WO2024096275A1 - Anode material for secondary battery, and method for preparing anode material for secondary battery - Google Patents
Anode material for secondary battery, and method for preparing anode material for secondary battery Download PDFInfo
- Publication number
- WO2024096275A1 WO2024096275A1 PCT/KR2023/012087 KR2023012087W WO2024096275A1 WO 2024096275 A1 WO2024096275 A1 WO 2024096275A1 KR 2023012087 W KR2023012087 W KR 2023012087W WO 2024096275 A1 WO2024096275 A1 WO 2024096275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- walled carbon
- carbon nanotubes
- silicon
- powder
- secondary batteries
- Prior art date
Links
- 239000010405 anode material Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 91
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 80
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 67
- 239000004020 conductor Substances 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 31
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 24
- 239000010703 silicon Substances 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 239000007773 negative electrode material Substances 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 238000004381 surface treatment Methods 0.000 claims description 3
- 239000011856 silicon-based particle Substances 0.000 claims 7
- 239000011859 microparticle Substances 0.000 claims 2
- 229920001296 polysiloxane Polymers 0.000 claims 1
- 239000006183 anode active material Substances 0.000 abstract description 8
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002620 silicon nanotube Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries. More specifically, in order to suppress expansion of the silicon powder included to increase capacity, a single-walled carbon nanotube with excellent physical properties is added to the surface of the silicon powder. Commercialization is possible by coating or additionally using multi-walled carbon nanotubes, which are relatively cheaper than single-walled carbon nanotubes, as a conductive material for the anode material to increase electrical conductivity while being structurally stable, and also reduce costs. It relates to a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries.
- Silicon anode material is the optimal material to overcome the shortcomings of existing graphite anode materials and has a capacity more than 10 times higher than graphite. Using silicon instead of graphite in the anode material is expected to theoretically improve energy density by 25% and charging speed by 50%. It is known that it can be done.
- silicon anode material has a high self-resistance and has the problem of reacting with lithium ions to expand its volume by about four times or more, which can cause performance and stability problems.
- the particles are destroyed, and when a new electrolyte interface is formed along the broken surface, the electrolyte is depleted and lithium ion transfer slows down.
- SWCNT single-walled carbon nanotubes
- the present invention coats the surface of the silicon powder with single-walled carbon nanotubes, which have excellent physical properties, or uses a conductive material for the anode material that is relatively expensive compared to single-walled carbon nanotubes.
- the purpose is to provide a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries that can be commercialized by additionally using inexpensive multi-walled carbon nanotubes to increase electrical conductivity while being structurally stable, and also reduce costs. do.
- the present invention provides a negative electrode active material powder containing a conductive material powder and a plasma surface-treated silicon powder, improving the conductivity of the negative electrode material, and expanding the silicon powder.
- a secondary battery comprising single-walled carbon nanotubes coated on the surface of the silicon powder and multi-walled carbon nanotubes mixed with the negative electrode active material powder and the single-walled carbon nanotubes by a binder to suppress A cathode material is provided.
- the present invention relates to a method for manufacturing a negative electrode material for a secondary battery, comprising the steps of plasma surface treatment on silicon powder, improving conductivity of the negative electrode material and suppressing expansion of the silicon powder, the plasma surface
- a secondary battery comprising the steps of coating single-walled carbon nanotubes on the surface of the treated silicon powder and mixing the silicon powder coated with the single-walled carbon nanotubes, the conductive material powder, and the multi-walled carbon nanotubes with a binder.
- a method for manufacturing an anode material is provided.
- the secondary battery negative electrode material and the manufacturing method of the secondary battery negative electrode material according to the present invention have the following effects.
- single-walled carbon nanotubes surround only the silicon that is partially added among the anode active materials, thereby suppressing the expansion of silicon and acting as a conductive material, the amount of single-walled carbon nanotubes used is reduced, making commercialization possible. There is an advantage in saving money.
- the surface of the silicon is pre-treated with plasma to improve the interfacial bonding between silicon and single-walled carbon nanotubes, thereby increasing coating efficiency. , it can prevent detachment of carbon nanotubes from the silicon surface even after the electrode manufacturing process or during battery operation.
- Figure 1 is a perspective view showing a negative electrode material for a secondary battery according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the surface of silicon, which is a negative electrode active material among the negative electrode materials for secondary batteries according to FIG. 1, being plasma treated and then coated with single-walled carbon nanotubes.
- Figure 3 is a schematic diagram showing the negative electrode active material, conductive material, and binder separated from the negative electrode material for secondary batteries according to Figure 1.
- the negative electrode material 100 for a secondary battery includes a negative electrode active material powder 110 containing conductive material powder 111 and silicon powder 112, and single-walled carbon. It includes a conductive material 120 including a nanotube (Single-Walled Carbon NanoTube) 121 and a multi-walled carbon nanotube (122), a binder 130, and a substrate 140.
- a conductive material 120 including a nanotube (Single-Walled Carbon NanoTube) 121 and a multi-walled carbon nanotube (122), a binder 130, and a substrate 140.
- the present invention is not limited to this, and only the single-walled carbon nanotube may be used by coating the silicon powder 112.
- single-walled carbon nanotubes are coated on silicon and the multi-walled carbon nanotubes are additionally used as a conductive material, but only the single-walled carbon nanotubes are coated on the silicon powder 112. , it can also be used without containing any other conductive materials such as the multi-walled carbon nanotubes.
- FIG. 1 for convenience of illustration, the anode active material powder 110, the conductive material 120, and the binder 130 are shown separately from the substrate 140.
- the conductive material 111 is graphite.
- the graphite 111 and silicon 112 constituting the negative electrode active material powder 110 are in powder form as an example.
- the silicon powder 112 is an example of micro-sized particles or nano-sized particles.
- the surface of the silicon powder 112 is plasma treated (P). This improves the interfacial bonding force between the silicon powder 112 and the single-walled carbon nanotube 121 when coating the conductive single-walled carbon nanotube 121 on the surface of the non-conductive silicon powder 112. This is to ensure that the single-walled carbon nanotubes 121 are well coated with the silicon 112 and are not easily separated.
- the conductive material 120 is included to improve the conductivity of the anode material 100 for a secondary battery.
- the single-walled carbon nanotube 121 is coated on the surface of the silicon powder 112.
- the single-walled carbon nanotube 121 performs a complex role of improving the conductivity of the anode material 100 for a secondary battery and suppressing expansion of the silicon powder 112.
- the single-walled carbon nanotube 121 has a smaller diameter than the multi-walled carbon nanotube 122. Therefore, coating the single-walled carbon nanotube 121 on the surface of the silicon powder 112 can make the coating thickness thinner than coating the multi-walled carbon nanotube 122 on the surface of the silicon powder 112. There is an advantage. Additionally, the single-walled carbon nanotubes 121 are more flexible than the multi-walled carbon nanotubes 122. Therefore, the single-walled carbon nanotube 121 has the advantage of being coated on the surface of the silicon powder 112 having a micro or nano size.
- the single-walled carbon nanotube 121 is coated with non-conductive silicon powder 112 so that the portion where the silicon powder 112 is disposed within the anode material 100 for a secondary battery also has conductivity.
- Carbon nanotubes are hexagonal shapes made of 6 carbon atoms connected to each other to form a tube with space inside.
- a plurality of tube-shaped single-walled carbon nanotubes 121 are arranged to surround the outer surface of the silicon powder 112.
