WO2024098887A1 - 页岩油双甜点关键参数一体化反演方法及装置 - Google Patents
页岩油双甜点关键参数一体化反演方法及装置 Download PDFInfo
- Publication number
- WO2024098887A1 WO2024098887A1 PCT/CN2023/114615 CN2023114615W WO2024098887A1 WO 2024098887 A1 WO2024098887 A1 WO 2024098887A1 CN 2023114615 W CN2023114615 W CN 2023114615W WO 2024098887 A1 WO2024098887 A1 WO 2024098887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inversion
- parameter
- shale oil
- ratio
- formula
- Prior art date
Links
- 239000003079 shale oil Substances 0.000 title claims abstract description 131
- 235000009508 confectionery Nutrition 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000012530 fluid Substances 0.000 claims abstract description 15
- 239000000047 product Substances 0.000 claims description 97
- 238000002310 reflectometry Methods 0.000 claims description 71
- 238000004364 calculation method Methods 0.000 claims description 21
- 230000009469 supplementation Effects 0.000 claims description 14
- 230000010354 integration Effects 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 8
- 239000013589 supplement Substances 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims 4
- 208000037516 chromosome inversion disease Diseases 0.000 description 176
- 238000012545 processing Methods 0.000 description 10
- 239000011435 rock Substances 0.000 description 10
- 230000001186 cumulative effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002969 morbid Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 102100023340 3-ketodihydrosphingosine reductase Human genes 0.000 description 1
- 101001050680 Homo sapiens 3-ketodihydrosphingosine reductase Proteins 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
Definitions
- the present application relates to the field of oil and gas exploration technology, and in particular to an integrated inversion method and device for key parameters of double sweet spots of shale oil.
- Shale oil reservoirs are mostly low-porosity, low-permeability, and poor matrix conditions, requiring horizontal wells and formation fracturing to achieve commercial production. Reservoir quality, brittleness quality, and stress characteristics play a key role in the large-scale fracturing development of shale oil, and are important evaluation indicators for determining high-quality shale oil.
- the main purpose of the present application is to provide a method and device for integrated inversion of key parameters of double sweet spots of shale oil, so as to improve the accuracy of integrated inversion of key parameters of double sweet spots of shale oil.
- a method for integrated inversion of key parameters of double sweet spots of shale oil comprising:
- the integrated inversion formula of the key parameters of the double sweet spots of shale oil specifically includes: the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio; the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio; the formula of the two-parameter inversion of normal weakness and tangential weakness of azimuthal elastic impedance;
- the P-wave impedance and P-wave velocity ratio AVO approximation is used to invert the P-wave impedance reflectivity and P-wave velocity ratio reflectivity, and the absolute value is obtained by deconvolution, trace integration and low-frequency supplementation of the reflectivity volume.
- the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio is determined based on the inverted longitudinal wave impedance reflectivity and the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio.
- the density and Young's modulus product reflectivity and Poisson's ratio reflectivity are inverted based on the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio.
- Rate, absolute value is obtained by deconvolution, channel integration and low-frequency supplementation of reflectivity volume;
- the normal weakness and tangential weakness are obtained by inverting the formula of the two-parameter azimuthal elastic impedance.
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the Aki-Richards three-term AVO approximation is used to determine the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and shear wave velocity ratio.
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the Aki-Richards three-term AVO approximation is used to determine the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product, and Poisson's ratio.
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the brittleness index is determined using the preset brittleness calculation formula and the inverted product of density and Young's modulus and Poisson's ratio.
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the fracture fluid factor is determined based on the normal weakness, tangential weakness and P-wave and S-wave velocity ratios obtained by inversion.
- the integrated inversion method for key parameters of double sweet spots of shale oil further includes:
- the maximum horizontal principal stress, minimum horizontal principal stress and horizontal stress difference coefficient are determined based on the longitudinal wave impedance, the product of density and Young's modulus, Poisson's ratio and normal weakness obtained by inversion.
- Another aspect of the present application provides an integrated inversion device for key parameters of double sweet spots of shale oil, the device comprising:
- the inversion formula acquisition unit is used to obtain the integrated inversion formula of the key parameters of the double sweet spots of shale oil, wherein the integrated inversion formula of the key parameters of the double sweet spots of shale oil specifically includes: the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio; the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio; the formula of the two-parameter inversion of normal weakness and tangential weakness of azimuthal elastic impedance;
- the first inversion unit is used to invert the P-wave impedance reflectivity and the P-wave velocity ratio reflectivity using the two-parameter AVO approximation of P-wave impedance and P-wave velocity ratio, and to perform deconvolution, trace integration and low-frequency supplementation on the reflectivity volume to obtain the absolute value;
- the second inversion unit is used to obtain the longitudinal wave impedance reflectivity and the longitudinal wave impedance, Young's modulus and density.
- the density product and Poisson's ratio three-parameter AVO approximation is used to determine the density and Young's modulus product and Poisson's ratio two-parameter AVO approximation, and the density and Young's modulus product reflectivity and Poisson's ratio reflectivity are inverted based on the density and Young's modulus product and Poisson's ratio two-parameter AVO approximation, and the absolute value is obtained by deconvolution of the reflectivity volume, channel integral and low-frequency supplementation;
- the third inversion unit is used to obtain the normal weakness and the tangential weakness by inverting the formula of the two-parameter inversion of the azimuthal elastic impedance.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the first approximation formula determination unit is used to determine the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio by using the Aki-Richards three-term AVO approximation.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the second approximation determination unit is used to determine the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio by using the Aki-Richards three-term AVO approximation.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the third approximate formula determination unit is used to determine the formula for inverting the normal weakness and the tangential weakness of the azimuthal elastic impedance two-parameter using Rüger's HTI medium reflection coefficient approximate formula.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the brittle index determination unit is used to determine the brittle index by using a preset brittleness calculation formula and the product of density and Young's modulus and Poisson's ratio obtained by inversion.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the fracture fluid factor determination unit is used to determine the fracture fluid factor according to the normal weakness, tangential weakness and longitudinal and transverse wave velocity ratio obtained by inversion.
- the shale oil double sweet spot key parameter integrated inversion device further includes:
- the horizontal stress parameter determination unit is used to determine the maximum horizontal principal stress, the minimum horizontal principal stress and the horizontal stress difference coefficient according to the longitudinal wave impedance, the product of density and Young's modulus, Poisson's ratio and normal weakness obtained by inversion.
- the present application also provides an electronic device, including a memory, a central processing unit, and an application stored in the memory and executable on the central processing unit, wherein the central processing unit implements the above-mentioned integrated inversion method for key parameters of double sweet spots of shale oil when executing the application.
- a computer-readable storage medium stores an application program, and when the application program is executed in a computer processor, the above-mentioned integrated inversion method for key parameters of double sweet spots of shale oil is implemented.
- the embodiment of the present application uses a two-parameter AVO approximation of longitudinal wave impedance and longitudinal and shear wave velocity ratio; a two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio; and a two-parameter inversion formula of normal weakness and tangential weakness of azimuthal elastic impedance. These three two-parameter approximations are used for inversion, which improves the stability and accuracy of the inversion compared to the three-parameter approximation inversion in the prior art.
- FIG. 1 is a flowchart of the application technology
- Figure 2 (a) is a scatter plot of the correlation between the dynamic Young's modulus and brittleness of the shale oil experiment, and (b) is a scatter plot of the correlation between the product of density and dynamic Young's modulus and brittleness of the shale oil experiment;
- Figure 3 is the three-layer model of oil and gas-bearing sandstone and shale by Goodway (1997);
- Figure 4 is a comparison of the reflection coefficient accuracy of Goodway's (1997) three-layer model interface 1 formula (1.9) and the classic AVO formula: (a) reflection coefficient value curve, (b) error curve;
- Figure 5 is a comparison of the reflection coefficient accuracy of Goodway's (1997) three-layer model interface 1 formula (1.20) and the classic AVO formula: (a) reflection coefficient value curve, (b) error curve;
- Figure 6 compares the inversion condition numbers of the derived two-parameter formulas (1.9), (1.24) and (1.26) with the inversion condition numbers of the classical formula;
- Figure 7 is a comparison of the inversion results: (a) the direct inversion of the P-wave and S-wave velocity ratio by formula (1.9) and the indirect inversion of the P-wave and S-wave velocity ratio by Fatti's two-parameter formula and the true value, (b) the relative error of the direct inversion of the P-wave and S-wave velocity ratio by formula (1.9) and the indirect inversion of the P-wave and S-wave velocity ratio by Fatti's two-parameter formula;
- Figure 8 is a comparison of the inversion results: (a) the direct inversion of the density and Young's modulus product by formula (1.26) and the indirect inversion of the density and Young's modulus product by Fatti's two-parameter formula and the true value, (b) the relative error of the direct inversion of the density and Young's modulus product by formula (1.26) and the indirect inversion of the density and Young's modulus product by Fatti's two-parameter formula;
- Figure 9 is a comparison of the inversion results: (a) the comparison between the direct inversion Poisson's ratio of formula (1.26) and the indirect inversion Poisson's ratio of Fatti's two-parameter formula and the true value, (b) the relative error between the direct inversion Poisson's ratio of formula (1.26) and the indirect inversion Poisson's ratio of Fatti's two-parameter formula;
- FIG10 is a comparison of the results of the inversion process of the geostress established in this application with the experimental values: (a) the comparison of the maximum horizontal principal stress calculated by the inversion with the experimental value, (b) the comparison of the minimum horizontal principal stress calculated by the inversion with the experimental value;
- FIG11 is a proposed shale oil horizontal well fracturing transformation scheme supported by this application.
