WO2024098191A1 - Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment - Google Patents

Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment Download PDF

Info

Publication number
WO2024098191A1
WO2024098191A1 PCT/CN2022/130301 CN2022130301W WO2024098191A1 WO 2024098191 A1 WO2024098191 A1 WO 2024098191A1 CN 2022130301 W CN2022130301 W CN 2022130301W WO 2024098191 A1 WO2024098191 A1 WO 2024098191A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
state switching
tci
network
target
Prior art date
Application number
PCT/CN2022/130301
Other languages
French (fr)
Inventor
Xiang Chen
Qiming Li
Manasa RAGHAVAN
Haitong Sun
Rolando E. BETTANCOURT ORTEGA
Yang Tang
Dawei Zhang
Original Assignee
Apple Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc. filed Critical Apple Inc.
Priority to PCT/CN2022/130301 priority Critical patent/WO2024098191A1/en
Publication of WO2024098191A1 publication Critical patent/WO2024098191A1/en

Links

Images

Definitions

  • This application relates generally to wireless communication systems, and more specifically to Transmission Configuration Indicator (TCI) state switching improvement for multi-panel user equipment (UE) .
  • TCI Transmission Configuration Indicator
  • Wireless mobile communication technology uses various standards and protocols to transmit data between a base station and a wireless communication device.
  • Wireless communication system standards and protocols can include the 3rd Generation Partnership Project (3GPP) long term evolution (LTE) ; fifth-generation (5G) 3GPP new radio (NR) standard; the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard, which is commonly known to industry groups as worldwide interoperability for microwave access (WiMAX) ; and the IEEE 802.11 standard for wireless local area networks (WLAN) , which is commonly known to industry groups as Wi-Fi.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • 5G 5G new radio
  • IEEE 802.16 Institute of Electrical and Electronics Engineers
  • WiMAX worldwide interoperability for microwave access
  • Wi-Fi wireless local area networks
  • the base station can include a RAN Node such as an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (also commonly denoted as evolved Node B, enhanced Node B, eNodeB, or eNB) and/or Radio Network Controller (RNC) in an E-UTRAN, which communicate with a wireless communication device, known as user equipment (UE) .
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • eNodeB also commonly denoted as evolved Node B, enhanced Node B, eNodeB, or eNB
  • RNC Radio Network Controller
  • RAN Nodes can include a 5G Node, new radio (NR) node or g Node B (gNB) , which communicate with a wireless communication device, also known as user equipment (UE) .
  • NR new radio
  • gNB g Node B
  • a method for a user equipment (e.g., a multi-panel UE) is provided that comprises determining, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with multi-TCI state switching; and reporting the determined UE capability to a network.
  • UE user equipment
  • TCI Transmission Configuration Indicator
  • a method for a network device comprises receiving, from a UE, a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching; and determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
  • an apparatus for a user equipment comprises one or more processors configured to perform steps of the method for the UE according to the present disclosure.
  • an apparatus for a network device comprises one or more processors configured to perform steps of the method for the network device according to the present disclosure.
  • a computer readable medium that has computer programs stored thereon which, when executed by one or more processors, cause an apparatus to perform steps of the method according to the present disclosure.
  • an apparatus for a communication device comprises means for performing steps of the method according to the present disclosure.
  • a computer program product comprises computer programs which, when executed by one or more processors, cause an apparatus to perform steps of the method according to the present disclosure.
  • FIG. 1 is a block diagram of a system including a base station and a user equipment (UE) in accordance with some embodiments.
  • UE user equipment
  • FIG. 2A illustrates a flowchart for an exemplary method for a UE in accordance with some embodiments.
  • FIG. 2B illustrates exemplary UE implementations in accordance with some embodiments.
  • FIG. 3 illustrates a flowchart for an exemplary method for a network device in accordance with some embodiments.
  • FIG. 4 illustrates an exemplary block diagram of an apparatus for a UE in accordance with some embodiments.
  • FIG. 5 illustrates an exemplary block diagram of an apparatus for a network device in accordance with some embodiments.
  • FIG. 6 illustrates example components of a communication device (e.g., a UE or a network device) in accordance with some embodiments.
  • a communication device e.g., a UE or a network device
  • FIG. 7 illustrates example interfaces of baseband circuitry in accordance with some embodiments.
  • FIG. 8 illustrates components in accordance with some embodiments.
  • FIG. 9 illustrates an architecture of a wireless network in accordance with some embodiments.
  • first and second elements used to describe various elements are not intended to limit the positional, temporal or importance relationship of these elements, but rather only to distinguish one component from another.
  • first element and the second element may refer to the same instance of the element, and in some cases, based on contextual descriptions, the first element and the second element may also refer to different instances.
  • NR new radio
  • the exemplary embodiments are described with reference to a 5G new radio (NR) network.
  • NR new radio
  • the exemplary embodiments may also be implemented in other types of networks, including but not limited to LTE networks, future evolutions of the cellular protocol, or any other type of network.
  • Frequency Range 1 may include frequency bands operating in sub-6 gigahertz (GHz) frequencies, some of which are bands that may be used by previous standards, and may potentially be extended to cover new spectrum offerings from 410 megahertz (MHz) to 7125 MHz.
  • Frequency Range 2 may include frequency bands from 24.25 GHz to 52.6 GHz.
  • FR2 may also include frequency bands from 52.6 GHz to 71 GHz (or beyond) (referred to as FR2-2) , in addition to frequency bands from 24.25 GHz to 52.6 GHz (FR2-1) .
  • Bands in the millimeter wave (mmWave) range of FR2 may have smaller coverage but potentially higher available bandwidth than bands in FR1. Skilled persons will recognize these frequency ranges, which are provided by way of example, may change from time to time or from region to region.
  • RRM Radio Resource Management
  • L1-RSRP Layer 1-Reference Signal Received Power
  • L3 Layer 3
  • RLM Radio Link Monitoring
  • BFD Beam Failure Detection
  • CBD Candidate Beam Detection
  • TCI Transmission Configuration Indicator
  • the present disclosure aims to provide the requirements for the TCI state switching delay with multi-TCI states (e.g., dual TCI states) .
  • a TCI state is used to establish the Quasi co-location (QCL) connection between the target reference signal (RS) and source reference signal (RS) .
  • QCL Quasi co-location
  • Two antenna ports are said to be quasi co-located if properties of the channel over which a symbol on one antenna port is conveyed can be inferred from the channel over which a symbol on the other antenna port is conveyed.
  • the antenna ports QCL types (QCL types A-D) are defined in 3GPP TS38.214 section 5.1.5.
  • TCI states are configured for physical downlink control channel (PDCCH) , physical downlink shared channel (PDSCH) and channel state information reference signal (CSI-RS) in order to convey the QCL indication for the respective RS.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information reference signal
  • FR1 frequency range
  • QCL Types A-C and in FR2 QCL types A-D are applicable.
  • the QCL Type D for FR2 indicates that PDCCH/PDSCH/CSI-RS is transmitted with the same spatial filter as the reference signal associated with that TCI.
  • the network can indicate a transmit beam change for PDSCH or PDCCH by switching the TCI state.
  • a TCI state can be known or unknown to the UE (i.e. by the UE) , as defined in the following manner in 3GPP TS38.133 section 8.10.2:
  • the TCI state is known if the following conditions are met:
  • the UE has sent at least 1 L1-RSRP report for the target TCI state before the TCI state switch command
  • the SSB associated with the TCI state remain detectable during the TCI switching period
  • the target TCI states i.e., the TCI states to switch to
  • the target TCI states i.e., the TCI states to switch to
  • the present disclosure aims to provide solutions on handling these cases, e.g., aims to provide suitable requirements for the TCI state switching delay for these cases. Also, it provides a mechanism for a UE to inform the network in case the configured TCI state is invalid.
  • FIG. 1 illustrates a wireless network 100, in accordance with some embodiments.
  • the wireless network 100 includes a UE 101 and a base station 150 connected via an air interface 190.
  • the UE 101 and any other UE in the system may be, for example, laptop computers, smartphones, tablet computers, printers, machine-type devices such as smart meters or specialized devices for healthcare monitoring, remote security surveillance, an intelligent transportation system, or any other wireless devices with or without a user interface.
  • the base station 150 provides network connectivity to a broader network (not shown) to the UE 101 via the air interface 190 in a base station service area provided by the base station 150.
  • a broader network may be a wide area network operated by a cellular network provider, or may be the Internet.
  • Each base station service area associated with the base station 150 is supported by antennas integrated with the base station 150. The service areas are divided into a number of sectors associated with certain antennas.
  • Such sectors may be physically associated with fixed antennas or may be assigned to a physical area with tunable antennas or antenna settings adjustable in a beamforming process used to direct a signal to a particular sector.
  • One embodiment of the base station 150 includes three sectors each covering a 120 degree area with an array of antennas directed to each sector to provide 360 degree coverage around the base station 150.
  • the UE 101 includes control circuitry 105 coupled with transmit circuitry 110 and receive circuitry 115.
  • the transmit circuitry 110 and receive circuitry 115 may each be coupled with one or more antennas.
  • the one or more antennas may include antenna elements to convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals.
  • the antenna elements may be arranged into one or more antenna panels.
  • the one or more antennas may have antenna panels that are omnidirectional, directional, or a combination thereof to enable beamforming and multiple input, multiple output communications.
  • the one or more antennas may include microstrip antennas, printed antennas fabricated on the surface of one or more printed circuit boards, patch antennas, or phased array antennas.
  • the one or more antennas may have one or more panels designed for specific frequency bands including bands in FR1 or FR2.
  • the control circuitry 105 may be adapted to perform operations associated with MTC. In some embodiments, the control circuitry 105 of the UE 101 may perform calculations or may initiate measurements associated with the air interface 190 to determine a channel quality of the available connection to the base station 150. These calculations may be performed in conjunction with control circuitry 155 of the base station 150.
  • the transmit circuitry 110 and receive circuitry 115 may be adapted to transmit and receive data, respectively.
  • the control circuitry 105 may be adapted or configured to perform various operations such as those described elsewhere in this disclosure related to a UE.
  • the transmit circuitry 110 may transmit a plurality of multiplexed uplink physical channels.
  • the plurality of uplink physical channels may be multiplexed according to time division multiplexing (TDM) or frequency division multiplexing (FDM) .
  • the transmit circuity 110 may be configured to receive block data from the control circuitry 105 for transmission across the air interface 190.
  • the receive circuitry 115 may receive a plurality of multiplexed downlink physical channels from the air interface 190 and relay the physical channels to the control circuitry 105.
  • the uplink and downlink physical channels may be multiplexed according to TDM or FDM.
  • the transmit circuitry 110 and the receive circuitry 115 may transmit and receive both control data and content data (e.g., messages, images, video, et cetera) structured within data blocks that are carried by the physical channels.
  • FIG. 1 also illustrates the base station 150, in accordance with various embodiments.
  • the base station 150 circuitry may include control circuitry 155 coupled with transmit circuitry 160 and receive circuitry 165.
  • the transmit circuitry 160 and receive circuitry 165 may each be coupled with one or more antennas that may be used to enable communications via the air interface 190.
  • the control circuitry 155 may be adapted to perform operations associated with MTC.
  • the transmit circuitry 160 and receive circuitry 165 may be adapted to transmit and receive data, respectively, within a narrow system bandwidth that is narrower than a standard bandwidth structured for person to person communication.
  • a transmission bandwidth may be set at or near 1.4MHz. In other embodiments, other bandwidths may be used.
  • the control circuitry 155 may perform various operations such as those described elsewhere in this disclosure related to a base station.
  • the transmit circuitry 160 may transmit a plurality of multiplexed downlink physical channels.
  • the plurality of downlink physical channels may be multiplexed according to TDM or FDM.
  • the transmit circuitry 160 may transmit the plurality of multiplexed downlink physical channels in a downlink super-frame that is comprised of a plurality of downlink subframes.
  • the receive circuitry 165 may receive a plurality of multiplexed uplink physical channels.
  • the plurality of uplink physical channels may be multiplexed according to TDM or FDM.
  • the receive circuitry 165 may receive the plurality of multiplexed uplink physical channels in an uplink super-frame that is comprised of a plurality of uplink subframes.
  • control circuitry 105 and 155 may be involved with measurement of a channel quality for the air interface 190.
  • the channel quality may, for example, be based on physical obstructions between the UE 101 and the base station 150, electromagnetic signal interference from other sources, reflections or indirect paths between the UE 101 and the base station 150, or other such sources of signal noise.
  • a block of data may be scheduled to be retransmitted multiple times, such that the transmit circuitry 110 may transmit copies of the same data multiple times and the receive circuitry 115 may receive multiple copies of the same data multiple times.
  • the UE and various base stations may be implemented by the UE 101 and the base station 150 described in FIG. 1.
  • FIG. 2A illustrates a flowchart for an exemplary method for a user equipment in accordance with some embodiments.
  • the method 200 illustrated in FIG. 2A may be implemented by the UE 101 described in FIG. 1.
  • the method 200 may begin at step S202, where the UE (which may be a multi-panel UE with two or more panels) may determine, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching (i.e. TCI state switching with multiple target TCI states) .
  • TCI Transmission Configuration Indicator
  • the method 200 may further include step S204, where the UE may report the determined UE capability to a network.
  • the multi-TCI state switching i.e. TCI state switching with multiple target TCI states
  • dual-TCI state switching i.e. TCI state switching with dual target TCI states
  • the candidate combinations of known or unknown states of target TCI states include: 1) both target TCI states are known to the UE, which can be referred to as (known, known) case/combination; 2) both target TCI states are unknown to the UE, which can be referred to as (unknown, unknown) case/combination; and 3) one target TCI state is known to the UE, and the other target TCI state is unknown to the UE, which can be referred to as (known, unknown) case/combination.
  • determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with multi-TCI state switching includes: for each of the candidate combinations (e.g., each of the above three candidate combinations) , determining a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay (namely, determining a UE capability for distinguishing whether the UE is a UE that is able to complete the multi-TCI state switching using a legacy TCI state switching delay of single-TCI state switching, or a UE that needs an additional delay compared to the legacy TCI state switching delay of the single-TCI state switching, to complete the multi-TCI state switching) .
  • the legacy single-TCI state switching delay refers to the existing 3GPP R15 TCI state switching delay (for single TCI state) that is defined in 3GPP TS38.133 section 8.10, for example.
  • the additional delay is based on at least one of the following: cross-panel switching time of the UE; or L1-RSRP measurement and processing constraints of the UE.
  • UEs that need some additional delay compared to the existing 3GPP R15 TCI state switching delay (for single TCI state) because of one or more of the following: cross-panel switching time, e.g., two panels cannot be switched off or on in parallel, but sequentially; L1-RSRP measurement and processing constraint, i.e., there is some baseband (BB) resource sharing that the two L1-RSRP measurement processes (for two unknown TCI states, for example) are not completely independent; or other implementation constraints.
  • cross-panel switching time e.g., two panels cannot be switched off or on in parallel, but sequentially
  • L1-RSRP measurement and processing constraint i.e., there is some baseband (BB) resource sharing that the two L1-RSRP measurement processes (for two unknown TCI states, for example) are not completely independent; or other implementation constraints.
  • BB baseband
  • the existing 3GPP R15 TCI state switching delay (for single TCI state) is defined in 3GPP TS38.133 section 8.10.3 in the following manner.
  • the TCI state switching delay is:
  • T HARQ represents the timing between the DL data transmission and corresponding acknowledgement, as specified in 3GPP TS 38.213.
  • T first-SSB represents the timing between the MAC-CE command being decoded by the UE to the first Synchronization Signal Block (SSB) transmission after, where the SSB shall be the QCL-TypeA or QCL-TypeC for the target TCI state.
  • T SSB-proc 2 ms.
  • T L1-RSRP represents the time for an L1-RSRP measurement for receive (Rx) beam refinement, and is defined as T L1-RSPR_Measurement_Period_SSB for an SSB as specified in clause 9.5.4.1 (e.g., in Table 9.5.4.1-2 for FR2) or T L1-RSPR_Measurement_Period_CSI-RS for CSI-RS as specified in clause 9.5.4.2 (e.g., in Table 9.5.4.2-2 for FR2) , subject to various other considerations as defined in 3GPP TS38.133 section 8.10.3.
  • TO uk 1 when the TCI state switching involves other QCL types only.
  • determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching further includes:
  • a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for Rx beam refinement in single-TCI state switching.
  • a second UE capability for indicating a reduced beam sweeping factor may also be determined, this is because:
  • the beam sweeping factor e.g., the parameter “N” in Table 9.5.4.1-2 and Table 9.5.4.2-2
  • the beam sweeping factor can be reduced from its legacy value defined in 3GPP TS38.133 (and in turn the value of T L1-RSRP can be reduced) .
  • the reduced beam sweeping factor is based on a maximum number of Layer 1 (L1) beams supported by respective panels of the UE.
  • the value of the legacy beam sweeping factor N equals to 8.
  • the new beam sweeping factor i.e. the reduced beam sweeping factor N’ can be 4.
  • the new beam sweeping factor i.e. the new beam sweeping factor
  • the reduced beam sweeping factor N’ can be 6. It shall be appreciated that while the exemplary embodiments describe the value of the reduced beam sweeping factor N’ as 4 or 6 for example, other values can also be adopted for the reduced beam sweeping factor N’ as long as it is less than the value of the legacy beam sweeping factor N (e.g., N’ ⁇ 8) . Moreover, the reduced beam sweeping factor N’ (e.g., a range of values thereof) can be hard coded in 3GPP specification.
  • the legacy beam sweeping factor N ceil (maxNumberRxBeam/N res_per_set ) (in a case where periodic CSI-RS resources in a resource set configured with higher layer parameter repetition set to ON, for example) .
  • the UE has two panels, and each of the panels supports four L1 beams) , then the parameter “maxNumberRxBeam” can be reduced from 8 to 4, and thus the beam sweeping factor can be reduced from its legacy value (in this case, the reduced “maxNumberRxBeam” can also be regarded as the reduced beam sweeping factor) .
  • the parameter “maxNumberRxBeam” can be reduced from 8 to 6, and thus the beam sweeping factor can be reduced from its legacy value.
  • the reduced value of “maxNumberRxBeam” as 4 or 6 for example, other values can also be adopted for the reduced “maxNumberRxBeam” as long as it is less than the legacy value of “maxNumberRxBeam” .
  • the reduced “maxNumberRxBeam” e.g., a range of values thereof
  • the determined UE capability can be reported by the UE to the network via a Radio Resource Control (RRC) message.
  • RRC Radio Resource Control
  • UE capabilities are usually reported to the network when the UE first attaches to the network, namely, before the UE enters an RRC_connected mode (i.e., establishes an RRC connection with the network) for data transmision and receives a TCI state switching command from the network at some point during the data transmission.
  • the reported UE capability for indicating a reduced beam sweeping factor can be overridden by the UE via at least one of the following: a Layer 1 (L1) message (i.e. a physical layer message) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  • L1 Layer 1
  • MAC-CE medium access control-control element
  • RRC radio resource control
  • the UE capability for indicating a reduced beam sweeping factor is reported to the network along with a timer that sets an expiration time of the reduced beam sweeping factor.
  • the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling from the network.
  • the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network determines that a single downlink control information (DCI) is configured for the UE; and the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network determines that multiple DCI is configured for the UE.
  • DCI downlink control information
  • the network can control this reduced beam sweeping factor capability by signaling, e.g., based on the following different deployment scenario/configuration:
  • this reduced beam sweeping factor capability may be enabled, because dual TCI switching needs to be completed before a UE can be configured to support 4-layer DL Multiple Input Multiple Output (MIMO) ; and
  • MIMO Multiple Input Multiple Output
  • this reduced beam sweeping factor capability may be disabled, because dual TCI switching needs not be completed before a UE can be configured to support 2-layer DL MIMO on each Angle of Arrival (AoA) .
  • the UE when the UE capability for indicating a reduced beam sweeping factor is disabled, the UE will not determine the UE capability for indicating a reduced beam sweeping factor and will not report it to the network.
  • the network signaling can be a cell-specific signaling, e.g., contained in a system information block (SIB) ; or a UE specific signaling, e.g., an RRC, MAC CE, or DCI signaling.
  • SIB system information block
  • UE specific signaling e.g., an RRC, MAC CE, or DCI signaling.
  • the method of the UE may further include: receiving, from the network, a TCI state switching command that indicates a plurality of target TCI states (e.g., two target TCI states in the case of dual-TCI state switching) .
  • the UE may then use the indicated target TCI states to perform the multi-TCI state switching (e.g., the dual-TCI state switching in a case where two target TCI states are indicated) .
  • the network can learn the expected UE TCI state switching time (e.g., the expected UE TCI state switching delay) , and the UE is expected to complete the switching within the expected period of time.
  • the expected UE TCI state switching time e.g., the expected UE TCI state switching delay
  • the TCI state switching command may be transmitted to the UE from the network in an RRC message, a medium access layer (MAC) control element (CE) , or a Downlink Control Information (DCI) message.
  • RRC radio resource control
  • CE medium access layer
  • DCI Downlink Control Information
  • the method may further include: reporting a beam pair that the UE supports to the network, or informing the network (e.g., in UE’s old TCI states) that one of or both of indicated target TCI states are not working.
