WO2024096414A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2024096414A1
WO2024096414A1 PCT/KR2023/016458 KR2023016458W WO2024096414A1 WO 2024096414 A1 WO2024096414 A1 WO 2024096414A1 KR 2023016458 W KR2023016458 W KR 2023016458W WO 2024096414 A1 WO2024096414 A1 WO 2024096414A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
carbonate
lithium secondary
based compound
Prior art date
Application number
PCT/KR2023/016458
Other languages
French (fr)
Korean (ko)
Inventor
박영욱
조인행
김승현
박민우
심유나
이민영
조용현
Original Assignee
에스케이온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이온 주식회사 filed Critical 에스케이온 주식회사
Publication of WO2024096414A1 publication Critical patent/WO2024096414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure of this application relates to lithium secondary batteries.
  • Secondary batteries are batteries that can be repeatedly charged and discharged, and with the development of the information and communication and display industries, they are widely used as a power source for portable electronic communication devices such as camcorders, mobile phones, and laptop PCs. Additionally, recently, battery packs including secondary batteries have been developed and applied as a power source for eco-friendly vehicles such as hybrid vehicles.
  • secondary batteries examples include lithium secondary batteries, nickel-cadmium batteries, and nickel-hydrogen batteries.
  • lithium secondary batteries have a high operating voltage and energy density per unit weight, and are advantageous for charging speed and weight reduction. In this regard, active research and development is underway.
  • the positive electrode active material of a lithium secondary battery may include a lithium-excessive positive electrode active material having a lithium molar ratio of 1.1 or more.
  • the lithium-excessive positive electrode active material has high capacity characteristics, but requires high voltage operation, which may deteriorate its lifespan characteristics.
  • a lithium secondary battery with improved capacity characteristics and driving stability can be provided.
  • a lithium secondary battery includes a positive electrode containing a positive electrode active material containing lithium metal oxide particles, a negative electrode opposing the positive electrode, and a non-aqueous electrolyte solution containing a non-aqueous organic solvent and a lithium salt,
  • the ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is 1.05 or more, and the cyclic carbonate-based compound contained in the non-aqueous electrolyte solution relative to the total weight of the non-aqueous electrolyte solution.
  • the content is less than 2% by weight.
  • the cyclic carbonate-based compound may include at least one selected from the group consisting of ethylene carbonate, propylene carbonate, gamma-butyrolactone, and fluoroethylene carbonate.
  • the non-aqueous electrolyte solution may not include the cyclic carbonate-based compound.
  • the non-aqueous organic solvent may include a linear carbonate-based compound and a propionate-based compound.
  • the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 to 60% by volume.
  • the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 to 15% by volume.
  • the propionate-based compound may include at least one selected from the group consisting of methyl propionate, ethyl propionate, and propyl propionate.
  • the linear carbonate-based compound may include at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate.
  • the lithium salt is at least one selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium difluorophosphate (LiPO 2 F 2 ). may include.
  • the lithium metal oxide particles may be represented by Formula 1 below.
  • M is Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, At least one of Zn, Cr, Ga, V and Bi, 0 ⁇ x ⁇ 0.9, 0 ⁇ y ⁇ 0.9, x+y>0, 0.1 ⁇ z ⁇ 0.9, 1.8 ⁇ a+x+y+z ⁇ 2.2, 1.05 ⁇ a/(x+y+z) ⁇ 1.95 and 1.8 ⁇ b ⁇ 2.2.
  • the positive electrode according to embodiments of the present disclosure includes a positive electrode active material including lithium metal oxide particles containing excessive lithium.
  • lithium may exist in the transition metal layer of the layered structure of lithium metal oxide particles. Accordingly, the capacity characteristics of the positive electrode active material can be improved.
  • the lithium secondary battery includes a non-aqueous electrolyte solution.
  • the content of the cyclic carbonate-based compound contained in the non-aqueous electrolyte solution is less than 2% by weight. Within the above range, the content of cyclic carbonate-based compounds that are easily decomposed in a high-voltage environment is reduced, so that life characteristics during high-voltage charging and discharging can be improved.
  • the lithium secondary battery of the present disclosure can be widely applied in green technology fields such as electric vehicles, battery charging stations, and solar power generation and wind power generation using other batteries.
  • the lithium secondary battery of the present disclosure can be used in eco-friendly electric vehicles, hybrid vehicles, etc. to prevent climate change by suppressing air pollution and greenhouse gas emissions.
  • FIG 1 and 2 are schematic plan views and cross-sectional views, respectively, showing lithium secondary batteries according to example embodiments.
  • Embodiments of the present disclosure provide a lithium secondary battery including a positive electrode, a negative electrode, and an electrolyte solution.
  • a lithium secondary battery includes a positive electrode, a negative electrode opposite the positive electrode, and a non-aqueous electrolyte solution.
  • the positive electrode includes a positive electrode active material including lithium metal oxide particles containing excess lithium.
  • lithium may exist in the transition metal layer of the layered structure of lithium metal oxide particles. Accordingly, the capacity characteristics of the positive electrode active material can be improved similar to the theoretical capacity of the layered structure (250 mAh/g).
  • the ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is 1.05 or more, and in some embodiments, is 1.2 or more. You can. Within the above range, lithium may sufficiently exist in the transition metal layer in addition to the lithium layer in the layered structure of lithium metal oxide particles.
  • lithium metal oxide particles may be represented by Formula 1 below.
  • M is Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, At least one of Zn, Cr, Ga, V and Bi, 0 ⁇ x ⁇ 0.9, 0 ⁇ y ⁇ 0.9, x+y>0, 0.1 ⁇ z ⁇ 0.9, 1.8 ⁇ a+x+y+z ⁇ 2.2, 1.05 ⁇ a/(x+y+z) ⁇ 1.95 and 1.8 ⁇ b ⁇ 2.2.
  • a/(x+y+z) may mean the number of moles of lithium contained in the lithium metal oxide particles compared to the number of moles of transition metals contained in the lithium metal oxide particles.
  • a sufficient amount of lithium is present in the transition metal layer, thereby improving capacity characteristics and suppressing an excessive decrease in the number of moles of the transition metal.
  • the chemical structure represented by Formula 1 represents a bonding relationship included in the layered structure or crystal structure of lithium metal oxide particles and does not exclude other additional elements.
  • M, Ni, and Mn in Chemical Formula 1 may serve as the main active elements of the positive electrode active material.
  • Formula 1 is provided to express the bonding relationship of the main active elements and should be understood as encompassing the introduction and substitution of additional elements.
  • auxiliary elements to improve the chemical stability of the lithium metal oxide particles or the layered structure/crystal structure may be further included.
  • the auxiliary elements may be incorporated together in the layered structure/crystal structure to form a bond, and in this case, it should be understood that they are included within the range of the chemical structure represented by Formula 1.
  • the auxiliary elements include, for example, Na, Mg, Ca, Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, It may include at least one selected from the group consisting of Sn, Sr, Ba, Ra, P, and Zr.
  • the auxiliary element such as Al, may act as an auxiliary active element that contributes to the capacity/output activity of the positive electrode active material together with Co or Mn.
  • the positive electrode active material may further include a coating element or a doping element.
  • a coating element or a doping element For example, elements substantially the same as or similar to the above-described auxiliary elements may be used as coating elements or doping elements.
  • any of the above-mentioned elements alone or in combination of two or more may be used as a coating element or a doping element.
  • the coating element or doping element may exist on the surface of the lithium metal oxide particle, or may penetrate through the surface of the lithium metal composite oxide particle and be included in the layered structure or bonded structure represented by Chemical Formula 1.
  • the positive electrode active material may include nickel-cobalt-manganese (NCM)-based lithium oxide.
  • NCM nickel-cobalt-manganese
  • NCM-based lithium oxide with increased nickel content can be used.
  • Ni may serve as a transition metal related to the output and capacity of lithium secondary batteries. Therefore, by adopting a high-Ni composition as the positive electrode active material as described above, a high-capacity positive electrode and a high-capacity lithium secondary battery can be provided.
  • the long-term storage stability and lifetime stability of the positive electrode or secondary battery may relatively decrease, and side reactions with the electrolyte may also increase.
  • electrical conductivity can be maintained by including Co, while life stability and capacity maintenance characteristics can be improved through Mn.
  • the content of Ni (for example, the mole fraction of nickel in the total number of moles of nickel, cobalt, and manganese) in the NCM-based lithium oxide may be 0.6 or more, 0.7 or more, or 0.8 or more. In some embodiments, the Ni content may be 0.8 to 0.95, 0.82 to 0.95, 0.83 to 0.95, 0.84 to 0.95, 0.85 to 0.95, or 0.88 to 0.95.
  • the lithium secondary battery includes a non-aqueous electrolyte solution.
  • the non-aqueous electrolyte solution includes a non-aqueous organic solvent and a lithium salt.
  • the positive electrode active material containing the above-described lithium metal oxide particles can be driven at a high voltage of 4.5 V or more.
  • lithium metal oxide particles having the composition of Formula 1 may be activated under a high voltage environment of 4.5 V or more.
  • the non-aqueous electrolyte when the lithium secondary battery is driven in the high voltage environment, the non-aqueous electrolyte may be decomposed and the amount of gas generated may increase. Accordingly, the lifespan characteristics and driving stability of the lithium secondary battery may be reduced.
  • the content of the cyclic carbonate-based compound contained in the non-aqueous electrolyte is less than 2% by weight.
  • the content of cyclic carbonate-based compounds that are easily decomposed in a high-voltage environment is reduced, so that life characteristics during high-voltage charging and discharging can be improved.
  • the non-aqueous electrolyte solution may not contain a cyclic carbonate-based compound. Accordingly, gas generation due to decomposition of the non-aqueous electrolyte can be further suppressed.
  • the cyclic carbonate-based compounds include, for example, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone (GBL), and fluoroethylene carbonate (FEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • GBL gamma-butyrolactone
  • FEC fluoroethylene carbonate
  • the non-aqueous organic solvent may include a linear carbonate-based compound and a propionate-based compound.
  • linear carbonate-based compounds include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), and ethylmethyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • the oxidation resistance of the non-aqueous electrolyte is improved through the propionate-based compound, and the driving stability of the lithium secondary battery can be further improved.
  • the propionate-based compound is, for example, at least one selected from the group consisting of methyl propionate (MP), ethyl propionate (EP), and propyl propionate (PP). may include.
  • the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 vol% to 60 vol% or 5 vol% to 15 vol%. Within the above range, ion conductivity can be improved while improving the oxidation resistance of the non-aqueous electrolyte solution.
  • a lithium salt may serve as the electrolyte.
  • the lithium salt can be expressed as Li +
  • the anion (X - ) of the lithium salt is
  • the lithium salt is at least selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6- ), and lithium difluorophosphate (LiPO 2 F 2 ). It can contain one. In this case, a film with excellent thermal stability can be formed on the electrode surface. Accordingly, the ionic conductivity and electrode protection characteristics of the non-aqueous electrolyte can be improved.
  • the lithium salt may be included in a concentration of about 0.01M to 5M, or about 0.01M to 2M relative to the non-aqueous organic solvent.
  • the transfer of lithium ions and/or electrons may be promoted during charging and discharging of a lithium secondary battery, thereby improving output characteristics.
  • a lithium secondary battery including the positive electrode and non-aqueous electrolyte solution described above with reference to FIGS. 1 and 2 is provided.
  • a lithium secondary battery may include a positive electrode 100 containing a positive electrode active material containing the above-described lithium metal oxide particles and a negative electrode 130 opposing the positive electrode 100.
  • the positive electrode 100 may include a positive electrode current collector 105, and a positive electrode active material layer 110 disposed on at least one side of the positive electrode current collector 105 and containing a positive electrode active material containing the above-described lithium metal oxide particles. You can.