- the present invention is not limited to this, and the single-walled carbon nanotube 121 having the hexagonal tube shape may be cut in a specific direction (for example, longitudinal direction), spread out in a sheet form, and coated with the silicon powder 112. there is.
- the single-walled carbon nanotube 121 is spread and coated with the silicon powder 112, the thickness can be reduced and the bonding strength with the silicon powder 112 can be improved.
- the single-walled carbon nanotube 121 is coated on the surface of the silicon powder 112 in a dry or wet manner.
- the single-walled carbon nanotube 121 is dry-coated on the surface of the silicon powder 112 through a dry electrode manufacturing process.
- a process is required to additionally dry the silicon powder 112 coated with the single-walled carbon nanotubes 121. do.
- a problem may occur in which the single-walled carbon nanotubes 121 aggregate again. Therefore, an additional process of splitting the aggregated single-walled carbon nanotubes 121 again is required. Therefore, when the single-walled carbon nanotube 121 is wet-coated with the silicon powder 112, there is a disadvantage in that time efficiency and cost-efficiency are reduced compared to when the single-walled carbon nanotube 121 is coated dry.
- the single-walled carbon nanotubes 121 when dry coating the single-walled carbon nanotubes 121 with the silicon powder 112, there is a problem in that it is difficult for the single-walled carbon nanotubes 121 to be well bonded to the silicon powder 112.
- the anode material 100 for a secondary battery according to this embodiment is coated with the single-walled carbon nanotubes 121 while the silicon powder 112 is plasma-treated, the single-walled carbon nanotubes (121) can be formed even through a dry process. 121) is well coated on the silicon powder 112 and is not easily separated even after coating, so dry coating is possible.
- the single-walled carbon nanotube 121 entirely surrounds the silicon powder 112. This is because the single-walled carbon nanotube 121, which has strong rigidity, has a structure surrounding the silicon powder 112, so that expansion of the silicon powder 112 as the secondary battery is repeatedly charged is suppressed by physical force. It is for this purpose.
- the single-walled carbon nanotube 121 is sufficiently decomposed, its physical properties are superior to those of the multi-walled carbon nanotube 122, so its mechanical properties are maintained despite repeated charging and discharging of the secondary battery.
- the expansion inhibition force and conductivity of the silicon powder 112 can be continuously maintained compared to coating the silicon powder 112 with the multi-walled carbon nanotube 122.
- the battery capacity is significantly increased by including the silicon powder 112, enabling high-speed charging and depending on the cycle. It has the advantage of excellent capacity retention rate.
- the single-walled carbon nanotube 121 is expensive, reaching approximately 14,000 won per gram. Therefore, if only the single-walled carbon nanotubes 121 are used as a conductive material for secondary battery anode materials considering only the excellent physical properties of the single-walled carbon nanotubes 121, the cost increases rapidly, making commercialization difficult. Therefore, in this embodiment, the single-walled carbon nanotube 121 is coated only on the surface of the silicon powder 112 to effectively expand the silicon and reduce the amount of use, thereby reducing the cost. Ultimately, the single-walled carbon nanotube 121 is coated only on the surface of the silicon powder 112. This allows commercialization of secondary battery anode material 100 using carbon nanotubes 121.
- the silicon powder 112 coated with the single-walled carbon nanotube 121 has a smaller weight percent (wt%) than the graphite powder 111 in the anode active material powder 110.
- the silicon powder 112 coated with the single-walled carbon nanotube 121 is included in an amount of 5% by weight or more based on the total weight of the negative electrode active material powder 110.
- the present invention is not limited to this, and the silicon powder 112 coated with the single-walled carbon nanotube 121 may be included in an amount of 5 to 20 weight percent based on the total weight of the negative electrode active material powder 110.
- the multi-walled carbon nanotubes 122 are included to improve the conductivity of the anode material 100 for secondary batteries.
- the multi-walled carbon nanotubes 122 are combined with the negative electrode active material powder 110 and the single-walled carbon nanotubes 111 by the binder 130.
- the graphite powder 111 has conductivity, and as described above, the single-walled carbon nanotube 121 is arranged in a structure surrounding the silicon powder 112, so that the portion where the silicon powder 112 is placed is also conductive. have Therefore, since the negative electrode active material powder 110 has overall conductivity, an additional conductive material is not necessarily required.
- the conductivity of the negative electrode material 100 for a secondary battery can be improved by disposing the multi-walled carbon nanotubes 122 between the negative electrode active material powders 110.
- the multi-walled carbon nanotubes 122 are cheaper than the single-walled carbon nanotubes 121, even if a large amount of the multi-walled carbon nanotubes 122 are included, the single-walled carbon nanotubes 121 It is possible to produce the anode material 100 for secondary batteries at a much lower cost than when using it as a whole.
- the binder 130 serves to adhere the anode active material powder 110 and the conductive material 120 to the substrate 140.
- the binder 130 functions as a type of adhesive.
- the binder 130 may be a fluorine-containing binder or a SBR/CMC, PAA, or PI-based binder.
- an additional thickener may be included.
- the thickener may be one or more selected from the group consisting of carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
- the conductive material powder 111 is prepared from graphite powder 111.
- the silicon powder 112 is surface treated with plasma. And in order to improve the conductivity of the negative electrode material 100 for a secondary battery and suppress expansion of the silicon powder 112, single-walled carbon nanotubes 121 are formed on the surface of the plasma surface-treated silicon powder 112. Coat.
- the silicon powder 112 coated with the single-walled carbon nanotubes 121, the conductive material powder 111, and the multi-walled carbon nanotubes 122 are mixed with the binder 130. Then, silicon powder 112 coated with the mixed single-walled carbon nanotubes 121, conductive material powder 111, and multi-walled carbon nanotubes are formed on the substrate 140.
- single-walled carbon nanotubes surround only the silicon that is partially added among the anode active materials, thereby suppressing the expansion of silicon and acting as a conductive material. Therefore, the amount of single-walled carbon nanotubes used is reduced, making commercialization possible. It is possible to manufacture anode materials for secondary batteries that reduce costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention provides an anode material for a secondary battery, comprising: an anode active material powder comprising a conductive material powder and a plasma-surface-treated silicon powder; single-walled carbon nanotubes applied to the surface of the silicon powder in order to improve the conductivity of the anode material and inhibit the expansion of the silicon powder; and multi-walled carbon nanotubes mixed with the anode active material powder and the single-walled carbon nanotubes by using a binder. Therefore, since the single-walled carbon nanotubes encompass only silicon, which is partially added to an anode active material, so as to inhibit the expansion of silicon and serve as a conductive material, the amount of used single-walled carbon nanotubes is reduced such that costs are reduced enough to enable commercialization.
Description
본 발명은 이차전지용 음극재 및 그 이차전지용 음극재의 제조방법에 관한 것으로서, 보다 상세하게는 용량 증가를 위해 포함되는 실리콘 분말의 팽창을 억제하기 위해서 실리콘 분말의 표면에는 물성이 우수한 단일벽 탄소나노튜브를 코팅하거나, 음극재의 도전재로서는 단일벽 탄소나노튜브에 비해 상대적으로 가격이 저렴한 다중벽 탄소나노튜브를 추가로 사용하여 구조적으로 안정하면서도 전기전도도를 증가시키고, 또한, 비용을 감소시킴으로써 상용화가 가능토록 한 이차전지용 음극재 및 그 이차전지용 음극재의 제조방법에 관한 것이다.The present invention relates to a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries. More specifically, in order to suppress expansion of the silicon powder included to increase capacity, a single-walled carbon nanotube with excellent physical properties is added to the surface of the silicon powder. Commercialization is possible by coating or additionally using multi-walled carbon nanotubes, which are relatively cheaper than single-walled carbon nanotubes, as a conductive material for the anode material to increase electrical conductivity while being structurally stable, and also reduce costs. It relates to a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries.
