WO2024096125A1 - Method for designing or producing bacterial preparation containing microorganism having desired pharmacological efficacy - Google Patents
Method for designing or producing bacterial preparation containing microorganism having desired pharmacological efficacy Download PDFInfo
- Publication number
- WO2024096125A1 WO2024096125A1 PCT/JP2023/039720 JP2023039720W WO2024096125A1 WO 2024096125 A1 WO2024096125 A1 WO 2024096125A1 JP 2023039720 W JP2023039720 W JP 2023039720W WO 2024096125 A1 WO2024096125 A1 WO 2024096125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- microorganism
- strain
- present disclosure
- csga
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 109
- 244000005700 microbiome Species 0.000 title claims abstract description 98
- 230000001580 bacterial effect Effects 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title abstract description 32
- 230000000144 pharmacologic effect Effects 0.000 title abstract description 10
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 160
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 27
- 230000014509 gene expression Effects 0.000 claims abstract description 23
- 238000012216 screening Methods 0.000 claims abstract description 11
- 241000588724 Escherichia coli Species 0.000 claims description 92
- 239000003814 drug Substances 0.000 claims description 32
- 230000004048 modification Effects 0.000 claims description 31
- 238000012986 modification Methods 0.000 claims description 31
- 230000000694 effects Effects 0.000 claims description 30
- 229940079593 drug Drugs 0.000 claims description 28
- 230000007721 medicinal effect Effects 0.000 claims description 23
- 201000010099 disease Diseases 0.000 claims description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 22
- 206010028980 Neoplasm Diseases 0.000 claims description 19
- 108090000790 Enzymes Proteins 0.000 claims description 17
- 102000004190 Enzymes Human genes 0.000 claims description 15
- 230000035772 mutation Effects 0.000 claims description 15
- 230000001225 therapeutic effect Effects 0.000 claims description 15
- 238000010362 genome editing Methods 0.000 claims description 12
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 201000011510 cancer Diseases 0.000 claims description 10
- 208000018737 Parkinson disease Diseases 0.000 claims description 9
- 108020004705 Codon Proteins 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000000857 drug effect Effects 0.000 claims description 6
- 230000004083 survival effect Effects 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 5
- 238000012790 confirmation Methods 0.000 claims description 4
- 108700039887 Essential Genes Proteins 0.000 claims description 3
- 208000002925 dental caries Diseases 0.000 claims description 3
- 230000036039 immunity Effects 0.000 claims description 3
- 239000003550 marker Substances 0.000 claims description 3
- 208000028169 periodontal disease Diseases 0.000 claims description 3
- 241000894006 Bacteria Species 0.000 abstract description 33
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 150000007523 nucleic acids Chemical class 0.000 description 47
- 238000012360 testing method Methods 0.000 description 43
- 210000004027 cell Anatomy 0.000 description 37
- 108091028043 Nucleic acid sequence Proteins 0.000 description 32
- 230000027455 binding Effects 0.000 description 30
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 27
- 239000011324 bead Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- 230000002950 deficient Effects 0.000 description 23
- 239000002609 medium Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- 102000008234 Toll-like receptor 5 Human genes 0.000 description 20
- 108010060812 Toll-like receptor 5 Proteins 0.000 description 20
- 125000003275 alpha amino acid group Chemical group 0.000 description 20
- 230000006870 function Effects 0.000 description 20
- 230000004913 activation Effects 0.000 description 19
- 101150112550 csgA gene Proteins 0.000 description 18
- 239000002773 nucleotide Substances 0.000 description 17
- 125000003729 nucleotide group Chemical group 0.000 description 17
- 102000053602 DNA Human genes 0.000 description 15
- 101150015947 fimH gene Proteins 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 15
- 108020004707 nucleic acids Proteins 0.000 description 15
- 230000006801 homologous recombination Effects 0.000 description 14
- 238000002744 homologous recombination Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 13
- 239000002953 phosphate buffered saline Substances 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 description 11
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 10
- 108020005004 Guide RNA Proteins 0.000 description 10
- 102100039019 Nuclear receptor subfamily 0 group B member 1 Human genes 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 229920001817 Agar Polymers 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 239000008272 agar Substances 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- 101150055700 csgB gene Proteins 0.000 description 8
- 238000006384 oligomerization reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 210000001072 colon Anatomy 0.000 description 7