  • the positive electrode current collector 105 may include stainless steel, nickel, aluminum, titanium, or alloys thereof.
  • the positive electrode current collector 105 may include aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver.
  • the thickness of the positive electrode current collector 105 may be 10 ⁇ m to 50 ⁇ m.
  • a positive electrode slurry can be prepared by mixing the positive electrode active material in a solvent.
  • the positive electrode slurry may be coated on at least one side of the positive electrode current collector 105, then dried and rolled to manufacture the positive electrode active material layer 110.
  • the coating includes methods such as gravure coating, slot die coating, multi-layer simultaneous die coating, imprinting, doctor blade coating, dip coating, bar coating, and casting. can do.
  • the positive active material layer 110 may further include a binder and optionally may further include a conductive material, a thickener, etc.
  • NMP N-methyl-2-pyrrolidone
  • dimethylformamide dimethylacetamide
  • dimethylacetamide N,N-dimethylaminopropylamine
  • ethylene oxide tetrahydrofuran, etc.
  • the binder is polyvinylidenefluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (poly(vinylidene fluoride-co-hexafluoropropylene), polyacrylonitrile, polymethyl methacrylate ( polymethylmethacrylate), acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR), styrene-butadiene rubber (SBR), etc. These may be used alone or in combination of two or more.
  • PVDF polyvinylidenefluoride
  • PVDF vinylidene fluoride-hexafluoropropylene copolymer
  • polyacrylonitrile polymethyl methacrylate
  • NBR acrylonitrile butadiene rubber
  • BR polybutadiene rubber
  • SBR styrene-butadiene rubber
  • a PVDF-based binder can be used as the anode binder.
  • the amount of binder for forming the positive electrode active material layer 110 may decrease and the amount of positive electrode active material may relatively increase. Accordingly, the output characteristics and capacity characteristics of the secondary battery can be improved.
  • the conductive material may be added to improve the conductivity of the positive electrode active material layer 110 and/or the mobility of lithium ions or electrons.
  • the conductive material may be a carbon-based conductive material such as graphite, carbon black, acetylene black, Ketjen black, graphene, carbon nanotubes, VGCF (vapor-grown carbon fiber), carbon fiber, and/or tin, tin oxide, It may include a metal-based conductive material including perovskite materials such as titanium oxide, LaSrCoO 3 , and LaSrMnO 3 . These may be used alone or in combination of two or more.
  • the positive electrode slurry may further include a thickener and/or a dispersant.
  • the positive electrode slurry may include a thickener such as carboxymethyl cellulose (CMC).
  • the negative electrode 130 may include a negative electrode current collector 125 and a negative electrode active material layer 120 disposed on at least one side of the negative electrode current collector 125.
  • the negative electrode current collector 125 may include copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, etc. These may be used alone or in combination of two or more.
  • the thickness of the negative electrode current collector 125 may be 10 ⁇ m to 50 ⁇ m.
  • the negative electrode active material layer 120 may include a negative electrode active material.
  • a material capable of adsorbing and desorbing lithium ions may be used as the negative electrode active material.
  • the negative electrode active material may include carbon-based materials such as crystalline carbon, amorphous carbon, carbon composite, and carbon fiber; lithium metal; lithium alloy; Silicon (Si)-containing materials or tin (Sn)-containing materials, etc. may be used. These may be used alone or in combination of two or more.
  • the amorphous carbon may include hard carbon, soft carbon, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber (MPCF), etc.
  • the crystalline carbon may include graphite-based carbon such as natural graphite, artificial graphite, graphitized coke, graphitized MCMB, and graphitized MPCF.
  • the lithium metal may include pure lithium metal and/or lithium metal with a protective layer formed to inhibit dendrite growth.
  • a lithium metal-containing layer deposited or coated on the negative electrode current collector 125 may be used as the negative electrode active material layer 120.
  • a lithium thin film layer may be used as the negative electrode active material layer 120.
  • Elements included in the lithium alloy include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, and indium. These may be used alone or in combination of two or more.
  • the silicon-containing materials can provide increased capacitance properties.
  • the silicon-containing material may include Si, SiO x (0 ⁇ x ⁇ 2), metal-doped SiO x (0 ⁇ x ⁇ 2), silicon-carbon composite, etc.
  • the metal may include lithium and/or magnesium, and the metal-doped SiO x (0 ⁇ x ⁇ 2) may include a metal silicate.
  • a negative electrode slurry can be prepared by mixing the negative electrode active material in a solvent. After coating/depositing the negative electrode slurry on the negative electrode current collector 125, the negative electrode active material layer 120 can be manufactured by drying and rolling.
  • the coating includes methods such as gravure coating, slot die coating, multi-layer simultaneous die coating, imprinting, doctor blade coating, dip coating, bar coating, and casting. can do.
  • the negative electrode active material layer 120 may further include a binder and optionally may further include a conductive material, a thickener, etc.
  • Solvents included in the cathode slurry may include water, pure water, deionized water, distilled water, ethanol, isopropanol, methanol, acetone, n-propanol, t-butanol, etc. These may be used alone or in combination of two or more.
  • the above-described materials that can be used in manufacturing the positive electrode 100 may be used as the binder, conductive material, and thickener.
  • the negative electrode binder includes a styrene-butadiene-rubber (SBR)-based binder, carboxymethyl cellulose (CMC), polyacrylic acid-based binder, and polyethylenedioxythiophene (poly(). 3,4-ethylenedioxythiophene), PEDOT)-based binders, etc. may be used. These may be used alone or in combination of two or more.
  • SBR styrene-butadiene-rubber
  • CMC carboxymethyl cellulose
  • PEDOT polyethylenedioxythiophene
  • a separator 140 may be interposed between the anode 100 and the cathode 130.
  • the separator 140 may be configured to prevent an electrical short circuit between the anode 100 and the cathode 130 and to generate a flow of ions.
  • the thickness of the separator may be 10 ⁇ m to 20 ⁇ m.
  • the separator 140 may include a porous polymer film or a porous non-woven fabric.
  • the porous polymer film is an ethylene polymer, a propylene polymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer. It may include polyolefin-based polymers such as polymers. These may be used alone or in combination of two or more.
  • the porous nonwoven fabric may include high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • the separator 140 may include a ceramic-based material.
  • inorganic particles can be coated on the polymer film or dispersed within the polymer film to improve heat resistance.
  • the separator 140 may have a single-layer or multi-layer structure including the polymer film and/or non-woven fabric described above.
  • an electrode cell is defined by an anode 100, a cathode 130, and a separator 140, and a plurality of electrode cells are stacked, for example, an electrode in the form of a jelly roll.
  • Assembly 150 may be formed.
  • the electrode assembly 150 can be formed through winding, stacking, zigzag folding, stack-folding, etc. of the separator 140.
  • the electrode assembly 150 may be accommodated in the case 160 together with the non-aqueous electrolyte solution described above to form a lithium secondary battery.
  • NaOH as a precipitant and NH 4 OH as a chelating agent were additionally added to the reactor, and coprecipitation reaction was performed for 60 hours to prepare metal hydroxide particles.
  • the metal hydroxide particles were dried at 100° C. for 12 hours.
  • Dried metal hydroxide particles and lithium hydroxide were added to a dry mixer to prepare a mixture.
  • the mixing ratio of the metal hydroxide particles and lithium hydroxide was adjusted so that the composition of the manufactured lithium metal oxide particles according to inductively coupled plasma (ICP) analysis was Li 1.11 Ni 0.34 Mn 0.55 O 2 .
  • ICP inductively coupled plasma
  • the ICP analysis was performed using Agilent's 5800 ICP-OES device.
  • the mixture was placed in a firing furnace, the temperature of the firing furnace was raised to 250°C at 2°C/min, and maintained at 250°C for 3 hours (first firing).
  • the temperature of the furnace was raised to 850°C at a rate of 2°C/min, and the second firing was performed while maintaining the temperature at 850°C for 8 hours.
  • Oxygen gas was continuously passed through the furnace at a rate of 10 mL/min during the first and second calcinations.
  • the fired product was naturally cooled to room temperature, pulverized and classified to prepare lithium metal oxide particles.
  • the prepared lithium metal oxide particles were used as a positive electrode active material.
  • a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.0 M in a mixed solvent of EMC/EP (90:10; volume ratio).
  • a lithium secondary battery was manufactured using the prepared positive electrode active material and non-aqueous electrolyte solution.
  • a positive electrode slurry was prepared by mixing the prepared positive electrode active material, Denka Black as a conductive material, and PVDF as a binder in a mass ratio of 93:5:2, respectively.
  • the positive electrode slurry was coated on an aluminum current collector (thickness: 15 ⁇ m), vacuum dried at 130°C, and then rolled to prepare a positive electrode.
  • Lithium metal Li metal
  • Li metal Li metal
  • the anode and cathode manufactured as described above are notched and stacked in a circular shape with diameters of ⁇ 14 and ⁇ 16, respectively, and an electrode cell is formed by interposing a separator (polyethylene, thickness 13 ⁇ m) notched at ⁇ 19 between the anode and the cathode. did.
  • the electrode cell was placed in a coin cell exterior material with a diameter of 20 mm and a height of 1.6 mm and assembled by injecting an electrolyte solution, and was aged for more than 12 hours to allow the electrolyte solution to impregnate the inside of the electrode.
  • a positive electrode active material, a non-aqueous electrolyte solution, and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the composition of the non-aqueous organic solvent was adjusted to be as shown in Table 1 below.
  • a positive electrode active material, a non-aqueous electrolyte, and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the composition of the non-aqueous organic solvent and the content of EC relative to the total weight of the non-aqueous electrolyte were adjusted to be as shown in Table 1 below.
  • Example 2 Same as Example 1 , except that the input amounts of LiOH ⁇ H 2 O, NiSO 4 ⁇ 6H 2 O, and MnSO 4 ⁇ H 2 O were adjusted so that the composition of the lithium metal oxide particles was Li 1.02 Ni 0.38 Mn 0.60 O 2 A positive electrode active material, non-aqueous electrolyte solution, and lithium secondary battery were manufactured using this method.
  • composition (chemical formula) of the positive electrode active material ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles (Li/Me), composition of the non-aqueous electrolyte solvent (volume ratio), and The content of the cyclic carbonate-based compound is shown in Table 1 below.
  • the lithium secondary battery manufactured according to the above-described examples and comparative examples was charged (CC-CV 1C 4.6V 0.05C CUT-OFF) and left in a chamber at 45°C for 8 weeks. Afterwards, the lithium secondary battery was left at room temperature for 30 minutes and placed into a chamber to measure the amount of gas generated.
  • Charging (CC/CV 1C 4.6V 0.05C CUT-OFF) and discharging (CC 1C 2.0V CUT-OFF) of the lithium secondary battery manufactured according to the above-described examples and comparative examples were repeated 100 times in a chamber at 45°C. did.
  • the capacity maintenance rate was calculated as a percentage by dividing the discharge capacity measured in the 100th discharge by the discharge capacity measured in the first discharge.
  • Capacity maintenance rate (%) (100th discharge capacity/1st discharge capacity) ⁇ 100
  • Charging (CC/CV 0.1C 4.6V 0.05C CUT-OFF) and discharging (CC 0.1C 2.0V CUT-OFF) are performed once for the lithium secondary battery manufactured according to the above-described examples and comparative examples.
  • the initial discharge capacity was measured.
  • the initial discharge capacity is defined as the absolute capacity (mAh) of the lithium secondary battery divided by the total weight (g) of the positive electrode active material in the battery.
