WO2024096516A1 - 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용 - Google Patents

핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용 Download PDF

Info

Publication number
WO2024096516A1
WO2024096516A1 PCT/KR2023/017108 KR2023017108W WO2024096516A1 WO 2024096516 A1 WO2024096516 A1 WO 2024096516A1 KR 2023017108 W KR2023017108 W KR 2023017108W WO 2024096516 A1 WO2024096516 A1 WO 2024096516A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
glycero
mol
peg
composition
Prior art date
Application number
PCT/KR2023/017108
Other languages
English (en)
French (fr)
Inventor
이혁진
이윤실
진희
정예희
이예지
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230117261A external-priority patent/KR20240066978A/ko
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2024096516A1 publication Critical patent/WO2024096516A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to compositions for transpulmonary delivery of nucleic acid drugs and uses thereof.
  • Lung fibrosis is an irreversible chronic disease based on excessive production of extracellular matrix caused by overexpressed inflammatory activity in environmentally or chemically damaged lung tissue. Abnormal accumulation of fibrous tissue narrows the airways and thickens the epithelium in the alveoli, reducing the oxygen supply to the blood and causing serious breathing problems.
  • Gtse1 G2 and S-phase expressed 1
  • Nucleic acids such as antisense RNA and siRNA are substances that can inhibit the expression of specific proteins in vivo, and are attracting attention as important tools in the treatment of cancer, genetic diseases, infectious diseases, and autoimmune diseases (Novina and Sharp, Nature, 430, 161-164, 2004).
  • nucleic acids such as siRNA are difficult to deliver directly into cells and are easily degraded by enzymes in the blood, many studies are being conducted to overcome this problem.
  • Drug Delivery System is a technology designed to efficiently deliver the required amount of drugs by reducing the side effects of drugs and maximizing their efficacy and effectiveness.
  • conventional viral carriers have proven to be effective as drug carriers in gene therapy, but the use of viruses as a gene delivery system has been discouraged due to several drawbacks such as immunogenicity, limitations in the size of the injected DNA, and difficulties in mass production. It is being restricted.
  • the method of transporting nucleic acids into cells is currently mixing them with positively charged lipids or polymers (named lipid-DNA conjugates (lipoplex) and polymer-DNA conjugates (polyplex), respectively). ) is mainly used (Hirko et al., Curr, Med, Chem., 10, 1185-1193, 2003; Merdan et al., Adv. Drug. Deliv.Rev., 54, 715-758, 2002; Spagnou et al. al., Biochemistry, 43, 13348-13386, 2004).
  • lipid-DNA conjugates are widely used at the cellular level because they bind to nucleic acids and deliver nucleic acids well into cells, but when injected locally in vivo, they often cause inflammation in the body (Filonand and Phillips, Biochim. Biophys/Acta , 1329, 345-356, 1997), it has the disadvantage of accumulating in tissues such as the lung, liver, and spleen, which are the first passage organs during intravascular injection (Ren et al., Gene Therapy. 7, 764-768, 2000 ).
  • the present inventors have made diligent efforts to develop a carrier that can efficiently deliver anionic drugs such as nucleic acids to lung organs or cells in order to treat pulmonary fibrosis, etc., and as a result, the lipid nanoparticle formulation containing mannose of the present invention has been developed.
  • the present invention was completed by confirming the excellent drug delivery effect.
  • One object of the present invention is to provide a composition for transpulmonary delivery of a drug containing lipid nanoparticles containing a mannose-PEG (polyethyleneglycol)-lipid conjugate.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating lung diseases containing the lipid nanoparticles and anionic drugs.
  • the present invention provides a composition for transpulmonary delivery of a drug containing lipid nanoparticles containing a mannose-PEG-lipid conjugate.
  • Lipid nanoparticles containing the mannose-PEG-lipid conjugate of the present invention are specifically delivered to lung tissue, specifically fibrotic lungs or their cells (e.g., lung epithelial cells, endothelial cells, etc.), and thus are delivered with high efficiency.
  • Anionic drugs can be delivered specifically to fibrotic lungs.
  • the lipid nanoparticles of the present invention may specifically target fibrotic lung tissue, and may specifically target lung epithelial cells and/or endothelial cells of fibrotic lung tissue.
  • targeting may mean internalization within the tissue or cell, and may also mean penetration into the nuclear membrane and internalization within the nucleus.
  • composition of the present invention can be delivered topically within the lung, specifically to fibrotic lungs.
  • mannose-PEG-lipid conjugate refers to a conjugated form of mannose, polyethyleneglycol (PEG), and lipid, with mannose at one end of the lipid and PEG at the other end. It may mean a lipid to which a is bound.
  • the mannose-PEG-lipid conjugate may be taken together with other PEG-lipids to form a mixture of PEG-lipid conjugates, wherein a “PEG-lipid conjugate mixture” is a mannose-PEG-lipid conjugate taken together with one or more other PEG-lipid conjugates. It may mean a mixture containing.
  • the PEG-lipid may be, for example, PEG-ceramide, PEG-DMG, PEG-c-DOMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, or a mixture thereof, but is not limited thereto.
  • the PEG-lipid conjugate mixture contributes to the stability of nanoparticles in serum within lipid nanoparticles, prevents aggregation between nanoparticles, and can play a role in increasing the targeting effect to lung tissue or specific cells. .
  • the PEG-lipid conjugate mixture protects nucleic acids from degrading enzymes when delivering anionic drugs such as nucleic acids in vivo, enhances the stability of the drug in the body, and can increase the half-life of the drug encapsulated in nanoparticles.
  • PEG or mannose may be conjugated directly to the lipid or may be connected to the lipid through a linker moiety.
  • Any linker moiety suitable for linking PEG to a lipid can be used, including, for example, ester-free linker moieties and ester-containing linker moieties.
  • the ester-free linker moiety is amido (-C(O)NH-), amino (-NR-), carbonyl (-C(O)-), carbamate (-NHC(O)O- ), urea (-NHC(O)NH-), disulfide (-SS-), ether (-O-), succinyl (-(O)CCH 2 CH 2 C(O)-), succinamidyl ( -NHC(O)CH 2 CH 2 C(O)NH-), ethers, disulfides, as well as combinations thereof (e.g., linkers containing both carbamate linker moieties and amido linker moieties). However, it is not limited to this.
  • the ester-containing linker moiety includes, for example, carbonate (-OC(O)O-), succinoyl, phosphate ester (-O-(O)POH-O-), sulfonate ester and their Including but not limited to combinations.
  • the average molecular weight of the PEG-lipid conjugate mixture is 100 to 10,000 daltons, 200 to 10,000 daltons, 500 to 10,000 daltons, 1,000 to 10,000 daltons, 1,500 to 10,000 daltons.
  • 2000 to 10000 daltons 100 to 7500 daltons, 200 to 7500 daltons, 500 to 7500 daltons, 1000 to 7500 daltons, 1500 to 7500 daltons, 2000 to 7500 daltons, 100 to 5000 daltons, 200 to 5000 daltons , 500 to 5000 daltons , 1000 to 5000 daltons, 1500 to 5000 daltons, 2000 to 5000 daltons, 100 to 3000 daltons, 200 to 3000 daltons, 500 to 3000 daltons, 1000 to 3000 daltons, 1500 to 3000 daltons, 2000 to 3000 daltons ton, 100 to 2600 daltons , 200 to 2600 daltons, 500 to 2600 daltons, 1000 to 2600 daltons, 1500 to 2600 daltons, 2000 to 2600 daltons, 100 to 2500 daltons, 200 to 2500 daltons, 500 to 2500 daltons, 1000 to 2500 daltons, 1500 to 2500 daltons, or 2000 to 2500 daltons,
  • the lipid in the PEG-lipid conjugate can be used without limitation as long as it is a lipid that can bind to polyethylene glycol, and specifically includes ceramide, dimyristoylglycerol (DMG), succinoyl-diacylglycerol, It may be, but is not limited to, s-DAG), distearoylphosphatidylcholine (DSPC), distearoylphosphatidylethanolamine (DSPE), or cholesterol.
  • DMG dimyristoylglycerol
  • DMG dimyristoylglycerol
  • succinoyl-diacylglycerol It may be, but is not limited to, s-DAG), distearoylphosphatidylcholine (DSPC), distearoylphosphatidylethanolamine (DSPE), or cholesterol.
  • the PEG-lipid conjugate mixture is bound to phospholipids such as PEG (PEG-DAA) bound to dialkyloxypropyl, PEG (PEG-DAG) bound to diacylglycerol, and phosphatidylethanolamine.
  • PEG PEG
  • PEG conjugated to ceramide PEG-CER, or ceramide-PEG conjugate
  • PEG conjugated to cholesterol or its derivatives PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG- It may include DMPE, PEG-DPPC, PEG-DSPE, and mixtures thereof, and specifically may include C16-PEG2000 ceramide, DMG-PEG 2000, and 14:0 PEG2000 PE.
  • PEG -ceramide conjugates and/or mannose-PEG-lipid conjugates e.g., mannose-PEG-DSPE conjugates).
  • the PEG-lipid conjugate mixture is 0.1 to 15 mol%, 0.25 to 15 mol%, 0.5 to 15 mol%, 1 to 15 mol%, 1.5 to 15 mol%, 2 to 15 mol%, 2.5 to 15 mol%, 3 to 15 mol%, 0.1 to 10 mol%, 0.25 to 10 mol%, 0.5 to 10 mol%, 1 to 10 mol%, 1.5 to 10 mol%, 2 to 10 mol%, 2.5 to 10 mol%, 3 to 10 Mol%, 0.1 to 9 mol%, 0.25 to 9 mol%, 0.5 to 9 mol%, 1 to 9 mol%, 1.5 to 9 mol%, 2 to 9 mol%, 2.5 to 9 mol%, 3 to 9 mol% , 0.1 to 7.5 mol%, 0.25 to 7.5 mol%, 0.5 to 7.5 mol%, 1 to 7.5 mol%, 1.5 to 7.5 mol%, 2 to 7.5 mol%, 2.5 to 7.5 mol%, 3 to 7.5 mol%,
  • the mannose-PEG-lipid conjugate is 0.1 to 10 mol%, 0.25 to 10 mol%, 0.5 to 10 mol%, 1 to 10 mol%, 1.5 to 10 mol%, 2 to 10 mol%, 0.1 to 7.5 mol%, 0.25 to 7.5 mol%, 0.5 to 7.5 mol%, 1 to 7.5 mol%, 1.5 to 7.5 mol%, 2 to 7.5 mol%, 0.1 to 5 mol%, 0.25 to 5 mol%, 0.5 to 5 mol%, 1 to 5 mol%, 1.5 to 5 mol%, 2 to 5 mol%, 0.1 to 4.5 mol%, 0.25 to 4.5 mol%, 0.5 to 4.5 mol%, 1 to 4.5 mol%, 1.5 to 4.5 mol%, 2 to 4.5 mol% %, 0.1 to 4 mol%, 0.25 to 4 mol%, 0.5 to 4 mol%, 1 to 4 mol%, 1.5 to 4 mol%, 2 to 4.5 mol%, 0.1 to
  • Lipid nanoparticles containing the mannose-PEG-lipid conjugate of the present invention may further include any one or more selected from the group consisting of ionizable lipids, phospholipids, and structural lipids.
  • ionizable lipid may refer to an amine-containing lipid that can be easily protonated, for example, a lipid whose charge state changes depending on the surrounding pH.
  • the ionizable lipid may be positively charged at ambient pH below the pKa and may be progressively neutral at ambient pH above the pKa.
  • the ionizable lipid can associate with a negatively charged drug (e.g., anionic drug and/or nucleic acid), and electrostatic interaction with the drug allows the drug to be incorporated into the lipid nanoparticle. It can play a role in ensuring sealing with high efficiency.
  • a negatively charged drug e.g., anionic drug and/or nucleic acid
  • the ionizable lipid may be any known lipid that possesses a net positive charge at a selective pH, such as physiological pH, without limitation, such as 9-heptadecanyl 8- ⁇ (2-hydroxyethyl)[6-oxo-6- (undecyloxy)hexyl]amino ⁇ octanoate (SM-102), [(4-hydroxybutyl)azanediyl]di(hexane-6,1-diyl)bis(2-hexyldecanoate) ( ALC-0315), N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), 1,2-distearyloxy -N,N-dimethylaminopropane (DSDMA), N-(1-(2,3-dioleyloxy)propyl)-N,N,N-
  • the phospholipids can be any phospholipid that can promote the fusion of lipid nanoparticles without limitation, such as dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC), and palmitoyloleoylphosphatidylcholine.
  • DOPE dioleoylphosphatidylethanolamine
  • DSPC distearoylphosphatidylcholine
  • palmitoyloleoylphosphatidylcholine palmitoyloleoylphosphatidylcholine.
  • the structural lipid maintains the particle shape within the lipid nanoparticle and is dispersed on the core and surface of the nanoparticle to improve the stability of the nanoparticle.
  • the structural lipid is, for example, cholesterol, cholesterol, spinasterol, fecosterol, sitosterol, ergosterol, ergostenol, campesterol, stigmasterol, brassicasterol, tomatidine, ursolic acid, alpha-tocopherol or these. It may be a mixture of, but is not limited thereto.
  • the molar ratio of the ionizable lipid: phospholipid: structural lipid: PEG-lipid conjugate mixture is 20. It may be from 60:10 to 30:30 to 60:0.1 to 10. Specifically, the molar ratio may be 30 to 50:10 to 20:35 to 50:0.5 to 8, and more specifically, 40 to 45:10 to 15:38 to 45:1 to 6, but is not limited thereto. No.
  • the sum of the moles of the PEG-lipid conjugate mixture and the structural lipid is kept constant, and the number of moles of the structural lipid is reduced as much as the number of moles of the PEG-lipid conjugate mixture is increased, so that the number of moles of the structural lipid is reduced.
  • the molar ratio can be maintained.
  • the lipid nanoparticles of the present invention exhibit a positive charge under acidic pH conditions, they easily form a complex with the drug through electrostatic interaction with therapeutic agents such as nucleic acids and anionic drugs that exhibit a negative charge, thereby encapsulating the anionic drug with high efficiency. It can be used as an intracellular or in vivo drug delivery composition. Therefore, the lipid nanoparticles of the present invention can be useful for the delivery of not only nucleic acids but also all types of drugs with anionic properties.
  • the lipid nanoparticles of the present invention can be manufactured in a form (encapsulated form) that additionally contains an anionic drug, and the encapsulated anionic drug can be specifically delivered to the lungs, specifically to fibrotic lungs. there is.
  • the term "encapsulation” refers to encapsulating the delivery material to surround it and efficiently incorporate it into the body
  • the drug encapsulation efficiency refers to the lipid content relative to the total drug content used in manufacturing. It refers to the content of drug encapsulated in nanoparticles.
  • the anionic drug may be a nucleic acid, low molecular weight compound, peptide, protein, protein-nucleic acid structure, or anionic biopolymer-drug conjugate, but can be delivered stably and efficiently by forming lipid nanoparticles with the ionizable lipid of the present invention. It is not limited to this as long as possible.
  • the nucleic acids include small interfering ribonucleic acid (siRNA), ribosomal ribonucleic acid (rRNA), deoxyribonucleic acid (DNA), complementary deoxyribonucleic acid (cDNA), aptamer, messenger ribonucleic acid (mRNA), and carrier ribonucleic acid.
  • siRNA small interfering ribonucleic acid
  • rRNA ribosomal ribonucleic acid
  • DNA complementary deoxyribonucleic acid
  • cDNA complementary deoxyribonucleic acid
  • aptamer messenger ribonucleic acid
  • mRNA messenger ribonucleic acid
  • tRNA carrier ribonucleic acid
  • sgRNA antisense oligonucleotide
  • shRNA shRNA
  • miRNA miRNA
  • ribozyme ribozyme
  • PNA ribozyme
  • DNAzyme DNAzyme
  • the nucleic acid drug may
  • the weight ratio of total lipid/nucleic acid in the lipid nanoparticles may be 1 to 20, specifically 5 to 15, and more specifically 7 to 12, but is not limited thereto.
  • the lipid nanoparticles may have a diameter of, for example, 40 to 150 nm, specifically 50 to 140 nm, and more specifically 60 to 130 nm, but are not limited thereto. .
