WO2024099122A1 - 一种复合桨叶倾转翼动力总成的测试装置及测试方法 - Google Patents
一种复合桨叶倾转翼动力总成的测试装置及测试方法 Download PDFInfo
- Publication number
- WO2024099122A1 WO2024099122A1 PCT/CN2023/127448 CN2023127448W WO2024099122A1 WO 2024099122 A1 WO2024099122 A1 WO 2024099122A1 CN 2023127448 W CN2023127448 W CN 2023127448W WO 2024099122 A1 WO2024099122 A1 WO 2024099122A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tilt
- rotor
- power assembly
- base
- powertrain
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 73
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000010998 test method Methods 0.000 title abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000005265 energy consumption Methods 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 abstract description 9
- 238000012795 verification Methods 0.000 abstract description 6
- 230000001133 acceleration Effects 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
Definitions
- the present invention relates to a testing device and a testing method for a composite blade tilt-rotor wing power assembly, and in particular to a driving device and component testing technology and method for a high-power electrically driven manned low-altitude aircraft and a flying car.
- Flying cars are the first choice for solving traffic congestion and future three-dimensional transportation. As of 2020, there are more than 160 flying car companies in the world, mainly concentrated in the United States and Europe. Most of the products are currently in the flight test stage, and a small number of them have been pre-ordered and delivered. It is predicted that by 2030, the flying car industry will create a market size of 300 billion US dollars, transforming part of the market share of ground transportation, aircraft and public transportation.
- the electric tilt-rotor flying car has the characteristics of vertical take-off and landing and horizontal flight. It is the most flexible and high-performance type of all low-altitude aircraft.
- the composite blade tilt-rotor is the most critical assembly component of the aircraft. It provides lift to the aircraft and can control the flight of the aircraft. The performance of the tilt-rotor directly determines the performance and reliability of the aircraft.
- the tilt-rotor aircraft has two flight modes: vertical lift and fixed wing. The rotor working conditions vary greatly in different modes. Therefore, the composite blade rotor assembly test is crucial in the design and verification of the rotor system, and the assembly and testing of the tilt-rotor UAV.
- a tilt-rotor test device (patent number CN202111477072.1) published by Nanjing University of Aeronautics and Astronautics adopts a universal hinged tilt mechanism; a tilt-rotor aircraft rotor system test bench and test method (patent number CN202111366809.2) published by the Shenyang Institute of Automation, Chinese Academy of Sciences, includes a support cover and a platform; a tilt-rotor aircraft rotor system test bench and test method (patent number CN202111366809.2) published by Honeycomb Aerospace Technology (Beijing) Co., Ltd.
- the wing UAV test bench (patent number CN202010413232.5) is characterized by the use of a cross-shaped bench structure; the test system and control method for the full-state wind blowing experiment of the tilt-rotor aircraft published by Nanjing University of Aeronautics and Astronautics (patent number CN201710619079.X) is mainly aimed at the wind blowing experiment control system of the UAV model; the coaxial tilt-rotor aerodynamic performance test platform and method thereof (patent number CN201710200400.0) published by Fuzhou University is mainly aimed at the adjustment system of the coaxial tilt-rotor aerodynamic test process; However, there are almost no devices for testing the performance of electric-driven composite-blade tilt-rotor powertrains.
- the purpose of the present invention is to overcome the dangers of the composite blade tilt-rotor assembly testing process, ensure the personal safety of the testers, and record a large amount of test data at the same time, so that the entire test process becomes more standardized, thereby being able to more accurately evaluate its performance.
- the purpose of the present invention is to overcome the deficiencies in the prior art and to provide a testing device and a testing method for a composite blade tilt-rotor power assembly.
- the test device of the composite blade tilt-rotor power assembly comprises: a tilt-rotor flight power assembly, a flange platform, a rotatable cantilever shaft, a six-component force balance, a tilt motor and a base; the height of the base is 2 to 6 meters, the base is connected to the ground through a base, and an inclined support is arranged between the base and the base; a six-component force balance is arranged on the top of the base, the upper surface of the six-component force balance is connected to a shaft sleeve seat, and a tilt motor is arranged on one side of the top of the base;
- One end of the rotatable cantilever shaft is connected to the rotor of the tilt motor, and the other end passes through the shaft sleeve seat and extends to the outside of the base to connect to the flange platform.
