WO2024096401A1 - Pharmaceutical composition for wound healing or skin tissue regeneration, containing extracellular matrix and kelp extract - Google Patents

Pharmaceutical composition for wound healing or skin tissue regeneration, containing extracellular matrix and kelp extract Download PDF

Info

Publication number
WO2024096401A1
WO2024096401A1 PCT/KR2023/016353 KR2023016353W WO2024096401A1 WO 2024096401 A1 WO2024096401 A1 WO 2024096401A1 KR 2023016353 W KR2023016353 W KR 2023016353W WO 2024096401 A1 WO2024096401 A1 WO 2024096401A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
cou
kelp
wound
extracellular matrix
Prior art date
Application number
PCT/KR2023/016353
Other languages
French (fr)
Korean (ko)
Inventor
이병택
아린아수바
라하만멤디쇼한우
파와우메
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230060372A external-priority patent/KR20240062899A/en
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2024096401A1 publication Critical patent/WO2024096401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/03Phaeophycota or phaeophyta (brown algae), e.g. Fucus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9706Algae
    • A61K8/9711Phaeophycota or Phaeophyta [brown algae], e.g. Fucus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • It relates to a pharmaceutical composition for wound treatment or skin tissue regeneration containing extracellular matrix and kelp extract.
  • Biomaterials for wound healing must meet various requirements such as non-toxicity, biocompatibility, wound exudate absorption, moisture permeability, microbial resistance, and adhesion. Currently, much research is being conducted to develop ideal biomaterials that satisfy all of these. .
  • Decellularized ECM extracellular matrix
  • ECM extracellular matrix
  • chemokines chemokines
  • cytokines nuclear, cellular, and cytoplasmic components that can stimulate immune responses are removed through the decellularization process, making it effective in wound healing. It is known that it can be used.
  • a crosslinker is required in order to use decellularized ECM as a scaffold for wound healing.
  • ECM derived from liver tissue has a low proportion of soluble collagen, so a strong crosslinker is required.
  • these cross-linking agents have problems such as cytotoxicity or low biocompatibility, so there is a need to develop cross-linking agents with excellent biocompatibility.
  • seaweed is rich in minerals and bioactive molecules such as fucoidan and is known to have various biomedical properties such as antioxidant, anti-inflammatory, anti-tumor, anti-coagulant, collagen matrix formation and neovascularization.
  • kelp one of the seaweeds
  • the cross-linking ability of kelp was excellent, there was a problem of low biocompatibility due to the high pH of the entire scaffold. Accordingly, the above problem was solved by introducing p-coumaric acid (p-Cou), one of the phenolic acids, into the scaffold, and ultimately a biomaterial for wound healing with excellent biocompatibility was developed (see Figure 1).
  • One aspect is to provide a pharmaceutical composition for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
  • Another aspect is to provide a topical skin preparation for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
  • Another aspect is to provide a cosmetic composition for improving wounds or regenerating skin tissue, including an extracellular matrix and kelp extract.
  • Another aspect is to provide a method of treating wounds or regenerating skin tissue, comprising treating a subject with an extracellular matrix and a Kelp extract.
  • Another aspect is to provide the use of the extracellular matrix and Kelp extract for the manufacture of drugs for wound treatment or skin tissue regeneration.
  • One aspect provides a pharmaceutical composition for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
  • extracellular matrix refers to a collection of biopolymers that fill the space within tissues or outside cells, including collagen, elastin, laminin, glycosaminoglycans, proteoglycans, antimicrobial agents, chemoattractants, and cytokines. and growth factors.
  • the extracellular matrix may be derived from a mammal.
  • the mammal may be a pig, cow, sheep, goat, or primate, and specifically, the mammal may be a pig.
  • the extracellular matrix may be derived from fibroblasts, stem cells, chondrocytes, osteoblasts, vascular endothelial cells, myocytes, smooth muscle cells, hepatocytes, nerve cells, or cardiomyocytes, and specifically, The extracellular matrix may be derived from hepatocytes.
  • kelp refers to seaweed belonging to the Kelp family of the Kelp order of the Kelp family. It attaches to rocks and reproduces through spores, and has thick leaves of about 2 to 3 mm. In one aspect, the kelp can be used as a crosslinker for the extracellular matrix.
  • the pharmaceutical composition containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It contains excellent wound healing effects.
  • the composition can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the composition can be usefully used for wound treatment and/or skin tissue regeneration.
  • the extracellular matrix and kelp extract may be decellularized.
  • decellularization refers to the process of removing cellular components, such as nuclei, cell membranes, and nucleic acids, without damaging the original components of the tissue or cell.
  • the decellularization may be performed by treating the cells with a solution containing one or more selected from the group consisting of cell lysis solvent, stock solution, cationic surfactant, anionic surfactant, nonionic surfactant, RNase, and DNase.
  • the extracellular matrix and kelp extract have cellular components such as nuclei, cell membranes, and nucleic acids removed through the decellularization, so that when treated in an individual, stimulation of the individual's immune response can be minimized.
  • the concentration ratio of the extracellular matrix and kelp extract may be 1:0.75 to 1:1.25.
  • the mechanical strength of the entire composition increases, and pores are formed uniformly in a small size, thereby increasing the wound exudate inhibition ability, and the concentration ratio of the extracellular matrix and the kelp extract When 1:0.75 to 1:1.25, it is effective for wound healing and/or skin tissue regeneration.
  • the composition may further include an acidic drug, and the acidic drug may be p-coumaric acid.
  • the p-coumaric acid is an acidic drug of the polyphenol group, and can stably control the pH of the entire composition by reducing the high pH of the entire composition as the content of the kelp extract increases.
  • p-coumaric acid is known to have anti-inflammatory, antioxidant and antibacterial effects, and by further including p-coumaric acid, the wound healing and/or skin tissue regeneration effects can be further improved.
  • the composition may have an antibacterial effect, and the antibacterial effect may be against gram-positive bacteria and gram-negative bacteria.
  • the gram-positive bacteria include bacteria of the genus Staphylococcus , bacteria of the Streptococcus genus, bacteria of the genus Enterococcus , bacteria of the genus Klebsiell , bacteria of the genus Corynebacterium , and clostrites. It may be one or more selected from the group consisting of Clostridium genus bacteria, Listeria genus bacteria, and Bacillus genus bacteria. Specifically, the Gram-positive bacteria are Staphylococcus genus bacteria and/or Bacillus. It may be a bacterium of the genus ( Bacillus ).
  • the Gram-negative bacteria include Escherichia species, Salmonella , Pseudomonas , Neisseria , Chlamydia , and Yersinia .
  • the Gram-negative bacteria may be one or more selected from the group consisting of bacteria of the genus, and specifically, the gram-negative bacteria may be bacteria of the genus Escherichia and/or bacteria of the genus Salmonella .
  • the composition may inhibit the expression of matrix metalloproteinases (MMPs).
  • MMPs matrix metalloproteinases
  • the MMP is a proteolytic enzyme that can decompose extracellular matrix proteins, and is known to destroy newly formed ECM and delay wound healing time when activated for a long period of time.
  • the composition can effectively shorten the time required for wound healing and/or skin tissue regeneration by inhibiting the expression of MMP.
  • the composition may convert the phenotype of macrophages from type M1 to type M2.
  • the macrophage is a type of white blood cell, derived from hematopoietic stem cells in the bone marrow, and performs phagocytosis by engulfing and decomposing cell debris, foreign substances, microorganisms, cancer cells, abnormal proteins, etc. ) function, and is known to play an important role in not only non-specific defense mechanisms (innate immunity) but also in initiating specific defense mechanisms (adaptive immunity) through interactions with other immune cells such as lymphocytes.
  • innate immunity non-specific defense mechanisms
  • adaptive immunity adaptive immunity
  • M1 type inflammatory/offensive type
  • M2 type anti-inflammatory/repair type
  • M1 type macrophages cause an inflammatory response, remove bacteria, and perform anticancer actions.
  • M2-type macrophages suppress inflammatory responses, perform wound healing, and tissue repair, and can exhibit conflicting actions.
  • the composition can change the phenotype of macrophages from type M1 to type M2 by reducing the expression of CD68, an M1 type macrophage marker, and the concentration of nitrate, thereby promoting wound healing and/or skin tissue regeneration. is more effective.
  • the “wound” means that the normal continuity of the skin structure is disrupted due to physical damage to the skin. Additionally, in one aspect, the wound may be one or more selected from the group consisting of a wound, abrasion, laceration, stab wound, and ulcer.
  • the “treatment” means that a wound is healed in a shorter time compared to natural healing following administration of a pharmaceutical composition according to one aspect.
  • the treatment may include improvement and/or alleviation of the wound, and the treatment may include treatment of the wound and/or disease related to the wound. Additionally, the treatment may promote healing and/or regeneration of the damaged tissue while minimizing scarring and/or complications of diseases associated with the wound.
  • “administering” means introducing a substance into a subject in an appropriate manner.
  • the pharmaceutical composition according to one aspect may be administered through any general route capable of reaching the target in vivo.
  • the administration route of the composition is not particularly limited, but may be administered orally or parenterally. Specifically, it can be administered parenterally, and more specifically, it can be applied by applying it to the skin (i.e., transdermal administration).
  • the “improvement” may include lowering or alleviating the severity of the injury.
  • the “skin tissue regeneration” is a process of recovering tissue from damage, and the skin tissue regeneration may be one or more selected from the group consisting of epidermal regeneration, reproduction of glands or hair follicles, and microvascular formation in dermal tissue. there is.
  • the pharmaceutical composition may be provided in any formulation suitable for topical application.
  • it may be a solution for external use on the skin, a suspension, an emulsion, a gel, a patch, or a spray, but is not limited thereto.
  • the formulation can be easily prepared according to conventional methods in the field, and contains surfactants, excipients, wetting agents, emulsification accelerators, suspending agents, salts or buffers for adjusting osmotic pressure, colorants, flavorings, stabilizers, preservatives, preservatives or Other commonly used supplements can be used appropriately.
  • the pharmaceutical composition may further include appropriate carriers, excipients, or diluents commonly used in its preparation.
  • the diluent may be lactose, corn starch, soybean oil, microcrystalline cellulose, or mannitol, and the lubricant may be magnesium stearate, talc, or a combination thereof.
  • the carrier may be an excipient, disintegrant, binder, lubricant, or a combination thereof.
  • the excipient may be microcrystalline cellulose, lactose, low-substituted hydroxycellulose, or a combination thereof.
  • the disintegrant may be calcium carboxymethylcellulose, sodium starch glycolate, calcium monohydrogen phosphate anhydride, or a combination thereof.
  • the binder may be polyvinylpyrrolidone, low-substituted hydroxypropylcellulose, hydroxypropylcellulose, or a combination thereof.
  • the lubricant may be magnesium stearate, silicon dioxide, talc, or a combination thereof.
  • the carrier may be gauze, bandage, band, film, adhesive patch, or non-adhesive patch, and can be used as a wound dressing by using these carriers.
  • the pharmaceutical composition is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity of the patient's disease, the activity of the drug, and the drug's effect. It can be determined based on factors including sensitivity, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the medical field.
  • the administration may be administered once a day, or may be administered several times. For example, it may be administered every other day, or it may be administered once a week.
  • the pharmaceutical composition may be provided by mixing with a conventionally known pharmaceutical composition for wound treatment or skin tissue regeneration or a newly developed pharmaceutical composition for wound treatment or skin tissue regeneration.
  • a pharmaceutical composition for wound treatment or skin tissue regeneration it is important to mix in an amount that can obtain the maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art. .
  • the pharmaceutical composition may be administered alone or in combination with other drugs for wound treatment or skin tissue regeneration. That is, the pharmaceutical composition may be administered in combination with a known composition having a wound treatment or skin tissue regeneration effect or another drug for wound treatment or skin tissue regeneration, and may be administered simultaneously, separately, or sequentially. Or it can be administered in multiple doses. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
  • Another aspect provides a topical skin preparation for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
  • extracellular matrix may be within the scope described above.
  • the external skin preparation containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It has excellent wound healing effects.
  • the topical skin agent can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the skin topical agent can be useful for wound treatment and/or skin tissue regeneration.
  • the “external skin preparation” is an inclusive concept that generally includes all materials used for external skin use.
  • the skin external preparation contains a cosmetically or dermatologically acceptable medium or base and can be formulated for topical application to the skin. .
  • These are all formulations suitable for topical application, for example, solutions, gels, solids, pasty anhydrous products, emulsions obtained by dispersing the oil phase in the water phase, suspensions, microemulsions, microcapsules, microgranules or ionic forms (liposomes) and non-ionic forms. It may be provided in the form of an ionic vesicular dispersion, or in the form of a cream, skin, lotion, powder, ointment, spray or conceal stick. It can also be used in the form of foam or in the form of an aerosol composition further containing compressed propellant. These compositions can be prepared according to conventional methods in the art.
  • the skin external agent may contain fatty substances, organic solvents, solubilizers, thickeners, gelling agents, softeners, antioxidants, suspending agents, stabilizers, foaming agents, fragrances, surfactants, water, ionic or non-ionic types.
  • Cosmetic such as emulsifiers, fillers, sequestering agents, chelating agents, preservatives, vitamins, blocking agents, wetting agents, essential oils, dyes, pigments, hydrophilic or lipophilic active agents, lipid exosomes or any other ingredients commonly used in cosmetics.
  • it may contain adjuvants commonly used in the field of dermatology.
  • the auxiliaries can be introduced in amounts commonly used in the fields of cosmetology or dermatology.
  • Another aspect provides a cosmetic composition for improving wounds or regenerating skin tissue, comprising an extracellular matrix and kelp extract.
  • extracellular matrix may be within the above-mentioned scope.
  • the cosmetic composition containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It contains excellent wound improvement effect.
  • the composition can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the cosmetic composition can be usefully used for wound improvement and/or skin tissue regeneration.
  • the cosmetic composition includes solution, external ointment, cream, foam, nourishing lotion, softening lotion, pack, softening water, emulsion, makeup base, essence, soap, liquid cleanser, bath agent, sunscreen-cream, sun oil, suspension, and emulsion. , paste, gel, lotion, powder, soap, surfactant-containing cleansing, oil, powder foundation, emulsion foundation, wax foundation, patch, and spray.
  • the cosmetic composition may additionally include one or more cosmetically acceptable carriers that are mixed with general skin cosmetics, and common ingredients include, for example, oil, water, surfactant, moisturizer, lower alcohol, thickener, Chelating agents, pigments, preservatives, fragrances, etc. may be appropriately mixed, but are not limited thereto.
  • Cosmetically acceptable carriers included in the cosmetic composition vary depending on the formulation.
  • the carrier ingredients include animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc, zinc oxide. Or a mixture thereof can be used.
  • lactose, talc, silica, aluminum hydroxide, calcium silcate, polyamide powder, or mixtures thereof may be used as carrier ingredients, and especially in the case of spray, additional May contain propellants such as chlorofluorohydrocarbons, propane/butane or dimethyl ether.
  • a solvent, solubilizing agent, or emulsifying agent is used as a carrier component, such as water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, and propylene glycol.
  • 1,3-butyl glycol oil can be used, in particular cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol aliphatic esters, polyethylene glycol or fatty acid esters of sorbitan. You can.
  • the carrier component includes water, a liquid diluent such as ethanol or propylene glycol, a suspending agent such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester, and polyoxyethylene sorbitan ester, Microcrystalline cellulose, aluminum metahydroxide, bentonite, agar, or tracant may be used.
  • a liquid diluent such as ethanol or propylene glycol
  • a suspending agent such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester, and polyoxyethylene sorbitan ester
  • Microcrystalline cellulose aluminum metahydroxide, bentonite, agar, or tracant may be used.
  • the formulation of the cosmetic composition is soap, alkali metal salts of fatty acids, fatty acid hemiester salts, fatty acid protein hydrolyzates, isethionates, lanolin derivatives, fatty alcohols, vegetable oils, glycerol, sugars, etc. are used as carrier ingredients. It can be.
  • the formulation of the cosmetic composition is a pack (peel-off pack, wash-off pack, or sheet mask pack), polyvinyl alcohol, kaolin, talc, zinc oxide, or titanium dioxide may be used as a carrier ingredient. there is.
  • Another aspect provides a method of wound healing or skin tissue regeneration comprising treating a subject with an extracellular matrix and Kelp extract.
  • extracellular matrix may be within the scope described above.
  • the extracellular matrix and kelp extract are excellent in biodegradation, swelling ability, protein release ability, cell proliferation ability, and biocompatibility, reduce the expression of MMPs, and
  • the phenotype of phagocytes can be converted from M1 type to M2 type, effectively shortening the time required for wound healing, and can be useful for wound treatment and/or skin tissue regeneration.
  • the “individual” refers to a human or non-human organism, such as a non-human mammal such as a cow, monkey, bird, cat, mouse, rat, hamster, pig, dog, rabbit, sheep, horse, etc., which may cause injury or injury. It can be used on individuals with damaged skin tissue.
  • Another aspect is to provide the use of the extracellular matrix and Kelp extract for the manufacture of drugs for wound treatment or skin tissue regeneration.
  • wound wound
  • treatment skin tissue regeneration
  • extracellular matrix extracellular matrix
  • the extracellular matrix and kelp extract are excellent in biodegradation, swelling ability, protein release ability, cell proliferation ability, and biocompatibility, reduce the expression of MMPs, and
  • the phenotype of phagocytes can be converted from M1 type to M2 type, effectively shortening the time required for wound healing, and can be useful for wound treatment and/or skin tissue regeneration.
  • Figure 1 shows a schematic diagram of the wound healing effect mechanism of the EK-20@Cou scaffold.
  • Figure 2 shows a schematic diagram of the decellularization process of porcine liver-derived ECM.
  • Figure 3 shows optical and H&E staining images of porcine liver-derived ECM before and after decellularization.
  • Figure 4A shows DNA quantification data before and after decellularization of porcine liver-derived ECM.
  • Figure 4b shows gel electrophoresis results before and after decellularization of porcine liver-derived ECM.
  • Figure 5 shows a schematic diagram of the kelp decellularization process.
  • Figure 6a shows H&E staining images before and after kelp decellularization.
  • Figure 6b shows SEM images before and after kelp decellularization.
  • Figure 7a shows the DNA content before and after kelp decellularization.
  • Figure 7b shows protein content before and after kelp decellularization.
  • Figure 8 shows the results of FTIR spectrum analysis for decellularized kelp.
  • FIG. 9 shows a schematic diagram of the ECM-kelp (EK) scaffold fabrication process.
  • Figure 10 shows an optical image of the EK scaffold.
  • Figure 11a shows optical images of EK scaffolds (EK-5, EK-10, EK-15, and EK-20) with different kelp concentrations.
  • Figure 11b shows the stress/strain curves of EK-5, EK-10, EK-15 and EK-20.
  • Figure 12 shows SEM images of EK-5, EK-10, EK-15 and EK-20 surfaces.
  • Figure 13 shows the pore size distribution of EK-5, EK-10, EK-15 and EK-20.
  • FIG 14A shows the ECM protein (GAGs, elastin and soluble collagen) content of EK-20.
  • Figure 14b shows the growth factor (VEGF and FGF) content of EK-20.
  • Figure 15a shows the biodegradability of EK-5, EK-10, EK-15 and EK-20 measured in PBS.
  • Figure 15b shows the biodegradability of EK-5, EK-10, EK-15 and EK-20 measured in PBS and FBS.
  • Figure 16A shows the swelling capacity of EK-5, EK-10, EK-15 and EK-20 measured in PBS.
  • Figure 16B shows the swelling capacity of EK-5, EK-10, EK-15 and EK-20 measured in PBS and FBS.
  • Figure 17 shows total protein release for EK-5, EK-10, EK-15 and EK-20.
  • Figure 18 shows pH changes for EK-5, EK-10, EK-15 and EK-20.
  • Figure 19 shows the pH change of EK-20, EK-25, EK-30, EK-35, EK-40 and EK-45.
  • Figure 20a shows the results of indirect analysis of rBMSC viability through MTT analysis of EK-5, EK-10, EK-15 and EK-20.
  • Figure 20b shows the results of direct analysis of rBMSC viability through Almer blue analysis of EK-5, EK-10, EK-15, and EK-20.
  • Figure 20C shows confocal images of rBMSC proliferation in EK-5, EK-10, EK-15 and EK-20.
  • Figure 21 shows the pH change of EK-20 and EK-20(PW).
  • Figure 22a shows the stress/strain curve of EK-20 and EK-20(PW).
  • Figure 22B shows the residual protein amount of EK-20 and EK-20(PW).
  • Figure 23 shows the pH change measured after loading 2, 3, 4, and 10 mg of p-coumaric acid (p-Cou) in EK-20.
  • Figure 24 shows the pH change of EK-20 and EK-20@Cou.
  • Figure 25 shows the FT-IR spectroscopy results of EK-20 and EK-20@Cou.
  • Figure 26 shows the p-Cou emission amount of EK-20@Cou.
  • Figure 27 shows the p-Cou release mechanism of EK-20@Cou.
  • Figure 28 shows the total antioxidant capacity of EK-20@Cou and EK-20(PW).
  • Figure 29a shows the inhibition zone image of EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium ).
  • Figure 29b shows the size of the inhibition zone of EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium ).
  • Figure 30 shows the results of rBMSC viability analysis through MTT analysis of EK-20@Cou and EK-20(PW).
  • Figure 31 shows confocal images of rBMSC proliferation in EK-20@Cou and EK-20(PW).
  • Figure 32 shows images and quantitative wound closure data of dorsal wounds in rats treated with EK-20@Cou or EK-20(PW).
  • Figure 33 shows a schematic diagram of the wound healing process of EK-20@Cou.
  • Figure 34 shows H&E staining images and Mason's Trichrome staining images of rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 35a shows new epidermal thickness data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 35b shows granulation tissue thickness data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 35C shows epithelialization score data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 36 shows DAB staining images for fibronectin, collagen-1 and ⁇ -SMA in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 37A shows fibronectin expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 37b shows collagen-1 expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 37c shows ⁇ -SMA expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 38a shows the MS prediction results for the binding potential of p-Cou in the MMP active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
  • Figure 38b shows the MS prediction results for the binding potential of p-Cou in the protein active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
  • Figure 38c shows MS prediction results for the free binding energy (- ⁇ G) of p-Cou compared to the control drug in the protein active site.
  • Figure 39A shows the inhibitory effect of EK-20@Cou and EK-20(PW) on MMP-2 and MMP-12.
  • Figure 39B shows MMP-2 and MMP-12 expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
  • Figure 40 shows MS prediction results for the binding potential of p-Cou in the NF- ⁇ B active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
  • Figure 41A shows NF- ⁇ B staining images in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 41B shows NF- ⁇ B expression data in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 42A shows CD68 staining images in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 42B shows CD68 expression data in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 43 shows nitrate concentration in rat wound samples treated with EK-20@Cou or EK-20(PW).
  • Figure 44 shows a schematic diagram of the wound healing process of EK-20@Cou.
  • Fresh pig liver was obtained from Sajo Industrial Co., Ltd. immediately after slaughter, placed in an icebox and transferred to a laboratory freezer (-80°C). After thawing the pig liver at room temperature, liver slices of approximately 5 mm 2 were obtained using a blade and stored in demineralized water (DW). After cutting, the liver slices were washed until the blood disappeared, and then the liver slices were immersed in 1% SDS solution and rotated at 200 rpm for 12 hours. Afterwards, the SDS (sodium dodecyl sulfate) (Bio-Rad Laboratories, California, USA) concentration was maintained at 0.5% for 48 hours, and the SDS concentration was changed every 8 hours, reducing the concentration to 0.1% until the section became completely white. I ordered it.
  • SDS sodium dodecyl sulfate
  • the white ECM was treated with 1% Triton To completely remove residual substances from the ECM prepared as above, it was washed several times with PBS, and the decellularized liver tissue was frozen and lyophilized. Afterwards, a cryogenic grinder (Retsch, Germany) was used to obtain the powder form, and the ECM powder was stored at -80°C.
  • Total genetic material (DNA) of native and decellularized ECM samples was quantified according to standard protocols. First, 50 mg of sample was dissolved in 0.5 mL lysis buffer (0.5 M EDTA, 5 M NaCl, 1 M Tris-HCl, and 20% SDS) with 20 ⁇ L of proteinase K (Thermo Fisher Scientific, USA) at 20 mg mL -1 ) and cultured overnight at 55°C. Afterwards, the mixture was centrifuged at 10,000 rpm for 10 minutes to extract the genetic material from the soluble portion. Next, the obtained material was treated with 400 ⁇ L of 6M NaCl (MilliporeSigma, USA) to remove proteins.
  • lysis buffer 0.5 M EDTA, 5 M NaCl, 1 M Tris-HCl, and 20% SDS
  • proteinase K Thermo Fisher Scientific, USA
  • DNA was precipitated using cold isopropyl alcohol, washed twice with 70% ethanol, and dissolved in TE buffer (10mM Tris HCl, pH 8.0, 1mM EDTA). Afterwards, the total DNA content was quantified using a Nanodrop spectrophotometer (Implen, Germany) and normalized to initial weight, and the genetic material content of native and decellularized and ECM tissue samples was analyzed by agarose (1% MilliporeSigma, USA) gel electrolysis. It was analyzed by Youngdong.
  • ECM particles were dispersed in 0.01 M HCl solution (pH 2) and 10% (w/w) 3,200 units mg -1 pepsin (Millipore Sigma, USA) for 72 to 96 hours at room temperature. Afterwards, 0.1% (v/v) cold 0.1 M NaOH (MilliporeSigma, USA) and 10X PBS were used to inactivate pepsin, and HCl solution was added to neutralize the high pH. The total concentration was adjusted to 20 mg mL -1 PBS and stored at -80°C until use.
  • Kelp Saccharina japonica
  • WESC seawater harvested fish farm
  • WESC Seawater harvested fish farm
  • WESC Seawater harvested fish farm
  • NaClO alkaline solution
  • alkaline solution 6% w/v, NaOH
  • the sample was washed with DW several times, incubated with DW at 4°C overnight to completely remove residual bleach and alkaline solution, and then lyophilized.
  • the lyophilized samples were ground with a cryogenic grinder (Retsch, Germany) under liquid nitrogen and stored at 4°C until use.
  • the Bradford Assay kit was used to measure the amount of protein in native kelp samples and decellularized kelp samples, and bovine serum albumin (BSA) (Biosera, France) was used as a standard to obtain a calibration curve. Additionally, the protein concentration of the sample was determined using a protein assay kit. A decrease in protein concentration in decellularized kelp samples was considered as a complete decellularization process.
  • BSA bovine serum albumin
  • the ECM was set to a constant concentration of 20 mg mL -1 .
  • the ECM:kelp ratio was increased from 1:0.25 to 1:1, and when 5 mg mL -1 (1:0.25) of kelp was added, the mechanical properties of ECM were changed. It was observed that A small amount of kelp also served as a natural non-toxic cross-linking agent in the ECM-based scaffold, and the concentration of kelp was increased from 5 mg mL -1 to 20 mg mL -1 while keeping the ECM concentration constant.
  • ECM (mg mL -1 ) Kelp (mg mL -1 ) ECM-kelp ratio EK-5 20 5 1:0.25 EK-10 20 10 1:0.50 EK-15 20 15 1:0.75 EK-20 20 20 1:1
  • the microstructure of the freeze-dried scaffold was observed using SEM (JEOL JSM-6701F, Tokyo, Japan).
  • SEM JEOL JSM-6701F, Tokyo, Japan.
  • the cross section and surface of the sample were cut into small pieces under liquid nitrogen and sputter coated with platinum. Pore size distribution was analyzed using Image J software.
  • ECM proteins and growth factors were measured within the EK-20 scaffold.
  • Sulfated glycosaminoglycan (sGAG) and elastin contents within the scaffold were measured using the Blyscan sGAG assay kit (Biocolor, UK) and Fastin elastin assay kit (Biocolor, UK), respectively.
  • Total soluble collagen in the folds was detected using the Sirius red total collagen detection kit (Chondrex, USA), and each assay was performed according to the manufacturer's instructions for each kit.
  • EK-20 was homogenized with heparin buffer and dialyzed in a dialysis cassette.
  • the cassette was placed in a beaker containing deionized water (DI water) and stirred at 4°C for 96 hours using a magnetic bar, and the deionized water was frequently replaced during this process.
  • DI water deionized water
  • the amount of growth factors VEGF and FGF was measured using Eliza kits (R&D systems, USA) according to the manufacturer's instructions.
  • Protein release analysis was performed for each EK construct using the Bradford Assay kit according to the manufacturer's instructions. EK samples were cultured in FBS-free cell growth alpha-MEM medium for 1, 3, and 7 days. The extracted medium was used to identify proteins released from each scaffold at different time points.
  • the mechanical strength of the samples was measured using a universal testing machine (R&B Unitech TM, Korea) (width 2 mm x height 10 mm, thickness 0.5 mm).
  • the loading rate of cells was 5 mm min -1 , and the sample was pulled outward using a paper frame.
  • EO ethylene oxide
  • rBMSC cell growth medium for rBMSC
  • alpha-MEM cell growth medium for rBMSC
  • the medium was collected using a 0.22 ⁇ m syringe filter (Millipore, Germany).
  • a density of 10 The next day, to form formazan crystals in living cells, MTT solution was added and cultured for 4 hours. Afterwards, formazan was dissolved in DMSO, and the absorbance was measured at 570 nm with a 650 nm reference filter, and the cell viability was calculated using Equation 3 below:
  • OD 570b average value of optical density (OD) measured in the control group)
  • EK scaffolds For direct cell growth analysis, long-washed EK scaffolds were placed in a 24-well agarose-coated plate for 12 h in the medium required for rBMSC culture, and each scaffold was seeded with 10 ⁇ 10 cells per well.
  • the agarose-coated plate was set to attach only to the scaffold, and the medium was changed every other day.
  • Almer blue (including non-fluorescent resazurin blue) was added at a concentration of 1:10. Since the Almer blue is non-toxic to cells, the experiment can be restarted for several periods (1, 3, 5, 6, and 7 days) and cell growth on the scaffold is possible. It was confirmed that resazurin was produced when cultured for 4 hours with the Almer blue solution.
  • each EK scaffold especially EK-20
  • EK-20 was basic, so a long-term washing was initially performed to adjust the pH of the EK scaffold.
  • long-term washing takes a long time and there is a possibility that ECM proteins and growth factors important for cell development may be lost, making it difficult to adjust pH.
  • p-Cou p-coumaric acid
  • EK-20 was selected, which maintains a uniform microstructure even after prolonged washing and shows higher cell proliferation compared to other groups in direct and indirect cell survival analysis.
  • EK-20@Cou was first immersed in 5 mL of PBS (pH 7.4) at physiological temperature (37°C) and stirred at 20 rpm. Thereafter, 1 mL of sample was withdrawn at different time intervals, filtered through a 0.22 syringe filter (Millipore, Germany), and a total of 1 mL of fresh PBS was added.
  • PBS pH 7.4
  • FC reagent Folin-Ciocaltenus reagent, Sigma Aldrich
  • the total radical scavenging capacity of long-washed EK-20(PW) and p-Cou-loaded EK-20@Cou scaffolds was measured using a total antioxidant capacity assay kit (Sigma Aldrich, USA) according to the manufacturer's instructions. First, the scaffold was soaked in PBS, and then 1 mL of PBS was replaced with fresh PBS at specific times. Additionally, sets of standards were prepared at various concentrations, and both samples and standards were treated with 100 ⁇ L of Cu 2+ working solution. The incubation time was set to 90 minutes at room temperature in the dark, and the absorbance at 517 nm was measured using a spectrophotometer. Radical scavenging activity was calculated using equation 4:
  • EK-20(PW) and EK-20@Cou a disk diffusion protocol was used.
  • two Gram-positive bacterial strains Bacillus subtilis NCCP11101 and Staphylococcus aureus NCCP14402
  • two Gram-negative bacterial strains Escherichia coli NCCP14762 and Salmonella typhimurium NCCP16207
  • the temperature was maintained at 37°C, and a lawn was prepared by inoculating the strain on a Muller-Hinton agar plate.
  • Amikacin AK disks (30 ⁇ g, Liofilchem, Via Scozia, Italy) were used as positive controls, and sterile blotting paper disks were used as negative controls. After preparing the sample by cutting the disk into 6 mm, the cut sample was cultured on an agar plate containing bacteria at 37°C for 18 to 24 hours. The antibacterial effect due to drug release was measured based on the inhibition zones of the plate compared to the positive control, and images were obtained using a digital microscope (Sony, Thailand).
  • EK-20, EK-20(PW) and EK-20@Cou samples were sterilized with ethylene oxide (EO) and cultured in rBMSC cell growth medium for 7 days at 5% CO 2 and 37°C. Additionally, 10 Afterwards, 100% filtered medium from the scaffold was added and the treatment was continued for 1, 3 and 7 days. After completing the treatment step, cells were fixed with 4% PFA (Sigma-Aldrich) for 15 minutes. Next, cells were washed with PBS for 15 minutes (3 ⁇ 5 minutes) and permeabilized by incubation with 0.5% Triton X-100 (Sigma-Aldrich) for 10 minutes. The process was continued for 60 minutes using blocking reagent and 2.5% bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • cytoskeleton and nucleus were stained with 25 ⁇ g mL -1 FITC (fluorescein isothiocyanate)-conjugated phalloidin (Sigma-Aldrich, USA) overnight in the dark at 4°C, and HOECHST-33342 (2'-[4-ethoxyphenyl ]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole-tri hydrochloride trihydrate (1 ⁇ g mL -1 ); Next, after washing with PBS for 15 minutes and adding mounting solution, images were acquired using a confocal fluorescence microscope (Olympus, FV10i-W, Tokyo, Japan) and analyzed using FV10i-ASW 2.0 Viewer.
  • FITC fluorescein isothiocyanate
  • HOECHST-33342 2'-[4-ethoxyphenyl ]-5-[4-methyl-1-piperazinyl]-2,5'-
  • Rattus norvegicus For the in vivo experiment, a total of 24 male rats (9 weeks old, weight 200-250 g, Rattus norvegicus ) were used. The rats were purchased from Dayoon (animal center, Korea) and followed the standard protocol of the Animal Ethics Committee of Soonchunhyang University (approval number SCH22). -0026). Rats were randomly divided into control, positive control, EK-20(PW), and EK-20@Cou groups, respectively. The control group received no treatment, and the positive control group was treated with a commercial wound care material (MatriDerm®, DERMAL MATRIX, Medskin Solutions, Germany). The experiment was conducted for a total of 2 weeks using 12 animals (3 animals per group) each week.
  • Isoflurane Pieral Critical Care, Schelden Circle, Bethlehem, PA
  • a biopsy punch circular shape, Kai Industries Co. Ltd., Japan
  • the resection area was treated with povidone iodine solution.
  • Percent closure (%) (initial wound area - wound area on day n/initial wound area)*100.
  • Samples were fixed, washed with DW, and then dehydrated with 50%, 70%, 80%, 90%, 95%, and 100% ethanol solutions.
  • Serial xylene (100%) was used as a clarifying agent to remove residual alcohol, and embedding was performed with paraffin wax (Leica Biosystem, Germany).
  • Samples were cut to a thickness of 5 ⁇ 2 ⁇ m using a microtome (Leica Biosystem, Germany), and the sections were deparaffinized and stained using Masson's Trichrome method and H&E method. Additionally, immunohistochemical staining was performed using a DAB staining kit (3'-Diaminobenzidine, Agilent Technologies, US). Briefly deparaffinized and rehydrated slides were incubated with 3% BSA for 1 hour at ambient temperature.
  • DAB staining kit 3'-Diaminobenzidine, Agilent Technologies, US.
  • Blocked samples were treated overnight at 4°C with primary antibodies (Anti-CD68, Anti-fibronectin, Anti-collagen-1, Anti-alpha smooth muscle actin, and Anti NF- ⁇ B), followed by secondary antibodies conjugated with HRP. was treated for 1 hour.
  • Antigen-antibody reactions were measured using DAM chromogen, and samples were viewed using an optical microscope (BX53 Olympus) and photographed using a camera (DP72 Olympus). Afterwards, the samples were analyzed using Cellsens software, and the stained samples were quantified immunohistochemically using Image J software.
  • Crystalline 3D structures of proteins and receptors were retrieved from the PDB (Protein Data Bank) database (/www.rcsb.org), and the energy of each protein structure was minimized using Swiss-PDB Viewer version (v) 4.1.1. . Removal of heteroatoms and water molecules was performed with Discovery Studio Visualizer (DSV, Biovia, v 2021, Accelrys, San Diego, CA). The active site of each protein was determined based on the literature, missing hydrogen atoms and residues were added to the protein, and grid box parameters were plotted using the Autodock tool (ADT, v. 4.2, Scripps Research Institute, La Jolla, CA). Optimized.
  • ADT Autodock tool
  • co-crystalized ligands or known inhibitory drugs were used as control ligands.
  • Cocrystallized ligands were prepared with DSV, known inhibitory drugs were searched in the ZINC database (https:/zinc12.docking.org/), and control ligands were processed similarly to p.Cou.
  • AutoDock Vina (v. 1.2.0) was used to perform the MS study, and the Lamarckian Genetic Algorithm (LGA) was used to find the most suitable conformational space for the ligand with a population size of 150.
  • the generation number was set to 27,000, and the evaluation number was set to a maximum of 2,500,000.
  • the stabilized complex conformation was predicted by the free binding energy ( - ⁇ G ) and the optimal binding pose and position.
  • tissue sample 100 mg was homogenized in 1 mL of cold PBS, and the clear supernatant was separated using centrifugation (15,000 rpm, 10 minutes, 4°C). Afterwards, the concentration of active enzyme was measured in the extracted tissue homogenate using the Rat MMP-2 ELISA kit (Abcam, UK) and the rat MMP-12 ELISA kit (Elabscience Biotechnology Inc. USA). All experiments were performed in triplicate according to each manufacturer's instructions.
  • liver-derived ECM was first extracted from pigs using a surfactant, then cut into uniform sizes and decellularized (see Figure 2). Afterwards, it was confirmed with the naked eye that the liver ECM had turned white that the decellularization process had been performed, and it was confirmed through H&E staining that there were no cellular components in the liver ECM (see Figure 3).
  • DNA genetic material
  • the nuclear content of decellularized ECM was measured to be significantly lower than that of native liver tissue, confirming that DNA was effectively removed ( Figures 4a and 4b reference). Additionally, the decellularized ECM was digested with pepsin to prepare a hydrogel concentration (20 mg mL -1 ), but the consistency of the hydrogel was not suitable for solid form.
  • ECM-derived hydrogels can be composed of 3D structural networks that absorb biological fluids or water due to the presence of hydrophilic groups.
  • natural ECM-derived hydrogel possesses natural ECM and has excellent biocompatibility, but has the disadvantage of poor mechanical strength. Therefore, to overcome the above drawbacks, an ECM-kelp (EK) scaffold was prepared using decellularized kelp as a natural cross-linker for ECM.
  • decellularized kelp powder was mixed with a specific concentration of ECM in a homogenizer at different ratios, and an elastic scaffold was prepared through a freeze-thaw process (see Figure 9).
  • the decellularized kelp molecules are attracted to the hydrophilic groups in the liver-derived ECM, resulting in hydrogen bonding between the decellularized kelp molecules and the hydrophilic molecules in the liver-derived ECM.
  • the decellularized kelp molecules can act as a cross-linker within the ECM, and a three-dimensional scaffold can be formed (see Figure 10).
  • the mechanical strength of the scaffold increased (see Figures 11a and 11b).
  • the pore size within the scaffold changes depending on the concentration of kelp (see Figure 12). Specifically, it was confirmed that as the concentration of kelp decreased, pores were created irregularly with various sizes ranging from 10 to 55 ⁇ m, and as the concentration of kelp increased, pores were created uniformly with a size of 10 to 28 ⁇ m (see Figure 13). Since the smaller the pore size, the more effective it is in suppressing wound exudate, it was confirmed that adding kelp at a high concentration to manufacture the scaffold was more effective in wound healing.
  • ECM-kelp (EK) scaffold contained ECM proteins and growth factors even after decellularization
  • ECM proteins GAGs, elastin, and soluble collagen
  • growth factors VEGF and FGF
  • the EK scaffold contains a large amount of ECM proteins and growth factors even after the decellularization process and can be effectively used for wound healing and tissue regeneration.
  • biodegradability is essential because it eliminates the need for dressing replacement and is effective in regenerating new tissue. Accordingly, an experiment was performed to confirm whether the EK scaffold was biodegradable.
  • the EK scaffold was placed in a culture medium containing PBS or a culture medium containing PBS and FBS, and the swelling capacity was measured. As a result, all EK scaffolds showed swelling ability, but it was confirmed that EK-20 had the best swelling ability (see Figures 16a and 16b).
  • the EK scaffold is composed of decellularized liver-derived ECM and decellularized kelp and contains a large amount of protein. To measure protein release over time from the EK scaffold, total protein release analysis was performed.
  • the protein release rate was slow for 3 days, but the release rate increased over time, and for the EK-15 and EK-20 scaffolds, a higher amount of protein was released after 7 days compared to the other scaffolds. was released (see Figure 17).
  • protein release was measured significantly slower than that of other scaffolds. This phenomenon can be interpreted as being correlated with biodegradability, as protein release may increase as the scaffold decomposes.
  • p-Cou acidic drug that can not only reduce high pH, but is also known to have various bioactive effects such as anti-inflammatory, antimicrobial, and antioxidant.
  • p-Cou was treated at 2, 3, 4, and 10 mg per scaffold, respectively, and then the pH change was measured to select 4 mg/scaffold as the most appropriate drug dose (see Figure 23).
  • p-Cou is a type of phenol with hydroxy groups and is known to have excellent antioxidant properties.
  • the antioxidant capacity of EK-20@Cou scaffold was higher than that of EK-20(PW). It was confirmed that it was significantly high (see Figure 28).
  • the antioxidant capacity of EK-20@Cou was found to increase for the first 4 days and then gradually decrease over time.
  • the EK-20@Cou scaffold has excellent antioxidant activity and can be used more effectively for wound healing.
  • EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium )
  • EK-20@Cou scan It was confirmed that Fold exhibited a strong antibacterial effect against all tested bacteria (see Figures 29a and 29b).
  • the EK-20@Cou scaffold has excellent antibacterial effect and can be effectively used for wound healing.
  • EK-20(PW) and EK-20@Cou MTT-based colorimetric assay was performed.
  • the EK-20 scaffold showed cytotoxicity (cell viability less than 70%), but cell viability was measured similarly for EK-20(PW) and EK-20@Cou, and cell growth patterns over time were also observed. appeared (see Figure 30).
  • EK-20@Cou To confirm the wound healing effect of EK-20@Cou, an in vivo experiment was performed using a full-thickness wound model. To prepare a full-thickness wound model, a full-thickness wound with a diameter of 7 ⁇ 1 mm was created on the back of a rat, and the wound healing effect of EK-20@Cou was tested as a control group, positive control group (group treated with commercially available collagen-based wound healing material). and EK-20 (PW) treatment group. After 7 days of experiment, the skin crust was removed, and neo-epidermis was formed within 14 days.
  • H&E staining and Masson's Trichrome staining were performed (see Figure 34), and then the neoepidermal thickness, granulation tissue thickness, and epithelial formation score of each group were compared.
  • MMP-2, MMP-3, MMP-8, MMP-12, NF- ⁇ B, TNF- ⁇ , STAT-1, IL-4R, and IL-12 as target proteins/receptors that play important roles in the wound healing process during MS. 1 ⁇ was selected.
  • p-Cou and known inhibitors of each protein were used as ligands, and inhibitors for each protein or receptor were selected as controls while considering binding energy, binding distance, junction type, position, and pose in prediction (table below) 3).
  • Catalytic site Ligand LE a index Interacting residue Distance [A ⁇ ]
  • Category Type Control ligand MMP-2 (PDB ID: 1ck7)
  • X, Y & Z (51.93, 89.15 &147.59)
  • p-Coumaric acid 0.05 VAL 400 5.15 Hydrophobic Pi-alkyl Marimastat TYR 425 5.24 Hydrophobic Pi-pi T-shaped THR 428 3.05 H-bond Conventional HIS 403 4.44 Hydrophobic Pi-pi stacked MMP-3 (PDB ID: 1b3d)
  • X, Y & Z (-18.45, 28.25 & 1.56)
  • MMPs matrix metalloproteinases
  • the expression of CD68, a macrophage marker, and nitrate concentration were measured.
  • CD68 expression in the EK-20@Cou treatment group was significantly lower than that of the other groups (see Figures 42a and 42b), and nitrate concentration was 0.275 ⁇ 0.013 nmol ⁇ L -1 and 0.026 ⁇ 1 after 1 and 2 weeks, respectively. It was confirmed that it was significantly lower than other groups at 0.001 nmol ⁇ L -1 (see Figure 43). From the above results, it can be confirmed that p-Cou released from the EK-20@Cou scaffold to the wound site regulates the activity of immune cells and switches the phenotype of macrophages from M1 type to M2 type.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Transplantation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