  • the present invention provides a pharmaceutical composition for preventing or treating lung diseases containing the lipid nanoparticles and an anionic drug.
  • the present invention provides a method of treating lung disease, comprising administering the composition to a subject in need thereof.
  • the present invention provides a pharmaceutical composition for use in the prevention or treatment of lung disease, or a use of the composition for the prevention or treatment of lung disease.
  • Lipid nanoparticles and anionic drugs are as described above.
  • the lipid nanoparticles of the present invention form a stable complex with anionic drugs such as nucleic acids and exhibit low cytotoxicity and effective cell absorption, so they are effective in delivering anionic drugs.
  • the lipid nanoparticles can be specifically delivered to the lungs, specifically fibrotic lungs, or specific cells thereof when administered, and thus can be usefully used in the prevention or treatment of lung diseases.
  • the lipid nanoparticles of the present invention can target the lungs and deliver drugs specifically to them, and according to one embodiment of the present invention, they are more specific to fibrotic lungs and their cells (e.g., lung epithelial cells and endothelial cells). It can be delivered. Accordingly, the lung disease may specifically be pulmonary fibrosis.
  • the term “treatment” refers to intervention to alter the natural processes of an individual or cell with a disease, which may be performed during the progression of the pathology or to prevent it.
  • the desired therapeutic effects include preventing the occurrence or recurrence of the disease, alleviating symptoms, reducing all direct or indirect pathological consequences of the disease, preventing metastasis, reducing the rate of disease progression, and alleviating the disease state. Or it includes temporary relief, remission, or improvement of prognosis.
  • the present invention includes all actions to improve the course of lung-related diseases by administering a composition containing lipid nanoparticles containing mannose-PEG-lipid conjugates and anionic drugs as active ingredients.
  • prevention refers to all actions that suppress or delay the onset of a disease by administering the lipid nanoparticles.
  • the lipid nanoparticles of the present invention are used for treatment or prevention purposes, they are administered to an individual in a therapeutically effective amount.
  • therapeutically effective amount refers to an effective amount of anionic drug-containing lipid nanoparticles.
  • therapeutically effective amount means an amount sufficient to treat the disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity of the individual, age, gender, type of disease, It can be determined based on factors including the activity of the drug, sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, drugs used simultaneously, and other factors well known in the medical field.
  • the pharmaceutical composition of the present invention may be administered as an individual therapeutic agent or in combination with other therapeutic agents, and may be administered sequentially or simultaneously with commercially available therapeutic agents. And it can be administered single or multiple times.
  • the administered dose of the pharmaceutical composition of the present invention may be determined by an expert depending on various factors such as the patient's condition, age, gender, and complications. Since the active ingredient of the composition of the present invention has excellent safety, it can be used at a dose exceeding the determined dosage.
  • composition containing the lipid nanoparticles can be administered orally, intramuscularly, intravenously, arterially, subcutaneously, intraperitoneally, pulmonaryly, and intranasally, and specifically can be administered locally directly into the lungs, and more specifically, into fibrotic lungs. Can be administered topically.
  • composition of the present invention may further include one or more pharmaceutically acceptable carriers for administration.
  • Pharmaceutically acceptable carriers can be saline solution, sterile water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and a mixture of one or more of these ingredients, and if necessary, antioxidants, buffer solutions, Other common additives such as bacteriostatic agents can be added.
  • the lipid nanoparticles of the present invention are specific for lung tissue and its specific cells, have excellent biocompatibility, and can deliver gene therapeutic agents with high efficiency, so they can be usefully used in related technical fields such as lipid nanoparticle-mediated gene therapy.
  • Figure 1 is a schematic diagram showing an exemplary structure of mannose-modified lipid nanoparticles and a mechanism of action against lung diseases using the same.
  • Figure 2 is a graph measuring the intracellular luminescence intensity of mannose-modified lipid nanoparticles encapsulated with mRNA encoding luciferase using various types of ionizable lipids.
  • Figure 3 is an image of an ex vivo organ in which bioluminescence was confirmed to confirm specific delivery of mannose-modified lipid nanoparticles in vivo.
  • Figure 4 is an ex vivo organ image confirming bioluminescence of lipid nanoparticles not modified with mannose.
  • Figure 5 is a graph comparing the fluorescence expression of mannose-modified lipid nanoparticles in each lung cell in LSL-tdTomato mice (blank: general model, colored: lung fibrosis model).
  • Figure 6 is a graph confirming the cytotoxicity of mannose-modified lipid nanoparticles using CellTiter-FluorTM Cell Viability Assay.
  • Figure 7 is a graph measuring the levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), BUN (blood urea nitrogen), and creatinine to confirm the presence or absence of liver and kidney toxicity following administration of mannose-modified lipid nanoparticles.
  • Figure 8 shows GOT (Glutamic Oxaloacetic Transaminase), GPT (Glutamic Pyruvic Transaminase), BUN, and creatinine (CRE) to confirm the presence or absence of liver and kidney damage following administration of mannose-modified lipid nanoparticles using a bleomycin-induced pulmonary fibrosis model. ) is a graph measuring the values.
  • Figures 9 and 10 are images showing histopathological changes in the spleen, liver, kidneys, and lungs using hematoxylin-eosin (H&E) staining to confirm histopathological changes in major organs following administration of mannose-modified lipid nanoparticles. .
  • H&E hematoxylin-eosin
  • Figure 11 shows the results of measuring the inhibitory effect of mannose-modified lipid nanoparticles on the Gtse1 gene by western blot.
  • Figure 12 shows the results of confirming changes in collagen deposition and Gtse1 protein expression level by administration of mannose-modified lipid nanoparticles in an animal model of bleomycin-induced lung fibrosis.
  • Figure 13 shows the results of confirming changes in collagen deposition and Gtse1 protein expression level by administration of mannose-modified lipid nanoparticles in an animal model of radiation-induced lung fibrosis.
  • Figure 14 shows the results of confirming histopathological changes and lung volume caused by administration of mannose-modified lipid nanoparticles in an animal model of radiation-induced lung fibrosis.
  • Figure 15 is a graph measuring vital capacity indices using Flexivent® in an animal model of radiation-induced pulmonary fibrosis.
  • Example 1-1 Manufacturing of mannose-modified lipid nanoparticles
  • Example 1-2 Manufacturing of mannose-modified lipid nanoparticles encapsulated with nucleic acids
  • SM-102, ALC-0315, 246-C10, and 244-cis were prepared as ionizable lipids, and 244-cis was synthesized according to the following reaction scheme.
  • the organic phase in which the ionizable lipids, cholesterol, phospholipids, PEG-lipid conjugates (C16-PEG2000 ceramide) and mannose-PEG-lipid conjugates (mannose-PEG-DSPE conjugates) are dissolved and nucleic acids (mRNA or siRNA) are dissolved.
  • the aqueous phase sodium acetate or sodium citrate
  • ionizable lipid (246-C10):phospholipid (DSPC):cholesterol:C16-PEG2000 ceramide:mannose-PEG-DSPE conjugate was mixed from 42.5:13:43.
  • siRNA siGtse1; SEQ ID NO: 3 and 4
  • Lipid nanoparticles were prepared by mixing the organic phase and the aqueous phase so that the ionizable lipid had a weight ratio of 1:7.5.
  • the prepared lipid nanoparticles were dialyzed against PBS for 16 hours using a 3500 MWCO dialysis cassette to remove ethanol and adjust the pH of the lipid nanoparticles to that of the body.
  • HeLa cells Kerean Cell Line Bank
  • DMEM media SH30022, Hyclone, USA.
  • the mannose-LNP prepared in Example 1-2 containing luciferase mRNA was stirred by pipetting, incubated at room temperature for 10 minutes, and then treated with HeLa cells (20 ng/well based on the mRNA contained in the lipid nanoparticles).
  • Example 3-1 Confirmation of lung-specific delivery using fLuc mRNA
  • Mannose-LNP encapsulated with luciferase mRNA prepared in Example 1-2 was intratracheally injected into the kidney, spleen, liver, lung, and heart of 7-week-old C57BL/6 mice, respectively, at a dose of 0.1 mg/kg based on mRNA, 3 After some time, 0.25 mg/kg of luciferin was administered intraperitoneally, and bioluminescence was confirmed by ex vivo organ imaging using IVIS (PerkinElmer, USA) equipment. The results are shown in Figure 3 and Table 1. .
  • lipid nanoparticles (lipid-PEG at 1.5 mol% including) were manufactured.
  • the non-mannose-modified LNP was injected intravenously at a dose of 0.1 mg/kg based on mRNA into C57BL/6 female 7-week-old mice (Orient Bio), and 3 hours later, 0.25 mg/kg of luciferin was administered intraperitoneally, and the mouse was sacrificed.
  • the organs were removed and bioluminescence was confirmed in each organ through disembodied organ images using IVIS equipment, and the results are shown in Figure 4.
  • mannose-LNPs showed high luminescence intensity in the lungs, while LNPs not modified with mannose showed high luminescence intensities in the liver, through which the formulation of lipid nanoparticles of the present invention It was confirmed that it was delivered specifically to the lungs as it was modified with mannose.
  • Example 3-2 Confirmation of lung cell-specific delivery using Cre mRNA
  • Mannose-LNP encapsulated with Cre mRNA (mCre) prepared in Example 1-2 and LNP (Native LNP) not modified with mannose were administered to LSL-tdTomato mice and lungs in which lung fibrosis occurred at a dose of 0.3 mg/kg based on mRNA.
  • LSL-tdTomato mouse without fibrosis was administered intratracheally, and the expression of tomato fluorescence in each lung cell (epithelial cells, endothelial cells, immune cells) was measured using flow cytometry (LSRFortessa, BD) in the lungs extracted from sacrificed mice. This was confirmed, and the results are shown in Figure 5 (blank: general model, colored: pulmonary fibrosis model).
  • mannose-LNP of the present invention was specifically delivered to fibrotic lungs compared to LNPs that were not modified with mannose.
  • the mannose-LNP of the present invention had a different fluorescence expression pattern for each lung cell compared to the non-mannose-modified LNP, and in particular, it was confirmed that it was most specifically delivered to the epithelial cells of the fibrotic lung.
  • L132 and MEF cells were seeded in a transparent 96 well plate (SPL, 96 Well Cell Culture Plates, 30096) at 0.1 Lipid nanoparticles corresponding to 0.05 ⁇ g or 0.1 ⁇ g of sugar mRNA were treated in the medium so that the total amount was 100 ⁇ l.
  • 100 ⁇ l of CellTiter-FluorTM Cell Viability Assay (Promega, Cat.# G6080) was added per well, incubated for 30 minutes, and then measured at 450 nm using Infinite® 200 PRO NanoQ (Tecan). The absorbance was measured, and the results are shown in Figure 6.
  • AST aspartate aminotransferase
  • ALT alanine aminotransferase
  • BUN blood urea nitrogen
  • the lipid nanoparticles prepared in Example 1-2 were intratracheally administered once to 7-week-old C57BL/6 mice at doses of 0.5 and 0.75 mg/kg based on mRNA, and blood was collected 24 hours after administration to determine AST and ALT levels. , BUN and creatinine levels were confirmed, and the results are shown in Figure 7.
  • Example 4-3 Confirmation of liver and kidney damage indicators in lung fibrosis animal model
  • an animal model of pulmonary fibrosis was constructed by intratracheally administering bleomycin at a dose of 1.8 mg/kg to 7-week-old C57BL/6 mice, and the pulmonary fibrosis animal model prepared in Example 1-2 was administered 1 day before and 4 days after bleomycin administration.
  • Mannose-modified lipid nanoparticles encapsulated with siGtse1 were administered intratracheally twice at a dose of 0.5 mg/kg based on mRNA.
  • H&E hematoxylin-eosin
  • siGtse1-encapsulated mannose-modified lipid nanoparticles prepared in Example 1-2 were administered at a dose of 0.5 mg/kg based on mRNA. It was administered intratracheally twice at a dose of kg. Then, on the 14th day, the mouse was sacrificed, the spleen, liver, kidney, and lung were stained with H&E, and pathological phenomena were observed through an optical microscope. The results are shown in Figures 9 and 10.
  • Example 6-1 Silencing effect on lung fibrosis-related genes
  • siGtse1-encapsulated mannose-LNP prepared in Example 1-2 was intratracheally injected into 7-week-old C57BL/6 mice at a dose of 0.5 mg/kg based on siRNA, and the mice were sacrificed 24 and 48 hours later to infuse the lungs.
  • Gtse1 protein in cells was measured by western blot, and the results are shown in Figure 11.
  • Example 6-2 Confirmation of effect in bleomycin-induced lung fibrosis animal model
  • mannose-LNP The effect of mannose-LNP was confirmed using a bleomycin-induced lung fibrosis animal model.
  • an animal model of pulmonary fibrosis was constructed by intratracheally administering bleomycin at a dose of 1.8 mg/kg to 7-week-old C57BL/6 mice, and 1 day before and 4 days after bleomycin administration, the Mannose-modified lipid nanoparticles encapsulated with siGtse1 were administered intratracheally twice at a dose of 0.5 mg/kg based on mRNA. Then, on the 14th day, the mouse was sacrificed and collagen deposition was confirmed through Masson Trichrome staining, and the results are shown in Figure 12.
  • Example 6-3 Confirmation of effectiveness in radiation-induced lung fibrosis animal model
  • mannose-LNP The effect of mannose-LNP was confirmed using a radiation-induced lung fibrosis animal model.
  • lung capacity indices shown in Table 3 below were measured in the animal model of Example 6-2 using Flexivent®, a test method that allows the results of various lung function tests measured in humans to be obtained in small animals, and the results are as follows. It is shown in Figure 15.
  • the irradiation group showed a restirictive tendency in the lung capacity index compared to the control group, but in both the prevention and treatment groups administered mannose-LNP encapsulated with the siGtse1 nucleic acid drug, the pulmonary capacity index was lower than that of the irradiation group. It was confirmed that their restirictive tendency was recovered.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 핵산 약물의 경폐 전달용 조성물 및 이의 용도에 관한 것으로, 본 발명의 경폐 전달용 조성물은 폐 조직 및 이의 특정 세포에 특이적이고 생체 친화도가 우수하며, 고효율로 유전자 치료제 등을 전달할 수 있어 지질나노입자 매개 폐 질환의 치료 등 관련 기술분야에 유용하게 활용될 수 있다.