- the length of the rotatable cantilever shaft extending out of the base is 1 to 3 meters.
- the flange platform is connected to the tilt-rotor flight power assembly through a connector, and the tilt-rotor flight power assembly is connected to the data acquisition computer.
- the interior of the sleeve seat is connected to the rotatable cantilever shaft via a small-clearance radial bearing.
- the upper end surface of the six-component force balance is horizontal, and the cantilever axis is parallel to the upper end surface of the six-component force balance.
- the tilt-rotor flight power assembly Wing level when the flange platform is in the initial position, the tilt-rotor flight power assembly Wing level.
- the base is narrow at the top and wide at the bottom, and the oblique support is connected to one side of the base where the tilt motor is arranged.
- the connector matches the structure of the tilt-rotor flight powertrain.
- the method for using the composite blade tilt-rotor power assembly test device comprises the following steps:
- the data acquisition computer records the energy consumption, the pulling force and the torque in the xyz direction of the tiltrotor flight powertrain in real time;
- the test device of the present invention can simulate the startup, start-stop, hovering and descent processes of the composite blade tilt-rotor power assembly, which is the core driving component of the vertical take-off and landing electric-driven flying car, to test its flight performance; it can also be used for cold start testing, take-off strategy verification testing, hovering strategy verification testing, durability testing and acceleration performance testing of the composite blade tilt-rotor power assembly, thereby accelerating the research and development process of the flying car.
- the test device of the present invention is provided with a base with high strength and stable structure, which can ensure safety and stability during the test; at the same time, the tilt-rotor flight power assembly is lifted off the bottom surface to avoid the influence of the ground effect.
- the present invention realizes the rotation of the tilt-rotor flight power assembly through a high-precision tilt motor, a rotatable cantilever shaft and a flange platform.
- the rotatable cantilever shaft extends out of the outside of the base, avoiding interference of the base with the tilt-rotor flight power assembly and improving the test accuracy of the device.
- the present invention uses a connector that matches the tilt-rotor flight powertrain structure and has high rigidity, which prevents the device from being affected by the tilt-rotor flight powertrain and resonating, making the device connection more stable and further improving the safety and stability of the test device.
- FIG1 is a schematic diagram of the principle structure of a testing device of the present invention.
- FIG2 is a front view of the testing device of the present invention.
- FIG3 is a side view of the testing device of the present invention.
- FIG4 is a top view of the testing device of the present invention.
- FIG5 is a schematic diagram of a scenario during the testing process of the present invention.
- FIG6 is a flow chart of a testing method based on the testing device of the present invention.
- tilt-rotor flight power assembly 1 tilt-rotor flight power assembly 1, connector 2, flange platform 3, rotatable cantilever shaft 4, sleeve seat 5, six-component force balance 6, tilt motor 7, base 8, oblique support 9, base 10, data acquisition computer 11.
- a testing device for a composite blade tilt-rotor power assembly includes a tilt-rotor flight power assembly 1, a flange platform 3, a rotatable cantilever shaft 4, a six-component force balance 6, a tilt motor 7 and a base 8.
- the base 8 is narrow at the top and wide at the bottom, with a height of 5000mm, eliminating the ground effect of the downward airflow generated by the tilt-rotor flight power assembly 1.
- the base 8 ensures good strength through structural design such as reinforcing ribs, especially in the case of vibration and force applied to the flange platform 3, it can maintain good stability.
- a base 10 is provided at the bottom of the base 8.
- the base 10 is 4000mm long, 2500mm wide, 1000mm thick, and made of cast iron.
- An inclined support 9 connected to the base 10 is provided at a height of 4000mm on the side of the base 8, and is integrally connected to the base 8 by brazing.
- a six-component force balance 6 is arranged on the top of the base 8.
- the six-component force balance 6 is box-shaped or square-shaped.
- the top surface of the six-component force balance 6 is fixed to the shaft sleeve seat 5, and the bottom surface is fixed to the top of the base.
- the end face length and width are both 560 mm, and the height is 112 mm.