- 101150101046 csgE gene Proteins 0.000 description 7
- 101150099331 csgG gene Proteins 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000000968 intestinal effect Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 108010040721 Flagellin Proteins 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 210000003608 fece Anatomy 0.000 description 6
- 101150030956 fimC gene Proteins 0.000 description 6
- 230000035931 haemagglutination Effects 0.000 description 6
- 230000002757 inflammatory effect Effects 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- SFHMWDMKUYVSQJ-VECBPBMLSA-N sibofimloc Chemical compound C1CN(C(=O)C)CCC21C1=CC(C#C[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)=CC=C1C1=CC=C(C#C[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)C=C12 SFHMWDMKUYVSQJ-VECBPBMLSA-N 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 description 5
- 229920000936 Agarose Polymers 0.000 description 5
- 241000700199 Cavia porcellus Species 0.000 description 5
- 206010009900 Colitis ulcerative Diseases 0.000 description 5
- 208000011231 Crohn disease Diseases 0.000 description 5
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 5
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 5
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 5
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 5
- 201000006704 Ulcerative Colitis Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000002619 cancer immunotherapy Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 206010009887 colitis Diseases 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108020001738 DNA Glycosylase Proteins 0.000 description 4
- 102000028381 DNA glycosylase Human genes 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 208000001089 Multiple system atrophy Diseases 0.000 description 4
- 241000605947 Roseburia Species 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 4
- 102000003802 alpha-Synuclein Human genes 0.000 description 4
- 108090000185 alpha-Synuclein Proteins 0.000 description 4
- 230000033590 base-excision repair Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 210000000936 intestine Anatomy 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 108700043045 nanoluc Proteins 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 229940121616 sibofimloc Drugs 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 108020004465 16S ribosomal RNA Proteins 0.000 description 3
- 208000035657 Abasia Diseases 0.000 description 3
- 241000606125 Bacteroides Species 0.000 description 3
- 241001221145 Bacteroides pyogenes Species 0.000 description 3
- 241000606123 Bacteroides thetaiotaomicron Species 0.000 description 3
- 241001202853 Blautia Species 0.000 description 3
- 241000335560 Blautia stercoris Species 0.000 description 3
- 101100446530 Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251) fhaE gene Proteins 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 3
- 241000194033 Enterococcus Species 0.000 description 3
- 101100242758 Escherichia coli papD gene Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108090000331 Firefly luciferases Proteins 0.000 description 3
- 201000002832 Lewy body dementia Diseases 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- 241001135217 Prevotella buccae Species 0.000 description 3
- 241000194019 Streptococcus mutans Species 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 101150090348 atpC gene Proteins 0.000 description 3
- 230000032770 biofilm formation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000000032 diagnostic agent Substances 0.000 description 3
- 229940039227 diagnostic agent Drugs 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000007876 drug discovery Methods 0.000 description 3
- 101150093898 fimD gene Proteins 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 210000002865 immune cell Anatomy 0.000 description 3
- 208000027866 inflammatory disease Diseases 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 241001227086 Anaerostipes Species 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 101100066782 Bacillus subtilis (strain 168) flgG gene Proteins 0.000 description 2
- 241001220439 Bacteroides coprocola Species 0.000 description 2
- 241000606124 Bacteroides fragilis Species 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- 241000335561 Blautia faecis Species 0.000 description 2
- 241000028537 Blautia luti Species 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 2
- 108091033409 CRISPR Proteins 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 230000007018 DNA scission Effects 0.000 description 2
- 102000010719 DNA-(Apurinic or Apyrimidinic Site) Lyase Human genes 0.000 description 2
- 108010063362 DNA-(Apurinic or Apyrimidinic Site) Lyase Proteins 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241001522957 Enterococcus casseliflavus Species 0.000 description 2
- 241000186588 Erysipelatoclostridium ramosum Species 0.000 description 2
- 241001531274 Faecalicatena contorta Species 0.000 description 2
- 241001109643 Faecalicatena fissicatena Species 0.000 description 2
- 241001112693 Lachnospiraceae Species 0.000 description 2
- 241001607451 Oscillospiraceae Species 0.000 description 2
- 241000606210 Parabacteroides distasonis Species 0.000 description 2