전기자동차의 보급·확산 속도가 빨라지면서 배터리(이차전지) 성능을 높이기 위한 소재 개발 경쟁도 뜨거워지고 있고, 특히 배터리를 구성하는 핵심 소재 중에서 수명과 충전 속도에 중요한 역할을 하는 음극재의 성능을 기존보다 끌어올리는 '실리콘 음극재'가 차세대 소재로 등장하면서 이를 위한 기술 개발과 상용화에도 탄력이 붙고 있다. 실리콘 음극재는 기존 흑연 음극재의 단점을 극복하는 최적의 소재로 흑연에 비해 용량이 10배 이상 높아 음극재에서 흑연 대신 실리콘을 사용하면 이론상 에너지 밀도는 25% 향상, 충전 속도는 50% 개선 효과를 기대할 수 있는 것으로 알려져 있다.As the supply and spread of electric vehicles accelerates, the competition to develop materials to improve battery (secondary battery) performance is intensifying. In particular, among the core materials that make up batteries, the performance of anode materials, which play an important role in lifespan and charging speed, is improving more than before. As 'silicon anode material' emerges as a next-generation material, the development and commercialization of technology for it is gaining momentum. Silicon anode material is the optimal material to overcome the shortcomings of existing graphite anode materials and has a capacity more than 10 times higher than graphite. Using silicon instead of graphite in the anode material is expected to theoretically improve energy density by 25% and charging speed by 50%. It is known that it can be done.
하지만, 실리콘 음극재는 자체 저항이 높고, 리튬이온과 반응하여 부피가 약 4배 이상 팽창한다는 문제가 있어서 이로 인해 성능과 안정성 문제를 일으킬 수 있다. 즉, 충전과 방전을 반복하면서 부피가 팽창하면서 입자가 파괴되고, 깨진 표면을 따라 전해질 계면이 새로 형성되면 전해질이 고갈되고 리튬 이온 전달이 느려지는 문제가 있다.However, silicon anode material has a high self-resistance and has the problem of reacting with lithium ions to expand its volume by about four times or more, which can cause performance and stability problems. In other words, as the volume expands through repeated charging and discharging, the particles are destroyed, and when a new electrolyte interface is formed along the broken surface, the electrolyte is depleted and lithium ion transfer slows down.
단일벽 탄소나노튜브 (SWCNT)를 도전재로 실리콘에 첨가하면 실리콘의 부피팽창을 억제시켜 충방전 과정에서 구조적 안정성을 꾀할 수 있다. 특히, SWCNT는 높은 전기전도성과 종횡비를 갖고 있어 전도성 네트워크를 형성하는 데 효과적이고, 높은 표면적으로 활물질의 접촉력을 높이는 특징을 갖고 있으며, 높은 유연성과 인장강도로 사이클 성능을 향상시킬 수 있다.By adding single-walled carbon nanotubes (SWCNT) to silicon as a conductive material, the volume expansion of silicon can be suppressed and structural stability can be achieved during the charging and discharging process. In particular, SWCNT has high electrical conductivity and aspect ratio, so it is effective in forming a conductive network, has the characteristic of increasing the contact force of active materials with a high surface area, and can improve cycle performance with high flexibility and tensile strength.
그러나, 이러한 우수한 성능에도 불구하고 비싼 가격(1.4만원/1g) 때문에 상용화에 어려움을 겪고 있는 상황이다. 따라서 단열벽 탄소나노튜브를 활용한 이차전지용 음극재를 이용하면서도 비용을 감소시킴으로써 상용화를 가능하도록 하기 위한 해결방안이 필요하다.However, despite its excellent performance, it is having difficulty commercializing it due to its high price (KRW 14,000/1g). Therefore, a solution is needed to enable commercialization by reducing costs while using anode materials for secondary batteries using insulating carbon nanotubes.
본 발명은 용량 증가를 위해 포함되는 실리콘 분말의 팽창을 억제하기 위해서 실리콘 분말의 표면에는 물성이 우수한 단일벽 탄소나노튜브를 코팅하거나, 음극재의 도전재로서는 단일벽 탄소나노튜브에 비해 상대적으로 가격이 저렴한 다중벽 탄소나노튜브를 추가로 사용하여 구조적으로 안정하면서도 전기전도도를 증가시키고, 또한, 비용을 감소시킴으로써 상용화가 가능토록 한 이차전지용 음극재 및 그 이차전지용 음극재의 제조방법을 제공하는 것을 목적으로 한다.In order to suppress the expansion of the silicon powder included in order to increase capacity, the present invention coats the surface of the silicon powder with single-walled carbon nanotubes, which have excellent physical properties, or uses a conductive material for the anode material that is relatively expensive compared to single-walled carbon nanotubes. The purpose is to provide a negative electrode material for secondary batteries and a method of manufacturing the negative electrode material for secondary batteries that can be commercialized by additionally using inexpensive multi-walled carbon nanotubes to increase electrical conductivity while being structurally stable, and also reduce costs. do.
본 발명의 일 측면에 따르면, 본 발명은 이차전지용 음극재에 있어서, 도전성 물질 분말, 및 플라즈마 표면 처리되어 있는 실리콘 분말을 포함하는 음극 활물질 분말, 상기 음극재의 도전성을 향상시키고, 상기 실리콘 분말의 팽창을 억제하기 위해 상기 실리콘 분말의 표면에 코팅되어 있는 단일벽 탄소나노튜브들 및 상기 음극 활물질 분말 및 상기 단일벽 탄소나노튜브들과 함께 바인더에 의하여 혼합되어 있는 다중벽 탄소나노튜브들을 포함하는 이차전지용 음극재를 제공한다.According to one aspect of the present invention, in a negative electrode material for a secondary battery, the present invention provides a negative electrode active material powder containing a conductive material powder and a plasma surface-treated silicon powder, improving the conductivity of the negative electrode material, and expanding the silicon powder. A secondary battery comprising single-walled carbon nanotubes coated on the surface of the silicon powder and multi-walled carbon nanotubes mixed with the negative electrode active material powder and the single-walled carbon nanotubes by a binder to suppress A cathode material is provided.
본 발명의 다른 측면에 따르면, 본 발명은 이차전지용 음극재의 제조방법에 있어서, 실리콘 분말에 플라즈마 표면 처리하는 단계, 상기 음극재의 도전성을 향상시키고, 상기 실리콘 분말의 팽창을 억제하기 위해, 상기 플라즈마 표면 처리된 실리콘 분말의 표면에 단일벽 탄소나노튜브들을 코팅하는 단계 및 상기 단일벽 탄소나노튜브들이 코팅된 실리콘 분말, 도전성 물질 분말 및 다중벽 탄소나노튜브들을 바인더와 함께 혼합하는 단계를 포함하는 이차전지용 음극재의 제조방법을 제공한다.According to another aspect of the present invention, the present invention relates to a method for manufacturing a negative electrode material for a secondary battery, comprising the steps of plasma surface treatment on silicon powder, improving conductivity of the negative electrode material and suppressing expansion of the silicon powder, the plasma surface A secondary battery comprising the steps of coating single-walled carbon nanotubes on the surface of the treated silicon powder and mixing the silicon powder coated with the single-walled carbon nanotubes, the conductive material powder, and the multi-walled carbon nanotubes with a binder. A method for manufacturing an anode material is provided.
