generated by the first core network element.
  • the first core network element generates a second key according to the first indication information.
  • the first indication information indicates that the optimization of the multi-operator core network for broadcast services is not enabled, which can be understood as: the first indication information instructs the access network element to broadcast the first data and the second data for broadcast services from at least two networks, respectively.
  • the at least two networks include a network served by the first core network element.
  • the first data can be understood as the data of the broadcast service received by the access network network element from the user plane network element (e.g., UPF#a) of the first network.
  • the first data is the data of the broadcast service that is securely protected by the first network
  • the first data is the data of the broadcast service that is securely protected by the user plane network element (e.g., MBSTF#a) of the first network
  • the first data is the data of the broadcast service that is encrypted and/or integrity protected by the key generated by the user plane network element (e.g., MBSTF#a) of the first network.
  • MBSTF#a uses key #a to encrypt and/or integrity protect the first data, which can achieve secure communication between MBSTF#a and the terminal device of the first network element.
  • the second data can be understood as the data of the first broadcast service received by the access network network element from the user plane network element (e.g., UPF#b) of the second network. It should be understood that the second data is data of the first broadcast service that is securely protected by the second network, or the second data is data of the first broadcast service that is securely protected by the user plane network element (e.g., MBSTF#b) of the second network, or the second data is data of the first broadcast service that is encrypted and/or integrity protected by the user plane network element (e.g., MBSTF#b) of the second network using the second key. For example, MBSTF#b encrypts and/or integrity protects the second data using key #b, which can achieve secure communication between MBSTF#b and the terminal device of the second network element.
  • MBSTF#b encrypts and/or integrity protects the second data using key #b, which can achieve secure communication between MBSTF#b and the terminal device of the second network element.
  • source data of the first data before being encrypted and/or integrity protected is the same as the source data of the second data before being encrypted and/or integrity protected.
  • the broadcast transmission key is a first key generated by an application function network element.
  • the broadcast transmission key is a second key generated by an application function network element.
  • the first core network element generates a second key according to the first indication information.
  • the access network element or the second core network element sends first indication information to the first core network element, and correspondingly, the first core network element receives the first indication information from the access network element or the second core network element.
  • the first core network element sends a subscription request message to the access network element or the second core network element, and accordingly, the second core network element receives the subscription request message from the first core network element, and the subscription request message is used to subscribe to the event of the usage status change.
  • the access network element or the second core network element sends a subscription response message to the first core network element, and the first core network element receives the subscription response message from the access network element or the second core network element, and the subscription response message includes the first indication information.
  • the event of the usage state change is a change event at the RAN granularity, in other words, the usage state of all sessions involved in the RAN changes.
  • the subscription response message also includes a broadcast session identifier. It can be understood that the event of the usage state change is a change event at the session granularity, in other words, the usage state of the session indicated by the MBS session identifier changes.
  • the access network element may interact directly with the first core network element, or may interact with the first core network element through other core network elements.
  • method 100 further includes:
  • the second core network network element or the access network network element sends second indication information to the first core network network element, and correspondingly, the first core network network element receives the second indication information from the second core network network element or the access network element.
  • the second indication information indicates the usage status of the multi-operator core network for the broadcast service, and the usage status includes whether the optimization of the multi-operator core network for the broadcast service is enabled or disabled.
  • the second indication information indicating the usage status of the multi-operator core network for the broadcast service, please refer to the description related to the first indication information.
  • the first core network element determines whether to update the broadcast transmission key according to the second indication information.
  • the first core network element when the broadcast transmission key is the first key, assuming that the second indication information indicates that the optimization of the multi-operator core network for broadcast services is not enabled, the first core network element updates the broadcast transmission key to the second key; or, assuming that the second indication information indicates that the optimization of the multi-operator core network for broadcast services is enabled, the first core network element does not update the broadcast transmission key.
  • the first core network element when the broadcast transmission key is the second key, assuming that the second indication information indicates that the optimization of the multi-operator core network for the broadcast service is not enabled, the first core network element does not update the broadcast transmission key; or, assuming that the second indication information indicates that the optimization of the multi-operator core network for the broadcast service is enabled, the first core network element updates the broadcast transmission key to the first key.
  • the first indication information indicates that the key for securely protecting the first data is generated by the first core network element or the application function network element.
  • Example 3-1 when the first indication information indicates that the first data is securely protected by a key generated by the first core network element, the broadcast transmission key is a second key generated by the first core network element.
  • the first indication information indicates that the first network performs security protection on the first data, which can be understood as: the first indication information indicates not to use the key generated by the application function network element or indicates to use only the key generated by the first core network network element.
  • the first core network element generates a second key according to the first indication information.
  • Example 3-2 when the first indication information indicates that the first data is securely protected by a key generated by the application function network element, the broadcast transmission key is the first key generated by the application function network element.
  • the first indication information indicates that the application function network element performs security protection on the data, which can be understood as: the first indication information indicates that the key generated by the application function network element is allowed to be used or indicates that the key generated by the first core network element is not used.
  • the first indication information is a local configuration or a local policy
  • the first core network element obtains the first indication information locally.
  • method 100 when the first core network network element determines to use the first key or the second key as the broadcast transmission key, in order to enable the access network network element to determine how to broadcast the data of the broadcast service according to the decision of the core network, thereby further ensuring the security management capabilities of the core network and the security performance of the system, method 100 also includes step 1 or step 1'.
  • Step 1 The first core network element determines whether to send multi-operator core network auxiliary information to the access network element.
  • the auxiliary information is used to instruct the access network element to determine the usage status of the broadcast service.
  • the access network element Since the network served by the first core network element supports a multi-operator core network architecture, the access network element defaults the usage state to be enabled. For example, the access network element determines that the usage state is enabled according to the default configuration. Then, when the usage state is enabled, the first core network element does not indicate the multi-operator core network auxiliary information to the access network element; when the usage state is not enabled, the first core network element indicates the multi-operator core network auxiliary information to the access network element. As an example, when the first indication information indicates that the key generated by the first core network element securely protects the first data, the first core network element sends the third indication information to the access network element, and accordingly, the access network element receives the third indication information from the first core network element. The third indication information indicates that the access network element broadcasts the first data and the second data respectively for broadcast services from different networks, or indicates that the first network securely protects the first data, or indicates that the broadcast transmission key is generated by the first core network element.
  • Step 1' the first core network element sends multi-operator core network auxiliary information to the access network element.
  • the auxiliary information is used to indicate whether the activation or deactivation of the use state requires the assistance of the access network element.
  • the first core network network element when the first indication information indicates that the first network performs security protection on the first data, the first core network network element sends the third indication information to the access network network element, and accordingly, the access network network element receives the third indication information from the first core network network element.
  • the third indication information indicates that the access network network element broadcasts the first data and the second data respectively for broadcast services from different networks, or indicates that the first network performs security protection on the first data, or indicates that the broadcast transmission key is generated by the first core network network element.
  • the first core network network element sends third indication information to the access network network element, and the third indication information instructs the access network element to broadcast the first data for the broadcast service from different networks, or instructs the application function network element to perform security protection on the first data, or indicates that the broadcast transmission key is generated by the application function network element.
  • FIG. 6A shows a schematic diagram of a method 110 for broadcasting secure communications provided by the present application.
  • the application function network element obtains fifth indication information.
  • the fifth indication information indicates whether the first network supports the architecture of multiple operator core networks.
  • the application function network element sends a broadcast session creation request message to the fourth core network element of the first network, and correspondingly, the fourth core network element receives the broadcast session creation request message from the application function network element.
  • the broadcast session creation request message includes security data
  • the security data includes an identifier of the broadcast session and a first key
  • the first key is generated by an application function network element
  • the security data indicates that the first key is applied to perform security protection on data corresponding to the broadcast session.
  • step S111 S201, AF determines whether PLMN supports MOCN architecture.
  • the PLMN supports the MOCN architecture, which can be understood as the core network of the PLMN is different from the core network of other PLMNs, and the PLMN shares the RAN with other PLMNs, for example, the PLMN and other PLMNs perform the first broadcast service through the same RAN.
  • the PLMN does not support the MOCN architecture, which can be understood as the core network of the PLMN is different from the core network of other PLMNs, and the RAN that performs the first broadcast service for the PLMN is also different from the RAN that performs the first broadcast service for other PLMNs.
  • the AF determines whether the PLMN supports the MOCN architecture based on information provided by the PLMN or pre-configured information. Exemplarily, the AF sends a request message to the MBSF/NEF, and the request message or the information carried in the request message is used to request information on whether the PLMN supports the MOCN architecture; the MBSF/NEF sends a response message to the AF based on the configuration information or the information obtained from the network management network element, and the response message carries information on whether the PLMN supports the MOCN architecture.
  • AF sends an MBS session creation request (Nnef_MBSSession_create request) #1 message to MBSF/NEF, and accordingly, MBSF/NEF receives the session creation request #1 message from AF.
  • Nnef_MBSSession_create request MBS session creation request
  • the session creation request #1 message is used to request the MBSF/NEF to create an MBS session.
  • the session creation request #1 message carries the MBS session identifier (MBS session ID), QoS parameters and security policy.
  • the QoS parameters indicate the quality of service requirements for the current session, including parameters such as the 5G QoS identifier and the allocation retention priority.
  • the security policy indicates whether the core network needs or does not need to provide confidentiality and/or integrity protection for the current session.
  • the session creation request #1 message When the PLMN supports the MOCN architecture (hereinafter referred to as case a for the convenience of explanation), the session creation request #1 message also carries security data (security data); when the PLMN does not support the MOCN architecture, the session creation request #1 message does not carry security data.
  • the security data includes MTK#1, MTK#1ID, and algorithm identifier. Among them, MTK#1 is generated by AF. MTK#1 can be used to securely protect the data of the first broadcast service transmitted between MBSTF and UE. In other words, MBSTF can use MTK#1 to securely protect the data of the first broadcast service transmitted between MBSTF and UE, or use other keys to securely protect the data of the first broadcast service transmitted between MBSTF and UE.
  • the data of the first broadcast service can be understood as the data transmitted by the session identified by MBS session ID.
  • MTK#1 corresponds to MBS session ID, and it can be understood that MTK#1 can be used to securely protect the data carried by the session identified by MBS session ID.
  • the AF determines whether to carry security data in the broadcast session creation request message according to whether the PLMN supports the MOCN architecture. This can avoid the problem of AF sending security data to the PLMN when the PLMN does not support the MOCN architecture, which leads to waste of signaling overhead.
  • the AF makes the judgment first, which can also avoid the PLMN notifying the AF that it does not support the MOCN architecture during the broadcast session creation process, further saving signaling overhead.
  • Fig. 7 shows a schematic diagram of a broadcast secure communication method 300 provided by the present application.
  • the PLMN supports the MOCN architecture.
  • the following is a detailed description of the multicast session secure communication method 300 provided by the present application in conjunction with Fig. 7.
  • AF sends an MBS session creation request #1 message to MBSF/NEF, and accordingly, MBSF/NEF receives the session creation request #1 message from AF.
  • the session creation request #1 message is used to request the MBSF/NEF to create an MBS session. It contains MBS session ID, QoS parameters, security policy and security data.
  • S301 may refer to the corresponding description in S202, and the PLMN supports the MOCN architecture.
  • method 300 may further include S201.
  • MBSF/NEF sends an MBS session creation request (Nmbsmf_MBSSession_create request) #2 message to MB-SMF, and accordingly, MB-SMF receives the MBS session creation request #2 message from MBSF/NEF.
  • MBS session creation request Nmbsmf_MBSSession_create request
  • the session creation request #2 message is used to request the MB-SMF to create an MBS session.
  • the session creation request #1 message carries the MBS session ID and QoS parameters.
  • MB-SMF sends an MBS session creation response (Nmbsmf_MBSSession_create response) #2 message to MBSF/NEF, and accordingly, MBSF/NEF receives a session creation response #2 message from MB-SMF.
  • MBS session creation response Nmbsmf_MBSSession_create response
  • MBSF/NEF sends a session request message to MBSTF, and correspondingly, MBSTF receives the session request message from MBSF/NEF.
  • the session request message includes an MBS session identifier and QoS parameters.
  • the session request message also includes security data.
  • MBSTF stores the MBS session identifier and security data. Specifically, MBSTF stores MTK#1.
  • MBSTF sends a session response message to MBSF/NEF, and correspondingly, MBSF/NEF receives the session response message from MBSTF.
  • MBSF/NEF sends an MBS session creation response (Nnef_MBSSession_create response) #1 message to AF, and accordingly, AF receives the MBS session creation response #1 message from MBSF/NEF.
  • MBS session creation response Nnef_MBSSession_create response
  • S302 to S304, S306 to S307 can refer to Chapter 7.1.1 of TS 23.247.
  • MB-SMF sends a broadcast session creation request (Broadcast_session_create_request) message to RAN, and accordingly, RAN receives the broadcast session creation request message from MB-SMF.
  • Broadcast_session_create_request broadcast session creation request
  • the broadcast session creation request message carries an MBS session identifier, QoS parameters, etc.
  • the RAN creates a session context and configures air interface resources for the first broadcast service.
  • RAN sends a broadcast session creation response (Broadcast_session_create_response) message to MB-SMF, and accordingly, MB-SMF receives the broadcast session creation response message from RAN.
  • Broadcast_session_create_response Broadcast_session_create_response
  • Messages between MB-SMF and RAN can be transmitted transparently through AMF.
  • S308 and S309 are executed after S303.
  • S308 and S309 can be executed before S307 or after S307, and this application does not limit this.
  • MBSF generates a service announcement message
  • AF/MBSF sends the service announcement message to UE
  • UE receives the service announcement message from AF/MBSF.
  • the service announcement includes parameters such as user service ID, MBS session ID, service area, start time, and security service description.
  • the message can be sent to the UE via SMS, unicast session, multicast session, etc., which is not limited here.
  • HTTP Hyper Text Transfer Protocol
  • UE initiates a service request to MBSTF according to the parameters of service announcement.
  • UE and MBSTF use the application key generated by authentication and key management for applications (AKMA)/general bootstrapping architecture (GBA), namely AKMA/GBA, as the authentication credential to establish a secure channel for key transmission.
  • AKMA authentication and key management for applications
  • GBA general bootstrapping architecture
  • MBSTF sends multimedia internet key management (multimedia internet keying, MIKEY) multicast service key (MBS service key, MSK) transmission (MIKEY MSK delivery) message to UE.
  • MIKEY multimedia internet keying
  • MBS service key multicast service key
  • MSK multicast service key
  • MIKEY MSK delivery MIKEY MSK delivery
  • the message includes the MSK, which is protected by the application key.
  • the MBSTF will send a multicast transmission key (MBS traffic key, MTK) to the UE according to the optimization indication information sent by the RAN, for example, it can be executed according to scheme a or scheme b.
  • MTK is used to securely protect the data transmitted between the UE and the AF.
  • RAN sends a MOCN status notification message to MBSTF, and accordingly, MBSTF receives the MOCN status notification message from RAN.
  • the MOCN status notification message includes optimization indication information, which may indicate whether MOCN optimization is turned on or not. Turning on MOCN optimization may be understood as RAN broadcasting the same data to UEs of different core networks for the first broadcast service, or RAN broadcasting the same data for the first broadcast services from different core networks, or AF performing security protection on the data of the first broadcast service. If MOCN optimization is not enabled, it can be understood that RAN broadcasts data for the first broadcast service to UEs of different core networks respectively, or RAN broadcasts data for the first broadcast service from different core networks respectively, or the core network performs security protection on the data of the first broadcast service.
  • the MOCN optimization may be enabled or disabled.
  • the RAN may determine whether MOCN optimization is enabled in a variety of ways. For example, the RAN determines whether MOCN optimization is enabled based on the capabilities of the PLMN. When the PLMN supports the MOCN architecture, MOCN optimization is enabled; when the PLMN does not support the MOCN architecture, MOCN optimization is not enabled. For another example, the RAN determines MOCN optimization indication information based on its own resource load. If the RAN idle resource load is relatively large (e.g., greater than a threshold), MOCN optimization is enabled; otherwise, MOCN optimization is not enabled.
  • the MOCN optimization indication information may be sent directly from the RAN to the MBSTF, or may be sent from the RAN to the MBSTF via other core network elements.
  • the other core network elements may be one or more of the MB-SMF, MBSF, SMF, AMF, or network management elements.
  • MBSTF may subscribe to MOCN state change events from RAN.
  • RAN sends a subscription response message to MBSTF.
  • other core network elements subscribe to MOCN state change events from base stations.
  • the subscription response message includes MOCN optimization indication information.
  • the subscription response message also includes an MBS session identifier.
  • the subscription response message includes MOCN optimization indication information. It can be understood that the MOCN state change event is a change event at the RAN granularity.
  • the MOCN state of all sessions involved in the RAN changes.
  • the subscription response message includes MOCN optimization indication information and an MBS session identifier. It can be understood that the MOCN state change event is a change event at the session granularity. In other words, the MOCN state of the session indicated by the MBS session identifier changes.
  • S313 may also be replaced by MBSTF receiving MOCN optimization indication information from other core network elements.
  • Other core network elements may be SMF or AMF or network management elements (e.g., OAM).
  • OAM network management elements
  • other core network elements may obtain MOCN optimization indication information based on pre-configuration information.
  • the pre-configuration information may be whether the PLMN supports the MOCN architecture.
  • the pre-configuration information indicates that the PLMN supports the MOCN architecture
  • other core network elements may determine, based on the pre-configuration information, that the MOCN optimization indication information is used to indicate that the MOCN optimization is turned on; when the pre-configuration information indicates that the PLMN does not support the MOCN architecture, other core network elements may determine, based on the pre-configuration information, that the MOCN optimization indication information is used to indicate that the MOCN optimization is not turned on.