  • the reporting a beam pair that the UE supports to the network includes one of the following: reporting a beam pair that the UE supports via group-based beam reporting mechanism if the UE knows one or more valid beam pairs; or in response to determining that the UE is configured with two channel measurement resource (CMR) sets for measuring beams, conducting L1-RSRP measurements and reporting if a suitable beam pair is found.
  • CMR channel measurement resource
  • the UE can take one of the following alternatives in terms of UE behavior:
  • the UE will report two beams it can support via group-based beam reporting mechanism if it knows one or more valid beam pairs;
  • UE If the UE is configured with two CMR sets to measure beams, UE will conduct L1-RSRP measurements and report if a suitable beam pair is found; or
  • UE will continue the communication with old TCI states and inform the network in its old TCI state that one of or both of indicated target TCI states is not working.
  • the informing the network that one of or both of indicated target TCI states are not working is performed in response to determining that at least one of the following cases occurs:
  • Case 1 a medium access control-control element (MAC-CE) is used to activate two TCI states for a Physical Downlink Control Channel (PDCCH) (CORESET reception) , but the UE cannot receive from two active TCI states simultaneously;
  • MAC-CE medium access control-control element
  • Case 2 the network configures a Search Space linkage for PDCCH repetition, and two linked Search Space overlaps in time domain, the UE cannot receive two linked Search Space with corresponding active TCI states simultaneously;
  • Case 3 the network activates a TCI codepoint for a Physical Downlink Shared Channel (PDSCH) , and the activated TCI codepoint contains two TCI States that the UE cannot receive simultaneously;
  • PDSCH Physical Downlink Shared Channel
  • Case 4 the UE is scheduled by the network to receive two PDSCH simultaneously (for example, with two DCI) , but for two TCI States corresponding to different PDSCH overlapping in time, the UE cannot receive simultaneously;
  • Case 5 for a unified TCI State, a unified TCI codepoint is activated with two TCI States that the UE cannot receive simultaneously;
  • Case 6 the UE is scheduled by the network to transmit two Physical Uplink Shared Channel (PUSCH) /Physical Uplink Control Channel (PUCCH) simultaneously (for example, with two DCI or single DCI) , but for two TCI/Spatial Relation corresponding to different PUSCH overlapping in time, the UE cannot transmit simultaneously; or
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Case 7 the network configures two Sounding Reference Signal (SRS) -Resource Sets for either “codebook” or “nonCodebook” for simultaneous PUSCH transmission, some SRS-Resource pair (s) in different SRS-Resource Sets cannot be used by the UE for simultaneous transmission.
  • SRS Sounding Reference Signal
  • the informing the network that one of or both of indicated target TCI states are not working is performed via one of the following: an uplink control information (UCI) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  • UCI uplink control information
  • MAC-CE medium access control-control element
  • RRC radio resource control
  • the informing the network that one of or both of indicated target TCI states are not working is performed via the MAC-CE if at least one of the following criteria is satisfied:
  • the UE has a PUSCH grant, and the UE can use the existing PUSCH grant to transmit the MAC-CE;
  • the UE does not have a PUSCH grant, but the UE can use a scheduling request (SR) to request a PUSCH grant; or
  • the UE can use random access (RA) to request transmission of report of invalid network TCI activation/indication (i.e. the report of one of or both of target TCI states are not working) .
  • RA random access
  • the SR is configured separately and/or is assigned with a different priority compared to the other SR (s) .
  • the RA is a Contention Free Random Access (CFRA) or a Contention Based Random Access (CBRA) .
  • CBRA Contention Based Random Access
  • the CBRA can be used when CFRA is not configured, or when CFRA fails.
  • delay refers to a maximum time threshold/period that can be acceptable for processing/completing a corresponding procedure.
  • TCI state switching delay may refer to a maximum time threshold that can be acceptable for completing a corresponding TCI state switching.
  • the network can have an accurate knowledge of the UE capability for the multi-TCI state switching, and thus the mismatch of delays between the network and the UE during the multi-TCI state switching can be avoided, thereby a smoother procedure of multi-TCI state switching can be provided and the performance of the communication device or system can be improved accordingly.
  • the communication between the UE and the network may include the communication between the UE/an apparatus of the UE and the network/anetwork device (node) in the network.
  • the expressions “network device” and the expression “node” may be used herein interchangeably. In other words, when reference is made to “network device” , it also refers to “node” .
  • FIG. 3 illustrates a flowchart for an exemplary method for a network device (e.g., a base station, a network controller, or any other network device that can configure/indicate a plurality of target TCI states for a UE) in accordance with some embodiments.
  • a network device e.g., a base station, a network controller, or any other network device that can configure/indicate a plurality of target TCI states for a UE
  • the method 300 illustrated in FIG. 3 may be implemented by the base station 150 described in FIG. 1.
  • the method 300 may begin at step S302, where the network device may receive, from a UE (which may be a multi-panel UE) , a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching.
  • a UE which may be a multi-panel UE
  • the method 300 may further include step 304, where the network device may determine a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
  • the multi-TCI state switching is dual-TCI state switching.
  • the reported UE capability (i.e. the UE capability received at the network device) includes a UE capability reported for the following candidate combinations of known or unknown states of target TCI states: 1) both target TCI states are known to the UE; 2) both target TCI states are unknown to the UE; and 3) one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
  • the UE capability reported for each of the above three candidate combinations includes: a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
  • the UE capability reported for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE further includes: a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
  • determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability includes, in response to determining that the network device is to indicate two known target TCI states or two unknown target TCI states to the UE, i.e. in response to determining that the two to-be-indicated target TCI states belong to a (known, known) case or a (unknown, unknown) case:
  • determining the legacy single-TCI state switching delay as the TCI state switching delay of the multi-TCI state switching e.g., for a known target TCI state, determining a legacy single-TCI state switching delay of the known target TCI state as a TCI state switching delay of the known target TCI state in the multi-TCI state switching; or for an unknown target TCI state, determining a legacy single-TCI state switching delay of the unknown target TCI state as a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching) ; and
  • determining the legacy single-TCI state switching delay plus the additional delay as the TCI state switching delay of the multi-TCI state switching e.g., for a known target TCI state, determining a legacy single-TCI state switching delay of the known target TCI state plus the additional delay as a TCI state switching delay of the known target TCI state in the multi-TCI state switching; or for an unknown target TCI state, determining a legacy single- TCI state switching delay of the unknown target TCI state plus the additional delay as a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching) .
  • determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability includes, in response to determining that the network device is to indicate one known target TCI state and one unknown target TCI state to the UE, i.e. in response to determining that the two to-be-indicated target TCI states belong to a (known, unknown) case:
  • determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on a legacy single-TCI state switching delay of the known target TCI state i.e. determining a legacy single-TCI state switching delay of the known target TCI state as a TCI state switching delay of the known target TCI state in the multi-TCI state switching
  • determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on the additional delay and a legacy single-TCI state switching delay of the known target TCI state i.e. determining a legacy single-TCI state switching delay of the known target TCI state plus the additional delay as a TCI state switching delay of the known target TCI state in the multi-TCI state switching
  • the beam sweeping factor e.g., the legacy beam sweeping factor “N” or “maxNumberRxBeam”
  • determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor and adding the additional delay to the legacy single-TCI state switching delay of the unknown target TCI state.
  • the UE capability for indicating a reduced beam sweeping factor is attached with a timer that sets an expiration time of the reduced beam sweeping factor.
  • the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling of the network device.
  • the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network device determines that a single downlink control information (DCI) is configured for the UE; and the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network device determines that multiple DCI is configured for the UE.
  • DCI downlink control information
  • the UE when the UE capability for indicating a reduced beam sweeping factor is disabled, the UE will not determine the UE capability for indicating a reduced beam sweeping factor and will not report it to the network.
  • the received UE capability for the (known, unknown) case will include a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay or a UE that needs an additional delay compared to the legacy single-TCI state switching delay, and not include the UE capability for indicating a reduced beam sweeping factor.
  • the determination of the TCI state switching delay of the multi-TCI state switching for this case will be similar to that of the (known, known) and (unknown, unknown) cases, and thus will not be repeated herein.
  • the network signaling is a cell-specific signaling or a UE specific signaling.
  • the method of the network device may further include: transmitting a TCI state switching command that indicates a plurality of target TCI states (e.g., two target TCI states in the case of dual-TCI state switching) to the UE.
  • the TCI state switching command may be transmitted to the UE from the network in a medium access layer (MAC) control element (CE) , or a Downlink Control Information (DCI) message.
  • MAC medium access layer
  • CE control element
  • DCI Downlink Control Information
  • the network can learn the expected UE TCI state switching time (e.g., the expected UE TCI state switching delay) , and expect the UE to complete the switching within the expected period of time.
  • the method of the network device may further include: receiving, from the UE, a beam pair that is supported by the UE; or receiving, from the UE, an inform informing that one of or both of indicated target TCI states are not working for the UE.
  • the network device in response to receiving, from the UE, a beam pair that is supported by the UE or an inform informing that one of or both of indicated target TCI states are not working for the UE, can indicate one or two new target TCI states to the UE (for example, on the basis of the beam pair reported by the UE) .
  • FIG. 4 illustrates an exemplary block diagram of an apparatus for a user equipment (UE) in accordance with some embodiments.
  • the apparatus 400 illustrated in FIG. 4 may be used to implement the method 200 as illustrated in combination with FIG. 2A.
  • the apparatus 400 includes a determining unit 410 and a reporting unit 420.
  • the determining unit 410 may be configured to determine, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching.
  • the reporting unit 420 may be configured to report the determined UE capability to a network.
  • FIG. 5 illustrates an exemplary block diagram of an apparatus for a network device in accordance with some embodiments.
  • the apparatus 500 illustrated in FIG. 5 may be used to implement the method 300 as illustrated in combination with FIG. 3.
  • the apparatus 500 includes a receiving unit 510 and a determining unit 520.
  • the receiving unit 510 may be configured to receive, from a UE, a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching.
  • the determining unit 520 may be configured to determine a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
  • FIG. 6 illustrates example components of a device 600 in accordance with some embodiments.
  • the device 600 may include application circuitry 602, baseband circuitry 604, Radio Frequency (RF) circuitry (shown as RF circuitry 620) , front-end module (FEM) circuitry (shown as FEM circuitry 630) , one or more antennas 632, and power management circuitry (PMC) (shown as PMC 634) coupled together at least as shown.
  • RF Radio Frequency
  • FEM front-end module
  • PMC power management circuitry
  • the components of the illustrated device 600 may be included in a UE or a RAN node.
  • the device 600 may include fewer elements (e.g., a RAN node may not utilize application circuitry 602, and instead include a processor/controller to process IP data received from an EPC) .
  • the device 600 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface.
  • the components described below may be included in more than one device (e.g., said circuitries may be separately included in more than one device for Cloud-RAN (C-RAN) implementations) .
  • C-RAN Cloud-RAN
  • the application circuitry 602 may include one or more application processors.
  • the application circuitry 602 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processor may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) .
  • the processors may be coupled with or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the device 600.
  • processors of application circuitry 602 may process IP data packets received from an EPC.
  • the baseband circuitry 604 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the baseband circuitry 604 may include one or more baseband processors or control logic to process baseband signals received from a receive signal path of the RF circuitry 620 and to generate baseband signals for a transmit signal path of the RF circuitry 620.
  • the baseband circuitry 604 may interface with the application circuitry 602 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 620.
  • the baseband circuitry 604 may include a third generation (3G) baseband processor (3G baseband processor 606) , a fourth generation (4G) baseband processor (4G baseband processor 608) , a fifth generation (5G) baseband processor (5G baseband processor 610) , or other baseband processor (s) 612 for other existing generations, generations in development or to be developed in the future (e.g., second generation (2G) , sixth generation (6G) , etc. ) .
  • the baseband circuitry 604 e.g., one or more of baseband processors
  • the functionality of the illustrated baseband processors may be included in modules stored in the memory 618 and executed via a Central Processing ETnit (CPET 614) .
  • the radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc.
  • modulation/demodulation circuitry of the baseband circuitry 604 may include Fast-Fourier Transform (FFT) , precoding, or constellation mapping/demapping functionality.
  • FFT Fast-Fourier Transform
  • encoding/decoding circuitry of the baseband circuitry 604 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality.
  • LDPC Low Density Parity Check
  • the baseband circuitry 604 may include a digital signal processor (DSP) , such as one or more audio DSP (s) 616.
  • DSP digital signal processor
  • the one or more audio DSP (s) 616 may be include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
  • Components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or disposed on a same circuit board in some embodiments.
  • some or all of the constituent components of the baseband circuitry 604 and the application circuitry 602 may be implemented together such as, for example, on a system on a chip (SOC) .
  • SOC system on a chip
  • the baseband circuitry 604 may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry 604 may support communication with an evolved universal terrestrial radio access network (EUTRAN) or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , or a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi-mode baseband circuitry Embodiments in which the baseband circuitry 604 is configured to support radio communications of more than one wireless protocol.
  • the RF circuitry 620 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry 620 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 620 may include a receive signal path which may include circuitry to down-convert RF signals received from the FEM circuitry 630 and provide baseband signals to the baseband circuitry 604.
  • the RF circuitry 620 may also include a transmit signal path which may include circuitry to up-convert baseband signals provided by the baseband circuitry 604 and provide RF output signals to the FEM circuitry 630 for transmission.
  • the receive signal path of the RF circuitry 620 may include mixer circuitry 622, amplifier circuitry 624 and filter circuitry 626.
  • the transmit signal path of the RF circuitry 620 may include filter circuitry 626 and mixer circuitry 622.
  • the RF circuitry 620 may also include synthesizer circuitry 628 for synthesizing a frequency for use by the mixer circuitry 622 of the receive signal path and the transmit signal path.
  • the mixer circuitry 622 of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 630 based on the synthesized frequency provided by synthesizer circuitry 628.
  • the amplifier circuitry 624 may be configured to amplify the down-converted signals and the filter circuitry 626 may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals.
  • Output baseband signals may be provided to the baseband circuitry 604 for further processing.
  • the output baseband signals may be zero-frequency baseband signals, although this is not a requirement.
  • the mixer circuitry 622 of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • the mixer circuitry 622 of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 628 to generate RF output signals for the FEM circuitry 630.
  • the baseband signals may be provided by the baseband circuitry 604 and may be filtered by the filter circuitry 626.
  • the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively.
  • the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) .
  • the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 may be arranged for direct downconversion and direct upconversion, respectively.
  • the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may be configured for super-heterodyne operation.
  • the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect.
  • the output baseband signals and the input baseband signals may be digital baseband signals.
  • the RF circuitry 620 may include analog-to-digital converter (ADC) and digital -to-analog converter (DAC) circuitry and the baseband circuitry 604 may include a digital baseband interface to communicate with the RF circuitry 620.
  • ADC analog-to-digital converter
  • DAC digital -to-analog converter
  • a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • the synthesizer circuitry 628 may be a fractional -N synthesizer or a fractional N/N+l synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable.
  • synthesizer circuitry 628 may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
  • the synthesizer circuitry 628 may be configured to synthesize an output frequency for use by the mixer circuitry 622 of the RF circuitry 620 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 628 may be a fractional N/N+l synthesizer.
  • frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a requirement.
  • VCO voltage controlled oscillator
  • Divider control input may be provided by either the baseband circuitry 604 or the application circuitry 602 (such as an applications processor) depending on the desired output frequency.
  • a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 602.
  • Synthesizer circuitry 628 of the RF circuitry 620 may include a divider, a delay-locked loop (DLL) , a multiplexer and a phase accumulator.
  • the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) .
  • the DMD may be configured to divide the input signal by either N or N+l (e.g., based on a carry out) to provide a fractional division ratio.
  • the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop.
  • the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • the synthesizer circuitry 628 may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other.
  • the output frequency may be a LO frequency (fLO) .
  • the RF circuitry 620 may include an IQ/polar converter.
  • the FEM circuitry 630 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 632, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 620 for further processing.
  • the FEM circuitry 630 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 620 for transmission by one or more of the one or more antennas 632.
  • the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 620, solely in the FEM circuitry 630, or in both the RF circuitry 620 and the FEM circuitry 630.
  • the FEM circuitry 630 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuitry 630 may include a receive signal path and a transmit signal path.
  • the receive signal path of the FEM circuitry 630 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 620) .
  • the transmit signal path of the FEM circuitry 630 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by the RF circuitry 620) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 632) .
  • PA power amplifier
  • the PMC 634 may manage power provided to the baseband circuitry 604.
  • the PMC 634 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion.
  • the PMC 634 may often be included when the device 600 is capable of being powered by a battery, for example, when the device 600 is included in a EGE.
  • the PMC 634 may increase the power conversion efficiency while providing desirable implementation size and heat dissipation characteristics.
  • FIG. 6 shows the PMC 634 coupled only with the baseband circuitry 604.
  • the PMC 634 may be additionally or alternatively coupled with, and perform similar power management operations for, other components such as, but not limited to, the application circuitry 602, the RF circuitry 620, or the FEM circuitry 630.
  • the PMC 634 may control, or otherwise be part of, various power saving mechanisms of the device 600. For example, if the device 600 is in an RRC Connected state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the device 600 may power down for brief intervals of time and thus save power.
  • DRX Discontinuous Reception Mode
  • the device 600 may transition off to an RRC Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc.
  • the device 600 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again.
  • the device 600 may not receive data in this state, and in order to receive data, it transitions back to an RRC Connected state.
  • An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours) . During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
  • Processors of the application circuitry 602 and processors of the baseband circuitry 604 may be used to execute elements of one or more instances of a protocol stack.
  • processors of the baseband circuitry 604 alone or in combination, may be used to execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 602 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., transmission communication protocol (TCP) and user datagram protocol (UDP) layers) .
  • Layer 3 may comprise a radio resource control (RRC) layer, described in further detail below.
  • RRC radio resource control
  • Layer 2 may comprise a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer, described in further detail below.
  • Layer 1 may comprise a physical (PHY) layer of a UE/RAN node, described in further detail below.
  • FIG. 7 illustrates example interfaces 700 of baseband circuitry in accordance with some embodiments.
  • the baseband circuitry 604 of FIG. 6 may comprise 3G baseband processor 606, 4G baseband processor 608, 5G baseband processor 610, other baseband processor (s) 612, CPU 614, and a memory 618 utilized by said processors.
  • each of the processors may include a respective memory interface 1402 to send/receive data to/from the memory 618.