본 발명에 따른 이차전지 음극재 및 그 이차전지용 음극재의 제조방법은 다음과 같은 효과가 있다.The secondary battery negative electrode material and the manufacturing method of the secondary battery negative electrode material according to the present invention have the following effects.
첫째, 단일벽 탄소나노튜브가 음극 활물질 중에서 일부 첨가되는 실리콘만을 둘러싸도록 해서 실리콘의 팽창을 억제함과 동시에 도전재 역할을 하기 때문에, 단일벽 탄소나노튜브의 사용량이 감소되므로 상용화가 가능할 만큼 비용이 절감되는 장점이 있다.First, since single-walled carbon nanotubes surround only the silicon that is partially added among the anode active materials, thereby suppressing the expansion of silicon and acting as a conductive material, the amount of single-walled carbon nanotubes used is reduced, making commercialization possible. There is an advantage in saving money.
둘째, 실리콘에 탄소나노튜브(다중벽 또는 단일벽)를 습식 또는 건식으로 코팅 시에 실리콘의 표면을 플라즈마로 전처리하여 실리콘과 단일벽 탄소나노튜브 사이의 계면 결합력을 향상시켜 코팅의 효율을 증가시키고, 전극 제조공정 후나 배터리 구동 중에도 실리콘 표면에서 탄소나노튜브의 탈리를 막아줄 수 있다.Second, when coating carbon nanotubes (multi-walled or single-walled) on silicon wet or dry, the surface of the silicon is pre-treated with plasma to improve the interfacial bonding between silicon and single-walled carbon nanotubes, thereby increasing coating efficiency. , it can prevent detachment of carbon nanotubes from the silicon surface even after the electrode manufacturing process or during battery operation.
도 1은 본 발명의 일 실시예에 따른 이차전지용 음극재가 도시된 사시도이다.Figure 1 is a perspective view showing a negative electrode material for a secondary battery according to an embodiment of the present invention.
도 2는 도 1에 따른 이차전지용 음극재 중에서 음극 활물질인 실리콘의 표면이 플라즈마 처리된 후 단일벽 탄소나노튜브가 코팅된 모습을 나타내는 모식도이다.FIG. 2 is a schematic diagram showing the surface of silicon, which is a negative electrode active material among the negative electrode materials for secondary batteries according to FIG. 1, being plasma treated and then coated with single-walled carbon nanotubes.
도 3은 도 1에 따른 이차전지용 음극재 중에서 음극 활물질, 도전재 및 바인더를 분리하여 나타낸 모식도이다.Figure 3 is a schematic diagram showing the negative electrode active material, conductive material, and binder separated from the negative electrode material for secondary batteries according to Figure 1.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by explaining preferred embodiments of the present invention with reference to the attached drawings.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 이차전지용 음극재(100)는 도전성 물질 분말(111) 및 실리콘 분말(112)을 포함하는 음극 활물질 분말(110), 단일벽 탄소나노튜브(Single-Walled Carbon NanoTube)(121) 및 다중벽 탄소나노튜브(Multi-Walled Carbon NanoTube)(122)를 포함하는 도전재(120), 바인더(130) 및 기재(140)를 포함한다. 하지만 본 발명은 이에 한정되지 않고, 상기 단일벽 탄소나노튜브만 상기 실리콘 분말(112)에 코팅해서 사용할 수도 있다. 즉, 본 실시예에서는 실리콘에 단일벽 탄소나노튜브를 코팅하고, 추가로 상기 다중벽 탄소나노튜브를 도전재로 사용하는 것을 예로 들지만, 상기 단일벽 탄소나노튜브만 실리콘 분말(112)에 코팅하고, 상기 다중벽 탄소나노튜브와 같은 별도의 다른 도전재를 포함하지 않은 상태에서 사용할 수도 있는 것이다. 도 1에서는 도시의 편의상 상기 음극 활물질 분말(110), 도전재(120) 및 바인더(130)를 상기 기재(140)와 분리하여 표현한다.Referring to Figures 1 to 3, the negative electrode material 100 for a secondary battery according to an embodiment of the present invention includes a negative electrode active material powder 110 containing conductive material powder 111 and silicon powder 112, and single-walled carbon. It includes a conductive material 120 including a nanotube (Single-Walled Carbon NanoTube) 121 and a multi-walled carbon nanotube (122), a binder 130, and a substrate 140. However, the present invention is not limited to this, and only the single-walled carbon nanotube may be used by coating the silicon powder 112. That is, in this embodiment, as an example, single-walled carbon nanotubes are coated on silicon and the multi-walled carbon nanotubes are additionally used as a conductive material, but only the single-walled carbon nanotubes are coated on the silicon powder 112. , it can also be used without containing any other conductive materials such as the multi-walled carbon nanotubes. In FIG. 1 , for convenience of illustration, the anode active material powder 110, the conductive material 120, and the binder 130 are shown separately from the substrate 140.
본 실시예에서 상기 도전성 물질(111)은 흑연인 것을 예로 든다. 그리고 상기 음극 활물질 분말(110)을 구성하는 흑연(111) 및 실리콘(112)은 분말 형태인 것을 예로 든다. 그리고 본 실시예에서 상기 실리콘 분말(112)은 마이크로 사이즈의 입자 또는 나노 사이즈의 입자인 것을 예로 든다.In this embodiment, the conductive material 111 is graphite. And the graphite 111 and silicon 112 constituting the negative electrode active material powder 110 are in powder form as an example. And in this embodiment, the silicon powder 112 is an example of micro-sized particles or nano-sized particles.
그리고 상기 실리콘 분말(112)은 표면이 플라즈마 처리(P)되어 있다. 이는 비도전성인 실리콘 분말(112)의 표면에 도전성을 갖는 상기 단일벽 탄소나노튜브(121)를 코팅할 때, 상기 실리콘 분말(112)과 상기 단일벽 탄소나노튜브(121) 간의 계면 결합력을 향상시켜서 상기 단일벽 탄소나노튜브(121)가 상기 실리콘(112)에 잘 코팅되고, 잘 분리되지 않도록 하기 위함이다.And the surface of the silicon powder 112 is plasma treated (P). This improves the interfacial bonding force between the silicon powder 112 and the single-walled carbon nanotube 121 when coating the conductive single-walled carbon nanotube 121 on the surface of the non-conductive silicon powder 112. This is to ensure that the single-walled carbon nanotubes 121 are well coated with the silicon 112 and are not easily separated.
상기 도전재(120)는 상기 이차전지용 음극재(100)의 도전성을 향상시키기 위해 포함된다. 상기 단일벽 탄소나노튜브(121)는 상기 실리콘 분말(112)의 표면에 코팅된다. 상기 단일벽 탄소나노튜브는(121)는 상기 이차전지용 음극재(100)의 도전성을 향상시키는 역할 및 상기 실리콘 분말(112)의 팽창을 억제하는 복합적인 역할을 수행한다.The conductive material 120 is included to improve the conductivity of the anode material 100 for a secondary battery. The single-walled carbon nanotube 121 is coated on the surface of the silicon powder 112. The single-walled carbon nanotube 121 performs a complex role of improving the conductivity of the anode material 100 for a secondary battery and suppressing expansion of the silicon powder 112.