Description

핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용
본 발명은 핵산 약물의 경폐 전달용 조성물 및 이의 용도에 관한 것이다.
폐 섬유증 (Lung fibrosis)은 환경적으로 또는 화학적으로 손상된 폐 조직에서 과발현된 염증 활성에 의해 야기되는 세포외기질의 과도한 생성에 기초한 비가역적인 만성 질환이다. 섬유성 조직의 비정상적인 축적은 기도를 좁히고 폐포에서 상피를 두껍게 하여 혈액의 산소 공급 감소를 일으켜 심각한 호흡 문제를 유발한다.
폐 섬유증의 발병율은 증가하고 있으나 이에 대한 현재의 치료방법은 매우 제한되어 있으며, 이의 병태생리학적 메커니즘을 밝히고 새로운 치료법의 개발이 절실히 필요한 상황이다. 최근 방사선 유도 폐 섬유화 모델에서 Gtse1 (G2 and S-phase expressed 1)이 폐 섬유증과 연관되어 있음이 밝혀졌으며, 이는 Gtse1 및 이의 하류 유전자가 질병의 치료를 위한 잠재적 표적이 될 수 있음을 의미한다 (H Jin et al., J Mol Med., 2019, Jan, 97(1):37-47).
Antisense RNA, siRNA 등의 핵산은 생체 내에서 특정 단백질의 발현을 억제할 수 있는 물질로, 암, 유전병, 감염질병, 자가면역 질환 등의 치료에 중요한 도구로 각광받고 있다 (Novina and Sharp, Nature, 430, 161-164, 2004). 그러나 siRNA와 같은 핵산은 세포 내로 직접 전달이 어렵고, 혈액 내에서 효소에 의해 쉽게 분해되므로 이를 극복하기 위한 연구들이 많이 진행되고 있다.
약물전달시스템 (DDS; Drug Delivery System)은 약물의 부작용을 줄이고 효능 및 효과를 극대화시켜 필요한 양의 약물을 효율적으로 전달할 수 있도록 설계한 기술이다. 특히, 유전자 치료에 있어서 약물 전달체로는 종래 바이러스 전달체가 효과적임이 입증되었으나, 면역원성 (immunogenicity), 주입된 DNA 크기의 한계 및 대량생산의 어려움과 같은 여러 결점으로 인해 유전자 전달시스템으로서 바이러스의 이용이 제한되고 있다.
이에, 바이러스성 시스템의 대체 수단으로서 핵산을 세포 내로 운반하는 방법으로는 현재까지 양전하 지질 또는 중합체와 섞어 운반하는 방법 (각각, 지질-DNA 접합체(lipoplex) 및 폴리머-DNA 접합체(polyplex)라 명명됨)이 주로 사용되고 있다 (Hirko et al., Curr, Med, Chem., 10, 1185-1193, 2003; Merdan et al., Adv. Drug. Deliv.Rev., 54, 715-758, 2002; Spagnou et al., Biochemistry, 43, 13348-13386, 2004). 특히, 지질-DNA 접합체는 핵산과 결합하여 세포 내로 핵산을 잘 전달시켜 세포수준에서 많이 사용되고 있으나, 생체 내에서는 국부적으로 주사 시 많은 경우 체내에서 염증을 유발시키며 (Filonand and Phillips, Biochim. Biophys/Acta, 1329, 345-356, 1997), 혈관 내 주사 시 주로 1차 통과기관들인 폐, 간, 비장 등과 같은 조직에 축적되는 단점이 있다 (Ren et al., Gene Therapy. 7, 764-768, 2000).
이러한 배경 하에서 본 발명자들은 폐 섬유증 등을 치료하기 위해, 폐 기관 또는 세포에 핵산 등 음이온성 약물을 효율적으로 전달할 수 있는 전달체를 개발하고자 예의 노력한 결과, 본 발명의 만노스를 포함하는 지질나노입자 제형의 우수한 약물 전달 효과를 확인함으로써 본 발명을 완성하였다.
본 발명의 하나의 목적은 만노스-PEG(polyethyleneglycol)-지질 접합체를 포함하는 지질나노입자를 포함하는 약물의 경폐 전달용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 지질나노입자 및 음이온성 약물을 포함하는 폐 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 만노스-PEG-지질 접합체를 포함하는 지질나노입자를 포함하는 약물의 경폐 전달용 조성물을 제공한다.
본 발명의 만노스-PEG-지질 접합체를 포함하는 지질나노입자는 폐 조직, 구체적으로 섬유화된 폐 또는 이의 세포(예컨대, 폐 상피세포, 내피세포 등)에 특이적으로 전달되며, 이에 따라 높은 효율로 음이온성 약물 등을 섬유화된 폐에 특이적으로 전달할 수 있다. 즉, 본 발명의 지질나노입자는 섬유화된 폐 조직을 특이적으로 표적화하는 것일 수 있으며, 구체적으로 섬유화된 폐 조직의 폐 상피세포 및/또는 내피세포를 표적화하는 것일 수 있다.
본 발명에서 용어 "표적화 (targeting)"는 상기 조직 내 또는 세포 내에 내재화 (internalization)하는 것일 수 있고, 핵막도 투과할 수 있어 핵 내부에 내재화하는 것을 의미할 수 있다.
본 발명의 조성물은 폐 내 국소적으로 전달될 수 있으며, 구체적으로 섬유화된 폐에 국소적으로 전달될 수 있다.
본 발명에서 "만노스-PEG-지질 접합체"는 만노스 (mannose), 폴리에텔렌글리콜 (polyethyleneglycol, PEG) 및 지질이 컨쥬게이트된 형태를 지칭하는 것으로, 지질의 일측 단부에 만노스가, 다른 단부에는 PEG가 결합된 지질을 의미할 수 있다.
상기 만노스-PEG-지질 접합체는 다른 PEG-지질과 함께 PEG-지질 접합체의 혼합물을 형성할 수 있으며, 여기서 "PEG-지질 접합체 혼합물"은 만노스-PEG-지질 접합체와 함께 하나 이상의 다른 PEG-지질 접합체를 포함하는 혼합물을 의미할 수 있다. 상기 PEG-지질은 예컨대, PEG-세라마이드, PEG-DMG, PEG-c-DOMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
상기 PEG-지질 접합체 혼합물은 지질나노입자 내에서 나노입자의 혈청 내 입자 안정성에 기여하며, 나노입자 간 응집을 방지하고, 폐 조직 또는 이의 특정 세포로의 타겟팅 효과를 증가시키는 역할을 수행할 수 있다. 또한, PEG-지질 접합체 혼합물은 핵산 등의 음이온성 약물을 생체 내 전달 시 분해효소로부터 핵산 등을 보호하여 약물의 체내 안정성을 강화시키며, 나노입자 내 봉입된 약물의 반감기를 증가시킬 수 있다.
상기 PEG-지질 접합체 또는 만노스-PEG-지질 접합체에서 PEG 또는 만노스는 지질에 직접 접합되거나 또는 링커 모이어티를 통해 지질에 연결될 수 있다. PEG를 지질에 결합시키기에 적합한 임의의 링커 모이어티가 사용될 수 있으며, 예를 들면, 에스테르-비함유 링커 모이어티 및 에스테르-함유 링커 모이어티가 포함된다. 상기 에스테르-비함유 링커 모이어티는 아미도(-C(O)NH-), 아미노(-NR-), 카르보닐(-C(O)-), 카르바메이트(-NHC(O)O-), 우레아(-NHC(O)NH-), 다이설파이드(-S-S-), 에테르(-O-), 석시닐(-(O)CCH2CH2C(O)-), 석신아미딜(-NHC(O)CH2CH2C(O)NH-), 에테르, 다이설파이드뿐만 아니라 이들의 조합(예컨대, 카르바메이트 링커 모이어티 및 아미도 링커 모이어티 둘 모두를 함유하는 링커)을 포함하나 이에 제한되지 않는다. 상기 에스테르-함유 링커 모이어티는, 예를 들면 카르보네이트(-OC(O)O-), 석시노일, 포스페이트 에스테르(-O-(O)POH-O-), 설포네이트 에스테르 및 이들의 조합을 포함하나 이에 제한되지 않는다.
상기 PEG-지질 접합체 혼합물(예컨대, 만노스-PEG 지질 접합체 및/또는 PEG-세라마이드 접합체)의 평균 분자량은 100 내지 10000달톤, 200 내지 10000달톤, 500 내지 10000달톤, 1000 내지 10000달톤, 1500 내지 10000달톤, 2000 내지 10000달톤, 100 내지 7500달톤, 200 내지 7500달톤, 500 내지 7500달톤, 1000 내지 7500달톤, 1500 내지 7500달톤, 2000 내지 7500달톤, 100 내지 5000달톤, 200 내지 5000달톤, 500 내지 5000달톤, 1000 내지 5000달톤, 1500 내지 5000달톤, 2000 내지 5000달톤, 100 내지 3000달톤, 200 내지 3000달톤, 500 내지 3000달톤, 1000 내지 3000달톤, 1500 내지 3000달톤, 2000 내지 3000달톤, 100 내지 2600달톤, 200 내지 2600달톤, 500 내지 2600달톤, 1000 내지 2600달톤, 1500 내지 2600달톤, 2000 내지 2600달톤, 100 내지 2500달톤, 200 내지 2500달톤, 500 내지 2500달톤, 1000 내지 2500달톤, 1500 내지 2500달톤, 또는 2000 내지 2500달톤일 수 있다.
상기 PEG-지질 접합체 내 지질은 폴리에틸렌글리콜과 결합할 수 있는 지질이라면 제한 없이 사용할 수 있으며, 구체적으로 세라마이드 (ceramide), 디미리스톨글리세롤 (dimyristoylglycerol, DMG), 석시노일디아글리세롤 (succinoyl-diacylglycerol, s-DAG), 디스테아로일포스파티딜콜린 (distearoylphosphatidylcholine, DSPC), 디스테아로일포스파티딜에탄올아민 (distearoylphosphatidylethanolamine, DSPE), 또는 콜레스테롤일 수 있으나, 이에 제한되지 않는다.
상기 PEG-지질 접합체 혼합물은 상기 만노스-PEG-지질 접합체 외에 다이알킬옥시프로필에 결합된 PEG(PEG-DAA), 다이아실글리세롤에 결합된 PEG(PEG-DAG), 포스파티딜에탄올아민과 같은 인지질에 결합된 PEG(PEG-PE), 세라마이드에 접합된 PEG(PEG-CER, 또는 세라마이드-PEG 접합체), 콜레스테롤 또는 이의 유도체에 접합된 PEG, PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, 및 이들의 혼합물을 포함할 수 있고, 구체적으로 C16-PEG2000 세라마이드, DMG-PEG 2000, 14:0 PEG2000 PE일 수 있으며, 본 발명의 일 구현예에 따르면 PEG-세라마이드 접합체 및/또는 만노스-PEG-지질 접합체 (예컨대, 만노스-PEG-DSPE 접합체)를 포함할 수 있다.
상기 PEG-지질 접합체 혼합물은 0.1 내지 15몰%, 0.25 내지 15몰%, 0.5 내지 15몰%, 1 내지 15몰%, 1.5 내지 15몰%, 2 내지 15몰%, 2.5 내지 15몰%, 3 내지 15몰%, 0.1 내지 10몰%, 0.25 내지 10몰%, 0.5 내지 10몰%, 1 내지 10몰%, 1.5 내지 10몰%, 2 내지 10몰%, 2.5 내지 10몰%, 3 내지 10몰%, 0.1 내지 9몰%, 0.25 내지 9몰%, 0.5 내지 9몰%, 1 내지 9몰%, 1.5 내지 9몰%, 2 내지 9몰%, 2.5 내지 9몰%, 3 내지 9몰%, 0.1 내지 7.5몰%, 0.25 내지 7.5몰%, 0.5 내지 7.5몰%, 1 내지 7.5몰%, 1.5 내지 7.5몰%, 2 내지 7.5몰%, 2.5 내지 7.5몰%, 3 내지 7.5몰%, 0.1 내지 5몰%, 0.25 내지 5몰%, 0.5 내지 5몰%, 1 내지 5몰%, 1.5 내지 5몰%, 2 내지 5몰%, 2.5 내지 5몰%, 3 내지 5몰%, 0.1 내지 4.5몰%, 0.25 내지 4.5몰%, 0.5 내지 4.5몰%, 1 내지 4.5몰%, 1.5 내지 4.5몰%, 2 내지 4.5몰%, 2.5 내지 4.5몰%, 3 내지 4.5몰%, 0.1 내지 4몰%, 0.25 내지 4몰%, 0.5 내지 4몰%, 1 내지 4몰%, 1.5 내지 4몰%, 2 내지 4몰%, 2.5 내지 4몰%, 3 내지 4몰%, 0.1 내지 3.5몰%, 0.25 내지 3.5몰%, 0.5 내지 3.5몰%, 1 내지 3.5몰%, 1.5 내지 3.5몰%, 2 내지 3.5몰%, 2.5 내지 3.5몰%, 3 내지 3.5몰%, 0.1 내지 3몰%, 0.25 내지 3몰%, 0.5 내지 3몰%, 1 내지 3몰%, 1.5 내지 3몰%, 2 내지 3몰%, 또는 2.5 내지 3몰%로 상기 지질 나노입자에 포함될 수 있다.