  • MBSTF determines whether to generate MTK#2 and MTK#2ID.
  • the MBSTF determines whether to generate the MTK according to the MOCN optimization indication information and the current key information.
  • the current key information indicates that the current MTK is MTK#1 stored in MBSTF.
  • the MBSTF determines not to generate MTK#2 and MTK#2ID.
  • the MBSTF determines to generate MTK#2 and MTK#2ID.
  • MBSTF sends a MIKEY MTK transmission message to the UE, and accordingly, the UE receives the MIKEY MTK transmission message from the MBSTF.
  • the MIKEY MTK transmission message includes MTK#1 and MTK#1ID, and MTK#1 is protected by MSK.
  • the MIKEY MTK transmission message includes MTK#2 and MTK#2ID, and MTK#2 is protected by MSK.
  • MBSTF generates MTK#2 and MTK#2ID. For example, MBSTF generates MTK#2 by default.
  • MBSTF sends a MIKEY MTK delivery message to the UE, and accordingly, the UE receives the MIKEY MTK delivery message from the MBSTF.
  • the MIKEY MTK transmission message includes MTK#2 and MTK#2ID, and MTK#2 is protected by MSK.
  • MBSTF determines whether to update MTK.
  • the MBSTF determines whether to update the MTK according to the MOCN optimization indication information and the current key information.
  • the current key information indicates that the current MTK is MTK#2 generated by MBSTF.
  • the MBSTF determines not to update the MTK, that is, the MTK is still MTK#2. S320 is not executed.
  • MBSTF determines to update MTK, that is, to update MTK#2
  • the MTK is MTK#1. Execute S320.
  • the current key information indicates that the current MTK is MTK#1.
  • the MBSTF determines not to update the MTK, that is, the MTK is still MTK#1. S320 is not executed.
  • the MBSTF determines to update the MTK, that is, to update MTK#1 to MTK#2. S320 is executed.
  • MBSTF sends an updated MTK delivery message to the UE, and accordingly, the UE receives the updated MTK delivery message from the MBSTF.
  • S320, MBSTF sends an updated MTK delivery message to the UE, and accordingly, the UE receives the updated MTK delivery message from the MBSTF.
  • the message includes MTK#1, MBS session identifier and MTK#1ID, and MTK#1 is protected by MSK.
  • the message includes MTK#2, MBS session identifier and MTK#2ID, and MTK#2 is protected by MSK.
  • AF sends data #1 of the first broadcast service to MBSTF, and correspondingly, MBSTF receives the data #1 of the first broadcast service from AF.
  • MBSTF sends data (referred to as data #2) after security protection is performed on data #1 to the UE, and correspondingly, the UE receives data #2 from the MBSTF.
  • data #2 is processed for security protection by MTK.
  • the UE decrypts the security protection of data #2 according to the MTK to obtain data #1 of the first broadcast service.
  • security protection may include encryption or integrity protection, that is, what is transmitted may be the ciphertext obtained after the encrypted data or the message authentication code obtained after the integrity protection.
  • MBSTF determines the key used to encrypt the data of the first broadcast service according to the MOCN optimization indication information.
  • MOCN optimization is turned on, the key generated by AF is used, so that RAN can broadcast the data of the first broadcast service to UEs of different PLMNs based on the same air interface resources, so that UEs of different PLMNs use the key generated by AF to decrypt the received data.
  • MOCN optimization is not turned on, the key generated by MBSTF is used, and RAN broadcasts the data of the first broadcast service to UEs of different PLMNs based on different air interface resources respectively, so that UEs of one PLMN use the key generated by the MBSTF of the PLMN to decrypt the received data. Therefore, whether MOCN optimization is turned on or not, it can reduce the situation where the terminal device cannot decrypt and/or integrity check the received broadcast service data due to the MBSTF in the two networks separately performing security protection on the broadcast service data, thereby improving the user experience.
  • FIG8A shows a schematic diagram of a method 120 for broadcasting secure communications provided by the present application.
  • the application function network element sends a broadcast session creation request message to the fourth core network network element, and correspondingly, the fourth core network network element receives the broadcast session creation request message from the application function network element.
  • the broadcast session creation request message is used to request the creation of a broadcast session.
  • the fourth core network element obtains sixth indication information and seventh indication information.
  • the fourth core network network element in response to the broadcast session creation request message, sends a broadcast session creation response message to the application function network element according to the sixth indication information, and accordingly, the application function network element receives the broadcast session creation response message from the fourth core network network element.
  • the broadcast session creation response message indicates that the request to create the broadcast session is rejected:
  • the sixth indication information indicates that the first network to which the fourth core network network element belongs performs security protection on the data corresponding to the broadcast session.
  • the seventh indication information indicates that the first network supports the architecture of multiple operator core networks, or instructs the access network element to broadcast the same data for broadcast services from at least two networks including the first network, or instructs the first network to use only the key generated by the network element of the first network, or instructs the first network not to use the key generated by the application function network element.
  • FIG. 8B A specific example of the method 120 is described below in conjunction with Fig. 8B , wherein the sixth indication information is described by taking a security policy as an example, and the seventh indication information is described by taking a local policy as an example.
  • Fig. 8B shows a schematic diagram of a broadcast secure communication method 400 provided by the present application.
  • the PLMN supports the MOCN architecture.
  • the following is a detailed description of the multicast session secure communication method 400 provided by the present application in conjunction with Fig. 8B.
  • AF sends an MBS session creation request #1 message to MBSF/NEF, and accordingly, MBSF/NEF receives the session creation request #2 message from AF. Create request #1 message.
  • the session creation request #1 message is used to request the MBSF/NEF to create an MBS session.
  • the session creation request #1 message carries the MBS session identifier (MBS session ID), QoS parameters, and security policy.
  • the QoS parameters indicate the quality of service requirements for the current session, including parameters such as the 5G QoS identifier and the allocation retention priority.
  • the security policy indicates whether the current session requires or does not require the core network to provide confidentiality and/or integrity protection.
  • MBSF/NEF determines whether to agree to create an MBS session.
  • MBSF/NEF determines whether to approve the session creation request according to at least one of the local policy and configuration information and the security policy.
  • MBSF/NEF determines that the PLMN supports the MOCN architecture based on configuration information.
  • the configuration information is a local configuration, and the local configuration indicates that the PLMN supports the MOCN architecture.
  • MBSF/NEF can determine that the MOCN optimization indication can be turned on based on the local configuration.
  • MBSF/NEF obtains configuration information from a network management network element, and the configuration information is used to indicate whether MOCN optimization is turned on.
  • the local policy indicates whether the PLMN uses only the MTK#2 generated by the MBSTF as the MTK, or whether the PLMN uses the MTK#1 provided by the AF as the MTK.
  • the conditions for triggering the MBSF/NEF to reject the session creation request include at least one of the following (1) and (2), and (3).
  • PLMN only uses MTK#2 generated by MBSTF as MTK, or PLMN does not use MTK#1 provided by AF as MTK;
  • PLMN supports MOCN architecture or MOCN optimization is enabled
  • the security policy indicates that the current session requires the core network to provide confidentiality and/or integrity protection.
  • the conditions for triggering MBSF/NEF to reject the session creation request include (1) and (3); when conditions (1) and (3) are not met, MBSF/NEF determines to approve the session creation request.
  • the conditions for triggering MBSF/NEF to reject the session creation request include (2) and (3); when conditions (2) and (3) are not met, MBSF/NEF determines to approve the session creation request.
  • the conditions for triggering MBSF/NEF to reject the session creation request include (1), (2) and (3); when conditions (1), (2) and (3) are not met, MBSF/NEF determines to approve the session creation request.
  • the subsequent step is case a; in the case where the MBSF/NEF determines to approve the session creation request, the subsequent step is case b.
  • MBSF/NEF sends MBS session creation response #1 to AF, and accordingly, AF receives session creation response #1 from MBSF/NEF.
  • the session creation response #1 is used to indicate the rejection of the session creation request #1.
  • S404 to S409 may refer to the description of S302 to S307, except that S407 is optional.
  • S401 refers to S202 in method 200 and S201 is executed before S401, S407 is executed.
  • MBSF/NEF determines whether to approve the broadcast session creation request from AF based on local policy or local configuration. Since PLMN supports MOCN architecture or MOCN optimization is enabled, if the local policy or local configuration of PLMN requires the core network to perform security protection on MBS session, MBSF/NEF will reject the broadcast session creation request. Before PLMN starts to establish a broadcast session, MBSF/NEF first determines whether to create a broadcast session. Compared with PLMN determining whether the local policy or local configuration supports the creation of a broadcast session in the broadcast session creation process, signaling overhead can be saved.
  • Fig. 9 shows a schematic diagram of a broadcast secure communication method 500 provided by the present application.
  • the multicast session secure communication method 500 provided by the present application is described in detail below.
  • MBSTF determines whether to generate MTK#2.
  • MBSTF decides whether to generate MTK#2 based on local policy or local configuration.
  • Example 4-1 When the local policy is not to use AF keys or to use only keys generated by MBSTK, MBSTF generates MTK#2. As a result, different MTKs are used in different PLMNs, achieving key isolation and improving security.
  • Example 4-2 when the local configuration of MBSTF is that MBSTF is not upgraded or MBSTF does not support enabling MOCN optimization, MBSTF generates MTK#2. Among them, MBSTF is not upgraded, or MBSTF cannot perceive MTK#1 in the security parameters, which can be understood as MBSTF cannot perceive MTK#1 in the security parameters.
  • Example 4-3 when the local configuration indicates that the PLMN does not support the MOCN architecture, MBSTF generates MTK#2.
  • Example 4-4 When the MBSTF does not receive the security parameters sent by the AF, for example, when S407 is not executed, the MBSTF generates MTK#2.
  • Example 4-5 when the local configuration indicates that the PLMN supports the MOCN architecture and the step corresponding to S407 is performed in S501, the MBSTF does not generate MTK#2.
  • MBSTF sends a MIKEY MTK transmission message to the UE, and accordingly, the UE receives the MIKEY MTK transmission message from the MBSTF.
  • the MIKEY MTK transmission message includes MTK#1 and MTK#1ID, and MTK#1 is protected by MSK.
  • the MIKEY MTK transmission message includes MTK#2 and MTK#2ID, and MTK#2 is protected by MSK.
  • MBSTF determines whether to send a notification message to the RAN.
  • MBSTF determines to send a notification message to RAN and executes S510.
  • MBSTF determines not to send a notification message to RAN and does not execute S510.
  • the PLMN supports the MOCN architecture, and the RAN corresponding to the PLMN uses the same air interface resource by default to broadcast the same data for the first broadcast service from different core networks, and the same data is securely protected by the MTK#1 generated by the AF. Therefore, in S508, when the MTK carried in the MIKEY MTK transmission message is the MTK#1 generated by the AF, the RAN may not be notified.
  • S510 MBSTF sends a notification message to RAN, and accordingly, RAN receives the notification message from MBSTF.
  • the notification message includes MOCN optimization auxiliary information, and the auxiliary information is used to indicate one or more of the following: MOCN optimization is not turned on, the MBS session requires the core network to provide confidentiality and/or integrity protection, and the key used by the MBS session is MTK#2.
  • the notification message may be sent directly from the MBSTF to the RAN, or may be sent to the RAN via other core network elements, which may be MB-SMF, MBSF, SMF, AMF, or network management elements.
  • core network elements which may be MB-SMF, MBSF, SMF, AMF, or network management elements.
  • S509 and S510 Another implementation of S509 and S510 is to replace S509 and S510 with S509' and S510'.
  • MBSTF confirms the notification message.
  • the notification message includes MOCN optimization auxiliary information, and the auxiliary information is used to indicate one or more of the following: whether MOCN optimization is turned on, whether the MBS session requires or does not require the core network to provide confidentiality and/or integrity protection, and the key used for the MBS session.
  • the auxiliary information is used to indicate one or more of the following: MOCN optimization is not enabled, the MBS session requires the core network to provide confidentiality and/or integrity protection, and the key used for the MBS session is MTK#2.
  • the auxiliary information is used to indicate one or more of the following: MOCN optimization is turned on, the MBS session does not require the core network to provide confidentiality and/or integrity protection, and the key used for the MBS session is MTK#1.
  • MBSTF sends a notification message to RAN, and accordingly, RAN receives the notification message from MBSTF.
  • the notification message includes MOCN optimization auxiliary information, and the auxiliary information is used to indicate one or more of the following: MOCN optimization is not turned on, the MBS session requires the core network to provide confidentiality and/or integrity protection, and the key used by the MBS session is MTK#2.
  • the notification message can be sent directly from MBSTF to RAN, or sent to RAN through other core network elements.
  • MBSTF sends notification message #1 to other core network elements
  • other core network elements send notification message #2 to RAN
  • both notification message #1 and notification message #2 carry MOCN optimization auxiliary information.
  • Other core network elements can be MB-SMF, MBSF, SMF, AMF, or network management elements.
  • the MBSTF determines whether the PLMN uses the key generated by the AF based on the local policy or local configuration.
  • the PLMNs supporting the MOCN architecture use different keys respectively, which can achieve key isolation and improve security performance.
  • the MBSTF also notifies the RAN whether to enable MOCN optimization based on the key determined to be used, thereby enabling the core network to control whether MOCN optimization is enabled. Compared with the AF controlling whether MOCN optimization is enabled, security performance is further improved.
  • FIG. 10A is a schematic diagram showing a method 130 for broadcasting secure communications provided by the present application.
  • the third core network element sends a notification message to the first core network element, and accordingly, the first core network element receives a notification message from the third core network element. Notification message of the heart network element.
  • the notification message includes a third key generated by a third core network element, the first core network element belongs to the first network, the third core network element belongs to the second network, and the third network and the second network share the same access network element.
  • the third core network element may communicate directly with the first core network element, or may communicate through other elements.
  • the first core network element communicates with the second core network element through a security edge protection proxy element.
  • a security edge protection proxy element For specific implementation methods, see method 600.
  • method 130 further includes: a third core network element generating a third key.
  • the method 130 further includes: the first core network element sending a request message to the second core network element, the request message being used to request a key generated by the second core network element.
  • the notification message is used to respond to the request message.
  • the first core network element obtains fourth indication information.
  • the fourth indication information indicates the usage status of the multi-operator core network for the broadcast service, and the usage status includes whether the optimization of the multi-operator core network for the broadcast service is turned on or not.
  • the first core network network element sends a broadcast transmission key to the terminal device according to the fourth indication information, and correspondingly, the terminal device receives the fourth indication information from the first core network network element.
  • the broadcast transmission key is used to securely protect the first data of the broadcast service transmitted between the first core network element and the terminal device.
  • a specific example of method 130 is introduced below in conjunction with Fig. 10B, wherein the first network is PLMN#a, the second network is PLMN#b, the first core network element is MBSTF#a, and the second core network element is MBSTF#b.
  • Fig. 10B shows a schematic diagram of a broadcast secure communication method 600 provided by the present application. The following describes in detail the multicast session secure communication method 600 provided by the present application in conjunction with Fig. 10B.
  • step A MBSTF#a sends security parameters to MBSTF#b, and the security parameters can be used to perform security protection on data transmitted between the UE and AF of PLMN#b.
  • MBSTF#a can send security parameters directly to MBSTF#b, or send them through other network elements.
  • MBSTF#a sends security parameters to SEPP#a
  • SEPP#a sends security parameters to SEPP#b
  • SEPP#b sends security parameters to MBSTF#b.
  • MBSTF#a may send security parameters to MBSTF#b after it generates the security parameters, or after it generates MSK#b or creates an MBS session context and requests MBSTF#a for security parameters. There is no limitation here.
  • MBSTF#b determines whether to update MTK. If MTK is to be updated, MTK is updated; otherwise, MTK is not updated.
  • step A further provides specific examples for step A and step B.
  • S601 to S603 are a possible example of step A.
  • MBSTF#a sends a first notification message to SEPP#a, and accordingly, SEPP#a receives the first notification message from MBSTF#a.
  • the first notification message includes one or more of MTK#a, MTK#a ID and an algorithm identifier.
  • MTK#a MTK#a ID and algorithm identifier can be generated by MBSTF#a.
  • the first notification message includes security data, which includes one or more of an MBS session identifier, MTK#a, MTK#a ID, and an algorithm identifier.
  • MBS session identifier is obtained by MBSTF#a from other core network elements (e.g., MBSF/NEF#a).
  • PLMN#a and PLMN#b can pre-configure a correspondence between multiple session identifiers of multiple PLMNs that correspond to the first broadcast service.
  • PLMN#a and PLMN#b pre-configure a correspondence between session identifier #1 and session identifier #2, where session identifier #1 is the session identifier of PLMN#a corresponding to the first broadcast service, and session identifier #2 is the session identifier of PLMN#b corresponding to the first broadcast service.
  • the security data includes session identifier #1, and in subsequent steps, after MBSTF#b receives the security data, it can determine that MTK#a and MTK#a ID can be used to securely protect the session indicated by session identifier #2 based on session identifier #1.
  • the MBS session identifier in method 600 can also be replaced with a service identifier (service ID), which can be used to indicate the first broadcast service.
  • service ID service identifier
  • SEPP#a sends a second notification message to SEPP#b, and correspondingly, SEPP#b receives the second notification message from SEPP#a.
  • the second notification message includes one or more of the identification information of PLMN#b, MTK#a, MTK#a ID, and an algorithm identifier.