- 241000030714 Parabacteroides goldsteinii Species 0.000 description 2
- 241000204306 Parabacteroides merdae Species 0.000 description 2
- 241000192001 Pediococcus Species 0.000 description 2
- 241000425347 Phyla <beetle> Species 0.000 description 2
- 241000605862 Porphyromonas gingivalis Species 0.000 description 2
- 241001135241 Porphyromonas macacae Species 0.000 description 2
- 241000605861 Prevotella Species 0.000 description 2
- 241001528479 Pseudoflavonifractor capillosus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 241000191963 Staphylococcus epidermidis Species 0.000 description 2
- 241000194026 Streptococcus gordonii Species 0.000 description 2
- 241000194024 Streptococcus salivarius Species 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 101710172430 Uracil-DNA glycosylase inhibitor Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 208000027503 bloody stool Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 101150095724 csgC gene Proteins 0.000 description 2
- 101150031345 csgD gene Proteins 0.000 description 2
- 101150044423 csgF gene Proteins 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 101150112067 flgE gene Proteins 0.000 description 2
- 101150010879 flgK gene Proteins 0.000 description 2
- 101150001815 flgM gene Proteins 0.000 description 2
- 101150062225 flgN gene Proteins 0.000 description 2
- 101150094936 fliD gene Proteins 0.000 description 2
- 101150092645 fliF gene Proteins 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 244000005709 gut microbiome Species 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000035861 hematochezia Diseases 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 210000004347 intestinal mucosa Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 101150091444 ompR gene Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000004853 protein function Effects 0.000 description 2
- 101150062728 qseC gene Proteins 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 101150065786 sigD gene Proteins 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 101150079130 sopB gene Proteins 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 101150075472 ycf27 gene Proteins 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 241001156739 Actinobacteria <phylum> Species 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- 241000701474 Alistipes Species 0.000 description 1
- 241001135230 Alistipes putredinis Species 0.000 description 1
- 241000246079 Anaerorhabdus furcosa Species 0.000 description 1
- 241001522777 Anaerostipes butyraticus Species 0.000 description 1
- 241001505572 Anaerostipes caccae Species 0.000 description 1
- 241000100356 Anaerostipes rhamnosivorans Species 0.000 description 1
- 241000428313 Anaerotruncus colihominis Species 0.000 description 1
- 240000002339 Anredera cordifolia Species 0.000 description 1
- 101100281124 Aquifex aeolicus (strain VF5) flaA gene Proteins 0.000 description 1
- 208000011594 Autoinflammatory disease Diseases 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 241001674039 Bacteroides acidifaciens Species 0.000 description 1
- 241000168635 Bacteroides barnesiae Species 0.000 description 1
- 241000217846 Bacteroides caccae Species 0.000 description 1
- 241000859775 Bacteroides caecicola Species 0.000 description 1
- 241000685477 Bacteroides caecigallinarum Species 0.000 description 1
- 241001032450 Bacteroides cellulosilyticus Species 0.000 description 1
- 241000801600 Bacteroides clarus Species 0.000 description 1
- 241000545821 Bacteroides coprophilus Species 0.000 description 1
- 241001631983 Bacteroides coprosuis Species 0.000 description 1
- 241001105998 Bacteroides dorei Species 0.000 description 1
- 241001135322 Bacteroides eggerthii Species 0.000 description 1
- 241000337516 Bacteroides faecichinchillae Species 0.000 description 1
- 241000402140 Bacteroides finegoldii Species 0.000 description 1
- 241000801629 Bacteroides fluxus Species 0.000 description 1
- 241000514947 Bacteroides galacturonicus Species 0.000 description 1
- 241000859740 Bacteroides gallinaceum Species 0.000 description 1
- 241000168642 Bacteroides gallinarum Species 0.000 description 1
- 241001567982 Bacteroides graminisolvens Species 0.000 description 1
- 241001109645 Bacteroides helcogenes Species 0.000 description 1
- 241001135237 Bacteroides heparinolyticus Species 0.000 description 1
- 241000047484 Bacteroides intestinalis Species 0.000 description 1
- 241001195773 Bacteroides massiliensis Species 0.000 description 1
- 241001122266 Bacteroides nordii Species 0.000 description 1
- 241000801630 Bacteroides oleiciplenus Species 0.000 description 1
- 241001135228 Bacteroides ovatus Species 0.000 description 1
- 241000828416 Bacteroides paurosaccharolyticus Species 0.000 description 1
- 241001220441 Bacteroides plebeius Species 0.000 description 1
- 241000859824 Bacteroides propionicifaciens Species 0.000 description 1
- 241001652281 Bacteroides rodentium Species 0.000 description 1
- 241000168636 Bacteroides salanitronis Species 0.000 description 1
- 241000911892 Bacteroides sartorii Species 0.000 description 1
- 241001148536 Bacteroides sp. Species 0.000 description 1
- 241000606219 Bacteroides uniformis Species 0.000 description 1