- FIG12 is an application of the technology of the present application to the prediction of sweet spots, brittleness and stress difference of shale oil reservoirs: (a) shale oil rock physics interpretation volume plate, (b) shale oil sweet spot classification plane map, (c) shale oil brittleness prediction plane map, (d) shale oil horizontal stress difference coefficient prediction plane map;
- FIG13 is a flow chart of an integrated inversion method for key parameters of shale oil double sweet spots according to an embodiment of the present application.
- FIG14 is a structural block diagram of a device for integrating key parameters of double sweet spots of shale oil according to an embodiment of the present application
- FIG. 15 is a schematic diagram of a computer device according to an embodiment of the present application.
- the multi-parameter (more than three parameters) inversion equation has poor stability, low inversion accuracy, the indirect combination of seismic elastic parameters will inevitably cause cumulative errors, and the previous geological and engineering sweet spot key parameters are predicted separately, and the integrated design is not realized, the calculation efficiency is low, and the targeting is poor.
- This application makes full use of the strong stability advantage of the two-parameter inversion, and derives three high-precision two-target parameter direct inversion equations for reservoir inversion, brittleness evaluation, and fracture and in-situ stress prediction.
- the three-step two-parameter inversion is used to directly obtain the high-precision reservoir key parameters P-wave impedance and P-S wave velocity ratio, the key parameters of brittleness evaluation, namely the product of density and Young's modulus and Poisson's ratio, the key parameters of fractures, fracture fluid factor KN / KT , and the key parameters of in-situ stress, horizontal stress difference coefficient, and other shale oil geological and engineering sweet spot key parameters, which provides effective technical support for shale oil reservoir prediction and brittleness and in-situ stress prediction.
- Continental shale oil has become an important successor area for oil and gas resource exploration and development. The current annual output is low and the cost is high.
- Figure 13 is a flow chart of the integrated inversion method for key parameters of shale oil double sweet spots in an embodiment of the present application. As shown in Figure 13, in some embodiments of the present application, the integrated inversion method for key parameters of shale oil double sweet spots in the present application includes steps S101 to S104.
- Step S101 obtaining an integrated inversion formula for key parameters of shale oil double sweet spots, wherein the integrated inversion formula for key parameters of shale oil double sweet spots specifically includes: a two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio; a three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio; a two-parameter inversion of azimuthal elastic impedance Formulas for normal weakness and tangential weakness;
- Step S102 using the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio to invert the longitudinal wave impedance reflectivity and the longitudinal and transverse wave velocity ratio reflectivity, and performing deconvolution, trace integration and low-frequency supplementation on the reflectivity volume to obtain the absolute value;
- Step S103 determining a two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio according to the longitudinal wave impedance reflectivity obtained by inversion and a three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio, and inverting the density and Young's modulus product reflectivity and the Poisson's ratio reflectivity according to the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio, and obtaining an absolute value by deconvolution of the reflectivity volume, channel integral and low-frequency supplementation;
- Step S104 using the two-parameter inversion formula of azimuthal elastic impedance to invert normal weakness and tangential weakness to obtain normal weakness and tangential weakness.
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the Aki-Richards three-term AVO approximation is used to determine the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and shear wave velocity ratio.
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the Aki-Richards three-term AVO approximation is used to determine the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product, and Poisson's ratio.
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the brittleness index is determined using the preset brittleness calculation formula and the inverted product of density and Young's modulus and Poisson's ratio.
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the fracture fluid factor is determined based on the normal weakness, tangential weakness and P-wave and S-wave velocity ratios obtained by inversion.
- the integrated inversion method for key parameters of shale oil double sweet spots of the present application further includes:
- the maximum horizontal principal stress, minimum horizontal principal stress and horizontal stress difference coefficient are determined based on the longitudinal wave impedance, the product of density and Young's modulus, Poisson's ratio and normal weakness obtained by inversion.
- the integrated inversion method for key parameters of shale oil double sweet spots in this application is described in detail below. As shown in FIG1 , the integrated inversion method for key parameters of shale oil double sweet spots in this application includes the following steps:
- pre-stack migration imaging is performed after static correction, noise suppression, energy compensation, deconvolution, velocity extraction and other processing, and OVT domain gather data is extracted.
- gather data is extracted according to different offset distances (incident angles) and then stacked.
- data is extracted according to azimuth and stacked to obtain partial stacked seismic data volumes in different azimuths and offsets.
- Joint well-seismic calibration is performed to obtain the time-depth relationship, and the comprehensive sub-wavelet of each partial stacked data volume is extracted using the wellside channel to prepare for subsequent seismic inversion.
- Input logging curves include P-wave impedance, P-wave velocity ratio, density, Young's modulus, Poisson's ratio, 6 azimuth elastic impedance curves from 25° to 175° with a step length of 30°, and the corresponding 3D model, and obtain normal weakness ⁇ N and tangential weakness ⁇ T curves at the same time.
- the specific method is as follows:
- the conventional nine-line logging and array acoustic logging are used to obtain the P-wave velocity, S-wave velocity, density and Thomsen's anisotropy parameters ( ⁇ , ⁇ , ⁇ ).
- the P-wave impedance, P-wave velocity ratio, Young's modulus, Poisson's ratio, elastic impedance curves in six azimuths from 25° to 175° with a step size of 30°, logging curves of normal weakness ⁇ N and tangential weakness ⁇ T and the corresponding three-dimensional model are obtained through the combination formula of each parameter.
- Vp , Vs and ⁇ represent the average P-wave velocity, S-wave velocity and density above and below the formation reflection interface, respectively, ⁇ is the average incident angle above and below the formation reflection interface, ⁇ Vp , ⁇ Vs and ⁇ represent the change values of P-wave velocity, S-wave velocity and density above the formation reflection interface.
- P-wave impedance and P-S wave velocity ratio do not appear directly in formula (1.1), so formula (1.1) needs to be derived and transformed. Differentiating Vp / Vs and dividing by Vp / Vs gives:
- Vp / Vs is the ratio of longitudinal and transverse wave velocities
- ⁇ ( Vp / Vs ) is the change in the ratio of longitudinal and transverse wave velocities.
- Equation (1.8) contains three unknowns: P-wave impedance, P-wave velocity ratio, and density. There are problems such as the P-wave reflection coefficient is insensitive to the density parameter and the three-parameter inversion equation has poor stability.
- the seismic S-wave velocity is about half of the seismic P-wave velocity.
- the incident angle ⁇ of the seismic incident wave is generally less than 30°, sin 2 ⁇ tan 2 ⁇ , and the coefficient before the third density term is approximately 0.
- the above formula (1.9) is the approximate expression of the two-parameter direct inversion impedance and wave velocity ratio (two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio) re-derived in this application.
- This formula only contains two unknowns, longitudinal wave impedance and longitudinal and transverse wave velocity ratio. Reducing the separate density term will greatly improve the stability and accuracy of the inversion and simplify the solution process.
- the above formula does not completely abandon the density in the physical sense.
- the impedance information contains the density information, so the above formula is completely valid.
- Formula (1.9) can be used to directly invert the two key parameters of reservoir prediction, namely, longitudinal wave impedance and longitudinal-to-spherical wave velocity ratio, and provide data support for the determination of key parameters of subsequent engineering sweet spots.
- the Aki-Richards three-term AVO approximation is used to derive the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product, and Poisson's ratio.
- the specific method is as follows:
- ⁇ E, ⁇ , and ⁇ are the changes of Young's modulus, shear modulus, and Poisson's ratio above and below the formation reflection interface.
- the expression of shear modulus ⁇ is:
- equation (1.15) can be rewritten as:
- Poisson's ratio v has a quantitative relationship with the longitudinal wave velocity Vp and the transverse wave velocity Vs , and the relationship is as follows:
- the above formula (1.20) is the three-parameter approximate expression of the direct inversion of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio (i.e., the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio) re-derived by this application using the Aki-Richards three-term AVO approximation, which avoids the cumulative error caused by first inverting the basic elastic parameters (longitudinal and shear wave velocities and density) and then indirectly combining and calculating the Young's modulus and Poisson's ratio, and the morbid problems caused by the inversion of a single density parameter.
- this application also establishes a density and Young's modulus product equation that can directly invert the better correlation with rock brittleness, and provides data support for the subsequent determination of ground stress parameters.
- ⁇ is the incident angle
- ⁇ is the azimuth
- ⁇ T and ⁇ N are the tangential weakness and normal weakness respectively
- ⁇ ( ⁇ N) is the difference between the upper and lower layers of ⁇ N
- ⁇ ( ⁇ T) is the difference between the upper and lower layers of ⁇ T.
- the azimuthal anisotropic elastic impedance method in the pre-stack azimuthal seismic inversion method has good noise resistance and stability, and can make full use of the azimuthal anisotropy information of azimuthal seismic data, so it has a wide range of applications in fracture reservoir prediction (Ma Ni, 2018).
- ⁇ ln(EI( ⁇ , ⁇ )) is the differential of the natural logarithm of the azimuthal elastic impedance. According to formula (1.22), formula (1.21) can be written as:
- the above formula (1.24) is the formula for the normal weakness ⁇ N and the tangential weakness ⁇ T derived from the two-parameter inversion of azimuthal elastic impedance using Rüger's HTI medium reflection coefficient approximation in this application.
- n linear equations can be constructed:
- R pp ( ⁇ n ) is the nth angle seismic partial stacking angle gather.
- the P-wave and S-wave velocity ratios in A( ⁇ ) and B( ⁇ ) are averaged on the well, and the SVD (singular value decomposition) algorithm is used to solve equation (1.25) to obtain the P-wave impedance reflectivity and the P-wave and S-wave velocity ratio reflectivity.
- the absolute value is obtained by deconvolution, trace integration and low-frequency supplementation of the reflectivity volume.