One aspect relates to a pharmaceutical composition for wound healing or skin tissue regeneration, the pharmaceutical composition containing an extracellular matrix and a kelp extract. According to one aspect, the extracellular matrix and the kelp extract have excellent biodegradation, swelling, protein release, cell proliferation, and biocompatibility, reduce the expression of MMP, and can convert the phenotype of macrophages from the M1 type to the M2 type, and thus can effectively reduce the time required for wound healing. Therefore, the pharmaceutical composition can be effectively used for wound healing and/or skin tissue regeneration.

Description

세포외기질 및 다시마 추출물을 포함하는 상처 치료 또는 피부 조직 재생용 약학적 조성물Pharmaceutical composition for wound treatment or skin tissue regeneration containing extracellular matrix and kelp extract
세포외기질 및 다시마 추출물을 포함하는 상처 치료 또는 피부 조직 재생용 약학적 조성물에 관한 것이다.It relates to a pharmaceutical composition for wound treatment or skin tissue regeneration containing extracellular matrix and kelp extract.
상처 치유를 위한 생체 재료는 무독성, 생체 적합성, 상처 삼출물 흡수, 수분 투과성, 미생물 저항성, 부착성 등 다양한 요건을 충족해야 하며, 현재 이들을 모두 만족하는 이상적인 생체 재료의 개발을 위해 많은 연구들이 수행되고 있다.Biomaterials for wound healing must meet various requirements such as non-toxicity, biocompatibility, wound exudate absorption, moisture permeability, microbial resistance, and adhesion. Currently, much research is being conducted to develop ideal biomaterials that satisfy all of these. .
생체 재료 중 하나인 탈세포화된 ECM(extracellular matrix)은 성장 인자, 케모카인 및 사이토카인이 풍부하면서, 탈세포화 과정을 통해 면역 반응을 자극할 수 있는 핵, 세포 및 세포질 성분은 제거되어 상처 치유에 효과적으로 이용될 수 있는 것으로 알려져 있다. 다만, 탈세포화된 ECM을 상처 치유용 스캐폴드로 이용하기 위해서는 가교제(crosslinker)가 필요하며, 특히 간 조직에서 유래한 ECM은 수용성 콜라겐의 비율이 낮아 강력한 가교제가 필요하다. 그러나, 이러한 가교제는 세포 독성을 가지거나, 생체 적합성이 낮은 문제점이 있어, 생체 적합성이 우수한 가교제의 개발이 필요한 실정이다.Decellularized ECM (extracellular matrix), one of the biomaterials, is rich in growth factors, chemokines, and cytokines, and the nuclear, cellular, and cytoplasmic components that can stimulate immune responses are removed through the decellularization process, making it effective in wound healing. It is known that it can be used. However, in order to use decellularized ECM as a scaffold for wound healing, a crosslinker is required. In particular, ECM derived from liver tissue has a low proportion of soluble collagen, so a strong crosslinker is required. However, these cross-linking agents have problems such as cytotoxicity or low biocompatibility, so there is a need to develop cross-linking agents with excellent biocompatibility.
한편, 해조류는 미네랄과 후코이단(fucoidan)과 같은 생체 활성 분자가 풍부하고 항산화, 항염증, 항종양, 항응고, 콜라겐 매트릭스 형성 및 신혈관 형성 등 다양한 생물의학적 특성을 가지고 있는 것으로 알려져 있다. 이에, 해조류 중 하나인 다시마(kelp)를 상기 간 유래 ECM의 가교제로 활용하고자 연구를 수행하였다. 그 결과, 다시마의 가교 능력은 우수하나 전체 스캐폴드의 pH가 높아 생체 적합성이 낮은 문제점이 있었다. 이에, 페놀산 중 하나인 p-쿠마르산(p-Cou)을 스캐폴드에 도입함으로써 상기 문제를 해결하였고, 최종적으로 생체 적합성이 우수한 상처 치유용 생체 재료를 개발하였다(도 1 참조).Meanwhile, seaweed is rich in minerals and bioactive molecules such as fucoidan and is known to have various biomedical properties such as antioxidant, anti-inflammatory, anti-tumor, anti-coagulant, collagen matrix formation and neovascularization. Accordingly, a study was conducted to use kelp, one of the seaweeds, as a cross-linking agent for the liver-derived ECM. As a result, although the cross-linking ability of kelp was excellent, there was a problem of low biocompatibility due to the high pH of the entire scaffold. Accordingly, the above problem was solved by introducing p-coumaric acid (p-Cou), one of the phenolic acids, into the scaffold, and ultimately a biomaterial for wound healing with excellent biocompatibility was developed (see Figure 1).
일 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 약학적 조성물을 제공하는 것이다.One aspect is to provide a pharmaceutical composition for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 피부 외용제를 제공하는 것이다.Another aspect is to provide a topical skin preparation for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
또 다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 개선 또는 피부 조직 재생용 화장료 조성물을 제공하는 것이다.Another aspect is to provide a cosmetic composition for improving wounds or regenerating skin tissue, including an extracellular matrix and kelp extract.
또 다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 개체에 처리하는 단계를 포함하는, 상처 치료 또는 피부 조직 재생 방법을 제공하는 것이다.Another aspect is to provide a method of treating wounds or regenerating skin tissue, comprising treating a subject with an extracellular matrix and a Kelp extract.
또 다른 양상은 상처 치료 또는 피부 조직 재생용 약제의 제조를 위한 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물의 용도를 제공하는 것이다.Another aspect is to provide the use of the extracellular matrix and Kelp extract for the manufacture of drugs for wound treatment or skin tissue regeneration.
일 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 약학적 조성물을 제공한다.One aspect provides a pharmaceutical composition for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
상기 용어 "세포외기질(extracellular matrix)"은 조직 내 또는 세포 외의 공간을 채우고 있는 생체 고분자의 집합체로서, 콜라겐, 엘라스틴, 라미닌, 글리코사미노글리칸, 프로테오글리칸, 항미생물제, 화학유인물질, 사이토카인 및 성장 인자를 포함할 수 있다.The term “extracellular matrix” refers to a collection of biopolymers that fill the space within tissues or outside cells, including collagen, elastin, laminin, glycosaminoglycans, proteoglycans, antimicrobial agents, chemoattractants, and cytokines. and growth factors.
일 양상에 있어서, 상기 세포외기질은 포유동물로부터 유래된 것일 수 있다. 상기 포유동물은 돼지, 소, 양, 염소 또는 영장류일 수 있고, 구체적으로, 상기 포유동물은 돼지일 수 있다.In one aspect, the extracellular matrix may be derived from a mammal. The mammal may be a pig, cow, sheep, goat, or primate, and specifically, the mammal may be a pig.
또한, 일 양상에 있어서, 상기 세포외기질은 섬유아세포, 줄기세포, 연골세포, 조골세포, 혈관내피세포, 근세포, 평활근세포, 간세포, 신경세포 또는 심근세포에서 유래된 것일 수 있고, 구체적으로, 상기 세포외기질은 간세포에서 유래된 것일 수 있다.Additionally, in one aspect, the extracellular matrix may be derived from fibroblasts, stem cells, chondrocytes, osteoblasts, vascular endothelial cells, myocytes, smooth muscle cells, hepatocytes, nerve cells, or cardiomyocytes, and specifically, The extracellular matrix may be derived from hepatocytes.
상기 용어 "다시마(Kelp)"는 갈조강 다시마목 다시마과에 속하는 해조류로, 바위에 붙어 포자로 번식하며, 2 내지 3mm 정도의 두꺼운 잎을 가지고 있다. 일 양상에 있어서, 상기 다시마는 상기 세포외기질의 가교제(crosslinker)로서 사용될 수 있다.The term "kelp" refers to seaweed belonging to the Kelp family of the Kelp order of the Kelp family. It attaches to rocks and reproduces through spores, and has thick leaves of about 2 to 3 mm. In one aspect, the kelp can be used as a crosslinker for the extracellular matrix.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물을 포함하는 약학적 조성물은, 생분해능(biodegradation), 팽윤능(swelling), 단백질 방출능, 세포 증식능 및 생체적합성(biocompatibility)이 우수하고, 성장 인자를 포함하고 있어 상처 치료 효과가 우수하다. 또한, 상기 조성물은 MMP의 발현을 감소시키고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있어, 상처 치유에 소요되는 시간을 효과적으로 단축시킬 수 있다. 따라서, 상기 조성물은 상처 치료 및/또는 피부 조직 재생에 유용하게 활용될 수 있다.According to one aspect, the pharmaceutical composition containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It contains excellent wound healing effects. In addition, the composition can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the composition can be usefully used for wound treatment and/or skin tissue regeneration.
일 양상에 있어서, 상기 세포외기질 및 다시마 추출물은 탈세포화(decellularized)된 것일 수 있다.In one aspect, the extracellular matrix and kelp extract may be decellularized.
상기 용어 "탈세포화"는 조직 또는 세포의 원래 성분은 손상시키지 않으면서, 핵, 세포막 및 핵산과 같은 세포 성분을 제거하는 과정을 의미한다. 상기 탈세포화는 세포를 세포 용해 용매, 저장액, 양이온 계면활성제, 음이온 계면활성제, 비이온성 계면활성제, RNase 및 DNase로 이루어진 군에서 선택되는 하나 이상을 포함하는 용액으로 처리하여 수행될 수 있다.The term “decellularization” refers to the process of removing cellular components, such as nuclei, cell membranes, and nucleic acids, without damaging the original components of the tissue or cell. The decellularization may be performed by treating the cells with a solution containing one or more selected from the group consisting of cell lysis solvent, stock solution, cationic surfactant, anionic surfactant, nonionic surfactant, RNase, and DNase.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물은 상기 탈세포화를 통해 핵, 세포막 및 핵산과 같은 세포 성분이 제거됨으로써, 개체에 처리되었을 경우, 개체의 면역 반응 자극을 최소화시킬 수 있다.According to one aspect, the extracellular matrix and kelp extract have cellular components such as nuclei, cell membranes, and nucleic acids removed through the decellularization, so that when treated in an individual, stimulation of the individual's immune response can be minimized.
일 양상에 있어서, 상기 세포외기질 및 다시마 추출물의 농도비는 1:0.75 내지 1:1.25일 수 있다.In one aspect, the concentration ratio of the extracellular matrix and kelp extract may be 1:0.75 to 1:1.25.
일 양상에 따르면, 상기 다시마 추출물의 함량이 증가할수록 전체 조성물의 기계적 강도가 증가하며, 작은 크기에 기공이 균일하게 형성되어 상처의 삼출물 억제능이 증가하는 바, 상기 세포외기질 및 다시마 추출물의 농도비가 1:0.75 내지 1:1.25일 때, 상처 치유 및/또는 피부 조직 재생에 효과적이다.According to one aspect, as the content of the kelp extract increases, the mechanical strength of the entire composition increases, and pores are formed uniformly in a small size, thereby increasing the wound exudate inhibition ability, and the concentration ratio of the extracellular matrix and the kelp extract When 1:0.75 to 1:1.25, it is effective for wound healing and/or skin tissue regeneration.
일 양상에 있어서, 상기 조성물은 산성 약물을 더 포함할 수 있고, 상기 산성 약물은 p-쿠마르산(p-coumaric acid)일 수 있다.In one aspect, the composition may further include an acidic drug, and the acidic drug may be p-coumaric acid.
상기 p-쿠마르산은 폴리페놀 그룹의 산성 약물로서, 다시마 추출물의 함량 증가에 따른 전체 조성물의 높은 pH를 감소시켜 전체 조성물의 pH를 안정적으로 조절할 수 있다. 뿐만 아니라, 상기 p-쿠마르산은 항염증, 항산화 및 항균 효과를 가지는 것으로 알려져 있어, 상기 p-쿠마르산을 더 포함함으로써, 상처 치유 및/또는 피부 조직 재생 효과를 더 향상시킬 수 있다.The p-coumaric acid is an acidic drug of the polyphenol group, and can stably control the pH of the entire composition by reducing the high pH of the entire composition as the content of the kelp extract increases. In addition, p-coumaric acid is known to have anti-inflammatory, antioxidant and antibacterial effects, and by further including p-coumaric acid, the wound healing and/or skin tissue regeneration effects can be further improved.
일 양상에 있어서, 상기 조성물은 항균 효과를 가지는 것일 수 있고, 상기 항균 효과는 그람 양성균 및 그람 음성균에 대한 것일 수 있다.In one aspect, the composition may have an antibacterial effect, and the antibacterial effect may be against gram-positive bacteria and gram-negative bacteria.
상기 그람 양성균은 스타필로코커스(Staphylococcus) 속 세균, 스트렙토코커스(Streptococcus) 속 세균, 엔테로코커스(Enterococcus) 속 세균, 크렙시엘라(Klebsiell) 속 세균, 코리네박테리움(Corynebacterium) 속 세균, 클로스트리디움(Clostridium) 속 세균, 리스테리아(Listeria) 속 세균 및 바실러스(Bacillus) 속 세균으로 이루어진 군에서 선택되는 하나 이상일 수 있고, 구체적으로, 상기 그람 양성균은 스타필로코커스(Staphylococcus) 속 세균 및/또는 바실러스(Bacillus) 속 세균일 수 있다.The gram-positive bacteria include bacteria of the genus Staphylococcus , bacteria of the Streptococcus genus, bacteria of the genus Enterococcus , bacteria of the genus Klebsiell , bacteria of the genus Corynebacterium , and clostrites. It may be one or more selected from the group consisting of Clostridium genus bacteria, Listeria genus bacteria, and Bacillus genus bacteria. Specifically, the Gram-positive bacteria are Staphylococcus genus bacteria and/or Bacillus. It may be a bacterium of the genus ( Bacillus ).
또한, 상기 그람 음성균은 에스케리치아 속(Escherichia species) 세균, 살모넬라(Salmonella) 속 세균, 슈도모나스(Pseudomonas) 속 세균, 네이세리아(Neisseria) 속 세균, 클라미디아(Chlamydia) 속 세균 및 예르시니아(Yersinia) 속 세균으로 이루어진 군에서 선택되는 하나 이상일 수 있고, 구체적으로, 상기 그람 음성균은 에스케리치아 속(Escherichia species) 세균 및/또는 살모넬라(Salmonella) 속 세균일 수 있다.In addition, the Gram-negative bacteria include Escherichia species, Salmonella , Pseudomonas , Neisseria , Chlamydia , and Yersinia . ) may be one or more selected from the group consisting of bacteria of the genus, and specifically, the gram-negative bacteria may be bacteria of the genus Escherichia and/or bacteria of the genus Salmonella .
일 양상에 있어서, 상기 조성물은 MMP(matrix metalloproteinases)의 발현을 억제하는 것일 수 있다.In one aspect, the composition may inhibit the expression of matrix metalloproteinases (MMPs).
상기 MMP는 세포외기질 단백질을 분해할 수 있는 단백질 분해 효소로, 장기간 활성화될 경우 새로 형성되는 ECM을 파괴하고 상처 치유 시간을 지연시키는 것으로 알려져 있다.The MMP is a proteolytic enzyme that can decompose extracellular matrix proteins, and is known to destroy newly formed ECM and delay wound healing time when activated for a long period of time.
일 양상에 따르면, 상기 조성물은 MMP의 발현을 억제시킴으로써, 상처 치유 및/또는 피부 조직 재생에 소요되는 시간을 효과적으로 단축시킬 수 있다.According to one aspect, the composition can effectively shorten the time required for wound healing and/or skin tissue regeneration by inhibiting the expression of MMP.
일 양상에 있어서, 상기 조성물은 대식세포의 표현형을 M1형에서 M2형으로 전환시키는 것일 수 있다.In one aspect, the composition may convert the phenotype of macrophages from type M1 to type M2.
상기 대식세포는 백혈구의 한 유형으로, 골수(bone marrow)에서 조혈 줄기세포(hematopoietic stem cell)로부터 유래하며, 세포 찌꺼기, 이물질, 미생물, 암세포, 비정상적인 단백질 등을 집어삼켜서 분해하는 식세포작용(phagocytosis) 기능이 있으며, 비특이적 방어기전(선천 면역) 뿐만 아니라 림프구와 같은 다른 면역 세포와 상호작용을 통해서 특이적 방어기전(적응 면역)을 시작하는데도 중요한 역할을 수행하는 것으로 알려져 있다.The macrophage is a type of white blood cell, derived from hematopoietic stem cells in the bone marrow, and performs phagocytosis by engulfing and decomposing cell debris, foreign substances, microorganisms, cancer cells, abnormal proteins, etc. ) function, and is known to play an important role in not only non-specific defense mechanisms (innate immunity) but also in initiating specific defense mechanisms (adaptive immunity) through interactions with other immune cells such as lymphocytes.
한편, 상기 대식세포는 M1형(염증성/공격형) 및 M2형(항염증성/복구형)의 두 아형으로 구분할 수 있는데, M1형 대식세포는 염증 반응을 일으키고, 세균 제거 및 항암 작용을 수행하나, M2형 대식세포는 염증 반응 억제, 상처 치유 및 조직 복구 작용을 수행하여, 서로 상반된 작용을 나타낼 수 있다.Meanwhile, the macrophages can be divided into two subtypes: M1 type (inflammatory/offensive type) and M2 type (anti-inflammatory/repair type). M1 type macrophages cause an inflammatory response, remove bacteria, and perform anticancer actions. M2-type macrophages suppress inflammatory responses, perform wound healing, and tissue repair, and can exhibit conflicting actions.
일 양상에 따르면, 상기 조성물은 M1형 대식세포 마커인 CD68 발현 및 질산염(nitrate) 농도를 감소시켜 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있는 바, 상처 치유 및/또는 피부 조직 재생에 더욱 효과적이다.According to one aspect, the composition can change the phenotype of macrophages from type M1 to type M2 by reducing the expression of CD68, an M1 type macrophage marker, and the concentration of nitrate, thereby promoting wound healing and/or skin tissue regeneration. is more effective.
일 양상에 있어서, 상기 "상처"는 피부가 물리적인 신체손상으로 인해, 피부 구조물의 정상적인 연속성이 붕괴된 것을 의미한다. 또한, 일 양상에 있어서, 상기 상처는 창상(wound), 찰과상(abrasion), 열상(laceration), 자상(stab wound) 및 궤양(ulcer)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one aspect, the “wound” means that the normal continuity of the skin structure is disrupted due to physical damage to the skin. Additionally, in one aspect, the wound may be one or more selected from the group consisting of a wound, abrasion, laceration, stab wound, and ulcer.
일 양상에 있어서, 상기 "치료"는 일 양상에 따른 약학적 조성물의 투여에 따라 자연 치유에 비하여 단축된 시간에 상처가 치유되는 것을 의미한다. 상기 치료는 상처의 개선 및/또는 완화를 포함할 수 있고, 상기 치료는 상처 및/또는 상처와 관련된 질환의 치료를 모두 포함하는 것일 수 있다. 또한, 상기 치료는 상처와 관련된 질환의 합병증 및/또는 흉터를 최소화하면서 상기 손상된 조직을 치유 및/또는 재생을 촉진하는 것일 수 있다.In one aspect, the “treatment” means that a wound is healed in a shorter time compared to natural healing following administration of a pharmaceutical composition according to one aspect. The treatment may include improvement and/or alleviation of the wound, and the treatment may include treatment of the wound and/or disease related to the wound. Additionally, the treatment may promote healing and/or regeneration of the damaged tissue while minimizing scarring and/or complications of diseases associated with the wound.
일 양상에 있어서, 상기 "투여"는 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미한다. 일 양상에 따른 약학적 조성물은 생체 내 표적에 도달할 수 있는 어떠한 일반적인 경로를 통하여 투여될 수 있으며, 상기 조성물의 투여 경로는 특별히 제한되지 않으나, 경구 또는 비경구 투여할 수 있다. 구체적으로, 비경구 투여할 수 있으며, 보다 구체적으로 피부에 도포하는 방식(즉, 경피투여)으로 적용될 수 있다.In one aspect, “administering” means introducing a substance into a subject in an appropriate manner. The pharmaceutical composition according to one aspect may be administered through any general route capable of reaching the target in vivo. The administration route of the composition is not particularly limited, but may be administered orally or parenterally. Specifically, it can be administered parenterally, and more specifically, it can be applied by applying it to the skin (i.e., transdermal administration).
상기 "개선"은 상처의 정도를 낮추어주거나 완화시키는 것을 포함할 수 있다.The “improvement” may include lowering or alleviating the severity of the injury.
일 양상에 있어서, 상기 "피부 조직 재생"은 손상에 대한 조직의 회복 과정으로, 상기 피부 조직 재생은 표피 재생, 분비선 또는 모낭의 재현 및 진피 조직의 미세혈관 형성으로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one aspect, the “skin tissue regeneration” is a process of recovering tissue from damage, and the skin tissue regeneration may be one or more selected from the group consisting of epidermal regeneration, reproduction of glands or hair follicles, and microvascular formation in dermal tissue. there is.
상기 약학적 조성물은 국소 적용에 적합한 모든 제형으로 제공될 수 있다. 예를 들면, 피부 외용 용액제, 현탁제, 유액제, 겔, 패취 또는 분무제일 수 있으나, 이에 제한되는 것은 아니다. 상기 제형은 당해 분야의 통상적인 방법에 따라 용이하게 제조될 수 있으며, 계면 활성제, 부형제, 수화제, 유화 촉진제, 현탁제, 삼투압 조절을 위한 염 또는 완충제, 착색제, 향신료, 안정화제, 방부제, 보존제 또는 기타 상용하는 보조제를 적당히 사용할 수 있다.The pharmaceutical composition may be provided in any formulation suitable for topical application. For example, it may be a solution for external use on the skin, a suspension, an emulsion, a gel, a patch, or a spray, but is not limited thereto. The formulation can be easily prepared according to conventional methods in the field, and contains surfactants, excipients, wetting agents, emulsification accelerators, suspending agents, salts or buffers for adjusting osmotic pressure, colorants, flavorings, stabilizers, preservatives, preservatives or Other commonly used supplements can be used appropriately.
상기 약학적 조성물은 그 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 더 포함할 수 있다. 상기 희석제는 유당, 옥수수 전분, 대두유, 미정질 셀룰로오스, 또는 만니톨, 활택제로는 스테아린산 마그네슘, 탈크, 또는 그 조합일 수 있다. 상기 담체는 부형제, 붕해제, 결합제, 활택제, 또는 그 조합일 수 있다. 상기 부형제는 미결정 셀룰로오즈, 유당, 저치환도 히드록시셀룰로오즈, 또는 그 조합일 수 있다. 상기 붕해제는 카르복시메틸셀룰로오스 칼슘, 전분글리콜산 나트륨, 무수인산일수소 칼슘, 또는 그 조합일 수 있다. 상기 결합제는 폴리비닐피롤리돈, 저치환도 히드록시프로필셀룰로오즈, 히드록시프로필셀룰로오즈, 또는 그 조합일 수 있다. 상기 활택제는 스테아린산 마그네슘, 이산화규소, 탈크, 또는 그 조합일 수 있다. 또는, 상기 담체는 거즈, 붕대, 밴드, 필름, 접착 패치 또는 미접착 패치 일 수 있고, 이들 담체를 이용함으로써 상처 드레싱으로 이용될 수 있다.The pharmaceutical composition may further include appropriate carriers, excipients, or diluents commonly used in its preparation. The diluent may be lactose, corn starch, soybean oil, microcrystalline cellulose, or mannitol, and the lubricant may be magnesium stearate, talc, or a combination thereof. The carrier may be an excipient, disintegrant, binder, lubricant, or a combination thereof. The excipient may be microcrystalline cellulose, lactose, low-substituted hydroxycellulose, or a combination thereof. The disintegrant may be calcium carboxymethylcellulose, sodium starch glycolate, calcium monohydrogen phosphate anhydride, or a combination thereof. The binder may be polyvinylpyrrolidone, low-substituted hydroxypropylcellulose, hydroxypropylcellulose, or a combination thereof. The lubricant may be magnesium stearate, silicon dioxide, talc, or a combination thereof. Alternatively, the carrier may be gauze, bandage, band, film, adhesive patch, or non-adhesive patch, and can be used as a wound dressing by using these carriers.
상기 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 용어, “약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.The pharmaceutical composition is administered in a pharmaceutically effective amount. The term “pharmaceutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity of the patient's disease, the activity of the drug, and the drug's effect. It can be determined based on factors including sensitivity, time of administration, route of administration and excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the medical field.
상기 투여는 하루에 한 번 투여되는 것일 수도 있고, 수 회 나누어 투여되는 것일 수도 있다. 예를 들어, 격일로 투여되는 것일 수도 있으며, 일주일에 하루 투여되는 것일 수도 있다.The administration may be administered once a day, or may be administered several times. For example, it may be administered every other day, or it may be administered once a week.
상기 약학적 조성물은 종래에 알려져 있는 상처 치료 또는 피부 조직 재생용 약학적 조성물 또는 새롭게 개발되는 상처 치료 또는 피부 조직 재생용 약학적 조성물과 혼합되어 제공될 수 있다. 상기 약학적 조성물이 상처 치료 또는 피부 조직 재생용 약학적 조성물을 더 포함하는 경우, 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양이 혼합되는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition may be provided by mixing with a conventionally known pharmaceutical composition for wound treatment or skin tissue regeneration or a newly developed pharmaceutical composition for wound treatment or skin tissue regeneration. When the pharmaceutical composition further includes a pharmaceutical composition for wound treatment or skin tissue regeneration, it is important to mix in an amount that can obtain the maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art. .
또한, 일 양상에 있어서, 상기 약학적 조성물은 단독 투여 또는 다른 상처 치료 또는 피부 조직 재생용 약제와 병용 투여되는 것일 수 있다. 즉, 상기 약학적 조성물은 상처 치료 또는 피부 조직 재생 효과를 가지는 공지의 조성물 또는 다른 상처 치료 또는 피부 조직 재생용 약제와 병행하여 투여될 수 있고, 동시에, 별도로, 또는 순차적으로 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.Additionally, in one aspect, the pharmaceutical composition may be administered alone or in combination with other drugs for wound treatment or skin tissue regeneration. That is, the pharmaceutical composition may be administered in combination with a known composition having a wound treatment or skin tissue regeneration effect or another drug for wound treatment or skin tissue regeneration, and may be administered simultaneously, separately, or sequentially. Or it can be administered in multiple doses. Considering all of the above factors, it is important to administer an amount that can achieve the maximum effect with the minimum amount without side effects, and this can be easily determined by a person skilled in the art.
다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 피부 외용제를 제공한다.Another aspect provides a topical skin preparation for wound treatment or skin tissue regeneration, comprising an extracellular matrix and Kelp extract.
상기 "세포외기질(extracellular matrix)", "다시마(Kelp)", "상처", "치료", "피부 조직 재생" 등은 전술한 범위 내일 수 있다.The terms “extracellular matrix,” “kelp,” “wound,” “treatment,” “skin tissue regeneration,” etc. may be within the scope described above.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물을 포함하는 피부 외용제는, 생분해능(biodegradation), 팽윤능(swelling), 단백질 방출능, 세포 증식능 및 생체적합성(biocompatibility)이 우수하고, 성장 인자를 포함하고 있어 상처 치료 효과가 우수하다. 또한, 상기 피부 외용제는 MMP의 발현을 감소시키고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있어, 상처 치유에 소요되는 시간을 효과적으로 단축시킬 수 있다. 따라서, 상기 피부 외용제는 상처 치료 및/또는 피부 조직 재생에 유용하게 활용될 수 있다.According to one aspect, the external skin preparation containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It has excellent wound healing effects. In addition, the topical skin agent can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the skin topical agent can be useful for wound treatment and/or skin tissue regeneration.
상기 "피부 외용제"는 일반적으로 피부 외용에 사용하는 물질 전반을 포함하는 포괄하는 개념으로, 상기 피부 외용제는 화장품학 또는 피부과학적으로 허용 가능한 매질 또는 기제를 함유하여 피부 국소 도포용으로 제형화될 수 있다. 이는 국소적용에 적합한 모든 제형으로서, 예를 들면, 용액, 겔, 고체, 반죽 무수 생성물, 수상에 유상을 분산시켜 얻은 에멀젼, 현탁액, 마이크로에멀젼, 마이크로캡슐, 미세과립구 또는 이온형(리포좀) 및 비이온형의 소낭 분산제의 형태로, 또는 크림, 스킨, 로션, 파우더, 연고, 스프레이 또는 콘실 스틱의 형태로 제공될 수 있다. 또한, 폼(foam)의 형태로 또는 압축된 추진제를 더 함유한 에어로졸 조성물의 형태로도 사용될 수 있다. 이들 조성물은 당해 분야의 통상적인 방법에 따라 제조될 수 있다.The “external skin preparation” is an inclusive concept that generally includes all materials used for external skin use. The skin external preparation contains a cosmetically or dermatologically acceptable medium or base and can be formulated for topical application to the skin. . These are all formulations suitable for topical application, for example, solutions, gels, solids, pasty anhydrous products, emulsions obtained by dispersing the oil phase in the water phase, suspensions, microemulsions, microcapsules, microgranules or ionic forms (liposomes) and non-ionic forms. It may be provided in the form of an ionic vesicular dispersion, or in the form of a cream, skin, lotion, powder, ointment, spray or conceal stick. It can also be used in the form of foam or in the form of an aerosol composition further containing compressed propellant. These compositions can be prepared according to conventional methods in the art.