  • the second notification message is used to instruct SEPP#b to send MTK#a and MTK#a ID to a network element in PLMN#b for processing MBS services.
  • the second notification message may further include requirement information, for example, the requirement information is used to display an instruction to process the MBS service.
  • the second notification message may also include identification information of a network element in PLMN#b for processing MBS services, such as the ID of MBSTF#b.
  • the second notification message is specifically used to instruct SEPP#b to send MTK#a and MTK#a ID to MBSTF#b in PLMN#b.
  • the identification information of PLMN#b may be pre-configured in MBSTF#a.
  • MBSTF#a may learn which PLMNs are sharing the same RAN with PLMN#a based on the configuration information.
  • the ID of MBSTF#b may also be pre-configured in MBSTF#a.
  • SEPP#b sends a third notification message to MBSTF#b, and accordingly, MBSTF#b receives the third notification message from SEPP#b.
  • the third notification message includes one or more of MTK#a, MTK#a ID and algorithm identifier.
  • the third notification message also includes the ID of MBSTF#a and the ID of PLMN#a.
  • the above scheme by carrying the ID of MBSTF#a and the ID of PLMN#a in the third notification message, can facilitate MBSTF#b to determine that MTK#a and MTK#a ID in the third notification message are from PLMN#a, and thus can determine whether MTK#a and MTK#a ID are from the cooperating PLMN. In the case that MTK#a and MTK#a ID are from the cooperating PLMN, corresponding processing is performed, further improving the security performance.
  • MBSTF#b determines whether to update MTK according to whether MOCN optimization is enabled and one of the local policies, as well as current key information.
  • MBSTF#b may determine whether MOCN optimization corresponding to PLMN#b is enabled by referring to the method 300.
  • the local policy indicates whether PLMN#b uses only MTK#2 generated by MBSTF as MTK, or whether PLMN#b uses MTK#1 provided by MBSTF#a as MTK.
  • Example y-1 MBSTF#b determines whether to update based on whether MOCN optimization is turned on and the current key information.
  • MBSTF#b determines not to update MTK.
  • MBSTF#b determines to update MTK, and in subsequent steps, updates MTK to MTK#1.
  • MOCN optimization is not turned on and the current MTK is MTK#1, MBSTF#b determines to update MTK, and in subsequent steps, updates MTK to MTK#2.
  • MBSTF#b determines not to update MTK.
  • Example y-2 MBSTF#b determines whether to update based on local policy and current key information.
  • MBSTF#b determines not to update MTK.
  • MBSTF#b determines to update MTK, and updates MTK to MTK#2 in subsequent steps.
  • MBSTF#b determines not to update MTK.
  • MBSTF#b determines to update the MTK and updates the MTK to MTK#1 in a subsequent step.
  • the above scheme for multiple PLMNs sharing the same base station, has security data generated by one of the PLMNs and then sent to other PLMNs, so that different PLMNs can use the same broadcast transmission key to perform security protection on the data of the first broadcast service, thereby reducing the situation where the terminal device is unable to decrypt and/or perform integrity verification on the received broadcast service data due to the MBSTFs in the two networks performing security protection on the broadcast service data respectively, thereby improving the user experience.
  • Figures 11 and 12 are schematic diagrams of the structures of possible communication devices provided in the embodiments of the present application. These communication devices can be used to implement the functions of the first core network element or the third core network element or the application function element or the fourth core network element in the above method embodiment, and thus can also achieve the beneficial effects possessed by the above method embodiment.
  • the communication device can be the first core network element or the third core network element or the application function element or the fourth core network element, and can also be a module (such as a chip) applied to the first core network element or the third core network element or the application function element or the fourth core network element.
  • the communication device 1200 includes a processing unit 1210 and a transceiver unit 1220.
  • the communication device 1200 is used to implement the functions of the first core network element, the third core network element, the application function network element, or the fourth core network element in the method embodiments shown in Figs. 5 to 10B above.
  • the transceiver unit 1220 is used to receive a session creation request message from the application function network element, where the session creation request message is used to request the creation of a broadcast session; the transceiver unit 1220 is also used to send a session creation response message to the application function network element; the processing unit 1210 is used to obtain the first indication information, where the first indication information The first indication information comes from the access network element or the second core network element, or the first indication information is pre-configured in the first core network element; the transceiver unit 1220 is also used to send a broadcast transmission key to the terminal device, and the broadcast transmission key is used to securely protect the first data of the broadcast service transmitted between the first core network element and the terminal device.
  • the processing unit 1210 is used to obtain the fifth indication information, the fifth indication information indicates whether the first network supports the architecture of multiple operator core networks;
  • the transceiver unit 1220 is used to send a broadcast session creation request message to the fourth core network element of the first network; wherein, when the fifth indication information indicates that the first network supports the architecture of multiple operator core networks, the broadcast session creation request message includes security data, the security data includes an identifier of the broadcast session and a first key, the first key is generated by the application function network element, and the security data indicates that the first key is applied to perform security protection on data corresponding to the broadcast session.
  • the transceiver unit 1220 is used to receive a broadcast session creation request message from the application function network element, and the broadcast session creation request message is used to request the creation of a broadcast session; the processing unit 1210 is used to obtain the sixth indication information and the seventh indication information; the transceiver unit 1220 is used to send a broadcast session creation response message to the application function network element according to the sixth indication information; wherein, when the sixth indication information and the seventh indication information meet the following conditions, the broadcast session creation response message indicates that the request to create a broadcast session is rejected; the sixth indication information indicates that the first network to which the fourth core network network element belongs performs security protection on the data corresponding to the broadcast session; the seventh indication information indicates that the first network supports the architecture of multiple operator core networks, or instructs the access network element to broadcast the same data for broadcast services from at least two networks including the first network, or instructs the first network to use only the key generated by the network element of the
  • the transceiver unit 1220 is used to receive a notification message from the third core network network element, the notification message includes a third key generated by the third core network network element, the first core network network element belongs to the first network, the third core network network element belongs to the second network, and the third network and the second network share the same access network element;
  • the processing unit 1210 is used to obtain fourth indication information, the fourth indication information indicates the usage status of the multi-operator core network network for the broadcast service, the usage status includes whether the optimization of the multi-operator core network network for the broadcast service is turned on or not;
  • the transceiver unit 1220 is also used to send a broadcast transmission key to the terminal device according to the fourth indication information, the broadcast transmission key is used to securely protect the first data of the broadcast service transmitted between the first core network network element and the terminal device.
  • the processing unit 1210 is used to generate a third key
  • the transceiver unit 1220 is used to send a notification message to the first core network network element, the notification message includes the third key, the first core network network element belongs to the first network, the third core network network element belongs to the second network, and the third network and the second network share the same access network element.
  • processing unit 1210 and the transceiver unit 1220 please refer to the relevant description in the method embodiments shown in Figures 5 to 10B.
  • the communication device 1300 includes a processor 1310 and an interface circuit 1320.
  • the processor 1310 and the interface circuit 1320 are coupled to each other.