- the inverted P-wave and S-wave velocity ratios are substituted into formula (1.25) for secondary inversion again, and iterated until the inverted P-wave and S-wave velocity ratios are within 10% of the well error.
- equation (1.20) Using the longitudinal wave impedance reflectivity obtained in step (4) as input, the first term of the longitudinal wave impedance reflectivity in equation (1.20) becomes a known term, and equation (1.20) can be expressed as:
- Formula (1.26) can construct n two-parameter linear equations to obtain the product of density and Young's modulus and Poisson's ratio reflectivity parameters:
- Equation (1.26) is an approximate expression for the direct inversion of the density and Young's modulus product and Poisson's ratio re-derived in this application. This approximate expression can be used to invert the high-precision density and Young's modulus product and Poisson's ratio reflectivity.
- the product of density and Young's modulus and Poisson's ratio reflectivity are deconvolved and integrated, and the low-frequency model is established using the logging curve to supplement the low-frequency information and obtain the absolute value of the product of density and Young's modulus and Poisson's ratio.
- BI is the brittleness index
- E Young's modulus
- E max is the maximum value of Young's modulus
- E min is the minimum value of Young's modulus
- v is Poisson's ratio
- v max is the maximum value of Poisson's ratio
- v min is the minimum value of Poisson's ratio.
- the calculation method of Young's modulus and Poisson's ratio in formula (1.28) is a normalization process, so that the value range of BI is between [0,1].
- BI is the brittleness index
- ⁇ E is the product of density and Young's modulus and Poisson's ratio ⁇ obtained by equation (1.27)
- ( ⁇ E) max is the maximum value of the product of density and Young's modulus
- ( ⁇ E) min is the minimum value of the product of density and Young's modulus
- ⁇ max and ⁇ min are the maximum and minimum values of Poisson's ratio respectively.
- the calculation method of the product of density and Young's modulus and Poisson's ratio in formula (1.29) is a normalization process, so that the value range of BI is between [0,1].
- the normal weakness ⁇ N and tangential weakness ⁇ T are obtained.
- the overburden stress is calculated to calculate the three-dimensional fracture fluid factor, maximum horizontal principal stress, minimum horizontal principal stress and horizontal stress difference coefficient.
- Formula (1.24) can construct m two-parameter linear equations to obtain the normal weakness ⁇ N and tangential weakness ⁇ T:
- ⁇ is a constant
- ⁇ is generally 25°, 55° and 85°
- the longitudinal and transverse wave velocity ratio V p /V s in E( ⁇ , ⁇ ) and F( ⁇ , ⁇ ) is obtained by step (4).
- the SVD (singular value decomposition) algorithm is used to solve equation (1.30), and the normal weakness ⁇ N and tangential weakness ⁇ T are inverted.
- the P-wave velocity ratio V p /V s can be obtained from the previous step (4), and the normal weakness ⁇ N and tangential weakness ⁇ T are obtained by inverting equation (1.30).
- Gray (2013) proposed the following calculation formula for the difference coefficient of three principal stresses and horizontal stress based on the anisotropic rock mechanics model:
- ⁇ v is the overburden stress
- z is the depth
- the overburden stress ⁇ v can be obtained by integrating the three-dimensional density model of the entire layer system established in the work area along the depth z
- ⁇ H is the maximum horizontal principal stress
- ⁇ h is the minimum horizontal principal stress
- DHSR is the horizontal stress difference coefficient
- E Young's modulus
- v Poisson's ratio
- the longitudinal wave impedance Ip can be obtained from the previous step (4), the product of density and Young's modulus ⁇ E and Poisson's ratio can be obtained from step (5), and the normal weakness ⁇ N can be obtained by inversion using equation (1.30). Therefore, formulas (1.9) and (1.20) can be used for reservoir and brittleness prediction, respectively, and provide the required parameters for the calculation of subsequent engineering parameters such as maximum horizontal principal stress, minimum horizontal principal stress and horizontal stress difference coefficient. Therefore, this application truly realizes the integrated inversion of key parameters of shale oil double sweet spots.
- the correlation coefficient between dynamic Young's modulus and brittleness is 0.54, and the correlation coefficient between the product of density and dynamic Young's modulus and brittleness is 0.61, which proves that the product of shale oil density and dynamic Young's modulus has a better relationship with brittleness. Therefore, the innovative direct inversion formula of the product of density and dynamic Young's modulus and the new brittleness index calculation formula of this application are well-founded.
- the present application derives the formula (1.9) and formula (1.20) for direct inversion of the key parameters of the double sweet spot, and uses the three-layer model of oil and gas sandstone and shale of Goodway (1997) in Figure 3 to test the accuracy of the formula.
- the input logging curves include P-wave impedance, P-wave velocity ratio, density, Young's modulus, Poisson's ratio, elastic impedance curves in six azimuths from 25° to 175° with a step size of 30°, and the corresponding three-dimensional model.
- the normal weakness ⁇ N and tangential weakness ⁇ T are obtained.
- the above formula is the approximate expression of impedance and velocity ratio for direct inversion of two parameters re-derived in this application.
- This formula only contains two unknowns, namely, P-wave impedance and P-wave velocity ratio. Reducing the single density term will greatly improve the stability and accuracy of the inversion and simplify the solution process.
- the above formula can be used to directly invert the two key parameters of reservoir prediction, namely P-wave impedance and P-wave velocity ratio, and provide data support for the determination of key parameters of subsequent engineering sweet spots.
- the above formula is the direct inversion impedance, the product of density and Young's modulus, and the three-term approximate expression of Poisson's ratio re-derived by this application using the Aki-Richards three-term AVO approximation, which avoids the cumulative error caused by first inverting the basic elastic parameters (P, S wave velocity and density) and then indirectly combining and calculating the Young's modulus and Poisson's ratio and the morbid problems caused by density inversion.
- P basic elastic parameters
- S wave velocity and density the Young's modulus and Poisson's ratio and the morbid problems caused by density inversion.
- a density and Young's modulus product equation with better correlation with rock brittleness is established, and data support is provided for the subsequent determination of ground stress parameters.
- step (4) Combined with the longitudinal wave impedance reflectivity of step (4), formula (1.20) is re-derived to obtain the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio, and the Young's modulus and Poisson's ratio reflectivity are inverted to calculate the reflectivity volume. The absolute values of the product, channel integral and low-frequency supplement were obtained, and the brittleness index was calculated.
- the normal weakness ⁇ N and the tangential weakness ⁇ T are inverted using the two-parameter azimuthal elastic impedance equation.
- the normal weakness ⁇ N and the tangential weakness ⁇ T are then calculated using the overlying stress obtained by integrating the density along the depth direction with the longitudinal wave impedance, the longitudinal and shear wave velocity ratio, the density and Young's modulus, and the Poisson's ratio obtained in the previous step to calculate the three-dimensional fracture fluid factor, the maximum horizontal principal stress, the minimum horizontal principal stress, and the horizontal stress difference coefficient.
- Figure 11 shows the key parameters of the shale oil double sweet spots inverted by this application for the trajectory design optimization and fracturing transformation plan of a well in a well area. Taking into account the geological sweet spots and engineering sweet spots, reservoirs with good geological quality, high brittleness, small horizontal stress difference coefficient, and developed fractures are preferred for drilling.
- the designed well trajectory is shown in Figure 11 (black line). At present, the well has been tested for oil, with a maximum daily production of more than 100 cubic meters, which proves that this application is of great significance for finding high-yield areas of shale oil and tight oil reservoirs and realizing their efficient exploration and development.
- Figure 12 shows the application of this application to the prediction of sweet spots, brittleness and stress differences of the Fengcheng Formation shale oil reservoir in a certain well area, achieving three-dimensional geological-engineering integrated high-precision prediction of shale oil reservoir quality, brittleness and ground stress characteristics, and providing important support for the well site design, well trajectory optimization and fracturing scheme design of shale oil horizontal wells in the area.
- this application proposes an integrated inversion method and device for key parameters of shale oil double sweet spots.
- formulas (1.9), (1.20) and (1.24) for direct inversion of double sweet spot key parameters.
- formulas (1.9) and (1.24) are derived as two-parameter formulas with high stability and high accuracy without a separate density term, and formula (1.20) combined with formula (1.9) can also be transformed into a two-parameter formula (1.26) with high stability and no separate density term.
- formula (1.26) can directly invert the density and Young's modulus product parameters that are more correlated with rock brittleness. On this basis, a new brittleness calculation formula (1.29) can be established.
- formulas (1.9), (1.24) and (1.26) can be used for reservoir and brittleness prediction respectively.
- formulas (1.9) and (1.26) can be used for reservoir and brittleness prediction respectively.
- they can calculate the fracture fluid factor and provide the required parameters for the subsequent calculation of the maximum horizontal principal stress, minimum horizontal principal stress and horizontal stress difference coefficient of engineering parameters. All inversion parameters are fully utilized to achieve the prediction of shale oil reservoir physical properties and content.
- the key parameters of oiliness, fractures, brittleness and ground stress are integrated in the inversion.
- this application truly realizes the integrated inversion of the key parameters of the double sweet spots of shale oil, providing effective support for the high-precision quantitative prediction of shale oil geological-engineering sweet spots. It is of great significance to find high-yield areas of shale oil and tight oil reservoirs and realize their efficient exploration and development.
- the embodiment of the present application also provides a shale oil double sweet spot key parameter integrated inversion device, which can be used to implement the shale oil double sweet spot key parameter integrated inversion method described in the above embodiment, as described in the following embodiment. Since the principle of solving the problem by the shale oil double sweet spot key parameter integrated inversion device is similar to that of the shale oil double sweet spot key parameter integrated inversion method, the embodiment of the shale oil double sweet spot key parameter integrated inversion device can refer to the embodiment of the shale oil double sweet spot key parameter integrated inversion method, and the repeated parts will not be repeated.