또한, 상기 피부 외용제는 지방 물질, 유기용매, 용해제, 농축제, 겔화제, 연화제, 항산화제, 현탁화제, 안정화제, 발포제(foaming agent), 방향제, 계면활성제, 물, 이온형 또는 비이온형 유화제, 충전제, 금속이온봉쇄제, 킬레이트화제, 보존제, 비타민, 차단제, 습윤화제, 필수 오일, 염료, 안료, 친수성 또는 친유성 활성제, 지질 소낭 또는 화장품에 통상적으로 사용되는 임의의 다른 성분과 같은 화장품학 또는 피부과학 분야에서 통상적으로 사용되는 보조제를 함유할 수 있다. 상기 보조제는 화장품학 또는 피부과학 분야에서 일반적으로 사용되는 양으로 도입될 수 있다.In addition, the skin external agent may contain fatty substances, organic solvents, solubilizers, thickeners, gelling agents, softeners, antioxidants, suspending agents, stabilizers, foaming agents, fragrances, surfactants, water, ionic or non-ionic types. Cosmetic, such as emulsifiers, fillers, sequestering agents, chelating agents, preservatives, vitamins, blocking agents, wetting agents, essential oils, dyes, pigments, hydrophilic or lipophilic active agents, lipid exosomes or any other ingredients commonly used in cosmetics. Alternatively, it may contain adjuvants commonly used in the field of dermatology. The auxiliaries can be introduced in amounts commonly used in the fields of cosmetology or dermatology.
또 다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 개선 또는 피부 조직 재생용 화장료 조성물을 제공한다.Another aspect provides a cosmetic composition for improving wounds or regenerating skin tissue, comprising an extracellular matrix and kelp extract.
상기 "세포외기질(extracellular matrix)", "다시마(Kelp)", "상처", "개선", "피부 조직 재생" 등은 전술한 범위 내일 수 있다.The terms “extracellular matrix,” “kelp,” “wound,” “improvement,” “skin tissue regeneration,” etc. may be within the above-mentioned scope.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물을 포함하는 화장료 조성물은, 생분해능(biodegradation), 팽윤능(swelling), 단백질 방출능, 세포 증식능 및 생체적합성(biocompatibility)이 우수하고, 성장 인자를 포함하고 있어 상처 개선 효과가 우수하다. 또한, 상기 조성물은 MMP의 발현을 감소시키고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있어, 상처 치유에 소요되는 시간을 효과적으로 단축시킬 수 있다. 따라서, 상기 화장료 조성물은 상처 개선 및/또는 피부 조직 재생에 유용하게 활용될 수 있다.According to one aspect, the cosmetic composition containing the extracellular matrix and kelp extract is excellent in biodegradation, swelling, protein release, cell proliferation, and biocompatibility, and contains growth factors. It contains excellent wound improvement effect. In addition, the composition can reduce the expression of MMPs and change the phenotype of macrophages from type M1 to type M2, effectively shortening the time required for wound healing. Therefore, the cosmetic composition can be usefully used for wound improvement and/or skin tissue regeneration.
상기 화장료 조성물은 용액, 외용연고, 크림, 폼, 영양화장수, 유연화장수, 팩, 유연수, 유액, 메이크업베이스, 에센스, 비누, 액체 세정료, 입욕제, 선스크린-크림, 선오일, 현탁액, 유탁액, 페이스트, 겔, 로션, 파우더, 비누, 계면활성제-함유 클린싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션, 패취 및 스프레이로 구성된 군으로부터 선택되는 제형으로 제조될 수 있으나, 이에 제한되지 않는다.The cosmetic composition includes solution, external ointment, cream, foam, nourishing lotion, softening lotion, pack, softening water, emulsion, makeup base, essence, soap, liquid cleanser, bath agent, sunscreen-cream, sun oil, suspension, and emulsion. , paste, gel, lotion, powder, soap, surfactant-containing cleansing, oil, powder foundation, emulsion foundation, wax foundation, patch, and spray.
또한, 상기 화장료 조성물은 일반 피부 화장료에 배합되는 화장품학적으로 허용 가능한 담체를 1종 이상 추가로 포함할 수 있으며, 통상의 성분으로 예를 들면 유분, 물, 계면활성제, 보습제, 저급 알콜, 증점제, 킬레이트제, 색소, 방부제, 향료 등을 적절히 배합할 수 있으나, 이에 제한되지 않는다.In addition, the cosmetic composition may additionally include one or more cosmetically acceptable carriers that are mixed with general skin cosmetics, and common ingredients include, for example, oil, water, surfactant, moisturizer, lower alcohol, thickener, Chelating agents, pigments, preservatives, fragrances, etc. may be appropriately mixed, but are not limited thereto.
상기 화장료 조성물에 포함되는 화장품학적으로 허용 가능한 담체는 제형에 따라 다양하다. 상기 화장료 조성물의 제형이 연고, 페이스트, 크림 또는 젤인 경우에는, 담체 성분으로서 동물성 유, 식물성 유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크, 산화아연 또는 이들의 혼합물이 이용될 수 있다.Cosmetically acceptable carriers included in the cosmetic composition vary depending on the formulation. When the formulation of the cosmetic composition is ointment, paste, cream or gel, the carrier ingredients include animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc, zinc oxide. Or a mixture thereof can be used.
상기 화장료 조성물의 제형이 파우더 또는 스프레이인 경우에는, 담체 성분으로서 락토스, 탈크, 실리카, 알루미늄 히드록사이드, 칼슘 실케이트, 폴리아미드 파우더 또는 이들의 혼합물이 이용될 수 있고, 특히 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판/부탄 또는 디메틸 에테르와 같은 추진제를 포함할 수 있다.When the formulation of the cosmetic composition is powder or spray, lactose, talc, silica, aluminum hydroxide, calcium silcate, polyamide powder, or mixtures thereof may be used as carrier ingredients, and especially in the case of spray, additional May contain propellants such as chlorofluorohydrocarbons, propane/butane or dimethyl ether.
상기 화장료 조성물의 제형이 용액 또는 유탁액인 경우에는, 담체 성분으로서 용매, 용해화제 또는 유탁화제가 이용되며, 예컨대 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알콜, 벤질 벤조에이트, 프로필렌글리콜, 1,3-부틸글리콜 오일이 이용될 수 있으며, 특히, 목화씨 오일, 땅콩 오일, 옥수수 배종 오일, 올리브오일, 피마자 오일 및 참깨 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르가 이용될 수 있다.When the formulation of the cosmetic composition is a solution or emulsion, a solvent, solubilizing agent, or emulsifying agent is used as a carrier component, such as water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, and propylene glycol. , 1,3-butyl glycol oil can be used, in particular cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol aliphatic esters, polyethylene glycol or fatty acid esters of sorbitan. You can.
상기 화장료 조성물의 제형이 현탁액인 경우에는, 담체 성분으로서 물, 에탄올 또는 프로필렌 글리콜과 같은 액상의 희석제, 에톡실화 이소스테아릴 알콜, 폴리옥시에틸렌 소르비톨 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가 또는 트라칸트 등이 이용될 수 있다. When the formulation of the cosmetic composition is a suspension, the carrier component includes water, a liquid diluent such as ethanol or propylene glycol, a suspending agent such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester, and polyoxyethylene sorbitan ester, Microcrystalline cellulose, aluminum metahydroxide, bentonite, agar, or tracant may be used.
상기 화장료 조성물의 제형이 비누인 경우에는 담체 성분으로서 지방산의 알칼리 금속 염, 지방산 헤미에스테르 염, 지방산 단백질 히드롤리제이트, 이세티오네이트, 라놀린 유도체, 지방족 알콜, 식물성 유, 글리세롤, 당 등이 이용될 수 있다.When the formulation of the cosmetic composition is soap, alkali metal salts of fatty acids, fatty acid hemiester salts, fatty acid protein hydrolyzates, isethionates, lanolin derivatives, fatty alcohols, vegetable oils, glycerol, sugars, etc. are used as carrier ingredients. It can be.
상기 화장료 조성물의 제형이 팩(필오프 팩, 워시오프(wash off) 팩, 또는 마스크 시트 팩)인 경우에는 담체 성분으로서 폴리비닐알코올, 카올린, 탈크, 산화아연, 또는 이산화티탄 등이 이용될 수 있다.When the formulation of the cosmetic composition is a pack (peel-off pack, wash-off pack, or sheet mask pack), polyvinyl alcohol, kaolin, talc, zinc oxide, or titanium dioxide may be used as a carrier ingredient. there is.
또 다른 양상은 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 개체에 처리하는 단계를 포함하는, 상처 치료 또는 피부 조직 재생 방법을 제공한다.Another aspect provides a method of wound healing or skin tissue regeneration comprising treating a subject with an extracellular matrix and Kelp extract.
상기 "세포외기질(extracellular matrix)", "다시마(Kelp)", "상처", "치료", "피부 조직 재생" 등은 전술한 범위 내일 수 있다.The terms “extracellular matrix,” “kelp,” “wound,” “treatment,” “skin tissue regeneration,” etc. may be within the scope described above.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물은, 생분해능(biodegradation), 팽윤능(swelling), 단백질 방출능, 세포 증식능 및 생체적합성(biocompatibility)이 우수하고, MMP의 발현을 감소시키고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있어, 상처 치유에 소요되는 시간을 효과적으로 단축시킬 수 있는 바, 상처 치료 및/또는 피부 조직 재생에 유용하게 활용될 수 있다.According to one aspect, the extracellular matrix and kelp extract are excellent in biodegradation, swelling ability, protein release ability, cell proliferation ability, and biocompatibility, reduce the expression of MMPs, and The phenotype of phagocytes can be converted from M1 type to M2 type, effectively shortening the time required for wound healing, and can be useful for wound treatment and/or skin tissue regeneration.
상기 "개체"는 인간 또는 인간 이외의 생물, 예를 들면 소, 원숭이, 새, 고양이, 마우스, 랫트, 햄스터, 돼지, 개, 토끼, 양, 말 등의 비인간 포유동물을 의미하는 것으로, 상처 또는 피부 조직이 손상된 개체에 이용할 수 있다.The “individual” refers to a human or non-human organism, such as a non-human mammal such as a cow, monkey, bird, cat, mouse, rat, hamster, pig, dog, rabbit, sheep, horse, etc., which may cause injury or injury. It can be used on individuals with damaged skin tissue.
또 다른 양상은 상처 치료 또는 피부 조직 재생용 약제의 제조를 위한 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물의 용도를 제공하는 것이다.Another aspect is to provide the use of the extracellular matrix and Kelp extract for the manufacture of drugs for wound treatment or skin tissue regeneration.
상기 "상처", "치료", "피부 조직 재생", "세포외기질(extracellular matrix)", "다시마(Kelp)" 등은 전술한 범위 내일 수 있다.The terms “wound”, “treatment”, “skin tissue regeneration”, “extracellular matrix”, “kelp”, etc. may be within the above-described scope.
일 양상에 따르면, 상기 세포외기질 및 다시마 추출물은, 생분해능(biodegradation), 팽윤능(swelling), 단백질 방출능, 세포 증식능 및 생체적합성(biocompatibility)이 우수하고, MMP의 발현을 감소시키고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킬 수 있어, 상처 치유에 소요되는 시간을 효과적으로 단축시킬 수 있는 바, 상처 치료 및/또는 피부 조직 재생에 유용하게 활용될 수 있다.According to one aspect, the extracellular matrix and kelp extract are excellent in biodegradation, swelling ability, protein release ability, cell proliferation ability, and biocompatibility, reduce the expression of MMPs, and The phenotype of phagocytes can be converted from M1 type to M2 type, effectively shortening the time required for wound healing, and can be useful for wound treatment and/or skin tissue regeneration.
도 1은 EK-20@Cou 스캐폴드의 상처 치유 효과 메커니즘에 대한 개략도를 나타낸다.Figure 1 shows a schematic diagram of the wound healing effect mechanism of the EK-20@Cou scaffold.
도 2는 돼지 간 유래 ECM의 탈세포화 과정의 개략도를 나타낸다.Figure 2 shows a schematic diagram of the decellularization process of porcine liver-derived ECM.
도 3은 돼지 간 유래 ECM의 탈세포화 전후의 광학 이미지 및 H&E 염색 이미지를 나타낸다.Figure 3 shows optical and H&E staining images of porcine liver-derived ECM before and after decellularization.
도 4a는 돼지 간 유래 ECM의 탈세포화 전후의 DNA 정량화 데이터를 나타낸다.Figure 4A shows DNA quantification data before and after decellularization of porcine liver-derived ECM.
도 4b는 돼지 간 유래 ECM의 탈세포화 전후의 겔 전기영동 결과를 나타낸다.Figure 4b shows gel electrophoresis results before and after decellularization of porcine liver-derived ECM.
도 5는 다시마(kelp) 탈세포화 과정의 개략도를 나타낸다.Figure 5 shows a schematic diagram of the kelp decellularization process.
도 6a는 다시마 탈세포화 전후의 H&E 염색 이미지를 나타낸다.Figure 6a shows H&E staining images before and after kelp decellularization.
도 6b는 다시마 탈세포화 전후의 SEM 이미지를 나타낸다.Figure 6b shows SEM images before and after kelp decellularization.
도 7a는 다시마 탈세포화 전후의 DNA 함량을 나타낸다.Figure 7a shows the DNA content before and after kelp decellularization.
도 7b는 다시마 탈세포화 전후의 단백질 함량을 나타낸다.Figure 7b shows protein content before and after kelp decellularization.
도 8은 탈세포화 다시마에 대한 FTIR 스펙트럼 분석 결과를 나타낸다.Figure 8 shows the results of FTIR spectrum analysis for decellularized kelp.
도 9는 ECM-다시마(EK) 스캐폴드 제조 과정의 개략도를 나타낸다.Figure 9 shows a schematic diagram of the ECM-kelp (EK) scaffold fabrication process.
도 10은 EK 스캐폴드의 광학 이미지를 나타낸다.Figure 10 shows an optical image of the EK scaffold.
도 11a는 다시마 농도를 달리한 EK 스캐폴드(EK-5, EK-10, EK-15 및 EK-20)의 광학 이미지를 나타낸다.Figure 11a shows optical images of EK scaffolds (EK-5, EK-10, EK-15, and EK-20) with different kelp concentrations.
도 11b는 EK-5, EK-10, EK-15 및 EK-20의 응력/변형 곡선(Stress/Strain curve)을 나타낸다.Figure 11b shows the stress/strain curves of EK-5, EK-10, EK-15 and EK-20.
도 12는 EK-5, EK-10, EK-15 및 EK-20 표면의 SEM 이미지를 나타낸다.Figure 12 shows SEM images of EK-5, EK-10, EK-15 and EK-20 surfaces.
도 13은 EK-5, EK-10, EK-15 및 EK-20의 기공 크기 분포를 나타낸다.Figure 13 shows the pore size distribution of EK-5, EK-10, EK-15 and EK-20.
도 14a는 EK-20의 ECM 단백질(GAGs, 엘라스틴 및 가용성 콜라겐) 함량을 나타낸다.Figure 14A shows the ECM protein (GAGs, elastin and soluble collagen) content of EK-20.
도 14b는 EK-20의 성장인자(VEGF 및 FGF) 함량을 나타낸다.Figure 14b shows the growth factor (VEGF and FGF) content of EK-20.
도 15a는 PBS에서 측정한 EK-5, EK-10, EK-15 및 EK-20의 생분해성을 나타낸다.Figure 15a shows the biodegradability of EK-5, EK-10, EK-15 and EK-20 measured in PBS.
도 15b는 PBS 및 FBS에서 측정한 EK-5, EK-10, EK-15 및 EK-20의 생분해성을 나타낸다.Figure 15b shows the biodegradability of EK-5, EK-10, EK-15 and EK-20 measured in PBS and FBS.
도 16a는 PBS에서 측정한 EK-5, EK-10, EK-15 및 EK-20의 팽윤능을 나타낸다.Figure 16A shows the swelling capacity of EK-5, EK-10, EK-15 and EK-20 measured in PBS.
도 16b는 PBS 및 FBS에서 측정한 EK-5, EK-10, EK-15 및 EK-20의 팽윤능을 나타낸다.Figure 16B shows the swelling capacity of EK-5, EK-10, EK-15 and EK-20 measured in PBS and FBS.
도 17은 EK-5, EK-10, EK-15 및 EK-20의 총 단백질 방출량을 나타낸다.Figure 17 shows total protein release for EK-5, EK-10, EK-15 and EK-20.
도 18은 EK-5, EK-10, EK-15 및 EK-20의 pH 변화를 나타낸다.Figure 18 shows pH changes for EK-5, EK-10, EK-15 and EK-20.
도 19는 EK-20, EK-25, EK-30, EK-35, EK-40 및 EK-45의 pH 변화를 나타낸다.Figure 19 shows the pH change of EK-20, EK-25, EK-30, EK-35, EK-40 and EK-45.
도 20a는 EK-5, EK-10, EK-15 및 EK-20의 MTT 분석을 통한 rBMSC 생존능 간접 분석 결과를 나타낸다.Figure 20a shows the results of indirect analysis of rBMSC viability through MTT analysis of EK-5, EK-10, EK-15 and EK-20.
도 20b는 EK-5, EK-10, EK-15 및 EK-20의 Almer blue 분석을 통한 rBMSC 생존능 직접 분석 결과를 나타낸다.Figure 20b shows the results of direct analysis of rBMSC viability through Almer blue analysis of EK-5, EK-10, EK-15, and EK-20.
도 20c는 EK-5, EK-10, EK-15 및 EK-20의 rBMSC 증식에 대한 공초점 이미지를 나타낸다.Figure 20C shows confocal images of rBMSC proliferation in EK-5, EK-10, EK-15 and EK-20.
도 21은 EK-20 및 EK-20(PW)의 pH 변화를 나타낸다.Figure 21 shows the pH change of EK-20 and EK-20(PW).
도 22a는 EK-20 및 EK-20(PW)의 응력/변형 곡선(Stress/Strain curve)을 나타낸다.Figure 22a shows the stress/strain curve of EK-20 and EK-20(PW).
도 22b는 EK-20 및 EK-20(PW)의 잔류 단백질 양을 나타낸다.Figure 22B shows the residual protein amount of EK-20 and EK-20(PW).
도 23은 EK-20에 p-쿠마르산(p-Cou)를 2, 3, 4 및 10 mg 로딩한 후 측정한 pH 변화를 나타낸다.Figure 23 shows the pH change measured after loading 2, 3, 4, and 10 mg of p-coumaric acid (p-Cou) in EK-20.
도 24는 EK-20 및 EK-20@Cou의 pH 변화를 나타낸다.Figure 24 shows the pH change of EK-20 and EK-20@Cou.
도 25는 EK-20 및 EK-20@Cou의 FT-IR 분광 결과를 나타낸다.Figure 25 shows the FT-IR spectroscopy results of EK-20 and EK-20@Cou.
도 26은 EK-20@Cou의 p-Cou 방출양을 나타낸다.Figure 26 shows the p-Cou emission amount of EK-20@Cou.
도 27은 EK-20@Cou의 p-Cou 방출 메커니즘을 나타낸다.Figure 27 shows the p-Cou release mechanism of EK-20@Cou.
도 28은 EK-20@Cou 및 EK-20(PW)의 총 항산화능을 나타낸다.Figure 28 shows the total antioxidant capacity of EK-20@Cou and EK-20(PW).
도 29a는 EK-20@Cou 및 EK-20(PW)의 그람 양성균(Bacillus subtilisStaphylococcus aureus) 및 그람 음성균(Escherichia coliSalmonella typhimurium)에 대한 억제 구역 이미지를 나타낸다.Figure 29a shows the inhibition zone image of EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium ).
도 29b는 EK-20@Cou 및 EK-20(PW)의 그람 양성균(Bacillus subtilisStaphylococcus aureus) 및 그람 음성균(Escherichia coliSalmonella typhimurium)에 대한 억제 구역 크기를 나타낸다.Figure 29b shows the size of the inhibition zone of EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium ).
도 30은 EK-20@Cou 및 EK-20(PW)의 MTT 분석을 통한 rBMSC 생존능 분석 결과를 나타낸다.Figure 30 shows the results of rBMSC viability analysis through MTT analysis of EK-20@Cou and EK-20(PW).
도 31은 EK-20@Cou 및 EK-20(PW)의 rBMSC 증식에 대한 공초점 이미지를 나타낸다.Figure 31 shows confocal images of rBMSC proliferation in EK-20@Cou and EK-20(PW).
도 32는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat)의 등쪽 상처의 이미지 및 상처 봉합 정량 데이터를 나타낸다.Figure 32 shows images and quantitative wound closure data of dorsal wounds in rats treated with EK-20@Cou or EK-20(PW).
도 33은 EK-20@Cou의 상처 치유 과정의 개략도를 나타낸다.Figure 33 shows a schematic diagram of the wound healing process of EK-20@Cou.
도 34는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플의 H&E 염색 이미지 및 Mason's Trichrome 염색 이미지를 나타낸다.Figure 34 shows H&E staining images and Mason's Trichrome staining images of rat wound samples treated with EK-20@Cou or EK-20(PW).
도 35a는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 신표피두께 데이터를 나타낸다.Figure 35a shows new epidermal thickness data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 35b는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 육아조직 두께 데이터를 나타낸다.Figure 35b shows granulation tissue thickness data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 35c는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 상피형성 점수 데이터를 나타낸다.Figure 35C shows epithelialization score data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 36은 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 피브로넥틴, 콜라겐-1 및 α-SMA에 대한 DAB 염색 이미지를 나타낸다.Figure 36 shows DAB staining images for fibronectin, collagen-1 and α-SMA in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 37a는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 피브로넥틴 발현 데이터를 나타낸다.Figure 37A shows fibronectin expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 37b는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 콜라겐-1 발현 데이터를 나타낸다.Figure 37b shows collagen-1 expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 37c는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 α-SMA 발현 데이터를 나타낸다.Figure 37c shows α-SMA expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 38a는 MMP 활성 부위에서 p-Cou의 결합 가능성, 단백질 활성 부위에서 아미노산 잔기 및 p-Cou 원자 사이의 상호작용에 대한 MS 예측 결과를 나타낸다.Figure 38a shows the MS prediction results for the binding potential of p-Cou in the MMP active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
도 38b는 단백질 활성 부위에서 p-Cou의 결합 가능성, 단백질 활성 부위에서 아미노산 잔기 및 p-Cou 원자 사이의 상호작용에 대한 MS 예측 결과를 나타낸다.Figure 38b shows the MS prediction results for the binding potential of p-Cou in the protein active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
도 38c는 단백질 활성 부위에서 대조군 약물과 비교한 p-Cou의 자유 결합에너지(-ΔG)에 대한 MS 예측 결과를 나타낸다.Figure 38c shows MS prediction results for the free binding energy (-ΔG) of p-Cou compared to the control drug in the protein active site.
도 39a는 EK-20@Cou 및 EK-20(PW)의 MMP-2 및 MMP-12에 대한 억제 효과를 나타낸다.Figure 39A shows the inhibitory effect of EK-20@Cou and EK-20(PW) on MMP-2 and MMP-12.
도 39b는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처에서의 MMP-2 및 MMP-12 발현 데이터를 나타낸다.Figure 39B shows MMP-2 and MMP-12 expression data in rat wounds treated with EK-20@Cou or EK-20(PW).
도 40은 NF-κB 활성 부위에서 p-Cou의 결합 가능성, 단백질 활성 부위에서 아미노산 잔기 및 p-Cou 원자 사이의 상호작용에 대한 MS 예측 결과를 나타낸다.Figure 40 shows MS prediction results for the binding potential of p-Cou in the NF-κB active site and the interaction between amino acid residues and p-Cou atoms in the protein active site.
도 41a는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 NF-κB 염색 이미지를 나타낸다.Figure 41A shows NF-κB staining images in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 41b는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 NF-κB 발현 데이터를 나타낸다.Figure 41B shows NF-κB expression data in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 42a는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 CD68 염색 이미지를 나타낸다.Figure 42A shows CD68 staining images in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 42b는 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 CD68 발현 데이터를 나타낸다.Figure 42B shows CD68 expression data in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 43은 EK-20@Cou 또는 EK-20(PW)가 처리된 쥐(rat) 상처 샘플에서의 질산염(nitrate) 농도를 나타낸다.Figure 43 shows nitrate concentration in rat wound samples treated with EK-20@Cou or EK-20(PW).
도 44는 EK-20@Cou의 상처 치유 과정의 개략도를 나타낸다.Figure 44 shows a schematic diagram of the wound healing process of EK-20@Cou.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: 재료 및 방법Example 1: Materials and Methods
1-1. 간 유래 ECM 준비1-1. Liver-derived ECM preparation
신선한 돼지의 간은 도축 직후 Sajo Industrial Co., Ltd.에서 수득하여 아이스박스에 담아 실험실 냉동고(-80℃)로 옮겼다. 돼지 간을 실온에서 해동한 후, 칼날을 이용하여 약 5mm2의 간 절편을 수득한 후, 탈염수(DW)에 보관하였다. 절단 이후, 혈액이 없어질 때까지 세척하였으며, 이후 간 절편을 1% SDS 용액에 담가 200 rpm으로 12시간동안 회전하였다. 이후, 48시간 동안 SDS(sodium dodecyl sulfate)(Bio-Rad Laboratories, California, USA) 농도를 0.5%로 유지하였으며, SDS 농도를 8시간마다 변경하여 절편이 완전히 하얗게 될 때까지 농도를 0.1%로 감소시켰다. 그런 다음, 백색 ECM을 1% Triton X-100 (MilliporeSigma, USA)으로 30분간 처리하였고, PBS(phosphate buffer saline) 내 50 U mL-1 DNAase-1로 2시간 동안 처리하였다. 상기와 같이 준비된 ECM에서 잔류 물질을 완전히 제거하기 위해 PBS로 여러 번 세척하였고, 탈세포화된 간 조직을 동결시킨 후, 동결건조시켰다. 이후, 분말 형태를 얻기 위해, 극저온 그라인더(Retsch, Germany)를 사용하였고, ECM 분말을 -80℃에 보관하였다.Fresh pig liver was obtained from Sajo Industrial Co., Ltd. immediately after slaughter, placed in an icebox and transferred to a laboratory freezer (-80°C). After thawing the pig liver at room temperature, liver slices of approximately 5 mm 2 were obtained using a blade and stored in demineralized water (DW). After cutting, the liver slices were washed until the blood disappeared, and then the liver slices were immersed in 1% SDS solution and rotated at 200 rpm for 12 hours. Afterwards, the SDS (sodium dodecyl sulfate) (Bio-Rad Laboratories, California, USA) concentration was maintained at 0.5% for 48 hours, and the SDS concentration was changed every 8 hours, reducing the concentration to 0.1% until the section became completely white. I ordered it. Then, the white ECM was treated with 1% Triton To completely remove residual substances from the ECM prepared as above, it was washed several times with PBS, and the decellularized liver tissue was frozen and lyophilized. Afterwards, a cryogenic grinder (Retsch, Germany) was used to obtain the powder form, and the ECM powder was stored at -80°C.
1-2. 탈세포화된 ECM의 조직학적 분석1-2. Histological analysis of decellularized ECM.
ECM의 탈세포화 정도를 평가하기 위해 조직학적 분석을 수행하였다. 네이티브 및 탈세포화 ECM 샘플 모두 4% PFA(paraformaldehyde) 용액을 이용하여 밤새 고정시켰다. 이후, 샘플을 1시간 동안 DW로 세척하였고, 파라핀에 포매하기 전에, 에탄올 용액 및 자일렌(알코올 분리 용도)을 사용하여 탈수하였다. 다음으로, 파라핀 블록을 마이크로톰(Leica Biosystem, Germany)을 사용하여 5 μm두께로 절단하였고, 절편을 60℃에서 1시간 동안 방치하여 파라핀을 제거한 후, H&E 염색을 수행하였다. 염색된 조직 절편을 BX53 광학 현미경(Olympus)을 사용하여 시각화하였고, 이미지를 Olympus DP72 카메라로 캡처하였으며, Cellsens 소프트웨어를 사용하여 이미지를 분석하였다.Histological analysis was performed to evaluate the degree of decellularization of ECM. Both native and decellularized ECM samples were fixed overnight using 4% paraformaldehyde (PFA) solution. Afterwards, the samples were washed with DW for 1 hour and dehydrated using ethanol solution and xylene (for alcohol separation) before embedding in paraffin. Next, the paraffin block was cut to a thickness of 5 μm using a microtome (Leica Biosystem, Germany), and the sections were left at 60°C for 1 hour to remove paraffin, followed by H&E staining. Stained tissue sections were visualized using a BX53 light microscope (Olympus), images were captured with an Olympus DP72 camera, and images were analyzed using Cellsens software.
1-3. 탈세포화된 ECM의 유전물질(DNA) 정량화1-3. Quantification of genetic material (DNA) in decellularized ECM
네이티브 및 탈세포화 ECM 샘플의 총 유전물질(DNA)은 표준 프로토콜에 따라 정량화되었다. 먼저, 50 mg의 샘플을 20 μL의 단백질분해효소 K(Thermo Fisher Scientific, USA) 20 mg mL-1과 함께 0.5 mL 용해 완충액(0.5 M EDTA, 5 M NaCl, 1 M Tris-HCl 및 20% SDS)으로 55℃에서 밤새 배양하였다. 이후, 혼합물을 10,000 rpm에서 10분간 원심분리하여, 가용성 부분에서 유전물질을 추출하였다. 다음으로, 수득한 물질에 6M NaCl(MilliporeSigma, USA) 400 μL를 처리하여 단백질을 제거하였다. 이후, 차가운 이소프로필 알코올을 사용하여 DNA를 침전시킨 뒤, 70% 에탄올로 2회 세척하였고, TE 완충액(10 mM Tris HCl, pH 8.0, 1 mM EDTA)에 용해시켰다. 이후, 나노드롭 분광광도계(Implen, Germany)를 사용하여 총 DNA 함량을 정량화하고 초기 중량으로 정규화하였으며, 네이티브 및 탈세포와 ECM 조직 샘플의 유전물질 함량을 아가로스(1% MilliporeSigma, USA) 겔 전기영동으로 분석하였다.Total genetic material (DNA) of native and decellularized ECM samples was quantified according to standard protocols. First, 50 mg of sample was dissolved in 0.5 mL lysis buffer (0.5 M EDTA, 5 M NaCl, 1 M Tris-HCl, and 20% SDS) with 20 μL of proteinase K (Thermo Fisher Scientific, USA) at 20 mg mL -1 ) and cultured overnight at 55°C. Afterwards, the mixture was centrifuged at 10,000 rpm for 10 minutes to extract the genetic material from the soluble portion. Next, the obtained material was treated with 400 μL of 6M NaCl (MilliporeSigma, USA) to remove proteins. Afterwards, DNA was precipitated using cold isopropyl alcohol, washed twice with 70% ethanol, and dissolved in TE buffer (10mM Tris HCl, pH 8.0, 1mM EDTA). Afterwards, the total DNA content was quantified using a Nanodrop spectrophotometer (Implen, Germany) and normalized to initial weight, and the genetic material content of native and decellularized and ECM tissue samples was analyzed by agarose (1% MilliporeSigma, USA) gel electrolysis. It was analyzed by Youngdong.