  • the baseband circuitry 604 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as a memory interface 704 (e.g., an interface to send/receive data to/from memory external to the baseband circuitry 604) , an application circuitry interface 706 (e.g., an interface to send/receive data to/from the application circuitry 602 of FIG. 6) , an RF circuitry interface 708 (e.g., an interface to send/receive data to/from RF circuitry 620 of FIG.
  • a memory interface 704 e.g., an interface to send/receive data to/from memory external to the baseband circuitry 604
  • an application circuitry interface 706 e.g., an interface to send/receive data to/from the application circuitry 602 of FIG.
  • an RF circuitry interface 708 e.g., an interface to send/receive data to/from RF circuitry 620 of FIG.
  • a wireless hardware connectivity interface 710 e.g., an interface to send/receive data to/from Near Field Communication (NFC) components, components (e.g., Low Energy) , components, and other communication components
  • a power management interface 712 e.g., an interface to send/receive power or control signals to/from the PMC 634.
  • FIG. 8 is a block diagram illustrating components 800, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • FIG. 8 shows a diagrammatic representation of hardware resources 802 including one or more processors 812 (or processor cores) , one or more memory/storage devices 818, and one or more communication resources 820, each of which may be communicatively coupled via a bus 822.
  • node virtualization e.g., NFV
  • a hypervisor 804 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 802.
  • the processors 812 may include, for example, a processor 814 and a processor 816.
  • CPU central processing unit
  • RISC reduced instruction set computing
  • CISC complex instruction set computing
  • GPU graphics processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • RFIC radio-frequency integrated circuit
  • the memory /storage devices 818 may include main memory, disk storage, or any suitable combination thereof.
  • the memory/storage devices 818 may include, but are not limited to any type of volatile or non-volatile memory such as dynamic random access memory (DRAM) , static random-access memory (SRAM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , Flash memory, solid-state storage, etc.
  • DRAM dynamic random access memory
  • SRAM static random-access memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • Flash memory solid-state storage, etc.
  • the communication resources 820 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 806 or one or more databases 808 via a network 810.
  • the communication resources 820 may include wired communication components (e.g., for coupling via a Universal Serial Bus (USB) ) , cellular communication components, NFC components, components (e.g., Low Energy) , components, and other communication components.
  • wired communication components e.g., for coupling via a Universal Serial Bus (USB)
  • USB Universal Serial Bus
  • NFC components e.g., Low Energy
  • components e.g., Low Energy
  • Instructions 824 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 812 to perform any one or more of the methodologies discussed herein.
  • the instructions 824 may reside, completely or partially, within at least one of the processors 812 (e.g., within the processor’s cache memory) , the memory /storage devices 818, or any suitable combination thereof.
  • any portion of the instructions 824 may be transferred to the hardware resources 802 from any combination of the peripheral devices 806 or the databases 808. Accordingly, the memory of the processors 812, the memory/storage devices 818, the peripheral devices 806, and the databases 808 are examples of computer-readable and machine-readable media.
  • At least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below.
  • the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below.
  • circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
  • FIG. 9 illustrates an architecture of a system 900 of a network in accordance with some embodiments.
  • the system 900 includes one or more user equipment (UE) , shown in this example as a UE 902 and a UE 904.
  • UE user equipment
  • the UE 902 and the UE 904 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks) , but may also comprise any mobile or non-mobile computing device, such as Personal Data Assistants (PDAs) , pagers, laptop computers, desktop computers, wireless handsets, or any computing device including a wireless communications interface.
  • PDAs Personal Data Assistants
  • any of the UE 902 and the UE 904 can comprise an Internet of Things (IoT) UE, which can comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections.
  • An IoT UE can utilize technologies such as machine-to-machine (M2M) or machine-type communications (MTC) for exchanging data with an MTC server or device via a public land mobile network (PLMN) , Proximity-Based Service (ProSe) or device-to-device (D2D) communication, sensor networks, or IoT networks.
  • M2M or MTC exchange of data may be a machine-initiated exchange of data.
  • An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure) , with short-lived connections.
  • the IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc. ) to facilitate the connections of the IoT network.
  • the UE 902 and the UE 904 may be configured to connect, e.g., communicatively couple, with a radio access network (RAN) , shown as RAN 906.
  • RAN radio access network
  • the RAN 906 may be, for example, an Evolved Universal Mobile Telecommunications System (EUMTS) Terrestrial Radio Access Network (E-UTRAN) , a NextGen RAN (NG RAN) , or some other type of RAN.
  • EUMTS Evolved Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Mobile Telecommunications System
  • NG RAN NextGen RAN
  • connection 908 and connection 910 are illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols, such as a Global System for Mobile Communications (GSM) protocol, a code-division multiple access (CDMA) network protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, a Universal Mobile Telecommunications System (UMTS) protocol, a 3GPP Long Term Evolution (LTE) protocol, a fifth generation (5G) protocol, a New Radio (NR) protocol, and the like.
  • GSM Global System for Mobile Communications
  • CDMA code-division multiple access
  • PTT Push-to-Talk
  • POC PTT over Cellular
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • 5G fifth generation
  • NR New Radio
  • the UE 902 and the UE 904 may further directly exchange communication data via a ProSe interface 912.
  • the ProSe interface 912 may alternatively be referred to as a sidelink interface comprising one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , a Physical Sidelink Discovery Channel (PSDCH) , and a Physical Sidelink Broadcast Channel (PSBCH) .
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the UE 904 is shown to be configured to access an access point (AP) , shown as AP 914, via connection 916.
  • the connection 916 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 914 would comprise a wireless fidelity router.
  • the AP 914 may be connected to the Internet without connecting to the core network of the wireless system (described in further detail below) .
  • the RAN 906 can include one or more access nodes that enable the connection 908 and the connection 910.
  • These access nodes can be referred to as base stations (BSs) , NodeBs, evolved NodeBs (eNBs) , next Generation NodeBs (gNB) , RAN nodes, and so forth, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell) .
  • the RAN 906 may include one or more RAN nodes for providing macrocells, e.g., macro RAN node 918, and one or more RAN nodes for providing femtocells or picocells (e.g., cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells) , e.g., a low power (LP) RAN node such as LP RAN node 920.
  • LP low power
  • any of the macro RAN node 918 and the LP RAN node 920 can terminate the air interface protocol and can be the first point of contact for the UE 902 and the UE 904.
  • any of the macro RAN node 918 and the LP RAN node 920 can fulfill various logical functions for the RAN 906 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
  • RNC radio network controller
  • the EGE 902 and the EGE 904 can be configured to communicate using Orthogonal Frequency-Division Multiplexing (OFDM) communication signals with each other or with any of the macro RAN node 918 and the LP RAN node 920 over a multicarrier communication channel in accordance various communication techniques, such as, but not limited to, an Orthogonal Frequency-Division Multiple Access (OFDMA) communication technique (e.g., for downlink communications) or a Single Carrier Frequency Division Multiple Access (SC-FDMA) communication technique (e.g., for uplink and ProSe or sidelink communications) , although the scope of the embodiments is not limited in this respect.
  • OFDM signals can comprise a plurality of orthogonal sub carriers.
  • a downlink resource grid can be used for downlink transmissions from any of the macro RAN node 918 and the LP RAN node 920 to the UE 902 and the UE 904, while uplink transmissions can utilize similar techniques.
  • the grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot.
  • a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation.
  • Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively.
  • the duration of the resource grid in the time domain corresponds to one slot in a radio frame.
  • Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements.
  • Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated.
  • the physical downlink shared channel may carry user data and higher-layer signaling to the UE 902 and the UE 904.
  • the physical downlink control channel (PDCCH) may carry information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UE 902 and the UE 904 about the transport format, resource allocation, and H-ARQ (Hybrid Automatic Repeat Request) information related to the uplink shared channel.
  • downlink scheduling (assigning control and shared channel resource blocks to the UE 904 within a cell) may be performed at any of the macro RAN node 918 and the LP RAN node 920 based on channel quality information fed back from any of the UE 902 and UE 904.
  • the downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UE 902 and the UE 904.
  • the PDCCH may use control channel elements (CCEs) to convey the control information.
  • CCEs control channel elements
  • the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaver for rate matching.
  • Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as resource element groups (REGs) .
  • Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG.
  • the PDCCH can be transmitted using one or more CCEs, depending on the size of the downlink control information (DCI) and the channel condition.
  • DCI downlink control information
  • There can be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L l, 2, 4, or 8) .
  • Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts.
  • some embodiments may utilize an enhanced physical downlink control channel (EPDCCH) that uses PDSCH resources for control information transmission.
  • the EPDCCH may be transmitted using one or more enhanced the control channel elements (ECCEs) .
  • ECCEs enhanced the control channel elements
  • each ECCE may correspond to nine sets of four physical resource elements known as enhanced resource element groups (EREGs) .
  • EREGs enhanced resource element groups
  • An ECCE may have other numbers of EREGs in some situations.
  • the RAN 906 is communicatively coupled to a core network (CN) , shown as CN 928 -via an Sl interface 922.
  • CN core network
  • the CN 928 may be an evolved packet core (EPC) network, a NextGen Packet Core (NPC) network, or some other type of CN.
  • EPC evolved packet core
  • NPC NextGen Packet Core
  • the Sl interface 922 is split into two parts: the Sl-U interface 1124, which carries traffic data between the macro RAN node 918 and the LP RAN node 920 and a serving gateway (S-GW) , shown as S-GW 1 132, and an Sl -mobility management entity (MME) interface, shown as Sl-MME interface 926, which is a signaling interface between the macro RAN node 918 and LP RAN node 920 and the MME(s) 930.
  • S-GW serving gateway
  • MME Sl -mobility management entity
  • the CN 928 comprises the MME (s) 930, the S-GW 932, a Packet Data Network (PDN) Gateway (P-GW) (shown as P-GW 934) , and a home subscriber server (HSS) (shown as HSS 936) .
  • the MME (s) 930 may be similar in function to the control plane of legacy Serving General Packet Radio Service (GPRS) Support Nodes (SGSN) .
  • GPRS General Packet Radio Service
  • SGSN General Packet Radio Service
  • the MME (s) 930 may manage mobility aspects in access such as gateway selection and tracking area list management.
  • the HSS 936 may comprise a database for network users, including subscription-related information to support the network entities’ handling of communication sessions.
  • the CN 928 may comprise one or several HSS 936, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc.
  • the HSS 936 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc.
  • the S-GW 932 may terminate the Sl interface 322 towards the RAN 906, and routes data packets between the RAN 906 and the CN 928.
  • the S-GW 932 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3 GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
  • the P-GW 934 may terminate an SGi interface toward a PDN.
  • the P-GW 934 may route data packets between the CN 928 (e.g., an EPC network) and external networks such as a network including the application server 942 (alternatively referred to as application function (AF) ) via an Internet Protocol (IP) interface (shown as IP communications interface 938) .
  • an application server 942 may be an element offering applications that use IP bearer resources with the core network (e.g., ETMTS Packet Services (PS) domain, LTE PS data services, etc. ) .
  • the P-GW 934 is shown to be communicatively coupled to an application server 1 142 via an IP communications interface 938.
  • the application server 942 can also be configured to support one or more communication services (e.g., Voice-over-Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc. ) for the UE 902 and the UE 904 via the CN 928.
  • VoIP Voice-over-Internet Protocol
  • PTT sessions PTT sessions
  • group communication sessions social networking services, etc.
  • the P-GW 934 may further be a node for policy enforcement and charging data collection.
  • a Policy and Charging Enforcement Function (PCRF) (shown as PCRF 940) is the policy and charging control element of the CN 928.
  • PCRF 940 Policy and Charging Enforcement Function
  • HPLMN Home Public Land Mobile Network
  • IP-CAN Internet Protocol Connectivity Access Network
  • PCRFs associated with a UE’s IP-CAN session: a Home PCRF (H-PCRF) within a HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN) .
  • H-PCRF Home PCRF
  • V-PCRF Visited PCRF
  • the PCRF 940 may be communicatively coupled to the application server 942 via the P-GW 934.
  • the application server 942 may signal the PCRF 940 to indicate a new service flow and select the appropriate Quality of Service (QoS) and charging parameters.
  • the PCRF 940 may provision this rule into a Policy and Charging Enforcement Function (PCEF) (not shown) with the appropriate traffic flow template (TFT) and QoS class of identifier (QCI) , which commences the QoS and charging as specified by the application server 942.
  • PCEF Policy and Charging Enforcement Function
  • TFT traffic flow template
  • QCI QoS class of identifier
  • At least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below.
  • the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below.
  • circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
  • Example 1 includes a method for a user equipment (UE) , comprising:
  • TCI Transmission Configuration Indicator
  • Example 2 includes the method of example 1, wherein the multi-TCI state switching is dual-TCI state switching.
  • Example 3 includes the method of example 2, wherein the candidate combinations of known or unknown states of target TCI states comprise:
  • both target TCI states are known to the UE
  • both target TCI states are unknown to the UE.
  • one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
  • Example 4 includes the method of example 3, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, comprises:
  • Example 5 includes the method of example 4, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, further comprises:
  • a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
  • Example 6 includes the method of example 4 or 5, wherein the additional delay is based on at least one of the following:
  • L1-RSRP Layer 1-Reference Signal Received Power
  • Example 7 includes the method of example 5, wherein the reduced beam sweeping factor is based on a maximum number of Layer 1 (L1) beams supported by respective panels of the UE.
  • L1 Layer 1
  • Example 8 includes the method of example 5, wherein the reported UE capability for indicating a reduced beam sweeping factor is able to be overridden by the UE via at least one of the following: a Layer 1 (L1) message, a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  • L1 Layer 1
  • MAC-CE medium access control-control element
  • RRC radio resource control
  • Example 9 includes the method of example 5, wherein the UE capability for indicating a reduced beam sweeping factor is reported to the network along with a timer that sets an expiration time of the reduced beam sweeping factor.
  • Example 10 includes the method of example 5, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling from the network.
  • Example 11 includes the method of example 10, wherein:
  • the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network determines that a single downlink control information (DCI) is configured for the UE; and
  • DCI downlink control information
  • the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network determines that multiple DCI is configured for the UE.
  • Example 12 includes the method of example 10, wherein the network signaling is a cell-specific signaling or a UE specific signaling.
  • Example 13 includes the method of example 2, further comprising:
  • Example 14 includes the method of example 13, wherein the reporting a beam pair that the UE supports to the network comprises one of the following:
  • CMR channel measurement resource
  • L1-RSRP Layer 1-Reference Signal Received Power
  • Example 15 includes the method of example 13, wherein the informing the network that one of or both of indicated target TCI states are not working is performed in response to determining that at least one of the following cases occurs:
  • MAC-CE medium access control-control element
  • PDCCH Physical Downlink Control Channel
  • the network configures a Search Space linkage for PDCCH repetition, and two linked Search Space overlaps in time domain, the UE cannot receive two linked Search Space with corresponding active TCI states simultaneously;
  • the network activates a TCI codepoint for a Physical Downlink Shared Channel (PDSCH) , and the activated TCI codepoint contains two TCI States that the UE cannot receive simultaneously;
  • PDSCH Physical Downlink Shared Channel
  • the UE is scheduled by the network to receive two PDSCH simultaneously, but for two TCI States corresponding to different PDSCH overlapping in time, the UE cannot receive simultaneously;
  • a unified TCI codepoint is activated with two TCI States that the UE cannot receive simultaneously;
  • the UE is scheduled by the network to transmit two Physical Uplink Shared Channel (PUSCH) /Physical Uplink Control Channel (PUCCH) simultaneously, but for two TCI/Spatial Relation corresponding to different PUSCH overlapping in time, the UE cannot transmit simultaneously; or
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the network configures two Sounding Reference Signal (SRS) -Resource Sets for either “codebook” or “nonCodebook” for simultaneous PUSCH transmission, some SRS-Resource pair (s) in different SRS-Resource Sets cannot be used by the UE for simultaneous transmission.
  • SRS Sounding Reference Signal
  • Example 16 includes the method of example 13, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via one of the following: an uplink control information (UCI) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  • UCI uplink control information
  • MAC-CE medium access control-control element
  • RRC radio resource control
  • Example 17 includes the method of example 16, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via the MAC-CE if at least one of the following criteria is satisfied:
  • the UE has a PUSCH grant, and the UE is able to use the PUSCH grant to transmit the MAC-CE;
  • the UE does not have a PUSCH grant, but the UE is able to use a scheduling request (SR) to request a PUSCH grant; or
  • SR scheduling request
  • the UE is able to use random access (RA) to request transmission of report of invalid network TCI activation/indication.
  • RA random access
  • Example 18 includes the method of example 17, wherein the SR is configured separately and/or is assigned with a different priority compared to the other SR (s) .
  • Example 19 includes the method of example 17, wherein the RA is a Contention Free Random Access (CFRA) or a Contention Based Random Access (CBRA) .
  • CFRA Contention Free Random Access
  • CBRA Contention Based Random Access
  • Example 20 includes a method for a network device, comprising:
  • UE user equipment
  • TCI Transmission Configuration Indicator
  • Example 21 includes the method of example 20, wherein the multi-TCI state switching is dual-TCI state switching.
  • Example 22 includes the method of example 21, wherein the received UE capability comprises a UE capability reported for the following candidate combinations of known or unknown states of target TCI states:
  • both target TCI states are known to the UE
  • both target TCI states are unknown to the UE.
  • one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
  • Example 23 includes the method of example 22, wherein the UE capability reported for each of the candidate combinations comprises:
  • Example 24 includes the method of example 23, wherein the UE capability reported for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE further comprises:
  • a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
  • Example 25 includes the method of example 24, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
  • the UE in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the legacy single-TCI state switching delay;
  • the UE in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the additional delay and the legacy single-TCI state switching delay.
  • Example 26 includes the method of example 24, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
  • the UE in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on a legacy single-TCI state switching delay of the known target TCI state, and
  • the UE in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on the additional delay and a legacy single-TCI state switching delay of the known target TCI state;
  • the UE in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor, and
  • determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor and adding the additional delay to the legacy single-TCI state switching delay of the unknown target TCI state.
  • Example 27 includes the method of example 24, wherein the UE capability for indicating a reduced beam sweeping factor is attached with a timer that sets an expiration time of the reduced beam sweeping factor.
  • Example 28 includes the method of example 24, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling of the network device.
  • Example 29 includes the method of example 28, wherein:
  • the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network device determines that a single downlink control information (DCI) is configured for the UE; and
  • DCI downlink control information
  • the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network device determines that multiple DCI is configured for the UE.
  • Example 30 includes the method of example 28, wherein the network signaling is a cell-specific signaling or a UE specific signaling.
  • Example 31 includes the method of example 21, further comprising:
  • Example 32 includes an apparatus for a user equipment (UE) , the apparatus comprising:
  • processors configured to perform steps of the method according to any of Examples 1-19.
  • Example 33 includes an apparatus for a network device, the apparatus comprising:
  • processors configured to perform steps of the method according to any of Examples 20-31.
  • Example 34 is a computer readable medium having computer programs stored thereon which, when executed by one or more processors, cause an apparatus to perform steps of the method according to any of Examples 1-31.
  • Example 35 is an apparatus for a communication device, comprising means for performing steps of the method according to any of Examples 1-31.
  • Example 36 is a computer program product comprising computer programs which, when executed by one or more processors, cause an apparatus to perform steps of the method according to any of Examples 1-31.
  • personally identifiable information should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users.
  • personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a method for a user equipment (UE). The method includes determining, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching; and reporting the determined UE capability to a network.