- the upper surface of the six-component force balance 6 is connected to the shaft sleeve seat 5.
- a tilt motor 7 is provided on one side of the top of the base 8; the tilt motor 7 adopts a high-precision angle servo motor, which can accurately adjust the tilt angle of the rotatable cantilever shaft 4.
- the rated power of the tilt motor 7 is 1000 watts, the rated voltage is 220V, and the deflection angle control accuracy is ⁇ 0.1°.
- the rotatable cantilever shaft 4 adopts a hollow circular design with an outer diameter of 100 mm and a hollow inner diameter of 80 mm.
- the material is aluminum alloy and the total mass is 27 kg. In order to reduce the mass, a hollow barrel shape can also be considered.
- One end of the rotatable cantilever shaft 4 is connected to the rotor of the tilting motor 7, and the other end passes through the shaft sleeve seat 5.
- a radial bearing is arranged inside the shaft sleeve seat 5, which has the functions of fastening, bearing, and rotational lubrication for the rotatable cantilever shaft 4.
- the radial bearing uses cylindrical rollers or other small clearance structure bearings. This type of bearing is a line contact bearing with the raceway, has a large load capacity, and mainly bears radial loads.
- the bearing has a separable inner and outer ring structure.
- the rotatable cantilever shaft 4 extends from the sleeve seat 5 to the outside of the base 8 and is connected to the flange platform 3 at the end; the flange platform 3 is a mechanism with a flange surface and one end connected to the rotatable cantilever shaft 4. Its design follows the national standard 9113.1-2000, with an outer diameter of 200mm, a concentric circle diameter of 160mm, a bolt hole diameter of 18mm, and a standard design of 8 bolt holes.
- the rotatable cantilever shaft 4 extends to the outside of the base 8 and rotates along the rotor center axis of the tilt motor 7.
- the tilt-rotor of the tilt-rotor flight power assembly 1 is horizontal to eliminate the measurement error caused by deflection.
- the flange platform 3 is connected to the tilt-rotor flight power assembly 1 through the connector 2, wherein the connector 23 is developed according to the structure of the tilt-rotor flight power assembly 1, the tilt-rotor flight power assembly 1 is assembled back to back by two motors with a diameter of about 200 mm, and the connector 2 is fixed from the gap between the two motors back to back.
- the connector 2 is pre-customized, one end matches the tilt-rotor flight power assembly 1, and the other end matches the flange platform 3.
- the thickness of the connector 2 is 10 mm, and the rigidity of the connector 2 is large enough, specifically, the connector 2 will not cause vibration in the low frequency band of the common working conditions of the rotor.
- the tilt-rotor flight power assembly 1 is connected to a data acquisition computer 11, and the data acquisition computer 11 is used to collect parameters such as the tilt angle, current, voltage, speed, etc. of the tilt-rotor flight powertrain 1 and save them in real time, and can unify the measurement values of different sensors to the same time axis, and export them to generate Excel documents; and the acquisition device is connected to a laptop computer, and the power system is controlled by the upper computer software, and the data is displayed and recorded in real time, and the time axis of the recorded parameters is kept unified, and a USB port is provided as a communication port.
- this embodiment proposes a test method of the composite blade tilt-rotor power assembly using the test device, as shown in FIG6 :
- the power source used is a battery simulator with a rated power of 50 kilowatts, a peak power of 80 kW, and a control range of 2-50 kW.