  • Example 1 8.6 93.5 210
  • Example 2 8.3 93.3 210
  • Example 3 8.9 93.7 210
  • Example 4 13.7 92.5 210
  • Example 5 15.2 91.3
  • Example 6 9.1 92.9
  • Example 7 9.4 92.6
  • Example 8 10.2 92.5
  • Example 9 11.3 91.9 210
  • Example 10 9.0 92.8 247 Comparative Example 1 76.9 73.9 210 Comparative Example 2 55.3 80.1 210 Comparative Example 3 164.2 61.5 210 Comparative Example 4 8.5 92.1 140
  • Example 4 where the content of the propionate-based compound was less than 5% by volume relative to the total volume of the non-aqueous organic solvent, oxidation resistance was relatively lowered and the lifetime capacity retention rate was decreased.
  • Example 5 where the content of the propionate-based compound exceeded 60% by volume relative to the total volume of the non-aqueous organic solvent, side reactions of the electrolyte solution relatively increased.
  • Comparative Example 4 where the ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is less than 1.05, the amount of lithium present in the transition metal layer of the layered structure is reduced compared to the Examples. And the initial capacity was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium secondary battery, according to embodiments of the present disclosure, comprises: a positive electrode comprising a positive electrode active material including lithium metal oxide particles in which the ratio of the number of moles of lithium to the total number of moles of metals excluding lithium is 1.05 or more; a negative electrode facing the positive electrode; and a non-aqueous electrolyte comprising a non-aqueous organic solvent and a lithium salt, wherein the content of a cyclic carbonate-based compound included in the non-aqueous electrolyte is less than 2% by weight compared to the total weight of the non-aqueous electrolyte.

Description

리튬 이차 전지lithium secondary battery
본 출원의 개시 사항은 리튬 이차 전지에 관한 것이다.The disclosure of this application relates to lithium secondary batteries.
이차 전지는 충전 및 방전이 반복 가능한 전지로서, 정보 통신 및 디스플레이 산업의 발전에 따라, 캠코더, 휴대폰, 노트북PC 등과 같은 휴대용 전자통신 기기들의 동력원으로 널리 적용되고 있다. 또한, 최근에는 하이브리드 자동차와 같은 친환경 자동차의 동력원으로서도 이차 전지를 포함한 전지 팩이 개발 및 적용되고 있다. Secondary batteries are batteries that can be repeatedly charged and discharged, and with the development of the information and communication and display industries, they are widely used as a power source for portable electronic communication devices such as camcorders, mobile phones, and laptop PCs. Additionally, recently, battery packs including secondary batteries have been developed and applied as a power source for eco-friendly vehicles such as hybrid vehicles.
이차 전지로서 예를 들면, 리튬 이차 전지, 니켈-카드늄 전지, 니켈-수소 전지 등을 들 수 있으며, 이들 중 리튬 이차 전지가 작동 전압 및 단위 중량당 에너지 밀도가 높으며, 충전 속도 및 경량화에 유리하다는 점에서 활발히 연구 개발이 진행되고 있다.Examples of secondary batteries include lithium secondary batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. Among these, lithium secondary batteries have a high operating voltage and energy density per unit weight, and are advantageous for charging speed and weight reduction. In this regard, active research and development is underway.
리튬 이차 전지의 양극 활물질은 리튬의 몰비가 1.1 이상인 리튬 과잉 양극 활물질을 포함할 수 있다. 상기 리튬 과잉 양극 활물질은 고용량 특성을 가지나 고전압 구동이 요구되어 수명 특성이 저하될 수 있다.The positive electrode active material of a lithium secondary battery may include a lithium-excessive positive electrode active material having a lithium molar ratio of 1.1 or more. The lithium-excessive positive electrode active material has high capacity characteristics, but requires high voltage operation, which may deteriorate its lifespan characteristics.
본 개시의 일 측면에 따르면, 용량 특성 및 구동 안정성이 향상된 리튬 이차 전지가 제공될 수 있다.According to one aspect of the present disclosure, a lithium secondary battery with improved capacity characteristics and driving stability can be provided.
예시적인 실시예들에 따른 리튬 이차 전지는 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함하는 양극, 상기 양극과 대향하는 음극, 및 비수계 유기 용매 및 리튬 염을 포함하는 비수 전해액을 포함하고, 상기 리튬 금속 산화물 입자에 포함된 리튬을 제외한 금속의 총 몰수 대비 상기 리튬 금속 산화물 입자에 포함된 리튬의 몰수의 비는 1.05 이상이고, 상기 비수 전해액의 총 중량 대비 상기 비수 전해액에 포함된 환형 카보네이트계 화합물의 함량이 2 중량% 미만이다.A lithium secondary battery according to exemplary embodiments includes a positive electrode containing a positive electrode active material containing lithium metal oxide particles, a negative electrode opposing the positive electrode, and a non-aqueous electrolyte solution containing a non-aqueous organic solvent and a lithium salt, The ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is 1.05 or more, and the cyclic carbonate-based compound contained in the non-aqueous electrolyte solution relative to the total weight of the non-aqueous electrolyte solution. The content is less than 2% by weight.
일부 실시예들에 있어서, 상기 환형 카보네이트계 화합물은 에틸렌 카보네이트, 프로필렌 카보네이트, 감마-부티로락톤 및 플루오로에틸렌 카보네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.In some embodiments, the cyclic carbonate-based compound may include at least one selected from the group consisting of ethylene carbonate, propylene carbonate, gamma-butyrolactone, and fluoroethylene carbonate.
일부 실시예들에 있어서, 상기 비수 전해액은 상기 환형 카보네이트계 화합물을 포함하지 않을 수 있다.In some embodiments, the non-aqueous electrolyte solution may not include the cyclic carbonate-based compound.
일부 실시예들에 있어서, 상기 비수계 유기 용매는 선형 카보네이트계 화합물 및 프로피오네이트계 화합물을 포함할 수 있다.In some embodiments, the non-aqueous organic solvent may include a linear carbonate-based compound and a propionate-based compound.
일부 실시예들에 있어서, 상기 비수계 유기 용매의 총 부피 대비 상기 프로피오네이트계 화합물의 함량은 5 내지 60 부피%일 수 있다.In some embodiments, the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 to 60% by volume.
일부 실시예들에 있어서, 상기 비수계 유기 용매의 총 부피 대비 상기 프로피오네이트계 화합물의 함량은 5 내지 15 부피%일 수 있다.In some embodiments, the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 to 15% by volume.
일부 실시예들에 있어서, 상기 프로피오네이트계 화합물은 메틸 프로피오네이트, 에틸 프로피오네이트 및 프로필 프로피오네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.In some embodiments, the propionate-based compound may include at least one selected from the group consisting of methyl propionate, ethyl propionate, and propyl propionate.
일부 실시예들에 있어서, 상기 선형 카보네이트계 화합물은 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.In some embodiments, the linear carbonate-based compound may include at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate.
일부 실시예들에 있어서, 상기 리튬 염은 리튬 테트라플루오로보레이트(LiBF4), 리튬 헥사플루오로포스페이트(LiPF6) 및 리튬 다이플루오로포스페이트(LiPO2F2)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.In some embodiments, the lithium salt is at least one selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium difluorophosphate (LiPO 2 F 2 ). may include.
일부 실시예들에 있어서, 상기 리튬 금속 산화물 입자는 하기 화학식 1로 표시될 수 있다.In some embodiments, the lithium metal oxide particles may be represented by Formula 1 below.
[화학식 1] [Formula 1]
Lia[MxNiyMnz]Ob Li a [M x Ni y Mn z ]O b
화학식 1 중, M은 Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, Zn, Cr, Ga, V 및 Bi 중 적어도 하나이고, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2, 1.05≤a/(x+y+z)≤1.95 및 1.8≤b≤2.2이다.In Formula 1, M is Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, At least one of Zn, Cr, Ga, V and Bi, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2, 1.05≤a/(x+y+z)≤1.95 and 1.8≤b≤2.2.
본 개시의 실시예들에 따르는 양극은 리튬을 과잉으로 포함하는 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함한다. 이 경우, 리튬 금속 산화물 입자의 층상 구조 중 전이금속 층에 리튬이 존재할 수 있다. 이에 따라, 양극 활물질의 용량 특성이 향상될 수 있다.The positive electrode according to embodiments of the present disclosure includes a positive electrode active material including lithium metal oxide particles containing excessive lithium. In this case, lithium may exist in the transition metal layer of the layered structure of lithium metal oxide particles. Accordingly, the capacity characteristics of the positive electrode active material can be improved.
예시적인 실시예들에 따르면, 리튬 이차 전지는 비수 전해액을 포함한다. 상기 비수 전해액에 포함된 환형 카보네이트(cyclic carbonate)계 화합물의 함량은 2 중량% 미만이다. 상기 범위에서, 고전압 환경에서 쉽게 분해되는 환형 카보네이트계 화합물의 함량이 감소하여 고전압 충방전 시의 수명 특성이 개선될 수 있다.According to exemplary embodiments, the lithium secondary battery includes a non-aqueous electrolyte solution. The content of the cyclic carbonate-based compound contained in the non-aqueous electrolyte solution is less than 2% by weight. Within the above range, the content of cyclic carbonate-based compounds that are easily decomposed in a high-voltage environment is reduced, so that life characteristics during high-voltage charging and discharging can be improved.
본 개시의 리튬 이차 전지는 전기 자동차, 배터리 충전소, 그 외 배터리를 이용하는 태양광 발전, 풍력 발전 등 녹색 기술 분야에서 널리 적용될 수 있다. 본 개시의 리튬 이차 전지는 대기 오염 및 온실 가스 방출을 억제하여 기후 변화를 방지하기 위한 친환경(eco-friendly) 전기 자동차(Electric Vehicle), 하이브리드 자동차(hybrid vehicle) 등에 사용될 수 있다.The lithium secondary battery of the present disclosure can be widely applied in green technology fields such as electric vehicles, battery charging stations, and solar power generation and wind power generation using other batteries. The lithium secondary battery of the present disclosure can be used in eco-friendly electric vehicles, hybrid vehicles, etc. to prevent climate change by suppressing air pollution and greenhouse gas emissions.
도 1 및 도 2는 각각 예시적인 실시예들에 따른 리튬 이차 전지를 나타내는 개략적인 평면도 및 단면도이다.1 and 2 are schematic plan views and cross-sectional views, respectively, showing lithium secondary batteries according to example embodiments.
본 개시의 실시예들은 양극, 음극 및 전해액을 포함하는 리튬 이차 전지를 제공한다.Embodiments of the present disclosure provide a lithium secondary battery including a positive electrode, a negative electrode, and an electrolyte solution.
이하에서는, 본 개시의 실시예들에 대해 상세히 설명하기로 한다. 그러나 이는 예시적인 것에 불과하며 본 개시가 예시적으로 설명된 구체적인 실시 형태로 제한되는 것은 아니다.Hereinafter, embodiments of the present disclosure will be described in detail. However, this is merely illustrative and the present disclosure is not limited to the specific embodiments described as examples.
예시적인 실시예들에 있어서, 리튬 이차 전지는 양극, 상기 양극과 대향하는 음극, 및 비수 전해액을 포함한다.In exemplary embodiments, a lithium secondary battery includes a positive electrode, a negative electrode opposite the positive electrode, and a non-aqueous electrolyte solution.
리튬 이차 전지의 세부 구조는 도 1 및 도 2를 참조로 후술한다.The detailed structure of the lithium secondary battery will be described later with reference to FIGS. 1 and 2.
예시적인 실시예들에 있어서, 양극은 리튬을 과잉으로 포함하는 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함한다. 예를 들면, 리튬 금속 산화물 입자의 층상 구조 중 전이금속 층에 리튬이 존재할 수 있다. 이에 따라, 양극 활물질의 용량 특성이 층상 구조의 이론 용량(250 mAh/g)과 유사하게 향상될 수 있다.In exemplary embodiments, the positive electrode includes a positive electrode active material including lithium metal oxide particles containing excess lithium. For example, lithium may exist in the transition metal layer of the layered structure of lithium metal oxide particles. Accordingly, the capacity characteristics of the positive electrode active material can be improved similar to the theoretical capacity of the layered structure (250 mAh/g).