Description

TRANSMISSION CONFIGURATION INDICATOR (TCI) STATE SWITCHING IMPROVEMENT FOR MULTI-PANEL USER EQUIPMENT TECHNICAL FIELD
This application relates generally to wireless communication systems, and more specifically to Transmission Configuration Indicator (TCI) state switching improvement for multi-panel user equipment (UE) .
BACKGROUND
Wireless mobile communication technology uses various standards and protocols to transmit data between a base station and a wireless communication device. Wireless communication system standards and protocols can include the 3rd Generation Partnership Project (3GPP) long term evolution (LTE) ; fifth-generation (5G) 3GPP new radio (NR) standard; the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard, which is commonly known to industry groups as worldwide interoperability for microwave access (WiMAX) ; and the IEEE 802.11 standard for wireless local area networks (WLAN) , which is commonly known to industry groups as Wi-Fi. In 3GPP radio access networks (RANs) in LTE systems, the base station can include a RAN Node such as an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (also commonly denoted as evolved Node B, enhanced Node B, eNodeB, or eNB) and/or Radio Network Controller (RNC) in an E-UTRAN, which communicate with a wireless communication device, known as user equipment (UE) . In fifth generation (5G) wireless RANs, RAN Nodes can include a 5G Node, new radio (NR) node or g Node B (gNB) , which communicate with a wireless communication device, also known as user equipment (UE) .
SUMMARY
According to an aspect of the present disclosure, a method for a user equipment (UE) (e.g., a multi-panel UE) is provided that comprises determining, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with multi-TCI state switching; and reporting the determined UE capability to a network.
According to an aspect of the present disclosure, a method for a network device is provided that comprises receiving, from a UE, a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching; and determining a TCI state  switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
According to an aspect of the present disclosure, an apparatus for a user equipment (UE) is provided that comprises one or more processors configured to perform steps of the method for the UE according to the present disclosure.
According to an aspect of the present disclosure, an apparatus for a network device is provided that comprises one or more processors configured to perform steps of the method for the network device according to the present disclosure.
According to an aspect of the present disclosure, a computer readable medium is provided that has computer programs stored thereon which, when executed by one or more processors, cause an apparatus to perform steps of the method according to the present disclosure.
According to an aspect of the present disclosure, an apparatus for a communication device is provided that comprises means for performing steps of the method according to the present disclosure.
According to an aspect of the present disclosure, a computer program product is provided that comprises computer programs which, when executed by one or more processors, cause an apparatus to perform steps of the method according to the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Features and advantages of the disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the disclosure.
FIG. 1 is a block diagram of a system including a base station and a user equipment (UE) in accordance with some embodiments.
FIG. 2A illustrates a flowchart for an exemplary method for a UE in accordance with some embodiments.
FIG. 2B illustrates exemplary UE implementations in accordance with some embodiments.
FIG. 3 illustrates a flowchart for an exemplary method for a network device in accordance with some embodiments.
FIG. 4 illustrates an exemplary block diagram of an apparatus for a UE in accordance with some embodiments.
FIG. 5 illustrates an exemplary block diagram of an apparatus for a network device in accordance with some embodiments.
FIG. 6 illustrates example components of a communication device (e.g., a UE or a network device) in accordance with some embodiments.
FIG. 7 illustrates example interfaces of baseband circuitry in accordance with some embodiments.
FIG. 8 illustrates components in accordance with some embodiments.
FIG. 9 illustrates an architecture of a wireless network in accordance with some embodiments.
DETAILED DESCRIPTION
The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail.
The terms used in the description of the various examples in the present disclosure are merely for the purpose of describing particular examples, and are not intended to be limiting. If the number of elements is not specifically defined, it may be one or more, unless otherwise expressly indicated. Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or” . That is, unless specified otherwise, or clear from context, “Aor B” or “A/B” is intended to mean any of the natural inclusive permutations, that is, A, B, or both A and B. In addition, to the extent that the terms “including” , “includes” , “having” , “has” , “with” , or variants thereof are used  in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising” or “comprise. ”
Moreover, unless otherwise stated, the terms “first” , “second” , etc., used to describe various elements are not intended to limit the positional, temporal or importance relationship of these elements, but rather only to distinguish one component from another. In some examples, the first element and the second element may refer to the same instance of the element, and in some cases, based on contextual descriptions, the first element and the second element may also refer to different instances.
The exemplary embodiments are described with reference to a 5G new radio (NR) network. However, it should be understood that the exemplary embodiments may also be implemented in other types of networks, including but not limited to LTE networks, future evolutions of the cellular protocol, or any other type of network.
In new radio (NR) , frequency bands may be separated into two or more different frequency ranges. For example, Frequency Range 1 (FR1) may include frequency bands operating in sub-6 gigahertz (GHz) frequencies, some of which are bands that may be used by previous standards, and may potentially be extended to cover new spectrum offerings from 410 megahertz (MHz) to 7125 MHz. Frequency Range 2 (FR2) may include frequency bands from 24.25 GHz to 52.6 GHz. Note that in some systems, FR2 may also include frequency bands from 52.6 GHz to 71 GHz (or beyond) (referred to as FR2-2) , in addition to frequency bands from 24.25 GHz to 52.6 GHz (FR2-1) . Bands in the millimeter wave (mmWave) range of FR2 may have smaller coverage but potentially higher available bandwidth than bands in FR1. Skilled persons will recognize these frequency ranges, which are provided by way of example, may change from time to time or from region to region.
Currently, in 3GPP Release 18, there is a Work Item (WI) “Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception” , with the following objectives: Introduce necessary requirement (s) for enhanced FR2-1 UEs with simultaneous downlink (DL) reception from different directions with different Quasi co-location (QCL) Type D Reference Signals (RSs) on a single component carrier.
With regard to the aspects of enhanced Radio Resource Management (RRM) requirements, the following requirements should be studied and specified if necessary: 1) Layer 1-Reference Signal Received Power (L1-RSRP) measurement delay; 2) Layer 3 (L3) measurement delay (both cell detection delay and measurement period can be considered) , where the starting point is the enhancements related to L1-RSRP measurement enhancements; 3) Radio Link Monitoring (RLM) and Beam Failure Detection (BFD) /Candidate Beam Detection (CBD) requirements; 4) Scheduling/measurement restrictions; 5) Transmission Configuration Indicator (TCI) state  switching delay with dual TCI; and 6) Receive timing difference between different directions (different QCL Type D RSs) .
On such a basis, the present disclosure aims to provide the requirements for the TCI state switching delay with multi-TCI states (e.g., dual TCI states) .
In new radio (NR) , a TCI state is used to establish the Quasi co-location (QCL) connection between the target reference signal (RS) and source reference signal (RS) . Two antenna ports are said to be quasi co-located if properties of the channel over which a symbol on one antenna port is conveyed can be inferred from the channel over which a symbol on the other antenna port is conveyed. The antenna ports QCL types (QCL types A-D) are defined in 3GPP TS38.214 section 5.1.5.
TCI states are configured for physical downlink control channel (PDCCH) , physical downlink shared channel (PDSCH) and channel state information reference signal (CSI-RS) in order to convey the QCL indication for the respective RS. In frequency range (FR1) QCL Types A-C and in FR2 QCL types A-D are applicable. The QCL Type D for FR2 indicates that PDCCH/PDSCH/CSI-RS is transmitted with the same spatial filter as the reference signal associated with that TCI. In FR2, the network can indicate a transmit beam change for PDSCH or PDCCH by switching the TCI state.
Currently, a TCI state can be known or unknown to the UE (i.e. by the UE) , as defined in the following manner in 3GPP TS38.133 section 8.10.2:
The TCI state is known if the following conditions are met:
- During the period from the last transmission of the RS resource used for the L1-RSRP measurement reporting for the target TCI state to the completion of active TCI state switch, where the RS resource for L1-RSRP measurement is the RS in target TCI state or QCLed to the target TCI state
- TCI state switch command is received within 1280 ms upon the last transmission of the RS resource for beam reporting or measurement
- The UE has sent at least 1 L1-RSRP report for the target TCI state before the TCI state switch command
- The TCI state remains detectable during the TCI state switching period
- The SSB associated with the TCI state remain detectable during the TCI switching period
- SNR of the TCI state ≥ -3dB
Otherwise, the TCI state is unknown.
With dual TCI, i.e., two TCI states, there are the following combinations for the target TCI states (i.e., the TCI states to switch to) : (known, known) , (known, unknown) , (unknown, unknown) . The present disclosure aims to provide solutions on handling these cases, e.g., aims to provide suitable requirements for the TCI state switching delay for these cases. Also, it provides a mechanism for a UE to inform the network in case the configured TCI state is invalid.
FIG. 1 illustrates a wireless network 100, in accordance with some embodiments. The wireless network 100 includes a UE 101 and a base station 150 connected via an air interface 190.
The UE 101 and any other UE in the system may be, for example, laptop computers, smartphones, tablet computers, printers, machine-type devices such as smart meters or specialized devices for healthcare monitoring, remote security surveillance, an intelligent transportation system, or any other wireless devices with or without a user interface. The base station 150 provides network connectivity to a broader network (not shown) to the UE 101 via the air interface 190 in a base station service area provided by the base station 150. In some embodiments, such a broader network may be a wide area network operated by a cellular network provider, or may be the Internet. Each base station service area associated with the base station 150 is supported by antennas integrated with the base station 150. The service areas are divided into a number of sectors associated with certain antennas. Such sectors may be physically associated with fixed antennas or may be assigned to a physical area with tunable antennas or antenna settings adjustable in a beamforming process used to direct a signal to a particular sector. One embodiment of the base station 150, for example, includes three sectors each covering a 120 degree area with an array of antennas directed to each sector to provide 360 degree coverage around the base station 150.
The UE 101 includes control circuitry 105 coupled with transmit circuitry 110 and receive circuitry 115. The transmit circuitry 110 and receive circuitry 115 may each be coupled with one or more antennas. The one or more antennas may include antenna elements to convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals. The antenna elements may be arranged into one or more antenna panels. The one or more antennas may have antenna panels that are omnidirectional, directional, or a combination thereof to enable beamforming and multiple input, multiple output communications. The one or more antennas may include microstrip antennas, printed antennas fabricated on the surface of one or more printed circuit boards, patch antennas, or phased array antennas. The one or more antennas may have one or more panels designed for specific frequency bands including bands in FR1 or FR2. The control circuitry 105 may be adapted to perform operations associated with MTC. In some embodiments, the control circuitry 105 of the UE 101 may perform calculations or may initiate measurements associated with the air interface 190 to determine a channel quality of the available connection to the base station 150. These calculations may be  performed in conjunction with control circuitry 155 of the base station 150. The transmit circuitry 110 and receive circuitry 115 may be adapted to transmit and receive data, respectively. The control circuitry 105 may be adapted or configured to perform various operations such as those described elsewhere in this disclosure related to a UE. The transmit circuitry 110 may transmit a plurality of multiplexed uplink physical channels. The plurality of uplink physical channels may be multiplexed according to time division multiplexing (TDM) or frequency division multiplexing (FDM) . The transmit circuity 110 may be configured to receive block data from the control circuitry 105 for transmission across the air interface 190. Similarly, the receive circuitry 115 may receive a plurality of multiplexed downlink physical channels from the air interface 190 and relay the physical channels to the control circuitry 105. The uplink and downlink physical channels may be multiplexed according to TDM or FDM. The transmit circuitry 110 and the receive circuitry 115 may transmit and receive both control data and content data (e.g., messages, images, video, et cetera) structured within data blocks that are carried by the physical channels.
FIG. 1 also illustrates the base station 150, in accordance with various embodiments. The base station 150 circuitry may include control circuitry 155 coupled with transmit circuitry 160 and receive circuitry 165. The transmit circuitry 160 and receive circuitry 165 may each be coupled with one or more antennas that may be used to enable communications via the air interface 190.
The control circuitry 155 may be adapted to perform operations associated with MTC. The transmit circuitry 160 and receive circuitry 165 may be adapted to transmit and receive data, respectively, within a narrow system bandwidth that is narrower than a standard bandwidth structured for person to person communication. In some embodiments, for example, a transmission bandwidth may be set at or near 1.4MHz. In other embodiments, other bandwidths may be used. The control circuitry 155 may perform various operations such as those described elsewhere in this disclosure related to a base station.
Within the narrow system bandwidth, the transmit circuitry 160 may transmit a plurality of multiplexed downlink physical channels. The plurality of downlink physical channels may be multiplexed according to TDM or FDM. The transmit circuitry 160 may transmit the plurality of multiplexed downlink physical channels in a downlink super-frame that is comprised of a plurality of downlink subframes.
Within the narrow system bandwidth, the receive circuitry 165 may receive a plurality of multiplexed uplink physical channels. The plurality of uplink physical channels may be multiplexed according to TDM or FDM. The receive circuitry 165 may receive the plurality of multiplexed uplink physical channels in an uplink super-frame that is comprised of a plurality of uplink subframes.
As described further below, the  control circuitry  105 and 155 may be involved with measurement of a channel quality for the air interface 190. The channel quality may, for example, be based on physical obstructions between the UE 101 and the base station 150, electromagnetic signal interference from other sources, reflections or indirect paths between the UE 101 and the base station 150, or other such sources of signal noise. Based on the channel quality, a block of data may be scheduled to be retransmitted multiple times, such that the transmit circuitry 110 may transmit copies of the same data multiple times and the receive circuitry 115 may receive multiple copies of the same data multiple times.
The UE and various base stations (for example, base stations that act as the network device for communicating with the UE) described in the following embodiments may be implemented by the UE 101 and the base station 150 described in FIG. 1.
FIG. 2A illustrates a flowchart for an exemplary method for a user equipment in accordance with some embodiments. The method 200 illustrated in FIG. 2A may be implemented by the UE 101 described in FIG. 1.
The method 200 may begin at step S202, where the UE (which may be a multi-panel UE with two or more panels) may determine, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching (i.e. TCI state switching with multiple target TCI states) . The method 200 may further include step S204, where the UE may report the determined UE capability to a network.
In some embodiments, the multi-TCI state switching (i.e. TCI state switching with multiple target TCI states) is dual-TCI state switching (i.e. TCI state switching with dual target TCI states) .
Under such case, the candidate combinations of known or unknown states of target TCI states include: 1) both target TCI states are known to the UE, which can be referred to as (known, known) case/combination; 2) both target TCI states are unknown to the UE, which can be referred to as (unknown, unknown) case/combination; and 3) one target TCI state is known to the UE, and the other target TCI state is unknown to the UE, which can be referred to as (known, unknown) case/combination.
Accordingly, determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with multi-TCI state switching, includes: for each of the candidate combinations (e.g., each of the above three candidate combinations) , determining a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional  delay compared to the legacy single-TCI state switching delay (namely, determining a UE capability for distinguishing whether the UE is a UE that is able to complete the multi-TCI state switching using a legacy TCI state switching delay of single-TCI state switching, or a UE that needs an additional delay compared to the legacy TCI state switching delay of the single-TCI state switching, to complete the multi-TCI state switching) . Where the single-TCI state switching refers to TCI state switching with a single target TCI state, and the legacy single-TCI state switching delay (i.e. the legacy TCI state switching delay of single-TCI state switching) refers to the existing 3GPP R15 TCI state switching delay (for single TCI state) that is defined in 3GPP TS38.133 section 8.10, for example.
In some embodiments, the additional delay is based on at least one of the following: cross-panel switching time of the UE; or L1-RSRP measurement and processing constraints of the UE.
Stated otherwise, for each of the (known, known) , (known, unknown) , (unknown, unknown) cases, a UE capability is needed to differentiate:
1) UEs that can meet the existing 3GPP R15 TCI state switching delay (for single TCI state) , i.e., the TCI switching for each TCI state is independent; and
2) UEs that need some additional delay compared to the existing 3GPP R15 TCI state switching delay (for single TCI state) because of one or more of the following: cross-panel switching time, e.g., two panels cannot be switched off or on in parallel, but sequentially; L1-RSRP measurement and processing constraint, i.e., there is some baseband (BB) resource sharing that the two L1-RSRP measurement processes (for two unknown TCI states, for example) are not completely independent; or other implementation constraints.
Note that, for a medium access layer (MAC) -control element (CE) based TCI state switch for example, the existing 3GPP R15 TCI state switching delay (for single TCI state) is defined in 3GPP TS38.133 section 8.10.3 in the following manner.
(1) If the target TCI state is known, the TCI state switching delay is:
Figure PCTCN2022130301-appb-000001
Where T HARQ represents the timing between the DL data transmission and corresponding acknowledgement, as specified in 3GPP TS 38.213. T first-SSB represents the timing between the MAC-CE command being decoded by the UE to the first Synchronization Signal Block (SSB) transmission after, where the SSB shall be the QCL-TypeA or QCL-TypeC for the target TCI  state. T SSB-proc =2 ms. TO k =1 if the target TCI state is not in the active TCI state list for the PDSCH, and TO k =0 if the target TCI state is in the active TCI state list for the PDSCH.
(2) If the target TCI state is unknown, the TCI state switching delay is:
Figure PCTCN2022130301-appb-000002
Where T L1-RSRP represents the time for an L1-RSRP measurement for receive (Rx) beam refinement, and is defined as T L1-RSPR_Measurement_Period_SSB for an SSB as specified in clause 9.5.4.1 (e.g., in Table 9.5.4.1-2 for FR2) or T L1-RSPR_Measurement_Period_CSI-RS for CSI-RS as specified in clause 9.5.4.2 (e.g., in Table 9.5.4.2-2 for FR2) , subject to various other considerations as defined in 3GPP TS38.133 section 8.10.3. TO uk =1 for a CSI-RS based L1-RSRP measurement, and TO uk =0 for an SSB based L1-RSRP measurement when the TCI state switching involves QCL-TypeD. TO uk =1 when the TCI state switching involves other QCL types only.
For the purposes of clarity, the Table 9.5.4.1-2 and Table 9.5.4.2-2 in 3GPP TS38.133 are reproduced in the present disclosure as follows:
Table 9.5.4.1-2: Measurement period T L1-RSRP_Measurement_Period_SSB for FR2
Figure PCTCN2022130301-appb-000003
Table 9.5.4.2-2: Measurement period T L1-RSRP_Measurement_Period_CSI-RS for FR2
Figure PCTCN2022130301-appb-000004
Note that all the values/definitions of the parameters in the above two tables and above two formulas of the legacy TCI state switching delay can be referred to the corresponding sections of the 3GPP TS38.133, which thus will not be repeated herein.
In some embodiments, determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, further includes:
for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE, further determining a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for Rx beam refinement in single-TCI state switching.
In other words, for the (known, unknown) case, in addition to determining a first UE capability to differentiate between different UEs that can meet or not meet the existing 3GPP R15 TCI state switching delay, a second UE capability for indicating a reduced beam sweeping factor may also be determined, this is because:
For the known target TCI state of the (known, unknown) case, no L1-RSRP measurement is needed, and thus both panels (taking the UE with two panels as an example) can be used by the UE to conduct the L1-RSRP measurement for the unknown target TCI state. As a result, depending on UE implementation (as shown in FIG. 2B) , the beam sweeping factor (e.g., the parameter “N” in Table 9.5.4.1-2 and Table 9.5.4.2-2) can be reduced from its legacy value defined in 3GPP TS38.133 (and in turn the value of T L1-RSRP can be reduced) .
In some embodiments, the reduced beam sweeping factor is based on a maximum number of Layer 1 (L1) beams supported by respective panels of the UE.
Taking the T L1-RSRP_Measurement_Period_SSB defined in Table 9.5.4.1-2 for FR2 for example, the value of the legacy beam sweeping factor N equals to 8. When the UE adopts the implementation shown on the left in FIG. 2B (i.e. the UE has two panels, and each of the panels supports four L1 beams) , then the new beam sweeping factor, i.e. the reduced beam sweeping factor N’ can be 4. When the UE adopts the implementation shown on the right in FIG. 2B (i.e. the UE has two panels, one of the panels supports two L1 beams and the other supports six L1 beams) , then the new beam sweeping factor, i.e. the reduced beam sweeping factor N’ can be 6. It shall be appreciated that while the exemplary embodiments describe the value of the reduced beam sweeping factor N’ as 4 or 6 for example, other values can also be adopted for the reduced beam sweeping factor N’ as long as it is less than the value of the legacy beam sweeping factor N (e.g., N’< 8) . Moreover, the reduced beam sweeping factor N’ (e.g., a range of values thereof) can be hard coded in 3GPP specification.
Further, taking the T L1-RSPR_Measurement_Period_CSI-RS defined in Table 9.5.4.2-2 for FR2 for example, the legacy beam sweeping factor N=ceil (maxNumberRxBeam/N res_per_set) (in a case where periodic CSI-RS resources in a resource set configured with higher layer parameter repetition set to ON, for example) . When the UE adopts the implementation shown on the left in FIG. 2B (i.e. the UE has two panels, and each of the panels supports four L1 beams) , then the parameter “maxNumberRxBeam” can be reduced from 8 to 4, and thus the beam sweeping factor can be reduced from its legacy value (in this case, the reduced “maxNumberRxBeam” can also be regarded as the reduced beam sweeping factor) . When the UE adopts the implementation shown on the right in FIG. 2B (i.e. the UE has two panels, one of the panels supports two L1 beams and the other supports six L1 beams) , then the parameter “maxNumberRxBeam” can be reduced from 8 to 6, and thus the beam sweeping factor can be reduced from its legacy value. Similarly, while the exemplary embodiments describe the reduced value of “maxNumberRxBeam” as 4 or 6 for example, other values can also be adopted for the reduced “maxNumberRxBeam” as long as it is less than the legacy value of “maxNumberRxBeam” . Moreover, the reduced “maxNumberRxBeam” (e.g., a range of values thereof) can be hard coded in 3GPP specification.
In some embodiments, the determined UE capability can be reported by the UE to the network via a Radio Resource Control (RRC) message. Note that, UE capabilities are usually reported to the network when the UE first attaches to the network, namely, before the UE enters an RRC_connected mode (i.e., establishes an RRC connection with the network) for data transmision and receives a TCI state switching command from the network at some point during the data transmission.
In some embodiments, the reported UE capability for indicating a reduced beam sweeping factor can be overridden by the UE via at least one of the following: a Layer 1 (L1) message (i.e. a physical layer message) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
In some embodiment, to allow the UE to save power, the UE capability for indicating a reduced beam sweeping factor is reported to the network along with a timer that sets an expiration time of the reduced beam sweeping factor. When the timer expires, the UE falls back to the default case, e.g., N=8 (or maxNumberRxBeam=8) .
In some embodiments, the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling from the network.
For example, the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network determines that a single downlink control information (DCI) is configured for the UE; and the UE capability for indicating a reduced beam  sweeping factor is disabled at the UE via the network signaling when the network determines that multiple DCI is configured for the UE.
Stated otherwise, the network can control this reduced beam sweeping factor capability by signaling, e.g., based on the following different deployment scenario/configuration:
1) For Single DCI case, this reduced beam sweeping factor capability may be enabled, because dual TCI switching needs to be completed before a UE can be configured to support 4-layer DL Multiple Input Multiple Output (MIMO) ; and