상기 만노스-PEG-지질 접합체는 0.1 내지 10몰%, 0.25 내지 10몰%, 0.5 내지 10몰%, 1 내지 10몰%, 1.5 내지 10몰%, 2 내지 10몰%, 0.1 내지 7.5몰%, 0.25 내지 7.5몰%, 0.5 내지 7.5몰%, 1 내지 7.5몰%, 1.5 내지 7.5몰%, 2 내지 7.5몰%, 0.1 내지 5몰%, 0.25 내지 5몰%, 0.5 내지 5몰%, 1 내지 5몰%, 1.5 내지 5몰%, 2 내지 5몰%, 0.1 내지 4.5몰%, 0.25 내지 4.5몰%, 0.5 내지 4.5몰%, 1 내지 4.5몰%, 1.5 내지 4.5몰%, 2 내지 4.5몰%, 0.1 내지 4몰%, 0.25 내지 4몰%, 0.5 내지 4몰%, 1 내지 4몰%, 1.5 내지 4몰%, 2 내지 4몰%, 0.1 내지 3몰%, 0.25 내지 3몰%, 0.5 내지 3몰%, 1 내지 3몰%, 1.5 내지 3몰%, 2 내지 3몰%, 0.1 내지 2.5몰%, 0.25 내지 2.5몰%, 0.5 내지 2.5몰%, 1 내지 2.5몰%, 1.5 내지 2.5몰%, 2 내지 2.5몰%, 0.1 내지 2몰%, 0.25 내지 2몰%, 0.5 내지 2몰%, 1 내지 2몰%, 또는 1.5 내지 2몰%로 상기 지질 나노입자에 포함되는 것일 수 있다.
본 발명의 만노스-PEG-지질 접합체를 포함하는 지질나노입자는 이온화 가능한 지질, 인지질 및 구조적 지질로 이루어진 군에서 선택된 어느 하나 이상을 더 포함할 수 있다.
본 발명에서 "이온화 가능한 지질 (ionizable lipid)"은 용이하게 양성자화될 수 있는 아민-함유 지질을 의미할 수 있으며, 예를 들면 주변 pH에 따라 전하상태가 변하는 지질일 수 있다. 상기 이온화 가능한 지질은 pKa 이하의 주변 pH에서 양으로 하전될 수 있고, pKa 이상의 주변 pH에서 점진적으로 중성일 수 있다. 양으로 하전될 때 상기 이온화 가능한 지질은 음으로 하전된 약물(예를 들면, 음이온성 약물 및/또는 핵산)과 회합할 수 있으며, 약물과의 정전기적 상호작용을 통해 상기 약물이 지질나노입자 내에 높은 효율로 봉입되도록 하는 역할을 수행할 수 있다.
상기 이온화 가능한 지질은 생리적 pH와 같은 선택적 pH에서 순 양전하를 보유하는 공지된 지질을 제한 없이 사용할 수 있으며, 예컨대 9-헵타데카닐 8-{(2-히드록시에틸)[6-옥소-6-(운데실옥시)헥실]아미노}옥타노에이트 (SM-102), [(4-하이드록시부틸)아잔디일]디(헥산-6,1-디일)비스(2-헥실데카노에이트) (ALC-0315), N,N-디올레일-N,N-디메틸암모늄 클로라이드 (DODAC), 1,2-디올레일옥시-N,N-디메틸아미노프로판 (DODMA), 1,2-디스테아릴옥시-N,N-디메틸아미노프로판 (DSDMA), N-(1-(2,3-디올레일옥시)프로필)-N,N,N-트리메틸암모늄 클로라이드 (DOTMA), N,N-디스테아릴-N,N-디메틸암모늄 브로마이드 (DDAB), N-(1-(2,3-디올레오일옥시)프로필)-N,N,N-트리메틸암모늄 클로라이드 (DOTAP), 3-(N―(N',N'-디메틸아미노에탄)-카바모일)콜레스테롤 (DC-Chol), N-(1,2-디미리스틸옥시프로프-3-일)-N,N-디메틸-N-히드록시에틸 암모늄 브로마이드 (DMRIE), 2,3-디올레일옥시-N-[2(스퍼민-카복사미도)에틸]-N,N-디메틸-1-프로판아미니움프리플루오로아세테이트 (DOSPA), 디옥타데실아미도글리실 스퍼민 (DOGS), 3-디메틸아미노-2-(콜레스트-5-엔-3-베타-옥시부탄-4-옥시)-1-(cis,cis-9,12-옥타데카디에녹시)프로판 (CLinDMA), 2-[5'-(콜레스트-5-엔-3β-독시)-3'-옥사펜톡시)-3-디메틸-1-(cis,cis-9',1-2'-옥타데카디에녹시)프로판 (CpLinDMA), N,N-디메틸-3,4-디올레일옥시벤질아민 (DMOBA), 1,2-N,N'-디올레일카바밀-3-디메틸아미노프로판 (DOcarbDAP), 2,3-디리놀레오일옥시-N,N-디메틸프로필아민 (DLinDAP), 1,2-N,N'-디리놀레일카바밀-3-디메틸아미노프로판 (DLincarbDAP), 1,2-디리놀레오일카바밀-3-디메틸아미노프로판 (DLinCDAP), 1,2-디리놀레일옥시-N,N-디메틸아미노프로판 (DLinDMA), 1,2-디리놀레닐옥시-N,N-디메틸아미노프로판 (DLenDMA), 헵타트리아콘타-6,9,28,31-테트라엔-19-일 4-(디메틸아미노)부타오에이트 (DLin-MC3-DMA), 1,1',1'',1'''-[1,4-피페라진디일비스(3,1-프로판디일니트릴로)]테트라키스-2-도데칸올 (246-C10), (Z)-논-2-엔-1-일 9,9'-((2-(4-(9-(((Z)-논-2-엔-1-일)옥시)-9-옥소노닐)피페라진-1-일)에칠)아자네디일)디노나노에이트 (244-cis) 또는 이들의 조합일 수 있다.
상기 인지질은 지질나노입자의 융합을 촉진할 수 있는 인지질을 제한 없이 사용할 수 있으며, 예컨대, 디올레일포스파티딜에탄올아민 (dioleoylphosphatidylethanolamine, DOPE), 디스테아로일포스파티딜콜린 (distearoylphosphatidylcholine, DSPC), 팔미토일올레오일포스파티딜콜린 (palmitoyloleoylphosphatidylcholine, POPC), 에그 포스파티딜콜린 (egg phosphatidylcholine, EPC), 디올레오일포스파티딜콜린 (dioleoylphosphatidylcholine, DOPC), 디팔미토일포스파티딜콜린 (dipalmitoylphosphatidylcholine, DPPC), 디올레오일포스파티딜글리세롤 (dioleoylphosphatidylglycerol, DOPG), 디팔미토일포스파티딜글리세롤 (dipalmitoylphosphatidylglycerol, DPPG), 디스테아로일포스파티딜에탄올아민 (distearoylphosphatidylethanolamine, DSPE), 1,2-디올레오일-3-트리메틸암모니움-프로판 (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP), 포스파티딜에탄올아민 (Phosphatidylethanolamine, PE), 디팔미토일포스파티딜에탄올아민 (dipalmitoylphosphatidylethanolamine), 1,2-디올레오일-sn-글리세로-3-포스페이트 (1,2-dioleoyl-sn-glycero-3-phosphate, 18-PA), 1,2-디리놀레오일-sn-글리세로-3-포스포콜린 (1,2-dilinoleoyl-sn-glycero-3-phosphocholine), 1,2-디아라키도노일-sn-글리세로-3-포스포콜린 (1,2-diarachidoyl-sn-glycero-3-phosphocholine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포콜린 (1,2-didocosahexaenoyl-snglycero-3-phosphocholine), 1,2-디피타노일-sn-글리세로-3-포스포에탄올아민 (1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine, ME 16:0 PE), 1-팔미토일-2-올레오일-sn-글리세로-3-포스포에탄올아민 (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, POPE), 1,2-디올레오일-sn-글리세로-3-[포스포-L-세린] (1,2-dioleoyl-sn-glycero-3-[phospho-L-serine], DOPS), 1,2-디리놀레오일-sn-글리세로-3-포스포콜린 (1,2-dilinoleoyl-sn-glycero-3-phosphocholine, DLPC), 1,2-디미리스토일-sn-글리세로-포스포콜린 (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC), 1,2-디운데카노일-sn-글리세로-포스포콜린 (1,2-diundecanoyl-sn-glycero-phosphocholine, DUPC), 1,2-디-O-옥타데세닐-sn-글리세로-3-포스포콜린 (1,2-di-O-octadecenyl-sn-glycero-3-phosphocholine, 18:0 디에테르 PC), 1-올레오일-2-콜레스테릴헤미숙시노일-sn-글리세로-3-포스포콜린 (1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine, OChemsPC), 1-헥사데실-sn-글리세로-3-포스포콜린 (1-hexadecyl-sn-glycero-3-phosphocholine, C16 Lyso PC), 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), 1,2-디리놀레오일-sn-글리세로-3-포스포에탄올아민 (1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디리놀레오일-sn-글리세로-3-포스포에탄올아민 (1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine), 1,2-디아라키도노일-sn-글리세로-3-포스포에탄올아민 (1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine), 1,2-디도코사헥사에노일-sn-글리세로-3-포스포에탄올아민 (1,2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine), 스핑고미엘린, 또는 이들의 혼합물일 수 있다.
상기 구조적 지질은 지질나노입자 내에서 입자 모양을 유지하고 나노입자의 코어 및 표면에 분산되어 나노입자의 안정성을 향상시키는 역할을 한다. 상기 구조적 지질은 예컨대, 콜레스테롤, 콜레스테놀, 스피나스테롤, 페코스테롤, 시토스테롤, 에르고스테롤, 에르고스테놀, 캄페스테롤, 스티그마스테롤, 브라시카스테롤, 토마티딘, 우르솔산, 알파-토코페롤 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 따르면, 본 발명의 이온화 가능한 지질과 인지질, 구조적 지질 및 PEG-지질을 혼합하여 지질나노입자를 제조할 경우, 이온화 가능한 지질 : 인지질 : 구조적 지질 : PEG-지질 접합체 혼합물의 몰비는 20 내지 60 : 10 내지 30 : 30 내지 60 : 0.1 내지 10일 수 있다. 구체적으로, 상기 몰비는 30 내지 50 : 10 내지 20 : 35 내지 50 : 0.5 내지 8일 수 있고, 보다 구체적으로 40 내지 45 : 10 내지 15 : 38 내지 45 : 1 내지 6일 수 있으나, 이에 제한되지 않는다. 상기 지질나노입자에 포함되는 구성성분 중 PEG-지질 접합체 혼합물 및 구조적 지질의 몰수의 합을 일정하게 유지하면서 PEG-지질 접합체 혼합물의 몰수를 증가시킨 만큼 구조적 지질의 몰수를 감소시켜, 상기 구성성분의 몰비를 유지시킬 수 있다.
본 발명의 지질나노입자는 산성 pH 조건에서 양전하를 나타내므로 음전하를 나타내는 핵산 및 음이온성 약물 등의 치료제와 정전기적 상호작용을 통해 용이하게 약물과의 복합체를 형성하여 높은 효율로 음이온성 약물을 봉입할 수 있으며, 약물의 세포 내 또는 생체 내 약물 전달 조성물로서 사용될 수 있다. 따라서 본 발명의 지질나노입자는 핵산뿐만 아니라 음이온을 띄는 모든 형태의 약물의 전달에 유용하게 사용될 수 있다. 즉, 본 발명의 지질나노입자는 최종적으로 음이온성 약물을 추가로 포함하는 형태 (봉입된 형태)로 제조될 수 있고, 봉입된 음이온성 약물을 폐, 구체적으로 섬유화된 폐에 특이적으로 전달할 수 있다.
본 발명에서, 용어 "봉입 (encapsulation)"은 전달물질을 둘러싸서 효율적으로 생체 내로 함입시키기 위해 캡슐화하는 것을 말하고, 약물 봉입률 (캡슐화 효율, Encapsulation efficiency)은 제조에 사용된 전체 약물 함량에 대하여 지질나노입자 내에 봉입된 약물의 함량을 의미한다.
상기 음이온성 약물은 핵산, 저분자 화합물, 펩타이드, 단백질, 단백질-핵산 구조체 또는 음이온성 생체고분자-약물 접합체 등일 수 있으나, 본 발명의 이온화 가능한 지질과 함께 지질나노입자를 형성하여 안정적이고 효율적으로 전달될 수 있는 한 이에 제한되는 것은 아니다.
본 발명에서 상기 핵산은 소간섭 리보핵산 (siRNA), 리보좀 리보핵산 (rRNA), 디옥시리보핵산 (DNA), 상보성 디옥시리보핵산 (cDNA), 앱타머 (aptamer), 전령 리보핵산 (mRNA), 운반 리보핵산 (tRNA), sgRNA, 안티센스 올리고뉴클레오티드, shRNA, miRNA, 리보자임 (ribozyme), PNA, 및 DNAzyme, 또는 이들의 혼합물일 수 있고, 구체적으로 siRNA, mRNA, 안티센스 올리고뉴클레오티드 및 miRNA로 이루어진 군에서 선택되는 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 일 실시예에 따르면, 상기 핵산 약물은 Gtse1 단백질의 발현을 억제하는 siRNA인 siGtse1일 수 있다.