- unit or “module” can be a combination of software and/or hardware that implements a predetermined function.
- the device described in the following embodiments is preferably implemented in software, the implementation of hardware, or a combination of software and hardware, is also possible and conceived.
- FIG. 14 is a structural block diagram of a shale oil double sweet spot key parameter integrated inversion device according to an embodiment of the present application.
- the shale oil double sweet spot key parameter integrated inversion device according to the present application includes:
- the inversion formula acquisition unit 1 is used to obtain the integrated inversion formula of the key parameters of the double sweet spots of shale oil, wherein the integrated inversion formula of the key parameters of the double sweet spots of shale oil specifically includes: the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio; the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio; the formula of the two-parameter inversion of normal weakness and tangential weakness of azimuthal elastic impedance;
- the first inversion unit 2 is used to invert the longitudinal wave impedance reflectivity and the longitudinal and transverse wave velocity ratio reflectivity using the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio, and to perform deconvolution, trace integration and low-frequency supplementation on the reflectivity volume to obtain the absolute value;
- the second inversion unit 3 is used to determine the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio according to the longitudinal wave impedance reflectivity obtained by inversion and the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio, and invert the density and Young's modulus product reflectivity and Poisson's ratio reflectivity according to the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio, and obtain the absolute value of the reflectivity volume deconvolution, trace integral and low-frequency supplement;
- the third inversion unit 4 is used to obtain the normal weakness and the tangential weakness by inverting the formula of the two parameters of azimuthal elastic impedance to obtain the normal weakness and the tangential weakness.
- the shale oil double sweet spot key parameter integrated inversion device of the present application also includes include:
- the first approximation formula determination unit is used to determine the two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio by using the Aki-Richards three-term AVO approximation.
- the shale oil double sweet spot key parameter integrated inversion device of the present application further includes:
- the second approximation determination unit is used to determine the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio by using the Aki-Richards three-term AVO approximation.
- the shale oil double sweet spot key parameter integrated inversion device of the present application further includes:
- the third approximate formula determination unit is used to determine the formula for inverting the normal weakness and the tangential weakness of the azimuthal elastic impedance two-parameter using Rüger's HTI medium reflection coefficient approximate formula.
- the shale oil double sweet spot key parameter integrated inversion device of the present application further includes:
- the brittle index determination unit is used to determine the brittle index by using a preset brittleness calculation formula and the product of density and Young's modulus and Poisson's ratio obtained by inversion.
- the shale oil double sweet spot key parameter integrated inversion device of the present application further includes:
- the fracture fluid factor determination unit is used to determine the fracture fluid factor according to the normal weakness, tangential weakness and longitudinal and transverse wave velocity ratio obtained by inversion.
- the shale oil double sweet spot key parameter integrated inversion device of the present application further includes:
- the horizontal stress parameter determination unit is used to determine the maximum horizontal principal stress, the minimum horizontal principal stress and the horizontal stress difference coefficient according to the longitudinal wave impedance, the product of density and Young's modulus, Poisson's ratio and normal weakness obtained by inversion.
- the present application also provides an electronic device for implementing the shale oil double sweet spot key parameter integrated inversion method of the above embodiment, and the electronic device can be a desktop computer, a tablet computer, a mobile terminal, etc., but the present embodiment is not limited thereto.
- the electronic device can refer to the implementation of the shale oil double sweet spot key parameter integrated inversion method of the above embodiment and the shale oil double sweet spot key parameter integrated inversion device of the above embodiment, and the contents thereof are incorporated herein, and the repeated parts are not repeated.
- Fig. 15 is a schematic block diagram of a system structure of an electronic device 600 according to an embodiment of the present application.
- the electronic device 600 may include a central processor 100 and a memory 140 , wherein the memory 140 is coupled to the central processor 100 .
- this figure is exemplary, and other types of structures may be used to supplement or replace this structure to implement telecommunication functions or other functions.
- the integrated inversion method for key parameters of shale oil double sweet spots of the embodiment of the present application can be integrated into the central processing unit 100.
- the central processing unit 100 can be configured to perform the following control: obtaining the integrated inversion formula for key parameters of shale oil double sweet spots, wherein the integrated inversion formula for key parameters of shale oil double sweet spots specifically includes: two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio; three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio; formula for inverting normal weakness and tangential weakness using two-parameter AVO approximation of azimuthal elastic impedance; inverting longitudinal wave impedance reflectivity and longitudinal and transverse wave velocity ratio reflectivity using two-parameter AVO approximation of longitudinal wave impedance and longitudinal and transverse wave velocity ratio, and performing an inversion on the reflectivity body.
- Deconvolution, trace integration and low-frequency supplementation are used to obtain absolute values.
- the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio is determined based on the inverted longitudinal wave impedance reflectivity and the three-parameter AVO approximation of longitudinal wave impedance, Young's modulus and density product and Poisson's ratio.
- the density and Young's modulus product reflectivity and Poisson's ratio reflectivity are inverted based on the two-parameter AVO approximation of density and Young's modulus product and Poisson's ratio.
- the absolute value of the reflectivity volume is obtained by deconvolution, trace integration and low-frequency supplementation.
- the normal weakness and tangential weakness are inverted using the formula for inverting the normal weakness and tangential weakness using the two-parameter inversion of azimuthal elastic impedance.
- the central processor 100 may also be configured to perform step control of the integrated inversion method for key parameters of double sweet spots of shale oil as in any of the above-mentioned embodiments.
- the electronic device 600 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a display 160, and a power supply 170. It is worth noting that the electronic device 600 does not necessarily include all the components shown in FIG7 ; in addition, the electronic device 600 may also include components not shown in FIG7 , and reference may be made to the prior art.
- the central processing unit 100 is sometimes also referred to as a controller or an operation control, and may include a microprocessor or other processor device and/or logic device.
- the central processing unit 100 receives inputs and controls the operations of various components of the electronic device 600 .
- the memory 140 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory or other suitable devices.
- the above-mentioned information related to the failure may be stored, and a program for executing the relevant information may also be stored.
- the CPU 100 may execute the program stored in the memory 140 to implement information storage or processing.
- the input unit 120 provides input to the CPU 100.
- the input unit 120 is, for example, a key or a touch input device.
- the power supply 170 is used to provide power to the electronic device 600.
- the display 160 is used to display display objects such as images and text.
- the display may be, for example, an LCD display, but is not limited thereto.
- the memory 140 may be a solid-state memory, such as a read-only memory (ROM), a random access memory (RAM), a SIM card, etc. It may also be a memory that saves information even when the power is off, can be selectively erased, and is provided with more data, examples of which are sometimes referred to as EPROMs, etc.
- the memory 140 may also be some other type of device.
- the memory 140 includes a buffer memory 141 (sometimes referred to as a buffer).
- the memory 140 may include an application/function storage unit 142, which is used to store application programs and function programs or processes for executing the operation of the electronic device 600 through the central processor 100.
- the memory 140 may also include a data storage unit 143 for storing data, such as contacts, digital data, pictures, sounds, and/or any other data used by the electronic device.
- the driver storage unit 144 of the memory 140 may include various driver programs for communication functions of the electronic device and/or for executing other functions of the electronic device (such as messaging applications, address book applications, etc.).
- the communication module 110 is a transmitter/receiver 110 that transmits and receives signals via an antenna 111.
- the communication module (transmitter/receiver) 110 is coupled to the central processor 100 to provide input signals and receive output signals, which may be the same as the case of a conventional mobile communication terminal.
- multiple communication modules 110 may be provided in the same electronic device, such as a cellular network module, a Bluetooth module and/or a wireless LAN module, etc.
- the communication module (transmitter/receiver) 110 is also coupled to a speaker 131 and a microphone 132 via an audio processor 130 to provide an audio output via the speaker 131 and receive an audio input from the microphone 132, thereby realizing a common telecommunication function.
- the audio processor 130 may include any suitable buffer, decoder, amplifier, etc.
- the audio processor 130 is also coupled to the central processor 100, so that the microphone 132 can be used to record on the local machine, and the speaker 131 can be used to play the sound stored on the local machine.
- the present application also provides a computer-readable storage medium for implementing the integrated inversion method for key parameters of shale oil double sweet spots in the above-mentioned embodiment.