  • the interface circuit 1320 may be a transceiver or an input/output interface.
  • the communication device 1300 may further include a memory 1330 for storing instructions executed by the processor 1310 or storing input data required by the processor 1310 to execute instructions or storing data generated after the processor 1310 executes instructions.
  • the processor 1310 is used to implement the function of the processing unit 1210
  • the interface circuit 1320 is used to implement the function of the transceiver unit 1220 .
  • the first core network element chip implements the function of the first core network element in the above-mentioned method embodiment.
  • the first core network element chip receives information from other modules (such as a radio frequency module or an antenna) in the first core network element, and the information is sent by the access network element or to the first core network element; or, the first core network element chip sends information to other modules (such as a radio frequency module or an antenna) in the first core network element, and the information is sent by the first core network element to the access network element.
  • the terminal chip implements the function of the third core network element in the above method embodiment.
  • the chip of the third core network element receives information from other modules (such as a radio frequency module or an antenna) in the third core network element, and the information is sent by the first core network element to the third core network element; or the chip of the third core network element sends information to other modules (such as a radio frequency module or an antenna) in the base station, and the information is sent by the third core network element to the first core network element.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a base station or a terminal.
  • the processor and the storage medium can also be present in a base station or a terminal as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the available medium may be a magnetic medium, for example, a floppy disk, a hard disk, a tape; it may also be an optical medium, for example, a digital video disc; it may also be a semiconductor medium, for example, a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship; in the formula of the present application, the character “/” indicates that the previous and next associated objects are in a “division” relationship.
  • “Including at least one of A, B and C” can mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种适用于多运营商核心网络的广播安全通信的方法和装置,该方法中,第一核心网网元不会直接将应用功能网元生成的密钥发送给终端设备,而是会根据来自接入网网元或第二核心网网元,或,预配置在第一核心网网元的第一指示信息选择广播传输密钥,并向终端设备发送广播传输密钥。其中,该广播传输密钥用于对第一核心网网元与终端设备之间传输的广播业务的第一数据进行安全保护。本申请提供的方法和装置,能够解决多运营商核心网络的数据安全保护问题,提高核心网的安全管理能力和系统的安全性能,提升用户体验。

Description

广播安全通信的方法和装置
本申请要求在2022年11月10日提交中国国家知识产权局、申请号为202211406900.7的中国专利申请的优先权,发明名称为“广播安全通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及一种广播安全通信的方法和装置。
背景技术
在多播/广播业务数据传输中,对于同一个广播业务,公用陆地移动通信网络(public land mobile network,PLMN)#a和PLMN#b可以共用一个基站。具体地,应用功能(application function,AF)通过PLMN#a和PLMN#b将数据传输到该基站,该基站广播一份数据到PLMN#a的终端设备(user eqiupment,UE)和PLMN#b的UE。并且,该数据可以由PLMN#a或PLMN#b中的多播/广播服务传输功能(multicast/broadcast service transport function,MBSTF)对广播业务的数据进行安全保护。但是,在该过程中,可能存在UE无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,导致通信受到影响,用户体验很差。
发明内容
本申请提供一种广播安全通信的方法和装置,能够提升用户体验。
第一方面,提供了一种适用于多运营商核心网络的广播安全通信的方法,该方法可以由第一核心网网元执行,或者,也可以由第一核心网网元的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以由第一核心网网元执行为例进行说明。
该方法可以包括:第一核心网网元接收来自应用功能网元的会话创建请求消息,该会话创建请求消息用于请求创建广播会话;响应于该会话创建请求消息,该第一核心网网元向该应用功能网元发送会话创建响应消息;该第一核心网网元获取第一指示信息,所述第一指示信息来自接入网网元或第二核心网网元,或,所述第一指示信息是预配置在所述第一核心网网元的;该第一核心网网元根据该第一指示信息向终端设备发送广播传输密钥,该广播传输密钥用于对该第一核心网网元与该终端设备之间传输的广播业务的第一数据进行安全保护。
相比于第一核心网网元直接将来自应用功能网元的密钥作为广播传输密钥发送给终端设备,上述方案,第一核心网网元根据第一指示信息向终端设备发送广播传输密钥,能够在核心网或接入网网元不支持由应用功能网元生成的密钥对第一数据进行安全保护的情况(例如由核心网对第一数据进行安全保护)下,减少终端设备无法对接收到的第一数据进行解安全保护的问题,提高核心网的安全管理能力和系统的安全性能,提升用户体验。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息指示多运营商核心网网络针对该广播业务的使用状态,该使用状态包括多运营商核心网网络针对该广播业务的优化已开启或未开启;其中,该第一指示信息指示多运营商核心网网络针对该广播业务的优化已开启的情况下,该广播传输密钥为由该应用功能网元生成的第一密钥;或者,该第一指示信息指示为多运营商核心网网络针对该广播业务的优化未开启的情况下,该广播传输密钥为由该第一核心网网元生成的第二密钥。
上述方案,广播传输密钥根据多运营商核心网网络针对该广播业务的使用状态确定。在优化开启时,由应用功能网元生成的密钥对第一数据进行安全保护,从而共用一个接入网网元的多个网络的终端设备都可以基于同一个密钥对第一数据进行解安全保护。在优化不开启时,由第一核心网网元生成的密钥对第一数据进行保护,从而共用一个接入网网元的多个网络的终端设备都根据所在网络的第一核心网网元生成的密钥对接收到的数据进行解安全保护。从而,在MOCN优化开启或不开启的情况下,都能够减少由于两个网络中的MBSTF分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的 广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息指示该第一核心网网元所服务的网络是否支持多运营商核心网网络架构;其中,该第一指示信息指示该网络支持多运营商核心网网络架构的情况下,该广播传输密钥为由该应用功能网元生成的第一密钥;或者,该第一指示信息指示该网络不支持多运营商核心网网络架构的情况下,该广播传输密钥为由该第一核心网网元生成的第二密钥。
上述方案,广播传输密钥根据第一核心网网元所服务的网络是否支持多运营商核心网网络架构确定。在该网络支持多运营商核心网网络架构时,由应用功能网元生成的密钥对第一数据进行安全保护,从而共用一个接入网网元的多个网络的终端设备都可以基于同一个密钥对第一数据进行解安全保护。在该网络不支持多运营商核心网网络架构时,由第一核心网网元生成的密钥对第一数据进行保护,从而共用一个接入网网元的多个网络的终端设备都根据所在网络的第一核心网网元生成的密钥对接收到的数据进行解安全保护。从而,在该网络支持或不支持多运营商核心网网络架构的情况下,都能够减少由于两个网络中的MBSTF分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,该第一核心网网元获取第一指示信息,包括:该第一核心网网元接收来自接入网网元或第二核心网网元的该第一指示信息;该第一指示信息指示多运营商核心网网络针对该广播业务的优化未开启,包括:该第一指示信息指示该接入网网元为来自至少两个网络的该广播业务分别广播该第一数据和第二数据;该第一指示信息指示多运营商核心网网络针对该广播业务的优化已开启,包括:该第一指示信息指示该接入网网元为来自至少两个网络的该广播业务广播该第一数据;其中,该至少两个网络包括该第一核心网网元服务的网络。
结合第一方面,在第一方面的某些实现方式中,该第一核心网网元获取第一指示信息,包括:该第一核心网网元向该接入网网元或该第二核心网网元发送订阅请求消息,该订阅请求消息用于订阅该使用状态变更的事件;该第一核心网网元接收来自该接入网网元或该第二核心网网元的订阅响应消息,该订阅响应消息包括该第一指示信息。
结合第一方面,在第一方面的某些实现方式中,在该第一指示信息指示多运营商核心网网络针对该广播业务的优化未开启的情况下,该方法还包括:该第一核心网网元根据该第一指示信息生成第二密钥。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一核心网网元接收第二指示信息,该第二指示信息指示多运营商核心网网络针对该广播业务的使用状态,该使用状态包括多运营商核心网网络针对该广播业务的优化已开启或未开启;该第一核心网网元根据该第二指示信息确定是否更新该广播传输密钥。
上述方案,第一核心网网元根据优化是否开启以及当前的广播传输密钥确定是否更新广播传输密钥,使得广播传输密钥能够根据优化是否开启灵活变化,进一步提高安全性能。
结合第一方面,在第一方面的某些实现方式中,该第一核心网网元根据该第一指示信息确定是否更新该广播传输密钥,包括:在该第二指示信息指示多运营商核心网网络针对该广播业务的优化未开启,且该广播传输密钥为第一密钥的情况下,该第一核心网网元将该广播传输密钥更新为该第二密钥;或者,在该第二指示信息指示多运营商核心网网络针对该广播业务的优化未开启,且该广播传输密钥为第二密钥的情况下,该第一核心网网元不更新该广播传输密钥;或者,在该第二指示信息指示多运营商核心网网络针对该广播业务的优化已开启,且该广播传输密钥为第一密钥的情况下,该第一核心网网元不更新该广播传输密钥;或者,在该第二指示信息指示多运营商核心网网络针对该广播业务的优化已开启,且该广播传输密钥为第二密钥的情况下,该第一核心网网元将该广播传输密钥更新为该第一密钥。
结合第一方面,在第一方面的某些实现方式中,在该第一指示信息指示由该第一核心网网元生成的密钥对该第一数据进行安全保护的情况下,该广播传输密钥为由该第一核心网网元生成的第二密钥;或者,在该第一指示信息指示由该应用功能网元生成的密钥对该第一数据进行安全保护的情况下,该广播传输密钥为由该应用功能网元生成的该第一密钥。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息为本地配置或本地策略。
结合第一方面,在第一方面的某些实现方式中,该第一核心网网元服务的网络支持多运营商网络架构。
上述方案,第一核心网网元根据本地策略或本地配置确定广播传输密钥。在本地策略或本地配置不支持使用应用功能网元生成的密钥的情况下,使得支持多运营商核心网络架构的多个网络分别使用不同 的密钥,能够实现密钥隔离,提高安全性能。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息指示由该第一网络对该第一数据进行安全保护,包括:该第一指示信息指示不使用该应用功能网元生成的密钥或指示只使用该第一核心网网元生成的密钥;该第一指示信息指示由该应用功能网元对该数据进行安全保护,包括:该第一指示信息指示允许使用该应用功能网元生成的密钥或指示不使用该第一核心网网元生成的密钥。
结合第一方面,在第一方面的某些实现方式中,在该第一指示信息指示由该第一网络对该第一数据进行安全保护的情况下,该方法还包括:该第一核心网网元根据该第一指示信息生成第二密钥。
结合第一方面,在第一方面的某些实现方式中,在该第一指示信息指示由该第一网络对该第一数据进行安全保护的情况下,该方法还包括:该第一核心网网元向接入网网元发送第三指示信息,该第三指示信息指示该接入网网元为来自不同网络的该广播业务分别广播该第一数据和第二数据,或指示由该第一网络对该第一数据进行安全保护,或指示该广播传输密钥是由该第一核心网网元生成的。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息指示由该应用功能网元对该数据进行安全保护的情况下,该方法还包括:该第一核心网网元向接入网网元发送第三指示信息,该第三指示信息指示该接入网网元为来自不同网络的该广播业务广播该第一数据,或指示由该应用功能网元对该第一数据进行安全保护,或指示该广播传输密钥是由该应用功能网元生成的。
上述方案,第一核心网网元还根据广播传输密钥使用第一密钥还是第二密钥的情况,通知接入网网元是否开启多运营商核心网络优化,从而实现核心网对多运营商核心网络优化是否开启的控制。相比于由应用功能网元控制多运营商核心网络优化是否开启,进一步提高安全性能。
结合第一方面,在第一方面的某些实现方式中,该会话创建请求消息包括该广播会话的标识和该第一密钥,其特征在于,该方法还包括:该第一核心网网元存储该广播会话的标识和该第一密钥。
结合第一方面,在第一方面的某些实现方式中,该第一核心网网元为广播服务功能网元或广播服务传输功能网元。
第二方面,提供了一种适用于多运营商核心网络的广播安全通信的方法,该方法可以由第一核心网网元执行,或者,也可以由第一核心网网元的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以由第一核心网网元执行为例进行说明。
该方法可以包括:第一核心网网元接收来自第三核心网网元的通知消息,该通知消息包括由该第三核心网网元生成的第三密钥,该第一核心网网元属于第一网络,该第三核心网网元属于第二网络,该第三网络和该第二网络共用同一个接入网网元;该第一核心网网元获取第四指示信息,该第四指示信息指示多运营商核心网网络针对该广播业务的使用状态,该使用状态包括多运营商核心网网络针对该广播业务的优化已开启或未开启;该第一核心网网元根据该第四指示信息向终端设备发送广播传输密钥,该广播传输密钥用于对该第一核心网网元与该终端设备之间传输的广播业务的第一数据进行安全保护。
上述方案,对于共用同一个基站的多个网络,由其中一个网络生成安全数据后发送给其他网络,能够实现不同的网络使用同一个广播传输密钥对广播业务的数据进行安全保护,减少由于两个网络分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第一核心网网元向该第二核心网网元发送请求消息,该请求消息用于请求由该第二核心网网元生成的密钥;该通知消息用于响应该请求消息。
结合第二方面,在第二方面的某些实现方式中,第一核心网网元接收来自第三核心网网元的通知消息,包括:第一核心网网元通过安全边缘保护代理网元接收来自该第二核心网网元的该通知消息。
结合第二方面,在第二方面的某些实现方式中,该第四指示信息指示多运营商核心网网络针对该广播业务的优化已开启的情况下,该广播传输密钥为该第三密钥;该第四指示信息指示为多运营商核心网网络针对该广播业务的优化未开启的情况下,该广播传输密钥为由该第一核心网网元生成的第二密钥。
第三方面,提供了一种适用于多运营商核心网络的广播安全通信的方法,该方法可以由第三核心网网元执行,或者,也可以由第三核心网网元的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以由第一核心网网元执行为例进行说明。
该方法可以包括:第三核心网网元生成第三密钥;该第三核心网网元向第一核心网网元发送通知消息,该通知消息包括该第三密钥,该第一核心网网元属于第一网络,该第三核心网网元属于第二网络, 该第三网络和该第二网络共用同一个接入网网元。
上述方案,对于共用同一个基站的多个网络,由其中一个网络生成安全数据后发送给其他网络,能够实现不同的网络使用同一个广播传输密钥对广播业务的数据进行安全保护,减少由于两个网络分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
结合第二方面或第三方面,在二方面或第三方面的某些实现方式中,该第一核心网网元为第一网络的广播服务功能网元或广播服务传输功能网元,该第三核心网网元为第二网络的广播服务功能网元或广播服务传输功能网元。
第四方面,提供了一种适用于多运营商核心网络的广播安全通信的方法,该方法可以由第一核心网网元执行,或者,也可以由第四核心网网元的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以由第四核心网网元执行为例进行说明。
该方法可以包括:应用功能网元获取第五指示信息,该第五指示信息指示第一网络是否支持多运营商核心网络的架构;该应用功能网元向该第一网络的第四核心网网元发送广播会话创建请求消息;其中,在该第五指示信息指示该第一网络支持多运营商核心网络的架构的情况下,该广播会话创建请求消息包括安全数据,该安全数据包括广播会话的标识和第一密钥,该第一密钥是该应用功能网元生成的,该安全数据指示适用该第一密钥对该广播会话对应的数据进行安全保护。
上述方案,应用功能网元在发送广播会话创建请求消息之前,根据网络是否支持多运营商核心网络架构,确定是否要在广播会话创建请求消息中携带安全数据。可以避免在网络不支持多运营商核心网络架构的情况下应用功能网元向网络发送安全数据而导致浪费信令开销的问题。并且,由应用功能网元先做判断,也可以避免在广播会话创建过程中,网络再通知应用功能网元自身不支持多运营商核心网络架构,进一步节省信令开销。
结合第四方面,在第四方面的某些实现方式中,该第四核心网网元为广播服务功能网元或广播服务传输功能网元。
第五方面,提供了一种适用于多运营商核心网络的广播安全通信的方法,该方法可以由第四核心网网元执行,或者,也可以由第四核心网网元的组成部件(例如芯片或者电路)执行,本申请对此不作限定。为了便于描述,下面以由第一核心网网元执行为例进行说明。
该方法可以包括:第四核心网网元接收来自应用功能网元的广播会话创建请求消息,该广播会话创建请求消息用于请求创建广播会话;该第四核心网网元获取第六指示信息和第七指示信息;响应于该广播会话创建请求消息,该第四核心网网元根据该第六指示信息向该应用功能网元发送广播会话创建响应消息;其中,在该第六指示信息和该第七指示信息满足下列条件的情况下,该广播会话创建响应消息指示拒绝创建广播会话的请求;第六指示信息指示由该第四核心网网元属于的第一网络对该广播会话对应的数据进行安全性保护;该第七指示信息指示该第一网络支持多运营商核心网络的架构,或指示该接入网网元为来自包括该第一网络在内的至少两个网络的广播业务广播同样的数据,或指示该第一网络只使用该第一网络的网元生成的密钥,或指示该第一网络不使用该应用功能网元生成的密钥。