예시적인 실시예들에 있어서, 상기 리튬 금속 산화물 입자에 포함된 리튬을 제외한 금속의 총 몰수 대비 상기 리튬 금속 산화물 입자에 포함된 리튬의 몰수의 비는 1.05 이상이고, 일부 실시예들에 있어서 1.2 이상일 수 있다. 상기 범위에서, 리튬이 리튬 금속 산화물 입자의 층상 구조 중 리튬 층에 더하여 전이금속 층에도 충분히 존재할 수 있다.In exemplary embodiments, the ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is 1.05 or more, and in some embodiments, is 1.2 or more. You can. Within the above range, lithium may sufficiently exist in the transition metal layer in addition to the lithium layer in the layered structure of lithium metal oxide particles.
일부 실시예들에 있어서, 리튬 금속 산화물 입자는 하기 화학식 1로 표시될 수 있다.In some embodiments, lithium metal oxide particles may be represented by Formula 1 below.
[화학식 1][Formula 1]
Lia[MxNiyMnz]Ob Li a [M x Ni y Mn z ]O b
화학식 1에서, M은 Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, Zn, Cr, Ga, V 및 Bi 중 적어도 하나이고, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2, 1.05≤a/(x+y+z)≤1.95 및 1.8≤b≤2.2이다.In Formula 1, M is Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, At least one of Zn, Cr, Ga, V and Bi, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2, 1.05≤a/(x+y+z)≤1.95 and 1.8≤b≤2.2.
일부 실시예들에 따르면, 화학식 1에서 1.2≤a/(x+y+z)≤1.8일 수 있다. 예를 들면, a/(x+y+z)는 리튬 금속 산화물 입자에 포함된 전이금속들의 몰수 대비 리튬 금속 산화물 입자에 포함된 리튬의 몰수를 의미할 수 있다.According to some embodiments, in Formula 1, 1.2≤a/(x+y+z)≤1.8. For example, a/(x+y+z) may mean the number of moles of lithium contained in the lithium metal oxide particles compared to the number of moles of transition metals contained in the lithium metal oxide particles.
상기 a/(x+y+z) 범위에서, 전이금속 층에 충분한 양의 리튬이 존재하여 용량 특성이 개선되면서도 전이금속의 몰수가 지나치게 감소하는 것을 억제할 수 있다.In the a/(x+y+z) range, a sufficient amount of lithium is present in the transition metal layer, thereby improving capacity characteristics and suppressing an excessive decrease in the number of moles of the transition metal.
화학식 1로 표시된 화학 구조는 리튬 금속 산화물 입자의 층상 구조 또는 결정 구조 내에 포함되는 결합 관계를 나타내며 다른 추가적인 원소들을 배제하는 것이 아니다. 예를 들면, 화학식 1의 M, Ni 및 Mn은 양극 활물질의 주 활성 원소(main active element)로 제공될 수 있다. 화학식 1은 상기 주 활성 원소의 결합 관계를 표현하기 위해 제공된 것이며 추가적인 원소의 도입 및 치환을 포괄하는 식으로 이해되어야 한다.The chemical structure represented by Formula 1 represents a bonding relationship included in the layered structure or crystal structure of lithium metal oxide particles and does not exclude other additional elements. For example, M, Ni, and Mn in Chemical Formula 1 may serve as the main active elements of the positive electrode active material. Formula 1 is provided to express the bonding relationship of the main active elements and should be understood as encompassing the introduction and substitution of additional elements.
일 실시예에 있어서, 상기 주 활성 원소에 추가되어 리튬 금속 산화물 입자 또는 상기 층상 구조/결정 구조의 화학적 안정성을 증진하기 위한 보조 원소들이 더 포함될 수 있다. 상기 보조 원소는 상기 층상 구조/결정 구조 내에 함께 혼입되어 결합을 형성할 수 있으며, 이 경우도 화학식 1로 표시되는 화학 구조 범위 내에 포함되는 것으로 이해되어야 한다.In one embodiment, in addition to the main active element, auxiliary elements to improve the chemical stability of the lithium metal oxide particles or the layered structure/crystal structure may be further included. The auxiliary elements may be incorporated together in the layered structure/crystal structure to form a bond, and in this case, it should be understood that they are included within the range of the chemical structure represented by Formula 1.
상기 보조 원소는 예를 들면, Na, Mg, Ca, Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, Sr, Ba, Ra, P 및 Zr로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다. 상기 보조 원소는 예를 들면, Al과 같이 Co 또는 Mn과 함께 양극 활물질의 용량/출력 활성에 기여하는 보조 활성 원소로 작용할 수도 있다.The auxiliary elements include, for example, Na, Mg, Ca, Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, It may include at least one selected from the group consisting of Sn, Sr, Ba, Ra, P, and Zr. For example, the auxiliary element, such as Al, may act as an auxiliary active element that contributes to the capacity/output activity of the positive electrode active material together with Co or Mn.
상기 양극 활물질은 코팅 원소 또는 도핑 원소를 더 포함할 수 있다. 예를 들면, 상술한 보조 원소들과 실질적으로 동일하거나 유사한 원소들이 코팅 원소 또는 도핑 원소로 사용될 수 있다. 예를 들면, 상술한 원소들 중 단독으로 혹은 2 이상이 조합되어 코팅 원소 또는 도핑 원소로 사용될 수 있다.The positive electrode active material may further include a coating element or a doping element. For example, elements substantially the same as or similar to the above-described auxiliary elements may be used as coating elements or doping elements. For example, any of the above-mentioned elements alone or in combination of two or more may be used as a coating element or a doping element.
상기 코팅 원소 또는 도핑 원소는 리튬 금속 산화물 입자의 표면 상에 존재하거나, 상기 리튬 금속 복합 산화물 입자의 표면을 통해 침투하여 상기 화학식 1로 나타내는 층상 구조 또는 결합 구조 내에 포함될 수도 있다.The coating element or doping element may exist on the surface of the lithium metal oxide particle, or may penetrate through the surface of the lithium metal composite oxide particle and be included in the layered structure or bonded structure represented by Chemical Formula 1.
상기 양극 활물질은 니켈-코발트-망간(NCM)계 리튬 산화물을 포함할 수 있다. 이 경우, 니켈의 함량이 증가된 NCM계 리튬 산화물이 사용될 수 있다.The positive electrode active material may include nickel-cobalt-manganese (NCM)-based lithium oxide. In this case, NCM-based lithium oxide with increased nickel content can be used.
Ni은 리튬 이차 전지의 출력 및 용량에 연관된 전이 금속으로 제공될 수 있다. 따라서, 상술한 바와 같이 고함량(High-Ni) 조성을 상기 양극 활물질에 채용함에 따라, 고용량 양극 및 고용량 리튬 이차전지를 제공할 수 있다.Ni may serve as a transition metal related to the output and capacity of lithium secondary batteries. Therefore, by adopting a high-Ni composition as the positive electrode active material as described above, a high-capacity positive electrode and a high-capacity lithium secondary battery can be provided.
그러나, Ni의 함량이 증가됨에 따라, 상대적으로 양극 또는 이차 전지의 장기 보존 안정성, 수명 안정성이 저하될 수 있으며, 전해질과의 부반응도 증가될 수 있다. 그러나, 예시적인 실시예들에 따르면 Co를 포함시켜 전기 전도성을 유지하면서, Mn을 통해 수명 안정성, 용량 유지 특성을 향상시킬 수 있다.However, as the Ni content increases, the long-term storage stability and lifetime stability of the positive electrode or secondary battery may relatively decrease, and side reactions with the electrolyte may also increase. However, according to exemplary embodiments, electrical conductivity can be maintained by including Co, while life stability and capacity maintenance characteristics can be improved through Mn.
상기 NCM계 리튬 산화물 중 Ni의 함량(예를 들면, 니켈, 코발트 및 망간의 총 몰수 중 니켈의 몰분율)은 0.6 이상, 0.7 이상, 또는 0.8 이상일 수 있다. 일부 실시예들에 있어서, Ni의 함량은 0.8 내지 0.95, 0.82 내지 0.95, 0.83 내지 0.95, 0.84 내지 0.95, 0.85 내지 0.95, 또는 0.88 내지 0.95일 수 있다.The content of Ni (for example, the mole fraction of nickel in the total number of moles of nickel, cobalt, and manganese) in the NCM-based lithium oxide may be 0.6 or more, 0.7 or more, or 0.8 or more. In some embodiments, the Ni content may be 0.8 to 0.95, 0.82 to 0.95, 0.83 to 0.95, 0.84 to 0.95, 0.85 to 0.95, or 0.88 to 0.95.
예시적인 실시예들에 따르면, 리튬 이차 전지는 비수 전해액을 포함한다. 예를 들면, 비수 전해액은 비수계 유기 용매 및 리튬 염을 포함한다.According to exemplary embodiments, the lithium secondary battery includes a non-aqueous electrolyte solution. For example, the non-aqueous electrolyte solution includes a non-aqueous organic solvent and a lithium salt.
예를 들면, 상술한 리튬 금속 산화물 입자를 포함하는 양극 활물질은 4.5 V 이상의 고전압에서 구동될 수 있다. 예를 들면, 4.5 V 이상이 고전압 환경 하에서 화학식 1의 조성을 갖는 리튬 금속 산화물 입자가 활성화될 수 있다. For example, the positive electrode active material containing the above-described lithium metal oxide particles can be driven at a high voltage of 4.5 V or more. For example, lithium metal oxide particles having the composition of Formula 1 may be activated under a high voltage environment of 4.5 V or more.
비교예에 있어서, 상기 고전압 환경에서 리튬 이차 전지를 구동 시 비수 전해액이 분해되어 가스 발생량이 증가할 수 있다. 이에 따라, 리튬 이차 전지의 수명 특성 및 구동 안정성이 저하될 수 있다.In the comparative example, when the lithium secondary battery is driven in the high voltage environment, the non-aqueous electrolyte may be decomposed and the amount of gas generated may increase. Accordingly, the lifespan characteristics and driving stability of the lithium secondary battery may be reduced.
예시적인 실시예들에 따르면, 비수 전해액에 포함된 환형 카보네이트(cyclic carbonate)계 화합물의 함량은 2 중량% 미만이다. 상기 범위에서, 고전압 환경에서 쉽게 분해되는 환형 카보네이트계 화합물의 함량이 감소하여 고전압 충방전 시의 수명 특성이 개선될 수 있다.According to exemplary embodiments, the content of the cyclic carbonate-based compound contained in the non-aqueous electrolyte is less than 2% by weight. Within the above range, the content of cyclic carbonate-based compounds that are easily decomposed in a high-voltage environment is reduced, so that life characteristics during high-voltage charging and discharging can be improved.
일 실시예에 따르면, 비수 전해액은 환형 카보네이트계 화합물을 포함하지 않을 수 있다. 이에 따라, 비수 전해액의 분해로 인한 가스 발생이 더욱 억제될 수 있다.According to one embodiment, the non-aqueous electrolyte solution may not contain a cyclic carbonate-based compound. Accordingly, gas generation due to decomposition of the non-aqueous electrolyte can be further suppressed.
상기 환형 카보네이트계 화합물은 예를 들면, 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 감마-부티로락톤(gamma-butyrolactone, GBL) 및 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.The cyclic carbonate-based compounds include, for example, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone (GBL), and fluoroethylene carbonate (FEC). ) may include at least one selected from the group consisting of.
일부 실시예들에 따르면, 비수계 유기 용매는 선형 카보네이트(linear carbonate)계 화합물 및 프로피오네이트(propionate)계 화합물을 포함할 수 있다.According to some embodiments, the non-aqueous organic solvent may include a linear carbonate-based compound and a propionate-based compound.