1-4. ECM 소화(digestion)1-4. ECM digestion
ECM 입자를 실온에서 72 내지 96시간 동안 0.01 M HCl 용액(pH 2) 및 10%(w/w) 3,200 units mg-1 펩신(Millipore Sigma, USA)에 분산시켰다. 이후, 펩신의 비활성화를 위해 0.1%(v/v)의 차가운 0.1 M NaOH(MilliporeSigma, USA) 및 10X PBS를 사용하였고, 높은 pH를 중화하기 위해 HCl 용액을 첨가하였다. 전체 농도는 20 mg mL-1 PBS로 조절하였고, 사용할 때까지 -80℃에서 보관하였다.ECM particles were dispersed in 0.01 M HCl solution (pH 2) and 10% (w/w) 3,200 units mg -1 pepsin (Millipore Sigma, USA) for 72 to 96 hours at room temperature. Afterwards, 0.1% (v/v) cold 0.1 M NaOH (MilliporeSigma, USA) and 10X PBS were used to inactivate pepsin, and HCl solution was added to neutralize the high pH. The total concentration was adjusted to 20 mg mL -1 PBS and stored at -80°C until use.
1-5. 다시마(kelp) 탈세포화1-5. Kelp decellularization
갈조류 샘플(다시마)에서 세포 내용물을 추출하기 위해, 최적화된 탈세포화를 수행하였다. 다시마(Saccharina japonica)는 해수에서 수확한 양식장(WESC, Wando County, Jeolla, South Korea)에서 수득하였다. 탈세포화를 위해, 표백제 및 수산화나트륨 용액을 사용하여 세제를 이용하지 않고 주변 연조직으로부터 맥관구조를 분리하였다. 구체적으로, 100 g의 젖은 다시마 샘플을 표백제(20% v/v, NaClO) 및 알칼리 용액(6% w/v, NaOH)과 함께 60 내지 70℃에서 3시간 동안 끓였다. 이에 따라 샘플이 탈세포화가 진행되어 투명해짐을 확인하였고, 샘플을 DW로 여러 번 세척한 후, 잔류 표백제 및 알칼리 용액을 완전히 제거하기 위해 4℃에서 밤새 DW로 배양한 후 동결건조하였다. 동결건조된 샘플을 액체 질소 하에서 극저온 그라인더(Retsch, Germany)로 분쇄한 후, 사용할 때까지 4℃에서 보관하였다.To extract cell contents from brown algae samples (kelp), optimized decellularization was performed. Kelp ( Saccharina japonica ) was obtained from a seawater harvested fish farm (WESC, Wando County, Jeolla, South Korea). For decellularization, bleach and sodium hydroxide solutions were used to separate the vasculature from the surrounding soft tissue without detergent. Specifically, 100 g of wet kelp samples were boiled with bleach (20% v/v, NaClO) and alkaline solution (6% w/v, NaOH) at 60 to 70°C for 3 hours. Accordingly, it was confirmed that the sample was decellularized and became transparent. The sample was washed with DW several times, incubated with DW at 4°C overnight to completely remove residual bleach and alkaline solution, and then lyophilized. The lyophilized samples were ground with a cryogenic grinder (Retsch, Germany) under liquid nitrogen and stored at 4°C until use.
1-6. 탈세포화된 다시마의 특성화1-6. Characterization of decellularized kelp
다시마 절편에서 탈세포화를 확인하기 위해 조직학적 염색 및 생화학 분석을 수행하였다. 이를 위해, 네이티브 및 탈세포화 샘플을 사각형 모양으로 자른 후 4% PFA로 고정하였으며, 네이티브 및 탈세포화 샘플에서의 유전물질(DNA) 총 함량을 비교하기 위해 DNA 정량화를 수행하였다.Histological staining and biochemical analysis were performed to confirm decellularization in kelp sections. For this purpose, the native and decellularized samples were cut into square shapes and fixed with 4% PFA, and DNA quantification was performed to compare the total content of genetic material (DNA) in the native and decellularized samples.
1-7. SEM(scanning electron microscope) 이미징1-7. scanning electron microscope (SEM) imaging
네이티브 조직 및 탈세포화 조직에서의 미세구조는 동일하지 않은 바, 다시마의 탈세포화를 확인하기 위해 SEM을 수행하였다. 이를 위해, 각 샘플을 동결건조기에서 건조하였고, 칼을 이용하여 액체 질소 하에서 절단하였다. 이후, 샘플을 SEM 샘플 홀더에 위치시킨 후, 백금으로 sputter 코팅하였다. JEOL JSM-6701F(Tokyo, Japan)는 에너지 분산 분광광도계(EDS)와 함께 SEM 분석에 사용되었으며, SEM 이미지를 얻기 위해 10 kV의 가속 전압을 사용하였다.Since the ultrastructure in native tissue and decellularized tissue was not the same, SEM was performed to confirm decellularization of kelp. For this purpose, each sample was dried in a freeze dryer and cut under liquid nitrogen using a knife. Afterwards, the sample was placed in the SEM sample holder and sputter-coated with platinum. JEOL JSM-6701F (Tokyo, Japan) was used for SEM analysis with energy dispersive spectrophotometer (EDS), and an acceleration voltage of 10 kV was used to obtain SEM images.
1-8. FT-IR 분광법을 이용한 화학적 특성 평가1-8. Chemical characterization using FT-IR spectroscopy
탈세포화된 다시마 샘플의 화학적 조성을 푸리에 변환 적외선 분광법 Nicolet 분광계(Nicolet Ia10, Thermo Scientific)를 이용하여 분석하였다. FT-IR 스펙트럼은 약 8 cm-1의 분해능 및 650 내지 4000 cm-1 파장 범위에서 OMNIC 버전 7.3 소프트웨어로 분석하였다.The chemical composition of decellularized kelp samples was analyzed using Fourier transform infrared spectroscopy Nicolet spectrometer (Nicolet Ia10, Thermo Scientific). FT-IR spectra were analyzed with OMNIC version 7.3 software at a resolution of approximately 8 cm -1 and a wavelength range of 650 to 4000 cm -1 .
1-9. 단백질 정량화1-9. Protein quantification
네이티브 다시마 샘플 및 탈세포와 다시마 샘플에서 단백질 양을 측정하기 위해 Bradford Assay 키트를 사용하였고, 검량선(calibration curve)을 얻기 위한 기준으로 BSA(bovine serum albumin)(Biosera, France)를 사용하였다. 또한, 샘플의 단백질 농도는 단백질 어세이 키트를 사용하여 결정하였다. 탈세포화된 다시마 샘플에서 단백질 농도의 감소는 완전한 탈세포화 과정이 수행된 것으로 간주되었다.The Bradford Assay kit was used to measure the amount of protein in native kelp samples and decellularized kelp samples, and bovine serum albumin (BSA) (Biosera, France) was used as a standard to obtain a calibration curve. Additionally, the protein concentration of the sample was determined using a protein assay kit. A decrease in protein concentration in decellularized kelp samples was considered as a complete decellularization process.
1-10. ECM-다시마(EK) 스캐폴드 제작1-10. ECM-kelp (EK) scaffold fabrication
ECM-다시마 스캐폴드의 제작을 위해, ECM을 20 mg mL-1의 일정한 농도로 설정하였다. 다시마 농도의 가교 효과를 평가하기 위해, ECM:다시마 비율을 1:0.25에서 1:1로 증가시켰으며, 다시마 5 mg mL-1(1:0.25)를 첨가할 경우, ECM의 기계적 특성이 변화되는 것이 관찰되었다. 소량의 다시마도 ECM 기반 스캐폴드에서 천연 무독성 가교제의 역할을 수행하였으며, ECM 농도를 일정하게 유지하면서 다시마의 농도를 5 mg mL-1에서 20 mg mL-1로 증가시켰다. 모든 샘플은 균질기(homogenizer)로 충분히 혼합한 후, 동결-해동 과정을 2회(각 30분) 수행하고, -80℃에서 동결하여 탄성을 가지는 스캐폴드를 제조하였고, 가교된 스캐폴드는 동결건조 기술로 건조하였다. 제조된 ECM-다시마 스캐폴드의 조성은 하기 표 1과 같다.For the fabrication of the ECM-kelp scaffold, the ECM was set to a constant concentration of 20 mg mL -1 . To evaluate the crosslinking effect of kelp concentration, the ECM:kelp ratio was increased from 1:0.25 to 1:1, and when 5 mg mL -1 (1:0.25) of kelp was added, the mechanical properties of ECM were changed. It was observed that A small amount of kelp also served as a natural non-toxic cross-linking agent in the ECM-based scaffold, and the concentration of kelp was increased from 5 mg mL -1 to 20 mg mL -1 while keeping the ECM concentration constant. All samples were thoroughly mixed with a homogenizer, then the freeze-thaw process was performed twice (30 minutes each) and frozen at -80°C to prepare an elastic scaffold. The cross-linked scaffold was frozen. It was dried using a drying technique. The composition of the prepared ECM-kelp scaffold is shown in Table 1 below.
ECM(mg mL-1)ECM (mg mL -1 ) 다시마(mg mL-1)Kelp (mg mL -1 ) ECM-다시마 비율ECM-kelp ratio
EK-5EK-5 2020 55 1:0.251:0.25
EK-10EK-10 2020 1010 1:0.501:0.50
EK-15EK-15 2020 1515 1:0.751:0.75
EK-20EK-20 2020 2020 1:11:1
1-11. 형태학적 특성 및 히스토그램 분석1-11. Morphological characteristics and histogram analysis
동결건조된 스캐폴드의 미세구조를 SEM(JEOL JSM-6701F, Tokyo, Japan)으로 관찰하였다. 샘플의 단면 및 표면을 액체 질소 하에서 작은 조각으로 절단하였고, 백금으로 sputter 코팅하였다. 기공 크기 분포는 Image J 소프트웨어를 사용하여 분석하였다.The microstructure of the freeze-dried scaffold was observed using SEM (JEOL JSM-6701F, Tokyo, Japan). The cross section and surface of the sample were cut into small pieces under liquid nitrogen and sputter coated with platinum. Pore size distribution was analyzed using Image J software.
1-12. EK 스캐폴드 내 ECM 단백질 및 성장 인자 함량1-12. ECM protein and growth factor content in EK scaffolds
대표적으로 EK-20 스캐폴드 내에서 ECM 단백질 및 성장 인자의 함량을 측정하였다. 스캐폴드 내에 황산화 글리코사미노글리칸(sulfated glycosaminoglycan, sGAG) 및 엘라스틴(elastin) 함량은 각각 Blyscan sGAG 분석 키트(Biocolor, UK) 및 Fastin elastin 분석 키트(Biocolor, UK)를 사용하여 측정하였고, 스캐폴드 내 총 용해성 콜라겐은 Sirius red 총 콜라겐 검출 키트(Chondrex, USA)를 사용하여 검출하였으며, 각 분석은 각 키트에 대한 제조업체의 지침에 따라 수행하였다. 또한, 성장 인자의 함량을 측정하기 위해, EK-20을 헤파린(heparin) 완충액으로 균질화하였고, 투석 카세트 내에서 투석하였다. 이후, 카세트를 탈이온수(DI water)가 담긴 비커에 넣고 마그네틱 바를 사용하여 4℃에서 96시간 동안 교반하였으며, 이 과정동안 탈이온수를 자주 교체하였다. 수득한 추출물에서 Eliza kits(R&D systems, USA)를 이용하여 제조업체의 지침에 따라 성장 인자 VEGF 및 FGF의 양을 측정하였다.Representatively, the contents of ECM proteins and growth factors were measured within the EK-20 scaffold. Sulfated glycosaminoglycan (sGAG) and elastin contents within the scaffold were measured using the Blyscan sGAG assay kit (Biocolor, UK) and Fastin elastin assay kit (Biocolor, UK), respectively. Total soluble collagen in the folds was detected using the Sirius red total collagen detection kit (Chondrex, USA), and each assay was performed according to the manufacturer's instructions for each kit. Additionally, to measure the content of growth factors, EK-20 was homogenized with heparin buffer and dialyzed in a dialysis cassette. Afterwards, the cassette was placed in a beaker containing deionized water (DI water) and stirred at 4°C for 96 hours using a magnetic bar, and the deionized water was frequently replaced during this process. In the obtained extract, the amount of growth factors VEGF and FGF was measured using Eliza kits (R&D systems, USA) according to the manufacturer's instructions.
1-13. 단백질 방출 분석1-13. Protein release assay
Bradford Assay 키트를 사용하여 제조업체의 지침에 따라 각 EK 구성에 대한 단백질 방출 분석을 수행하였다. EK 샘플을 FBS가 없는 세포 성장 알파-MEM 배지에서 1일, 3일 및 7일 동안 배양하였다. 추출된 배지는 서로 다른 시점에 각 스캐폴드에서 방출되는 단백질을 확인하는 데 사용되었다.Protein release analysis was performed for each EK construct using the Bradford Assay kit according to the manufacturer's instructions. EK samples were cultured in FBS-free cell growth alpha-MEM medium for 1, 3, and 7 days. The extracted medium was used to identify proteins released from each scaffold at different time points.
1-14. 생분해(biodegradation) 및 팽윤(swelling) 특성 분석1-14. Analysis of biodegradation and swelling characteristics
EK 스캐폴드의 생분해 및 팽윤 특성을 분석하기 위한 실험을 수행하였다. 먼저, 각 스캐폴드의 무게를 측정하고, 스캐폴드를 5 mL의 PBS(pH 7.4)에 담가 인큐베이터에서 37℃로 유지하면서 80 rpm으로 계속 교반하였다. 생분해 및 팽윤 특성 측정에 사용하기 위해, 생리적 조건 모델링을 위한 대체 모델도 사용되었다. 상기 모델의 배양 배지로서, PBS, 10% FBS, 100 U cm-3 페니실린 및 100 ug cm-3 스트렙토마이신을 포함하는 배지를 사용하였다. 이후, 팽윤된 스캐폴드의 무게를 기록하고, 동결건조기에서 건조시켰다. 다음으로, 건조된 스캐폴드의 무게를 기록하고, 분해 속도를 14일 동안 측정하였다. 팽윤 분석은 24시간 동안 수행하였으며, 분해도(%) 및 팽윤율은 각각 하기 수학식 1 및 2로 계산하였다:Experiments were performed to analyze the biodegradation and swelling properties of the EK scaffold. First, the weight of each scaffold was measured, and the scaffold was immersed in 5 mL of PBS (pH 7.4) and kept at 37°C in an incubator with continuous stirring at 80 rpm. For use in measuring biodegradation and swelling properties, a surrogate model for modeling physiological conditions was also used. As a culture medium for the model, a medium containing PBS, 10% FBS, 100 U cm -3 penicillin, and 100 ug cm -3 streptomycin was used. Afterwards, the weight of the swollen scaffold was recorded and dried in a freeze dryer. Next, the weight of the dried scaffold was recorded, and the decomposition rate was measured over 14 days. Swelling analysis was performed for 24 hours, and the degree of decomposition (%) and swelling rate were calculated using the following equations 1 and 2, respectively:
[수학식 1][Equation 1]
분해도(%) = Wi-Wd/Wi*100Resolution (%) = W i -W d /W i *100
(Wi = 초기 중량, Wd = 건조 중량)(W i = initial weight, W d = dry weight)
[수학식 2][Equation 2]
팽윤율 = Ws/Wi.Swelling rate = W s /W i .
(Ws = 팽윤 중량, Wi = 초기 중량)(W s = swelling weight, W i = initial weight)
1-15. pH 조정1-15. pH adjustment
초기에 모든 EK 스캐폴드(특히, EK-20)의 pH가 높게 측정된 바, 스캐폴드의 pH를 조정하기 위해 장시간 세척(prolonged wash, PW)하였다. 구체적으로, 각 EK 조성물을 DW로 12시간 동안 세척하였고, 3시간마다 물을 교체하였다.Initially, the pH of all EK scaffolds (especially EK-20) was measured to be high, so a prolonged wash (PW) was performed to adjust the pH of the scaffolds. Specifically, each EK composition was washed with DW for 12 hours, and the water was changed every 3 hours.
1-16. 기계적 강도 분석1-16. Mechanical strength analysis
Universal testing 머신(R&B Unitech TM, Korea)을 사용하여 샘플의 기계적 강도를 측정하였다(가로 2 mm x 세로 10 mm, 두께 0.5 mm). 세포의 로딩 속도는 5 mm min-1이였고, 종이 프레임을 사용하여 샘플을 바깥쪽으로 잡아당겼다.The mechanical strength of the samples was measured using a universal testing machine (R&B Unitech TM, Korea) (width 2 mm x height 10 mm, thickness 0.5 mm). The loading rate of cells was 5 mm min -1 , and the sample was pulled outward using a paper frame.
1-17. MTT를 사용한 EK 스캐폴드의 세포 독성 간접 분석1-17. Indirect analysis of cytotoxicity of EK scaffolds using MTT
스캐폴드를 장시간 세척한 후, 에틸렌 옥사이드(ethylene oxide, EO)로 멸균하였고, rBMSC를 위한 세포 성장 배지(알파-MEM)에서 1일, 3일 및 7일간 배양하였으며, 스캐폴드의 파편 생성을 방지하기 위해, 0.22 μm 주사기 필터(Millipore, Germany)를 사용하여 배지를 수집하였다. 10 x 103 세포 p/웰 밀도를 하루 일찍 96 웰 플레이트에 시딩하고, 48시간 동안 100% 및 50% 조건 배지로 처리하였다. 다음날, 살아있는 세포에서 포르마잔(formazan) 결정을 형성하기 위해, MTT 용액을 첨가하여 4시간 동안 배양하였다. 이후, 포르마잔을 DMSO로 용해시킨 후, 650 nm 참조 필터로 570 nm에서 흡광도를 측정하였고, 세포 생존율은 하기 수학식 3으로 계산하였다:After washing the scaffold for a long time, it was sterilized with ethylene oxide (EO) and cultured in cell growth medium for rBMSC (alpha-MEM) for 1, 3, and 7 days to prevent the generation of debris in the scaffold. For this purpose, the medium was collected using a 0.22 μm syringe filter (Millipore, Germany). A density of 10 The next day, to form formazan crystals in living cells, MTT solution was added and cultured for 4 hours. Afterwards, formazan was dissolved in DMSO, and the absorbance was measured at 570 nm with a 650 nm reference filter, and the cell viability was calculated using Equation 3 below:
[수학식 3][Equation 3]
세포 생존율(%) = 100*OD570e/OD570b.Cell viability (%) = 100*OD 570e /OD 570b .
(OD570e = 추출된 샘플 배지에서 측정된 광학 밀도(OD)의 평균값,(OD 570e = average value of optical density (OD) measured in the extracted sample medium,
OD570b = 대조군에서 측정된 광학 밀도(OD)의 평균값)OD 570b = average value of optical density (OD) measured in the control group)
1-18. 직접적 세포 증식 분석(Almer blue 분석)1-18. Direct cell proliferation assay (Almer blue assay)
직접적인 세포 성장 분석을 위해, 장시간 세척된 EK 스캐폴드를 rBMSC 배양에 필요한 배지에서 24 웰 아가로즈 코팅 플레이트에 12시간 배치하였고, 각 스캐폴드에 웰 당 10 x 103개의 세포를 시딩하였다. 상기 아가로즈 코팅 플레이트는 스캐폴드에만 부착될 수 있도록 설정되었으며, 배지는 격일마다 교체하였다. 이후, Almer blue(비형광 resazurin blue 포함)를 1:10 농도로 첨가하였다. 상기 Almer blue는 세포에 무독성이므로, 여러 기간(1, 3, 5, 6 및 7일)동안 실험의 재시작이 가능하며, 스캐폴드에서 세포 성장이 가능하다. 상기 Almer blue 용액으로 4시간 동안 배양할 경우, 레사주린(resazurin)이 생성됨을 확인하였다. 다음으로, 100 μL 배지를 96 웰 비코팅 플레이트에 흡입스킨 후, 형광 강도를 형광 분광강도계로 측정하였다. 분석을 계속 수행하기 위해, Almer blue 용액을 포함하는 배지는 감소시키고, 신선한 배지를 첨가하였다.For direct cell growth analysis, long-washed EK scaffolds were placed in a 24-well agarose-coated plate for 12 h in the medium required for rBMSC culture, and each scaffold was seeded with 10 × 10 cells per well. The agarose-coated plate was set to attach only to the scaffold, and the medium was changed every other day. Afterwards, Almer blue (including non-fluorescent resazurin blue) was added at a concentration of 1:10. Since the Almer blue is non-toxic to cells, the experiment can be restarted for several periods (1, 3, 5, 6, and 7 days) and cell growth on the scaffold is possible. It was confirmed that resazurin was produced when cultured for 4 hours with the Almer blue solution. Next, 100 μL of the medium was aspirated into a 96-well uncoated plate, and the fluorescence intensity was measured using a fluorescence spectrophotometer. To continue the analysis, the medium containing Almer blue solution was reduced and fresh medium was added.
1-19. 약물 로딩에 의한 pH 조정1-19. pH adjustment by drug loading
기본적으로 각 EK 스캐폴드(특히, EK-20)의 pH는 염기성이어서, 초기에 EK 스캐폴드의 pH 조정을 위해 장기간 세척을 수행하였다. 그러나, 장기간 세척은 시간이 오래 소요되고, 세포 발달에 중요한 ECM 단백질 및 성장 인자가 소실될 가능성이 있어 pH 조정에 어려운 점이 존재하였다. 이 문제점을 극복하기 위해, 폴리페놀 그룹에 속하며 항염증, 항산화 및 항균 효과를 가지고 치유 과정을 향상시킬 수 있는 산성 약물인 p-쿠마릭산(p-coumaric acid, p-Cou)을 로딩하였다. 또한, 장시간 세척 후에도 균일한 미세구조를 유지하며, 직접 및 간접 세포 생존 분석에서 다른 그룹에 비해 더 높은 세포 증식을 나타내는 EK-20을 선정하였다. 약물의 로딩을 위해, 다양한 용량(스캐폴드당 2, 3, 4 및 10 mg)의 p-Cou를 ECM/다시마 슬러리에 첨가하였고, 이를 균질화하여 EK-20을 EK-20@Cou로 개질하였다. 또한, 약물 첨가량을 조절하기 위해, 장시간 세척 스캐폴드 및 세척하지 않은 스캐폴드에서 다양한 용량의 p-Cou 및 선정된 용량(스캐폴드당 4 mg)의 p-Cou가 로딩될 경우의 pH를 비교하였다.Basically, the pH of each EK scaffold (especially EK-20) was basic, so a long-term washing was initially performed to adjust the pH of the EK scaffold. However, long-term washing takes a long time and there is a possibility that ECM proteins and growth factors important for cell development may be lost, making it difficult to adjust pH. To overcome this problem, we loaded them with p-coumaric acid (p-Cou), an acidic drug that belongs to the polyphenol group and has anti-inflammatory, antioxidant and antibacterial effects and can improve the healing process. In addition, EK-20 was selected, which maintains a uniform microstructure even after prolonged washing and shows higher cell proliferation compared to other groups in direct and indirect cell survival analysis. For drug loading, various doses (2, 3, 4, and 10 mg per scaffold) of p-Cou were added to the ECM/kelp slurry, which was homogenized to modify EK-20 into EK-20@Cou. In addition, in order to control the amount of drug added, the pH when loaded with various doses of p-Cou and a selected dose (4 mg per scaffold) was compared in scaffolds that were washed for a long time and scaffolds that were not washed. .
1-20. EK-20@Cou에서 p-쿠마르산의 방출 분석1-20. Release analysis of p-coumaric acid from EK-20@Cou
p-쿠마르산의 방출 특성을 분석하기 위해, 먼저 EK-20@Cou를 생리적 온도(37℃)에서 5 mL의 PBS(pH 7.4)에 담가 20 rpm으로 교반하였다. 이후, 서로 다른 시간 간격으로 1 mL의 샘플을 회수하고, 0.22 주사기 필터(Millipore, Germany)를 통해 여과한 후, 전체적으로 1 mL의 신선한 PBS를 첨가하였다. 폴리페놀 그룹에 속하는 p-Cou의 방출을 확인하기 위해 확립된 프로토콜에 따라 실험을 수행하였으며, 표준물질 및 샘플 모두 7.5% Na2CO3 및 F-C 시약(Folin-Ciocaltenus 시약, Sigma Aldrich)을 이용하여 분석하였다. 각 샘플 추출물 및 표준물질의 760 nm에서의 흡광도를 나노드롭 분광광도계(Implen, Germany)를 이용하여 블랭크(물)에 대해 3회 측정하였다. p-Cou의 표준 검량선을 사용하여, 특정 날짜(10일 동안 계속됨)에서의 p-Cou 방출 농도를 측정하였다.To analyze the release characteristics of p-coumaric acid, EK-20@Cou was first immersed in 5 mL of PBS (pH 7.4) at physiological temperature (37°C) and stirred at 20 rpm. Thereafter, 1 mL of sample was withdrawn at different time intervals, filtered through a 0.22 syringe filter (Millipore, Germany), and a total of 1 mL of fresh PBS was added. To confirm the release of p-Cou, which belongs to the polyphenol group, experiments were performed according to established protocols, using 7.5% Na 2 CO 3 and FC reagent (Folin-Ciocaltenus reagent, Sigma Aldrich) for both standards and samples. analyzed. The absorbance at 760 nm of each sample extract and standard was measured in triplicate against a blank (water) using a nanodrop spectrophotometer (Implen, Germany). Using the standard calibration curve of p-Cou, the p-Cou release concentration on specific days (continued for 10 days) was measured.
1-21. 총 항산화능 분석1-21. Total antioxidant capacity analysis
장시간 세척 EK-20(PW) 및 p-Cou가 로딩된 EK-20@Cou 스캐폴드의 총 라디칼 소거 용량을 총 항산화 용량 분석 키트(Sigma Aldrich, USA)를 사용하여 제조업체의 지침에 따라 측정하였다. 먼저, 스캐폴드를 PBS에 담근 후, 특정 시간에 1 mL의 PBS를 신선한 PBS로 교체하였다. 또한, 표준 세트를 다양한 농도로 준비하여 샘플 및 표준를 모두 100 μL의 Cu2+ 작업 용액으로 처리하였다. 배양 시간은 암실에서 실온으로 90분으로 설정하였고, 분광광도계를 이용해 517 nm에서의 흡광도를 측정하였다. 라디칼 소거 활성은 하기 수학식 4로 계산하였다:The total radical scavenging capacity of long-washed EK-20(PW) and p-Cou-loaded EK-20@Cou scaffolds was measured using a total antioxidant capacity assay kit (Sigma Aldrich, USA) according to the manufacturer's instructions. First, the scaffold was soaked in PBS, and then 1 mL of PBS was replaced with fresh PBS at specific times. Additionally, sets of standards were prepared at various concentrations, and both samples and standards were treated with 100 μL of Cu 2+ working solution. The incubation time was set to 90 minutes at room temperature in the dark, and the absorbance at 517 nm was measured using a spectrophotometer. Radical scavenging activity was calculated using equation 4:
[수학식 4][Equation 4]
Sa/Sv = C.S a /S v = C.
(Sa = 표준 곡선에서 미지의 샘플 웰(nmole)의 Trolox equivalent,(S a = Trolox equivalent of an unknown sample well (nmole) from the standard curve,
Sv = 웰에 첨가된 샘플 부피(μL),S v = sample volume added to the well (μL),
C = 샘플 내 항산화 농도(nmole μL-1 또는 mM Trolox equivalents)C = antioxidant concentration in sample (nmole μL -1 or mM Trolox equivalents)
1-22. 항균 효과 분석1-22. Antibacterial effect analysis
EK-20(PW) 및 EK-20@Cou의 항균 능력을 분석하기 위해, 디스크 확산 프로토콜을 사용하였다. 먼저, 4시간 동안 2종의 그람 양성균 균주(Bacillus subtilis NCCP11101 및 Staphylococcus aureus NCCP14402) 및 2종의 그람 음성균 균주(Escherichia coli NCCP14762 및 Salmonella typhimurium NCCP16207)를 Lysogeny broth에 보관하였다. 온도는 37℃로 유지하였으며, Muller-Hinton 아가 플레이트에 균주를 접종하여 lawn을 제조하였다. 양성 대조군으로 아미카신(amikacin) AK 디스크(30 μg, Liofilchem, Via Scozia, Italy)를 사용하였고, 음성 대조군으로 멸균 blotting paper 디스크를 사용하였다. 디스크를 6 mm로 절단하여 샘플을 준비한 후, 절단된 샘플을 박테리아를 포함하는 아가 플레이트에서 37℃로 18 내지 24시간 동안 배양하였다. 약물 방출로 인한 항균 효과는 양성 대조군과 비교하여, 플레이트의 억제 구역(inhibition zones)을 기준으로 측정하였고, 디지털 현미경(Sony, Thailand)을 사용하여 이미지를 수득하였다.To analyze the antibacterial ability of EK-20(PW) and EK-20@Cou, a disk diffusion protocol was used. First, two Gram-positive bacterial strains ( Bacillus subtilis NCCP11101 and Staphylococcus aureus NCCP14402) and two Gram-negative bacterial strains ( Escherichia coli NCCP14762 and Salmonella typhimurium NCCP16207) were stored in Lysogeny broth for 4 hours. The temperature was maintained at 37°C, and a lawn was prepared by inoculating the strain on a Muller-Hinton agar plate. Amikacin AK disks (30 μg, Liofilchem, Via Scozia, Italy) were used as positive controls, and sterile blotting paper disks were used as negative controls. After preparing the sample by cutting the disk into 6 mm, the cut sample was cultured on an agar plate containing bacteria at 37°C for 18 to 24 hours. The antibacterial effect due to drug release was measured based on the inhibition zones of the plate compared to the positive control, and images were obtained using a digital microscope (Sony, Thailand).
1-23. 생체 적합성(biocompatibility) 분석1-23. Biocompatibility analysis
EK-20, EK-20(PW) 및 EK-20@Cou 샘플의 생체 적합성 분석을 위해, 간접 MTT 분석을 상기 언급한 프로토콜에 따라 수행하였다.For biocompatibility analysis of EK-20, EK-20(PW) and EK-20@Cou samples, indirect MTT analysis was performed according to the above-mentioned protocol.
1-24. 공초점 염색을 이용한 세포 증식의 육안 분석1-24. Visual analysis of cell proliferation using confocal staining
EK-20, EK-20(PW) 및 EK-20@Cou 샘플 세 세트를 에틸렌 옥사이드(EO)로 멸균하였고, rBMSC 세포 성장 배지에서 7일동안 5% CO2 및 37℃에서 배양하였다. 또한, rBMSC 웰 당 10 x 103개의 세포를 공초점 디시(SPL Life Sciences Co., Ltd. South Korea)에 접종하였고, 세포가 잘 부착되도록 24시간 동안 배양하였다. 이후, 스캐폴드로부터 100% 여과된 배지를 첨가하였고, 처리 과정을 1일, 3일 및 7일 동안 계속하였다. 처리 단계를 종료한 후, 세포를 4% PFA(Sigma-Aldrich)로 15분간 고정하였다. 다음으로, 세포를 PBS로 15분(3 x 5분) 동안 세척하였고, 0.5% Triton X-100(Sigma-Aldrich)으로 10분 동안 배양하여 투과화시켰다. 상기 과정을 차단 시약 및 2.5% BSA(bovine serum albumin)를 이용하여 60분 동안 계속 수행하였다. 이후, 세포 골격 및 핵을 4℃의 암실에서 밤새 25 μg mL-1의 FITC(fluorescein isothiocyanate)-접합 팔로이딘(Sigma-Aldrich, USA)으로 염색하였고, HOECHST-33342(2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole-tri hydrochloride trihydrate; (1 μg mL-1); Invitrogen, USA)로 10분간 처리하였다. 다음으로, PBS로 15분간 세척하고 마운팅 용액을 첨가한 후, 공초점 형광 현미경(Olympus, FV10i-W, Tokyo, Japan)을 사용하여 이미지를 수득하였고, FV10i-ASW 2.0 Viewer를 사용하여 분석하였다.Three sets of EK-20, EK-20(PW) and EK-20@Cou samples were sterilized with ethylene oxide (EO) and cultured in rBMSC cell growth medium for 7 days at 5% CO 2 and 37°C. Additionally, 10 Afterwards, 100% filtered medium from the scaffold was added and the treatment was continued for 1, 3 and 7 days. After completing the treatment step, cells were fixed with 4% PFA (Sigma-Aldrich) for 15 minutes. Next, cells were washed with PBS for 15 minutes (3 × 5 minutes) and permeabilized by incubation with 0.5% Triton X-100 (Sigma-Aldrich) for 10 minutes. The process was continued for 60 minutes using blocking reagent and 2.5% bovine serum albumin (BSA). Afterwards, the cytoskeleton and nucleus were stained with 25 μg mL -1 FITC (fluorescein isothiocyanate)-conjugated phalloidin (Sigma-Aldrich, USA) overnight in the dark at 4°C, and HOECHST-33342 (2'-[4-ethoxyphenyl ]-5-[4-methyl-1-piperazinyl]-2,5'-bi-1H-benzimidazole-tri hydrochloride trihydrate (1 μg mL -1 ); Next, after washing with PBS for 15 minutes and adding mounting solution, images were acquired using a confocal fluorescence microscope (Olympus, FV10i-W, Tokyo, Japan) and analyzed using FV10i-ASW 2.0 Viewer.
1-25. 1-25. In vivoIn vivo 실험 Experiment