上述方案,第四核心网网元根据本地策略或本地配置确定是否同意来自应用功能网元的广播会话创建请求。由于网络支持多运营商核心网络架构或多运营商核心网络优化开启的情况下,如果网络的本地策略或本地配置要求核心网对广播会话进行安全保护,第四核心网网元则会拒绝广播会话创建请求。在网络还没有开始建立广播会话之前,第四核心网网元就先判断是否要创建广播会话,相比于在广播会话创建流程中网络再确定本地策略或本地配置是否支持创建广播会话,可以节省信令开销。
结合第五方面,在第五方面的某些实现方式中,该第四核心网网元为广播服务功能网元或广播服务传输功能网元。
第六方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第五方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如第一核心网网元,又如第三核心网网元,再如应用功能网元)。
在另一种实现方式中,该装置为用于通信设备(如第一核心网网元,又如第三核心网网元,再如应 用功能网元)的芯片、芯片系统或电路。
第七方面,本申请提供一种处理器,用于执行上述第一方面至第五方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供了一种广播安全通信的系统,包括第一核心网网元、应用功能网元和终端设备,该第一核心网网元用于上述第一方面任一种可能实现方式中的方法。
第九方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第五方面任一种可能实现方式中的方法。
第十方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第五方面任一种可能实现方式中的方法。
附图说明
图1示出了本申请实施例适用的5G系统。
图2是适用于本申请实施例提供的方法的多播广播业务架构的示意图。
图3示出了本申请适用的一种场景示意图。
图4示出了本申请适用的另一种场景示意图。
图5示出了本申请提供的广播安全通信的方法100的示意图。
图6A示出了本申请提供的广播安全通信的方法110的示意图。
图6B示出了本申请提供的广播安全通信的方法200的示意图。
图7示出了本申请提供的广播安全通信的方法300的示意图。
图8A示出了本申请提供的广播安全通信的方法120的示意图。
图8B示出了本申请提供的广播安全通信的方法400的示意图。
图9示出了本申请提供的广播安全通信的方法500的示意图。
图10A示出了本申请提供的广播安全通信的方法130的示意图。
图10B示出了本申请提供的广播安全通信的方法600的示意图。
图11是本申请提供的通信装置的一种示意性框图。
图12是本申请提供的通信装置的另一种示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”以及其他各种术语标号等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可 以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
下面将结合图1举例说明本申请实施例适用的5G系统。应理解,本文中描述的5G系统仅是示例,不应对本申请构成任何限定。
如图1所示,该网络架构例如是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议TS23.501中定义的5G系统(the 5th generation system,5GS)。该网络架构可以分为接入网(access network,AN)和核心网(core network,CN)两部分。其中,接入网可用于实现无线接入有关的功能,核心网主要包括以下几个关键逻辑网元:接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、用户面功能(user plane function,UPF)、策略控制功能(policy control function,PCF)和统一数据管理(unified data management,UDM)等。
下面对图1中示出的各网元进行简单介绍:
1、用户设备(user eqiupment,UE):可以称为终端设备(terminal equipment)、终端装置、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物-物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器等,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,用户设备可以是任何可以接入网络的设备。终端设备与接入网设备之间可以采用某种空口技术相互通信。
可选地,用户设备可以用于充当基站。例如,用户设备可以充当调度实体,其在V2X或D2D等中的用户设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
2、(无线)接入网((radio)access network,(R)AN)设备:用于为特定区域的授权用户设备提供入网功能,并能够根据用户设备的级别,业务的需求等使用不同服务质量的传输隧道。
(R)AN能够管理无线资源,为用户设备提供接入服务,进而完成控制信号和用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为传统网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限为演进型节点B(evolved Node B,eNB)或5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线 单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
3、用户面功能(user plane function,UPF)网元:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。为叙述方便,本申请实施例中,用户面功能网元被简称为“UPF”。
在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、接入和移动管理功能(access and mobility management function,AMF)网元:接入和移动管理功能网元主要用于移动性管理和接入管理等,可以用于实现MME功能中除会话管理之外的其它功能,例如,接入授权/鉴权等功能。为叙述方便,本申请实施例中,接入和移动管理功能网元被简称为“AMF”。
在未来通信系统中,接入和移动管理设备仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
5、会话管理功能(session management function,SMF)网元:主要用于会话管理、用户设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。为叙述方便,本申请实施例中,会话管理功能网元被简称为“SMF”。
SMF为会话管理网元的一种。在未来通信系统中,会话管理网元仍可以是SMF,或者,还可以有其它的名称,本申请不做限定。
6、策略控制功能(policy control function,PCF)网元:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF等)提供策略规则信息等。
在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
7、应用功能(application function,AF)网元:用于进行应用影响的数据路由,无线接入网络开放功能网元,与策略框架交互进行策略控制等。为叙述方便,本申请实施例中,应用功能网元被简称为“AF”。
在未来通信系统中,应用功能网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
8、统一数据管理(unified data management,UDM)网元:用于处理UE标识,接入鉴权,注册以及移动性管理等。
在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
9、认证服务器(authentication server function,AUSF)网元:用于鉴权服务、产生密钥实现对用户设备的双向鉴权,支持统一的鉴权框架。
在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
10、网络数据分析功能(network data analytics function,NWDAF)网元:用于识别网络切片实例、加载网络切片实例的负载级别信息。网络数据分析功能可使NF消费者订阅或取消订阅定期通知,并在超过阈值的情况下,通知消费者。
在未来通信系统中,网络数据分析功能网元仍可以是NWDAF网元,或者,还可以有其它的名称,本申请不做限定。
11、数据网络(data network,DN):DN是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备, 员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
在图1所示的网络架构中,各网元之间可以通过图中所示的接口通信。如图所示,UE和AMF之间可以通过N1接口进行交互,交互消息例如可以称为N1消息(N1Message)。RAN和AMF之间可以通过N2接口进行交互,N2接口可以用于非接入层(non-access stratum,NAS)消息的发送等。RAN和UPF之间可以通过N3接口进行交互,N3接口可以用于传输用户面的数据等。SMF和UPF之间可以通过N4接口进行交互,N4接口可以用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息。UPF和DN之间可以通过N6接口进行交互,N6接口可以于传输用户面的数据等。其他接口与各网元之间的关系如图1中所示,为了简洁,这里不一一详述。下面简单介绍各个网元之间的接口名称及功能如下:
1)N7:PCF与SMF之间的接口,用于下发对应协议数据单元(protocol data unit,PDU)会话或者对应业务数据流的控制策略。
2)N15:PCF与AMF之间的接口,用于下发UE策略及接入控制相关策略。
3)N5:AF与PCF之间的接口,用于应用业务请求下发以及网络事件上报。
4)N4:SMF与UPF之间的接口,用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N11:SMF与AMF之间的接口,用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给UE的控制消息、传递发送给RAN的无线资源控制信息等。
6)N2:AMF与RAN之间的接口,用于传递核心网侧至RAN的无线承载控制信息等。
7)N1:AMF与UE之间的接口,接入无关,用于向UE传递QoS控制规则等。
8)N8:AMF与UDM间的接口,用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册UE当前移动性管理相关信息等。
9)N10:SMF与UDM间的接口,用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册UE当前会话相关信息等。
10)N35:UDM与UDR间的接口,用于UDM从UDR中获取用户签约数据信息。
11)N36:PCF与UDR间的接口,用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
12)N12:AMF和AUSF间的接口,用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)N13:UDM与AUSF间的接口,用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
图2是适用于本申请实施例提供的方法的多播广播业务架构的示意图。图2所示的多播广播业务架构和功能是在单播网络架构和功能的基础上增强而定义的。下面对图2中各个网元特定于多播广播业务的功能做简单介绍。
1、UE:UE主要功能为通过PTM/PTP接收多播数据、通过PTM接收组/广播数据、处理QoS、发起会话加入(session join)和会话离开(session leave)、以及5G MBS的终端侧的资源管理。
2、RAN:RAN主要负责处理MBS QoS流、通过点到多点(point to multipoint,PTM)、点到点(point to point,PTP)向UE发送数据、配置AS层接收广播流、在PTM和PTP之间切换、支持多播会话的Xn和N2切换、处理会话信令、以及建立空口广播和多播资源等。
3、AMF:AMF主要负责信令路由(NG-RAN~MB-SMF)、以及选择广播的NG-RANs等。
4、SMF:SMF为支持5G MBS特性,单播SMF需要增强,主要体现在增加:发现MB-SMF、UE加入的认证、与MB-SMF交互管理多播会话上下文、与RAN交互建立多播传输资源等功能。
5、UPF:UPF主要负责与MB-UPF交互接收通过单独传递模式传输的多播数据、通过PDU会话向UE传输单独传递模式传输的多播数据。
6、PCF:PCF主要负责多播广播业务(multicast and broadcast service,MBS)会话的QoS处理、向多播广播SMF(multicast and broadcast SMF,MB-SMF)提供策略信息、以及与用户数据存储库(user data repository,UDR)交互获取QoS信息等。PCF是可选网元,仅在使用动态策略计费控制(policy charging control,PCC)时,才需要该功能实体。
7、多播/广播会话管理功能(multicast/broadcast-session management function,MB-SMF)网元:MB-SMF是一个具备支持广播特性的实体。MB-SMF还可以同时具备单播SMF的功能。具体地,MB-SMF负 责:MBS会话的管理,包括QoS控制等;配置多播广播(multicast and broadcast UPF,MB-UPF);与RAN交互控制广播流(flow)传输(广播会话特定功能);与SMF交互关联协议数据单元(protocol data unit,PDU)会话;和RAN交互控制多播流的传输(多播会话特定功能)等。为叙述方便,本申请实施例中,多播/广播会话管理功能网元被简称为多播会话管理功能网元,或“MB-SMF”。MB-SMF为多播会话管理网元中的一种,在未来通信系统中,多播会话管理网元仍可以是MB-SMF,或者,还可以有其它的名称,本申请不做限定。
8、多播/广播用户面功能(multicast/broadcast-user plane function,MB-UPF)网元:MB-UPF是5G MBS的数据面的网关,主要负责:与MB-SMF交互获取数据转发规则、向RAN通过共享传递方法(shared delivery method)传输多播数据;向UPF通过单独传递方法(individual delivery method)传输多播数据。为叙述方便,本申请实施例中,多播/广播用户面功能网元被简称为多播用户面功能网元或“MB-UPF”。
9、多播/广播服务功能(multicast and broadcast service function,MBSF):MBSF主要支持以下功能:业务层功能、与LTE MBS的互通、与AF和MB-SMF交互以支持MBS会话的操作、确定传输参数和MBS会话的类型、选择MB-SMF控制MBSTF、以及确定发送者的IP多播地址等。MBSF为可选网元。为叙述方便,本申请实施例中,多播/广播服务功能网元被简称为多播服务功能网元或“MBSF”。
10、多播/广播服务传输功能(multicast/broadcast service transport function,MBSTF):MBSTF主要支持以下功能:MBS数据的锚点、作为IP多播的源、支持例如帧、多流、前向纠错(forward error correction,FEC)等通用传输功能、将输入的文件作为目标(object)或目标流(object flow)以多播或广播的方式发送等。MBSTF为可选网元。为叙述方便,本申请实施例中,多播/广播服务传输功能网元被简称为多播服务传输功能网元或“MBSTF”。
11、AF:AF主要支持以下功能向5G核心网(5G core network,5GC)提供业务信息并请求多播或广播服务、以及指示(instruct)与5GC的MBS会话操作等。本申请中的AF还可以理解为内容提供者(content provider)。
12、UDM:UDM主要支持多播会话的订阅/签约管理等。
13、网络存储功能(network repository function,NRF):NRF主要是核心网网元的信息,在支持MBS特性上,主要包括以下功能:支持对服务MBS会话的MB-SMF的管理,具体包括保存MB-SMF服务的MBS会话ID。
14、网络开放功能(network exposure function,NEF):NEF在支持MBS特性上,主要负责以下功能:选择MB-SMF,与AF以及MB-SMF交互实现MBS会话操作、确定传输参数等,向AF提供5G MBS流程的接口如服务配置、MBS会话配置和QoS管理等接口。
图2中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
应理解,上述应用于本申请实施例的网络架构仅是举例说明的从传统点到点的架构和服务化架构的角度描述的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,图1和图2中所示各个核心网网元可以理解为核心网中用于实现不同功能的网元,例如可以按需组合成网络切片。这些核心网网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。为方便说明,本申请后续,以网络设备为接入和移动管理网元AMF,基站为无线接入网络RAN为例进行说明。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业 务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的各个方面或特征可以用于实现成方法,或者通过装置或标准编程和/或工程技术的制品进行实现。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图3示出了本申请适用的一种场景示意图。通常情况下,运营商在部署网络时,为了减少部署无线接入网的成本,一般选择会在保留各自核心网的同时共享无线接入网设备(下述描述中,以基站作为无线接入网设备进行说明)。例如,TS23.501中所定义的多运营商核心网(multi-operator core network,MOCN)场景。如图3所示,假设有三个运营商,其中,运营商#A、运营商#B和运营商#C分别拥有自己的核心网,但是为了节约成本(例如,部署基站的成本),三个运营商可能会共享基站。与普通场景相比,MOCN场景的部署方式中,广播消息中包含公共陆地移动网络(public land mobile network,PLMN)的信息。例如,基站发送的小区信息中包括小区所属的PLMN的信息。
图4示出了本申请适用的另一种场景示意图。如图4所示,目前,某些广播业务(例如,天气预报,高精地图更新等)在不同运营商上传输的内容是相同的。针对这类广播业务,相同的广播业务的数据在不同运营商的核心网以及运营商所共享的基站上需要多次传输。例如,如图4所示,假设有两个运营商(记为PLMN#a和PLMN#b),多播/广播业务的内容提供商(MBS content provider)分别向PLMN#a和PLMN#b发送广播数据。由于PLMN#a和PLMN#b共享基站,相同的广播业务的数据会在基站中发送两次(也可以理解为,基站为传输不同运营商网络中的相同广播业务需要分配两次空口资源)。
为了便于理解本申请实施例的技术方案,下面介绍本申请涉及的一些技术用语。
1、多播/广播业务会话(multicast/broadcast service-session,MBS session):多播/广播会话可以为多播/广播业务提供服务。多播/广播会话包括从数据网络到核心网设备再到接入网设备的单播或组播隧道、以及接入网设备分配的用于发送该多播/广播业务的单播或多播/广播空口资源。
2、多播/广播业务数据的传输
在3GPP网络中,服务/应用存在向多个用户设备(UE)发送多播/广播业务的需求,即需要单点对多点的相同数据传输。该服务/应用包括多媒体消息服务、数据流服务、组通信服务等。通过建立多播/广播/单播会话,网络提供一条被多个接收方共享的承载,发送方仅需发送一份数据,在网络侧按需将发送数据复制并传输至多个接收方或者使用多播的传输方式发送一份数据给多个接收方。服务可以由一个或多个会话承载。一个服务标识对应1个或多个MBS会话标识。
3、第一广播业务、MBS会话标识、服务标识
至少两个网络(下面以PLMN#a和PLMN#b为例进行说明)共用一个接入网网元,分别通过该接入网网元向所在网络的终端设备发送广播业务(下面以第一广播业务为例进行说明)的数据。具体地,AF通过PLMN#a和PLMN#b将数据传输到该基站,该基站广播一份数据到PLMN#a的UE和PLMN#b的UE。
AF或服务提供商通过PLMN#a和PLMN#b分别建立MBS会话,并通过MBS会话分别向PLMN#a和/或PLMN#b发送数据。MBS会话由相应的MBS会话标识进行标识。MBS会话标识可以是特定的IP地址或者临时移动组标识(temporary mobile group identity,TMGI)。换句话说,本申请中涉及的MBS会话标识或会话标识为用于承载第一广播业务的数据的MBS会话的标识。
第一广播业务可以由服务标识进行标记,服务标识为全局唯一标识。示例性的,服务标识可以是在会话创建过程中由核心网发送给基站的,也可以是基站预配置服务标识和会话标识的对应关系,此处不做限定。
示例性的,AF或服务提供商在PLMN#a建立的MBS会话标识为TMGI x,服务标识为w。AF或服务提供商在PLMN#b建立的MBS会话标识为TMGI y,服务标识为w。基站根据服务标识确定不同的广播会话承载/传递的业务数据相同。
4、MOCN状态、MOCN优化开启、MOCN优化不开启