상기 지질나노입자에서 총 지질/핵산의 중량비는 1 내지 20일 수 있으며, 구체적으로 5 내지 15, 보다 구체적으로 7 내지 12일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 지질나노입자는 예컨대 40 내지 150 nm의 지름 크기를 갖는 것일 수 있고, 구체적으로 50 내지 140 nm, 보다 구체적으로 60 내지 130 nm의 지름 크기를 갖는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 목적을 달성하기 위한 다른 하나의 양태로서, 본 발명은 상기 지질나노입자 및 음이온성 약물을 포함하는 폐 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
또 다른 양태로서, 본 발명은 상기 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 폐 질환의 치료 방법을 제공한다.
또 다른 양태로서, 본 발명은 폐 질환의 예방 또는 치료에 사용하기 위한 약학적 조성물, 또는 폐 질환의 예방 또는 치료를 위한 상기 조성물의 용도를 제공한다.
지질나노입자 및 음이온성 약물에 대해서는 상기 설명한 바와 같다.
본 발명의 지질나노입자는 핵산 등의 음이온성 약물과 안정된 복합체를 형성하고 낮은 세포독성 및 효과적인 세포 흡수성을 나타내므로, 음이온성 약물을 전달하는데 효과적이다. 또한, 상기 지질나노입자는 투여 시 폐, 구체적으로 섬유화된 폐 또는 이의 특정 세포에 특이적으로 전달될 수 있으므로, 폐 질환의 예방 또는 치료에 유용하게 활용될 수 있다.
본 발명의 지질나노입자는 폐를 표적하여 이에 약물을 특이적으로 전달할 수 있으며, 본 발명의 일 실시예에 따르면 섬유화된 폐 및 이의 세포 (예컨대, 폐 상피세포 및 내피세포)에 보다 특이적으로 전달할 수 있다. 따라서, 상기 폐 질환은 구체적으로 폐 섬유증일 수 있다.
본 발명에서 용어, "치료"는 질병을 갖는 개개인 또는 세포의 천연 과정을 변경시키기 위해 개입하는 것을 지칭하고, 이는 병리 상태가 진행되는 동안 또는 이를 예방하기 위해 수행될 수 있다. 목적하는 치료 효과에는 질병의 발생 또는 재발을 예방하고, 증상을 완화시키며, 질병에 따른 모든 직접 또는 간접적인 병리학적 결과를 저하시키며, 전이를 예방하고, 질병 진행 속도를 감소시키며, 질병 상태를 경감 또는 일시적 완화시키며, 차도시키거나 예후를 개선시키는 것이 포함된다. 특히, 본 발명에서는 만노스-PEG-지질 접합체를 포함하는 지질나노입자 및 음이온성 약물을 유효성분으로 포함하는 조성물의 투여로 폐 관련 질환의 경과를 호전시키는 모든 행위를 포함한다. 또한, 용어 "예방"은 상기 지질나노입자의 투여로 질병의 발병을 억제 또는 지연시키는 모든 행위를 말한다. 본 발명의 지질나노입자가 치료 또는 예방 목적으로 사용될 경우, 개체에 치료학적으로 유효한 양으로 투여된다.
본 발명에서 사용되는 "치료학적으로 유효한 양"이라는 용어는 음이온성 약물 함유 지질나노입자의 유효한 양을 나타낸다. 구체적으로, "치료학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 질병의 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 시판되는 치료제와는 순차적으로 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다. 본 발명의 약학적 조성물의 투여 용량은 환자의 상태, 연령, 성별 및 합병증 등의 다양한 요인에 따라 전문가에 의해 결정될 수 있다. 본 발명의 조성물의 유효성분은 안전성이 우수하므로, 결정된 투여 용량 이상으로도 사용될 수 있다.
상기 지질나노입자를 포함하는 조성물은 경구, 근육, 정맥, 동맥, 피하, 복강, 폐, 및 비강 주사 등으로 투여될 수 있으며, 구체적으로 폐 내 직접 국소 투여될 수 있고, 보다 구체적으로 섬유화된 폐에 국소 투여될 수 있다.
본 발명의 조성물은 투여를 위해서 추가로 약학적으로 허용가능한 담체를 1종 이상 더 포함할 수 있다. 약학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 하나 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다.
본 발명의 지질나노입자는 폐 조직 및 이의 특정 세포에 특이적이고 생체 친화도가 우수하며, 고효율로 유전자 치료제 등을 전달할 수 있어 지질나노입자 매개 유전자 치료 등 관련 기술분야에 유용하게 활용될 수 있다.
도 1은 만노스 수식 지질나노입자의 예시적인 구조 및 이를 이용한 폐 질환에 대한 작용기전을 나타내는 개략도이다.
도 2는 다양한 종류의 이온화 가능한 지질을 이용하여 루시퍼라제를 코딩하는 mRNA가 봉입된 만노스 수식 지질나노입자의 세포 내 발광강도를 측정한 그래프이다.
도 3은 만노스 수식 지질나노입자의 생체 내 특이적 전달을 확인하기 위하여 생채발광을 확인한 탈체 기관 이미지이다.
도 4는 만노스로 수식되지 않은 지질나노입자의 생체발광을 확인한 탈체 기관 이미지이다.
도 5는 LSL-tdTomato 마우스에서 만노스 수식 지질나노입자의 폐 세포별 형광발현을 비교한 그래프이다 (blank: 일반 모델, colored: 폐 섬유화 모델).
도 6은 CellTiter-Fluor™ Cell Viability Assay를 이용한 만노스 수식 지질나노입자의 세포독성을 확인한 그래프이다.
도 7은 만노스 수식 지질나노입자의 투여에 따른 간 및 신장 독성 유무를 확인하기 위하여 AST(aspartate aminotransferase), ALT(alanine aminotransferase), BUN(blood urea nitrogen) 및 Creatinine의 수치를 측정한 그래프이다.
도 8은 블레오마이신 유도 폐섬유화 모델을 이용하여 만노스 수식 지질나노입자의 투여에 따른 간 및 신장의 손상유무를 확인하기 위하여 GOT(Glutamic Oxaloacetic Transaminase), GPT(Glutamic Pyruvic Transaminase), BUN 및 creatinine(CRE)의 수치를 측정한 그래프이다.
도 9 및 10은 만노스 수식 지질나노입자의 투여에 따른 주요 장기의 조직병리학적 변화를 확인하기 위하여 Hematoxylin-eosin (H&E) 염색법으로 비장, 간, 신장 및 폐의 조직병리학적 변화를 관찰한 이미지이다.
도 11은 Gtse1 유전자에 대한 만노스 수식 지질나노입자의 억제 효과를 western blot으로 측정한 결과이다.
도 12는 블레오마이신 유도 폐 섬유화 동물모델에서 만노스 수식 지질나노입자의 투여에 의한 콜라겐 침적 및 Gtse1 단백질 발현량 변화를 확인한 결과이다.
도 13은 방사선 유도 폐 섬유화 동물모델에서 만노스 수식 지질나노입자의 투여에 의한 콜라겐 침적 및 Gtse1 단백질 발현량 변화를 확인한 결과이다.
도 14는 방사선 유도 폐 섬유화 동물모델에서 만노스 수식 지질나노입자의 투여에 의한 조직병리학적 변화 및 폐 부피를 확인한 결과이다.
도 15는 방사선 유도 폐 섬유화 동물모델에서 Flexivent®를 사용하여 폐활량 지표를 측정한 그래프이다.
이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1. 지질나노입자의 제조
실시예 1-1. 만노스 수식 지질나노입자의 제조
이온화 가능한 지질(246-C10), 콜레스테롤(Cholesterol powder, BioReagent, 세포 배양에 적합한, ≥99%, sigma, 한국), 인지질(DSPC; Avanti, 미국), PEG-지질 접합체(C16-PEG2000 세라마이드 또는 세라마이드-PEG 접합체; C16 PEG2000 Ceramide, Avanti, 미국) 및 만노스-PEG-지질 접합체(만노스-PEG-DSPE 접합체; Biochempeg, 미국)를 에탄올에 42.5 : 13 : 43 내지 39.5 : 0.5 : 1.0 내지 4.5 (몰비의 총 합이 100이 되도록 콜레스테롤과 총 PEG-지질 접합체의 함량(= PEG-세라마이드 접합체 함량 + 만노스-PEG-DSPE 접합체 함량)의 조절)의 몰비로 용해시켰다. 이온화 가능한 지질, 콜레스테롤, 인지질, PEG-세라마이드 접합체 및 만노스-PEG-지질 접합체가 용해된 에탄올 및 아세테이트 버퍼를 1:3의 부피비로 12 ㎖/min의 유속으로 미세유체 혼합 장치(Benchtop Nanoassemblr; PNI, Canada)를 통해 혼합하여 만노스가 수식된 지질나노입자 (이하, '만노스-LNP'라 함)를 제조하였다.
실시예 1-2. 핵산이 봉입된 만노스 수식 지질나노입자의 제조
이온화 가능한 지질로서 SM-102, ALC-0315, 246-C10 및 244-cis를 준비하였으며, 244-cis는 하기의 반응식으로 합성하였다.
Figure PCTKR2023017108-appb-img-000001
상기 이온화 가능한 지질, 콜레스테롤, 인지질, PEG-지질 접합체(C16-PEG2000 세라마이드) 및 만노스-PEG-지질 접합체(만노스-PEG-DSPE 접합체)가 용해된 유기상(에탄올) 및 핵산(mRNA 또는 siRNA)이 용해된 수성상(아세트산 나트륨 또는 시트르산 나트륨)을 12 ㎖/min의 유속으로 미세유체 혼합 장치(Benchtop Nanoassemblr; PNI, Canada)를 통해 혼합하였으며, 구체적으로 하기의 방법으로 핵산이 봉입된 지질나노입자를 제조하였다.
(i) mRNA가 봉입된 만노스 수식 지질나노입자를 제조하기 위하여, 이온화 가능한 지질 : 인지질(DOPE 또는 DSPC) : 콜레스테롤 : C16-PEG2000 세라마이드(PEG-세라마이드 접합체), DMG-PEG (1,2-Dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000) 또는 ALC-0159 (Methoxypolyethyleneglycoloxy(2000)-N,N-ditetradecylacetamide) : 만노스-PEG-지질 접합체(만노스-PEG-DSPE 접합체)를 26.5 내지 50 : 10 내지 20 : 38.5 내지 52 : 0.5 : 1.0 내지 4.5(몰비의 총 합이 100이 되도록 콜레스테롤과 총 PEG-지질 함량(= PEG-세라마이드 접합체 함량 + 만노스-PEG-DSPE 접합체 함량)을 조절)의 몰비로 에탄올에 용해시켰고, mRNA (luciferase mRNA; 서열번호 1 또는 Cre; 서열번호 2) : 이온화 가능한 지질이 1:10의 중량비가 되도록 유기상 및 수성상을 혼합하여 지질 나노입자를 제조하였다.
(ii) siRNA가 봉입된 만노스 수식 지질나노입자를 제조하기 위하여 이온화 가능한 지질(246-C10) : 인지질(DSPC) : 콜레스테롤 : C16-PEG2000 세라마이드 : 만노스-PEG-DSPE 접합체를 42.5 : 13 : 43 내지 39.5 : 0.5 : 1.0 내지 4.5 (몰비의 총 합이 100이 되도록 콜레스테롤과 총 PEG-지질 함량 (= PEG-세라마이드 접합체 함량 + 만노스-PEG-DSPE 접합체 함량)의 조절)의 몰비로 에탄올에 용해시켰고, siRNA(siGtse1; 서열번호 3 및 4) : 이온화 가능한 지질이 1 : 7.5의 중량비가 되도록 유기상 및 수성상을 혼합하여 지질나노입자를 제조하였다.
제조된 지질나노입자를 에탄올 제거 및 체내의 pH와 지질나노입자의 pH를 맞추기 위해서, 3500 MWCO 투석 카세트를 사용하여 16시간 동안 PBS에 대해 투석하였다.
실시예 2. 이온화 가능한 지질의 종류에 따른 만노스 수식 지질나노입자의 핵산 전달 효과 확인
만노스 수식 지질나노입자를 세포에 형질 전환(transfection)시키기 하루 전에 HeLa 세포(한국 세포주 은행)를 white plate(96 well)에 0.01x106 cells/well로 분주하여 DMEM media(SH30022, Hyclone, USA)에서 37℃, 0.5~3% CO2 조건으로 배양하였다. luciferase mRNA가 봉입된 상기 실시예 1-2에서 제조된 만노스-LNP를 파이펫팅으로 교반 후 상온에서 10분 동안 인큐베이션 후 HeLa cell에 처리(지질나노입자에 포함된 mRNA 기준으로 20 ng/well) 하였다.