상기 단일벽 탄소나노튜브는(121)는 상기 다중벽 탄소나노튜브(122)보다 지름이 작다. 따라서 상기 단일벽 탄소나노튜브(121)를 상기 실리콘 분말(112) 표면에 코팅하는 것이 상기 다중벽 탄소나노튜브(122)를 상기 실리콘 분말(112) 표면에 코팅하는 것 보다 코팅 두께를 얇게 할 수 있는 장점이 있다. 또한 상기 단일벽 탄소나노튜브는(121)는 상기 다중벽 탄소나노튜브(122)보다 유연하다. 따라서 상기 단일벽 탄소나노튜브는(121)는 마이크로 또는 나노 크기를 갖는 상기 실리콘 분말(112)의 표면에 코팅되기 유리한 장점이 있다.The single-walled carbon nanotube 121 has a smaller diameter than the multi-walled carbon nanotube 122. Therefore, coating the single-walled carbon nanotube 121 on the surface of the silicon powder 112 can make the coating thickness thinner than coating the multi-walled carbon nanotube 122 on the surface of the silicon powder 112. There is an advantage. Additionally, the single-walled carbon nanotubes 121 are more flexible than the multi-walled carbon nanotubes 122. Therefore, the single-walled carbon nanotube 121 has the advantage of being coated on the surface of the silicon powder 112 having a micro or nano size.
구체적으로 상기 단일벽 탄소나노튜브(121)는 도전성을 갖지 않는 실리콘 분말(112)에 코팅됨으로써 상기 이차전지용 음극재(100) 내에서 상기 실리콘 분말(112)이 배치되는 부분도 도전성을 갖도록 한다. 탄소나노튜브는 탄소 6개로 이루어진 육각형 모양이 서로 연결되어 내부에 공간이 있는 튜브 모양으로 형성된다.Specifically, the single-walled carbon nanotube 121 is coated with non-conductive silicon powder 112 so that the portion where the silicon powder 112 is disposed within the anode material 100 for a secondary battery also has conductivity. Carbon nanotubes are hexagonal shapes made of 6 carbon atoms connected to each other to form a tube with space inside.
본 실시예에서는 튜브 모양의 상기 단일벽 탄소나노튜브(121) 복수 개가 상기 실리콘 분말(112)의 외부 표면을 둘러싸도록 배치되는 것을 예로 든다. 하지만 본 발명은 이에 한정되지 않고 상기 육각형의 튜브 모양을 갖는 단일벽 탄소나노튜브(121)를 특정 방향(예를 들어 길이 방향)으로 절단하여 시트 형태로 펼쳐서 상기 실리콘 분말(112)에 코팅할 수도 있다. 상기 단일벽 탄소나노튜브(121)를 펼쳐서 상기 실리콘 분말(112)에 코팅할 경우 두께를 얇게 할 수 있고, 상기 실리콘 분말(112)과의 결합력도 향상될 수 있는 장점이 있다.In this embodiment, as an example, a plurality of tube-shaped single-walled carbon nanotubes 121 are arranged to surround the outer surface of the silicon powder 112. However, the present invention is not limited to this, and the single-walled carbon nanotube 121 having the hexagonal tube shape may be cut in a specific direction (for example, longitudinal direction), spread out in a sheet form, and coated with the silicon powder 112. there is. When the single-walled carbon nanotube 121 is spread and coated with the silicon powder 112, the thickness can be reduced and the bonding strength with the silicon powder 112 can be improved.
상기 단일벽 탄소나노튜브(121)는 상기 실리콘 분말(112)의 표면에 건식 또는 습식으로 코팅된다. 본 실시예에서는 상기 단일벽 탄소나노튜브(121)를 건식 전극 제조공정에 의해 상기 실리콘 분말(112)의 표면에 건식으로 코팅하는 것을 예로 든다. 상기 단일벽 탄소나노튜브(121)를 상기 실리콘 분말(112)의 표면에 습식으로 코팅할 경우, 상기 단일벽 탄소나노튜브(121)가 코팅된 실리콘 분말(112)을 추가적으로 건조해야 하는 공정이 필요하다. 또한 상기 추가적인 건조 시에는 상기 단일벽 탄소나노튜브(121)가 다시 뭉쳐지는 문제가 발생할 수 있다. 따라서 뭉쳐진 상기 단일벽 탄소나노튜브(121)를 다시 쪼개는 추가 공정이 필요하다. 그러므로 상기 단일벽 탄소나노튜브(121)를 상기 실리콘 분말(112)에 습식으로 코팅할 경우에는 건식으로 코팅하는 경우에 비해 시간적 효율 및 비용적 효율이 저하되는 단점이 있다.The single-walled carbon nanotube 121 is coated on the surface of the silicon powder 112 in a dry or wet manner. In this embodiment, the single-walled carbon nanotube 121 is dry-coated on the surface of the silicon powder 112 through a dry electrode manufacturing process. When the single-walled carbon nanotubes 121 are wet-coated on the surface of the silicon powder 112, a process is required to additionally dry the silicon powder 112 coated with the single-walled carbon nanotubes 121. do. Additionally, during the additional drying, a problem may occur in which the single-walled carbon nanotubes 121 aggregate again. Therefore, an additional process of splitting the aggregated single-walled carbon nanotubes 121 again is required. Therefore, when the single-walled carbon nanotube 121 is wet-coated with the silicon powder 112, there is a disadvantage in that time efficiency and cost-efficiency are reduced compared to when the single-walled carbon nanotube 121 is coated dry.
다만, 상기 단일벽 탄소나노튜브(121)를 상기 실리콘 분말(112)에 건식으로 코팅할 때는 상기 단일벽 탄소나노튜브(121)가 상기 실리콘 분말(112)에 잘 결합되기 어려운 문제가 있다. 하지만 본 실시예에 따른 이차전지용 음극재(100)는 상기 실리콘 분말(112)을 플라즈마 처리한 상태에서 상기 단일벽 탄소나노튜브(121)로 코팅하기 때문에 건식 공정을 통해서도 상기 단일벽 탄소나노튜브(121)가 상기 실리콘 분말(112)에 잘 코팅되고, 코팅된 후에도 잘 분리되지 않으므로 건식 코팅이 가능한 것이다.However, when dry coating the single-walled carbon nanotubes 121 with the silicon powder 112, there is a problem in that it is difficult for the single-walled carbon nanotubes 121 to be well bonded to the silicon powder 112. However, since the anode material 100 for a secondary battery according to this embodiment is coated with the single-walled carbon nanotubes 121 while the silicon powder 112 is plasma-treated, the single-walled carbon nanotubes (121) can be formed even through a dry process. 121) is well coated on the silicon powder 112 and is not easily separated even after coating, so dry coating is possible.