2) For multi DCI case, this reduced beam sweeping factor capability may be disabled, because dual TCI switching needs not be completed before a UE can be configured to support 2-layer DL MIMO on each Angle of Arrival (AoA) .
It shall be understood that when the UE capability for indicating a reduced beam sweeping factor is disabled, the UE will not determine the UE capability for indicating a reduced beam sweeping factor and will not report it to the network.
In some embodiments, the network signaling can be a cell-specific signaling, e.g., contained in a system information block (SIB) ; or a UE specific signaling, e.g., an RRC, MAC CE, or DCI signaling.
In some embodiments, after reporting the determined UE capability to the network, the method of the UE may further include: receiving, from the network, a TCI state switching command that indicates a plurality of target TCI states (e.g., two target TCI states in the case of dual-TCI state switching) . The UE may then use the indicated target TCI states to perform the multi-TCI state switching (e.g., the dual-TCI state switching in a case where two target TCI states are indicated) . Note that based on the target TCI states indicated to the UE and the UE capability reported by the UE, the network can learn the expected UE TCI state switching time (e.g., the expected UE TCI state switching delay) , and the UE is expected to complete the switching within the expected period of time. The details of the determination of the expected UE TCI state switching time (e.g., the expected UE TCI state switching delay) will be described further in the embodiments of the method for a network device.
In some embodiments, the TCI state switching command may be transmitted to the UE from the network in an RRC message, a medium access layer (MAC) control element (CE) , or a Downlink Control Information (DCI) message.
So far it is assumed that the network will configure two target TCI states to the UE based on UE reporting, meaning simultaneous reception of the two target TCI states in DL can be supported  by the UE. However, it is possible the two target TCI states indicated/configured by the network cannot be supported by the UE simultaneously. In this case (i.e. in response to determining that simultaneous reception of the two target TCI states is not supported by the UE) , the method may further include: reporting a beam pair that the UE supports to the network, or informing the network (e.g., in UE’s old TCI states) that one of or both of indicated target TCI states are not working.
In some embodiments, the reporting a beam pair that the UE supports to the network includes one of the following: reporting a beam pair that the UE supports via group-based beam reporting mechanism if the UE knows one or more valid beam pairs; or in response to determining that the UE is configured with two channel measurement resource (CMR) sets for measuring beams, conducting L1-RSRP measurements and reporting if a suitable beam pair is found.
Namely, in the case where the two indicated target TCI states cannot be supported by the UE simultaneously, the UE can take one of the following alternatives in terms of UE behavior:
1) The UE will report two beams it can support via group-based beam reporting mechanism if it knows one or more valid beam pairs;
2) If the UE is configured with two CMR sets to measure beams, UE will conduct L1-RSRP measurements and report if a suitable beam pair is found; or
3) UE will continue the communication with old TCI states and inform the network in its old TCI state that one of or both of indicated target TCI states is not working.
In some embodiments, the informing the network that one of or both of indicated target TCI states are not working is performed in response to determining that at least one of the following cases occurs:
Case 1: a medium access control-control element (MAC-CE) is used to activate two TCI states for a Physical Downlink Control Channel (PDCCH) (CORESET reception) , but the UE cannot receive from two active TCI states simultaneously;
Case 2: the network configures a Search Space linkage for PDCCH repetition, and two linked Search Space overlaps in time domain, the UE cannot receive two linked Search Space with corresponding active TCI states simultaneously;
Case 3: the network activates a TCI codepoint for a Physical Downlink Shared Channel (PDSCH) , and the activated TCI codepoint contains two TCI States that the UE cannot receive simultaneously;
Case 4: the UE is scheduled by the network to receive two PDSCH simultaneously (for example, with two DCI) , but for two TCI States corresponding to different PDSCH overlapping in time, the UE cannot receive simultaneously;
Case 5: for a unified TCI State, a unified TCI codepoint is activated with two TCI States that the UE cannot receive simultaneously;
Case 6: the UE is scheduled by the network to transmit two Physical Uplink Shared Channel (PUSCH) /Physical Uplink Control Channel (PUCCH) simultaneously (for example, with two DCI or single DCI) , but for two TCI/Spatial Relation corresponding to different PUSCH overlapping in time, the UE cannot transmit simultaneously; or
Case 7: the network configures two Sounding Reference Signal (SRS) -Resource Sets for either “codebook” or “nonCodebook” for simultaneous PUSCH transmission, some SRS-Resource pair (s) in different SRS-Resource Sets cannot be used by the UE for simultaneous transmission.
In some embodiments, the informing the network that one of or both of indicated target TCI states are not working is performed via one of the following: an uplink control information (UCI) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
In some embodiments, the informing the network that one of or both of indicated target TCI states are not working is performed via the MAC-CE if at least one of the following criteria is satisfied:
1) the UE has a PUSCH grant, and the UE can use the existing PUSCH grant to transmit the MAC-CE;
2) the UE does not have a PUSCH grant, but the UE can use a scheduling request (SR) to request a PUSCH grant; or
3) the UE can use random access (RA) to request transmission of report of invalid network TCI activation/indication (i.e. the report of one of or both of target TCI states are not working) .
In some embodiments, the SR is configured separately and/or is assigned with a different priority compared to the other SR (s) .
In some embodiments, the RA is a Contention Free Random Access (CFRA) or a Contention Based Random Access (CBRA) . In some embodiments, the CBRA can be used when CFRA is not configured, or when CFRA fails.
It shall be understood that the term “delay” refers to a maximum time threshold/period that can be acceptable for processing/completing a corresponding procedure. For example, the term “TCI state switching delay” may refer to a maximum time threshold that can be acceptable for completing a corresponding TCI state switching.
By introducing new UE capability to differentiate between different UEs that can meet or not meet the existing 3GPP R15 TCI state switching delay, and/or to determine or indicate a reduced beam sweeping factor, the network can have an accurate knowledge of the UE capability for the multi-TCI state switching, and thus the mismatch of delays between the network and the UE during the multi-TCI state switching can be avoided, thereby a smoother procedure of multi-TCI state switching can be provided and the performance of the communication device or system can be improved accordingly.
Note that, in the present disclosure, when describing a communication between a UE and a network (for example, transmitting to a network, receiving from a network) , the communication between the UE and the network may include the communication between the UE/an apparatus of the UE and the network/anetwork device (node) in the network. Also note that, the expressions “network device” and the expression “node” may be used herein interchangeably. In other words, when reference is made to “network device” , it also refers to “node” .
FIG. 3 illustrates a flowchart for an exemplary method for a network device (e.g., a base station, a network controller, or any other network device that can configure/indicate a plurality of target TCI states for a UE) in accordance with some embodiments. For example, the method 300 illustrated in FIG. 3 may be implemented by the base station 150 described in FIG. 1.
The method 300 may begin at step S302, where the network device may receive, from a UE (which may be a multi-panel UE) , a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching.
The method 300 may further include step 304, where the network device may determine a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
In some embodiments, the multi-TCI state switching is dual-TCI state switching.
As described previously in the embodiments of the method of the UE, when the multi-TCI state switching is dual-TCI state switching, the reported UE capability (i.e. the UE capability received at the network device) includes a UE capability reported for the following candidate combinations of known or unknown states of target TCI states: 1) both target TCI states are  known to the UE; 2) both target TCI states are unknown to the UE; and 3) one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
In some embodiments, the UE capability reported for each of the above three candidate combinations includes: a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
In some embodiment, the UE capability reported for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE further includes: a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
Accordingly, determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability includes, in response to determining that the network device is to indicate two known target TCI states or two unknown target TCI states to the UE, i.e. in response to determining that the two to-be-indicated target TCI states belong to a (known, known) case or a (unknown, unknown) case:
1) in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the legacy single-TCI state switching delay (i.e. determining the legacy single-TCI state switching delay as the TCI state switching delay of the multi-TCI state switching, e.g., for a known target TCI state, determining a legacy single-TCI state switching delay of the known target TCI state as a TCI state switching delay of the known target TCI state in the multi-TCI state switching; or for an unknown target TCI state, determining a legacy single-TCI state switching delay of the unknown target TCI state as a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching) ; and
2) in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the additional delay and the legacy single-TCI state switching delay (i.e. determining the legacy single-TCI state switching delay plus the additional delay as the TCI state switching delay of the multi-TCI state switching, e.g., for a known target TCI state, determining a legacy single-TCI state switching delay of the known target TCI state plus the additional delay as a TCI state switching delay of the known target TCI state in the multi-TCI state switching; or for an unknown target TCI state, determining a legacy single- TCI state switching delay of the unknown target TCI state plus the additional delay as a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching) .
In some embodiments, determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability includes, in response to determining that the network device is to indicate one known target TCI state and one unknown target TCI state to the UE, i.e. in response to determining that the two to-be-indicated target TCI states belong to a (known, unknown) case:
1) for the known target TCI state:
in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on a legacy single-TCI state switching delay of the known target TCI state (i.e. determining a legacy single-TCI state switching delay of the known target TCI state as a TCI state switching delay of the known target TCI state in the multi-TCI state switching) , and
in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on the additional delay and a legacy single-TCI state switching delay of the known target TCI state (i.e. determining a legacy single-TCI state switching delay of the known target TCI state plus the additional delay as a TCI state switching delay of the known target TCI state in the multi-TCI state switching) ; and
2) for the unknown target TCI state:
in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor (e.g., the legacy beam sweeping factor “N” or “maxNumberRxBeam” ) used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor, and
in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target  TCI state with the reduced beam sweeping factor and adding the additional delay to the legacy single-TCI state switching delay of the unknown target TCI state.
In some embodiments, the UE capability for indicating a reduced beam sweeping factor is attached with a timer that sets an expiration time of the reduced beam sweeping factor. When the timer expires, the UE falls back to the default case, e.g., N=8 (or maxNumberRxBeam=8) , and the network device will use the default value (i.e. the legacy value) of the beam sweeping factor for the determination of the TCI state switching delay of the multi-TCI state switching.
In some embodiments, the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling of the network device.
For instance, the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network device determines that a single downlink control information (DCI) is configured for the UE; and the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network device determines that multiple DCI is configured for the UE.
It shall be understood that when the UE capability for indicating a reduced beam sweeping factor is disabled, the UE will not determine the UE capability for indicating a reduced beam sweeping factor and will not report it to the network. In such case, similar to the (known, known) and (unknown, unknown) cases, the received UE capability for the (known, unknown) case will include a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay or a UE that needs an additional delay compared to the legacy single-TCI state switching delay, and not include the UE capability for indicating a reduced beam sweeping factor. Thus, the determination of the TCI state switching delay of the multi-TCI state switching for this case will be similar to that of the (known, known) and (unknown, unknown) cases, and thus will not be repeated herein.
In some embodiments, the network signaling is a cell-specific signaling or a UE specific signaling.
In some embodiments, the method of the network device may further include: transmitting a TCI state switching command that indicates a plurality of target TCI states (e.g., two target TCI states in the case of dual-TCI state switching) to the UE. In some embodiments, the TCI state switching command may be transmitted to the UE from the network in a medium access layer (MAC) control element (CE) , or a Downlink Control Information (DCI) message. As described previously, based on the target TCI states indicated for the UE and the UE capability reported by the UE, the network can learn the expected UE TCI state switching time (e.g., the expected UE  TCI state switching delay) , and expect the UE to complete the switching within the expected period of time.
In some embodiments, after transmitting the TCI state switching command that indicates two target TCI states to the UE, the method of the network device may further include: receiving, from the UE, a beam pair that is supported by the UE; or receiving, from the UE, an inform informing that one of or both of indicated target TCI states are not working for the UE.
Such case happens when simultaneous reception of the two indicated target TCI states is not supported by the UE, and such case has been described in detail with the reference to the method of the UE and thus will not be repeated herein. In addition, in response to receiving, from the UE, a beam pair that is supported by the UE or an inform informing that one of or both of indicated target TCI states are not working for the UE, the network device can indicate one or two new target TCI states to the UE (for example, on the basis of the beam pair reported by the UE) .
FIG. 4 illustrates an exemplary block diagram of an apparatus for a user equipment (UE) in accordance with some embodiments. The apparatus 400 illustrated in FIG. 4 may be used to implement the method 200 as illustrated in combination with FIG. 2A.
As illustrated in FIG. 4, the apparatus 400 includes a determining unit 410 and a reporting unit 420.
The determining unit 410 may be configured to determine, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching.
The reporting unit 420 may be configured to report the determined UE capability to a network.
FIG. 5 illustrates an exemplary block diagram of an apparatus for a network device in accordance with some embodiments. The apparatus 500 illustrated in FIG. 5 may be used to implement the method 300 as illustrated in combination with FIG. 3.
As illustrated in FIG. 5, the apparatus 500 includes a receiving unit 510 and a determining unit 520.
The receiving unit 510 may be configured to receive, from a UE, a UE capability associated with multi-TCI state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching. The determining unit 520 may be configured to determine a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
FIG. 6 illustrates example components of a device 600 in accordance with some embodiments. In some embodiments, the device 600 may include application circuitry 602, baseband circuitry 604, Radio Frequency (RF) circuitry (shown as RF circuitry 620) , front-end module (FEM) circuitry (shown as FEM circuitry 630) , one or more antennas 632, and power management circuitry (PMC) (shown as PMC 634) coupled together at least as shown. The components of the illustrated device 600 may be included in a UE or a RAN node. In some embodiments, the device 600 may include fewer elements (e.g., a RAN node may not utilize application circuitry 602, and instead include a processor/controller to process IP data received from an EPC) . In some embodiments, the device 600 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface. In other embodiments, the components described below may be included in more than one device (e.g., said circuitries may be separately included in more than one device for Cloud-RAN (C-RAN) implementations) .
The application circuitry 602 may include one or more application processors. For example, the application circuitry 602 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processor (s) may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) . The processors may be coupled with or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the device 600. In some embodiments, processors of application circuitry 602 may process IP data packets received from an EPC.
The baseband circuitry 604 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The baseband circuitry 604 may include one or more baseband processors or control logic to process baseband signals received from a receive signal path of the RF circuitry 620 and to generate baseband signals for a transmit signal path of the RF circuitry 620. The baseband circuitry 604 may interface with the application circuitry 602 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 620. For example, in some embodiments, the baseband circuitry 604 may include a third generation (3G) baseband processor (3G baseband processor 606) , a fourth generation (4G) baseband processor (4G baseband processor 608) , a fifth generation (5G) baseband processor (5G baseband processor 610) , or other baseband processor (s) 612 for other existing generations, generations in development or to be developed in the future (e.g., second generation (2G) , sixth generation (6G) , etc. ) . The baseband circuitry 604 (e.g., one or more of baseband processors) may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry 620. In other embodiments, some or all of the functionality of the illustrated baseband processors may be included in modules stored in the memory 618 and  executed via a Central Processing ETnit (CPET 614) . The radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc. In some embodiments, modulation/demodulation circuitry of the baseband circuitry 604 may include Fast-Fourier Transform (FFT) , precoding, or constellation mapping/demapping functionality. In some embodiments, encoding/decoding circuitry of the baseband circuitry 604 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functionality are not limited to these examples and may include other suitable functionality in other embodiments.
In some embodiments, the baseband circuitry 604 may include a digital signal processor (DSP) , such as one or more audio DSP (s) 616. The one or more audio DSP (s) 616 may be include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments. Components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or disposed on a same circuit board in some embodiments. In some embodiments, some or all of the constituent components of the baseband circuitry 604 and the application circuitry 602 may be implemented together such as, for example, on a system on a chip (SOC) .
In some embodiments, the baseband circuitry 604 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry 604 may support communication with an evolved universal terrestrial radio access network (EUTRAN) or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , or a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry 604 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
The RF circuitry 620 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry 620 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. The RF circuitry 620 may include a receive signal path which may include circuitry to down-convert RF signals received from the FEM circuitry 630 and provide baseband signals to the baseband circuitry 604. The RF circuitry 620 may also include a transmit signal path which may include circuitry to up-convert baseband signals provided by the baseband circuitry 604 and provide RF output signals to the FEM circuitry 630 for transmission.
In some embodiments, the receive signal path of the RF circuitry 620 may include mixer circuitry 622, amplifier circuitry 624 and filter circuitry 626. In some embodiments, the transmit signal path of the RF circuitry 620 may include filter circuitry 626 and mixer circuitry 622. The  RF circuitry 620 may also include synthesizer circuitry 628 for synthesizing a frequency for use by the mixer circuitry 622 of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 622 of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 630 based on the synthesized frequency provided by synthesizer circuitry 628. The amplifier circuitry 624 may be configured to amplify the down-converted signals and the filter circuitry 626 may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals. Output baseband signals may be provided to the baseband circuitry 604 for further processing. In some embodiments, the output baseband signals may be zero-frequency baseband signals, although this is not a requirement. In some embodiments, the mixer circuitry 622 of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
In some embodiments, the mixer circuitry 622 of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 628 to generate RF output signals for the FEM circuitry 630. The baseband signals may be provided by the baseband circuitry 604 and may be filtered by the filter circuitry 626.
In some embodiments, the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively. In some embodiments, the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) . In some embodiments, the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 may be arranged for direct downconversion and direct upconversion, respectively. In some embodiments, the mixer circuitry 622 of the receive signal path and the mixer circuitry 622 of the transmit signal path may be configured for super-heterodyne operation.
In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternate embodiments, the RF circuitry 620 may include analog-to-digital converter (ADC) and digital -to-analog converter (DAC) circuitry and the baseband circuitry 604 may include a digital baseband interface to communicate with the RF circuitry 620.
In some dual-mode embodiments, a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
In some embodiments, the synthesizer circuitry 628 may be a fractional -N synthesizer or a fractional N/N+l synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable. For example, synthesizer circuitry 628 may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
The synthesizer circuitry 628 may be configured to synthesize an output frequency for use by the mixer circuitry 622 of the RF circuitry 620 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 628 may be a fractional N/N+l synthesizer.
In some embodiments, frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a requirement. Divider control input may be provided by either the baseband circuitry 604 or the application circuitry 602 (such as an applications processor) depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 602.
Synthesizer circuitry 628 of the RF circuitry 620 may include a divider, a delay-locked loop (DLL) , a multiplexer and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) . In some embodiments, the DMD may be configured to divide the input signal by either N or N+l (e.g., based on a carry out) to provide a fractional division ratio. In some example embodiments, the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop. In these embodiments, the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.
In some embodiments, the synthesizer circuitry 628 may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other. In some embodiments, the output frequency may be a LO frequency (fLO) . In some embodiments, the RF circuitry 620 may include an IQ/polar converter.
The FEM circuitry 630 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 632, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 620 for  further processing. The FEM circuitry 630 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 620 for transmission by one or more of the one or more antennas 632. In various embodiments, the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 620, solely in the FEM circuitry 630, or in both the RF circuitry 620 and the FEM circuitry 630.
In some embodiments, the FEM circuitry 630 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry 630 may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry 630 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 620) . The transmit signal path of the FEM circuitry 630 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by the RF circuitry 620) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 632) .
In some embodiments, the PMC 634 may manage power provided to the baseband circuitry 604. In particular, the PMC 634 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion. The PMC 634 may often be included when the device 600 is capable of being powered by a battery, for example, when the device 600 is included in a EGE. The PMC 634 may increase the power conversion efficiency while providing desirable implementation size and heat dissipation characteristics.
FIG. 6 shows the PMC 634 coupled only with the baseband circuitry 604. However, in other embodiments, the PMC 634 may be additionally or alternatively coupled with, and perform similar power management operations for, other components such as, but not limited to, the application circuitry 602, the RF circuitry 620, or the FEM circuitry 630.
In some embodiments, the PMC 634 may control, or otherwise be part of, various power saving mechanisms of the device 600. For example, if the device 600 is in an RRC Connected state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the device 600 may power down for brief intervals of time and thus save power.
If there is no data traffic activity for an extended period of time, then the device 600 may transition off to an RRC Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc. The device 600 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again. The device 600 may not receive data in this state, and in order to receive data, it transitions back to an RRC Connected state.
An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours) . During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