In vivo 실험을 위해 총 24마리의 수컷 쥐(9주령, 체중 200 내지 250 g, Rattus norvegicus)를 사용하였고, 쥐는 Dayoon(animal center, Korea)에서 구입하여 순천향대학교 동물윤리위원회 표준 프로토콜(승인번호 SCH22-0026)에 따라 처리하였다. 쥐를 각각 대조군, 양성 대조군, EK-20(PW) 및 EK-20@Cou 그룹으로 무작위로 분류하였다. 대조군은 아무런 처리를 하지 않았고, 양성 대조군은 시판 상처 치료 물질(MatriDerm®, DERMAL MATRIX, Medskin Solutions, Germany)을 처리하였다. 실험은 매주 12마리(그룹당 3마리)를 이용하여 총 2주간 수행하였다. 수술 당일 쥐를 마취시키기 위해 Isoflurane(Piramal Critical Care, Schelden Circle, Bethlehem, PA)을 사용하였고, 생검 펀치(원형 모양, Kai Industries Co. Ltd., Japan)를 사용하여 쥐의 등쪽 피부를 7 mm 두께로 절제하였다. 절제 부위는 포비돈 요오드(povidone iodine) 용액으로 처리하였다.For the in vivo experiment, a total of 24 male rats (9 weeks old, weight 200-250 g, Rattus norvegicus ) were used. The rats were purchased from Dayoon (animal center, Korea) and followed the standard protocol of the Animal Ethics Committee of Soonchunhyang University (approval number SCH22). -0026). Rats were randomly divided into control, positive control, EK-20(PW), and EK-20@Cou groups, respectively. The control group received no treatment, and the positive control group was treated with a commercial wound care material (MatriDerm®, DERMAL MATRIX, Medskin Solutions, Germany). The experiment was conducted for a total of 2 weeks using 12 animals (3 animals per group) each week. On the day of surgery, Isoflurane (Piramal Critical Care, Schelden Circle, Bethlehem, PA) was used to anesthetize the rat, and a biopsy punch (circular shape, Kai Industries Co. Ltd., Japan) was used to cut the rat's dorsal skin into 7 mm thick sections. It was excised. The resection area was treated with povidone iodine solution.
1-26. 상처 치유 분석1-26. Wound healing analysis
0, 7 및 14일에 상처 수축 이미지를 디지털 카메라로 캡쳐하였고, 하기 수학식 5로 상처의 봉합 정도를 정량화하였다:At days 0, 7, and 14, wound contraction images were captured with a digital camera, and the degree of wound closure was quantified using Equation 5 below:
[수학식 5][Equation 5]
봉합 퍼센트(%) = (초기 상처 면적 - n일째 상처 면적/초기 상처 면적)*100.Percent closure (%) = (initial wound area - wound area on day n/initial wound area)*100.
샘플 추출 당일 쥐를 안락사시키기 위해 과량의 디에틸 에테르(diethyl ether)(Daejung, South Korea)를 사용하였다. 추출된 샘플은 상온에서 포름알데히드(formaldehyde)(10%, Duksan Pure Chemicals, Korea)로 2일간 고정하였으며, 각 그룹에서 조직 샘플을 추출하여 추가 실험까지 -80℃에 보관하였다.On the day of sample extraction, an excessive amount of diethyl ether (Daejung, South Korea) was used to euthanize the mice. The extracted samples were fixed with formaldehyde (10%, Duksan Pure Chemicals, Korea) for 2 days at room temperature, and tissue samples were extracted from each group and stored at -80°C until further experiments.
1-27. 조직학적 염색1-27. Histological staining
샘플을 고정하고 DW로 세척한 후, 50%, 70%, 80%, 90%, 95% 및 100% 에탄올 용액으로 탈수하였다. 일련의 자일렌(100%)를 잔류 알코올 제거 및 투명화제로 사용하였으며, 포매는 파라핀 왁스(Leica Biosystem, Germany)로 수행하였다. 마이크로톰(Leica Biosystem, Germany)을 사용하여 샘플을 5±2 μm 두께로 절단하였고, 절편을 탈파라핀 처리한 후, Masson's Trichrome 방법 및 H&E 방법으로 염색하였다. 또한, 면역조직화학 염색은 DAB 염색 키트(3'-Diaminobenzidine, Agilent Technologies, US)로 수행하였다. 짧은 시간 파라핀을 제거하고, 재수화한 슬라이드를 주변 온도에서 3% BSA와 함께 1시간 동안 배양하였다. 차단된 샘플을 4℃에서 1차 항체(Anti-CD68, Anti-fibronectin, Anti-collagen-1, Anti-alpha smooth muscle actin 및 Anti NF-κB)로 밤새 처리한 후, HRP와 접합된 2차 항체로 1시간 동안 처리하였다. 항원-항체 반응은 DAM chromogen으로 측정하였으며, 광학 현미경(BX53 Olympus)을 사용하여 샘플을 보고 카메라(DP72 Olympus)를 이용하여 촬영하였다. 이후, 샘플을 Cellsens 소프트웨어로 분석하였고, Image J 소프트웨어를 사용하여 면역조직화학적으로 염색된 샘플을 정량화하였다.Samples were fixed, washed with DW, and then dehydrated with 50%, 70%, 80%, 90%, 95%, and 100% ethanol solutions. Serial xylene (100%) was used as a clarifying agent to remove residual alcohol, and embedding was performed with paraffin wax (Leica Biosystem, Germany). Samples were cut to a thickness of 5 ± 2 μm using a microtome (Leica Biosystem, Germany), and the sections were deparaffinized and stained using Masson's Trichrome method and H&E method. Additionally, immunohistochemical staining was performed using a DAB staining kit (3'-Diaminobenzidine, Agilent Technologies, US). Briefly deparaffinized and rehydrated slides were incubated with 3% BSA for 1 hour at ambient temperature. Blocked samples were treated overnight at 4°C with primary antibodies (Anti-CD68, Anti-fibronectin, Anti-collagen-1, Anti-alpha smooth muscle actin, and Anti NF-κB), followed by secondary antibodies conjugated with HRP. was treated for 1 hour. Antigen-antibody reactions were measured using DAM chromogen, and samples were viewed using an optical microscope (BX53 Olympus) and photographed using a camera (DP72 Olympus). Afterwards, the samples were analyzed using Cellsens software, and the stained samples were quantified immunohistochemically using Image J software.
1-28. 1-28. In SilicoIn Silico 분자 시뮬레이션(MS) Molecular Simulation (MS)
단백질 및 수용체의 결정 3d 구조는 PDB(Protein Data Bank) 데이터베이스(/www.rcsb.org)에서 검색하였고, Swiss-PDB Viewer version (v) 4.1.1.을 사용하여 각 단백질 구조의 에너지를 최소화하였다. 헤테로 원자 및 물 분자의 제거는 Discovery Studio Visualizer(DSV, Biovia, v 2021, Accelrys, San Diego, CA)로 수행하였다. 각 단백질의 활성 부위는 문헌에 기반하여 결정하였으며, 누락된 수소 원자 및 잔류물을 단백질에 추가하였고, 그리드 상자 매개변수를 Autodock 도구(ADT, v. 4.2, Scripps Research Institute, La Jolla, CA)로 최적화하였다. p.cou의 화학 구조는 PubChem 데이터베이스(https:/pubchem.ncbi.nlm.nih.gov/)에서 얻었고, 오픈 소스 화학 툴박스 Open Babel version 2.3.1(www.openbabel.org)을 사용하여 PDB 형식으로 변환하였다. Conformational 검색 및 geometry 최적화는 Avogadro 1.2.0(http:/avogadro.cc/)에서 수행하였다. 또한, 리간드(p.Cou)의 총 에너지를 최소화하기 위해, Merck molecular force field 94(MMFF94)를 적용하였고, charge 계산 방법으로 Gasteiger를 선택하였다. 상기 리간드의 회전 가능한 결합은 표준 오차를 최소화할 수 있도록, rigid docking을 위해 회전 불가능한 것으로 변환하였다. 또한, 공결정화된(Co-crystalized) 리간드 또는 공지된 억제 약물을 대조군 리간드로 사용하였다. 공결정화된 리간드는 DSV로 준비되었고, 공지된 억제 약물은 ZINC 데이터베이스(https:/zinc12.docking.org/)에서 검색하였으며, 대조군 리간드는 p.Cou와 유사하게 처리하였다. AutoDock Vina(v. 1.2.0)를 MS 연구 수행에 사용하였으며, Lamarckian Genetic Algorithm(LGA)은 개체군 크기가 150개인 리간드에 가장 적합한 형태적 공간을 찾기 위해 사용하였다. Generation 넘버는 27,000으로 설정하였고, evaluation 넘버는 최대 2,500,000으로 설정하였다. 안정화된 복합체 형태는 자유 결합 에너지(-ΔG)와 최적 결합 pose 및 위치에 의해 예측되었다. MS 후, 결과는 DSV, PyMOL 분자 그래픽 시스템(v. 2.5.2, https:/pymol.org) 및 LigPlot+(v. 1.4.5, https:/www.ebi.ac.uk/thornton-srv/software/ LigPlus/)로 분석 및 시각화되었다. 리간드 효율(Ligand efficiency, LE) 지수는 하기 수학식 6으로 계산하였다:Crystalline 3D structures of proteins and receptors were retrieved from the PDB (Protein Data Bank) database (/www.rcsb.org), and the energy of each protein structure was minimized using Swiss-PDB Viewer version (v) 4.1.1. . Removal of heteroatoms and water molecules was performed with Discovery Studio Visualizer (DSV, Biovia, v 2021, Accelrys, San Diego, CA). The active site of each protein was determined based on the literature, missing hydrogen atoms and residues were added to the protein, and grid box parameters were plotted using the Autodock tool (ADT, v. 4.2, Scripps Research Institute, La Jolla, CA). Optimized. The chemical structure of p.cou was obtained from the PubChem database (https:/pubchem.ncbi.nlm.nih.gov/) and converted to PDB format using the open source chemistry toolbox Open Babel version 2.3.1 (www.openbabel.org). converted. Conformational search and geometry optimization were performed in Avogadro 1.2.0 (http:/avogadro.cc/). In addition, to minimize the total energy of the ligand (p.Cou), Merck molecular force field 94 (MMFF94) was applied, and Gasteiger was selected as the charge calculation method. The rotatable bond of the ligand was converted to a non-rotatable one for rigid docking to minimize standard errors. Additionally, co-crystalized ligands or known inhibitory drugs were used as control ligands. Cocrystallized ligands were prepared with DSV, known inhibitory drugs were searched in the ZINC database (https:/zinc12.docking.org/), and control ligands were processed similarly to p.Cou. AutoDock Vina (v. 1.2.0) was used to perform the MS study, and the Lamarckian Genetic Algorithm (LGA) was used to find the most suitable conformational space for the ligand with a population size of 150. The generation number was set to 27,000, and the evaluation number was set to a maximum of 2,500,000. The stabilized complex conformation was predicted by the free binding energy ( -ΔG ) and the optimal binding pose and position. After MS, results were analyzed using DSV, PyMOL molecular graphics system (v. 2.5.2, https:/pymol.org) and LigPlot+ (v. 1.4.5, https://www.ebi.ac.uk/thornton-srv/software / LigPlus/) and analyzed and visualized. The ligand efficiency (LE) index was calculated using Equation 6 below:
[수학식 6][Equation 6]
LE = (-ΔG)/MW.LE = (-Δ G )/MW.
(LE = 리간드 효율, (-ΔG) = 자유 결합 에너지, MW = 분자량)(LE = ligand efficiency, ( -ΔG ) = free binding energy, MW = molecular weight)
1-29. MS 후 생화학 및 효소 결합 면역흡착 분석(ELISA)1-29. MS followed by biochemical and enzyme-linked immunosorbent assay (ELISA)
MS 예측 결과를 실험을 통해 추가로 검증하였다. In vitro 조사를 위해, EK-20(PW) 및 EK-20@Cou 스캐폴드 모두 20 rpm으로 교반하면서, 37℃에서 PBS(5 mL, pH 7.4)로 배양하였다. 이후, 매일 용액 1 mL를 회수하였고, 신선한 PBS 1 mL을 첨가하였다. 샘플 추출물은 0.22 μm 주사기 필터를 통해 여과되었다. 이후, MMP-2(Matrix metalloproteinases-2) 및 MMP-12 억제 스크리닝 키트(Abcam, UK)에 추출물을 적용하여, MMP-2 및 MMP-12의 억제 비율을 측정하였다. 상처 부위의 활성 MMP-2 및 MMP-12 수준은 상처 부위의 생검 조직 샘플을 사용하여 검증하였다. 또한, 100 mg의 조직 샘플을 차가운 1 mL의 PBS에서 균질화하였고, 투명한 상층액을 원심분리(15,000rpm, 10분, 4℃)를 이용하여 분리하였다. 이후, Rat MMP-2 ELISA 키트(Abcam, UK) 및 rat MMP-12 ELISA 키트(Elabscience Biotechnology Inc. USA)를 사용하여 추출된 조직 균질물에서 활성 효소의 농도를 측정하였다. 모든 실험은 각 제조업체의 지침에 따라 3회 수행하였다.The MS prediction results were further verified through experiments. For in vitro investigation, both EK-20(PW) and EK-20@Cou scaffolds were incubated in PBS (5 mL, pH 7.4) at 37°C with agitation at 20 rpm. Thereafter, 1 mL of solution was withdrawn every day, and 1 mL of fresh PBS was added. Sample extracts were filtered through a 0.22 μm syringe filter. Afterwards, the extract was applied to the MMP-2 (Matrix metalloproteinases-2) and MMP-12 inhibition screening kit (Abcam, UK) to measure the inhibition rate of MMP-2 and MMP-12. The levels of active MMP-2 and MMP-12 in the wound area were verified using biopsy tissue samples from the wound area. Additionally, 100 mg of tissue sample was homogenized in 1 mL of cold PBS, and the clear supernatant was separated using centrifugation (15,000 rpm, 10 minutes, 4°C). Afterwards, the concentration of active enzyme was measured in the extracted tissue homogenate using the Rat MMP-2 ELISA kit (Abcam, UK) and the rat MMP-12 ELISA kit (Elabscience Biotechnology Inc. USA). All experiments were performed in triplicate according to each manufacturer's instructions.
1-30. 통계 분석1-30. statistical analysis
모든 데이터는 평균 ± 표준 편차(SD)로 표현하였다. 두 그룹 간의 비교를 위해서 T-test를 수행하였고, 두 그룹 이상에 대해서는 분산분석(ANOVA)을 수행하였다. 통계 분석을 위해 Graph Pad Prism(Version 7)을 사용하였으며, 데이터 계산에는 Microsoft Excel(2019)을 사용하였다. 또한, Sigma plot(Version 10)을 사용하여 스펙트럼 데이터를 분석하고 플롯하였다. 유의 수준은 ****P<0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 및 ns = 유의하지 않음(not significant)로 표현하였고, 실험은 3회 수행하였다.All data were expressed as mean ± standard deviation (SD). T-test was performed for comparison between two groups, and analysis of variance (ANOVA) was performed for more than two groups. Graph Pad Prism (Version 7) was used for statistical analysis, and Microsoft Excel (2019) was used for data calculations. Additionally, the spectral data was analyzed and plotted using Sigma plot (Version 10). The significance level was expressed as ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and ns = not significant, and the experiment was performed three times.
실시예 2: 실험 결과Example 2: Experimental results
2-1. 간 유래 ECM 추출 및 탈세포화2-1. Liver-derived ECM extraction and decellularization
간 유래 ECM을 상처 치유용 생체 재료로 사용하기 위해, 먼저 돼지로부터 계면활성제를 이용하여 간 유래 ECM을 추출한 뒤, 균일한 크기로 절단하고 탈세포화를 수행하였다(도 2 참조). 이후, 간 ECM이 백색으로 변한 것을 육안으로 보아 탈세포화 과정이 수행되었음을 확인하였고, H&E 염색을 통해 간 ECM 내에 세포 성분이 존재하지 않음을 확인하였다(도 3 참조). 또한, 탈세포화된 간 ECM에서 유전 물질(DNA)의 정량화를 수행한 결과, 탈세포화 ECM의 핵 함량이 네이티브 간 조직에 비해 유의하게 낮게 측정되어, DNA가 효과적으로 제거되었음을 확인하였다(도 4a 및 4b 참조). 추가적으로, 탈세포화된 ECM을 펩신으로 분해하여 하이드로겔 농도(20 mg mL-1)로 제조하였으나, 상기 하이드로겔의 점조도는 고체 형태에 적합하지 않았다.In order to use liver-derived ECM as a biomaterial for wound healing, liver-derived ECM was first extracted from pigs using a surfactant, then cut into uniform sizes and decellularized (see Figure 2). Afterwards, it was confirmed with the naked eye that the liver ECM had turned white that the decellularization process had been performed, and it was confirmed through H&E staining that there were no cellular components in the liver ECM (see Figure 3). In addition, as a result of quantifying genetic material (DNA) in decellularized liver ECM, the nuclear content of decellularized ECM was measured to be significantly lower than that of native liver tissue, confirming that DNA was effectively removed (Figures 4a and 4b reference). Additionally, the decellularized ECM was digested with pepsin to prepare a hydrogel concentration (20 mg mL -1 ), but the consistency of the hydrogel was not suitable for solid form.
2-2. 다시마(kelp) 탈세포화2-2. Kelp decellularization
간 유래 ECM에 대한 가교제로 사용하기 위해, 갈조류 다시마에서 세포 내용물을 추출하여 탈세포화를 수행하였다(도 5 참조). 탈세포화 2시간 이내에 다시마의 탈색이 시작되었으며, 3시간 이내에 탈세포화가 완료되었다. 탈세포화 과정을 확인하기 위해 네이티브 다시마 및 탈세포화 다시마에 대해 H&E 염색 및 SEM 분석을 수행하였다. H&E 염색 결과, 네이티브 다시마의 잎에서는 세포 핵(헤마톡실린, 자청색) 및 세포질(에오신, 분홍색)의 존재가 확인되었으나, 탈세포화된 다시마는 세포 핵 및 세포질이 모두 검출되지 않았다(도 6a 참조). 또한, SEM 분석 결과, 탈세포화 다시마 이미지에서는 네이티브 다시마 이미지와는 달리, 염(salt) 분자가 존재하지 않아, 탈세포화가 완료되었음을 확인하였다(도 6b 참조).To use as a cross-linking agent for liver-derived ECM, cell contents were extracted from brown algae kelp and decellularized (see Figure 5). Decolorization of kelp began within 2 hours of decellularization, and decellularization was completed within 3 hours. To confirm the decellularization process, H&E staining and SEM analysis were performed on native kelp and decellularized kelp. As a result of H&E staining, the presence of cell nuclei (hematoxylin, purple-blue) and cytoplasm (eosin, pink) were confirmed in the leaves of native kelp, but neither cell nuclei nor cytoplasm were detected in decellularized kelp (see Figure 6a) ). In addition, as a result of SEM analysis, unlike the native kelp image, there were no salt molecules in the decellularized kelp image, confirming that decellularization was completed (see Figure 6b).
이후, 탈세포화 완료 여부를 추가적으로 검증하기 위해, 네이트비 다시마 및 탈세포화 다시마에서 DNA 및 단백질 수준을 측정하여 비교하였다. 그 결과, 탈세포화 다시마의 DNA 함량은 16.8 ± 1.2 ng DNA mg-1 조직으로, 네이티브 다시마의 DNA 함량인 306 ± 112 ng DNA mg-1 조직에 비해 현저히 낮게 측정되었으며, 탈세포화를 위한 최소 요구 기준(50 ng DNA mg-1 조직 미만)을 만족함을 확인하였다(도 7a 참조). 또한, 탈세포화 다시마의 단백질 함량은 6.56 ± 0.5 μg 단백질 mg-1 조직으로 측정되어, 네이티브 다시마의 단백질 함량인 17.43 ± 1.9 μg 단백질 mg-1 조직에 비해 현저히 낮게 측정되었다(도 7b 참조).Then, to further verify whether decellularization was complete, DNA and protein levels were measured and compared in Natebee kelp and decellularized kelp. As a result, the DNA content of decellularized kelp was measured at 16.8 ± 1.2 ng DNA mg -1 tissue, which was significantly lower than the DNA content of native kelp (306 ± 112 ng DNA mg -1 tissue), which is the minimum requirement for decellularization. (Less than 50 ng DNA mg -1 tissue) was confirmed to be satisfied (see Figure 7a). In addition, the protein content of decellularized kelp was measured at 6.56 ± 0.5 μg protein mg -1 tissue, which was significantly lower than the protein content of native kelp, which was 17.43 ± 1.9 μg protein mg -1 tissue (see Figure 7b).
추가적으로, 탈세포화 다시마의 조성을 분석하기 위해, 탈세포화 다시마에 대한 FTIR 스펙트럼 분석을 수행하였다. 분석 결과, 1671.06 cm-1(S=O) 및 880.06 cm-1(C-0-S)에서의 흡수 밴드는 후코이단(fucoidan)으로 분류되었으며, 셀룰로스는 3360.02 cm-1(-OH), 2973.86 cm-1(-CH), 1452.96 cm-1(C=O), 1048.40 cm-1(C-O-C) 및 880.05 cm-1(β-글리코시드 결합)에서의 피크로 확인되었다. 또한, 펙틴은 2885.56 cm-1(C-H)에서의 피크로 확인되었다(도 8 참조). 상기 분석을 통해, 다시마가 탈세포화 과정 이후에도 셀룰로스 및 펙틴이 구조적으로 무결성을 유지하고 있음을 확인하였다.Additionally, to analyze the composition of the decellularized kelp, FTIR spectrum analysis was performed on the decellularized kelp. As a result of the analysis, the absorption bands at 1671.06 cm -1 (S=O) and 880.06 cm -1 (C-0-S) were classified as fucoidan, and cellulose was classified as 3360.02 cm -1 (-OH) and 2973.86 cm Peaks were identified at -1 (-CH), 1452.96 cm -1 (C=O), 1048.40 cm -1 (COC) and 880.05 cm -1 (β-glycosidic bond). Additionally, pectin was identified as a peak at 2885.56 cm -1 (CH) (see Figure 8). Through the above analysis, it was confirmed that cellulose and pectin maintained the structural integrity of kelp even after the decellularization process.
2-3. ECM-다시마(EK) 스캐폴드 제조2-3. ECM-kelp (EK) scaffold fabrication
ECM 유래 하이드로겔은 친수성 그룹이 존재하여, 생물학적 유체 또는 물을 흡수하는 3D 구조 네트워크로 구성될 수 있다. 한편, 천연 ECM 유래 하이드로겔은 천연 ECM을 보유하여, 생체 적합성이 우수하나 기계적 강도가 열악한 단점을 가진다. 이에, 상기 단점을 극복하기 위해, ECM의 천연 가교제로 탈세포화된 다시마를 사용하여 ECM-다시마(EK) 스캐폴드를 제조하였다.ECM-derived hydrogels can be composed of 3D structural networks that absorb biological fluids or water due to the presence of hydrophilic groups. On the other hand, natural ECM-derived hydrogel possesses natural ECM and has excellent biocompatibility, but has the disadvantage of poor mechanical strength. Therefore, to overcome the above drawbacks, an ECM-kelp (EK) scaffold was prepared using decellularized kelp as a natural cross-linker for ECM.
먼저, 탈세포화된 다시마 분말을 비율을 달리하여 특정 농도의 ECM과 균질기로 혼합하였고, 동결-해동 과정을 거쳐 탄성 스캐폴드를 제조하였다(도 9 참조). 이때, 물 분자의 동결 과정으로 인해 탈세포화된 다시마 분자가 간 유래 ECM 내의 친수성 그룹에 끌어당겨지며, 그 결과 탈세포화된 다시마 분자와 간 유래 ECM 내의 친수성 분자와의 수소결합이 일어나게 된다. 이로 인해, 탈세포화된 다시마 분자는 ECM 내에서 가교제 역할을 수행할 수 있고, 3차원 스캐폴드가 형성될 수 있다(도 10 참조). 또한, 다시마의 함량이 증가함에 따라, 스캐폴드의 기계적 강도가 증가함을 확인하였다(도 11a 및 11b 참조).First, decellularized kelp powder was mixed with a specific concentration of ECM in a homogenizer at different ratios, and an elastic scaffold was prepared through a freeze-thaw process (see Figure 9). At this time, due to the freezing process of water molecules, the decellularized kelp molecules are attracted to the hydrophilic groups in the liver-derived ECM, resulting in hydrogen bonding between the decellularized kelp molecules and the hydrophilic molecules in the liver-derived ECM. Because of this, the decellularized kelp molecules can act as a cross-linker within the ECM, and a three-dimensional scaffold can be formed (see Figure 10). In addition, it was confirmed that as the kelp content increased, the mechanical strength of the scaffold increased (see Figures 11a and 11b).
한편, SEM을 이용하여 스캐폴드의 미세구조를 관찰하면서, 다시마의 농도에 따라 스캐폴드 내의 기공 크기가 변화함을 확인하였다(도 12 참조). 구체적으로, 다시마의 농도가 낮을수록 10 내지 55 μm의 다양한 크기로 불규칙하게 기공이 생성되었으며, 다시마의 농도가 증가함에 따라 기공이 10 내지 28 μm로 균일하게 생성됨을 확인하였다(도 13 참조). 기공의 크기가 작을수록 상처의 삼출물 억제에 효과적이므로, 다시마를 고농도로 첨가하여 스캐폴드를 제조하는 것이 상처 치유에 보다 효과적임을 확인할 수 있었다.Meanwhile, while observing the microstructure of the scaffold using SEM, it was confirmed that the pore size within the scaffold changes depending on the concentration of kelp (see Figure 12). Specifically, it was confirmed that as the concentration of kelp decreased, pores were created irregularly with various sizes ranging from 10 to 55 μm, and as the concentration of kelp increased, pores were created uniformly with a size of 10 to 28 μm (see Figure 13). Since the smaller the pore size, the more effective it is in suppressing wound exudate, it was confirmed that adding kelp at a high concentration to manufacture the scaffold was more effective in wound healing.
(1) ECM 단백질 및 성장 인자의 함량 측정(1) Measurement of contents of ECM proteins and growth factors
상기 ECM-다시마(EK) 스캐폴드가 탈세포화 이후에도 ECM 단백질 및 성장 인자를 함유하는지 확인하기 위해, ECM 단백질(GAGs, 엘라스틴 및 가용성 콜라겐) 및 성장 인자(VEGF 및 FGF)의 함량을 측정하였다. 그 결과, EK 스캐폴드에서 약 10,000 μg mg-1의 황산화 글리코사미노글리칸(GAGs) 및 40,000 μg mg-1의 엘라스틴이 검출되었으며, 가용성 콜라겐은 0.5 μg mg-1로 다소 낮은 농도로 검출되었다(도 14a 참조). 성장 인자의 경우, VEGF 및 FGF가 각각 1363.07 pg mg-1 조직 및 1422.16 pg mg-1 조직으로 다량 검출되었다(도 14b 참조).To determine whether the ECM-kelp (EK) scaffold contained ECM proteins and growth factors even after decellularization, the contents of ECM proteins (GAGs, elastin, and soluble collagen) and growth factors (VEGF and FGF) were measured. As a result, approximately 10,000 μg mg -1 of sulfated glycosaminoglycans (GAGs) and 40,000 μg mg -1 of elastin were detected in the EK scaffold, while soluble collagen was detected at a somewhat lower concentration of 0.5 μg mg -1 (see Figure 14a). In the case of growth factors, VEGF and FGF were detected in large quantities at 1363.07 pg mg -1 tissue and 1422.16 pg mg -1 tissue, respectively (see Figure 14b).
상기 실험을 통해, EK 스캐폴드가 탈세포화 과정 이후에도, ECM 단백질 및 성장 인자를 다량 함유하고 있어 상처 치유 및 조직 재생에 효과적으로 활용될 수 있음을 확인하였다.Through the above experiment, it was confirmed that the EK scaffold contains a large amount of ECM proteins and growth factors even after the decellularization process and can be effectively used for wound healing and tissue regeneration.
(2) 생분해(biodegradation) 및 팽윤(swelling) 특성 분석(2) Analysis of biodegradation and swelling characteristics
상처 드레싱의 경우, 생분해성을 가져야 드레싱의 교체 필요성을 없애고 새로운 조직 재생에 효과적이므로, 상처 드레싱에 있어서 생분해성은 필수적인 요소이다. 이에, 상기 EK 스캐폴드가 생분해성을 가지는지 확인하기 위한 실험을 수행하였다.In the case of wound dressings, biodegradability is essential because it eliminates the need for dressing replacement and is effective in regenerating new tissue. Accordingly, an experiment was performed to confirm whether the EK scaffold was biodegradable.
그 결과, 모든 EK 스캐폴드(EK-5, EK-10, EK-15 및 EK-20)가 PBS에 잠긴 상태에서 1주일 후 무게가 25 내지 30% 감소하여, 모두 생분해성을 가지고 있음을 확인하였다. 또한, 2주일 후에는 EK-5 및 EK-10의 경우 각각 43.07% 및 48.67%만큼 무게가 감소하였으나, EK-15 및 EK-20의 경우 각각 61.49% 및 71.61%만큼 무게가 감소하여, 생분해성이 보다 우수함을 확인하였다(도 15a 참조). 한편, 생리학적 조건을 모방하기 위해, PBS에 FBS(fetal bovine serum)를 첨가하여 무게를 측정한 결과, 상기와 유사하게 EK-15 및 EK-20의 생분해성이 보다 우수하게 측정되었다(도 15b 참조). 이러한 현상은, EK-20이 유체와 접촉할 때, 더 많은 단백질을 방출하기 때문인 것으로 해석될 수 있다.As a result, the weight of all EK scaffolds (EK-5, EK-10, EK-15, and EK-20) decreased by 25 to 30% after one week while submerged in PBS, confirming that they are all biodegradable. did. Additionally, after two weeks, the weight decreased by 43.07% and 48.67% for EK-5 and EK-10, respectively, but the weight decreased by 61.49% and 71.61% for EK-15 and EK-20, respectively, indicating biodegradability. It was confirmed that it was superior to this (see Figure 15a). Meanwhile, in order to mimic physiological conditions, FBS (fetal bovine serum) was added to PBS and the weight was measured. Similar to the above, the biodegradability of EK-15 and EK-20 was measured to be superior (Figure 15b) reference). This phenomenon can be interpreted as because EK-20 releases more proteins when it comes into contact with fluid.
이후, EK 스캐폴드의 팽윤능을 분석하기 위해, EK 스캐폴드를 PBS를 포함하는 배양 배지 또는 PBS 및 FBS를 포함하는 배양 배지에 넣고 팽윤능을 측정하였다. 그 결과, 모든 EK 스캐폴드에서 팽윤능이 나타났으나, EK-20의 팽윤능이 가장 우수함을 확인하였다(도 16a 및 16b 참조).Then, to analyze the swelling ability of the EK scaffold, the EK scaffold was placed in a culture medium containing PBS or a culture medium containing PBS and FBS, and the swelling capacity was measured. As a result, all EK scaffolds showed swelling ability, but it was confirmed that EK-20 had the best swelling ability (see Figures 16a and 16b).
(3) 총 단백질 방출 분석(3) Total protein release analysis
EK 스캐폴드는 탈세포화된 간 유래 ECM 및 탈세포화된 다시마로 구성되어 단백질을 다량 함유하고 있다. 상기 EK 스캐폴드에서 시간에 따른 단백질 방출량을 측정하기 위해, 총 단백질 방출 분석을 수행하였다.The EK scaffold is composed of decellularized liver-derived ECM and decellularized kelp and contains a large amount of protein. To measure protein release over time from the EK scaffold, total protein release analysis was performed.
그 결과, 3일 동안은 단백질 방출 속도가 느렸으나, 시간이 지남에 따라 방출 속도가 빨라졌으며, EK-15 및 EK-20 스캐폴드의 경우, 다른 스캐폴드에 비해 7일 후 더 많은 양의 단백질을 방출하였다(도 17 참조). EK-5 스캐폴드의 경우, 단백질 방출량이 다른 스캐폴드에 비해 유의하게 느리게 측정되었다. 이러한 현상은 스캐폴드가 분해됨에 따라 단백질의 방출이 늘어날 수 있으므로, 생분해성과 상관관계가 있는 것으로 해석될 수 있다.As a result, the protein release rate was slow for 3 days, but the release rate increased over time, and for the EK-15 and EK-20 scaffolds, a higher amount of protein was released after 7 days compared to the other scaffolds. was released (see Figure 17). In the case of the EK-5 scaffold, protein release was measured significantly slower than that of other scaffolds. This phenomenon can be interpreted as being correlated with biodegradability, as protein release may increase as the scaffold decomposes.
(4) pH 변화 분석(4) pH change analysis
EK 스캐폴드의 pH 변화를 분석하기 위해, EK-5, EK-10, EK-15 및 EK-20의 pH를 2주간 매일 측정하였다. 그 결과, EK-20을 제외한 모든 스캐폴드는 최적 pH(7.8)에 근접하게 유지되었으나, EK-20은 초기에 pH가 급격하게 상승하면서 시간이 지남에 따라 안정화되는 것으로 나타났다(도 18 참조).To analyze the pH change of the EK scaffold, the pH of EK-5, EK-10, EK-15, and EK-20 was measured daily for 2 weeks. As a result, all scaffolds except EK-20 were maintained close to the optimal pH (7.8), but EK-20 showed that the pH initially rose rapidly and stabilized over time (see Figure 18).