- the power of a single electric drive rotor motor in the tilt-rotor flight power assembly 1 is 15 kW, and the composite blade electric drive assembly is 30 kW;
- the data acquisition computer 11 records the energy consumption, the pulling force and the torque in the xyz direction of the tilt-rotor flight power assembly 1 in real time; the sampling frequency of the data acquisition computer 11 is 20 Hz, and the data is double-precision floating point data;
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
一种复合桨叶倾转翼动力总成的测试装置及测试方法,包括步骤:将倾转旋翼飞行动力总成(1)通过连接器(2)安装至测试装置的法兰平台(3)上;确认外部电源、倾转旋翼飞行动力总成(1)和数据采集计算机(11)正常工作;启动倾转旋翼飞行动力总成(1),并根据倾转角度指令控制倾转电机(7)对悬臂轴(4)进行倾转;数据采集计算机(11)实时记录倾转旋翼飞行动力总成(1)的能耗、xyz方向的拉力和扭矩。该测试装置及方法可以针对垂直起降式电驱动飞行汽车的核心驱动部件复合桨叶倾转旋翼动力总成(1)进行开机、启停、悬停及下降过程的模拟,测试其飞行的性能;还可以用于复合桨叶倾转旋翼动力总成(1)的冷转测试、起飞策略验证测试、悬停策略验证测试、耐久性测试和加速性能测试。
Description
本发明涉及一种复合桨叶倾转翼动力总成的测试装置及测试方法,尤其是涉及一种大功率电驱动载人低空飞行器、飞行汽车的驱动装置及零部件测试技术和方法。
飞行汽车是解决交通拥堵、未来立体交通的首选。截止2020年,全球飞行汽车公司超过160家,主要集中在美国及欧洲地区,目前产品大部分处于飞行测试阶段,少量实现预定及交付。预测到2030年,飞行汽车行业将创造3000亿美元市场规模,转化部分地面交通、飞机和公共交通的市场份额。而电动倾转旋翼飞行汽车具有垂直起降、水平飞行等特点,是所有低空飞行器中最为灵活、性能最高的一种类型。
复合桨叶倾转旋翼是飞行器最为关键的总成部件,其向飞行器提供升力并可以操纵飞行器飞行,倾转旋翼的性能直接决定飞行器的性能和可靠性。倾转旋翼飞行器具有垂直升降和固定翼两种飞行模态,在不同的模态下旋翼工况差别很大,因此复合桨叶旋翼总成测试在旋翼系统设计及验证、倾转旋翼无人机总装及试验过程中至关重要。
而在现有公开的专利和科技文献主要围绕无人机测试领域和直升机共轴系统的测试展开,如南京航空航天大学公布的一种倾转旋翼试验装置(专利号CN202111477072.1)采用了一种万向铰链式倾转机构;中国科学院沈阳自动化研究所公布的一种倾转旋翼飞行器旋翼系统测试台及测试方法(专利号CN202111366809.2)其台架包括支撑罩体和台体;蜂巢航宇科技(北京)有限公司公布的一种倾转旋翼无人机测试台架(专利号CN202010413232.5)其特点是采用了十字型台架结构;南京航空航天大学公布的一种用于倾转旋翼机全状态吹风实验的测试系统与控制方法(专利号CN201710619079.X)主要针对无人机模型的吹风实验控制系统;福州大学公布的共轴倾转式旋翼气动性能测试平台及其方法(专利号CN201710200400.0)主要针对共轴倾转式旋翼气动测试过程的调节系统;
而与电驱动复合桨叶倾转旋翼动力总成性能测试的装置几乎没有。
现有技术的电驱动复合桨叶倾转旋翼动力总成性能测试中存在着如下问题:1)在系统程序不稳固、结构设计不完善、工艺和品质不成熟的条件下,测试过程势必会隐藏诸多风险;2)旋翼系统测试台大多功能单一,且操作繁复,要完成一款旋翼系统的试验验证需要制作多套工装匹配不同的测试系统,对倾转旋翼总成进行状态调整,并测试其动力性、经济性、启停性能、平衡性等多项性能做测试评价,测试周期较长,增加了旋翼系统和倾转旋翼飞行器整机的研发成本和研发周期。
本发明的目的就是为了克服复合桨叶倾转旋翼总成测试过程的危险,确保测试人员的人身安全,同时记录大量的测试数据,使得整个测试过程变得更加规范,从而能更加精确地评估其性能。
发明内容
本发明的目的是克服现有技术中的不足,提供一种复合桨叶倾转翼动力总成的测试装置及测试方法。