- the computer-readable storage medium stores an application program, and when the application program is executed in a computer processor, the integrated inversion method for key parameters of shale oil double sweet spots in the above-mentioned embodiment is implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种页岩油双甜点关键参数一体化反演方法,包括:获取页岩油地质和工程双甜点关键参数的反演公式,其中,反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;密度与杨氏模量乘积和泊松比两参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;进而利用近似式进行页岩油地质甜点关键参数纵波阻抗与纵横波速度比反演,以及工程甜点关键参数脆性、裂缝流体因子和水平应力差异系数计算。该方法有助于提高页岩油双甜点关键参数反演的稳定性和精度,实现地质甜点和工程甜点关键参数一体化预测。还提供了一种页岩油双甜点关键参数一体化反演装置。
Description
本申请涉及油气勘探技术领域,具体而言,涉及一种页岩油双甜点关键参数一体化反演方法及装置。
全球页岩油资源量巨大,是常规油气资源的4-8倍。页岩油储层多为低孔低渗、基质条件差,需通过水平井和地层压裂来实现商业开采。储层品质、脆性品质以及应力特征在页岩油大规模压裂开发中起着关键作用,是确定高品质页岩油的重要评价指标。
目前,页岩油储层品质、脆性和地应力特征预测需依靠地震反演的关键参数进行预测。储层预测一般采用Aki-Richard(1980)经典AVO反演公式,但该公式存在纵波反射系数对密度参数不敏感,三参数及以上反演方程稳定性差,反演精度低等问题,而且反演的基本参数纵波速度Vp、横波速度Vs和密度ρ再组合计算目标参数如杨氏模量、泊松比会存在间接计算的累计误差。由此可见,如何提高页岩油双甜点关键参数一体化反演的精度是本领域急需解决的技术问题。
发明内容
本申请的主要目的在于提供一种页岩油双甜点关键参数一体化反演方法及装置,以提高页岩油双甜点关键参数一体化反演的精度。
本申请的一个方面,提供了一种页岩油双甜点关键参数一体化反演方法,该方法包括:
获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;
利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;
根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射
率,对反射率体反褶积、道积分和低频补充获得绝对值;
利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
可选的,所述页岩油双甜点关键参数一体化反演方法,还包括:
根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
本申请的另一方面,提供了一种页岩油双甜点关键参数一体化反演装置,该装置包括:
反演公式获取单元,用于获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;
第一反演单元,用于利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;
第二反演单元,用于根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密
度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;
第三反演单元,用于利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
第一近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
第二近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
第三近似式确定单元,用于利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
脆性指数确定单元,用于利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
裂缝流体因子确定单元,用于根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
可选的,所述页岩油双甜点关键参数一体化反演装置,还包括:
水平应力参数确定单元,用于根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
本申请的另一方面,还提供了一种电子设备,包括存储器、中央处理器及存储在存储器上并可在中央处理器上运行的应用程序,所述中央处理器执行所述应用程序时实现上述页岩油双甜点关键参数一体化反演方法。
本申请的另一方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有应用程序,所述应用程序在计算机处理器中执行时实现上述页岩油双甜点关键参数一体化反演方法。
本申请实施例通过纵波阻抗与纵横波速度比两参数AVO近似式;密度与杨氏模量乘积和泊松比两参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;这三个两参数的近似式进行反演,与现有技术的三参数近似式反演相比提高了反演的稳定性和精度。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是申请技术流程图;
图2中的(a)是页岩油实验的动态杨氏模量与脆性相关性散点图,(b)是页岩油实验的密度与动态杨氏模量乘积与脆性相关性散点图;
图3是Goodway(1997)的含油气砂岩与页岩三层模型;
图4是Goodway(1997)的含油气砂岩与页岩三层模型界面1公式(1.9)与经典AVO公式反射系数精度对比:(a)反射系数值曲线,(b)误差曲线;
图5是Goodway(1997)的含油气砂岩与页岩三层模型界面1公式(1.20)与经典AVO公式反射系数精度对比:(a)反射系数值曲线,(b)误差曲线;
图6是推导的两参数公式(1.9)、(1.24)和(1.26)反演的条件数与经典公式反演条件数对比;
图7是反演结果对比:(a)公式(1.9)直接反演纵横波速度比与Fatti两参数公式间接反演纵横波速度比与真实值对比,(b)公式(1.9)直接反演纵横波速度比与Fatti两参数公式间接反演纵横波速度比的相对误差;
图8是反演结果对比:(a)公式(1.26)直接反演密度与杨氏模量乘积与Fatti两参数公式间接反演密度与杨氏模量乘积与真实值对比,(b)公式(1.26)直接反演密度与杨氏模量乘积与Fatti两参数公式间接反演密度与杨氏模量乘积的相对误差;
图9是反演结果对比:(a)公式(1.26)直接反演泊松比与Fatti两参数公式间接反演泊松比与真实值对比,(b)公式(1.26)直接反演泊松比与Fatti两参数公式间接反演泊松比的相对误差;
图10是本申请建立的地应力反演流程计算的结果与实验值比较:(a)反演的最大水平主应力与实验值比较,(b)反演的最小水平主应力与实验值比较;
图11是本申请支撑的页岩油水平井压裂改造建议方案;
图12是本申请技术应用于页岩油储层甜点和脆性、应力差的预测:(a)页岩油岩石物理解释量版,(b)页岩油甜点分类平面图,(c)页岩油脆性预测平面图,(d)页岩油水平应力差异系数预测平面图;
图13是本申请实施例页岩油双甜点关键参数一体化反演方法的流程图;
图14是本申请实施例页岩油双甜点关键参数一体化反演装置的结构框图;
图15是本申请实施例计算机设备示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决传统三参数反演中纵波反射系数对密度参数不敏感,多参数(三参数以上)反演方程稳定性差,反演精度低,间接组合的地震弹性参数不可避免地会造成累计误差以及前人地质、工程甜点关键参数都是分开预测,未实现一体化设计,计算效率低、目标性差等问题,本申请充分利用两参数反演的强稳定性优势,针对储层反演、脆性评价、裂缝和地应力预测分别推导出三个高精度的两项目标参数直接反演方程,采用三步两参数反演直接获得了高精度的储层关键参数纵波阻抗和纵横波波速比、脆性评价关键参数即密度与杨氏模量乘积和泊松比、裂缝关键参数裂缝流体因子KN/KT和地应力关键参数水平应力差异系数异系数等页岩油地质和工程甜点关键参数,为页岩油储层预测和脆性、地应力预测提供了有效技术支撑。陆相页岩油已成为油气资源勘探开发的重要接替领域,目前年产量较低且成本高,主要原因是技术手段仍未满足规模高效开采需要,因此提高页岩油双甜点预测精度的地震技术的需求会日益增强,本技术专利应用前景广阔,对于寻找页岩油、致密油储层高产区并实现其高效勘探开发有着重要意义。
图13是本申请实施例页岩油双甜点关键参数一体化反演方法的流程图,如图13所示,在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法包括步骤S101至步骤S104。
步骤S101,获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演
法向弱度及切向弱度的公式;
步骤S102,利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;
步骤S103,根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;
步骤S104,利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演方法,还包括:
根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
下面将对本申请页岩油双甜点关键参数一体化反演方法进行详细说明,如图1所示,本申请的页岩油双甜点关键参数一体化反演包括如下步骤:
(1)输入分方位分偏移距部分叠加地震数据体并获得每个部分叠加数据体综合子波。具体方法如下:
基于野外采集的宽方位地震数据,通过静校正、噪声压制、能量补偿、反褶积、速度提取等处理后进行叠前偏移成像,抽取OVT域道集数据,剩余时差校正后,按不同偏移距(入射角)抽取道集数据后进行叠加,同时按方位抽取数据进行叠加,即可获得分方位分偏移距部分叠加地震数据体。进行井震联合标定,获取时深关系,利用井旁道提取每个部分叠加数据体综合子波,为后续地震反演做准备。
(2)输入测井曲线包括纵波阻抗、纵横波速度比、密度、杨氏模量、泊松比、方位从25°到175°以步长为30°的6个方位弹性阻抗曲线、以及对应的三维模型,同时获取法向弱度ΔN和切向弱度ΔT曲线。具体方法如下:
利用常规九条测井和阵列声波测井,分别获取纵波速度、横波速度、密度以及Thomsen的各向异性参数(γ,ε,δ),在通过各参数的组合公式获取纵波阻抗、纵横波速度比、杨氏模量、泊松比、方位从25°到175°以步长为30°的6个方位弹性阻抗曲线,法向弱度ΔN和切向弱度ΔT的测井曲线以及对应的三维模型。
(3)根据Aki-Richards三项AVO近似式、Rüger的HTI介质反射系数近似式推导页岩油双甜点关键参数直接反演公式。具体做法如下:
1)利用Aki-Richards三项AVO近似式推导纵波阻抗与纵横波速度比两参数AVO近似式,具体方法如下:
Aki-Richards在1980年提出三项AVO近似式:
其中,Vp、Vs和ρ分别表示地层反射界面上下的平均纵波速度、横波速度和密度,θ是地层反射界面上下的平均入射角度,ΔVp、ΔVs和Δρ表示地层反射界面下上的纵、横波速度和密度的变化值。式(1.1)中没有直接出现纵波阻抗和纵横波速度比两个关键项,因此需将式(1.1)进行推导变换。对Vp/Vs取微分并除以Vp/Vs可得:
其中,Vp/Vs为纵横波速度比,Δ(Vp/Vs)为纵横波速度比变化量。整理可得:
将式(1.3)代入式(1.1)中得:
对纵波阻抗Ip=Vpρ两边取微分并同时除以Ip可得:
对公式(1.5)进行变换得到:
将式(1.6)代入公式(1.4)可得:
将sec2θ=1+tan2θ代入式(1.7)中得:
式(1.8)中包含了纵波阻抗、纵横波速度比和密度三项未知数,存在纵波反射系数对密度参数不敏感,且三参数反演方程稳定性差等问题。考虑实际地震勘探情况,地震横波速度大约为地震纵波速度的一半且地震入射波的入射角θ一般小于
30°,sin2θ≈tan2θ,第三项密度项前系数近似为0。为了将反演波速比结果再代入反演参数前系数中实现迭代反演,获取更高精度的波速比,式(1.8)可改写为:
上式(1.9)为本申请重新推导两参数直接反演阻抗和波速比近似表达式(纵波阻抗与纵横波速度比两参数AVO近似式),该式仅包含纵波阻抗和纵横波波速比两项未知数,减少了单独的密度项会大幅提高反演的稳定性和准确性,简化了求解过程,并且上式在物理意义上并非完全舍弃密度,阻抗信息中包含了密度信息,因此上式是完全成立的。
利用式(1.9)即可直接反演纵波阻抗和纵横波速度比两项储层预测的关键参数,同时为后续工程甜点关键参数的求取提供数据支持。
2)利用Aki-Richards三项AVO近似式推导纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式,具体方法如下:
根据杨氏模量与泊松比计算关系式:
E=μ(1+v) (1.10)
E=μ(1+v) (1.10)
其中,E为杨氏模量,μ为剪切模量,v为泊松比。对式(1.10)两步同时微分可得:
其中,ΔE、Δμ、Δν分别为地层反射界面上下的杨氏模量、剪切模量和泊松比变化量。对剪切模量μ表达式:
两边同时微分可得:
将Aki-Richards三项AVO近似式(式1.1)整理可得:
结合式(1.11)、(1.13)和(1.14)可得:
考虑到纵波反射系数对密度不敏感,三参数反演稳定性差和Sharma and Chopra等2012指出对于脆性岩石,密度与杨氏模量乘积与岩石脆性相关性优于杨氏模量,为此在公式中构建密度与杨氏模量乘积项,对密度与杨氏模量乘积取微分并除以密度与杨氏模量乘积可得:
结合(1.6)、(1.15)和(1.16),则式(1.15)可改写为:
同理,考虑到地震横波速度大约为地震纵波速度的一半且地震入射波的入射角θ一般小于30°,则sin2θ≈tan2θ,第四项密度项前系数近似为0,式(1.17)近似为:
泊松比v与纵波速度Vp和横波速度Vs存在定量关系,关系式如下:
将式(1.19)代入式(1.18),并且为了将公式(1.9)反演的波速比结果再代入反演参数前系数中,获取更高精度的反演结果,可得:
上式(1.20)为本申请利用Aki-Richards三项AVO近似式重新推导的直接反演纵波阻抗、杨氏模量与密度乘积和泊松比三参数近似表达式(即纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式),避免了先反演基础弹性参数(纵、横波速度和密度)再间接组合计算杨氏模量和泊松比产生累计误差和单独密度参数反演带来的病态问
题。同时,本申请还基于式(1.20)建立了能直接反演与岩石脆性相关性更好的密度与杨氏模量乘积方程,并为后续地应力参数的求取提供数据支持。
3)利用Rüger的HTI介质反射系数近似式推导法向弱度ΔN、切向弱度ΔT两参数方位弹性阻抗方程,具体方法如下:
陈怀震等(2014)在Rüger结合Thomsen的各向异性描述参数γ,ε(V),δ(V),提出的HTI介质的P波反射系数振幅Rp公式上推导了对方位反射系数Rp(θ,φ)取两个相互垂直测线方位角φ1和φ2的差值表达式:
其中,θ为入射角,φ为方位角,ΔT和ΔN分别为切向弱度和法向弱度,Δ(ΔN)为上下两层ΔN的差值,Δ(ΔT)为上下两层ΔT的差值。φ1和φ2为两个互相垂直测线方位角,φ2=φ1+90°。
叠前方位地震反演方法中的方位各向异性弹性阻抗方法具有较好的抗噪性和稳定性,且能够充分利用方位地震数据的方位各向异性信息,因而在裂缝型储层预测方面具有广泛的应用(马妮,2018)。陈天胜等(2006)以HTI介质的方位反射系数近似方程为基础,根据Connolly(1999)推导弹性阻抗方程的思想,将方位反射系数等价为:
其中,Δln(EI(θ,φ))为方位弹性阻抗自然对数的微分。根据式(1.22),则式(1.21)可写成:
对式(1.23)两边取积分且为了将公式(1.9)反演的波速比结果再代入反演参数前系数中,获取更高精度的反演结果,可得下式:
上式(1.24)为本申请利用Rüger的HTI介质反射系数近似式重新推导的方位弹性阻抗两参数反演法向弱度ΔN及切向弱度ΔT的公式。
(4)利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,对反射率体进行反褶积、道积分和低频补充获得绝对值。具体做法如下:
依据(1.9)式,可构建出n个线性方程:
其中,Rpp(θn)为第n角度地震部分叠加角道集。首次反演A(θ)和B(θ)中纵横波速度比用井上的平均值,SVD(奇异值分解)算法对方程(1.25)进行求解,从而得到纵波阻抗反射率和纵横波速度比反射率。对反射率体反褶积、道积分和低频补充获得绝对值。再次将反演的纵横波速度比代入公式(1.25)进行二次反演,如此迭代,直至反演的纵横波速度比与井上误差在10%以内。
(5)结合步骤(4)的纵波阻抗反射率,将公式(1.20)重新推导得密度与杨氏模量乘积和泊松比两参数AVO近似式,进而通过密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值,并计算脆性指数。具体方法如下:
由公式(1.20)可知,式中存在纵波阻抗、密度与杨氏模量乘积和泊松比三项未知数,该方程反演为三参数反演,反演稳定性差、精度低,因此结合式(1.9)反演的阻抗反射率重新推导方程(1.20)。
利用步骤(4)得到的纵波阻抗反射率作为输入,式(1.20)中的第一项纵波阻抗反射率项则变成已知项,可将式(1.20)表达为:
其中,
公式(1.26)可构建出n个两参数线性方程来求得密度与杨氏模量乘积和泊松比反射率参数:
其中,
C(θ)和D(θ)中纵横波速度比Vp/Vs由步骤(4)获得,采用SVD(奇异值分解)算法对方程(1.27)进行求解,从而反演得到密度与杨氏模量乘积和泊松比反射率。式(1.26)为本申请重新推导的直接反演密度与杨氏模量乘积和泊松比两项近似表达式,用该近似式可反演得到高精度密度与杨氏模量乘积和泊松比反射率。
对密度与杨氏模量乘积和泊松比反射率体进行反褶积和道积分,并利用测井曲线建立低频模型补充低频信息,获得密度与杨氏模量乘积和泊松比绝对值。
Rickman等(2008)提出的脆性计算公式为:
其中,BI为脆性指数,E为杨氏模量,Emax为杨氏模量最大值,Emin为杨氏模量最小值,v为泊松比,vmax为泊松比最大值,vmin为泊松比最小值。式(1.28)中杨氏模量和泊松比的计算方式是一个归一化的过程,使得BI的取值范围在[0,1]之间。
Sharma and Chopra(2012)提出对于脆性岩石,密度与杨氏乘积比杨氏模量与脆性相关性更高,本申请通过页岩油的实验数据也证实这一结论,且本申请方程(1.26)直接反演的也是密度与杨氏模量的乘积,因此本申请的脆性计算公式为:
其中,BI为脆性指数,ρE为密度与杨氏模量乘积和泊松比ν由方程(1.27)获得,(ρE)max为密度与杨氏模量乘积的最大值,(ρE)min为密度与杨氏模量乘积的最小值,νmax和νmin分别为泊松比的最大值和最小值,式(1.29)中密度与杨氏模量乘积和泊松比的计算方式是一个归一化的过程,使得BI的取值范围在[0,1]之间。
(6)利用法向弱度ΔN、切向弱度ΔT两参数方位弹性阻抗方程反演得到法向弱度ΔN和切向弱度ΔT,结合上步的纵波阻抗、纵横波速度比、密度与杨氏模量的乘积、泊松比以及密度沿深度方向积分获得的上覆应力计算三维裂缝流体因子、最大水平主应力、最小水平主应力和水平应力差异系数异系数。具体方法如下:
公式(1.24)可构建出m个两参数线性方程来求得法向弱度ΔN和切向弱度ΔT:
其中:
方程中θ取常数,φ一般取25°、55°和85°,E(θ,φ)和F(θ,φ)中纵横波速度比Vp/Vs由步骤(4)获得,。采用SVD(奇异值分解)算法对方程(1.30)进行求解,从而反演得到法向弱度ΔN和切向弱度ΔT。
Schoenberg和Sayers(1995)提出裂缝流体因子KN/KT计算公式为:
由(1.31)看,纵横波速度比Vp/Vs可由前面步骤(4)获得,法向弱度ΔN和切向弱度ΔT由方程(1.30)反演得到。
Gray(2013)基于各向异性岩石力学模型,提出三向主应力及水平应力差异系数计算公式为:
其中,σv为上覆应力,z为深度,通过对工区建立的全层系三维密度模型沿深度z的积分可获得上覆应力σv;σH为最大水平主应力,σh为最小水平主应力,DHSR为水平应力差异系数,E为杨氏模量,v为泊松比。根据Cray(2013),ZN可表示为:
则,
由(1.34)看,纵波阻抗Ip可由前面步骤(4)获得、密度与杨氏模量的乘积ρE和泊松比由步骤(5)获得,法向弱度ΔN可用方程(1.30)反演得到,由此看公式(1.9)和公式(1.20)分别既可以做储层和脆性预测,又为后续的工程参数最大水平主应力、最小水平主应力及水平应力差异系数的计算提供所需参数。因此,本申请真正实现了页岩油双甜点关键参数的一体化反演。
(7)进行页岩油储层甜点、工程甜点综合评价。
下面结合附图对本申请实现的效果进行说明。
为了检验Sharma and Chopra等2012提出的对于脆性岩石,密度与杨氏模量乘积与岩石脆性相关性优于杨氏模量的结论是否适用于陆相页岩油储层,本申请利用实际工区页岩油样本实验得到的动态杨氏模量和密度与动态杨氏模量的乘积,分别计算二者与脆性的相关性,图2中展示了对比结果,从对比结果来看,动态杨氏模量与脆性的相关系数为0.54,密度与动态杨氏模量的乘积与脆性的相关系数为0.61,证明了页岩油密度与动态杨氏模量的乘积与脆性关系更好。因此,本申请创新的直接反演密度与动态杨氏模量的乘积公式和新脆性指数计算公式是有充分依据的。
为减少间接组合计算地震弹性参数产生的累计误差,本申请推导了直接反演双甜点关键参数的公式(1.9)和公式(1.20),用图3的Goodway(1997)的含油气砂岩与页岩三层模型来测试公式精度,从图4和图5看,以Zoeppritz方程为标准,在42°以内,新推导的AVO近似式(1.9)精度高于Aki-Richard、Fatti等经典公式;在30°以内,新推导的AVO近似式(1.20)精度高于Aki-Richard、Fatti等经典公式,推导的公式完全可满足实际生产应用。稳定性可以用反演方程的条件数来表示,条件数越小表示反演稳定性越好,新推导两参数公式(1.9)、(1.24)和(1.26)稳定性相对经典Aki三参数分别提高了97.2%、99.2%和98.4%(参见图6)。
间接反演往往会产生间接组合计算的累计误差,从图7、图8和图9看,公式(1.9)直接反演的纵横波波速比精度比经典Fatti两参数公式间接反演的精度提高了11.7%(参见图7),公式(1.26)直接反演的密度与杨氏模量乘积和泊松比比经典Fatti两参数公式间接反演的精度分别提高6.6%和22.3%(参见图8和图9);从图10看,联合公式(1.9)、(1.24)和(1.26)新提出的应力预测流程,预测的最大、最小水平主应力预测精度与实验值吻合度达82.3%。从图11和图12看,本申请提出的所有反演参数均被充分利用,实现了页岩油储层物性、含油性、裂缝、脆性和地应力的关键参数一体化反演,为页岩油水平井轨迹优化和大规模压裂改造在设计阶段提供了依据且为页岩油地质-工程甜点的高精度定量预测提供有效支撑。本申请对于寻找页岩油、致密油储层高产区并实现其高效勘探开发具有重要意义。
下面将结合一个具体的实施例对本申请方案进行说明,实施例中将用实际页岩油探区说明本申请页岩油双甜点关键参数预测实施效果,具体步骤如下:
(1)输入宽方位采集的分方位分偏移距部分叠加地震数据体并提取每个部分叠加数
据体综合子波,为后续地震反演做准备。
(2)输入测井曲线包括纵波阻抗、纵横波速度比、密度、杨氏模量、泊松比、方位从25°到175°以步长为30°的6个方位弹性阻抗曲线、以及对应的三维模型,同时获取法向弱度ΔN和切向弱度ΔT。
(3)根据Aki-Richards三项AVO近似式、Rüger的HTI介质反射系数近似式推导以下页岩油双甜点关键参数直接反演公式:
上式为本申请重新推导两参数直接反演阻抗和波速比近似表达式,该式仅包含纵波阻抗和纵横波波速比两项未知数,减少了单独的密度项会大幅提高反演的稳定性和准确性,简化了求解过程。利用上式即可直接反演纵波阻抗和纵横波速度比两项储层预测的关键参数,同时为后续工程甜点关键参数的求取提供数据支持。
上式为本申请利用Aki-Richards三项AVO近似式重新推导的直接反演阻抗、密度与杨氏模量的乘积和泊松比三项近似表达式,避免了先反演基础弹性参数(纵、横波速度和密度)再间接组合计算杨氏模量和泊松比产生累计误差和密度反演带来的病态问题。同时,建立了能直接反演与岩石脆性相关性更好的密度与杨氏模量乘积方程,并为后续地应力参数的求取提供数据支持。
上式为本申请利用Rüger的HTI介质反射系数近似式重新推导的方位弹性阻抗两参数直接反演法向弱度ΔN及切向弱度ΔT公式。
(4)利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗和纵横波速度比反射率,对反射率体进行反褶积、道积分和低频补充获得绝对值。