EK 스캐폴드 내 다시마의 농도가 pH에 미치는 영향을 추가적으로 확인하기 위해, 다시마 농도를 더 높여 스캐폴드를 제조한 후(EK-25, EK-30, EK-35, EK-40, EK-45 및 EK-50), pH를 2주간 측정하였다. 그 결과, 다시마 농도가 증가함에 따라 스캐폴드의 pH가 증가하며, 다시마 농도가 30 mg mL-1 이상일 때부터는(EK-30), pH가 점차 증가하지만 스캐폴드간 차이가 미미함을 확인하였다(도 19 참조). 이러한 현상은, 탈세포화된 다시마에서 미네랄 또는 잔류 탈세포화제(특히, NaOH)의 방출에 기인하는 것으로 해석될 수 있다.To further confirm the effect of the concentration of kelp in the EK scaffold on pH, scaffolds were manufactured with a higher concentration of kelp (EK-25, EK-30, EK-35, EK-40, EK-45, and EK-50), pH was measured for 2 weeks. As a result, it was confirmed that the pH of the scaffold increases as the kelp concentration increases, and that when the kelp concentration is above 30 mg mL -1 (EK-30), the pH gradually increases, but the difference between scaffolds is minimal ( 19). This phenomenon can be interpreted as being due to the release of minerals or residual decellularizing agent (especially NaOH) from the decellularized kelp.
(5) pH 조정(5) pH adjustment
상기 실험들에서 EK-20 스캐폴드의 생분해성, 팽윤능 및 총 단백질 방출 능력이 가장 우수한 것으로 측정되었다. EK-20 스캐폴드의 우월성을 추가적으로 확인하기 위해, rBMSC 세포를 이용하여 세포 증식 능력을 비교함으로써, 직간접적으로 세포 생존력을 비교하였다. 그 결과, EK-20 스캐폴드가 다른 스캐폴드에 비해 가장 우수한 세포 증식능을 나타냄을 확인하였다(도 20a 내지 20c 참조). 이로 인해, EK-20을 상처 치유 스캐폴드로 선별하였으나, EK-20은 초기 pH가 높은 문제점이 존재하였다.In the above experiments, the biodegradability, swelling ability, and total protein release ability of the EK-20 scaffold were determined to be the best. To further confirm the superiority of the EK-20 scaffold, cell viability was compared directly and indirectly by comparing cell proliferation ability using rBMSC cells. As a result, it was confirmed that the EK-20 scaffold exhibited the best cell proliferation ability compared to other scaffolds (see Figures 20a to 20c). For this reason, EK-20 was selected as a wound healing scaffold, but EK-20 had the problem of high initial pH.
이를 해결하기 위해, EK-20을 장기간 세척(prolonged washing, PW)하여 pH를 조정하고자 하였다. 세척 이후 3일 동한 EK-20(PW)의 pH 변화를 측정한 결과, 예상대로 스캐폴드의 높은 초기 pH가 감소함을 확인하였다(도 21 참조). 다만, EK-20(PW)는 세척되지 않은 스캐폴드(EK-20)에 비해, 기계적 강도 및 단백질 함량이 감소하는 문제점이 나타났다(도 22a 및 22b 참조).To solve this problem, we attempted to adjust the pH of EK-20 by prolonged washing (PW). As a result of measuring the pH change of EK-20 (PW) for 3 days after washing, it was confirmed that the high initial pH of the scaffold decreased as expected (see Figure 21). However, EK-20 (PW) showed a problem of decreased mechanical strength and protein content compared to the unwashed scaffold (EK-20) (see Figures 22a and 22b).
이러한 장기간 세척에 따른 성장 인자 및 단백질 손실과 시간 소모를 줄이기 위해서, EK-20 스캐폴드에 산성 약물인 p-쿠마르산(p-Cou)을 로딩하여 pH를 조정하고자 하였다. 상기 p-Cou는 산성 약물로서 높은 pH를 감소시킬 수 있을 뿐만 아니라, 항염증, 항미생물, 항산화 등 다양한 생체 활성 효과를 가지고 있는 것으로 알려져 있다. 먼저, p-Cou를 스캐폴드당 각각 2, 3, 4 및 10 mg으로 처리한 후, pH 변화를 측정하여 가장 적절한 약물 용량으로 4 mg/스캐폴드를 선택하였다(도 23 참조). 이후, p-Cou가 로딩된 EK-20 스캐폴드(EK-20@Cou) 및 장기간 세척 EK-20 스캐폴드(EK-20(PW))의 pH 변화를 비교 분석한 결과, 두 스캐폴드가 유사한 pH 변화 패턴을 보임을 확인하였다(도 24 참조).In order to reduce the loss of growth factors and proteins and time consumption due to such long-term washing, we attempted to adjust the pH by loading the acidic drug p-coumaric acid (p-Cou) on the EK-20 scaffold. The p-Cou is an acidic drug that can not only reduce high pH, but is also known to have various bioactive effects such as anti-inflammatory, antimicrobial, and antioxidant. First, p-Cou was treated at 2, 3, 4, and 10 mg per scaffold, respectively, and then the pH change was measured to select 4 mg/scaffold as the most appropriate drug dose (see Figure 23). Subsequently, the pH changes of the p-Cou-loaded EK-20 scaffold (EK-20@Cou) and the long-term washed EK-20 scaffold (EK-20(PW)) were compared and analyzed, and the results showed that the two scaffolds were similar. It was confirmed that a pH change pattern was observed (see Figure 24).
상기 실험을 통해, 상처 치유에 가장 적합한 특성을 보이는 EK-20의 높은 pH를 장기간 세척이 아닌, 산성 약물의 로딩을 통해 감소시킴으로써, 장기간 세척에 따른 단백질 및 성장 인자의 감소를 최소화할 수 있었다.Through the above experiment, it was possible to minimize the decrease in proteins and growth factors due to long-term washing by reducing the high pH of EK-20, which shows the most suitable characteristics for wound healing, through loading of acidic drugs rather than long-term washing.
(6) FTIR 스펙트럼 분석(6) FTIR spectrum analysis
간 유래 ECM의 FTIR 스펙트럼 분석 결과, 약 3,400 cm-1에서 NH 및 OH의 스트레칭 주파수의 대표적인 피크가 표시되었으며, 아미드 Ⅰ 및 아미드 Ⅱ의 대표적인 피크는 각각 약 1,650 cm-1(1차 아민) 및 1,550 cm-1(2차 아민)에 표시되었다(도 25 참조). 다당류 C-O-C 및 C-C-O의 경우, 스트레치는 1,200 cm-1 내지 1,000 cm-1 사이에서 식별되었으며, p-Cou 로딩 후 C=C 방향족에 대한 진동은 간 유래 ECM 및 다시마 ECM에 해당하는 아미드 피크와 함께, 1,604 cm-1에서 식별되었다.Analysis of the FTIR spectra of liver-derived ECM showed representative peaks of the stretching frequencies of NH and OH at approximately 3,400 cm -1 , and representative peaks of amide I and amide II at approximately 1,650 cm -1 (primary amine) and 1,550 cm -1 , respectively. Displayed in cm -1 (secondary amine) (see Figure 25). For polysaccharides COC and CCO, a stretch was identified between 1,200 cm -1 and 1,000 cm -1 , with oscillations for C=C aromatics after p-Cou loading, with amide peaks corresponding to liver-derived ECM and kelp ECM; It was identified at 1,604 cm -1 .
(7) EK-20@Cou로부터 p-쿠마르산 방출(7) Release of p-coumaric acid from EK-20@Cou
EK-20@Cou 스캐폴드에서 p-Cou의 누적 방출량을 측정한 결과, 초기에 버스트 방출을 보이며 4시간 배양 후 p-Cou의 약 15%가 방출되었으며, 3일 동안 p-Cou의 약 30%가 방출되는 것으로 나타났다(도 26 참조). 이러한 p-Cou의 초기 버스트 방출은 EK 스캐폴드의 높은 초기 pH를 감소시키는 데 유용하며, 스캐폴드에 항염증 및 항균 효과를 제공할 수 있어 상처 치유에 유용하게 활용될 수 있다.Measurement of the cumulative release of p-Cou from the EK-20@Cou scaffold showed an initial burst release, with approximately 15% of p-Cou released after 4 hours of incubation, and approximately 30% of p-Cou over 3 days. was found to be released (see Figure 26). This initial burst release of p-Cou is useful in reducing the high initial pH of the EK scaffold and can provide anti-inflammatory and antibacterial effects to the scaffold, making it useful for wound healing.
이후, 스캐폴드로부터 p-Cou의 방출 메커니즘을 규명하기 위해, 약물 누적 방출량을 통해 동역학 연구를 수행하였다(하기 표 2 참조). 그 결과, 약물 방출 프로필이 Korsmeyer-Peppas 모델에 가장 근접하여, Quasi-Fickian 확산 방출 메커니즘을 나타냄을 확인하였다(도 27 참조).Thereafter, in order to identify the release mechanism of p-Cou from the scaffold, a kinetic study was performed based on the cumulative drug release amount (see Table 2 below). As a result, it was confirmed that the drug release profile was closest to the Korsmeyer-Peppas model, indicating a Quasi-Fickian diffusion release mechanism (see Figure 27).
ModelsModels R2 R 2 AIC AIC BICBIC RMESRMES
00 0.7430.743 70.3670.36 71.3371.33 4.584.58
1st 1st 0.6350.635 76.6576.65 77.6277.62 5.955.95
2nd 2nd 0.5100.510 92.7292.72 93.6993.69 11.6311.63
Korsmeyer-PeppasKorsmeyer-Peppas 0.9580.958 46.0346.03 47.0047.00 1.661.66
Hixson-CrowellHixson-Crowell 0.6740.674 73.9973.99 74.9674.96 5.335.33
HiguchiHiguchi 0.8370.837 113.46113.46 114.43114.43 27.6127.61
(AIC: Akaike information criterion, BIC: Bayesian information criterion; RMSE: Root-mean-squared error.)(AIC: Akaike information criterion, BIC: Bayesian information criterion; RMSE: Root-mean-squared error.)
(8) 약물 로딩 전후 항산화능 분석(8) Antioxidant activity analysis before and after drug loading
p-Cou는 수산기(hydroxy groups)를 가지는 페놀의 일종으로, 우수한 항산화능을 가지는 것으로 알려져 있다. 이러한 p-Cou가 로딩된 EK-20@Cou 스캐폴드 및 EK-20(PW) 스캐폴드의 총 항산화능을 비교한 결과, EK-20@Cou 스캐폴드의 항산화능이 EK-20(PW)에 비해 유의하게 높음을 확인하였다(도 28 참조). EK-20@Cou의 항산화능은 처음 4일동안 증가하였다가 시간이 지남에 따라 점차 감소하는 것으로 나타났다.p-Cou is a type of phenol with hydroxy groups and is known to have excellent antioxidant properties. As a result of comparing the total antioxidant capacity of the p-Cou-loaded EK-20@Cou scaffold and EK-20(PW) scaffold, the antioxidant capacity of EK-20@Cou scaffold was higher than that of EK-20(PW). It was confirmed that it was significantly high (see Figure 28). The antioxidant capacity of EK-20@Cou was found to increase for the first 4 days and then gradually decrease over time.
상기 실험을 통해, EK-20@Cou 스캐폴드가 우수한 항산화능을 가져, 상처 치유에 보다 효과적으로 이용될 수 있음을 확인하였다.Through the above experiment, it was confirmed that the EK-20@Cou scaffold has excellent antioxidant activity and can be used more effectively for wound healing.
2-4. 항균능 분석2-4. Antibacterial activity analysis
상처 환경에서는 세균 감염이 쉽게 일어날 수 있으며, 상처의 90%가 감염될 경우 상처가 만성화될 수 있다. 따라서, 효과적인 상처 치유 물질로 사용되기 위해서는, 항균능이 필수적이므로, 상기 EK-20 스캐폴드의 항균 효과를 측정하기 위한 실험을 수행하였다.Bacterial infection can easily occur in the wound environment, and if 90% of the wound is infected, the wound can become chronic. Therefore, in order to be used as an effective wound healing material, antibacterial activity is essential, so an experiment was performed to measure the antibacterial effect of the EK-20 scaffold.
구체적으로, EK-20@Cou 및 EK-20(PW)의 그람 양성균(Bacillus subtilisStaphylococcus aureus) 및 그람 음성균(Escherichia coliSalmonella typhimurium)에 대한 항균 효과를 분석한 결과, EK-20@Cou 스캐폴드가 실험한 모든 균에 대해서 강력한 항균 효과를 나타냄을 확인하였다(도 29a 및 29b 참조).Specifically, as a result of analyzing the antibacterial effect of EK-20@Cou and EK-20(PW) against Gram-positive bacteria ( Bacillus subtilis and Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli and Salmonella typhimurium ), EK-20@Cou scan It was confirmed that Fold exhibited a strong antibacterial effect against all tested bacteria (see Figures 29a and 29b).
상기 실험을 통해, EK-20@Cou 스캐폴드가 우수한 항균 효과를 가져, 상처 치유에 효과적으로 활용될 수 있음을 확인하였다.Through the above experiment, it was confirmed that the EK-20@Cou scaffold has excellent antibacterial effect and can be effectively used for wound healing.
2-5. EK-20@Cou 스캐폴드의 생체 적합성(biocompatibility) 분석2-5. Biocompatibility analysis of EK-20@Cou scaffold
EK-20, EK-20(PW) 및 EK-20@Cou의 생체 적합성 및 세포 생존능을 측정하기 위해, MTT 기반 비색(colorimetric) 분석을 수행하였다. 그 결과, EK-20 스캐폴드에서는 세포 독성이 나타났으나(세포 생존율 70% 미만), EK-20(PW) 및 EK-20@Cou는 세포 생존능이 비슷하게 측정되었으며, 시간에 따른 세포 성장 패턴 또한 나타났다(도 30 참조).To measure the biocompatibility and cell viability of EK-20, EK-20(PW) and EK-20@Cou, MTT-based colorimetric assay was performed. As a result, the EK-20 scaffold showed cytotoxicity (cell viability less than 70%), but cell viability was measured similarly for EK-20(PW) and EK-20@Cou, and cell growth patterns over time were also observed. appeared (see Figure 30).
또한, EK-20, EK-20(PW) 및 EK-20@Cou로 처리된 세포의 공초점 염색을 수행한 후, 1일차, 3일차 및 7일차에서 세포 증식을 육안으로 확인하였다. 그 결과, EK-20(PW) 및 EK-20@Cou 처리군의 경우, 다른 군에 비해 유의하게 높은 세포 증식이 유도됨을 확인하였다(도 31 참조).In addition, after confocal staining of cells treated with EK-20, EK-20(PW), and EK-20@Cou, cell proliferation was visually confirmed on days 1, 3, and 7. As a result, it was confirmed that significantly higher cell proliferation was induced in the EK-20(PW) and EK-20@Cou treatment groups compared to the other groups (see Figure 31).
상기 실험을 통해, EK-20@Cou 스캐폴드의 세포 증식이 p-Cou가 로딩되지 않은 스캐폴드(EK-20(PW))와 유사하게 측정됨을 확인함으로써, p-Cou의 로딩에 의해 세포 성장이 방해되지 않음을 확인하였다.Through the above experiment, it was confirmed that the cell proliferation of the EK-20@Cou scaffold was measured similarly to the scaffold not loaded with p-Cou (EK-20(PW)), indicating that cell growth by loading of p-Cou It was confirmed that this was not disturbed.
2-6. 상처 치유 분석2-6. Wound healing analysis
EK-20@Cou의 상처 치유 효과를 확인하기 위해, 전층(full-thickness) 상처 모델을 사용하여 in vivo 실험을 수행하였다. 전층 상처 모델의 제조를 위해, 쥐(rat)의 등에 직경 7 ± 1 mm의 전층 상처를 생성하였고, EK-20@Cou의 상처 치유 효과를 대조군, 양성 대조군(시판 콜라겐 기반 상처 치유 물질 처리군) 및 EK-20(PW) 처리군과 비교하였다. 실험 7일 후, 피부 딱지가 제거되었고, 14일 이내에 신표피(neo-epidermis)가 형성되었다.To confirm the wound healing effect of EK-20@Cou, an in vivo experiment was performed using a full-thickness wound model. To prepare a full-thickness wound model, a full-thickness wound with a diameter of 7 ± 1 mm was created on the back of a rat, and the wound healing effect of EK-20@Cou was tested as a control group, positive control group (group treated with commercially available collagen-based wound healing material). and EK-20 (PW) treatment group. After 7 days of experiment, the skin crust was removed, and neo-epidermis was formed within 14 days.
실험 결과, 7일 후 대조군과 양성 대조군은 각각 6.75% 및 16%의 상처 봉합을 보였으나, EK-20(PW) 처리군과 EK-20@Cou 처리군은 각각 25.99% 및 47%의 상처 봉합을 보였다. 또한, 14일 이후 대조군과 양성 대조군은 각각 26.82% 및 67.12%의 상처 봉합을 보였으나, EK-20(PW) 처리군과 EK-20@Cou 처리군은 각각 82.11% 및 98.75%의 상처 봉합을 보였다(도 32 참조). 이후, EK-20@Cou의 상처 치유 기전을 개략도로 작성하였다(도 33 참조).As a result of the experiment, after 7 days, the control group and the positive control group showed wound closure of 6.75% and 16%, respectively, but the EK-20(PW) treatment group and the EK-20@Cou treatment group showed wound closure of 25.99% and 47%, respectively. showed. Additionally, after 14 days, the control group and positive control group showed wound closure of 26.82% and 67.12%, respectively, while the EK-20(PW) treated group and EK-20@Cou treated group showed wound closure of 82.11% and 98.75%, respectively. It was visible (see Figure 32). Afterwards, the wound healing mechanism of EK-20@Cou was schematically drawn (see Figure 33).
이후, 조직 수준에서 상처 치유 효과를 평가하기 위해, H&E 염색 및 Masson's Trichrome 염색을 수행한 후(도 34 참조), 각 그룹의 신표피두께, 육아조직 두께 및 상피형성 점수를 비교하였다.Then, to evaluate the wound healing effect at the tissue level, H&E staining and Masson's Trichrome staining were performed (see Figure 34), and then the neoepidermal thickness, granulation tissue thickness, and epithelial formation score of each group were compared.
그 결과, EK-20@Cou 처리군의 신표피두께, 육아조직 두께 및 상피형성 점수가 다른 군에 비해 유의하게 높음을 확인하였으며, EK-20(PW) 처리군 및 EK-20@Cou 처리군의 경우, 대조군과 달리 부상 14일 후, 상처가 완전하게 봉합됨을 확인하였다(도 35a 내지 35c 참조). 또한, 콜라겐 침착을 보여주는 Masson's Trichrome 염색 분석 결과, EK-20(PW) 처리군 및 EK-20@Cou 처리군의 경우, 대조군에 비해 콜라겐 침착 정도가 높은 것으로 나타나 상처 치유가 효과적으로 일어났음을 확인할 수 있었다.As a result, it was confirmed that the neoepidermal thickness, granulation tissue thickness, and epithelial formation score of the EK-20@Cou treatment group were significantly higher than those of the other groups, and the EK-20(PW) treatment group and EK-20@Cou treatment group In the case of , unlike the control group, it was confirmed that the wound was completely closed 14 days after injury (see FIGS. 35a to 35c). In addition, as a result of Masson's Trichrome staining analysis showing collagen deposition, the degree of collagen deposition was higher in the EK-20(PW) treated group and the EK-20@Cou treated group compared to the control group, confirming that wound healing occurred effectively. there was.
추가적으로, 상처 치유의 진행 상황을 확인하기 위해, 상처 부위에서 피브로넥틴, 콜라겐-1 및 α-SMA 마커에 대한 면역조직화학 염색을 수행하였다(도 36 참조). 그 결과, EK-20@Cou 처리군이 대조군 및 EK-20(PW) 처리군에 비해 피브로넥틴, 콜라겐-1 및 α-SMA 마커의 함량이 유의하게 높음을 확인하였다(도 37a 내지 37c 참조).Additionally, to confirm the progress of wound healing, immunohistochemical staining for fibronectin, collagen-1, and α-SMA markers was performed on the wound area (see Figure 36). As a result, it was confirmed that the EK-20@Cou treated group had significantly higher contents of fibronectin, collagen-1, and α-SMA markers compared to the control and EK-20(PW) treated groups (see Figures 37a to 37c).
상기 실험을 통해, EK-20@Cou 스캐폴드가 in vivo에서 가장 우수한 상처 치유 효과를 가짐을 확인하였다.Through the above experiment, it was confirmed that the EK-20@Cou scaffold had the best wound healing effect in vivo .
2-7. 상처 치유 메커니즘 분석2-7. Wound healing mechanism analysis
EK-20@Cou 스캐폴드의 우수한 상처 치유 효과의 메커니즘을 분석하기 위해, 생화학 및 조직학적 연구와 함께 in-silico MS 연구를 수행하였다. MS 동안 상처 치유 과정에서 중요한 역할을 수행하는 표적 단백질/수용체로 MMP-2, MMP-3, MMP-8, MMP-12, NF-κB, TNF-α, STAT-1, IL-4R 및 IL-1β를 선정하였다. 또한, p-Cou 및 각 단백질의 공지된 억제제를 리간드로 사용하였고, 결합 에너지, 결합 거리, 접합 유형, 위치 및 포즈를 예측에 고려하면서, 각 단백질 또는 수용체에 억제제를 대조군으로 선정하였다(하기 표 3 참조).To analyze the mechanism of the excellent wound healing effect of the EK-20@Cou scaffold, an in-silico MS study was performed along with biochemical and histological studies. MMP-2, MMP-3, MMP-8, MMP-12, NF-κB, TNF-α, STAT-1, IL-4R, and IL-12 as target proteins/receptors that play important roles in the wound healing process during MS. 1β was selected. In addition, p-Cou and known inhibitors of each protein were used as ligands, and inhibitors for each protein or receptor were selected as controls while considering binding energy, binding distance, junction type, position, and pose in prediction (table below) 3).
Target [proteins/receptors]Target [proteins/receptors] Catalytic siteCatalytic site LigandLigand LEa indexLE a index Interacting residueInteracting residue Distance [A˚]Distance [A˚] CategoryCategory TypeType Control ligandControl ligand
MMP-2
(PDB ID: 1ck7)
MMP-2
(PDB ID: 1ck7)
X, Y & Z = (51.93, 89.15 &147.59)X, Y & Z = (51.93, 89.15 &147.59) p-Coumaric acidp-Coumaric acid 0.050.05 VAL 400VAL 400 5.155.15 HydrophobicHydrophobic Pi-alkylPi-alkyl MarimastatMarimastat
TYR 425TYR 425 5.245.24 HydrophobicHydrophobic Pi-pi T-shapedPi-pi T-shaped
THR 428THR 428 3.053.05 H-bondH-bond ConventionalConventional
HIS 403HIS 403 4.444.44 HydrophobicHydrophobic Pi-pi stackedPi-pi stacked
MMP-3
(PDB ID: 1b3d)
MMP-3
(PDB ID: 1b3d)
X, Y & Z = (-18.45, 28.25 & 1.56)X, Y & Z = (-18.45, 28.25 & 1.56) p-Coumaric acidp-Coumaric acid 0.050.05 LEU 164LEU 164 4.744.74 HydrophobicHydrophobic Pi-alkylPi-alkyl PGV-25727PGV-25727
ALA 165ALA 165 2.472.47 H-bondH-bond ConventionalConventional
ALA 165ALA 165 5.285.28 HydrophobicHydrophobic Pi-alkylPi-alkyl
LEU 164LEU 164 4.744.74 HydrophobicHydrophobic Pi-alkylPi-alkyl
VAL 198VAL 198 5.365.36 HydrophobicHydrophobic Pi-alkylPi-alkyl
HIS 201HIS 201 4.844.84 HydrophobicHydrophobic Pi-pi stackedPi-pi stacked
GLU 202GLU 202 4.084.08 ElectrostaticElectrostatic Pi-anionPi-anion
Zn 301Zn 301 4.934.93 ElectrostaticElectrostatic Pi-cationPi-cation
MMP-8
(PDB ID: 1a85)
MMP-8
(PDB ID: 1a85)
X, Y & Z = (25.74, 56.76 & 53.26)X, Y & Z = (25.74, 56.76 & 53.26) p-Coumaric acidp-Coumaric acid 0.050.05 HIS 197HIS 197 4.064.06 HydrophobicHydrophobic Pi-pi stackedPi-pi stacked Q27451034Q27451034
HIS 197 (Zn ligating)HIS 197 (Zn ligating) 3.773.77 ElectrostaticElectrostatic Pi-cationPi-cation
VAL 194VAL 194 4.764.76 HydrophobicHydrophobic Pi-alkylPi-alkyl
ALA 220ALA 220 2.632.63 H-bondH-bond ConventionalConventional
ARG 222ARG 222 2.612.61 H-bondH-bond ConventionalConventional
MMP-12
(PDB ID: 1jiz)
MMP-12
(PDB ID: 1jiz)
X, Y & Z = (4.74, 5.75 & 69.59)X, Y & Z = (4.74, 5.75 & 69.59) p-Coumaric acidp-Coumaric acid 0.050.05 HIS 119HIS 119 4.114.11 HydrophobicHydrophobic Pi-pi stackedPi-pi stacked CGS27023A CGS27023A
HIS 119
(Zn ligating)
HIS 119
(Zn ligating)
4.704.70 ElectrostaticElectrostatic Pi-cationPi-cation
TYR 141TYR 141 5.305.30 HydrophobicHydrophobic Pi-pi T-shapedPi-pi T-shaped
ALA 83ALA 83 2.062.06 H-bondH-bond ConventionalConventional
NFκ-b
(PDB ID: 3do7)
NFκ-b
(PDB ID: 3do7)
X, Y & Z = (4.74, 5.75 & 69.59)X, Y & Z = (4.74, 5.75 & 69.59) p-Coumaric acidp-Coumaric acid 0.040.04 HIS 140HIS 140 5.755.75 HydrophobicHydrophobic Pi-pi T-shapedPi-pi T-shaped PBS-1086PBS-1086
TYR 55 TYR 55 4.564.56 HydrophobicHydrophobic Pi-pi T-shapedPi-pi T-shaped
GLU 58GLU 58 2.912.91 H-bondH-bond ConventionalConventional
LYS 221LYS 221 3.773.77 HydrophobicHydrophobic Pi-alkylPi-alkyl
PRO 222PRO 222 3.563.56 H-bondH-bond C-H bondC-H bond
TNF-α
(PDB ID: 2az5)
TNF-α
(PDB ID: 2az5)
X, Y & Z = (-14.22, 70.99 & 27.50)X, Y & Z = (-14.22, 70.99 & 27.50) p-Coumaric acidp-Coumaric acid 0.030.03 GLY 121 GLY 121 2.412.41 H-bondH-bond ConventionalConventional Dimethylamine spacer linked trifluoromethylphenyl indole
and dimethyl chromone
Dimethylamine spacer linked trifluoromethylphenyl indole
and dimethyl chromone
STAT-1
(PDB ID: 1bf5)
STAT-1
(PDB ID: 1bf5)
X, Y & Z = (67.94, 62.26 & 88.47)X, Y & Z = (67.94, 62.26 & 88.47) p-Coumaric acidp-Coumaric acid 0.020.02 THR 419THR 419 3.983.98 HydrophobicHydrophobic Pi-sigmaPi-sigma NiclosamideNiclosamide
ARG 378ARG 378 4.614.61 HydrophobicHydrophobic Pi-alkylPi-alkyl
ILE 425ILE 425 1.871.87 H-bondH-bond ConventionalConventional
IL-4R
(PDB ID: 1iar)
IL-4R
(PDB ID: 1iar)
X, Y & Z = (22.70, 17.95 & -17.59)X, Y & Z = (22.70, 17.95 & -17.59) p-Coumaric acidp-Coumaric acid 0.010.01 TYR 127 TYR 127 4.964.96 HydrophobicHydrophobic Pi-pi T-shapedPi-pi T-shaped N/Ab N/A b
ASP 67ASP 67 3.883.88 ElectrostaticElectrostatic Pi-AnionPi-Anion
IL-1β
(PDB ID: 6y8m)
IL-1β
(PDB ID: 6y8m)
X, Y & Z = (9.19, 26.99 & -5.84)X, Y & Z = (9.19, 26.99 & -5.84) p-Coumaric acidp-Coumaric acid 0.020.02 PHE 46PHE 46 3.913.91 HydrophobicHydrophobic Pi-pi stackedPi-pi stacked Abrasin Abrasin
LEU 6LEU 6 5.295.29 HydrophobicHydrophobic Pi-alkylPi-alkyl
aLE = ΔG/molecular weight of the ligand. p-Coumaric acid had a binding affinity of 8.3 kcal mol-1 and a LE index of 0.05. a LE = Δ G /molecular weight of the ligand. p-Coumaric acid had a binding affinity of 8.3 kcal mol -1 and a LE index of 0.05.
분석 결과, p-Cou는 MMP(matrix metalloproteinases)와 가장 높은 결합 친화도를 나타냈다(도 38a 내지 38c 참조). 구체적으로, 결합 에너지는 MMP-2에서 -8.10 ± 0.10으로 측정되었고, MMP-12에서 -7.65 ± 0.05로 측정되어 가장 높은 값으로 나타났다. 상기 MMP 효소의 촉매 활성은 주로 Zn2+에 의존하는 것으로 알려져 있으며, 상기 분석을 통해 p-Cou가 Zn2+ 및 MMP의 결찰 잔기와 정전기적 결합을 형성하여 단백질 분해 작용을 비활성화시킴을 확인하였다.As a result of the analysis, p-Cou showed the highest binding affinity with matrix metalloproteinases (MMPs) (see Figures 38a to 38c). Specifically, the binding energy was measured at -8.10 ± 0.10 in MMP-2, and -7.65 ± 0.05 in MMP-12, which was the highest value. The catalytic activity of the MMP enzyme is known to mainly depend on Zn 2+ , and through the above analysis, it was confirmed that p-Cou forms an electrostatic bond with Zn 2+ and the ligation residue of MMP to inactivate proteolytic activity. .
또한, in vitro 실험 결과, EK-20@Cou 처리군에서 MMP-2 및 MMP-12 발현 수준이 현저하게 감소함을 확인하였다(도 39a 및 39b 참조). MMP는 상처 치유 과정의 염증 단계에서 활성화되나, 장기간 활성화될 경우 새로 형성되는 ECM을 파괴하고 상처 치유 시간을 지연시키는 것으로 알려져 있다. 따라서, EK-20@Cou는 MMP의 발현을 억제함으로써, 상처 치유 시간을 효과적으로 단축시킬 수 있다.In addition, as a result of in vitro experiments, it was confirmed that the expression levels of MMP-2 and MMP-12 were significantly reduced in the EK-20@Cou treated group (see Figures 39a and 39b). MMPs are activated during the inflammatory phase of the wound healing process, but when activated for a long period of time, they are known to destroy newly formed ECM and delay wound healing time. Therefore, EK-20@Cou can effectively shorten wound healing time by inhibiting the expression of MMP.
추가적으로, EK-20@Cou 스캐폴드가 NF-κB 신호를 조절할 수 있는지 여부를 확인하기 위한 실험을 수행하였다(도 40 참조). NF-κB 발현을 측정한 결과, EK-20(PW) 처리군 및 EK-20@Cou 처리군 모두 1주차에서 NF-κB 발현이 유의하게 증가하면서, 2주차에는 NF-κB 발현이 상당하게 감소함을 확인하였다(도 41a 및 41b 참조).Additionally, an experiment was performed to determine whether the EK-20@Cou scaffold could regulate NF-κB signaling (see Figure 40). As a result of measuring NF-κB expression, NF-κB expression significantly increased at week 1 in both the EK-20 (PW) and EK-20@Cou treated groups, while NF-κB expression significantly decreased at week 2. This was confirmed (see FIGS. 41a and 41b).
또한, EK-20@Cou 스캐폴드가 대식세포의 표현형 전환을 유도하는지 확인하기 위하여, 대식세포 마커인 CD68 발현 및 질산염(nitrate) 농도를 측정하였다. 그 결과, EK-20@Cou 처리군에서 CD68 발현이 다른 그룹에 비해 유의하게 낮으며(도 42a 및 42b 참조), 질산염 농도가 1주 및 2주 후 각각 0.275 ± 0.013 nmol μL-1 및 0.026 ± 0.001 nmol μL-1로 다른 그룹에 비해 현저하게 낮음을 확인하였다(도 43 참조). 상기 결과로부터, EK-20@Cou 스캐폴드에서 상처 부위로 방출되는 p-Cou가 면역 세포의 활성을 조절하고, 대식세포의 표현형을 M1형에서 M2형으로 전환시킴을 확인할 수 있다.Additionally, to confirm whether the EK-20@Cou scaffold induces phenotypic conversion of macrophages, the expression of CD68, a macrophage marker, and nitrate concentration were measured. As a result, CD68 expression in the EK-20@Cou treatment group was significantly lower than that of the other groups (see Figures 42a and 42b), and nitrate concentration was 0.275 ± 0.013 nmol μL -1 and 0.026 ± 1 after 1 and 2 weeks, respectively. It was confirmed that it was significantly lower than other groups at 0.001 nmol μL -1 (see Figure 43). From the above results, it can be confirmed that p-Cou released from the EK-20@Cou scaffold to the wound site regulates the activity of immune cells and switches the phenotype of macrophages from M1 type to M2 type.
상기 실험들로부터 EK-20@Cou 스캐폴드가 상처 치유에 효과적으로 이용될 수 있음을 확인하였으며, EK-20@Cou 스캐폴드의 상처 치유 메커니즘의 개략도는 하기 도 44와 같다.From the above experiments, it was confirmed that the EK-20@Cou scaffold can be effectively used for wound healing, and a schematic diagram of the wound healing mechanism of the EK-20@Cou scaffold is shown in Figure 44 below.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention stated above is for illustrative purposes, and a person skilled in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. There will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (15)