这种复合桨叶倾转翼动力总成的测试装置,包括:倾转旋翼飞行动力总成、法兰平台、可旋转悬臂轴、六分力天平、倾转电机和基座;基座的高度为2~6m,基座通过底座连接地面,基座和底座之间设有斜支撑;基座顶部设有六分力天平,六分力天平上表面连接轴套座,基座顶部一侧设有倾斜电机;
可旋转悬臂轴一端连接倾斜电机的转子,另一端穿过轴套座并延伸至基座外侧连接法兰平台,可旋转悬臂轴伸出基座的长度为1~3m,法兰平台通过连接器连接倾转旋翼飞行动力总成,倾转旋翼飞行动力总成连接数据采集计算机。
作为优选:轴套座内部通过小游隙径向轴承连接可旋转悬臂轴。
作为优选:六分力天平的上端面水平,悬臂轴平行于六分力天平的上端面。
作为优选:法兰平台在初始位置时,倾转旋翼飞行动力总成的倾转旋
翼水平。
作为优选:基座上窄下宽,斜支撑连接基座上设有倾转电机的一侧。
作为优选:连接器与倾转旋翼飞行动力总成的结构匹配。
这种复合桨叶倾转翼动力总成的测试装置的使用方法,包括以下步骤:
S1、将倾转旋翼飞行动力总成通过连接器安装至测试装置的法兰平台上;
S2、确认外部电源、倾转旋翼飞行动力总成和数据采集计算机正常工作;
S3、启动倾转旋翼飞行动力总成,并根据倾转角度指令控制倾转电机对悬臂轴进行倾转;
S4、数据采集计算机实时记录倾转旋翼飞行动力总成的能耗、xyz方向的拉力和扭矩;
S5、持续测试直至结束。
本发明的有益效果是:
1)本发明的测试装置可以针对垂直起降式电驱动飞行汽车的核心驱动部件复合桨叶倾转旋翼动力总成进行开机、启停、悬停及下降过程的模拟,测试其飞行的性能;还可以用于复合桨叶倾转旋翼动力总成的冷转测试、起飞策略验证测试、悬停策略验证测试、耐久性测试和加速性能测试等,从而加快飞行汽车的研发过程。
2)本发明的测试装置中设有强度高、结构稳定的基座,能够保障测试过程中的安全与稳定;同时将倾转旋翼飞行动力总成抬离底面,避免了地面效应的影响。
3)本发明通过高精度的倾转电机、可旋转悬臂轴和法兰平台实现倾转旋翼飞行动力总成的旋转,可旋转悬臂轴伸出基座外侧,避免了基座对倾转旋翼飞行动力总成的干扰,提高了装置的测试精度。
4)本发明采用了与倾转旋翼飞行动力总成结构匹配的连接器,且具有较高的刚度,防止装置受倾转旋翼飞行动力总成的影响而发生共振,使装置连接更稳固,进一步提升了测试装置的安全性和稳定性。
图1为本发明测试装置的原理结构示意图;
图2为本发明测试装置的主视图;
图3为本发明测试装置的侧视图;
图4为本发明测试装置的俯视图;
图5本发明测试过程中的情景示意图;
图6基于本发明测试装置的测试方法流程图。
附图标记说明:倾转旋翼飞行动力总成1、连接器2、法兰平台3、可旋转悬臂轴4、轴套座5、六分力天平6、倾转电机7、基座8、斜支撑9、底座10、数据采集计算机11。
下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
实施例一
作为一种实施例,如图1至图5所示,一种复合桨叶倾转翼动力总成的测试装置,包括倾转旋翼飞行动力总成1、法兰平台3、可旋转悬臂轴4、六分力天平6、倾转电机7和基座8。
基座8上窄下宽,高度为5000mm,排除倾转旋翼飞行动力总成1产生的下行气流的地面效应。基座8通过加强筋等结构设计保证较好的强度,尤其是在法兰平台3处被施加的振动和力的情况下,能够保持良好的稳定性。基座8底部设有底座10,底座10长4000mm,宽2500mm,厚度1000mm,材料为铸铁。基座8侧面4000mm高度设有连接底座10的斜支撑9,采用钎焊的方式与基座8整体连接在一起。
基座8顶部设有六分力天平6,六分力天平6采用盒式或方形,六分力天平6的顶面与轴套座5固定,底面与与基座顶部固定。六分力天平6
的端面长宽皆为560mm,高度为112mm。六分力天平6上表面连接轴套座5。
基座8顶部一侧设有倾斜电机7;倾斜电机7采用高精度角伺服电机,可以精确地调整可旋转悬臂轴4的倾转角度,倾斜电机7的额定功率1000瓦,额定电压220V,偏转角度控制精度为±0.1°。
可旋转悬臂轴4采用中空的圆形设计,外径为100mm,中空内径为80mm,材料采用铝合金设计,总质量27kg,为了减轻质量也可以考虑使用中空的桶形。
可旋转悬臂轴4一端连接倾斜电机7的转子,另一端穿过轴套座5,轴套座5内设有径向轴承,具有对可旋转悬臂轴4的紧固承载、转动润滑作用;径向轴承选用圆柱滚子或其他小游隙结构轴承,这种轴承与滚道为线接触轴承,负荷能力大,主要承受径向负荷,该轴承是内圈、外圈可分离的结构。
可旋转悬臂轴4从轴套座5传出后延伸至基座8外侧,并在端部连接法兰平台3;法兰平台3为带了一个法兰面,且一端与可旋转悬臂轴4相连的机构,其设计遵循国标9113.1-2000,外径为200mm,同心圆直径为160mm,螺栓孔直径为18mm,螺栓孔数量为8的标准设计。可旋转悬臂轴4延伸至基座8外侧,沿倾斜电机7的转子中心轴旋转,一方面防止基座8阻断倾转旋翼飞行动力总成1产生的下行气流阻断而形成的地面效应,另一方面也解决了双层复合桨叶在测试状态时与基座8的干涉问题。同时,法兰平台3在初始位置时,倾转旋翼飞行动力总成1的倾转旋翼水平,以清除因偏转带来的测量误差。