(5)结合步骤(4)的纵波阻抗反射率,将公式(1.20)重新推导得密度与杨氏模量乘积、泊松比两参数AVO近似式,反演杨氏模量与泊松比反射率,对反射率体反褶
积、道积分和低频补充获得绝对值,并计算脆性指数。
(6)利用法向弱度ΔN、切向弱度ΔT两参数方位弹性阻抗方程反演得到法向弱度ΔN和切向弱度ΔT,结合上步的纵波阻抗、纵横波速度比、密度与杨氏模量的乘积、泊松比以密度沿深度方向积分获得的上覆应力计算三维裂缝流体因子、最大水平主应力、最小水平主应力和水平应力差异系数异系数。
(7)进行页岩油储层甜点、工程甜点综合评价。
图11中展示了本申请反演的页岩油双甜点关键参数对于某井区中某井的轨迹设计优化和压裂改造方案的支撑。综合考虑地质甜点和工程甜点,优先选择地质品质好、脆性高、水平应力差异系数异小、裂缝发育的储层进行钻井,设计井轨迹如图11(黑线)所示。目前该井已经试油由阶段,最高日产超过百方,证明了本申请对于寻找页岩油、致密油储层高产区并实现其高效勘探开发有着重要意义。
图12展示了本申请应用于某井区风城组页岩油储层甜点和脆性、应力差的预测,实现了页岩油储层品质、脆性和地应力特征三维立体地质-工程一体化高精度预测,为该区页岩油水平井井位设计、井轨迹优化和压裂方案设计提供了重要支撑。
由以上可以看出,本申请方案实现了以下有益效果。
本申请针对目前页岩油双甜点关键参数一体化技术序列空白,且常规反演方法中三参数及三参数以上反演方程稳定性差、反演精度低,以及基于间接组合的地震弹性参数不可避免地会造成累计误差等问题,提出了一种页岩油双甜点关键参数一体化反演方法与装置。
为减少间接组合计算地震弹性参数产生的累计误差,本申请推导了直接反演双甜点关键参数的公式(1.9)、(1.20)和(1.24),为避免纵波反射系数对密度参数不敏感以及三参数或多参数反演稳定性差导致反演结果精度低的问题,推导公式(1.9)和公式(1.24)为具有高稳定性和高精度无单独密度项的两参数公式,而公式(1.20)与公式(1.9)联合也可变为高稳定性无单独密度项的两参数公式(1.26),同时公式(1.26)可直接反演与岩石脆性相关性更高的密度与杨氏模量乘积参数,在此基础上可建立新的脆性计算公式(1.29)。
从公式(1.9)、(1.24)和(1.26)可直接反演的关键参数来看,公式(1.9)和公式(1.26)分别既可以做储层和脆性预测,与公式(1.24)反演结果相结合,既可计算裂缝流体因子,又可为后续的工程参数最大水平主应力、最小水平主应力及水平应力差异系数的计算提供所需参数。所有的反演参数均被充分利用,实现了页岩油储层物性、含
油性、裂缝、脆性和地应力的关键参数一体化反演,因此,本申请真正实现了页岩油双甜点关键参数的一体化反演,为页岩油地质-工程甜点的高精度定量预测提供有效支撑。对于寻找页岩油、致密油储层高产区并实现其高效勘探开发有着重要意义。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
基于同一申请构思,本申请实施例还提供了一种页岩油双甜点关键参数一体化反演装置,可以用于实现上述实施例所描述的页岩油双甜点关键参数一体化反演方法,如下面的实施例所述。由于页岩油双甜点关键参数一体化反演装置解决问题的原理与页岩油双甜点关键参数一体化反演方法相似,因此页岩油双甜点关键参数一体化反演装置的实施例可以参见页岩油双甜点关键参数一体化反演方法的实施例,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是本申请实施例页岩油双甜点关键参数一体化反演装置的结构框图,如图14所示,在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置包括:
反演公式获取单元1,用于获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;
第一反演单元2,用于利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;
第二反演单元3,用于根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;
第三反演单元4,用于利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包
括:
第一近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包括:
第二近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包括:
第三近似式确定单元,用于利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包括:
脆性指数确定单元,用于利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包括:
裂缝流体因子确定单元,用于根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
在本申请一些实施例中,本申请的页岩油双甜点关键参数一体化反演装置,还包括:
水平应力参数确定单元,用于根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
本申请另一方面还提供一种电子设备,用于实现上述实施例的页岩油双甜点关键参数一体化反演方法,该电子设备可以是台式计算机、平板电脑及移动终端等,本实施例不限于此。在本实施例中,该电子设备可以参照上述实施例的页岩油双甜点关键参数一体化反演方法的实施及上述实施例的页岩油双甜点关键参数一体化反演装置,其内容被合并于此,重复之处不再赘述。
图15为本申请实施例的电子设备600的系统构成的示意框图。如图15所示,该电子设备600可以包括中央处理器100和存储器140,存储器140耦合到中央处理器100。
值得注意的是,该图是示例性的,还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
一实施例中,本申请实施例的页岩油双甜点关键参数一体化反演方法可以被集成到中央处理器100中。其中,中央处理器100可以被配置为进行如下控制:获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
其中,中央处理器100还可以被配置为进行如上述任意实施例的页岩油双甜点关键参数一体化反演方法的步骤控制。
如图15所示,该电子设备600还可以包括:通信模块110、输入单元120、音频处理单元130、显示器160、电源170。值得注意的是,电子设备600也并不是必须要包括图7中所示的所有部件;此外,电子设备600还可以包括图7中没有示出的部件,可以参考现有技术。
如图15所示,中央处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器100可执行该存储器140存储的该程序,以实现信息存储或处理等。
输入单元120向中央处理器100提供输入。该输入单元120例如为按键或触摸输入装置。电源170用于向电子设备600提供电力。显示器160用于进行图像和文字等显示对象的显示。该显示器例如可为LCD显示器,但并不限于此。
该存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,该存储器的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲存储器141(有时被称为缓冲器)。存储器140可以包括应用/功能存储部142,该应用/功能存储部142用于存储应用程序和功能程序或用于通过中央处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器140的驱动程序存储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110即为经由天线111发送和接收信号的发送机/接收机110。通信模块(发送机/接收机)110耦合到中央处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通信模块(发送机/接收机)110还经由音频处理器130耦合到扬声器131和麦克风132,以经由扬声器131提供音频输出,并接收来自麦克风132的音频输入,从而实现通常的电信功能。音频处理器130可以包括任何合适的缓冲器、解码器、放大器等。另外,音频处理器130还耦合到中央处理器100,从而使得可以通过麦克风132能够在本机上录音,且使得可以通过扬声器131来播放本机上存储的声音。
本申请另一方面还提供一种计算机可读存储介质,用于实现上述实施例的页岩油双甜点关键参数一体化反演方法,所述计算机可读存储介质存储有应用程序,所述应用程序在计算机处理器中执行时实现上述实施例的页岩油双甜点关键参数一体化反演方法。
以上参照附图描述了本申请的优选实施方式。这些实施方式的许多特征和优点根据该详细的说明书是清楚的,因此所附权利要求旨在覆盖这些实施方式的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本申请的实施方式限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本申请中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人
员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (16)
- 一种页岩油双甜点关键参数一体化反演方法,其特征在于,包括:获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
- 根据权利要求1所述的页岩油双甜点关键参数一体化反演方法,其特征在于,还包括:根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
- 一种页岩油双甜点关键参数一体化反演装置,其特征在于,包括:反演公式获取单元,用于获取页岩油双甜点关键参数一体化反演公式,其中,所述页岩油双甜点关键参数一体化反演公式具体包括:纵波阻抗与纵横波速度比两参数AVO近似式;纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式;方位弹性阻抗两参数反演法向弱度及切向弱度的公式;第一反演单元,用于利用纵波阻抗和纵横波速度比两参数AVO近似式反演纵波阻抗反射率和纵横波速度比反射率,并对反射率体进行反褶积、道积分和低频补充获得绝对值;第二反演单元,用于根据反演得到的纵波阻抗反射率以及纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式确定密度与杨氏模量乘积和泊松比两参数AVO近似式,并根据密度与杨氏模量乘积和泊松比两参数AVO近似式反演密度与杨氏模量乘积反射率与泊松比反射率,对反射率体反褶积、道积分和低频补充获得绝对值;第三反演单元,用于利用方位弹性阻抗两参数反演法向弱度及切向弱度的公式反演得到法向弱度和切向弱度。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于,还包括:第一近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗与纵横波速度比两参数AVO近似式。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于,还包括:第二近似式确定单元,用于利用Aki-Richards三项AVO近似式确定纵波阻抗、杨氏模量与密度乘积和泊松比三参数AVO近似式。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于, 还包括:第三近似式确定单元,用于利用Rüger的HTI介质反射系数近似式确定方位弹性阻抗两参数反演法向弱度及切向弱度的公式。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于,还包括:脆性指数确定单元,用于利用预设的脆性计算公式以及反演得到的密度与杨氏模量乘积和泊松比,确定脆性指数。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于,还包括:裂缝流体因子确定单元,用于根据反演得到的法向弱度、切向弱度以及纵横波速度比,确定裂缝流体因子。
- 根据权利要求8所述的页岩油双甜点关键参数一体化反演装置,其特征在于,还包括:水平应力参数确定单元,用于根据反演得到的纵波阻抗、密度与杨氏模量的乘积、泊松比以及法向弱度,确定最大水平主应力、最小水平主应力和水平应力差异系数。