또한 상기 단일벽 탄소나노튜브(121)는 상기 실리콘 분말(112)을 전체적으로 둘러싼다. 이는 강한 강성을 갖는 단일벽 탄소나노튜브(121)가 상기 실리콘 분말(112)을 둘러싸는 구조를 가짐으로써 이차전지의 충전이 반복됨에 따라 실리콘 분말(112)이 팽창되는 것을 물리적인 힘으로 억제하기 위함이다. 상기 단일벽 탄소나노튜브(121)는 다발분해가 충분히 되었을 경우에 상기 다중벽 탄소나노튜브(122)에 비해 물성이 뛰어나기 때문에 이차전지의 반복적인 충방전에도 불구하고 기계적인 물성이 유지되므로, 상기 다중벽 탄소나노튜브(122)로 상기 실리콘 분말(112)을 코팅할 때보다 실리콘 분말(112)의 팽창 억제력 및 도전성을 지속적으로 유지할 수 있는 장점이 있다. 따라서, 본 실시예에 따른 이차전지용 음극재(100)는 흑연 분말(111)만을 포함하는 경우와 비교할 때, 실리콘 분말(112)을 포함하여 전지 용량이 현저히 증대되어 고속충전이 가능하면서도 사이클에 따른 용량의 유지율이 우수한 장점을 갖는다.Additionally, the single-walled carbon nanotube 121 entirely surrounds the silicon powder 112. This is because the single-walled carbon nanotube 121, which has strong rigidity, has a structure surrounding the silicon powder 112, so that expansion of the silicon powder 112 as the secondary battery is repeatedly charged is suppressed by physical force. It is for this purpose. When the single-walled carbon nanotube 121 is sufficiently decomposed, its physical properties are superior to those of the multi-walled carbon nanotube 122, so its mechanical properties are maintained despite repeated charging and discharging of the secondary battery. There is an advantage in that the expansion inhibition force and conductivity of the silicon powder 112 can be continuously maintained compared to coating the silicon powder 112 with the multi-walled carbon nanotube 122. Therefore, compared to the case where the anode material 100 for a secondary battery according to this embodiment contains only the graphite powder 111, the battery capacity is significantly increased by including the silicon powder 112, enabling high-speed charging and depending on the cycle. It has the advantage of excellent capacity retention rate.
다만, 상기 단일벽 탄소나노튜브(121)는 가격이 약 1g 당 1.4만원에 이를 정도로 고가이다. 따라서 상기 단일벽 탄소나노튜브(121)의 우수한 물성만을 고려하여 이차전지 음극재의 도전재로 상기 단일벽 탄소나노튜브(121)만을 사용할 경우 비용이 급격하게 증가하기 때문에 상용화가 어려운 문제가 있다. 따라서 본 실시예에서는 상기 단일벽 탄소나노튜브(121)를 상기 실리콘 분말(112)의 표면에만 코팅되도록 하여 실리콘 팽창에 효과적으로 작용시키고, 사용량을 감소시킴으로써 비용 절감을 효과를 갖기 때문에, 궁극적으로 단일벽 탄소나노튜브(121)를 이용한 이차전지 음극재(100)의 상용화가 이루어질 수 있도록 한다.However, the single-walled carbon nanotube 121 is expensive, reaching approximately 14,000 won per gram. Therefore, if only the single-walled carbon nanotubes 121 are used as a conductive material for secondary battery anode materials considering only the excellent physical properties of the single-walled carbon nanotubes 121, the cost increases rapidly, making commercialization difficult. Therefore, in this embodiment, the single-walled carbon nanotube 121 is coated only on the surface of the silicon powder 112 to effectively expand the silicon and reduce the amount of use, thereby reducing the cost. Ultimately, the single-walled carbon nanotube 121 is coated only on the surface of the silicon powder 112. This allows commercialization of secondary battery anode material 100 using carbon nanotubes 121.
그리고 상기 단일벽 탄소나노튜브(121)가 코팅되어 있는 실리콘 분말(112)은 상기 음극 활물질 분말(110) 중에서 상기 흑연 분말(111)보다 작은 중량퍼센트(wt%)를 갖는다. 하지만 본 실시예에서 상기 단일벽 탄소나노튜브(121)가 코팅되어 있는 실리콘 분말(112)은 상기 음극 활물질 분말(110) 전체 중량에 대해 5 중량퍼센트 이상 포함되는 것을 예로 든다. 하지만 본 발명은 이에 한정되지 않고, 상기 단일벽 탄소나노튜브(121)가 코팅되어 있는 실리콘 분말(112)은 상기 음극 활물질 분말(110) 전체 중량에 대해 5 중량퍼센트 내지 20 중량퍼센트 포함될 수 있다.And the silicon powder 112 coated with the single-walled carbon nanotube 121 has a smaller weight percent (wt%) than the graphite powder 111 in the anode active material powder 110. However, in this embodiment, the silicon powder 112 coated with the single-walled carbon nanotube 121 is included in an amount of 5% by weight or more based on the total weight of the negative electrode active material powder 110. However, the present invention is not limited to this, and the silicon powder 112 coated with the single-walled carbon nanotube 121 may be included in an amount of 5 to 20 weight percent based on the total weight of the negative electrode active material powder 110.
상기 다중벽 탄소나노튜브(122)는 상기 이차전지용 음극재(100)의 도전성을 향상시키기 위해 포함된다. 상기 다중벽 탄소나노튜브(122)는 상기 음극 활물질 분말(110) 및 상기 단일벽 탄소나노튜브(111)들과 함께 상기 바인더(130)에 의해 결합되어 있다.The multi-walled carbon nanotubes 122 are included to improve the conductivity of the anode material 100 for secondary batteries. The multi-walled carbon nanotubes 122 are combined with the negative electrode active material powder 110 and the single-walled carbon nanotubes 111 by the binder 130.
상기 흑연 분말(111)은 도전성을 갖고, 위에서 설명한 것처럼 상기 단일벽 탄소나노튜브(121)가 상기 실리콘 분말(112)을 둘러싸는 구조로 배치됨으로써 상기 실리콘 분말(112)이 배치되는 부분도 도전성을 갖는다. 따라서 상기 음극 활물질 분말(110)은 전체적으로 도전성을 가지므로 추가적인 도전재가 반드시 필요한 것은 아니다.The graphite powder 111 has conductivity, and as described above, the single-walled carbon nanotube 121 is arranged in a structure surrounding the silicon powder 112, so that the portion where the silicon powder 112 is placed is also conductive. have Therefore, since the negative electrode active material powder 110 has overall conductivity, an additional conductive material is not necessarily required.
하지만 상기 단일벽 탄소나노튜브(121) 이외에 별도의 도전재를 포함시킴으로써 이차전지용 음극재(100) 전체의 안정적인 도전성 확보가 가능하다. 이와 관련하여 본 실시예에서는 다중벽 탄소나노튜브(122)를 상기 음극 활물질 분말(110) 사이사이에 배치함으로써 상기 이차전지용 음극재(100)의 도전성을 향상시킬 수 있다. 이 때 상기 다중벽 탄소나노튜브(122)는 상기 단일벽 탄소나노튜브(121)에 비해 가격이 저렴하기 때문에 상기 다중벽 탄소나노튜브(122)를 다량 포함하더라도 상기 단일벽 탄소나노튜브(121)를 전체적으로 이용할 때보다 훨씬 낮은 비용으로 이차전지용 음극재(100) 생산이 가능하다.However, by including a separate conductive material in addition to the single-walled carbon nanotube 121, it is possible to secure stable conductivity of the entire negative electrode material 100 for a secondary battery. In this regard, in this embodiment, the conductivity of the negative electrode material 100 for a secondary battery can be improved by disposing the multi-walled carbon nanotubes 122 between the negative electrode active material powders 110. At this time, since the multi-walled carbon nanotubes 122 are cheaper than the single-walled carbon nanotubes 121, even if a large amount of the multi-walled carbon nanotubes 122 are included, the single-walled carbon nanotubes 121 It is possible to produce the anode material 100 for secondary batteries at a much lower cost than when using it as a whole.