法兰平台3通过连接器2连接倾转旋翼飞行动力总成1,其中连接器23根据倾转旋翼飞行动力总成1的结构开发的,倾转旋翼飞行动力总成1由两个直径约为200mm的电机背对背组装而成,连接器2从两个电机背对背的缝隙中进行固定。该连接器2预先定制,一端与倾转旋翼飞行动力总成1相匹配、另一端与法兰平台3相匹配,连接器2的厚度为10mm,连接器2的刚度足够大,具体为连接器2不会在旋翼常用工况的低频段就引起振动。
倾转旋翼飞行动力总成1连接数据采集计算机11,数据采集计算机
11用于采集倾转旋翼飞行动力总成1的倾转角度、电流、电压、转速等参数并实时保存下来,且能够将不同传感器测量值统一到同一时间轴下,导出生成Excel文档;且采集装置与笔记本电脑连接,通过上位机软件对动力系统进行控制,并进行数据实时显示及记录,记录参数时间轴保持统一,设有USB端口作为通信端口。
实施例二
作为另一种实施例,根据实施例一中提出的复合桨叶倾转翼动力总成的测试装置,本实施例提出使用这种测试装置的复合桨叶倾转翼动力总成的测试方法,如图6所示:
S1、将倾转旋翼飞行动力总成1通过连接器2安装至测试装置的法兰平台3上,并使用直径为8mm的螺栓固定;
S2、确认外部电源、倾转旋翼飞行动力总成1和数据采集计算机11正常工作;所采用的动力源为额定功率为50千瓦的电池模拟器,峰值功率80kW,调控范围2-50kW,倾转旋翼飞行动力总成1中电驱动旋转翼单个电机的功率为15kW,复合桨叶电驱动总成为30kW;
S3、启动倾转旋翼飞行动力总成1,并根据倾转角度指令控制倾转电机7对悬臂轴4进行倾转;模拟飞行汽车的起降、悬停和前后向稳定飞行的工况;
S4、数据采集计算机11实时记录倾转旋翼飞行动力总成1的能耗、xyz方向的拉力和扭矩;数据采集计算机11的采样频率为20赫兹,双精度浮点型数据;
S5、持续测试直至结束。
Claims (7)
- 一种复合桨叶倾转翼动力总成的测试装置,其特征在于,包括:倾转旋翼飞行动力总成(1)、法兰平台(3)、可旋转悬臂轴(4)、六分力天平(6)、倾转电机(7)和基座(8);基座(8)的高度为2~6m,基座(8)通过底座(10)连接地面,基座(8)和底座之间设有斜支撑(9);基座(8)顶部设有六分力天平(6),六分力天平(6)上表面连接轴套座(5),基座(8)顶部一侧设有倾斜电机(7);可旋转悬臂轴(4)一端连接倾斜电机(7)的转子,另一端穿过轴套座(5)并延伸至基座(8)外侧连接法兰平台(3),可旋转悬臂轴(4)伸出基座(8)的长度为1~3m,法兰平台(3)通过连接器(2)连接倾转旋翼飞行动力总成(1),倾转旋翼飞行动力总成(1)连接数据采集计算机(11)。
- 根据权利要求1所述的复合桨叶倾转翼动力总成的测试装置,其特征在于:轴套座(5)内部通过小游隙径向轴承连接可旋转悬臂轴(4)。
- 根据权利要求1所述的复合桨叶倾转翼动力总成的测试装置,其特征在于:六分力天平(6)的上端面水平,悬臂轴(4)平行于六分力天平(6)的上端面。
- 根据权利要求3所述的复合桨叶倾转翼动力总成的测试装置,其特征在于:法兰平台(3)在初始位置时,倾转旋翼飞行动力总成(1)的倾转旋翼水平。
- 根据权利要求1所述的复合桨叶倾转翼动力总成的测试装置,其特征在于:基座(8)上窄下宽,斜支撑(9)连接基座(8)上设有倾转电机(7)的一侧。
- 根据权利要求1所述的复合桨叶倾转翼动力总成的测试装置,其特征在于:连接器(2)与倾转旋翼飞行动力总成(1)的结构匹配。
- 如权利要求1所述的复合桨叶倾转翼动力总成的测试装置的使用方法,其特征在于,包括以下步骤:S1、将倾转旋翼飞行动力总成(1)通过连接器(2)安装至测试装置的法兰平台(3)上;S2、确认外部电源、倾转旋翼飞行动力总成(1)和数据采集计算机(11)正常工作;S3、启动倾转旋翼飞行动力总成(1),并根据倾转角度指令控制倾转电机(7)对悬臂轴(4)进行倾转;S4、数据采集计算机(11)实时记录倾转旋翼飞行动力总成(1)的能耗、xyz方向的拉力和扭矩;S5、持续测试直至结束。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211401835.9A CN115649478A (zh) | 2022-11-10 | 2022-11-10 | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 |
CN202211401835.9 | 2022-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024099122A1 true WO2024099122A1 (zh) | 2024-05-16 |