  1. 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 약학적 조성물.A pharmaceutical composition for wound treatment or skin tissue regeneration, comprising an extracellular matrix and kelp extract.
  2. 청구항 1에 있어서, 상기 세포외기질 및 다시마 추출물은 탈세포화(decellularized)된 것인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the extracellular matrix and kelp extract are decellularized.
  3. 청구항 1에 있어서, 상기 세포외기질은 간 세포로부터 유래된 것인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the extracellular matrix is derived from liver cells.
  4. 청구항 1에 있어서, 상기 세포외기질 및 다시마 추출물의 농도비는 1:0.75 내지 1:1.25인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the concentration ratio of the extracellular matrix and the kelp extract is 1:0.75 to 1:1.25.
  5. 청구항 1에 있어서, 산성 약물을 더 포함하는, 약학적 조성물.The pharmaceutical composition of claim 1, further comprising an acidic drug.
  6. 청구항 5에 있어서, 상기 산성 약물은 p-쿠마르산(p-coumaric acid)인, 약학적 조성물.The pharmaceutical composition of claim 5, wherein the acidic drug is p-coumaric acid.
  7. 청구항 1에 있어서, 상기 조성물은 항균 효과를 가지는 것인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the composition has an antibacterial effect.
  8. 청구항 7에 있어서, 상기 항균 효과는 그람 양성균 및 그람 음성균에 대한 것인, 약학적 조성물.The pharmaceutical composition according to claim 7, wherein the antibacterial effect is against Gram-positive bacteria and Gram-negative bacteria.
  9. 청구항 8에 있어서, 상기 그람 양성균은 스타필로코커스(Staphylococcus) 속 세균, 스트렙토코커스(Streptococcus) 속 세균, 엔테로코커스(Enterococcus) 속 세균, 크렙시엘라(Klebsiell) 속 세균, 코리네박테리움(Corynebacterium) 속 세균, 클로스트리디움(Clostridium) 속 세균, 리스테리아(Listeria) 속 세균 및 바실러스(Bacillus) 속 세균으로 이루어진 군에서 선택되는 하나 이상이고,The method of claim 8, wherein the Gram-positive bacteria are bacteria of the genus Staphylococcus , bacteria of the genus Streptococcus , bacteria of the genus Enterococcus , bacteria of the genus Klebsiell , and Corynebacterium . At least one selected from the group consisting of bacteria of the genus, Clostridium , Listeria , and Bacillus ,
    상기 그람 음성균은 에스케리치아 속(Escherichia species) 세균, 살모넬라(Salmonella) 속 세균, 슈도모나스(Pseudomonas) 속 세균, 네이세리아(Neisseria) 속 세균, 클라미디아(Chlamydia) 속 세균 및 예르시니아(Yersinia) 속 세균으로 이루어진 군에서 선택되는 하나 이상인, 약학적 조성물.The gram-negative bacteria include Escherichia species , Salmonella , Pseudomonas , Neisseria , Chlamydia , and Yersinia . A pharmaceutical composition comprising at least one selected from the group consisting of bacteria.
  10. 청구항 1에 있어서, 상기 조성물은 MMP(matrix metalloproteinases)의 발현을 억제하는 것인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the composition inhibits the expression of matrix metalloproteinases (MMPs).
  11. 청구항 1에 있어서, 상기 조성물은 대식세포의 표현형을 M1형에서 M2형으로 전환시키는 것인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the composition converts the phenotype of macrophages from type M1 to type M2.
  12. 청구항 1에 있어서, 상기 상처는 창상(wound), 찰과상(abrasion), 열상(laceration), 자상(stab wound) 및 궤양(ulcer)으로 이루어진 군에서 선택되는 하나 이상인, 약학적 조성물.The pharmaceutical composition of claim 1, wherein the wound is at least one selected from the group consisting of a wound, abrasion, laceration, stab wound, and ulcer.
  13. 청구항 1에 있어서, 상기 피부 조직 재생은 표피 재생, 분비선 또는 모낭의 재현 및 진피 조직의 미세혈관 형성으로 이루어진 군에서 선택되는 하나 이상인, 약학적 조성물.The pharmaceutical composition according to claim 1, wherein the skin tissue regeneration is at least one selected from the group consisting of epidermal regeneration, reproduction of glands or hair follicles, and microvascular formation in dermal tissue.
  14. 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 치료 또는 피부 조직 재생용 피부 외용제.An external skin preparation for wound treatment or skin tissue regeneration containing extracellular matrix and kelp extract.
  15. 세포외기질(extracellular matrix) 및 다시마(Kelp) 추출물을 포함하는, 상처 개선 또는 피부 조직 재생용 화장료 조성물.A cosmetic composition for improving wounds or regenerating skin tissue, comprising an extracellular matrix and kelp extract.
PCT/KR2023/016353 2022-11-01 2023-10-20 Pharmaceutical composition for wound healing or skin tissue regeneration, containing extracellular matrix and kelp extract WO2024096401A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0143672 2022-11-01
KR20220143672 2022-11-01
KR10-2023-0060372 2023-05-10
KR1020230060372A KR20240062899A (en) 2022-11-01 2023-05-10 Pharmaceutical composition for wound healing or skin tissue regeneration containing extracellular matrix and kelp extract