선형 카보네이트계 화합물은 예를 들면, 상기 선형 카보네이트계 화합물은 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonate, DPC), 에틸메틸 카보네이트(ethylmethyl carbonate, EMC), 메틸프로필 카보네이트(methylpropyl carbonate, MPC) 및 에틸프로필 카보네이트(ethylpropyl carbonate, EPC)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.For example, linear carbonate-based compounds include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), and ethylmethyl carbonate. , EMC), methylpropyl carbonate (MPC), and ethylpropyl carbonate (EPC).
예를 들면, 상기 프로피오네이트계 화합물을 통하여 비수 전해액의 내산화성이 개선되어 리튬 이차 전지의 구동 안정성이 더욱 향상될 수 있다.For example, the oxidation resistance of the non-aqueous electrolyte is improved through the propionate-based compound, and the driving stability of the lithium secondary battery can be further improved.
프로피오네이트계 화합물은 예를 들면, 메틸 프로피오네이트(methyl propionate, MP), 에틸 프로피오네이트(ethyl propionate, EP) 및 프로필 프로피오네이트(propyl propionate, PP)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다.The propionate-based compound is, for example, at least one selected from the group consisting of methyl propionate (MP), ethyl propionate (EP), and propyl propionate (PP). may include.
일부 실시예들에 따르면, 비수계 유기 용매의 총 부피 대비 프로피오네이트계 화합물의 함량은 5 부피% 내지 60 부피% 또는5 부피% 내지 15 부피%일 수 있다. 상기 범위에서, 비수 전해액의 내산화성을 향상시키면서도 이온 전도도가 개선될 수 있다.According to some embodiments, the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent may be 5 vol% to 60 vol% or 5 vol% to 15 vol%. Within the above range, ion conductivity can be improved while improving the oxidation resistance of the non-aqueous electrolyte solution.
예시적인 실시예들에 있어서, 리튬 염은 전해질로서 제공될 수 있다. 예를 들면, 상기 리튬 염은 Li+X-로 표현될 수 있다.In exemplary embodiments, a lithium salt may serve as the electrolyte. For example, the lithium salt can be expressed as Li +
예를 들면, 상기 리튬 염의 음이온(X-)은 For example, the anion (X - ) of the lithium salt is
F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N- 등을 예시할 수 있다.F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , Examples include CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - .
일부 실시예들에 있어서, 상기 리튬 염은 리튬 테트라플루오로보레이트(LiBF4), 리튬 헥사플루오로포스페이트(LiPF6-) 및 리튬 다이플루오로포스페이트(LiPO2F2)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함할 수 있다. 이 경우, 전극 표면에 열 안정성이 우수한 피막이 형성될 수 있다. 이에 따라, 비수 전해액의 이온 전도성 및 전극 보호 특성이 향상될 수 있다.In some embodiments, the lithium salt is at least selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6- ), and lithium difluorophosphate (LiPO 2 F 2 ). It can contain one. In this case, a film with excellent thermal stability can be formed on the electrode surface. Accordingly, the ionic conductivity and electrode protection characteristics of the non-aqueous electrolyte can be improved.
일 실시예에 있어서, 상기 리튬 염은 상기 비수계 유기 용매에 대해 약 0.01M 내지 5M, 또는 약 0.01M 내지 2M의 농도로 포함될 수 있다. 상기 범위 내에서 리튬 이차 전지의 충방전 시 리튬 이온 및/또는 전자의 전달이 촉진되어 출력 특성이 개선될 수 있다.In one embodiment, the lithium salt may be included in a concentration of about 0.01M to 5M, or about 0.01M to 2M relative to the non-aqueous organic solvent. Within the above range, the transfer of lithium ions and/or electrons may be promoted during charging and discharging of a lithium secondary battery, thereby improving output characteristics.
이하에서는, 도 1 및 도 2를 참고로 상술한 양극 및 비수 전해액을 포함하는 리튬 이차 전지가 제공된다.Below, a lithium secondary battery including the positive electrode and non-aqueous electrolyte solution described above with reference to FIGS. 1 and 2 is provided.
도 1 및 도 2를 참조하면, 리튬 이차 전지는 상술한 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함하는 양극(100) 및 상기 양극(100)과 대향하는 음극(130)을 포함할 수 있다.Referring to Figures 1 and 2, a lithium secondary battery may include a positive electrode 100 containing a positive electrode active material containing the above-described lithium metal oxide particles and a negative electrode 130 opposing the positive electrode 100.
양극(100)은 양극 집전체(105), 및 양극 집전체(105)의 적어도 일 면 상에 배치되며 상술한 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함하는 양극 활물질층(110)을 포함할 수 있다.The positive electrode 100 may include a positive electrode current collector 105, and a positive electrode active material layer 110 disposed on at least one side of the positive electrode current collector 105 and containing a positive electrode active material containing the above-described lithium metal oxide particles. You can.
양극 집전체(105)는 스테인레스강, 니켈, 알루미늄, 티탄 또는 이들의 합금을 포함할 수 있다. 양극 집전체(105)는 카본, 니켈, 티탄, 은으로 표면 처리된 알루미늄 또는 스테인레스강을 포함할 수도 있다. 예를 들면, 양극 집전체(105)의 두께는 10 ㎛ 내지 50 ㎛일 수 있다.The positive electrode current collector 105 may include stainless steel, nickel, aluminum, titanium, or alloys thereof. The positive electrode current collector 105 may include aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver. For example, the thickness of the positive electrode current collector 105 may be 10 ㎛ to 50 ㎛.
상기 양극 활물질을 용매 내에서 혼합하여 양극 슬러리를 제조할 수 있다. 상기 양극 슬러리를 양극 집전체(105)의 적어도 일 면 상에 코팅한 후, 건조 및 압연하여 양극 활물질층(110)을 제조할 수 있다. 상기 코팅은 그라비아 코팅, 슬롯 다이 코팅, 다층 동시 다이 코팅, 임프린팅, 닥터 블레이드 코팅(Doctor Blade Coating), 딥 코팅(Dip Coating), 바 코팅(Bar Coating), 캐스팅(Casting) 등의 공법을 포함할 수 있다. 양극 활물질층(110)은 바인더를 더 포함할 수 있으며 선택적으로 도전재, 증점제 등을 더 포함할 수 있다.A positive electrode slurry can be prepared by mixing the positive electrode active material in a solvent. The positive electrode slurry may be coated on at least one side of the positive electrode current collector 105, then dried and rolled to manufacture the positive electrode active material layer 110. The coating includes methods such as gravure coating, slot die coating, multi-layer simultaneous die coating, imprinting, doctor blade coating, dip coating, bar coating, and casting. can do. The positive active material layer 110 may further include a binder and optionally may further include a conductive material, a thickener, etc.
상기 용매로서 N-메틸-2-피롤리돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, N,N-디메틸아미노프로필아민, 에틸렌옥사이드, 테트라히드로퓨란 등이 사용될 수 있다.As the solvent, N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, N,N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. may be used.
상기 바인더는 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(poly(vinylidene fluoride-co-hexafluoropropylene), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 아크릴로니트릴부타디엔 러버(NBR), 폴리부타디엔 러버(polybutadiene rubber, BR), 스티렌-부타디엔 러버(SBR) 등을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.The binder is polyvinylidenefluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (poly(vinylidene fluoride-co-hexafluoropropylene), polyacrylonitrile, polymethyl methacrylate ( polymethylmethacrylate), acrylonitrile butadiene rubber (NBR), polybutadiene rubber (BR), styrene-butadiene rubber (SBR), etc. These may be used alone or in combination of two or more.
일 실시예에 있어서, 양극 바인더로서 PVDF 계열 바인더를 사용할 수 있다. 이 경우, 양극 활물질층(110) 형성을 위한 바인더의 양이 감소하고 상대적으로 양극 활물질의 양이 증가할 수 있다. 이에 따라, 이차 전지의 출력 특성 및 용량 특성이 향상될 수 있다.In one embodiment, a PVDF-based binder can be used as the anode binder. In this case, the amount of binder for forming the positive electrode active material layer 110 may decrease and the amount of positive electrode active material may relatively increase. Accordingly, the output characteristics and capacity characteristics of the secondary battery can be improved.
상기 도전재는 양극 활물질층(110)의 도전성 및/또는 리튬 이온 혹은 전자의 이동성을 증진하기 위해 첨가될 수 있다. 예를 들면, 상기 도전재는 흑연, 카본 블랙, 아세틸렌블랙, 케첸블랙, 그래핀, 탄소 나노 튜브, VGCF(vapor-grown carbon fiber), 탄소 섬유 등과 같은 탄소계열 도전재 및/또는 주석, 산화주석, 산화티타늄, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질 등을 포함하는 금속 계열 도전재를 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.The conductive material may be added to improve the conductivity of the positive electrode active material layer 110 and/or the mobility of lithium ions or electrons. For example, the conductive material may be a carbon-based conductive material such as graphite, carbon black, acetylene black, Ketjen black, graphene, carbon nanotubes, VGCF (vapor-grown carbon fiber), carbon fiber, and/or tin, tin oxide, It may include a metal-based conductive material including perovskite materials such as titanium oxide, LaSrCoO 3 , and LaSrMnO 3 . These may be used alone or in combination of two or more.
상기 양극 슬러리는 증점제 및/또는 분산제 등을 더 포함할 수 있다. 일 실시예에 있어서, 상기 양극 슬러리는 카르복시메틸 셀룰로오스(carboxymethyl cellulose, CMC)와 같은 증점제를 포함할 수 있다.The positive electrode slurry may further include a thickener and/or a dispersant. In one embodiment, the positive electrode slurry may include a thickener such as carboxymethyl cellulose (CMC).
음극(130)은 음극 집전체(125), 및 음극 집전체(125)의 적어도 일 면 상에 배치된 음극 활물질층(120)을 포함할 수 있다.The negative electrode 130 may include a negative electrode current collector 125 and a negative electrode active material layer 120 disposed on at least one side of the negative electrode current collector 125.
음극 집전체(125)는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재 등을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다. 예를 들면, 음극 집전체(125)의 두께는 10 ㎛ 내지 50 ㎛일 수 있다.The negative electrode current collector 125 may include copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, etc. These may be used alone or in combination of two or more. For example, the thickness of the negative electrode current collector 125 may be 10 ㎛ to 50 ㎛.
음극 활물질층(120)은 음극 활물질을 포함할 수 있다. 상기 음극 활물질로서 리튬 이온을 흡착 및 탈리할 수 있는 물질이 사용될 수 있다. 예를 들면, 상기 음극 활물질은 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 계열 재료; 리튬 금속; 리튬 합금; 실리콘(Si) 함유 물질 또는 주석(Sn) 함유 물질 등이 사용될 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.The negative electrode active material layer 120 may include a negative electrode active material. A material capable of adsorbing and desorbing lithium ions may be used as the negative electrode active material. For example, the negative electrode active material may include carbon-based materials such as crystalline carbon, amorphous carbon, carbon composite, and carbon fiber; lithium metal; lithium alloy; Silicon (Si)-containing materials or tin (Sn)-containing materials, etc. may be used. These may be used alone or in combination of two or more.
상기 비정질 탄소는 하드카본, 소프트카본, 코크스, 메조카본 마이크로비드(mesocarbon microbead: MCMB), 메조페이스피치계 탄소섬유(mesophase pitch-based carbon fiber: MPCF) 등을 포함할 수 있다.The amorphous carbon may include hard carbon, soft carbon, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber (MPCF), etc.
상기 결정질 탄소는 천연흑연, 인조흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등과 같은 흑연계 탄소를 포함할 수 있다. The crystalline carbon may include graphite-based carbon such as natural graphite, artificial graphite, graphitized coke, graphitized MCMB, and graphitized MPCF.