Family
ID=85015625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/127448 WO2024099122A1 (zh) | 2022-11-10 | 2023-10-30 | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115649478A (zh) |
WO (1) | WO2024099122A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118654850A (zh) * | 2024-08-21 | 2024-09-17 | 陕西德鑫智能科技有限公司 | 一种发动机停桨装置的风洞测试系统、方法及测试台 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115649478A (zh) * | 2022-11-10 | 2023-01-31 | 浙大城市学院 | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 |
CN116654279B (zh) * | 2023-05-26 | 2023-12-19 | 中国民航大学 | 一种旋翼气动力综合测试平台 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101984331A (zh) * | 2010-09-30 | 2011-03-09 | 南京航空航天大学 | 半展长倾转旋翼气弹动力学综合试验台 |
CN105547676A (zh) * | 2015-12-25 | 2016-05-04 | 北京航空航天大学 | 一种多功能旋臂式旋翼试验台 |
CN108275287A (zh) * | 2018-02-05 | 2018-07-13 | 南京航空航天大学 | 多旋翼飞行器气动干扰及地面效应综合试验装置及方法 |
CN110282155A (zh) * | 2019-07-03 | 2019-09-27 | 中国人民解放军国防科技大学 | 一种二自由度无人机动力测试系统 |
CN111516903A (zh) * | 2020-05-15 | 2020-08-11 | 蜂巢航宇科技(北京)有限公司 | 一种倾转旋翼无人机测试台架 |
CN212007610U (zh) * | 2020-05-12 | 2020-11-24 | 北京京东乾石科技有限公司 | 单旋翼的升力与扭矩测试装置 |
CN114001919A (zh) * | 2022-01-04 | 2022-02-01 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种全尺寸倾转旋翼轴流前飞性能试验地面模拟方法 |
CN115649478A (zh) * | 2022-11-10 | 2023-01-31 | 浙大城市学院 | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 |
-
2022
- 2022-11-10 CN CN202211401835.9A patent/CN115649478A/zh active Pending
-
2023
- 2023-10-30 WO PCT/CN2023/127448 patent/WO2024099122A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101984331A (zh) * | 2010-09-30 | 2011-03-09 | 南京航空航天大学 | 半展长倾转旋翼气弹动力学综合试验台 |
CN105547676A (zh) * | 2015-12-25 | 2016-05-04 | 北京航空航天大学 | 一种多功能旋臂式旋翼试验台 |
CN108275287A (zh) * | 2018-02-05 | 2018-07-13 | 南京航空航天大学 | 多旋翼飞行器气动干扰及地面效应综合试验装置及方法 |
CN110282155A (zh) * | 2019-07-03 | 2019-09-27 | 中国人民解放军国防科技大学 | 一种二自由度无人机动力测试系统 |
CN212007610U (zh) * | 2020-05-12 | 2020-11-24 | 北京京东乾石科技有限公司 | 单旋翼的升力与扭矩测试装置 |
CN111516903A (zh) * | 2020-05-15 | 2020-08-11 | 蜂巢航宇科技(北京)有限公司 | 一种倾转旋翼无人机测试台架 |