처리 24시간 후 Bright-Glo™ Luciferase Assay 용액(promega, USA)을 100 ㎕/well씩 처리하여 10분간 상온에 둔 후 용해된 세포를 Infinite M200 발광 측정기기(Tecan, USA)를 이용하여 발광 강도(luminescence intensity)를 측정하였으며, 그 결과를 도 2에 나타내었다.
도 2에서 확인되는 바와 같이, 만노스가 수식된 지질나노입자는 이온화 가능한 지질의 종류에 관계없이 세포 내에서 높은 발광값을 보임을 확인하였다.
실시예 3. 만노스 수식 지질나노입자의 폐 특이적 전달 확인
실시예 3-1. fLuc mRNA를 이용한 폐 특이적 전달 확인
상기 실시예 1-2에서 제조한 luciferase mRNA가 봉입된 만노스-LNP를 mRNA 기준 0.1 mg/kg 용량으로 7주령 C57BL/6 마우스의 신장, 비장, 간, 폐 및 심장에 각각 기관 내 주입하고, 3시간 뒤에 루시페린(luciferin) 0.25 mg/kg을 복강 투여하여 IVIS(PerkinElmer, USA) 장비를 통해 탈체 기관 이미지(ex vivo organ image)로 생체발광을 확인하였으며, 그 결과를 도 3 및 표 1에 나타내었다.
[표 1]
Figure PCTKR2023017108-appb-img-000002
또한, 만노스가 수식되지 않은 LNP로서, 만노스-PEG-지질 접합체를 포함하지 않는 점을 제외하고 상기 실시예 1-2와 동일한 방법으로 luc mRNA가 봉입된 지질나노입자(지질-PEG를 1.5몰% 포함)를 제조하였다. 상기 만노스가 수식되지 않은 LNP를 mRNA 기준 0.1 mg/kg 용량으로 C57BL/6 Female 7주령 마우스(오리엔트 바이오)에 정맥 주사 후 3시간 뒤에 루시페린(luciferin) 0.25 mg/kg을 복강 투여하고, 마우스를 희생시켜 장기를 적출하여 각 장기에서 IVIS 장비를 통해 탈체 기관 이미지로 생체발광을 확인하였으며, 그 결과를 도 4에 나타내었다.
도 3 및 4에서 확인되는 바와 같이, 만노스-LNP는 폐에서 높은 발광 강도를 나타낸 반면, 만노스가 수식되지 않은 LNP는 간에서 높은 발광 강도를 나타냈으며, 이를 통해 본 발명의 지질나노입자의 제형은 만노스로 수식됨에 따라 폐 특이적으로 전달되는 것을 확인하였다.
실시예 3-2. Cre mRNA를 이용한 폐세포 특이적 전달 확인
상기 실시예 1-2에서 제조한 Cre mRNA(mCre)가 봉입된 만노스-LNP와 만노스가 수식되지 않은 LNP(Native LNP)를 mRNA 기준 0.3 mg/kg 용량으로 폐 섬유화가 일어난 LSL-tdTomato 마우스 및 폐 섬유화가 일어나지 않은 LSL-tdTomato 마우스에 각각 기관 내 투여하고, 마우스를 희생시켜 적출한 폐에서 Flow cytometry(LSRFortessa, BD)를 이용하여 폐 세포별(epithelial cells, endothelial cells, immune cells) tomato 형광 발현을 확인하였으며, 그 결과를 도 5에 나타내었다 (blank: 일반 모델, colored: 폐 섬유화 모델).
도 5에서 확인되는 바와 같이, 본 발명의 만노스-LNP는 만노스가 수식되지 않은 LNP와 비교하여 섬유화된 폐에 특이적으로 전달되는 것을 확인하였다. 또한, 본 발명의 만노스-LNP는 만노스가 수식되지 않은 LNP와 비교하여 폐 세포별 형광 발현 패턴이 상이하였으며, 특히 섬유화된 폐의 상피세포에 가장 특이적으로 전달되는 것을 확인하였다.
실시예 4. 만노스 수식 지질나노입자의 독성 확인
실시예 4-1. 세포 독성 확인
본 발명의 만노스-LNP가 세포 독성을 나타내는지 여부를 CellTiter-Fluor™ Cell Viability Assay를 통해 확인하였으며, 이는 세포막 통과 기질이 세포내부의 프로테아제에 의해 cleavage를 일으키며 형광성 AFC를 형성하여 형광 분석을 통해 세포 생존능력을 확인할 수 있는 분석법이다.
구체적으로, L132, MEF cell을 투명한 96 well plate(SPL, 96 Well Cell Culture Plates, 30096)에 0.1 x 105 cells로 시딩하고, 24시간 후 상기 실시예 1-1에서 제조한 지질나노입자를 1well 당 mRNA 기준 0.05 μg 또는 0.1 μg의 양에 해당하는 지질나노입자에 총 양이 100 μl가 되도록 배지에 처리하였다. 지질나노입자 처리 24시간 후 CellTiter-Fluor™ Cell Viability Assay(Promega, Cat.# G6080)를 1well 당 100 μl씩 추가하고 30분동안 배양한 후, Infinite® 200 PRO NanoQ(Tecan)를 통해 450 nm에서의 흡광도를 측정하였으며, 그 결과를 도 6에 나타내었다.
도 6에서 확인되는 바와 같이, 본 발명의 만노스 수식 지질나노입자는 세포 독성을 보이지 않음을 확인하였다.
실시예 4-2. 간 및 신장 독성 확인
본 발명의 만노스-LNP 투여에 따른 간 및 신장 독성 유무를 확인하기 위하여, 각각 AST(aspartate aminotransferase) 및 ALT(alanine aminotransferase)와 BUN(blood urea nitrogen) 및 Creatinine의 수치를 측정하였다.
구체적으로, 상기 실시예 1-2에서 제조한 지질나노입자를 7주령 C57BL/6 마우스에 mRNA 기준 0.5 및 0.75 mg/kg의 용량으로 1회 기관내 투여하고, 투여 24시간 후 채혈하여 AST, ALT, BUN 및 creatinine의 수치를 확인하였으며, 그 결과를 도 7에 나타내었다.
도 7에서 확인되는 바와 같이, 본 발명의 만노스 수식 지질나노입자는 유의미한 간 및 신장 독성을 보이지 않음을 확인하였다.
실시예 4-3. 폐 섬유화 동물모델에서 간 및 신장 손상지표 확인
블레오마이신 유도 폐섬유화 모델을 이용하여 본 발명의 만노스-LNP 투여 시 간 및 신장의 손상유무에 대해 추가적으로 확인하였다.
구체적으로, 7주령 C57BL/6 마우스에 1.8 mg/kg 용량으로 블레오마이신을 기관내 투여하여 폐섬유화 동물모델을 구축하고, 블레오마이신 투여 1일 전과 투여 4일 후에 상기 실시예 1-2에서 제조한 siGtse1가 봉입된 만노스 수식 지질나노입자를 mRNA 기준 0.5 mg/kg의 용량으로 2회 기관내 투여하였다. 그 다음 14일에 마우스를 희생하여 수거한 혈액으로부터 혈장을 분리하고, 이를 이용하여 간 손상지표로서 GOT(Glutamic Oxaloacetic Transaminase) 및 GPT(Glutamic Pyruvic Transaminase)와 신장 손상지표로서 BUN 및 creatinine(CRE)의 수치를 측정하였으며, 그 결과를 도 8 및 표 2에 나타내었다.
[표 2]
Figure PCTKR2023017108-appb-img-000003
도 8 및 표 2에서 확인되는 바와 같이, 본 발명의 만노스 수식 지질나노입자는 유의미한 간 및 신장 독성을 보이지 않음을 확인하였다.
실시예 5. 주요 장기의 병리학적 현상 확인
본 발명의 만노스-LNP 투여에 따른 주요 장기의 조직병리학적 변화를 확인하기 위하여, Hematoxylin-eosin (H&E) 염색법으로 비장, 간, 신장 및 폐의 조직병리학적 변화를 관찰하였다.
구체적으로, 7주령 C57BL/6 마우스에 1.8 mg/kg 용량으로 블레오마이신 투여 1일 전과 투여 4일 후에 상기 실시예 1-2에서 제조한 siGtse1가 봉입된 만노스 수식 지질나노입자를 mRNA 기준 0.5 mg/kg의 용량으로 2회 기관내 투여하였다. 그 다음 14일에 마우스를 희생하여 비장, 간, 신장 및 폐를 H&E로 염색하고 병리학적 현상을 광학현미경을 통해 관찰하였으며, 그 결과를 도 9 및 10에 나타내었다.
도 9 및 10에서 확인되는 바와 같이, 블레오마이신 투여군(BLM)에서는 주요 장기의 손상이 확인되었으나, 만노스-LNP 투여군에서는 유의적인 조직병리학적 변화가 관찰되지 않았다.
실시예 6. 폐 섬유화에 대한 효과 확인
실시예 6-1. 폐 섬유화 관련 유전자에 대한 침묵 효과
폐 섬유화와 연관성이 높은 것으로 알려진 Gtse1 유전자에 대한 만노스-LNP의 억제 효과를 확인하였다.
구체적으로, 상기 실시예 1-2에서 제조한 siGtse1이 봉입된 만노스-LNP를 siRNA 기준 0.5 mg/kg 용량으로 7주령 C57BL/6 마우스에 기관내 주입하고, 24 및 48시간 후 마우스를 희생하여 폐 세포에서 Gtse1 단백질을 western blot으로 측정하였으며, 그 결과를 도 11에 나타내었다.
도 11에서 확인되는 바와 같이, siGtse1이 봉입된 만노스-LNP는 폐 세포에서 Gtse1 단백질의 발현을 현저히 억제할 수 있음을 확인하였다.
실시예 6-2. 블레오마이신 유도 폐 섬유화 동물모델에서의 효과 확인
블레오마이신 유도 폐 섬유화 동물모델을 이용하여 만노스-LNP의 효과를 확인하였다.
구체적으로, 7주령 C57BL/6 마우스에 1.8 mg/kg 용량으로 블레오마이신을 기관내 투여하여 폐섬유화 동물모델을 구축하고, 블레오마이신 투여 1일 전과 투여 4일 후에 상기 실시예 1-2에서 제조한 siGtse1가 봉입된 만노스 수식 지질나노입자를 mRNA 기준 0.5 mg/kg의 용량으로 2회 기관내 투여하였다. 그 다음 14일에 마우스를 희생하여 Masson Trichrome 염색법을 통해 콜라겐의 침적을 확인하였으며, 그 결과를 도 12에 나타내었다.
도 12에서 확인되는 바와 같이, 블레오마이신 투여군(Saline) 및 siControl 핵산(Bioneer, Cat.# SN-1013)이 봉입된 만노스-LNP 투여군(siCon)에서는 콜라겐 침적이 증가된 반면, siGtse1 핵산 약물이 봉입된 만노스-LNP 투여군(siGtse1)에서는 콜라겐이 유의적으로 감소하였으며, 조직면역학 염색을 통해서도 Gtse1 단백질의 발현이 감소한 것을 확인하였다.
실시예 6-3. 방사선 유도 폐 섬유화 동물모델에서의 효과 확인
방사선 유도 폐 섬유화 동물모델을 이용하여 만노스-LNP의 효과를 확인하였다.
구체적으로, 고 선량 초점 방사선 75 Gy를 10주령 C57BL/6 마우스에 3 mm 부피의 왼쪽 폐에 조사하여 폐섬유화 동물모델을 구축하고, 상기 실시예 1-2에서 제조한 siGtse1가 봉입된 만노스 수식 지질나노입자를 mRNA 기준 0.5 mg/kg의 용량으로 방사선 조사 후 예방군은 1일 및 3주 후에, 치료군은 4주 및 5주 후에 각각 2회 기관내 투여하였다. 그 다음 6주 후 마우스를 희생하여 Masson Trichrome 염색법을 통해 콜라겐의 침적을 확인하였으며, 그 결과를 도 13에 나타내었다.
도 13에서 확인되는 바와 같이, siGtse1 핵산 약물이 봉입된 만노스-LNP를 투여한 예방군 및 치료군에서 모두 콜라겐이 유의적으로 감소하였으며, 조직면역학 염색을 통해서도 Gtse1 단백질의 발현이 감소한 것을 확인하였다.
또한, 상기 희생된 마우스의 기관 내 formalin 액체를 삽입하여 폐 전체를 고정하고 육안으로 방사선 조사 부분의 조직병리학적 변화를 관찰하였으며, 소동물(small animal) Mico-CT 촬영을 통한 폐 손상정도를 평가하고 그 결과를 도 14에 나타내었다.
도 14에서 확인되는 바와 같이, siGtse1 핵산 약물이 봉입된 만노스-LNP를 투여한 예방군 및 치료군에서 모두 대조군 대비 폐 부피가 회복되었음을 확인하였다.
실시예 6-4. 다양한 폐활량 지표의 확인
방사선 조사 후 폐섬유화가 진행되면 폐 용적이 줄어들며, 동시에 폐 조직의 탄성이나 다양한 폐활량 지표들의 변화가 수반되는 것으로 알려져 있다. 이에 사람에게서 측정되는 다양한 폐기능검사의 결과값을 소동물에서 얻을 수 있는 검사 방법인 Flexivent®를 사용하여 상기 실시예 6-2의 동물모델에서 하기 표 3의 폐활량 지표들을 측정하였으며, 그 결과를 도 15에 나타내었다.
[표 3]
Figure PCTKR2023017108-appb-img-000004
도 15에서 확인되는 바와 같이, 방사선 조사군은 대조군과 비교하여 폐활량 지표들이 restirictive한 경향성으로 변화되었으나, siGtse1 핵산 약물이 봉입된 만노스-LNP를 투여한 예방군 및 치료군에서 모두 방사선 조사군 대비 폐활량 지표들의 restirictive한 경향성이 회복되었음을 확인하였다.