상기 리튬 금속은 순수한 리튬 금속 및/또는 덴드라이트 성장 억제 등을 위한 보호층이 형성된 리튬 금속을 포함할 수 있다. 일 실시예에 있어서, 음극 집전체(125) 상에 증착 또는 코팅된 리튬 금속 함유층이 음극 활물질층(120)으로 사용될 수 있다. 일 실시예에 있어서, 리튬 박막층이 음극 활물질층(120)으로 사용될 수도 있다.The lithium metal may include pure lithium metal and/or lithium metal with a protective layer formed to inhibit dendrite growth. In one embodiment, a lithium metal-containing layer deposited or coated on the negative electrode current collector 125 may be used as the negative electrode active material layer 120. In one embodiment, a lithium thin film layer may be used as the negative electrode active material layer 120.
상기 리튬 합금에 포함되는 원소로서 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨, 인듐 등을 들 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.Elements included in the lithium alloy include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, and indium. These may be used alone or in combination of two or more.
상기 실리콘 함유 물질은 보다 증가된 용량 특성을 제공할 수 있다. 상기 실리콘 함유 물질은 Si, SiOx(0<x<2), 금속 도핑된 SiOx(0<x<2), 실리콘-탄소 복합체 등을 포함할 수 있다.The silicon-containing materials can provide increased capacitance properties. The silicon-containing material may include Si, SiO x (0<x<2), metal-doped SiO x (0<x<2), silicon-carbon composite, etc.
상기 금속은 리튬 및/또는 마그네슘을 포함할 수 있으며, 금속 도핑된 SiOx(0<x<2)는 금속 실리케이트를 포함할 수 있다. The metal may include lithium and/or magnesium, and the metal-doped SiO x (0<x<2) may include a metal silicate.
상기 음극 활물질을 용매 내에서 혼합하여 음극 슬러리를 제조할 수 있다. 상기 음극 슬러리를 음극 집전체(125)에 코팅/증착 한 후, 건조 및 압연하여 음극 활물질층(120)을 제조할 수 있다. 상기 코팅은 그라비아 코팅, 슬롯 다이 코팅, 다층 동시 다이 코팅, 임프린팅, 닥터 블레이드 코팅(Doctor Blade Coating), 딥 코팅(Dip Coating), 바 코팅(Bar Coating), 캐스팅(Casting) 등의 공법을 포함할 수 있다. 음극 활물질층(120)은 바인더를 더 포함할 수 있으며 선택적으로 도전재, 증점제 등을 더 포함할 수 있다.A negative electrode slurry can be prepared by mixing the negative electrode active material in a solvent. After coating/depositing the negative electrode slurry on the negative electrode current collector 125, the negative electrode active material layer 120 can be manufactured by drying and rolling. The coating includes methods such as gravure coating, slot die coating, multi-layer simultaneous die coating, imprinting, doctor blade coating, dip coating, bar coating, and casting. can do. The negative electrode active material layer 120 may further include a binder and optionally may further include a conductive material, a thickener, etc.
음극 슬러리에 포함되는 용매는 물, 순수, 탈이온수, 증류수, 에탄올, 이소프로판올, 메탄올, 아세톤, n-프로판올, t-부탄올 등을 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.Solvents included in the cathode slurry may include water, pure water, deionized water, distilled water, ethanol, isopropanol, methanol, acetone, n-propanol, t-butanol, etc. These may be used alone or in combination of two or more.
상기 바인더, 도전재 및 증점제로서 양극(100) 제조 시 사용될 수 있는 상술한 물질들이 사용될 수 있다.The above-described materials that can be used in manufacturing the positive electrode 100 may be used as the binder, conductive material, and thickener.
일부 실시예들에 있어서, 음극 바인더로서 스티렌-부타디엔 러버(styrene-butadiene-rubber, SBR)계 바인더, 카르복시메틸 셀룰로오스(CMC), 폴리아크릴산(polyacrylic acid)계 바인더, 폴리에틸렌다이옥시싸이오펜(poly(3,4-ethylenedioxythiophene), PEDOT)계 바인더 등이 사용될 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.In some embodiments, the negative electrode binder includes a styrene-butadiene-rubber (SBR)-based binder, carboxymethyl cellulose (CMC), polyacrylic acid-based binder, and polyethylenedioxythiophene (poly(). 3,4-ethylenedioxythiophene), PEDOT)-based binders, etc. may be used. These may be used alone or in combination of two or more.
예시적인 실시예들에 있어서, 양극(100) 및 음극(130) 사이에는 분리막(140)이 개재될 수 있다. 분리막(140)은 양극(100)과 음극(130) 간의 전기적 단락을 방지하고, 이온의 흐름이 발생되도록 구성될 수 있다. 예를 들면, 분리막의 두께는 10 ㎛ 내지 20 ㎛일 수 있다.In exemplary embodiments, a separator 140 may be interposed between the anode 100 and the cathode 130. The separator 140 may be configured to prevent an electrical short circuit between the anode 100 and the cathode 130 and to generate a flow of ions. For example, the thickness of the separator may be 10 ㎛ to 20 ㎛.
예를 들어, 분리막(140)은 다공성 고분자 필름 또는 다공성 부직포를 포함할 수 있다. For example, the separator 140 may include a porous polymer film or a porous non-woven fabric.
상기 다공성 고분자 필름은 에틸렌(ethylene) 중합체, 프로필렌(propylene) 중합체, 에틸렌/부텐(ethylene/butene) 공중합체, 에틸렌/헥센(ethylene/hexene) 공중합체, 에틸렌/메타크릴레이트(ethylene/methacrylate) 공중합체 등의 폴리올레핀계 고분자를 포함할 수 있다. 이들은 단독으로 혹은 2 이상이 조합되어 사용될 수 있다.The porous polymer film is an ethylene polymer, a propylene polymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer. It may include polyolefin-based polymers such as polymers. These may be used alone or in combination of two or more.
상기 다공성 부직포는 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트(polyethylene terephthalate) 섬유 등을 포함할 수 있다. The porous nonwoven fabric may include high melting point glass fibers, polyethylene terephthalate fibers, etc.
분리막(140)은 세라믹계 재료를 포함할 수도 있다. 예를 들면, 무기 입자들이 상기 고분자 필름 상에 코팅되거나, 고분자 필름 내에 분산되어 내열성을 향상시킬 수 있다.The separator 140 may include a ceramic-based material. For example, inorganic particles can be coated on the polymer film or dispersed within the polymer film to improve heat resistance.
분리막(140)은 상술한 고분자 필름 및/또는 부직포를 포함하는 단일층 혹은 복층 구조를 가질 수 있다.The separator 140 may have a single-layer or multi-layer structure including the polymer film and/or non-woven fabric described above.
예시적인 실시예들에 따르면, 양극(100), 음극(130) 및 분리막(140)에 의해 전극 셀이 정의되며, 복수의 전극 셀들이 적층되어 예를 들면, 젤리 롤(jelly roll) 형태의 전극 조립체(150)가 형성될 수 있다. 예를 들면, 분리막(140)의 권취(winding), 적층(stacking), 지그재그 폴딩(z-folding), 스택-폴딩(stack-folding) 등을 통해 전극 조립체(150)를 형성할 수 있다.According to exemplary embodiments, an electrode cell is defined by an anode 100, a cathode 130, and a separator 140, and a plurality of electrode cells are stacked, for example, an electrode in the form of a jelly roll. Assembly 150 may be formed. For example, the electrode assembly 150 can be formed through winding, stacking, zigzag folding, stack-folding, etc. of the separator 140.
전극 조립체(150)가 케이스(160) 내에 상술한 비수 전해액과 함께 수용되어 리튬 이차 전지가 정의될 수 있다.The electrode assembly 150 may be accommodated in the case 160 together with the non-aqueous electrolyte solution described above to form a lithium secondary battery.
이하에서는, 구체적인 실험예들을 참조하여 본 개시의 실시예들에 대해 추가적으로 설명한다. 실험예에 포함된 실시예 및 비교예들은 본 개시를 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 개시의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, embodiments of the present disclosure will be further described with reference to specific experimental examples. The examples and comparative examples included in the experimental examples are merely illustrative of the present disclosure and do not limit the scope of the appended patent claims, and various changes and modifications to the examples are possible within the scope and technical idea of the present disclosure. It is obvious to those skilled in the art, and it is natural that such variations and modifications fall within the scope of the appended patent claims.
실시예 1Example 1
(1) 양극 활물질 제조(1) Manufacture of positive electrode active material
밀폐형 반응기에 용존 산소를 제거한 증류수를 투입하고, NiSO4·6H2O 및 MnSO4·H2O를 38.1:61.9의 몰비로 추가 투입하였다.Distilled water from which dissolved oxygen was removed was added to the closed reactor, and NiSO 4 ·6H 2 O and MnSO 4 ·H 2 O were further added at a molar ratio of 38.1:61.9.
상기 반응기에 침전제로 NaOH 및 킬라이팅제로 NH4OH를 추가 투입하고, 60 시간 동안 공침 반응을 진행하여, 금속 수산화물 입자를 제조하였다.NaOH as a precipitant and NH 4 OH as a chelating agent were additionally added to the reactor, and coprecipitation reaction was performed for 60 hours to prepare metal hydroxide particles.
상기 금속 수산화물 입자를 100 ℃에서 12 시간 동안 건조하였다.The metal hydroxide particles were dried at 100° C. for 12 hours.
건조된 금속 수산화물 입자 및 수산화 리튬을 건식 혼합기에 투입하여, 혼합물을 제조하였다.Dried metal hydroxide particles and lithium hydroxide were added to a dry mixer to prepare a mixture.
상기 금속 수산화물 입자 및 수산화 리튬의 혼합비는 제조되는 리튬 금속 산화물 입자의 유도 결합 플라즈마(Inductivity Coupled Plasma, ICP) 분석에 따른 조성이 Li1.11Ni0.34Mn0.55O2이 되도록 조절되었다.The mixing ratio of the metal hydroxide particles and lithium hydroxide was adjusted so that the composition of the manufactured lithium metal oxide particles according to inductively coupled plasma (ICP) analysis was Li 1.11 Ni 0.34 Mn 0.55 O 2 .
상기 ICP 분석은 Agilent 사의 5800 ICP-OES 장치를 이용해 수행되었다.The ICP analysis was performed using Agilent's 5800 ICP-OES device.
상기 혼합물을 소성로에 넣고, 상기 소성로의 온도를 2 ℃/min으로 250 ℃까지 승온하고, 250 ℃에서 3 시간 동안 유지하였다(1차 소성).The mixture was placed in a firing furnace, the temperature of the firing furnace was raised to 250°C at 2°C/min, and maintained at 250°C for 3 hours (first firing).
상기 1차 소성 후, 상기 소성로의 온도를 2 ℃/min의 속도로 850 ℃까지 승온하고, 850 ℃에서 8 시간 동안 유지하며 2차 소성하였다.After the first firing, the temperature of the furnace was raised to 850°C at a rate of 2°C/min, and the second firing was performed while maintaining the temperature at 850°C for 8 hours.
상기 1차 소성 및 상기 2차 소성하는 동안 상기 소성로에 연속적으로 10 mL/min으로 산소 가스를 통과시켰다.Oxygen gas was continuously passed through the furnace at a rate of 10 mL/min during the first and second calcinations.
소성 종료 후, 소성물을 실온까지 자연 냉각하고, 분쇄 및 분급하여 리튬 금속 산화물 입자를 제조하였다.After completion of firing, the fired product was naturally cooled to room temperature, pulverized and classified to prepare lithium metal oxide particles.