Publications (1)

Publication Number Publication Date
WO2024096401A1 true WO2024096401A1 (en) 2024-05-10

Family

ID=90931004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016353 WO2024096401A1 (en) 2022-11-01 2023-10-20 Pharmaceutical composition for wound healing or skin tissue regeneration, containing extracellular matrix and kelp extract

Country Status (1)

Country Link
WO (1) WO2024096401A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111864A (en) * 2019-09-23 2019-10-02 한국과학기술연구원 Pharmaceutical composition for wound healing or tissue regeneration, preparation method thereof, and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111864A (en) * 2019-09-23 2019-10-02 한국과학기술연구원 Pharmaceutical composition for wound healing or tissue regeneration, preparation method thereof, and use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ASUVA ARIN: "Faster and Protective Wound Healing Mechanistic of Para‐Coumaric Acid Loaded Liver ECM Scaffold Cross‐linked with Acellular Marine Kelp", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 33, no. 17, 1 April 2023 (2023-04-01), DE , XP093166286, ISSN: 1616-301X, DOI: 10.1002/adfm.202212325 *
BAR-SHAI NURIT, SHARABANI-YOSEF ORNA, ZOLLMANN MEIRON, LESMAN AYELET, GOLBERG ALEXANDER: "Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering", SCIENTIFIC REPORTS, vol. 11, no. 1, XP093072174, DOI: 10.1038/s41598-021-90903-2 *
C.R.H. BERRY-KILGOUR: "Decellularised seaweed as a novel biomaterial for treatment of skin wounds", ABSTRACTS FOR THE 263RD OTAGO MEDICAL SCHOOL RESEARCH SOCIETY MEETING - PHD STUDENT SPEAKER AWARDS, 17 August 2022 (2022-08-17), XP093166277, Retrieved from the Internet <URL:https://hdl.handle.net/10523/14723> *
DODDY DENISE OJEDA-HERNÁNDEZ: "Chitosan–Hydroxycinnamic Acids Conjugates: Emerging Biomaterials with Rising Applications in Biomedicine", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (MDPI), BASEL, CH, vol. 23, no. 20, 18 October 2022 (2022-10-18), Basel, CH , pages 12473, XP093166280, ISSN: 1422-0067, DOI: 10.3390/ijms232012473 *
MENGYU GAO: "Comparative evaluation of decellularized porcine liver matrices crosslinked with different chemical and natural crosslinking agents", XENOTRANSPLANTATION, WILEY-BLACKWELL PUBLISHING, INC., US, vol. 26, no. 1, 1 January 2019 (2019-01-01), US , XP093166282, ISSN: 0908-665X, DOI: 10.1111/xen.12470 *

Similar Documents

Publication Publication Date Title
WO2021235767A1 (en) Method for obtaining collagen peptide from starfish, elastic liposome comprising starfish-derived collagen peptide, and cosmetic composition comprising same
WO2019045259A2 (en) Cosmetic composition including dendrobium candidum wallich ex lindley flower extract
WO2021107706A1 (en) Novel use of milk exosomes
WO2020218781A1 (en) Functional composition containing immortalized stem cell-derived exosome-rich culture medium and rosebud extract as active ingredients
WO2020171285A1 (en) Peptide for preventing skin damage caused by air pollutants and for anti-aging, and use thereof
WO2017123066A1 (en) COMPOSITION FOR INCREASING EXPRESSION OF PGC-1α
WO2024096401A1 (en) Pharmaceutical composition for wound healing or skin tissue regeneration, containing extracellular matrix and kelp extract
KR101908077B1 (en) Cosmetic composition for whitening, antiaging or skin wrinkle containing natural oriental medicine extracts
WO2022119417A1 (en) Method for preparing high-concentration stem cell exosomes with enhanced anti-inflammatory and regenerative functions using lipopolysaccharide and lipoteichoic acid
WO2021025533A1 (en) Composition comprising skeletal muscle stem cell-derived exosome as active ingredient for improving skin condition
WO2019240495A1 (en) Use of bacterial cellulose gel undergoing reversible sol-gel phenomenon
WO2017074093A1 (en) Wound dressing material comprising fibrillated acellular dermis matrix and biodegradable polymer, and preparation method therefor
WO2018097388A1 (en) Composition for skin whitening, wrinkle alleviation, antioxidation, and ultraviolet light blocking, containing jujube seed extract as active ingredient
WO2012081944A2 (en) Dental membrane and method of manufacturing the same
WO2022050695A1 (en) Extracellular matrix-supported biomimetic tissue adhesive hydrogel patch
WO2021256751A1 (en) Composition comprising fibroblast-derived extracellular vesicle as active ingredient for treating skin and mucosal wound
WO2021107381A1 (en) Composition comprising ferulic acid and analogs thereof for preventing and treating skin diseases caused by genetic mutation
WO2021091183A1 (en) Paracrine factor and preparing method thereof
WO2019190290A1 (en) Composition for alleviating skin barrier dysfunction
WO2020071665A2 (en) Composition for extending telomere of cell and preparation method therefor
WO2020149538A1 (en) Pharmaceutical composition comprising clonal stem cell for prevention or treatment of atopic dermatitis
WO2015093661A1 (en) Long-lasting derivative through lauric acid fusion of antibacterial peptide beta-defensin 3 and 3h, development of skin permeable derivative through cell transmissive peptide fusion, and cosmetic composition containing same
WO2024096692A1 (en) Composition for improving skin condition containing sambucus nigra callus culture or extract thereof as active ingredient
WO2022131700A1 (en) Method for mass production of highly pure, stem cell-derived extracellular vesicle by using peptide
WO2024014795A1 (en) Extracellular matrix-based hydrogel and sponge for wound healing or tissue regeneration, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886097

Country of ref document: EP

Kind code of ref document: A1