CN114001919A (zh) * | 2022-01-04 | 2022-02-01 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种全尺寸倾转旋翼轴流前飞性能试验地面模拟方法 |
CN115649478A (zh) * | 2022-11-10 | 2023-01-31 | 浙大城市学院 | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118654850A (zh) * | 2024-08-21 | 2024-09-17 | 陕西德鑫智能科技有限公司 | 一种发动机停桨装置的风洞测试系统、方法及测试台 |
Also Published As
Publication number | Publication date |
---|---|
CN115649478A (zh) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024099122A1 (zh) | 一种复合桨叶倾转翼动力总成的测试装置及测试方法 | |
KR102627083B1 (ko) | 대형 가변 속도 틸트 로터를 사용하는 eVTOL 항공기 | |
US20190084684A1 (en) | Hybrid aircraft | |
JP5494666B2 (ja) | 少なくとも1つの独立して回転可能な圧縮機ロータを備えるハイブリッド型推進機関 | |
WO2016067488A1 (ja) | ヘリコプター | |
US20200385130A1 (en) | Integrated electric propulsion assembly | |
WO2020107373A1 (zh) | 动力组件、动力系统及无人机 | |
CN105129079B (zh) | 一种混合动力长航时多轴飞行器 | |
CN107140192A (zh) | 一种混合动力无人机 | |
JP2011006041A (ja) | 回転翼航空機用の電動機内臓ハブ、並びにそれを用いた回転翼航空機、並びにその回転翼航空機用アンチ・トルク装置 | |
CN108163193B (zh) | 一种主动主旋翼垂直起降飞行器 | |
US11643196B1 (en) | Teetering propulsor assembly of an electric vertical takeoff and landing aircraft | |
US11498444B1 (en) | System and method for overcurrent protection in an electric vehicle | |
US20220289395A1 (en) | Propulsion system for aircraft and method of manufacturing aircraft | |
CN107054643A (zh) | 自平衡扭矩多倍增升力直升机旋翼动力结构 | |
CN108238247A (zh) | 一种油电混合动力主动旋翼垂直起降飞行器 | |
CN106114842B (zh) | 一种油电混合共轴双旋翼飞行器及其使用方法 | |
CN207956057U (zh) | 一种主动主旋翼垂直起降飞行器 | |
US20190291852A1 (en) | Flying vehicle hybrid power plant | |
CN107031835B (zh) | 旋翼无人机变桨半径变桨距装置 | |
CN210258828U (zh) | 一种基于多传感器的四旋翼机翼振动检测控制装置 | |
US20210262414A1 (en) | Aircraft Drive System Having Thrust-Dependent Controller | |
US11111013B2 (en) | Updraft assisted rotorcraft take-off | |
US11964223B1 (en) | Methods and apparatus for an inertial separation of air in an electric aircraft | |
US11691745B1 (en) | Systems and methods for locking an electric propulsion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23887812 Country of ref document: EP Kind code of ref document: A1 |