상기 리튬 금속 산화물 입자에 대하여 산소 원자 개수를 2개로 정규화하여 ICP 분석을 수행한 결과, Li1.11Ni0.34Mn0.55O2로 확인되었다.As a result of performing ICP analysis on the lithium metal oxide particle by normalizing the number of oxygen atoms to 2, it was confirmed to be Li 1.11 Ni 0.34 Mn 0.55 O 2 .
제조된 리튬 금속 산화물 입자를 양극 활물질로 사용하였다.The prepared lithium metal oxide particles were used as a positive electrode active material.
(2) 비수 전해액 제조(2) Preparation of non-aqueous electrolyte
EMC/EP(90:10; 부피비)의 혼합 용매에 1.0 M의 농도로 LiPF6를 용해시켜 비수 전해액을 제조하였다.A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.0 M in a mixed solvent of EMC/EP (90:10; volume ratio).
(3) 리튬 이차 전지 제조(3) Lithium secondary battery manufacturing
제조된 양극 활물질 및 비수 전해액을 사용하여 리튬 이차 전지를 제조하였다.A lithium secondary battery was manufactured using the prepared positive electrode active material and non-aqueous electrolyte solution.
구체적으로, 제조된 양극 활물질, 도전재로 Denka Black 및 바인더로 PVDF를 각각 93:5:2의 질량비 조성으로 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체(두께: 15 ㎛) 상에 코팅 후, 130 ℃에서 진공 건조한 후 압연하여 양극을 제조하였다.Specifically, a positive electrode slurry was prepared by mixing the prepared positive electrode active material, Denka Black as a conductive material, and PVDF as a binder in a mass ratio of 93:5:2, respectively. The positive electrode slurry was coated on an aluminum current collector (thickness: 15 ㎛), vacuum dried at 130°C, and then rolled to prepare a positive electrode.
음극으로 15 ㎛ 두께의 리튬 메탈(Li metal)을 사용하였다.Lithium metal (Li metal) with a thickness of 15 ㎛ was used as the cathode.
상술한 바와 같이 제조된 양극 및 음극을 각각 Φ14, Φ16 직경을 갖는 원형형태로 notching 하여 적층하고, 상기 양극 및 음극 사이에 Φ19로 notching 한 분리막(폴리에틸렌, 두께 13 ㎛)을 개재하여 전극 셀을 형성하였다. 상기 전극 셀을 직경 20 mm 높이 1.6 mm의 규격의 코인 셀 외장재 내에 넣고 전해액을 주액하여 조립하였으며, 전해액이 전극 내부에 함침될 수 있도록 12 시간 이상 에이징하였다.The anode and cathode manufactured as described above are notched and stacked in a circular shape with diameters of Φ14 and Φ16, respectively, and an electrode cell is formed by interposing a separator (polyethylene, thickness 13 ㎛) notched at Φ19 between the anode and the cathode. did. The electrode cell was placed in a coin cell exterior material with a diameter of 20 mm and a height of 1.6 mm and assembled by injecting an electrolyte solution, and was aged for more than 12 hours to allow the electrolyte solution to impregnate the inside of the electrode.
상기와 같이 제조된 리튬 이차 전지에 대해 화성 충방전을 실시하였다(충전조건 CC-CV 1C 4.6V 0.05C CUT-OFF, 방전조건 CC 1C 2.0V CUT-OFF).Chemical charging and discharging was performed on the lithium secondary battery manufactured as above (charging conditions CC-CV 1C 4.6V 0.05C CUT-OFF, discharging conditions CC 1C 2.0V CUT-OFF).
실시예 2 내지 9Examples 2 to 9
비수계 유기 용매의 조성이 하기 표 1과 같도록 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질, 비수 전해액 및 리튬 이차 전지를 제조하였다.A positive electrode active material, a non-aqueous electrolyte solution, and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the composition of the non-aqueous organic solvent was adjusted to be as shown in Table 1 below.
실시예 10Example 10
리튬 금속 산화물 입자의 조성이 Li1.19Ni0.21Co0.02Mn0.5802가 되도록 LiOH·H2O, NiSO4·6H2O, CoSO4·7H2O 및 MnSO4·H2O의 투입량을 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질, 비수 전해액 및 리튬 이차 전지를 제조하였다.The input amounts of LiOH·H 2 O, NiSO 4 ·6H 2 O, CoSO 4 ·7H 2 O and MnSO 4 ·H 2 O were adjusted so that the composition of the lithium metal oxide particles was Li 1.19 Ni 0.21 Co 0.02 Mn 0.58 0 2 Except for this, a positive electrode active material, a non-aqueous electrolyte solution, and a lithium secondary battery were prepared in the same manner as in Example 1.
비교예 1 내지 3Comparative Examples 1 to 3
비수계 유기 용매의 조성, 및 비수 전해액 총 중량 대비 EC의 함량이 하기 표 1과 같도록 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질, 비수 전해액 및 리튬 이차 전지를 제조하였다.A positive electrode active material, a non-aqueous electrolyte, and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the composition of the non-aqueous organic solvent and the content of EC relative to the total weight of the non-aqueous electrolyte were adjusted to be as shown in Table 1 below.
비교예 4Comparative Example 4
리튬 금속 산화물 입자의 조성이 Li1.02Ni0.38Mn0.60O2가 되도록 LiOH·H2O, NiSO4·6H2O 및 MnSO4·H2O의 투입량을 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 양극 활물질, 비수 전해액 및 리튬 이차 전지를 제조하였다.Same as Example 1 , except that the input amounts of LiOH·H 2 O, NiSO 4 ·6H 2 O, and MnSO 4 ·H 2 O were adjusted so that the composition of the lithium metal oxide particles was Li 1.02 Ni 0.38 Mn 0.60 O 2 A positive electrode active material, non-aqueous electrolyte solution, and lithium secondary battery were manufactured using this method.
양극 활물질의 조성(화학식), 리튬 금속 산화물 입자에 포함된 리튬을 제외한 금속의 총 몰수 대비 리튬 금속 산화물 입자에 포함된 리튬의 몰수의 비(Li/Me), 비수 전해액 용매의 조성(부피비) 및 환형 카보네이트계 화합물의 함량을 하기 표 1에 나타낸다.Composition (chemical formula) of the positive electrode active material, ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles (Li/Me), composition of the non-aqueous electrolyte solvent (volume ratio), and The content of the cyclic carbonate-based compound is shown in Table 1 below.
구분division 양극 활물질positive electrode active material 비수 전해액non-aqueous electrolyte
조성(화학식)Composition (chemical formula) Li/MeLi/Me 비수계 유기 용매 조성(부피비)Non-aqueous organic solvent composition (volume ratio) 환형 카보네이트 화합물의 함량
(중량%)
Content of cyclic carbonate compounds
(weight%)
실시예 1Example 1 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(90:10)EMC:EP(90:10) 00
실시예 2Example 2 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 DEC:EP(90:10)DEC:EP(90:10) 00
실시예 3Example 3 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:PP(90:10)EMC:PP(90:10) 00
실시예 4Example 4 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(96:4)EMC:EP(96:4) 00
실시예 5Example 5 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(35:65)EMC:EP(35:65) 00
실시예 6Example 6 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(80:20)EMC:EP(80:20) 00
실시예 7Example 7 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(70:30)EMC:EP(70:30) 00
실시예 8Example 8 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(50:50)EMC:EP(50:50) 00
실시예 9Example 9 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EMC:EP(40:60)EMC:EP(40:60) 00
실시예 10Example 10 Li1.19Ni0.21Co0.02Mn0.5802 Li 1.19 Ni 0.21 Co 0.02 Mn 0.58 0 2 1.471.47 EMC:EP(90:10)EMC:EP(90:10) 00
비교예 1Comparative Example 1 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 EC:EMC:DEC
(25:45:30)
EC:EMC:DEC
(25:45:30)
26.6426.64
비교예 2Comparative Example 2 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 FEC:EMC(10:90)FEC:EMC(10:90) 12.2512.25
비교예 3Comparative Example 3 Li1.11Ni0.34Mn0.55O2 Li 1.11 Ni 0.34 Mn 0.55 O 2 1.251.25 FEC:DMC(50:50)FEC:DMC(50:50) 51.8451.84
비교예 4Comparative Example 4 Li1.02Ni0.38Mn0.60O2 Li 1.02 Ni 0.38 Mn 0.60 O 2 1.041.04 EMC:EP(90:10)EMC:EP(90:10) 00
실험예Experiment example
(1) 가스 발생량 측정 - 45 ℃(1) Measurement of gas generation - 45℃
상술한 실시예들 및 비교예들에 따라 제조된 리튬 이차 전지를 충전(CC-CV 1C 4.6V 0.05C CUT-OFF)한 후 45 ℃ 챔버에서 8주간 방치하였다. 그 후, 리튬 이차 전지를 30분간 상온에서 방치하고 가스 발생량을 측정하는 챔버에 투입하였다.The lithium secondary battery manufactured according to the above-described examples and comparative examples was charged (CC-CV 1C 4.6V 0.05C CUT-OFF) and left in a chamber at 45°C for 8 weeks. Afterwards, the lithium secondary battery was left at room temperature for 30 minutes and placed into a chamber to measure the amount of gas generated.
상기 챔버에 진공을 형성한 후, 질소 가스를 채워서 상압을 형성하고, 상압에서의 질소 부피(V0) 및 챔버의 내부 압력(P0)을 측정하였다.After forming a vacuum in the chamber, nitrogen gas was filled to create normal pressure, and the volume of nitrogen at normal pressure (V 0 ) and the internal pressure of the chamber (P 0 ) were measured.
챔버 내부에 다시 진공을 형성한 후, 리튬 이차 전지에 구멍을 뚫고 1시간 동안 방치하였다. 이후, 챔버의 내부 압력(P1)을 측정한 후, 하기 식에 대입하여 가스 발생량을 측정하였다.After forming a vacuum again inside the chamber, a hole was drilled in the lithium secondary battery and left for 1 hour. Afterwards, the internal pressure (P 1 ) of the chamber was measured and the amount of gas generated was measured by substituting the following equation.
가스 발생량(mL) = (V0/P0)*P1 Gas generation amount (mL) = (V 0 /P 0 )*P 1
(2) 용량 유지율 평가 - 45 ℃(2) Capacity maintenance rate evaluation - 45℃
상술한 실시예들 및 비교예들에 따라 제조된 리튬 이차 전지를 45 ℃ 챔버에서 충전(CC/CV 1C 4.6V 0.05C CUT-OFF) 및 방전(CC 1C 2.0V CUT-OFF)을 100회 반복하였다.Charging (CC/CV 1C 4.6V 0.05C CUT-OFF) and discharging (CC 1C 2.0V CUT-OFF) of the lithium secondary battery manufactured according to the above-described examples and comparative examples were repeated 100 times in a chamber at 45°C. did.
100회째 방전에서 측정된 방전 용량을 1회째 방전에서 측정된 방전 용량으로 나누어 백분율로 용량 유지율을 계산하였다.The capacity maintenance rate was calculated as a percentage by dividing the discharge capacity measured in the 100th discharge by the discharge capacity measured in the first discharge.
용량 유지율(%) = (100회째 방전 용량/1회째 방전 용량)×100Capacity maintenance rate (%) = (100th discharge capacity/1st discharge capacity) × 100
(3) 초기 방전 용량 측정(3) Initial discharge capacity measurement
상술한 실시예들 및 비교예들에 따라 제조된 리튬 이차 전지에 대하여 충전(CC/CV 0.1C 4.6V 0.05C CUT-OFF) 및 방전(CC 0.1C 2.0V CUT-OFF)을 1회 수행하며 초기 방전 용량을 측정하였다.Charging (CC/CV 0.1C 4.6V 0.05C CUT-OFF) and discharging (CC 0.1C 2.0V CUT-OFF) are performed once for the lithium secondary battery manufactured according to the above-described examples and comparative examples. The initial discharge capacity was measured.