- 241000606215 Bacteroides vulgatus Species 0.000 description 1
- 241000115153 Bacteroides xylanisolvens Species 0.000 description 1
- 241000514942 Bacteroides xylanolyticus Species 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- 241001308653 Bariatricus Species 0.000 description 1
- 241000985922 Bariatricus massiliensis Species 0.000 description 1
- 241000927512 Barnesiella Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241001134770 Bifidobacterium animalis Species 0.000 description 1
- 241000186012 Bifidobacterium breve Species 0.000 description 1
- 241000186560 Blautia coccoides Species 0.000 description 1
- 241000194002 Blautia hansenii Species 0.000 description 1
- 241001464894 Blautia producta Species 0.000 description 1
- 241001051189 Blautia schinkii Species 0.000 description 1
- 241001038648 Blautia wexlerae Species 0.000 description 1
- 241001453642 Borrelia johnsonii Species 0.000 description 1
- 241000042459 Byturus aestivus Species 0.000 description 1
- 241000606177 Campylobacter ureolyticus Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241000700112 Chinchilla Species 0.000 description 1
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 1
- 241000904825 Clostridiales bacterium Species 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241000193171 Clostridium butyricum Species 0.000 description 1
- 241000193464 Clostridium sp. Species 0.000 description 1
- 241000193470 Clostridium sporogenes Species 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 241001262170 Collinsella aerofaciens Species 0.000 description 1
- 241001464948 Coprococcus Species 0.000 description 1
- 241000186031 Corynebacteriaceae Species 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 102000005381 Cytidine Deaminase Human genes 0.000 description 1
- 108010031325 Cytidine deaminase Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000000311 Cytosine Deaminase Human genes 0.000 description 1
- 108010080611 Cytosine Deaminase Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241001535083 Dialister Species 0.000 description 1
- 241001535058 Dialister pneumosintes Species 0.000 description 1
- 241000605721 Dichelobacter nodosus Species 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 208000004232 Enteritis Diseases 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000194030 Enterococcus gallinarum Species 0.000 description 1
- 241000194029 Enterococcus hirae Species 0.000 description 1
- 241000520134 Enterococcus mundtii Species 0.000 description 1
- 241000089032 Erysipelatoclostridium Species 0.000 description 1
- 241000609971 Erysipelotrichaceae Species 0.000 description 1
- 241000711946 Erysipelotrichaceae bacterium Species 0.000 description 1
- 101100110385 Escherichia coli (strain K12) atpB gene Proteins 0.000 description 1
- 241000186394 Eubacterium Species 0.000 description 1
- 241000520740 Eubacterium callanderi Species 0.000 description 1
- 241000186398 Eubacterium limosum Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000605980 Faecalibacterium prausnitzii Species 0.000 description 1
- 241000870027 Faecalicatena Species 0.000 description 1
- 241000605896 Fibrobacter succinogenes Species 0.000 description 1
- 241001076388 Fimbria Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001453172 Fusobacteria Species 0.000 description 1
- 241000605986 Fusobacterium nucleatum Species 0.000 description 1
- 241001185600 Gemmiger Species 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000589316 Homo sapiens N-cym protein Proteins 0.000 description 1
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 1
- 241001674997 Hungatella hathewayi Species 0.000 description 1
- 241001134638 Lachnospira Species 0.000 description 1
- 241000904817 Lachnospiraceae bacterium Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 208000030289 Lymphoproliferative disease Diseases 0.000 description 1
- 241000043361 Megamonas hypermegale Species 0.000 description 1
- 241000604449 Megasphaera Species 0.000 description 1
- 241001529548 Megasphaera cerevisiae Species 0.000 description 1
- 241000604448 Megasphaera elsdenii Species 0.000 description 1
- 241000684404 Megasphaera hexanoica Species 0.000 description 1
- 241000440950 Megasphaera indica Species 0.000 description 1
- 241000352296 Megasphaera massiliensis Species 0.000 description 1
- 241001116693 Megasphaera micronuciformis Species 0.000 description 1
- 241000769329 Megasphaera paucivorans Species 0.000 description 1
- 241000769318 Megasphaera sueciensis Species 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 241000509622 Mitsuokella multacida Species 0.000 description 1
- 101100153382 Mus musculus Tlr5 gene Proteins 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 102100032847 N-cym protein Human genes 0.000 description 1
- 241000785902 Odoribacter Species 0.000 description 1
- 241001135232 Odoribacter splanchnicus Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 208000025157 Oral disease Diseases 0.000 description 1
- 241000843248 Oscillibacter Species 0.000 description 1
- 241001042460 Oscillibacter valericigenes Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000160321 Parabacteroides Species 0.000 description 1