Claims (13)

  1. 만노스-PEG(polyethyleneglycol)-지질 접합체를 포함하는 지질나노입자를 포함하는 약물의 경폐 전달용 조성물.
  2. 제1항에 있어서, 상기 조성물은 폐 내 국소 전달되는 것인, 약물의 경폐 전달용 조성물.
  3. 제1항에 있어서, 상기 조성물은 섬유화된 폐에 국소 전달되는 것인, 약물의 경폐 전달용 조성물.
  4. 제1항에 있어서, 상기 지질나노입자는 이온화 가능한 지질, 인지질 및 구조적 지질로 이루어진 군에서 선택되는 어느 하나 이상을 더 포함하는, 약물의 경폐 전달용 조성물.
  5. 제4항에 있어서, 상기 이온화 가능한 지질은 SM-102, ALC-0315, DODAC, DODMA, DSDMA, DOTMA, DDAB, DOTAP, DC-Chol, DMRIE, DOSPA, DOGS, CLinDMA, CpLinDMA, DMOBA, DOcarbDAP, DLinDAP, DLincarbDAP, DLinCDAP, DLinDMA, DLenDMA, DLin-MC3-DMA, 246-C10, 및 244-cis로 이루어진 군으로부터 선택되는 어느 하나 이상인, 약물의 경폐 전달용 조성물.
  6. 제4항에 있어서, 상기 인지질은 DOPE, DSPC, POPC, EPC, DOPC, DPPC, DOPG, DPPG, DSPE, DOTAP, 포스파티딜에탄올아민, 디팔미토일포스파티딜에탄올아민, 1,2-디올레오일-sn-글리세로-3-포스페이트, 1,2-디리놀레오일-sn-글리세로-3-포스포콜린, 1,2-디아라키도노일-sn-글리세로-3-포스포콜린, 1,2-디도코사헥사에노일-sn-글리세로-3-포스포콜린, 1,2-디피타노일-sn-글리세로-3-포스포에탄올아민, POPE, DOPS, DLPC, DMPC, DUPC, 1,2-디-O-옥타데세닐-sn-글리세로-3-포스포콜린, 1-올레오일-2-콜레스테릴헤미숙시노일-sn-글리세로-3-포스포콜린, 1-헥사데실-sn-글리세로-3-포스포콜린, 1,2-디스테아로일-sn-글리세로-3-포스포에탄올아민, 1,2-디리놀레오일-sn-글리세로-3-포스포에탄올아민, 1,2-디리놀레오일-sn-글리세로-3-포스포에탄올아민, 1,2-디아라키도노일-sn-글리세로-3-포스포에탄올아민, 1,2-디도코사헥사에노일-sn- 글리세로-3-포스포에탄올아민, 및 스핑고미엘린으로 이루어진 군으로부터 선택되는 어느 하나 이상인, 약물의 경폐 전달용 조성물.
  7. 제4항에 있어서, 상기 구조적 지질은 콜레스테롤, 콜레스테놀, 스피나스테롤, 페코스테롤, 시토스테롤, 에르고스테롤, 에르고스테놀, 캄페스테롤, 스티그마스테롤, 브라시카스테롤, 토마티딘, 우르솔산 및 알파-토코페롤로 이루어진 군에서 선택되는 어느 하나 이상인, 약물의 경폐 전달용 조성물.
  8. 제4항에 있어서, 상기 지질나노입자는 이온화 가능한 지질 : 인지질 : 구조적 지질 : PEG-지질 접합체 혼합물을 20 내지 60 : 10 내지 30 : 30 내지 60 : 0.1 내지 10의 몰비로 포함하는, 약물의 경폐 전달용 조성물.
  9. i) 만노스-PEG(polyethyleneglycol)-지질 접합체를 포함하는 지질나노입자; 및 ii) 음이온성 약물;을 포함하는 폐 질환의 예방 또는 치료용 약학적 조성물.
  10. 제9항에 있어서, 상기 음이온성 약물은 핵산 약물인, 약학적 조성물.
  11. 제10항에 있어서, 상기 핵산 약물은 siRNA, mRNA, 안티센스 올리고뉴클레오티드 및 miRNA로 이루어진 군에서 선택되는 어느 하나 이상인, 약학적 조성물.
  12. 제9항에 있어서, 상기 폐 질환은 폐 섬유증인, 약학적 조성물.
  13. 제9항에 있어서, 상기 조성물은 폐 내 국소 투여되는 것인, 약학적 조성물.
PCT/KR2023/017108 2022-11-02 2023-10-31 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용 WO2024096516A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220144737 2022-11-02
KR10-2022-0144737 2022-11-02
KR10-2023-0117261 2023-09-04
KR1020230117261A KR20240066978A (ko) 2022-11-02 2023-09-04 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용