- 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7任意一项所述方法的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序/指令,其特征在于,该计算机程序/指令被处理器执行时实现权利要求1至7任意一项所述方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211395830.X | 2022-11-09 | ||
CN202211395830.XA CN118011485A (zh) | 2022-11-09 | 2022-11-09 | 页岩油双甜点关键参数一体化反演方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024098887A1 true WO2024098887A1 (zh) | 2024-05-16 |
Family
ID=90943389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/114615 WO2024098887A1 (zh) | 2022-11-09 | 2023-08-24 | 页岩油双甜点关键参数一体化反演方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118011485A (zh) |
WO (1) | WO2024098887A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050090986A1 (en) * | 2003-10-27 | 2005-04-28 | Fugro-Jason | Method and device for the generation and application of anisotropic elastic parameters |
US20110182144A1 (en) * | 2010-01-25 | 2011-07-28 | Gray Frederick D | Methods and systems for estimating stress using seismic data |
US20140324354A1 (en) * | 2013-04-29 | 2014-10-30 | King Fahd University Of Petroleum And Minerals | Transmission coefficient method for avo seismic analysis |
CN104977618A (zh) * | 2014-04-09 | 2015-10-14 | 中国石油集团东方地球物理勘探有限责任公司 | 一种评价页岩气储层及寻找甜点区的方法 |
CN106501872A (zh) * | 2016-09-26 | 2017-03-15 | 中国石油天然气股份有限公司 | 一种裂缝储层地应力特征的计算方法及装置 |
CN111060964A (zh) * | 2018-10-16 | 2020-04-24 | 中国石油天然气股份有限公司 | 地层弹性参数的确定方法及装置 |
CN113176612A (zh) * | 2021-03-26 | 2021-07-27 | 中国石油大学(华东) | 一种高角度裂缝密度反演方法 |
CN113835119A (zh) * | 2021-09-18 | 2021-12-24 | 中国石油大学(华东) | 基于方位扩展弹性阻抗的页岩储层水平地应力预测方法 |
-
2022
- 2022-11-09 CN CN202211395830.XA patent/CN118011485A/zh active Pending
-
2023
- 2023-08-24 WO PCT/CN2023/114615 patent/WO2024098887A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050090986A1 (en) * | 2003-10-27 | 2005-04-28 | Fugro-Jason | Method and device for the generation and application of anisotropic elastic parameters |
US20110182144A1 (en) * | 2010-01-25 | 2011-07-28 | Gray Frederick D | Methods and systems for estimating stress using seismic data |
US20140324354A1 (en) * | 2013-04-29 | 2014-10-30 | King Fahd University Of Petroleum And Minerals | Transmission coefficient method for avo seismic analysis |
CN104977618A (zh) * | 2014-04-09 | 2015-10-14 | 中国石油集团东方地球物理勘探有限责任公司 | 一种评价页岩气储层及寻找甜点区的方法 |
CN106501872A (zh) * | 2016-09-26 | 2017-03-15 | 中国石油天然气股份有限公司 | 一种裂缝储层地应力特征的计算方法及装置 |
CN111060964A (zh) * | 2018-10-16 | 2020-04-24 | 中国石油天然气股份有限公司 | 地层弹性参数的确定方法及装置 |
CN113176612A (zh) * | 2021-03-26 | 2021-07-27 | 中国石油大学(华东) | 一种高角度裂缝密度反演方法 |
CN113835119A (zh) * | 2021-09-18 | 2021-12-24 | 中国石油大学(华东) | 基于方位扩展弹性阻抗的页岩储层水平地应力预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118011485A (zh) | 2024-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Joint PP and PS AVA seismic inversion using exact Zoeppritz equations | |
WO2017024702A1 (zh) | 一种射线弹性参数的反演系统 | |
US8830788B2 (en) | Sensitivity kernal-based migration velocity analysis in 3D anisotropic media | |
Wang et al. | Wavefield simulation and analysis with the finite-element method for acoustic logging while drilling in horizontal and deviated wells | |
Guo et al. | Effects of coupling between wave‐induced fluid flow and elastic scattering on P‐wave dispersion and attenuation in rocks with aligned fractures | |
US11873709B2 (en) | Log based diagenetic rock typing and sweet spot identification for tight gas sandstone reservoirs | |
CN107829731A (zh) | 一种黏土蚀变的火山岩孔隙度校正方法 | |
Qi et al. | Influence of interface condition on reflection of elastic waves in fluid-saturated porous media | |
Liu et al. | Combined petrophysics and 3D seismic attributes to predict shale reservoirs favourable areas | |
Saul et al. | The combined effects of pressure and cementation on 4D seismic data | |
Wang et al. | Predicting gas content in coalbed methane reservoirs using seismic waveform indication inversion: a case study from the Upper Carboniferous Benxi Formation, eastern Ordos Basin, China | |
Walker et al. | Logging services: Towards the 3D measurement of formation properties in high-resolution with a continuous depth of investigation | |
WO2024098887A1 (zh) | 页岩油双甜点关键参数一体化反演方法及装置 | |
CN106707345B (zh) | 一种角度弹性参数岩性识别方法和装置 | |
Wang et al. | PS-wave Q estimation based on the P-wave Q values | |
Yamada et al. | Structural styles across the Nankai accretionary prism revealed from LWD borehole images and their correlation with seismic profile and core data: Results from NanTroSEIZE Stage 1 expeditions | |
Wang et al. | Direct prediction method of fracturing ability in shale formations based on pre-stack seismic inversion | |
WEI et al. | Simulation of acoustic LWD with an eccentric source and inversion of formation anisotropy | |
Abid et al. | Unconventional reservoir characterization and sensitive attributes determination: A case study of the Eastern Sembar Formation, Lower Indus Basin, Pakistan | |
Gu et al. | Brittleness evaluation of the Lower Silurian marine shale reservoirs: A case study of Longmaxi shale in Fenggang block, southern China | |
Nie et al. | L1–2 minimization for P-and S-impedance inversion | |
Krueger et al. | Investigating segmentation in Cascadia: anisotropic crustal structure and mantle wedge serpentinization from receiver functions | |
WEI et al. | Inversion of anisotropy in a TTI stratum using quadrupole acoustic LWD and multimode acquisition | |
Zhang et al. | Research on joint inversion method of seismic compressional and shear waves from ocean-bottom nodes | |
Xie et al. | Approximate equations of PP-, PS 1-and PS 2-wave reflection coefficients in fluid-filled monoclinic media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23887582 Country of ref document: EP Kind code of ref document: A1 |