상기 초기 방전 용량은 리튬 이차 전지의 절대 용량(mAh)을 전지 내 양극 활물질의 총 중량(g)으로 나눈 값으로 정의된다.The initial discharge capacity is defined as the absolute capacity (mAh) of the lithium secondary battery divided by the total weight (g) of the positive electrode active material in the battery.
평가 결과는 하기 표 2에 나타낸다.The evaluation results are shown in Table 2 below.
구분division 가스 발생량(45 ℃)
(mL)
Gas generation amount (45℃)
(mL)
용량 유지율(45 ℃)
(%, 100cyc)
Capacity maintenance rate (45℃)
(%, 100cyc)
초기 방전 용량
(mAh/g)
initial discharge capacity
(mAh/g)
실시예 1Example 1 8.68.6 93.593.5 210210
실시예 2Example 2 8.38.3 93.393.3 210210
실시예 3Example 3 8.98.9 93.793.7 210210
실시예 4Example 4 13.713.7 92.592.5 210210
실시예 5Example 5 15.215.2 91.391.3 210210
실시예 6Example 6 9.19.1 92.992.9 210210
실시예 7Example 7 9.49.4 92.692.6 210210
실시예 8Example 8 10.210.2 92.592.5 210210
실시예 9Example 9 11.311.3 91.991.9 210210
실시예 10Example 10 9.09.0 92.892.8 247247
비교예 1Comparative Example 1 76.976.9 73.973.9 210210
비교예 2Comparative Example 2 55.355.3 80.180.1 210210
비교예 3Comparative Example 3 164.2164.2 61.561.5 210210
비교예 4Comparative Example 4 8.58.5 92.192.1 140140
표 1 및 표 2를 참조하면, 환형 카보네이트계 화합물을 비수 전해액 총 중량 대비 2 중량% 미만으로 포함한 실시예들에서는, 비교예들에 비하여 고전압 환경에서의 가스 발생량이 감소하고 용량 유지율이 향상되었다.Referring to Tables 1 and 2, in Examples containing less than 2% by weight of the cyclic carbonate-based compound based on the total weight of the non-aqueous electrolyte, the amount of gas generated in a high voltage environment was reduced and the capacity maintenance rate was improved compared to the Comparative Examples.
또한, 과잉 리튬을 포함하는 양극 활물질을 사용한 실시예들에서는, 비교예들에 비하여 용량 특성이 향상되었다.Additionally, in Examples using a positive electrode active material containing excess lithium, capacity characteristics were improved compared to Comparative Examples.
프로피오네이트계 화합물의 함량이 비수계 유기 용매의 총 부피 대비 5 부피% 미만인 실시예 4에서는, 상대적으로 내산화성이 저하되고 수명 용량 유지율이 감소하였다.In Example 4, where the content of the propionate-based compound was less than 5% by volume relative to the total volume of the non-aqueous organic solvent, oxidation resistance was relatively lowered and the lifetime capacity retention rate was decreased.
프로피오네이트계 화합물의 함량이 비수계 유기 용매의 총 부피 대비 60 부피%를 초과하는 실시예 5에서는, 상대적으로 전해액의 부반응이 증가하였다.In Example 5, where the content of the propionate-based compound exceeded 60% by volume relative to the total volume of the non-aqueous organic solvent, side reactions of the electrolyte solution relatively increased.
리튬 금속 산화물 입자에 포함된 리튬을 제외한 금속의 총 몰수 대비 리튬 금속 산화물 입자에 포함된 리튬의 몰수의 비가 1.05 미만인 비교예 4에서는, 실시예들에 비하여 층상 구조의 전이금속 층에 리튬 존재량이 감소하고 초기 용량이 저하되었다.In Comparative Example 4, where the ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is less than 1.05, the amount of lithium present in the transition metal layer of the layered structure is reduced compared to the Examples. And the initial capacity was lowered.

Claims (11)

  1. 리튬 금속 산화물 입자를 포함하는 양극 활물질을 포함하는 양극;A positive electrode containing a positive electrode active material containing lithium metal oxide particles;
    상기 양극과 대향하는 음극; 및a cathode opposite the anode; and
    비수계 유기 용매 및 리튬 염을 포함하는 비수 전해액을 포함하고,Comprising a non-aqueous electrolyte solution containing a non-aqueous organic solvent and a lithium salt,
    상기 리튬 금속 산화물 입자에 포함된 리튬을 제외한 금속의 총 몰수 대비 상기 리튬 금속 산화물 입자에 포함된 리튬의 몰수의 비는 1.05 이상이고,The ratio of the number of moles of lithium contained in the lithium metal oxide particles to the total number of moles of metal excluding lithium contained in the lithium metal oxide particles is 1.05 or more,
    상기 비수 전해액의 총 중량 대비 상기 비수 전해액에 포함된 환형 카보네이트계 화합물의 함량이 2 중량% 미만인, 리튬 이차 전지.A lithium secondary battery, wherein the content of the cyclic carbonate-based compound contained in the non-aqueous electrolyte is less than 2% by weight relative to the total weight of the non-aqueous electrolyte.
  2. 청구항 1에 있어서, 상기 환형 카보네이트계 화합물은 에틸렌 카보네이트, 프로필렌 카보네이트, 감마-부티로락톤 및 플루오로에틸렌 카보네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함하는, 리튬 이차 전지.The lithium secondary battery according to claim 1, wherein the cyclic carbonate-based compound includes at least one selected from the group consisting of ethylene carbonate, propylene carbonate, gamma-butyrolactone, and fluoroethylene carbonate.
  3. 청구항 1에 있어서, 상기 비수 전해액은 상기 환형 카보네이트계 화합물을 포함하지 않는, 리튬 이차 전지.The lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte solution does not include the cyclic carbonate-based compound.
  4. 청구항 1에 있어서, 상기 비수계 유기 용매는 선형 카보네이트계 화합물 및 프로피오네이트계 화합물을 포함하는, 리튬 이차 전지.The lithium secondary battery according to claim 1, wherein the non-aqueous organic solvent includes a linear carbonate-based compound and a propionate-based compound.
  5. 청구항 1에 있어서, 상기 비수계 유기 용매의 총 부피 대비 상기 프로피오네이트계 화합물의 함량은 5 부피% 내지 60 부피%인, 리튬 이차 전지.The lithium secondary battery according to claim 1, wherein the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent is 5 vol% to 60 vol%.
  6. 청구항 5에 있어서, 상기 비수계 유기 용매의 총 부피 대비 상기 프로피오네이트계 화합물의 함량은 5 부피% 내지 15 부피%인, 리튬 이차 전지.The lithium secondary battery according to claim 5, wherein the content of the propionate-based compound relative to the total volume of the non-aqueous organic solvent is 5 vol% to 15 vol%.
  7. 청구항 4에 있어서, 상기 프로피오네이트계 화합물은 메틸 프로피오네이트, 에틸 프로피오네이트 및 프로필 프로피오네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함하는, 리튬 이차 전지.The lithium secondary battery according to claim 4, wherein the propionate-based compound includes at least one selected from the group consisting of methyl propionate, ethyl propionate, and propyl propionate.
  8. 청구항 4에 있어서, 상기 선형 카보네이트계 화합물은 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 구성된 그룹으로부터 선택되는 적어도 하나를 포함하는, 리튬 이차 전지.The lithium secondary battery according to claim 4, wherein the linear carbonate-based compound includes at least one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate.
  9. 청구항 1에 있어서, 상기 리튬 염은 리튬 테트라플루오로보레이트(LiBF4), 리튬 헥사플루오로포스페이트(LiPF6) 및 리튬 다이플루오로포스페이트(LiPO2F2)로 구성된 그룹으로부터 선택되는 적어도 하나를 포함하는, 리튬 이차 전지.The method of claim 1, wherein the lithium salt comprises at least one selected from the group consisting of lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium difluorophosphate (LiPO 2 F 2 ). Lithium secondary battery.
  10. 청구항 1에 있어서, 상기 리튬 금속 산화물 입자는 하기 화학식 1로 표시되는, 리튬 이차 전지:The lithium secondary battery according to claim 1, wherein the lithium metal oxide particles are represented by the following formula (1):
    [화학식 1][Formula 1]
    Lia[MxNiyMnz]Ob Li a [M x Ni y Mn z ]O b
    (화학식 1 중, M은 Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu, Zn, Cr, Ga, V 및 Bi 중 적어도 하나이고, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2, 1.05≤a/(x+y+z)≤1.95 및 1.8≤b≤2.2임).(In Formula 1, M is Co, Na, Ca, Y, Hf, Ta, Fe, B, Si, Ba, Ra, Mg, V, Ti, Al, Ru, Zr, W, Sn, Nb, Mo, Cu , Zn, Cr, Ga, V and Bi, 0≤x≤0.9, 0≤y≤0.9, x+y>0, 0.1≤z≤0.9, 1.8≤a+x+y+z≤2.2 , 1.05≤a/(x+y+z)≤1.95 and 1.8≤b≤2.2).
  11. 청구항 10에 있어서, 1.2≤a/(x+y+z)≤1.8인, 리튬 이차 전지.The lithium secondary battery according to claim 10, wherein 1.2≤a/(x+y+z)≤1.8.
PCT/KR2023/016458 2022-11-01 2023-10-23 Lithium secondary battery WO2024096414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0143750 2022-11-01
KR1020220143750A KR20240061891A (en) 2022-11-01 2022-11-01 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2024096414A1 true WO2024096414A1 (en) 2024-05-10

Family

ID=90930902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016458 WO2024096414A1 (en) 2022-11-01 2023-10-23 Lithium secondary battery

Country Status (2)

Country Link
KR (1) KR20240061891A (en)
WO (1) WO2024096414A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448871B2 (en) * 2009-02-17 2014-03-19 三星エスディアイ株式会社 Flame retardant electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20140094959A (en) * 2013-01-23 2014-07-31 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20150022653A (en) * 2013-08-22 2015-03-04 솔브레인 주식회사 Electrolyte and lithium secondary battery with the same
KR20220009894A (en) * 2020-07-16 2022-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20220056334A (en) * 2020-10-28 2022-05-06 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery and lithium secondary battery comprising thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102022603B1 (en) 2016-02-04 2019-09-18 주식회사 엘지화학 Cathode and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448871B2 (en) * 2009-02-17 2014-03-19 三星エスディアイ株式会社 Flame retardant electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20140094959A (en) * 2013-01-23 2014-07-31 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20150022653A (en) * 2013-08-22 2015-03-04 솔브레인 주식회사 Electrolyte and lithium secondary battery with the same
KR20220009894A (en) * 2020-07-16 2022-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20220056334A (en) * 2020-10-28 2022-05-06 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery and lithium secondary battery comprising thereof

Also Published As

Publication number Publication date
KR20240061891A (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2019112390A1 (en) Anode active material for lithium secondary battery and method for manufacturing same
WO2019164313A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2019172661A1 (en) Method for manufacturing negative electrode
WO2019182364A1 (en) Separator having a coating layer of lithium-containing composite, lithium secondary battery comprising same, and method for manufacturing same secondary battery
WO2018169247A2 (en) Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2019168301A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018217071A1 (en) Fabrication method of cathode for secondary battery, cathode for secondary battery fabricated thereby, and lithium secondary battery comprising same cathode
WO2014204278A1 (en) High-capacity electrode active material for lithium secondary battery and lithium secondary battery using same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2021187961A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2020080800A1 (en) Method for preparing cathode additive for lithium secondary battery, and cathode additive for lithium secondary battery, prepared thereby
WO2020153690A1 (en) Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same
WO2021145647A1 (en) Method for preparing cathode active material for secondary battery
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2022055309A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2022045852A1 (en) Negative electrode and secondary battery comprising same
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886110

Country of ref document: EP

Kind code of ref document: A1