상기 바인더(130)는 상기 음극 활물질 분말(110) 및 도전재(120)를 상기 기재(140)에 붙게 하는 역할을 한다. 즉, 상기 바인더(130)는 일종의 접착제 역할을 한다. 상기 바인더(130)는 불소함유 바인더 또는 SBR/CMC, PAA, PI계 바인더 등을 사용할 수 있다. SBR 바인더를 사용할 경우 증점제를 더 포함할 수 있다. 이때, 증점제는 카르복시 메틸 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시 에틸 셀룰로오스 및 하이드록시 프로필 셀룰로오스로 이루어진 군에서 1종 이상 선택될 수 있다.The binder 130 serves to adhere the anode active material powder 110 and the conductive material 120 to the substrate 140. In other words, the binder 130 functions as a type of adhesive. The binder 130 may be a fluorine-containing binder or a SBR/CMC, PAA, or PI-based binder. When using an SBR binder, an additional thickener may be included. At this time, the thickener may be one or more selected from the group consisting of carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
이하에서는 도 1 내지 3에 따른 이차전지용 음극재(100)의 제조방법에 대해 설명한다.Hereinafter, a method of manufacturing the anode material 100 for a secondary battery according to FIGS. 1 to 3 will be described.
먼저 이차전지용 음극재(100)를 제조하기 위해 필요한 소재를 준비한다. 즉, 도전성 물질 분말(111) 및 실리콘 분말(112)을 포함하는 음극 활물질(110), 단일벽 탄소나노튜브(121) 및 다중벽 탄소나노튜브(122)를 포함하는 도전재(120), 바인더(130) 및 기재(140)를 준비한다. 상기 도전성 물질 분말(111)은 흑연 분말(111)을 준비한다.First, prepare the materials necessary to manufacture the anode material 100 for a secondary battery. That is, a negative electrode active material 110 containing conductive material powder 111 and silicon powder 112, a conductive material 120 containing single-walled carbon nanotubes 121 and multi-walled carbon nanotubes 122, and a binder. (130) and base material (140) are prepared. The conductive material powder 111 is prepared from graphite powder 111.
다음으로 상기 실리콘 분말(112)을 플라즈마로 표면 처리한다. 그리고 상기 이차전지용 음극재(100)의 도전성을 향상시키고, 상기 실리콘 분말(112)의 팽창을 억제하기 위해서, 상기 플라즈마 표면 처리된 실리콘 분말(112)의 표면에 단일벽 탄소나노튜브들(121)을 코팅한다.Next, the silicon powder 112 is surface treated with plasma. And in order to improve the conductivity of the negative electrode material 100 for a secondary battery and suppress expansion of the silicon powder 112, single-walled carbon nanotubes 121 are formed on the surface of the plasma surface-treated silicon powder 112. Coat.
그리고 상기 단일벽 탄소나노튜브들(121)이 코팅된 실리콘 분말(112), 도전성 물질 분말(111) 및 다중벽 탄소나노튜브들(122)을 바인더(130)와 함께 혼합한다. 그리고 상기 혼합된 단일벽 탄소나노튜브들(121)이 코팅된 실리콘 분말(112), 도전성 물질 분말(111) 및 다중벽 탄소나노튜브들을 상기 기재(140) 상에 형성한다.Then, the silicon powder 112 coated with the single-walled carbon nanotubes 121, the conductive material powder 111, and the multi-walled carbon nanotubes 122 are mixed with the binder 130. Then, silicon powder 112 coated with the mixed single-walled carbon nanotubes 121, conductive material powder 111, and multi-walled carbon nanotubes are formed on the substrate 140.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허 청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.
본 발명을 이용하면 단일벽 탄소나노튜브가 음극 활물질 중에서 일부 첨가되는 실리콘만을 둘러싸도록 해서 실리콘의 팽창을 억제함과 동시에 도전재 역할을 하기 때문에, 단일벽 탄소나노튜브의 사용량이 감소되므로 상용화가 가능할 만큼 비용이 절감되는 이차전지용 음극재를 제조할 수 있다.Using the present invention, single-walled carbon nanotubes surround only the silicon that is partially added among the anode active materials, thereby suppressing the expansion of silicon and acting as a conductive material. Therefore, the amount of single-walled carbon nanotubes used is reduced, making commercialization possible. It is possible to manufacture anode materials for secondary batteries that reduce costs.
Claims (10)
- 이차전지용 음극재에 있어서,In the anode material for secondary batteries,도전성 물질 분말, 및 플라즈마 표면 처리되어 있는 실리콘 분말을 포함하는 음극 활물질 분말;Negative active material powder including conductive material powder and silicon powder subjected to plasma surface treatment;상기 음극재의 도전성을 향상시키고, 상기 실리콘 분말의 팽창을 억제하기 위해 상기 실리콘 분말의 표면에 코팅되어 있는 단일벽 탄소나노튜브들; 및Single-walled carbon nanotubes coated on the surface of the silicon powder to improve conductivity of the anode material and suppress expansion of the silicon powder; and상기 음극 활물질 분말 및 상기 단일벽 탄소나노튜브들과 함께 바인더에 의하여 혼합되어 있는 다중벽 탄소나노튜브들을 포함하는,Containing multi-walled carbon nanotubes mixed with the negative electrode active material powder and the single-walled carbon nanotubes by a binder,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 1에 있어서,In claim 1,상기 실리콘은,The silicone is,마이크로 입자 또는 나노 입자로 형성되는,Formed from microparticles or nanoparticles,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 2에 있어서,In claim 2,상기 단일벽 탄소나노튜브들은,The single-walled carbon nanotubes are,상기 실리콘 입자의 팽창을 물리적 힘으로 억제하기 위해서, 상기 실리콘 입자를 둘러싸도록 상기 실리콘 입자의 표면에 배치되는,In order to suppress the expansion of the silicon particles by physical force, disposed on the surface of the silicon particles to surround the silicon particles,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 3에 있어서,In claim 3,상기 단일벽 탄소나노튜브들은,The single-walled carbon nanotubes are,상기 실리콘 입자의 표면에 건식 또는 습식으로 코팅되는,Dry or wet coated on the surface of the silicon particles,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 1에 있어서,In claim 1,상기 도전성 물질 분말은 흑연 분말로 형성되는,The conductive material powder is formed of graphite powder,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 5에 있어서,In claim 5,상기 단일벽 탄소나노튜브들이 코팅되어 있는 실리콘 분말은,The silicon powder coated with the single-walled carbon nanotubes is,상기 음극 활물질에서 상기 흑연 분말보다 작은 중량퍼센트(wt%)를 갖되, 상기 음극 활물질 전체 중량에 대해 5중량퍼센트 이상 포함되는,The negative electrode active material has a weight percent (wt%) smaller than that of the graphite powder, but contains more than 5 weight percent based on the total weight of the negative electrode active material.이차전지용 음극재.Anode material for secondary batteries.
- 청구항 1에 있어서,In claim 1,상기 다중벽 탄소나노튜브들은,The multi-walled carbon nanotubes are,상기 도전성 물질 분말의 도전성을 향상시키기 위하여 상기 음극 활물질 분말의 사이사이에 배치되는,Disposed between the negative electrode active material powder to improve the conductivity of the conductive material powder,이차전지용 음극재.Anode material for secondary batteries.
- 청구항 1에 있어서,In claim 1,상기 단일벽 탄소나노튜브들의 사용량을 최소화하기 위하여, 상기 단일벽 탄소나노튜는 상기 실리콘 표면에만 배치되는,In order to minimize the amount of single-walled carbon nanotubes used, the single-walled carbon nanotubes are disposed only on the silicon surface.이차전지용 음극재.Anode material for secondary batteries.