至少两个网络(下面以PLMN#a和PLMN#b为例进行说明)共用一个接入网网元,分别通过该接入网网元向所在网络的终端设备发送广播业务(下面以第一广播业务为例进行说明)的数据。具体地,AF通过PLMN#a和PLMN#b将数据传输到该基站,该基站广播一份或多份数据到PLMN#a的UE和PLMN#b的UE。
MOCN状态可以理解为多运营商核心网网络针对第一广播业务的使用状态,使用状态包括MOCN优化开启和MOCN优化不开启。
其中,MOCN优化开启还可以称为MOCN优化已开启或MOCN优化可以开启。MOCN优化不开启还可以称为MOCN优化未开启或MOCN优化关闭或无法开启MOCN优化。
MOCN优化开启可以理解为MOCN针对第一广播业务的优化已开启,换句话说,多个PLMN能够基于同一个基站广播第一广播业务的同一份数据。MOCN优化未开启可以理解为MOCN针对第一广播业务的优化未开启,换句话说,多个PLMN中的每个PLMN基于同一个基站分别广播第一广播业务的数据。
本申请中的第一指示信息还可以称为MOCN优化指示信息,MOCN优化指示信息可以指示多运营商核心网网络针对所述广播业务的优化已开启或未开启。
本申请中以广播业务会话、广播业务数据的传输为例进行说明,本申请中所有实施例都可以适用于多播业务会话、多业务数据的传输的场景中。
在基站共享的场景中,PLMN#a和PLMN#b的核心网不同,但共用一个基站。在多播/广播业务数据传输中,对于同一个广播业务,AF通过PLMN#a和/或PLMN#b将数据传输到该基站,该基站广播一份数据到PLMN#a的UE和PLMN#b的UE。由于PLMN#a和PLMN#b分别独立维护自己的密钥,并提供给本网络的UE使用。在开启安全保护的情况下,PLMN#a向基站发送的数据为MBSTF#a使用PLMN#a的密钥对广播业务的数据进行处理后的数据。PLMN#b向基站发送的数据为MBSTF#b使用PLMN#b的密钥对广播业务的数据进行处理后的数据。在该过程中,如果基站只广播一份数据,存在部分UE无法对接收到的广播业务数据进行解密和/或完整性校验的情况,导致通信受到影响,用户体验很差。例如,基站广播的数据为PLMN#b安全保护的数据,PLMN#a的UE将无法解析接收的广播业务数据。
图5示出了本申请提供的广播安全通信的方法100的示意图。下面结合图5,详细介绍本申请提供的多播会话安全通信的方法100。
S101,应用功能网元向第一核心网网元发送会话创建请求消息,相应地,第一核心网网元接收来自应用功能网元的会话创建请求消息。
示例性地,第一核心网网元可以是控制面网元或用户面网元。示例性地,应用功能网元可以直接向第一核心网网元发送会话建立请求消息,应用功能网元也可以通过第一核心网网元所服务的网络中的其他网元向第一核心网网网元发送会话建立请求消息。例如,第一核心网网元可以是MBSTF,应用功能网元可以是AF。AF向MBSF/NEF发送广播会话创建请求消息,MBSF/NEF向MBSTF发送会话创建请求消息。或者,第一核心网网元可以是MBSF/NEF,应用功能网元可以是AF,该会话创建请求消息为广播会话创建请求消息。AF向MBSF/NEF发送广播会话创建请求消息。
其中,该会话创建请求消息用于请求创建广播会话。
可选地,会话创建请求消息包括广播会话的标识和第一密钥,第一核心网网元存储广播会话的标识和第一密钥。该第一密钥与该广播会话标识指示的会话对应。
S102,响应于会话创建请求消息,第一核心网网元向应用功能网元发送会话创建响应消息,相应地,应用功能网元接收来自第一核心网网元的会话创建响应消息。
S103,第一核心网网元获取第一指示信息。
其中,第一指示信息来自接入网网元或第二核心网网元,或,第一指示信息是预配置在第一核心网网元的。
例如,第二核心网网元可以是MBSF、MB-SMF、SMF、AMF或网络管理网元(例如OAM)。
S104,第一核心网网元根据第一指示信息向终端设备发送广播传输密钥,相应地,终端设备接收来自第一核心网网元的广播传输密钥。
其中,广播传输密钥用于对第一核心网网元与终端设备之间传输的广播业务的第一数据进行安全保护。
需要说明的是,本申请对S101至S104的执行顺序不做限定。
S101至S104可以有多种实现方式。下面以两种可能的实现方式为例进行介绍。
实现方式一:
第一指示信息指示多运营商核心网网络针对广播业务的使用状态,使用状态包括多运营商核心网网络针对广播业务的优化已开启或未开启。或者,第一指示信息指示所述第一核心网网元服务的网络(为了方便说明,称为第一网络)是否支持多运营商核心网网络架构。
可选地,该使用状态开启与第一网络支持多运营商核心网网络架构对应,该使用状态关闭与第一网络不支持多运营商核心网网络架构对应。
示例1-1,第一指示信息指示多运营商核心网网络针对广播业务的优化已开启的情况下,广播传输密钥为由应用功能网元生成的第一密钥。
示例性地,第一指示信息指示多运营商核心网网络针对广播业务的优化已开启,可以理解为:第一指示信息指示接入网网元为来自至少两个网络的广播业务广播第一数据;其中,至少两个网络包括第一核心网网元服务的网络。
示例1-2,第一指示信息指示为多运营商核心网网络针对广播业务的优化未开启的情况下,广播传输密钥为由第一核心网网元生成的第二密钥。
一种可能的实现方式中,第一核心网网元根据第一指示信息生成第二密钥。
示例性地,第一指示信息指示多运营商核心网网络针对广播业务的优化未开启,可以理解为:第一指示信息指示接入网网元为来自至少两个网络的广播业务分别广播第一数据和第二数据。其中,至少两个网络包括第一核心网网元服务的网络。
应理解,将第一核心网网元服务的网络成为第一网络,将与第一网络不同且与第一网络共享接入网网元的网络称为第二网络。第一数据可以理解为接入网网元从第一网络的用户面网元(例如UPF#a)接收的广播业务的数据。应理解,第一数据是由第一网络进行安全保护的广播业务的数据,或者,第一数据是由第一网络的用户面网元(例如MBSTF#a)进行安全保护的广播业务的数据,或者,第一数据是由第一网络的用户面网元(例如MBSTF#a)生成的密钥进行加密和/或完整性保护处理的广播业务的数据。例如,MBSTF#a使用密钥#a对第一数据进行加密和/或完整性保护,可以实现MBSTF#a与第一网元的终端设备之间的安全通信。第二数据可以理解为接入网网元从第二网络的用户面网元(例如UPF#b)接收的第一广播业务的数据。应理解,第二数据是由第二网络进行安全保护的第一广播业务的数据,或者,第二数据是由第二网络的用户面网元(例如MBSTF#b)进行安全保护的第一广播业务的数据,或者,第二数据是由第二网络的用户面网元(例如MBSTF#b)使用第二密钥进行加密和/或完整性保护处理的第一广播业务的数据。例如,MBSTF#b使用密钥#b对第二数据进行加密和/或完整性保护,可以实现MBSTF#b与第二网元的终端设备之间的安全通信。
还可以理解的是,第一数据在被进行加密和/或完整性保护处理之前的源数据,与,第二数据在被进行加密和/或完整性保护处理之前的源数据相同。
示例1-3,第一指示信息指示第一网络支持多运营商核心网网络架构的情况下,广播传输密钥为由应用功能网元生成的第一密钥。
示例1-4,第一指示信息指示第一网络不支持多运营商核心网网络架构的情况下,广播传输密钥为由应用功能网元生成的第二密钥。
一种可能的实现方式中,第一核心网网元根据第一指示信息生成第二密钥。
作为S103的一种具体示例,示例2-1,接入网网元或第二核心网网元向第一核心网网元发送第一指示信息,相应地,第一核心网网元接收来自接入网网元或第二核心网网元的第一指示信息。
作为S103的一种具体示例,示例2-2,第一核心网网元向接入网网元或第二核心网网元发送订阅请求消息,相应地,第二核心网网元接收来自第一核心网网元的订阅请求消息,订阅请求消息用于订阅使用状态变更的事件。响应于订阅请求消息,接入网网元或第二核心网网元向第一核心网网元发送订阅响应消息,第一核心网网元接收来自接入网网元或第二核心网网元的订阅响应消息,订阅响应消息包括第一指示信息。
一种可能的实现方式中,使用状态变更的事件为RAN粒度的变更事件,换句话说,RAN涉及的所有会话的该使用状态均发生变化。另一种可能的实现方式中,该订阅响应消息还包括广播会话标识,可以理解的是,使用状态变更的事件为会话粒度的变更事件,换句话说,该MBS会话标识指示的会话的该使用状态发生变化。
示例2-1和示例2-2中,例如,接入网网元可以直接与第一核心网网元交互,也可以通过其他核心网网元与第一核心网网元交互。
在实现方式一中,方法100还包括:
S105,第二核心网网元或接入网网元向第一核心网网元发送第二指示信息,相应地,第一核心网网元接收来自第二核心网网元或接入网网元的第二指示信息。
其中,第二指示信息指示多运营商核心网网络针对广播业务的使用状态,使用状态包括多运营商核心网网络针对广播业务的优化已开启或未开启。类似地,对于第二指示信息指示多运营商核心网网络针对广播业务的使用状态的理解可以参见第一指示信息相关的说明。
S106,第一核心网网元根据第二指示信息确定是否更新广播传输密钥。
一种实现方式中,广播传输密钥为第一密钥的情况下,假设第二指示信息指示多运营商核心网网络针对广播业务的优化未开启,第一核心网网元将广播传输密钥更新为第二密钥;或者,假设第二指示信息指示多运营商核心网网络针对广播业务的优化已开启,第一核心网网元不更新广播传输密钥。
另一种实现方式中,广播传输密钥为第二密钥的情况下,假设第二指示信息指示多运营商核心网网络针对广播业务的优化未开启,第一核心网网元不更新广播传输密钥;或者,假设第二指示信息指示多运营商核心网网络针对广播业务的优化已开启,第一核心网网元将广播传输密钥更新为第一密钥。
实现方式二:
第一指示信息指示对第一数据进行安全保护的密钥是由第一核心网网元或应用功能网元生成的。
示例3-1,在第一指示信息指示由第一核心网网元生成的密钥对第一数据进行安全保护的情况下,广播传输密钥为由第一核心网网元生成的第二密钥。
示例性地,第一指示信息指示由第一网络对第一数据进行安全保护,可以理解为:第一指示信息指示不使用应用功能网元生成的密钥或指示只使用第一核心网网元生成的密钥。
可选地,第一核心网网元根据第一指示信息生成第二密钥。
示例3-2,在第一指示信息指示由应用功能网元生成的密钥对第一数据进行安全保护的情况下,广播传输密钥为由应用功能网元生成的第一密钥。
示例性地,第一指示信息指示由应用功能网元对数据进行安全保护,可以理解为:第一指示信息指示允许使用应用功能网元生成的密钥或指示不使用第一核心网网元生成的密钥。
作为S103的一种具体示例,第一指示信息为本地配置或本地策略,第一核心网网元从本地获取第一指示信息。
可以理解的是,在实现方式二中,在第一核心网网元确定使用第一密钥或第二密钥作为广播传输密钥的情况下,为了使得接入网网元能够根据核心网的决策确定如何广播该广播业务的数据,从而进一步确保核心网的安全管理能力和系统的安全性能,方法100还包括步骤1或步骤1’。
步骤1,第一核心网网元确定是否向接入网网元发送多运营商核心网辅助信息。该辅助信息用于指示接入网网元确定针对所述广播业务的使用状态。
由于第一核心网网元所服务的网络支持多运营商核心网网络架构,接入网网元默认该使用状态为开启。例如,接入网网元根据默认配置确定该使用状态为开启。那么,在该使用状态开启的情况下,第一核心网网元不向接入网网元指示多运营商核心网辅助信息;在该使用状态不开启的情况下,第一核心网网元向接入网网元指示多运营商核心网辅助信息。作为一个示例,在第一指示信息指示由第一核心网网元生成的密钥对第一数据进行安全保护的情况下,第一核心网网元向接入网网元发送第三指示信息,相应地,接入网网元接收来自第一核心网网元的第三指示信息。第三指示信息指示接入网网元为来自不同网络的广播业务分别广播第一数据和第二数据,或指示由第一网络对第一数据进行安全保护,或指示广播传输密钥是由第一核心网网元生成的。
步骤1’,第一核心网网元向接入网网元发送多运营商核心网辅助信息。该辅助信息用于指示该使用状态的开启或不开启是否需要接入网网元的辅助。
作为一个示例,在第一指示信息指示由第一网络对第一数据进行安全保护的情况下,第一核心网网元向接入网网元发送第三指示信息,相应地,接入网网元接收来自第一核心网网元的第三指示信息。第三指示信息指示接入网网元为来自不同网络的广播业务分别广播第一数据和第二数据,或指示由第一网络对第一数据进行安全保护,或指示广播传输密钥是由第一核心网网元生成的。
作为另一个示例,所述第一指示信息指示由所述应用功能网元对所述数据进行安全保护的情况下, 所述第一核心网网元向接入网网元发送第三指示信息,所述第三指示信息指示所述接入网网元为来自不同网络的所述广播业务广播所述第一数据,或指示由所述应用功能网元对所述第一数据进行安全保护,或指示所述广播传输密钥是由所述应用功能网元生成的。
图6A示出了本申请提供的广播安全通信的方法110的示意图。
S111,应用功能网元获取第五指示信息。
其中,第五指示信息指示第一网络是否支持多运营商核心网络的架构。
S112,应用功能网元向第一网络的第四核心网网元发送广播会话创建请求消息,相应地,第四核心网网元接收来自应用功能网元的广播会话创建请求消息。
其中,在第五指示信息指示第一网络支持多运营商核心网络的架构的情况下,广播会话创建请求消息包括安全数据,安全数据包括广播会话的标识和第一密钥,第一密钥是应用功能网元生成的,安全数据指示适用第一密钥对广播会话对应的数据进行安全保护。
下面结合图6B介绍方法110的一种具体示例。
图6B示出了本申请提供的广播安全通信的方法200的示意图。方法200中,AF根据PLMN提供的信息或预配置的信息确定该PLMN是否支持MOCN架构,并根据该PLMN是否支持MOCN架构确定是否要向PLMN发送安全数据(security data)。下面结合图6B,详细介绍本申请提供的多播会话安全通信的方法200。
作为步骤S111的一种具体示例。S201,AF确定PLMN是否支持MOCN架构。
其中,PLMN支持MOCN架构,可以理解为,该PLMN的核心网与其他PLMN的核心网不同,且,该PLMN与其他PLMN共享RAN,例如该PLMN与其他PLMN通过同一个RAN执行第一广播业务。类似地,PLMN不支持MOCN架构,可以理解为,该PLMN的核心网与其他PLMN的核心网不同,且,为该PLMN执行第一广播业务的RAN与为其他PLMN执行第一广播业务的RAN的也不同。
其中,AF根据PLMN提供的信息或预配置的信息确定该PLMN是否支持MOCN架构。示例性的,AF向MBSF/NEF发送请求消息,该请求消息或该请求消息中携带的信息用于请求PLMN是否支持MOCN架构的信息;MBSF/NEF根据配置信息或从网络管理网元获得的信息,向AF发送响应消息,该响应消息中携带PLMN是否支持MOCN架构的信息。
作为步骤S112的一种具体示例。S202,AF向MBSF/NEF发送MBS会话创建请求(Nnef_MBSSession_create request)#1消息,相应地,MBSF/NEF接收来自AF的会话创建请求#1消息。
其中,该会话创建请求#1消息用于向MBSF/NEF请求创建MBS会话。该会话创建请求#1消息中携带MBS会话标识(MBS session ID)、QoS参数和安全策略。QoS参数表示当前会话的服务质量要求,其中包括5G QoS标识符、分配保持优先级等参数。安全策略表示当前会话需要或者不需要核心网提供机密性和/或完整性保护。
在PLMN支持MOCN架构的情况下(为了方便说明,下文称为情况a),会话创建请求#1消息还携带安全数据(security data);在PLMN不支持MOCN架构的情况下,会话创建请求#1消息不携带安全数据。安全数据包括MTK#1,MTK#1ID,算法标识符。其中,MTK#1是AF生成的。MTK#1可以用于对MBSTF与UE之间传输第一广播业务的数据进行安全保护。换句话说,MBSTF可以使用MTK#1对MBSTF与UE之间传输第一广播业务的数据进行安全保护,也可以使用其他密钥对MBSTF与UE之间传输第一广播业务的数据进行安全保护。该第一广播业务的数据可以理解为MBS session ID标识的会话传输的数据。MTK#1与MBS session ID对应,可以理解为,MTK#1可以用于对MBS session ID标识的会话承载的数据进行安全保护。
上述方案,AF在发送广播会话创建请求消息之前,根据PLMN是否支持MOCN架构,确定是否要在广播会话创建请求消息中携带安全数据。可以避免在PLMN不支持MOCN架构的情况下AF向PLMN发送安全数据而导致浪费信令开销的问题。并且,由AF先做判断,也可以避免在广播会话创建过程中,PLMN再通知AF自身不支持MOCN架构,进一步节省信令开销。
图7示出了本申请提供的广播安全通信的方法300的示意图。方法300中,PLMN支持MOCN架构。下面结合图7,详细介绍本申请提供的多播会话安全通信的方法300。
S301,AF向MBSF/NEF发送MBS会话创建请求#1消息,相应地,MBSF/NEF接收来自AF的会话创建请求#1消息。
其中,该会话创建请求#1消息用于向MBSF/NEF请求创建MBS会话。该会话创建请求#1消息中携 带MBS会话标识(MBS session ID)、QoS参数、安全策略和安全数据。
具体地,S301可以参照S202中相应的描述,且PLMN支持MOCN架构。
可选地,S301之前,方法300还可以包括S201。
S302,MBSF/NEF向MB-SMF发送MBS会话创建请求(Nmbsmf_MBSSession_create request)#2消息,相应地,MB-SMF接收来自MBSF/NEF的MBS会话创建请求#2消息。
其中,该会话创建请求#2消息用于向MB-SMF请求创建MBS会话。该会话创建请求#1消息中携带MBS会话标识(MBS session ID)、QoS参数。
S303,MB-SMF向MBSF/NEF发送MBS会话创建响应(Nmbsmf_MBSSession_create response)#2消息,相应地,MBSF/NEF接收来自MB-SMF的会话创建响应#2消息。
S304,MBSF/NEF向MBSTF发送会话请求消息,相应地,MBSTF接收来自MBSF/NEF的会话请求消息。
其中,该会话请求消息包括MBS会话标识、QoS参数,可选的,该会话请求消息还包括安全数据。
可选地,S305,MBSTF存储MBS会话标识和安全数据。具体地,MBSTF存储MTK#1。
S306,MBSTF向MBSF/NEF发送会话响应消息,相应地,MBSF/NEF接收来自MBSTF的会话响应消息。
S307,MBSF/NEF向AF发送MBS会话创建响应(Nnef_MBSSession_create response)#1消息,相应地,AF接收来自MBSF/NEF的MBS会话创建响应#1消息。
具体地,S302至S304、S306至S307可以参见TS 23.247第7.1.1章节。
S308,MB-SMF向RAN发送广播会话创建请求(Broadcast_session_create_request)消息,相应地,RAN接收来自MB-SMF的广播会话创建请求消息。
其中,广播会话创建请求消息中携带MBS会话标识、QoS参数等。RAN创建会话上下文并为第一广播业务配置空口资源。
S309,RAN向MB-SMF发送广播会话创建响应(Broadcast_session_create_response)消息,相应地,MB-SMF接收来自RAN的广播会话创建响应消息。
MB-SMF与RAN之间的消息可以是通过AMF进行透明传输。
S308和S309具体可参考TS 23.247第7.3.1章节。S308和S309在S303之后执行。S308和S309可以在S307之前执行,也可以在S307之后执行,本申请不做限制。
S310,MBSF生成服务宣告(service announcement)消息,AF/MBSF向UE发送service announcement消息,相应地,UE接收来自AF/MBSF的送service announcement消息。
其中,服务宣告包括用户服务标识(user service ID)、MBS会话标识、服务区域、开始时间、安全服务描述等参数。该消息可以是通过短信、单播会话、多播会话等形式发送给UE,此处不做限制。
S311,UE发起超文本传输协议(Hyper Text Transfer Protocol,HTTP)摘要流程(HTTP digist procedure)。
UE根据service announcement的参数向MBSTF发起服务请求。当用户服务需要进行安全保护时,UE和MBSTF利用应用的认证和密钥管理(authentication and key management for applications,AKMA)/通用认证机制(general bootstrapping architecture,GBA),即AKMA/GBA,生成的应用密钥作为认证凭证,建立密钥传输安全通道。
S312,MBSTF向UE发送多媒体因特网密钥管理(multimedia internet keying,MIKEY)多播服务密钥(MBS service key,MSK)传输(MIKEY MSK delivery)消息。
该消息包括MSK,MSK是由应用密钥进行保护的。
下面,MBSTF将根据RAN发送的优化指示信息向UE发送多播传输密钥(MBS traffic key,MTK),例如可以按照方案a或方案b执行。其中,该MTK用于对UE和AF之间传输的数据进行安全保护。
方案a:
S313,RAN向MBSTF发送MOCN状态通知(MOCN status notification)消息,相应地,MBSTF接收来自RAN的MOCN状态通知消息。
其中,MOCN状态通知消息包括优化指示信息,该优化指示信息可以指示MOCN优化开启或不开启。MOCN优化开启可以理解为,RAN针对第一广播业务向不同核心网的UE广播相同的数据,或者,RAN为来自不同核心网的第一广播业务广播相同的数据,或者,由AF对第一广播业务的数据进行安全保护。 MOCN优化不开启可以理解为,RAN针对第一广播业务向不同核心网的UE分别广播数据,或者,RAN为来自不同核心网的第一广播业务分别广播数据,或者,由核心网对第一广播业务的数据进行安全保护。
可以理解的是,PLMN支持MOCN架构时,MOCN优化可以开启,也可以不开启。
可选地,RAN可以通过多种方式确定MOCN优化是否开启。例如,RAN根据PLMN的能力确定MOCN优化是否开启。在PLMN支持MOCN架构的情况下,MOCN优化开启;在PLMN不支持MOCN架构的情况下,MOCN优化不开启。再例如,RAN根据自身的资源负载确定MOCN优化指示信息。如果RAN空闲的资源负载比较多(例如大于阈值),则MOCN优化开启;反之,MOCN优化不开启。