Processors of the application circuitry 602 and processors of the baseband circuitry 604 may be used to execute elements of one or more instances of a protocol stack. For example, processors of the baseband circuitry 604, alone or in combination, may be used to execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 602 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., transmission communication protocol (TCP) and user datagram protocol (UDP) layers) . As referred to herein, Layer 3 may comprise a radio resource control (RRC) layer, described in further detail below. As referred to herein, Layer 2 may comprise a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer, described in further detail below. As referred to herein, Layer 1 may comprise a physical (PHY) layer of a UE/RAN node, described in further detail below.
FIG. 7 illustrates example interfaces 700 of baseband circuitry in accordance with some embodiments. As discussed above, the baseband circuitry 604 of FIG. 6 may comprise  3G baseband processor  606,  4G baseband processor  608, 5G baseband processor 610, other baseband processor (s) 612, CPU 614, and a memory 618 utilized by said processors. As illustrated, each of the processors may include a respective memory interface 1402 to send/receive data to/from the memory 618.
The baseband circuitry 604 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as a memory interface 704 (e.g., an interface to send/receive data to/from memory external to the baseband circuitry 604) , an application circuitry interface 706 (e.g., an interface to send/receive data to/from the application circuitry 602 of FIG. 6) , an RF circuitry interface 708 (e.g., an interface to send/receive data to/from RF circuitry 620 of FIG. 6) , a wireless hardware connectivity interface 710 (e.g., an interface to send/receive data to/from Near Field Communication (NFC) components, 
Figure PCTCN2022130301-appb-000005
components (e.g., 
Figure PCTCN2022130301-appb-000006
Low Energy) , 
Figure PCTCN2022130301-appb-000007
components, and other communication components) , and a power management interface 712 (e.g., an interface to send/receive power or control signals to/from the PMC 634.
FIG. 8 is a block diagram illustrating components 800, according to some example embodiments, able to read instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 8 shows a diagrammatic representation of  hardware resources 802 including one or more processors 812 (or processor cores) , one or more memory/storage devices 818, and one or more communication resources 820, each of which may be communicatively coupled via a bus 822. For embodiments where node virtualization (e.g., NFV) is utilized, a hypervisor 804 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize the hardware resources 802.
The processors 812 (e.g., a central processing unit (CPU) , a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU) , a digital signal processor (DSP) such as a baseband processor, an application specific integrated circuit (ASIC) , a radio-frequency integrated circuit (RFIC) , another processor, or any suitable combination thereof) may include, for example, a processor 814 and a processor 816.
The memory /storage devices 818 may include main memory, disk storage, or any suitable combination thereof. The memory/storage devices 818 may include, but are not limited to any type of volatile or non-volatile memory such as dynamic random access memory (DRAM) , static random-access memory (SRAM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , Flash memory, solid-state storage, etc.
The communication resources 820 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 806 or one or more databases 808 via a network 810. For example, the communication resources 820 may include wired communication components (e.g., for coupling via a Universal Serial Bus (USB) ) , cellular communication components, NFC components, 
Figure PCTCN2022130301-appb-000008
components (e.g., 
Figure PCTCN2022130301-appb-000009
Low Energy) , 
Figure PCTCN2022130301-appb-000010
components, and other communication components.
Instructions 824 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 812 to perform any one or more of the methodologies discussed herein. The instructions 824 may reside, completely or partially, within at least one of the processors 812 (e.g., within the processor’s cache memory) , the memory /storage devices 818, or any suitable combination thereof. Furthermore, any portion of the instructions 824 may be transferred to the hardware resources 802 from any combination of the peripheral devices 806 or the databases 808. Accordingly, the memory of the processors 812, the memory/storage devices 818, the peripheral devices 806, and the databases 808 are examples of computer-readable and machine-readable media.
For one or more embodiments, at least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes,  and/or methods as set forth in the example section below. For example, the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
FIG. 9 illustrates an architecture of a system 900 of a network in accordance with some embodiments. The system 900 includes one or more user equipment (UE) , shown in this example as a UE 902 and a UE 904. The UE 902 and the UE 904 are illustrated as smartphones (e.g., handheld touchscreen mobile computing devices connectable to one or more cellular networks) , but may also comprise any mobile or non-mobile computing device, such as Personal Data Assistants (PDAs) , pagers, laptop computers, desktop computers, wireless handsets, or any computing device including a wireless communications interface.
In some embodiments, any of the UE 902 and the UE 904 can comprise an Internet of Things (IoT) UE, which can comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections. An IoT UE can utilize technologies such as machine-to-machine (M2M) or machine-type communications (MTC) for exchanging data with an MTC server or device via a public land mobile network (PLMN) , Proximity-Based Service (ProSe) or device-to-device (D2D) communication, sensor networks, or IoT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure) , with short-lived connections. The IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc. ) to facilitate the connections of the IoT network.
The UE 902 and the UE 904 may be configured to connect, e.g., communicatively couple, with a radio access network (RAN) , shown as RAN 906. The RAN 906 may be, for example, an Evolved Universal Mobile Telecommunications System (EUMTS) Terrestrial Radio Access Network (E-UTRAN) , a NextGen RAN (NG RAN) , or some other type of RAN. The UE 902 and the UE 904 utilize connection 908 and connection 910, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below) ; in this example, the connection 908 and the connection 910 are illustrated as an air interface to enable communicative coupling, and can be consistent with cellular communications protocols, such as a Global System for Mobile Communications (GSM) protocol, a code-division multiple access (CDMA) network protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, a Universal Mobile  Telecommunications System (UMTS) protocol, a 3GPP Long Term Evolution (LTE) protocol, a fifth generation (5G) protocol, a New Radio (NR) protocol, and the like.
In this embodiment, the UE 902 and the UE 904 may further directly exchange communication data via a ProSe interface 912. The ProSe interface 912 may alternatively be referred to as a sidelink interface comprising one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , a Physical Sidelink Discovery Channel (PSDCH) , and a Physical Sidelink Broadcast Channel (PSBCH) .
The UE 904 is shown to be configured to access an access point (AP) , shown as AP 914, via connection 916. The connection 916 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 914 would comprise a wireless fidelity
Figure PCTCN2022130301-appb-000011
router. In this example, the AP 914 may be connected to the Internet without connecting to the core network of the wireless system (described in further detail below) .
The RAN 906 can include one or more access nodes that enable the connection 908 and the connection 910. These access nodes (ANs) can be referred to as base stations (BSs) , NodeBs, evolved NodeBs (eNBs) , next Generation NodeBs (gNB) , RAN nodes, and so forth, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell) . The RAN 906 may include one or more RAN nodes for providing macrocells, e.g., macro RAN node 918, and one or more RAN nodes for providing femtocells or picocells (e.g., cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells) , e.g., a low power (LP) RAN node such as LP RAN node 920.
Any of the macro RAN node 918 and the LP RAN node 920 can terminate the air interface protocol and can be the first point of contact for the UE 902 and the UE 904. In some embodiments, any of the macro RAN node 918 and the LP RAN node 920 can fulfill various logical functions for the RAN 906 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
In accordance with some embodiments, the EGE 902 and the EGE 904 can be configured to communicate using Orthogonal Frequency-Division Multiplexing (OFDM) communication signals with each other or with any of the macro RAN node 918 and the LP RAN node 920 over a multicarrier communication channel in accordance various communication techniques, such as, but not limited to, an Orthogonal Frequency-Division Multiple Access (OFDMA) communication technique (e.g., for downlink communications) or a Single Carrier Frequency Division Multiple Access (SC-FDMA) communication technique (e.g., for uplink and ProSe or sidelink  communications) , although the scope of the embodiments is not limited in this respect. The OFDM signals can comprise a plurality of orthogonal sub carriers.
In some embodiments, a downlink resource grid can be used for downlink transmissions from any of the macro RAN node 918 and the LP RAN node 920 to the UE 902 and the UE 904, while uplink transmissions can utilize similar techniques. The grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated. There are several different physical downlink channels that are conveyed using such resource blocks.
The physical downlink shared channel (PDSCH) may carry user data and higher-layer signaling to the UE 902 and the UE 904. The physical downlink control channel (PDCCH) may carry information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UE 902 and the UE 904 about the transport format, resource allocation, and H-ARQ (Hybrid Automatic Repeat Request) information related to the uplink shared channel. Typically, downlink scheduling (assigning control and shared channel resource blocks to the UE 904 within a cell) may be performed at any of the macro RAN node 918 and the LP RAN node 920 based on channel quality information fed back from any of the UE 902 and UE 904. The downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UE 902 and the UE 904.
The PDCCH may use control channel elements (CCEs) to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaver for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as resource element groups (REGs) . Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG. The PDCCH can be transmitted using one or more CCEs, depending on the size of the downlink control information (DCI) and the channel condition. There can be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L=l, 2, 4, or 8) .
Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts. For example, some embodiments may utilize an enhanced physical downlink control channel (EPDCCH) that uses PDSCH resources for control information transmission. The EPDCCH may be transmitted using one or more enhanced the control channel elements (ECCEs) . Similar to above, each ECCE may correspond to nine sets of four physical resource elements known as enhanced resource element groups (EREGs) . An ECCE may have other numbers of EREGs in some situations.
The RAN 906 is communicatively coupled to a core network (CN) , shown as CN 928 -via an Sl interface 922. In embodiments, the CN 928 may be an evolved packet core (EPC) network, a NextGen Packet Core (NPC) network, or some other type of CN. In this embodiment the Sl interface 922 is split into two parts: the Sl-U interface 1124, which carries traffic data between the macro RAN node 918 and the LP RAN node 920 and a serving gateway (S-GW) , shown as S-GW 1 132, and an Sl -mobility management entity (MME) interface, shown as Sl-MME interface 926, which is a signaling interface between the macro RAN node 918 and LP RAN node 920 and the MME(s) 930.
In this embodiment, the CN 928 comprises the MME (s) 930, the S-GW 932, a Packet Data Network (PDN) Gateway (P-GW) (shown as P-GW 934) , and a home subscriber server (HSS) (shown as HSS 936) . The MME (s) 930 may be similar in function to the control plane of legacy Serving General Packet Radio Service (GPRS) Support Nodes (SGSN) . The MME (s) 930 may manage mobility aspects in access such as gateway selection and tracking area list management. The HSS 936 may comprise a database for network users, including subscription-related information to support the network entities’ handling of communication sessions. The CN 928 may comprise one or several HSS 936, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc. For example, the HSS 936 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc.
The S-GW 932 may terminate the Sl interface 322 towards the RAN 906, and routes data packets between the RAN 906 and the CN 928. In addition, the S-GW 932 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3 GPP mobility. Other responsibilities may include lawful intercept, charging, and some policy enforcement.
The P-GW 934 may terminate an SGi interface toward a PDN. The P-GW 934 may route data packets between the CN 928 (e.g., an EPC network) and external networks such as a network including the application server 942 (alternatively referred to as application function (AF) ) via an Internet Protocol (IP) interface (shown as IP communications interface 938) . Generally, an  application server 942 may be an element offering applications that use IP bearer resources with the core network (e.g., ETMTS Packet Services (PS) domain, LTE PS data services, etc. ) . In this embodiment, the P-GW 934 is shown to be communicatively coupled to an application server 1 142 via an IP communications interface 938. The application server 942 can also be configured to support one or more communication services (e.g., Voice-over-Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc. ) for the UE 902 and the UE 904 via the CN 928.
The P-GW 934 may further be a node for policy enforcement and charging data collection. A Policy and Charging Enforcement Function (PCRF) (shown as PCRF 940) is the policy and charging control element of the CN 928. In a non-roaming scenario, there may be a single PCRF in the Home Public Land Mobile Network (HPLMN) associated with a ETE’s Internet Protocol Connectivity Access Network (IP-CAN) session. In a roaming scenario with local breakout of traffic, there may be two PCRFs associated with a UE’s IP-CAN session: a Home PCRF (H-PCRF) within a HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN) . The PCRF 940 may be communicatively coupled to the application server 942 via the P-GW 934. The application server 942 may signal the PCRF 940 to indicate a new service flow and select the appropriate Quality of Service (QoS) and charging parameters. The PCRF 940 may provision this rule into a Policy and Charging Enforcement Function (PCEF) (not shown) with the appropriate traffic flow template (TFT) and QoS class of identifier (QCI) , which commences the QoS and charging as specified by the application server 942.
Additional Examples
For one or more embodiments, at least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below. For example, the baseband circuitry as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
The following examples pertain to further embodiments.
Example 1 includes a method for a user equipment (UE) , comprising:
determining, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching; and
reporting the determined UE capability to a network.
Example 2 includes the method of example 1, wherein the multi-TCI state switching is dual-TCI state switching.
Example 3 includes the method of example 2, wherein the candidate combinations of known or unknown states of target TCI states comprise:
both target TCI states are known to the UE;
both target TCI states are unknown to the UE; and
one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
Example 4 includes the method of example 3, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, comprises:
for each of the candidate combinations, determining a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
Example 5 includes the method of example 4, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, further comprises:
for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE, further determining a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
Example 6 includes the method of example 4 or 5, wherein the additional delay is based on at least one of the following:
cross-panel switching time of the UE; or
Layer 1-Reference Signal Received Power (L1-RSRP) measurement and processing constraints of the UE.
Example 7 includes the method of example 5, wherein the reduced beam sweeping factor is based on a maximum number of Layer 1 (L1) beams supported by respective panels of the UE.
Example 8 includes the method of example 5, wherein the reported UE capability for indicating a reduced beam sweeping factor is able to be overridden by the UE via at least one of the following: a Layer 1 (L1) message, a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
Example 9 includes the method of example 5, wherein the UE capability for indicating a reduced beam sweeping factor is reported to the network along with a timer that sets an expiration time of the reduced beam sweeping factor.
Example 10 includes the method of example 5, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling from the network.
Example 11 includes the method of example 10, wherein:
the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network determines that a single downlink control information (DCI) is configured for the UE; and
the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network determines that multiple DCI is configured for the UE.
Example 12 includes the method of example 10, wherein the network signaling is a cell-specific signaling or a UE specific signaling.
Example 13 includes the method of example 2, further comprising:
receiving, from the network, a TCI state switching command that indicates two target TCI states; and
in response to determining that simultaneous reception of the two target TCI states is not supported by the UE, reporting a beam pair that the UE supports to the network, or informing the network that one of or both of indicated target TCI states are not working.
Example 14 includes the method of example 13, wherein the reporting a beam pair that the UE supports to the network comprises one of the following:
reporting a beam pair that the UE supports via group-based beam reporting mechanism if the UE knows one or more valid beam pairs; or
in response to determining that the UE is configured with two channel measurement resource (CMR) sets for measuring beams, conducting Layer 1-Reference Signal Received Power (L1-RSRP) measurements and reporting if a suitable beam pair is found.
Example 15 includes the method of example 13, wherein the informing the network that one of or both of indicated target TCI states are not working is performed in response to determining that at least one of the following cases occurs:
a medium access control-control element (MAC-CE) is used to activate two TCI states for a Physical Downlink Control Channel (PDCCH) , but the UE cannot receive from two active TCI states simultaneously;
the network configures a Search Space linkage for PDCCH repetition, and two linked Search Space overlaps in time domain, the UE cannot receive two linked Search Space with corresponding active TCI states simultaneously;
the network activates a TCI codepoint for a Physical Downlink Shared Channel (PDSCH) , and the activated TCI codepoint contains two TCI States that the UE cannot receive simultaneously;
the UE is scheduled by the network to receive two PDSCH simultaneously, but for two TCI States corresponding to different PDSCH overlapping in time, the UE cannot receive simultaneously;
for a unified TCI State, a unified TCI codepoint is activated with two TCI States that the UE cannot receive simultaneously;
the UE is scheduled by the network to transmit two Physical Uplink Shared Channel (PUSCH) /Physical Uplink Control Channel (PUCCH) simultaneously, but for two TCI/Spatial Relation corresponding to different PUSCH overlapping in time, the UE cannot transmit simultaneously; or
the network configures two Sounding Reference Signal (SRS) -Resource Sets for either “codebook” or “nonCodebook” for simultaneous PUSCH transmission, some SRS-Resource pair (s) in different SRS-Resource Sets cannot be used by the UE for simultaneous transmission.
Example 16 includes the method of example 13, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via one of the following: an uplink control information (UCI) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
Example 17 includes the method of example 16, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via the MAC-CE if at least one of the following criteria is satisfied:
the UE has a PUSCH grant, and the UE is able to use the PUSCH grant to transmit the MAC-CE;
the UE does not have a PUSCH grant, but the UE is able to use a scheduling request (SR) to request a PUSCH grant; or
the UE is able to use random access (RA) to request transmission of report of invalid network TCI activation/indication.
Example 18 includes the method of example 17, wherein the SR is configured separately and/or is assigned with a different priority compared to the other SR (s) .
Example 19 includes the method of example 17, wherein the RA is a Contention Free Random Access (CFRA) or a Contention Based Random Access (CBRA) .
Example 20 includes a method for a network device, comprising:
receiving, from a user equipment (UE) , a UE capability associated with multi-Transmission Configuration Indicator (TCI) state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching; and
determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
Example 21 includes the method of example 20, wherein the multi-TCI state switching is dual-TCI state switching.
Example 22 includes the method of example 21, wherein the received UE capability comprises a UE capability reported for the following candidate combinations of known or unknown states of target TCI states:
both target TCI states are known to the UE;
both target TCI states are unknown to the UE; and
one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
Example 23 includes the method of example 22, wherein the UE capability reported for each of the candidate combinations comprises:
a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
Example 24 includes the method of example 23, wherein the UE capability reported for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE further comprises:
a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
Example 25 includes the method of example 24, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
in response to determining that the network device is to indicate two known target TCI states or two unknown target TCI states to the UE:
in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the legacy single-TCI state switching delay; and
in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the additional delay and the legacy single-TCI state switching delay.
Example 26 includes the method of example 24, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
in response to determining that the network device is to indicate one known target TCI state and one unknown target TCI state to the UE:
for the known target TCI state:
in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on a legacy single-TCI state switching delay of the known target TCI state, and
in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on the additional delay and a legacy single-TCI state switching delay of the known target TCI state; and
for the unknown target TCI state:
in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor, and
in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor and adding the additional delay to the legacy single-TCI state switching delay of the unknown target TCI state.
Example 27 includes the method of example 24, wherein the UE capability for indicating a reduced beam sweeping factor is attached with a timer that sets an expiration time of the reduced beam sweeping factor.
Example 28 includes the method of example 24, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling of the network device.
Example 29 includes the method of example 28, wherein:
the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network device determines that a single downlink control information (DCI) is configured for the UE; and
the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network device determines that multiple DCI is configured for the UE.
Example 30 includes the method of example 28, wherein the network signaling is a cell-specific signaling or a UE specific signaling.
Example 31 includes the method of example 21, further comprising:
after transmitting, to the UE, a TCI state switching command that indicates two target TCI states:
receiving, from the UE, a beam pair that is supported by the UE; or
receiving, from the UE, an inform informing that one of or both of indicated target TCI states are not working for the UE.
Example 32 includes an apparatus for a user equipment (UE) , the apparatus comprising:
one or more processors configured to perform steps of the method according to any of Examples 1-19.
Example 33 includes an apparatus for a network device, the apparatus comprising:
one or more processors configured to perform steps of the method according to any of Examples 20-31.
Example 34 is a computer readable medium having computer programs stored thereon which, when executed by one or more processors, cause an apparatus to perform steps of the method according to any of Examples 1-31.
Example 35 is an apparatus for a communication device, comprising means for performing steps of the method according to any of Examples 1-31.
Example 36 is a computer program product comprising computer programs which, when executed by one or more processors, cause an apparatus to perform steps of the method according to any of Examples 1-31.
Any of the above-described examples may be combined with any other example (or combination of examples) , unless explicitly stated otherwise. The foregoing description of one or more implementations provides illustration and description, but is not intended to be exhaustive or to limit the scope of embodiments to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments.
It should be recognized that the systems described herein include descriptions of specific embodiments. These embodiments can be combined into single systems, partially combined into other systems, split into multiple systems or divided or combined in other ways. In addition, it is contemplated that parameters/attributes/aspects/etc. of one embodiment can be used in another embodiment. The parameters/attributes/aspects/etc. are merely described in one or more embodiments for clarity, and it is recognized that the parameters/attributes/aspects/etc. can be combined with or substituted for parameters/attributes/etc. of another embodiment unless specifically disclaimed herein.
It is well understood that the use of personally identifiable information should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users. In particular, personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.
Although the foregoing has been described in some detail for purposes of clarity, it will be apparent that certain changes and modifications may be made without departing from the principles thereof. It should be noted that there are many alternative ways of implementing both the processes and apparatuses described herein. Accordingly, the present embodiments are to be considered illustrative and not restrictive, and the description is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (23)