- 이차전지용 음극재의 제조방법에 있어서,In the method of manufacturing a negative electrode material for a secondary battery,실리콘 분말에 플라즈마 표면 처리하는 단계;Plasma surface treatment of silicon powder;상기 음극재의 도전성을 향상시키고, 상기 실리콘의 팽창을 억제하기 위해, 상기 플라즈마 표면 처리된 실리콘 분말의 표면에 단일벽 탄소나노튜브들을 코팅하는 단계; 및coating single-walled carbon nanotubes on the surface of the plasma surface-treated silicon powder to improve conductivity of the anode material and suppress expansion of the silicon; and상기 단일벽 탄소나노튜브들이 코팅된 실리콘 분말, 도전성 물질 분말 및 다중벽 탄소나노튜브들을 바인더와 함께 혼합하는 단계를 포함하는,Comprising the step of mixing the silicon powder coated with the single-walled carbon nanotubes, the conductive material powder, and the multi-walled carbon nanotubes with a binder,이차전지용 음극재의 제조방법.Method for manufacturing anode materials for secondary batteries.
- 청구항 9에 있어서,In claim 9,상기 실리콘은, 마이크로 입자 또는 나노 입자로 형성되고,The silicon is formed of micro particles or nanoparticles,상기 단일벽 탄소나노튜브들은, 상기 실리콘 입자의 팽창을 물리적 힘으로 억제하기 위해서, 상기 실리콘 입자를 둘러싸도록 상기 실리콘 입자의 표면에 배치되고,The single-walled carbon nanotubes are disposed on the surface of the silicon particle to surround the silicon particle in order to suppress expansion of the silicon particle by physical force,상기 도전성 물질 분말은 흑연 분말로 형성되는,The conductive material powder is formed of graphite powder,이차전지용 음극재의 제조방법.Method for manufacturing anode materials for secondary batteries.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220145390A KR102651795B1 (en) | 2022-11-03 | 2022-11-03 | Anode material for secondary battery and method for manufacturing the same anode material for secondary battery |
KR10-2022-0145390 | 2022-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024096275A1 true WO2024096275A1 (en) | 2024-05-10 |
Family
ID=90480530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/012087 WO2024096275A1 (en) | 2022-11-03 | 2023-08-16 | Anode material for secondary battery, and method for preparing anode material for secondary battery |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102651795B1 (en) |
WO (1) | WO2024096275A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120044513A (en) * | 2010-10-28 | 2012-05-08 | 한국기초과학지원연구원 | Anode fabricating method for litium secondary battery via plazma reaction |
KR20190043955A (en) * | 2017-10-19 | 2019-04-29 | 삼성에스디아이 주식회사 | Electrode for rechargeable lithium battery and rechargeable lithium battery including same |
KR20210038364A (en) * | 2019-09-30 | 2021-04-07 | 주식회사 엘지화학 | Composite active material for negative electrode, method for manufacturing the same, and negative electrode comprising the same |
WO2021215830A1 (en) * | 2020-04-22 | 2021-10-28 | 주식회사 엘지에너지솔루션 | Negative electrode and secondary battery including same |
KR20220144605A (en) * | 2021-04-20 | 2022-10-27 | 에스케이온 주식회사 | Negative electrode and secondary battery comprising the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101968112B1 (en) | 2017-05-26 | 2019-04-11 | 한국화학연구원 | Negative-Electrode Materials for Secondary Batteries |
KR20210153997A (en) * | 2020-06-11 | 2021-12-20 | 주식회사 엘지에너지솔루션 | Negative electrode and secondary battery comprising the same |
KR20220059928A (en) * | 2020-11-03 | 2022-05-10 | 주식회사 나노신소재 | Slurry composition for negative electrode of lithium secondary battery |
KR20220109700A (en) * | 2021-01-29 | 2022-08-05 | 주식회사 엘지에너지솔루션 | Negative electrode and secondary battery comprising the same |
-
2022
- 2022-11-03 KR KR1020220145390A patent/KR102651795B1/en active IP Right Grant
-
2023
- 2023-08-16 WO PCT/KR2023/012087 patent/WO2024096275A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120044513A (en) * | 2010-10-28 | 2012-05-08 | 한국기초과학지원연구원 | Anode fabricating method for litium secondary battery via plazma reaction |
KR20190043955A (en) * | 2017-10-19 | 2019-04-29 | 삼성에스디아이 주식회사 | Electrode for rechargeable lithium battery and rechargeable lithium battery including same |
KR20210038364A (en) * | 2019-09-30 | 2021-04-07 | 주식회사 엘지화학 | Composite active material for negative electrode, method for manufacturing the same, and negative electrode comprising the same |
WO2021215830A1 (en) * | 2020-04-22 | 2021-10-28 | 주식회사 엘지에너지솔루션 | Negative electrode and secondary battery including same |
KR20220144605A (en) * | 2021-04-20 | 2022-10-27 | 에스케이온 주식회사 | Negative electrode and secondary battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR102651795B1 (en) | 2024-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Silicon-based nanomaterials for lithium-ion batteries | |
CN107978732B (en) | Pole piece and battery | |
US20190237753A1 (en) | Anode active material and anode for lithium-ion battery, method for preparing the anode active material, and lithium-ion battery | |
US20200395607A1 (en) | Composite electrode material, method for manufacturing the same, composite electrode comprising the same and lithium-based battery comprising the said composite electrode | |
CN106356519B (en) | Preparation method of expanded graphite/silicon @ carbon negative electrode material for lithium ion battery | |
WO2012020942A2 (en) | Cathode current collector coated with a primer and magnesium secondary battery including same | |
CN112002883A (en) | Silicon-based composite material for negative electrode active material, negative electrode plate and lithium ion battery | |
CN110148751B (en) | Silicon-carbon cathode and preparation method thereof | |
WO2015160127A1 (en) | Method for preparing silicon nanocomposite dispersion using plasma, and anode active material and lithium secondary battery using same | |
CN112510185A (en) | Silicon-carbon composite negative electrode material and manufacturing method thereof | |
KR20230145327A (en) | Manufacturing of silicone composite materials and cathode sheets containing the same | |
CN109817953A (en) | Prelithiation silicon-carbon cathode material and preparation method thereof and lithium ion battery | |
WO2009134047A1 (en) | Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same | |
Zhang et al. | Poly (3, 4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of lithium–sulfur batteries | |
CN103236528A (en) | Germanium-carbon-graphene composite material, and preparation method and application thereof | |
Wang et al. | Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries | |
Guo et al. | High-performance lithium-sulfur batteries with an IPA/AC modified separator | |
Zuo et al. | Recent achievements of free‐standing material and interface optimization in high‐energy‐density flexible lithium batteries | |
CN110364700B (en) | Silica composite material, preparation method thereof and lithium ion battery | |
Li et al. | Ultra-durable and flexible fibrous mild quasi-solid-state Ag–Zn batteries with Na 2 SO 4 electrolyte additive | |
CN108598442A (en) | A kind of preparation method of silicon substrate lithium ion battery negative material and thus obtained silicon substrate lithium ion battery negative material | |
Wang et al. | Development of flexible secondary alkaline battery with carbon nanotube enhanced electrodes | |
CN114864870A (en) | Negative pole piece and lithium ion battery comprising same | |
WO2015099324A1 (en) | Negative plate for lithium secondary battery | |
CN110176598A (en) | Negative electrode material of lithium ion battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885972 Country of ref document: EP Kind code of ref document: A1 |