MOCN优化指示信息可以是由RAN直接发送给MBSTF的,还可以是由RAN通过其他核心网网元发送给MBSTF的。例如,其他核心网网元可以是MB-SMF或MBSF或SMF或AMF或网络管理网元中的一个或多个。
可选地,MBSTF可以向RAN订阅MOCN状态变更事件。在MOCN状态发生变化时,响应于该订阅请求,RAN向MBSTF发送订阅响应消息。或者,其他核心网网元向基站订阅MOCN状态变更事件。在MOCN状态发生变化时,响应于该订阅请求,RAN向其他核心网网元发送订阅响应消息,随后其他核心网网元在向MBSTF发送该订阅响应消息。其中,该订阅响应消息包括MOCN优化指示信息。可选地,该订阅响应消息还包括MBS会话标识。示例性地,一种可能的实现方式中,该订阅响应消息包括MOCN优化指示信息,可以理解的是,MOCN状态变更事件为RAN粒度的变更事件,换句话说,RAN涉及的所有会话的MOCN状态均发生变化。另一种可能的实现方式中,该订阅响应消息包括MOCN优化指示信息和MBS会话标识,可以理解的是,MOCN状态变更事件为会话粒度的变更事件,换句话说,该MBS会话标识指示的会话的MOCN状态发生变化。
或者,S313还可以替换为,MBSTF接收来自其他核心网网元的MOCN优化指示信息。其他核心网网元可以是SMF或AMF或网络管理网元(例如OAM)。示例性的,其他核心网网元可以根据预配置信息获得MOCN优化指示信息。例如,该预配置信息可以是PLMN是否支持MOCN架构。预配置信息指示PLMN支持MOCN架构的情况下,其他核心网网元可以根据预配置信息确定MOCN优化指示信息用于指示MOCN优化开启;预配置信息指示PLMN不支持MOCN架构的情况下,其他核心网网元可以根据预配置信息确定MOCN优化指示信息用于指示MOCN优化不开启。
S314,MBSTF确定是否生成MTK#2和MTK#2ID。
具体地,MBSTF根据MOCN优化指示信息和当前密钥信息确定是否生成MTK。
由上述步骤可知,当前密钥信息指示当前MTK为MBSTF存储的MTK#1。
在MOCN优化指示信息指示MOCN优化开启的情况下,MBSTF确定不生成MTK#2和MTK#2ID。在MOCN优化指示信息指示MOCN优化不开启的情况下,MBSTF确定生成MTK#2和MTK#2ID。
S315,MBSTF向UE发送MIKEY MTK传输消息,相应地,UE接收来自MBSTF的MIKEY MTK传输消息。
MBSTF确定不生成MTK#2的情况下,MIKEY MTK传输消息包括MTK#1和MTK#1ID,MTK#1是由MSK进行保护的。
MBSTF确定生成MTK#2的情况下,MIKEY MTK传输消息包括MTK#2和MTK#2ID,MTK#2是由MSK进行保护的。
方案b:
S316,MBSTF生成MTK#2和MTK#2ID。例如,MBSTF默认生成MTK#2。
S317,MBSTF向UE发送MIKEY MTK传输(MIKEY MTK delivery)消息,相应地,UE接收来自MBSTF的MIKEY MTK传输消息。
其中,MIKEY MTK传输消息包括MTK#2和MTK#2ID,MTK#2是由MSK进行保护的。
S318,具体可以参见S313的描述。
S319,MBSTF确定是否更新MTK。
具体地,MBSTF根据MOCN优化指示信息和当前密钥信息确定是否更新MTK。
在S319的第一种可能的实现方式中,当前密钥信息指示当前MTK为MBSTF生成的MTK#2。
在MOCN优化指示信息指示MOCN优化不开启的情况下,MBSTF确定不更新MTK,即,MTK仍为MTK#2。不执行S320。
在MOCN优化指示信息指示MOCN优化开启的情况下,MBSTF确定更新MTK,即将MTK#2更新 为MTK#1。执行S320。
在S319的第二种可能的实现方式中,当前密钥信息指示当前MTK为MTK#1。
在MOCN优化指示信息指示MOCN优化开启的情况下,MBSTF确定不更新MTK,即,MTK仍为MTK#1。不执行S320。
在MOCN优化指示信息指示MOCN优化不开启的情况下,MBSTF确定更新MTK,即将MTK#1更新为MTK#2。执行S320。
可选地,与第二种可能的实现方式对应,S320,MBSTF向UE发送更新后的MTK传输(updated MTK delivery)消息,相应地,UE接收来自MBSTF更新后的MTK传输消息。
可选地,S320,MBSTF向UE发送更新后的MTK传输(updated MTK delivery)消息,相应地,UE接收来自MBSTF更新后的MTK传输消息。
与S319的第一种可能的实现方式对应,该消息中包括MTK#1、MBS会话标识和MTK#1ID,MTK#1是由MSK进行保护的。
与S319的第二种可能的实现方式对应,该消息中包括MTK#2、MBS会话标识和MTK#2ID,MTK#2是由MSK进行保护的。
S321a,AF向MBSTF发送第一广播业务的数据#1,相应地,MBSTF接收来自AF的第一广播业务的该数据#1。
S321b,MBSTF向UE发送对数据#1进行安全保护后的数据(称为数据#2),相应地,UE接收来自MBSTF的数据#2。
其中,数据#2由MTK进行安全保护处理。
UE根据MTK对数据#2进行解安全保护,得到第一广播业务的数据#1。
可以理解的是,安全保护可以包括加密,也可以包括完整性保护,即传输的可以是加密数据后得到的密文,也可以包括完整性保护后的得到的消息鉴别码。
上述方案,MBSTF根据MOCN优化指示信息确定用于对第一广播业务的数据进行加密的密钥。在MOCN优化开启时,使用AF生成的密钥,能够使得RAN基于同一份空口资源向不同PLMN的UE广播第一广播业务的数据,从而不同PLMN的UE均使用AF生成的密钥对接收到的数据进行解安全保护。在MOCN优化不开启时使用MBSTF生成的密钥,RAN分别基于不同的空口的资源向不同PLMN的UE分别广播第一广播业务的数据,从而一个PLMN的UE使用该PLMN的MBSTF生成的密钥对接收到的数据进行解安全保护。从而,在MOCN优化开启或不开启的情况下,都能够减少由于两个网络中的MBSTF分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
图8A示出了本申请提供的广播安全通信的方法120的示意图。
S121,应用功能网元向第四核心网网元发送广播会话创建请求消息,相应地,第四核心网网元接收来自应用功能网元的广播会话创建请求消息。
其中,广播会话创建请求消息用于请求创建广播会话。
S122,第四核心网网元获取第六指示信息和第七指示信息。
S123,响应于广播会话创建请求消息,第四核心网网元根据第六指示信息向应用功能网元发送广播会话创建响应消息,相应地,应用功能网元接收来自第四核心网网元的广播会话创建响应消息。
其中,在第六指示信息和第七指示信息满足下列条件的情况下,广播会话创建响应消息指示拒绝创建广播会话的请求:
第六指示信息指示由第四核心网网元属于的第一网络对广播会话对应的数据进行安全性保护。第七指示信息指示第一网络支持多运营商核心网络的架构,或指示接入网网元为来自包括第一网络在内的至少两个网络的广播业务广播同样的数据,或指示第一网络只使用第一网络的网元生成的密钥,或指示第一网络不使用应用功能网元生成的密钥。
下面结合图8B介绍方法120的一种具体示例。其中,第六指示信息以安全策略为例,第七指示信息以本地策略为例进行说明。
图8B示出了本申请提供的广播安全通信的方法400的示意图。方法400中,PLMN支持MOCN架构。下面结合图8B,详细介绍本申请提供的多播会话安全通信的方法400。
S401,AF向MBSF/NEF发送MBS会话创建请求#1消息,相应地,MBSF/NEF接收来自AF的会话 创建请求#1消息。
其中,该会话创建请求#1消息用于向MBSF/NEF请求创建MBS会话。该会话创建请求#1消息中携带MBS会话标识(MBS session ID)、QoS参数、安全策略。QoS参数表示当前会话的服务质量要求,其中包括5G QoS标识符、分配保持优先级等参数。安全策略表示当前会话需要或者不需要核心网提供机密性和/或完整性保护。
S402,MBSF/NEF确定是否同意创建MBS会话。
MBSF/NEF根据本地策略和配置信息中的至少一个,以及安全策略决定是否同意会话创建请求。
例如,MBSF/NEF根据配置信息确定PLMN支持MOCN架构。配置信息为本地配置,本地配置指示PLMN支持MOCN架构。MBSF/NEF可以根据本地配置确定MOCN优化指示可以开启。或者,MBSF/NEF从网络管理网元获取配置信息,该配置信息用于指示MOCN优化是否开启。
例如,本地策略指示:PLMN是否只使用MBSTF生成的MTK#2作为MTK,或,PLMN是否使用AF提供的MTK#1作为MTK。
用于触发MBSF/NEF拒绝会话创建请求的条件包括以下(1)和(2)中的至少一个,以及(3)。
(1)PLMN只使用MBSTF生成的MTK#2作为MTK,或,PLMN不使用AF提供的MTK#1作为MTK;
(2)PLMN支持MOCN架构或MOCN优化已开启;
(3)安全策略表示当前会话需要核心网提供机密性和/或完整性保护。
具体地,在MBSF/NEF不能获取本地配置的情况下,用于触发MBSF/NEF拒绝会话创建请求的条件包括(1)和(3);在不满足条件(1)和(3)时,MBSF/NEF确定同意会话创建请求。在MBSF/NEF不能获取本地策略的情况下,用于触发MBSF/NEF拒绝会话创建请求的条件包括(2)和(3);在不满足条件(2)和(3)时,MBSF/NEF确定同意会话创建请求。在MBSF/NEF能获取本地配置和本地策略的情况下,用于触发MBSF/NEF拒绝会话创建请求的条件包括(1)、(2)和(3);在不满足条件(1)、(2)和(3)时,MBSF/NEF确定同意会话创建请求。
在MBSF/NEF确定拒绝会话创建请求的情况下,后续步骤为情况a;在MBSF/NEF确定同意会话创建请求的情况下,后续步骤为情况b。
情况a:
S403,MBSF/NEF向AF发送MBS会话创建响应#1,相应地,AF接收来自MBSF/NEF的会话创建响应#1。
其中,会话创建响应#1用于指示拒绝会话创建请求#1。
情况b:
S404至S409可以参见S302至S307的描述,区别在于:S407是可选执行的。
例如,在S401参照方法200中的S202,且,S401之前还执行S201的情况下,执行S407。
上述方案,MBSF/NEF根据本地策略或本地配置确定是否同意来自AF的广播会话创建请求。由于PLMN支持MOCN架构或MOCN优化开启的情况下,如果PLMN的本地策略或本地配置要求核心网对MBS会话进行安全保护,MBSF/NEF则会拒绝广播会话创建请求。在PLMN还没有开始建立广播会话之前,MBSF/NEF就先判断是否要创建广播会话,相比于在广播会话创建流程中PLMN再确定本地策略或本地配置是否支持创建广播会话,可以节省信令开销。
图9示出了本申请提供的广播安全通信的方法500的示意图。下面结合图9,详细介绍本申请提供的多播会话安全通信的方法500。
S501,执行方法400的情况b,即,执行S401、S402,S404至S409。
S502至S506可以参见S308至S312对应的描述。
S507,MBSTF确定是否生成MTK#2。
MBSTF根据本地策略或本地配置决定是否生成MTK#2。
示例4-1,在本地策略为不使用AF密钥或只使用MBSTK生成的密钥的情况下,MBSTF生成MTK#2。从而,不同PLMN中使用的MTK不同,实现了密钥隔离,提高了安全性;
示例4-2,在MBSTF的本地配置为MBSTF未升级或MBSTF不支持开启MOCN优化的情况下,MBSTF生成MTK#2。其中,MBSTF未升级,或,MBSTF不能感知安全参数中的MTK#1,可以理解为,MBSTF不能感知安全参数中的MTK#1。
示例4-3,本地配置指示PLMN不支持MOCN架构的情况下,MBSTF生成MTK#2。
示例4-4,在MBSTF未收到AF发送的安全参数的情况下,例如,在不执行S407的情况下,MBSTF生成MTK#2。
示例4-5,在本地配置指示PLMN支持MOCN架构,且,S501中执行S407对应的步骤的情况下,MBSTF不生成MTK#2。
S508,MBSTF向UE发送MIKEY MTK传输消息,相应地,UE接收来自MBSTF的MIKEY MTK传输消息。
MBSTF确定不生成MTK#2的情况下,MIKEY MTK传输消息包括MTK#1和MTK#1ID,MTK#1是由MSK进行保护的。
MBSTF确定生成MTK#2的情况下,MIKEY MTK传输消息包括MTK#2和MTK#2ID,MTK#2是由MSK进行保护的。
S509,MBSTF确定是否向RAN发送通知消息。
在S508中MIKEY MTK传输消息中携带的MTK为MBSTF生成的MTK#2的情况下,MBSTF确定向RAN发送通知消息,执行S510。在S508中MIKEY MTK传输消息中携带的MTK为AF生成的MTK#1的情况下,MBSTF确定不向RAN发送通知消息,不执行S510。
可以理解的是,PLMN支持MOCN架构,该PLMN对应的RAN默认使用同一份空口资源为来自不同核心网的第一广播业务广播相同的数据,并且,该相同的数据是由AF生成的MTK#1进行安全保护的。因此,在S508中MIKEY MTK传输消息中携带的MTK为AF生成的MTK#1的情况下,可以不通知RAN。
可选地,S510,MBSTF向RAN发送通知消息,相应地,RAN接收来自MBSTF的通知消息。
其中,该通知消息包括MOCN优化辅助信息,该辅助信息用于指示以下一项或多项:MOCN优化不开启、MBS会话需要核心网提供机密性和/或完整性保护、MBS会话使用的密钥为MTK#2。
该通知消息可以是MBSTF直接向RAN发送的,也可以是通过其他核心网网元向RAN发送的。其他核心网网元可以是MB-SMF或MBSF或SMF或AMF或网络管理网元。
S509和S510的另一种实现方式,可以将S509和S510替换为S509’和S510’。
S509’,MBSTF确定通知消息。
其中,该通知消息包括MOCN优化辅助信息,该辅助信息用于指示以下一项或多项:MOCN优化是否开启、MBS会话需要或不需要核心网提供机密性和/或完整性保护、MBS会话使用的密钥。
在S508中MIKEY MTK传输消息中携带的MTK为MBSTF生成的MTK#2的情况下,该辅助信息用于指示以下一项或多项:MOCN优化不开启、MBS会话需要核心网提供机密性和/或完整性保护、MBS会话使用的密钥为MTK#2。
在S508中MIKEY MTK传输消息中携带的MTK为AF生成的MTK#1的情况下,该辅助信息用于指示以下一项或多项:MOCN优化已开启、MBS会话不需要核心网提供机密性和/或完整性保护、MBS会话使用的密钥为MTK#1。
S510’,MBSTF向RAN发送通知消息,相应地,RAN接收来自MBSTF的通知消息。
其中,该通知消息包括MOCN优化辅助信息,该辅助信息用于指示以下一项或多项:MOCN优化不开启、MBS会话需要核心网提供机密性和/或完整性保护、MBS会话使用的密钥为MTK#2。
该通知消息可以是MBSTF直接向RAN发送的,也可以是通过其他核心网网元向RAN发送的。例如,MBSTF向其他核心网网元发送通知消息#1,其他核心网网元向RAN发送通知消息#2,且通知消息#1和通知消息#2中均携带MOCN优化辅助信息。其他核心网网元可以是MB-SMF或MBSF或SMF或AMF或网络管理网元。
上述方案,在PLMN支持MOCN架构的情况下,MBSTF根据本地策略或本地配置确定PLMN是否要使用AF生成的密钥。在本地策略或本地配置不支持使用AF生成的密钥的情况下,使得支持MOCN架构的PLMN分别使用不同的密钥,能够实现密钥隔离,提高安全性能。另外,MBSTF还根据确定使用的密钥通知RAN是否开启MOCN优化,从而实现核心网对MOCN优化是否开启的控制。相比于由AF控制MOCN优化是否开启,进一步提高安全性能。
图10A示出了本申请提供的广播安全通信的方法130的示意图。
S131,第三核心网网元向第一核心网网元发送通知消息,相应地,第一核心网网元接收来自第三核 心网网元的通知消息。
其中,通知消息包括由第三核心网网元生成的第三密钥,第一核心网网元属于第一网络,第三核心网网元属于第二网络,第三网络和第二网络共用同一个接入网网元。
其中,第三核心网网元与第一核心网网元之前可以直接通信,或者,也可以通过其他网元通信。例如,第一核心网网元通过安全边缘保护代理网元与第二核心网网元通信。具体实现方式可以参见方法600。
可选地,在S131之前,方法130还包括:第三核心网网元生成第三密钥。
可选地,在S131之前,方法130还包括:第一核心网网元向第二核心网网元发送请求消息,请求消息用于请求由第二核心网网元生成的密钥。该通知消息用于响应请求消息。
S132,第一核心网网元获取第四指示信息。
其中,第四指示信息指示多运营商核心网网络针对广播业务的使用状态,使用状态包括多运营商核心网网络针对广播业务的优化已开启或未开启。
S133,第一核心网网元根据第四指示信息向终端设备发送广播传输密钥,相应地,终端设备接收来自第一核心网网元的第四指示信息。
其中,广播传输密钥用于对第一核心网网元与终端设备之间传输的广播业务的第一数据进行安全保护。
下面结合图10B介绍方法130的一种具体示例。其中,第一网络以PLMN#a为例,第二网络以PLMN#b为例,第一核心网网元以MBSTF#a为例,第二核心网网元以MBSTF#b为例进行说明。
图10B示出了本申请提供的广播安全通信的方法600的示意图。下面结合图10B,详细介绍本申请提供的多播会话安全通信的方法600。
方法600中,作为步骤S131的一种具体示例。步骤A,MBSTF#a向MBSTF#b发送安全参数,该安全参数可以用于对PLMN#b的UE与AF之间传输的数据进行安全保护。
其中,MBSTF#a可以直接向MBSTF#b发送安全参数,也可以通过其他网元发送。
示例性的,在系统中部署了归属于PLMN#a的安全边缘保护代理(security edge protection proxy,SEPP)#a和归属于PLMN#b的SEPP#b的情况下,MBSTF#a向SEPP#a发送安全参数,SEPP#a向SEPP#b发送安全参数,SEPP#b向MBSTF#b发送安全参数。
MBSTF#a向MBSTF#b发送安全参数的发送时机可以是MBSTF#a生成安全参数后,也可以是MBSTF#a生成MSK#b后或创建MBS会话上下文后向MBSTF#a请求安全参数,此处不做限制。
作为步骤S132的一种具体示例。步骤B,MBSTF#b确定是否更新MTK。如果要更新MTK,则更新MTK;反之,则不更新MTK。
下面针对步骤A和步骤B进一步给出具体的示例。S601至S603作为步骤A的一种可能的示例。
S601,MBSTF#a向SEPP#a发送第一通知消息,相应地,SEPP#a接收来自MBSTF#a的第一通知消息。
该第一通知消息包括MTK#a、MTK#a ID以及算法标识符中的一个或多个。
其中,MTK#a、MTK#a ID以及算法标识符中的一个或多个可以是由MBSTF#a生成的。
可选地,该第一通知消息包括安全数据,该安全数据包括MBS会话标识符、MTK#a、MTK#a ID以及算法标识符中的一个或多个。MBS会话标识符是由MBSTF#a从其他核心网网元(例如MBSF/NEF#a)获取的。作为一个示例,PLMN#a和PLMN#b可以预配置多个PLMN的分别与第一广播业务对应的多个会话标识之间的对应关系。例如,PLMN#a和PLMN#b预配置了会话标识#1与会话标识#2对应,会话标识#1是PLMN#a的与第一广播业务对应的会话标识,会话标识#2是PLMN#b的与第一广播业务对应的会话标识。安全数据中包括会话标识#1,后续步骤中MBSTF#b接收到安全数据后,可以根据会话标识#1确定MTK#a和MTK#a ID可以用于对会话标识#2指示的会话进行安全保护。作为另一个示例,方法600中的MBS会话标识还可以替换为服务标识(service ID),该服务标识可以用于指示第一广播业务。后续步骤中MBSTF#b接收到安全数据后,可以根据服务标识确定MTK#a和MTK#a ID可以用于对第一广播业务对应的会话进行安全保护。
S602,SEPP#a向SEPP#b发送第二通知消息,相应地,SEPP#b接收来自SEPP#a的第二通知消息。
其中,第二通知消息包括PLMN#b的标识信息、MTK#a、MTK#a ID以及算法标识符中的一个或多个。第二通知消息用于指示SEPP#b向PLMN#b中用于处理MBS业务的网元发送MTK#a、MTK#a ID。
可选地,第二通知消息还可以包括需求信息,例如需求信息用于显示指示处理MBS业务。
可选地,第二通知消息还可以包括PLMN#b中用于处理MBS业务的网元的标识信息,例如MBSTF#b的ID。第二通知消息具体用于指示SEPP#b向PLMN#b中的MBSTF#b发送MTK#a、MTK#a ID。
示例性地,PLMN#b的标识信息可以是预配置在MBSTF#a的。例如,MBSTF#a可以根据配置信息获知正在与PLMN#a共用同一个RAN的PLMN是哪些。MBSTF#b的ID也可以是预配置在MBSTF#a的。
S603,SEPP#b向MBSTF#b发送第三通知消息,相应地,MBSTF#b接收来自SEPP#b的第三通知消息。
其中,第三通知消息包括MTK#a、MTK#a ID以及算法标识符中的一个或多个。
可选地,第三通知消息还包括MBSTF#a的ID和PLMN#a的ID。
上述方案,通过第三通知消息中携带MBSTF#a的ID和PLMN#a的ID,可以便于MBSTF#b确定该第三通知消息中的MTK#a、MTK#a ID来自PLMN#a,从而可以确定MTK#a、MTK#a ID是否来自合作的PLMN。在MTK#a、MTK#a ID来自合作的PLMN的情况下,再进行相应的处理。进一步提高安全性能。
作为步骤B的一种可能的示例,MBSTF#b根据MOCN优化是否开启和本地策略中的一项,以及当前密钥信息确定是否更新MTK。
例如,MBSTF#b可以参照方法300中的方式确定PLMN#b对应的MOCN优化是否开启。例如,本地策略指示:PLMN#b是否只使用MBSTF生成的MTK#2作为MTK,或,PLMN#b是否使用MBSTF#a提供的MTK#1作为MTK。
示例y-1,MBSTF#b根据MOCN优化是否开启以及当前密钥信息确定是否更新。
在MOCN优化开启且当前MTK为MTK#1的情况下,MBSTF#b确定不更新MTK。在MOCN优化开启且当前MTK为MTK#2的情况下,MBSTF#b确定更新MTK,且在后续步骤中将MTK更新为MTK#1。在MOCN优化不开启且当前MTK为MTK#1的情况下,MBSTF#b确定更新MTK,且在后续步骤中将MTK更新为MTK#2。在MOCN优化不开启且当前MTK为MTK#2的情况下,MBSTF#b确定不更新MTK。