  1. A method for a user equipment (UE) , comprising:
    determining, based on candidate combinations of known or unknown states of target Transmission Configuration Indicator (TCI) states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching; and
    reporting the determined UE capability to a network.
  2. The method of claim 1, wherein when the multi-TCI state switching is dual-TCI state switching, the candidate combinations of known or unknown states of target TCI states comprise:
    both target TCI states are known to the UE;
    both target TCI states are unknown to the UE; and
    one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
  3. The method of claim 2, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, comprises:
    for each of the candidate combinations, determining a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
  4. The method of claim 3, wherein determining, based on candidate combinations of known or unknown states of target TCI states of multi-TCI state switching, a UE capability associated with the multi-TCI state switching, further comprises:
    for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE, further determining a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
  5. The method of claim 4, wherein the UE capability for indicating a reduced beam sweeping factor is able to be overridden by the UE via at least one of the following: a Layer 1 (L1) message, a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  6. The method of claim 4, wherein the UE capability for indicating a reduced beam sweeping factor is reported to the network along with a timer that sets an expiration time of the reduced beam sweeping factor.
  7. The method of claim 4, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling from the network.
  8. The method of claim 2, further comprising:
    receiving, from the network, a TCI state switch command that indicates two target TCI states; and
    in response to determining that simultaneous reception of the two target TCI states is not  supported by the UE, reporting a beam pair that the UE supports to the network, or informing the network that one of or both of indicated target TCI states are not working.
  9. The method of claim 8, wherein the reporting a beam pair that the UE supports to the network comprises one of the following:
    reporting a beam pair that the UE supports via group-based beam reporting mechanism if the UE knows one or more valid beam pairs; or
    in response to determining that the UE is configured with two channel measurement resource (CMR) sets for measuring beams, conducting Layer 1-Reference Signal Received Power (L1-RSRP) measurements and reporting if a suitable beam pair is found.
  10. The method of claim 8, wherein the informing the network that one of or both of indicated target TCI states are not working is performed in response to determining that at least one of the following cases occurs:
    a medium access control-control element (MAC-CE) is used to activate two TCI states for a Physical Downlink Control Channel (PDCCH) , but the UE cannot receive from two active TCI states simultaneously;
    the network configures a Search Space linkage for PDCCH repetition, and two linked Search Space overlaps in time domain, the UE cannot receive two linked Search Space with corresponding active TCI states simultaneously;
    the network activates a TCI codepoint for a Physical Downlink Shared Channel (PDSCH) , and the activated TCI codepoint contains two TCI States that the UE cannot receive simultaneously;
    the UE is scheduled by the network to receive two PDSCH simultaneously, but for two TCI States corresponding to different PDSCH overlapping in time, the UE cannot receive simultaneously;
    for a unified TCI State, a unified TCI codepoint is activated with two TCI States that the UE cannot receive simultaneously;
    the UE is scheduled by the network to transmit two Physical Uplink Shared Channel (PUSCH) /Physical Uplink Control Channel (PUCCH) simultaneously, but for two TCI/Spatial Relation corresponding to different PUSCH overlapping in time, the UE cannot transmit simultaneously; or
    the network configures two Sounding Reference Signal (SRS) -Resource Sets for either “codebook” or “nonCodebook” for simultaneous PUSCH transmission, some SRS-Resource pair (s) in different SRS-Resource Sets cannot be used by the UE for simultaneous transmission.
  11. The method of claim 8, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via one of the following: an uplink control information (UCI) , a medium access control-control element (MAC-CE) , or a radio resource control (RRC) signaling.
  12. The method of claim 11, wherein the informing the network that one of or both of indicated target TCI states are not working is performed via the MAC-CE if at least one of the following criteria is satisfied:
    the UE has a PUSCH grant, and the UE is able to use the PUSCH grant to transmit the MAC-CE;
    the UE does not have a PUSCH grant, but the UE is able to use a scheduling request (SR) to request a PUSCH grant; or
    the UE is able to use random access (RA) to request transmission of report of invalid network TCI activation/indication.
  13. A method for a network device, comprising:
    receiving, from a user equipment (UE) , a UE capability associated with multi-Transmission Configuration Indicator (TCI) state switching, wherein the UE capability is reported by the UE based on candidate combinations of known or unknown states of target TCI states of the multi-TCI state switching; and
    determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability.
  14. The method of claim 13, wherein when the multi-TCI state switching is dual-TCI state switching, the received UE capability comprises a UE capability reported for the following candidate combinations of known or unknown states of target TCI states:
    both target TCI states are known to the UE;
    both target TCI states are unknown to the UE; and
    one target TCI state is known to the UE, and the other target TCI state is unknown to the UE.
  15. The method of claim 14, wherein the UE capability reported for each of the candidate combinations comprises:
    a UE capability for distinguishing whether the UE is a UE that is able to meet a legacy single-TCI state switching delay, or a UE that needs an additional delay compared to the legacy single-TCI state switching delay.
  16. The method of claim 15, wherein the UE capability reported for a candidate combination where one target TCI state is known to the UE and the other target TCI state is unknown to the UE further comprises:
    a UE capability for indicating a reduced beam sweeping factor relative to a beam sweeping factor used for determining a time for receive beam refinement in single-TCI state switching.
  17. The method of claim 16, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
    in response to determining that the network device is to indicate two known target TCI states or two unknown target TCI states to the UE:
    in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the legacy single-TCI state switching delay; and
    in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining the TCI state switching delay of the multi-TCI state switching based on the additional delay and the legacy single-TCI state switching delay.
  18. The method of claim 16, wherein determining a TCI state switching delay of the multi-TCI state switching for the UE based at least on the received UE capability comprises:
    in response to determining that the network device is to indicate one known target TCI state and one unknown target TCI state to the UE:
    for the known target TCI state:
    in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on a legacy single-TCI state switching delay of the known target TCI state, and
    in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the known target TCI state in the multi-TCI state switching based on the additional delay and a legacy single-TCI state switching delay of the known target TCI state; and
    for the unknown target TCI state:
    in accordance with a determination that the UE is a UE that is able to meet a legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor, and
    in accordance with a determination that the UE is a UE that needs an additional delay compared to the legacy single-TCI state switching delay, determining a TCI state switching delay of the unknown target TCI state in the multi-TCI state switching by replacing the beam sweeping factor used in a determination of a legacy single-TCI state switching delay of the unknown target TCI state with the reduced beam sweeping factor and adding the additional delay to the legacy single-TCI state switching delay of the unknown target TCI state.
  19. The method of claim 16, wherein the UE capability for indicating a reduced beam sweeping factor is enabled or disabled at the UE via a network signaling of the network device.
  20. The method of claim 19, wherein:
    the UE capability for indicating a reduced beam sweeping factor is enabled at the UE via the network signaling when the network device determines that a single downlink control information (DCI) is configured for the UE; and
    the UE capability for indicating a reduced beam sweeping factor is disabled at the UE via the network signaling when the network device determines that multiple DCI is configured for the UE.
  21. An apparatus for a user equipment (UE) , the apparatus comprising:
    one or more processors configured to perform steps of the method according to any of claims 1-12.
  22. An apparatus for a network device, the apparatus comprising:
    one or more processors configured to perform steps of the method according to any of claims 13-20.
  23. A computer readable medium having computer programs stored thereon which, when executed by one or more processors, cause an apparatus to perform steps of the method according to any of claims 1-20.
PCT/CN2022/130301 2022-11-07 2022-11-07 Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment WO2024098191A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130301 WO2024098191A1 (en) 2022-11-07 2022-11-07 Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130301 WO2024098191A1 (en) 2022-11-07 2022-11-07 Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment

Publications (1)

Publication Number Publication Date
WO2024098191A1 true WO2024098191A1 (en) 2024-05-16

Family

ID=91031744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130301 WO2024098191A1 (en) 2022-11-07 2022-11-07 Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment

Country Status (1)

Country Link
WO (1) WO2024098191A1 (en)

Similar Documents

Publication Publication Date Title
US20240154759A1 (en) Aperiodic srs triggering mechanism enhancement
WO2022236645A1 (en) Fast measurement with multiple concurrent beams
WO2022151378A1 (en) Reference timing for target data measurement in unlicensed spectrum for new radio
WO2022151417A1 (en) HANDOVER WITH PSCell BASED ON TRIGGER MESSAGE
WO2024098191A1 (en) Transmission configuration indicator (tci) state switching improvement for multi-panel user equipment
US11943702B2 (en) Determining reference cell availability
US20240032002A1 (en) Dynamic resource allocation
US11930460B2 (en) SMTC2-LP based RRM enhancement
WO2022151377A1 (en) Delay requirements determination for handover with primary secondary cell
WO2023010477A1 (en) Pdcch reliability enhancement for multi-trp operation
US20240080828A1 (en) Sounding reference signal configuration
WO2024065505A1 (en) Measurement gap design for atg
WO2024065504A1 (en) Cell re-selection for atg
WO2023044757A1 (en) Multiple cdrx configurations and dynamic configuration switching for xr traffic
WO2023044795A1 (en) Frequency hopping enhancement for partial frequency sounding
WO2023065142A1 (en) Secondary cell activation
WO2023077358A1 (en) Ue capability reporting
WO2023029003A1 (en) Configured grant enhancement
WO2022151113A1 (en) Radio resource management relaxation for user equipment based on mobility state
US20240187916A1 (en) Configured grant enhancement
WO2023206144A1 (en) Enhanced gnss measurement for iot ntn
US20230224999A1 (en) Power saving for sdt procedure
WO2022151564A1 (en) Optimizing of scheduling
WO2023010487A1 (en) Reliability enhancement for uplink transmission
WO2023077363A1 (en) System information scheduling with multi-slots pdcch monitoring operation in wireless communication