Publications (1)

Publication Number Publication Date
WO2024096516A1 true WO2024096516A1 (ko) 2024-05-10

Family

ID=90931022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017108 WO2024096516A1 (ko) 2022-11-02 2023-10-31 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용

Country Status (1)

Country Link
WO (1) WO2024096516A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085203B1 (ko) * 2011-04-01 2011-11-21 서울대학교산학협력단 의약 전달용 인지질 나노입자
KR20140048404A (ko) * 2012-10-11 2014-04-24 포항공과대학교 산학협력단 저밀도 지단백질 유사 나노입자 및 이를 포함하는 간 표적 진단 및 치료용 조성물
WO2021205032A1 (en) * 2020-04-09 2021-10-14 Technische Universität München Targeted delivery of an inhibitor of mir-21 to macrophages for the treatment of pulmonary fibrosis
KR20220092363A (ko) * 2020-12-24 2022-07-01 (주)인핸스드바이오 지질 나노입자를 포함하는 암 예방 또는 치료용 조성물
KR20220092273A (ko) * 2020-12-24 2022-07-01 (주)인핸스드바이오 만노스를 포함하는 지질 나노입자 또는 이의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085203B1 (ko) * 2011-04-01 2011-11-21 서울대학교산학협력단 의약 전달용 인지질 나노입자
KR20140048404A (ko) * 2012-10-11 2014-04-24 포항공과대학교 산학협력단 저밀도 지단백질 유사 나노입자 및 이를 포함하는 간 표적 진단 및 치료용 조성물
WO2021205032A1 (en) * 2020-04-09 2021-10-14 Technische Universität München Targeted delivery of an inhibitor of mir-21 to macrophages for the treatment of pulmonary fibrosis
KR20220092363A (ko) * 2020-12-24 2022-07-01 (주)인핸스드바이오 지질 나노입자를 포함하는 암 예방 또는 치료용 조성물
KR20220092273A (ko) * 2020-12-24 2022-07-01 (주)인핸스드바이오 만노스를 포함하는 지질 나노입자 또는 이의 용도

Similar Documents

Publication Publication Date Title
US20220305130A1 (en) Process for formulating an anionic agent
EP2567693B1 (en) Lipid encapsulated interfering RNA
EP1019365B1 (en) Novel compositions for the delivery of negatively charged molecules
KR102198736B1 (ko) 생체 내 약물 전달을 위한 지질 나노입자 및 이의 용도
CN105163721A (zh) 脂质纳米颗粒组合物以及制备和使用其的方法
WO2023186149A1 (zh) 一种脂质化合物、包含其的组合物及应用
US9233971B2 (en) Lipomacrocycles and uses thereof
JP5382682B2 (ja) 薬物送達複合体
JP2004508012A (ja) エンドソーム膜不安定剤を用いたsplp媒介性トランスフェクションの強化方法
KR20240082389A (ko) 생분해성 이황화 결합을 포함하는 이온화 가능한 지질 및 이를 포함하는 지질나노입자
WO2024096516A1 (ko) 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용
KR20240082390A (ko) 생분해성 에스터 결합을 포함하는 이온화 가능한 지질 및 이를 포함하는 지질나노입자
KR20240066978A (ko) 핵산 약물의 경폐전달을 위한 지질나노입자 제형 및 이의 활용
US20220249376A1 (en) Nanovesicles and its use for nucleic acid delivery
WO2024091037A1 (ko) 폐를 표적장기로 하는 생분해성 지질나노입자 약물 전달 제형 및 이의 활용
WO2023054241A1 (ja) 核酸を脳組織に送達するために用いられる脂質ナノ粒子
WO2023164155A2 (en) Lipid nanoparticle compositions and methods of use thereof
CN118221556A (zh) 一种可电离阳离子脂质材料及其制备方法和应用
WO2024092228A2 (en) Localized delivery of sodium thiosulfate nanoparticles to mitigate arterial calcification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886212

Country of ref document: EP

Kind code of ref document: A1