示例y-2,MBSTF#b根据本地策略以及当前密钥信息确定是否更新。
在本地策略指示PLMN只使用MBSTF生成的MTK#2或者不使用MBSTF#a提供的MTK#1作为MTK,且,当前MTK为MTK#2的情况下,MBSTF#b确定不更新MTK。在本地策略指示PLMN#b只使用MBSTF生成的MTK#2或者不使用MBSTF#a提供的MTK#1作为MTK,且,当前MTK为MTK#1的情况下,MBSTF#b确定更新MTK,且在后续步骤中将MTK更新为MTK#2。在本地策略指示PLMN#b可以使用PLMN#b以外的网元生成的密钥作为MTK或者可以使用MBSTF#a提供的MTK#1作为MTK,且,当前MTK为MTK#1的情况下,MBSTF#b确定不更新MTK。在本地策略指示PLMN#b可以使用PLMN#b以外的网元生成的密钥作为MTK或者可以使用MBSTF#a提供的MTK#1作为MTK,且,当前MTK为MTK#2的情况下,MBSTF#b确定更新MTK,且在后续步骤中将MTK更新为MTK#1。
上述方案,对于共用同一个基站的多个PLMN,由其中一个PLMN生成安全数据后发送给其他PLMN,能够实现不同的PLMN使用同一个广播传输密钥对第一广播业务的数据进行安全保护,减少由于两个网络中的MBSTF分别第一对广播业务的数据进行安全保护,而出现的终端设备无法对接收到的广播业务的数据进行解密和/或完整性校验的情况,提高用户体验。
图11和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一核心网网元或第三核心网网元或应用功能网元或第四核心网网元的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是第一核心网网元或第三核心网网元或应用功能网元或第四核心网网元,还可以是应用于第一核心网网元或第三核心网网元或应用功能网元或第四核心网网元的模块(如芯片)。
如图11所示,通信装置1200包括处理单元1210和收发单元1220。通信装置1200用于实现上述图5-图10B中所示的方法实施例中第一核心网网元或第三核心网网元或应用功能网元或第四核心网网元的功能。
当通信装置1200用于实现图5所示的方法实施例中第一核心网网元的功能时:收发单元1220,用于接收来自应用功能网元的会话创建请求消息,会话创建请求消息用于请求创建广播会话;收发单元1220,还用于向应用功能网元发送会话创建响应消息;处理单元1210,用于获取第一指示信息,第一指示信息 来自接入网网元或第二核心网网元,或,第一指示信息是预配置在第一核心网网元的;收发单元1220,还用于向终端设备发送广播传输密钥,广播传输密钥用于对第一核心网网元与终端设备之间传输的广播业务的第一数据进行安全保护。
当通信装置1200用于实现图6A所示的方法实施例中应用功能网元的功能时:处理单元1210,用于获取第五指示信息,第五指示信息指示第一网络是否支持多运营商核心网络的架构;收发单元1220,用于向第一网络的第四核心网网元发送广播会话创建请求消息;其中,在第五指示信息指示第一网络支持多运营商核心网络的架构的情况下,广播会话创建请求消息包括安全数据,安全数据包括广播会话的标识和第一密钥,第一密钥是应用功能网元生成的,安全数据指示适用第一密钥对广播会话对应的数据进行安全保护。
当通信装置1200用于实现图8A所示的方法实施例中的第四核心网网元的功能时:收发单元1220用于接收来自应用功能网元的广播会话创建请求消息,广播会话创建请求消息用于请求创建广播会话;处理单元1210,用于获取第六指示信息和第七指示信息;收发单元1220,用于根据第六指示信息向应用功能网元发送广播会话创建响应消息;其中,在第六指示信息和第七指示信息满足下列条件的情况下,广播会话创建响应消息指示拒绝创建广播会话的请求;第六指示信息指示由第四核心网网元属于的第一网络对广播会话对应的数据进行安全性保护;第七指示信息指示第一网络支持多运营商核心网络的架构,或指示接入网网元为来自包括第一网络在内的至少两个网络的广播业务广播同样的数据,或指示第一网络只使用第一网络的网元生成的密钥,或指示第一网络不使用应用功能网元生成的密钥。
当通信装置1200用于实现图10A所示的方法实施例中第一核心网网元的功能时:收发单元1220用于接收来自第三核心网网元的通知消息,通知消息包括由第三核心网网元生成的第三密钥,第一核心网网元属于第一网络,第三核心网网元属于第二网络,第三网络和第二网络共用同一个接入网网元;处理单元1210,用于获取第四指示信息,第四指示信息指示多运营商核心网网络针对广播业务的使用状态,使用状态包括多运营商核心网网络针对广播业务的优化已开启或未开启;收发单元1220,还用于根据第四指示信息向终端设备发送广播传输密钥,广播传输密钥用于对第一核心网网元与终端设备之间传输的广播业务的第一数据进行安全保护。
当通信装置1200用于实现图10A所示的方法实施例中第三核心网网元的功能时:处理单元1210,用于生成第三密钥;收发单元1220,用于向第一核心网网元发送通知消息,通知消息包括第三密钥,第一核心网网元属于第一网络,第三核心网网元属于第二网络,第三网络和第二网络共用同一个接入网网元。
有关上述处理单元1210和收发单元1220更详细的描述可以参考图5-图10B所示的方法实施例中相关描述。
如图12所示,通信装置1300包括处理器1310和接口电路1320。处理器1310和接口电路1320之间相互耦合。可以理解的是,接口电路1320可以为收发器或输入输出接口。可选的,通信装置1300还可以包括存储器1330,用于存储处理器1310执行的指令或存储处理器1310运行指令所需要的输入数据或存储处理器1310运行指令后产生的数据。
当通信装置1300用于实现图12所示的方法时,处理器1310用于实现上述处理单元1210的功能,接口电路1320用于实现上述收发单元1220的功能。
当上述通信装置为应用于第一核心网网元的芯片时,该第一核心网网元芯片实现上述方法实施例中的第一核心网网元的功能。该第一核心网网元芯片从第一核心网网元中的其它模块(如射频模块或天线)接收信息,该信息是由接入网网元或发送给第一核心网网元的;或者,该第一核心网网元芯片向第一核心网网元中的其它模块(如射频模块或天线)发送信息,该信息是第一核心网网元发送给接入网网元的。
当上述通信装置为应用于第三核心网网元的芯片时,该终端芯片实现上述方法实施例中第三核心网网元的功能。该第三核心网网元的芯片从第三核心网网元中的其它模块(如射频模块或天线)接收信息,该信息是第一核心网网元发送给第三核心网网元的;或者,该第三核心网网元的芯片向基站中的其它模块(如射频模块或天线)发送信息,该信息是第三核心网网元发送给第一核心网网元的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (25)

  1. 一种适用于多运营商核心网络的广播安全通信的方法,其特征在于,包括:
    第一核心网网元接收来自应用功能网元的会话创建请求消息,所述会话创建请求消息用于请求创建广播会话;
    响应于所述会话创建请求消息,所述第一核心网网元向所述应用功能网元发送会话创建响应消息;
    所述第一核心网网元获取第一指示信息,所述第一指示信息来自接入网网元或第二核心网网元,或,所述第一指示信息是预配置在所述第一核心网网元的;
    所述第一核心网网元根据所述第一指示信息向终端设备发送广播传输密钥,所述广播传输密钥用于对所述第一核心网网元与所述终端设备之间传输的广播业务的第一数据进行安全保护。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息指示多运营商核心网网络针对所述广播业务的使用状态,所述使用状态包括多运营商核心网网络针对所述广播业务的优化已开启或未开启;其中,
    所述第一指示信息指示多运营商核心网网络针对所述广播业务的优化已开启的情况下,所述广播传输密钥为由所述应用功能网元生成的第一密钥;或者,
    所述第一指示信息指示为多运营商核心网网络针对所述广播业务的优化未开启的情况下,所述广播传输密钥为由所述第一核心网网元生成的第二密钥。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一核心网网元获取第一指示信息,包括:
    所述第一核心网网元接收来自接入网网元或第二核心网网元的所述第一指示信息;
    所述第一指示信息指示多运营商核心网网络针对所述广播业务的优化未开启,包括:所述第一指示信息指示所述接入网网元为来自至少两个网络的所述广播业务分别广播所述第一数据和第二数据;
    所述第一指示信息指示多运营商核心网网络针对所述广播业务的优化已开启,包括:所述第一指示信息指示所述接入网网元为来自至少两个网络的所述广播业务广播所述第一数据;
    其中,所述至少两个网络包括所述第一核心网网元服务的网络。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一核心网网元获取第一指示信息,包括:
    所述第一核心网网元向所述接入网网元或所述第二核心网网元发送订阅请求消息,所述订阅请求消息用于订阅使用状态变更的事件;
    所述第一核心网网元接收来自所述接入网网元或所述第二核心网网元的订阅响应消息,所述订阅响应消息包括所述第一指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述第一指示信息指示多运营商核心网网络针对所述广播业务的优化未开启的情况下,所述方法还包括:
    所述第一核心网网元根据所述第一指示信息生成第二密钥。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一核心网网元接收第二指示信息,所述第二指示信息指示多运营商核心网网络针对所述广播业务的使用状态,所述使用状态包括多运营商核心网网络针对所述广播业务的优化已开启或未开启;
    所述第一核心网网元根据所述第二指示信息确定是否更新所述广播传输密钥。
  7. 根据权利要求6所述的方法,其特征在于,所述第一核心网网元根据所述第一指示信息确定是否更新所述广播传输密钥,包括:
    在所述第二指示信息指示多运营商核心网网络针对所述广播业务的优化未开启,且所述广播传输密钥为第一密钥的情况下,所述第一核心网网元将所述广播传输密钥更新为第二密钥;或者,
    在所述第二指示信息指示多运营商核心网网络针对所述广播业务的优化未开启,且所述广播传输密钥为第二密钥的情况下,所述第一核心网网元不更新所述广播传输密钥;或者,
    在所述第二指示信息指示多运营商核心网网络针对所述广播业务的优化已开启,且所述广播传输密钥为第一密钥的情况下,所述第一核心网网元不更新所述广播传输密钥;或者,
    在所述第二指示信息指示多运营商核心网网络针对所述广播业务的优化已开启,且所述广播传输密钥为第二密钥的情况下,所述第一核心网网元将所述广播传输密钥更新为所述第一密钥。
  8. 根据权利要求1所述的方法,其特征在于,
    在所述第一指示信息指示由所述第一核心网网元生成的密钥对所述第一数据进行安全保护的情况下,所述广播传输密钥为由所述第一核心网网元生成的第二密钥;或者,
    在所述第一指示信息指示由所述应用功能网元生成的密钥对所述第一数据进行安全保护的情况下,所述广播传输密钥为由所述应用功能网元生成的第一密钥。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息是预配置在所述第一核心网网元的,包括:所述第一指示信息为本地配置或本地策略。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述第一指示信息指示由第一网络对所述第一数据进行安全保护,包括:所述第一指示信息指示不使用所述应用功能网元生成的密钥或指示只使用所述第一核心网网元生成的密钥;
    所述第一指示信息指示由所述应用功能网元对所述数据进行安全保护,包括:所述第一指示信息指示允许使用所述应用功能网元生成的密钥或指示不使用所述第一核心网网元生成的密钥。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,在所述第一指示信息指示由第一网络对所述第一数据进行安全保护的情况下,所述方法还包括:
    所述第一核心网网元根据所述第一指示信息生成第二密钥。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,在所述第一指示信息指示由第一网络对所述第一数据进行安全保护的情况下,所述方法还包括:
    所述第一核心网网元向接入网网元发送第三指示信息,所述第三指示信息指示所述接入网网元为来自不同网络的所述广播业务分别广播所述第一数据和第二数据,或指示由所述第一网络对所述第一数据进行安全保护,或指示所述广播传输密钥是由所述第一核心网网元生成的。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述第一指示信息指示由所述应用功能网元对所述数据进行安全保护的情况下,所述方法还包括:
    所述第一核心网网元向接入网网元发送第三指示信息,所述第三指示信息指示所述接入网网元为来自不同网络的所述广播业务广播所述第一数据,或指示由所述应用功能网元对所述第一数据进行安全保护,或指示所述广播传输密钥是由所述应用功能网元生成的。
  14. 根据权利要求2至13中任一项所述的方法,其特征在于,所述会话创建请求消息包括所述广播会话的标识和所述第一密钥,所述方法还包括:
    所述第一核心网网元存储所述广播会话的标识和所述第一密钥。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一核心网网元为广播服务功能网元或广播服务传输功能网元。
  16. 一种适用于多运营商核心网络的广播安全通信的方法,其特征在于,包括:
    第一核心网网元接收来自第三核心网网元的通知消息,所述通知消息包括由所述第三核心网网元生成的第三密钥,所述第一核心网网元属于第一网络,所述第三核心网网元属于第二网络,第三网络和所述第二网络共用同一个接入网网元;
    所述第一核心网网元获取第四指示信息,所述第四指示信息指示多运营商核心网网络针对所述广播业务的使用状态,所述使用状态包括多运营商核心网网络针对所述广播业务的优化已开启或未开启;
    所述第一核心网网元根据所述第四指示信息向终端设备发送广播传输密钥,所述广播传输密钥用于对所述第一核心网网元与所述终端设备之间传输的广播业务的第一数据进行安全保护。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:所述第一核心网网元向第二核心网网元发送请求消息,所述请求消息用于请求由所述第二核心网网元生成的密钥;
    所述通知消息用于响应所述请求消息。
  18. 根据权利要求16或17所述的方法,其特征在于,第一核心网网元接收来自第三核心网网元的通知消息,包括:
    第一核心网网元通过安全边缘保护代理网元接收来自第二核心网网元的所述通知消息。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,
    所述第四指示信息指示多运营商核心网网络针对所述广播业务的优化已开启的情况下,所述广播传输密钥为所述第三密钥;
    所述第四指示信息指示为多运营商核心网网络针对所述广播业务的优化未开启的情况下,所述广播 传输密钥为由所述第一核心网网元生成的第二密钥。
  20. 一种适用于多运营商核心网络的广播安全通信的方法,其特征在于,包括:
    第三核心网网元生成第三密钥;
    所述第三核心网网元向第一核心网网元发送通知消息,所述通知消息包括所述第三密钥,所述第一核心网网元属于第一网络,所述第三核心网网元属于第二网络,第三网络和所述第二网络共用同一个接入网网元。
  21. 一种适用于多运营商核心网络的广播安全通信的方法,其特征在于,包括:
    应用功能网元获取第五指示信息,所述第五指示信息指示第一网络是否支持多运营商核心网络的架构;
    所述应用功能网元向所述第一网络的第四核心网网元发送广播会话创建请求消息;
    其中,在所述第五指示信息指示所述第一网络支持多运营商核心网络的架构的情况下,所述广播会话创建请求消息包括安全数据,所述安全数据包括广播会话的标识和第一密钥,所述第一密钥是所述应用功能网元生成的,所述安全数据指示适用所述第一密钥对所述广播会话对应的数据进行安全保护。
  22. 一种适用于多运营商核心网络的广播安全通信的方法,其特征在于,包括:
    第四核心网网元接收来自应用功能网元的广播会话创建请求消息,所述广播会话创建请求消息用于请求创建广播会话;
    所述第四核心网网元获取第六指示信息和第七指示信息;
    响应于所述广播会话创建请求消息,所述第四核心网网元根据所述第六指示信息向所述应用功能网元发送广播会话创建响应消息;
    其中,在所述第六指示信息和所述第七指示信息满足下列条件的情况下,所述广播会话创建响应消息指示拒绝创建广播会话的请求;
    第六指示信息指示由所述第四核心网网元属于的第一网络对所述广播会话对应的数据进行安全性保护;
    所述第七指示信息指示所述第一网络支持多运营商核心网络的架构,或指示接入网网元为来自包括所述第一网络在内的至少两个网络的广播业务广播同样的数据,或指示所述第一网络只使用所述第一网络的网元生成的密钥,或指示所述第一网络不使用所述应用功能网元生成的密钥。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至15中任一项所述的方法,或者,执行如权利要求16至19中任一项所述的方法,或者,执行如权利要求20或21或22所述的方法。
  24. 一种芯片,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于读取并执行所述存储器中存储的所述计算机程序,当所述计算机程序被执行时,所述处理器执行如权利要求1至15中任一项所述的方法,或者,执行如权利要求16至19中任一项所述的方法,或者,执行如权利要求20或21或22所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至15中任一项所述的方法,或者,执行如权利要求16至19中任一项所述的方法,或者,执行如权利要求20或21或22所述的方法。
PCT/CN2023/129644 2022-11-10 2023-11-03 广播安全通信的方法和装置 WO2024099230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211406900.7A CN118055402A (zh) 2022-11-10 2022-11-10 广播安全通信的方法和装置
CN202211406900.7 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024099230A1 true WO2024099230A1 (zh) 2024-05-16

Family

ID=91031912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129644 WO2024099230A1 (zh) 2022-11-10 2023-11-03 广播安全通信的方法和装置

Country Status (2)

Country Link
CN (1) CN118055402A (zh)
WO (1) WO2024099230A1 (zh)

Also Published As

Publication number Publication date
CN118055402A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US20230379669A1 (en) Multicast and broadcast services in 5g networks for iot applications
CN109997334B (zh) 具有用于3gpp网络中物联网应用的间接连接的中继和收费的会话管理
CN113038528B (zh) 用于在无线通信系统中将数据分组路由到用户设备的基站
CN113545098B (zh) 传输组播业务的方法和装置
WO2017105777A1 (en) Securing signaling interface between radio access network and a service management entity to support service slicing
JP2014511168A (ja) 移動体通信ネットワークおよび方法
US20230371111A1 (en) Communication method, apparatus, and system
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
EP4354770A1 (en) Method and apparatus for transmitting data
KR20220044341A (ko) 보안 보호 모드 결정 방법 및 장치
US11089167B2 (en) Apparatus, system and method of internet connectivity via a relay station
EP4016949A1 (en) Communication method and device
WO2021047454A1 (zh) 位置信息获取、位置服务配置方法和通信设备
WO2022257808A1 (zh) 数据传输方法、用户设备、服务节点及存储介质
WO2024099230A1 (zh) 广播安全通信的方法和装置
WO2021218563A1 (zh) 用于传输数据的方法与装置
WO2022021165A1 (zh) 中继发现方法和终端
WO2021155540A1 (zh) 一种密钥管理方法、通信装置
WO2016112678A1 (zh) 数据处理方法及装置
WO2024037210A1 (zh) 广播安全通信的方法和装置
WO2023213162A1 (zh) 通信方法和装置
WO2024021088A1 (zh) 设备管理方法、网络设备和物联网设备
WO2024032218A1 (zh) 通信方法和通信装置
WO2022174802A1 (zh) 密钥更新的方法和装置
WO2023212903A1 (zh) 中继通信的方法及设备