- 241000543747 Parabacteroides johnsonii Species 0.000 description 1
- 241001267970 Paraprevotella Species 0.000 description 1
- 241001267951 Parasutterella Species 0.000 description 1
- 241000191998 Pediococcus acidilactici Species 0.000 description 1
- 101100029151 Pediococcus acidilactici pedD gene Proteins 0.000 description 1
- 241001331799 Pediococcus cellicola Species 0.000 description 1
- 241001117188 Pediococcus claussenii Species 0.000 description 1
- 241001331797 Pediococcus ethanolidurans Species 0.000 description 1
- 241000186191 Pediococcus inopinatus Species 0.000 description 1
- 241000529920 Pediococcus parvulus Species 0.000 description 1
- 241000191996 Pediococcus pentosaceus Species 0.000 description 1
- 241000324734 Pediococcus stilesii Species 0.000 description 1
- 241001464921 Phascolarctobacterium Species 0.000 description 1
- 241001135211 Porphyromonas asaccharolytica Species 0.000 description 1
- 241001135213 Porphyromonas endodontalis Species 0.000 description 1
- 241001135215 Prevotella bivia Species 0.000 description 1
- 241001135206 Prevotella buccalis Species 0.000 description 1
- 241001135208 Prevotella corporis Species 0.000 description 1
- 241001135209 Prevotella denticola Species 0.000 description 1
- 241001135219 Prevotella disiens Species 0.000 description 1
- 241001135221 Prevotella intermedia Species 0.000 description 1
- 241000605951 Prevotella loescheii Species 0.000 description 1
- 241001135223 Prevotella melaninogenica Species 0.000 description 1
- 241001135261 Prevotella oralis Species 0.000 description 1
- 241001135262 Prevotella oris Species 0.000 description 1
- 241000605860 Prevotella ruminicola Species 0.000 description 1
- 241001135264 Prevotella veroralis Species 0.000 description 1
- 241000186429 Propionibacterium Species 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- 241001495182 Pseudobacteroides cellulosolvens Species 0.000 description 1
- 241000280572 Pseudoflavonifractor Species 0.000 description 1
- 206010037596 Pyelonephritis Diseases 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 241001135260 Rikenella microfusus Species 0.000 description 1
- 241000872832 Roseburia hominis Species 0.000 description 1
- 241000398180 Roseburia intestinalis Species 0.000 description 1
- 241001394655 Roseburia inulinivorans Species 0.000 description 1
- 241000606008 Ruminobacter amylophilus Species 0.000 description 1
- 241000192031 Ruminococcus Species 0.000 description 1
- 241000134861 Ruminococcus sp. Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000606178 Sebaldella termitidis Species 0.000 description 1
- 101710188689 Small, acid-soluble spore protein 1 Proteins 0.000 description 1
- 101710188693 Small, acid-soluble spore protein 2 Proteins 0.000 description 1
- 101710166422 Small, acid-soluble spore protein A Proteins 0.000 description 1
- 101710166404 Small, acid-soluble spore protein C Proteins 0.000 description 1
- 101710174019 Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101710174017 Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101710174574 Small, acid-soluble spore protein gamma-type Proteins 0.000 description 1
- 241000202917 Spiroplasma Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000191981 Streptococcus cristatus Species 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000123710 Sutterella Species 0.000 description 1
- 241001135235 Tannerella forsythia Species 0.000 description 1
- 102100036407 Thioredoxin Human genes 0.000 description 1
- 108091028113 Trans-activating crRNA Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 101710126013 Type 1 fimbrin D-mannose specific adhesin Proteins 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 241001261005 Verrucomicrobia Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 241000514948 [Bacteroides] pectinophilus Species 0.000 description 1
- 241000342876 [Clostridium] asparagiforme Species 0.000 description 1
- 241001246487 [Clostridium] bolteae Species 0.000 description 1
- 241000985257 [Clostridium] cocleatum Species 0.000 description 1
- 241000985249 [Clostridium] indolis Species 0.000 description 1
- 241000193462 [Clostridium] innocuum Species 0.000 description 1
- 241001098250 [Clostridium] lavalense Species 0.000 description 1
- 241000685809 [Clostridium] saccharogumia Species 0.000 description 1
- 241001656794 [Clostridium] saccharolyticum Species 0.000 description 1
- 241001147796 [Clostridium] spiroforme Species 0.000 description 1
- 241000193450 [Clostridium] symbiosum Species 0.000 description 1
- 241001531273 [Eubacterium] eligens Species 0.000 description 1
- 241001531197 [Eubacterium] hallii Species 0.000 description 1
- 241001531188 [Eubacterium] rectale Species 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 1
- 229940118852 bifidobacterium animalis Drugs 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 238000003235 crystal violet staining Methods 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 208000010643 digestive system disease Diseases 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 101150043770 fimA gene Proteins 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 101150060377 flhD gene Proteins 0.000 description 1
- 101150038062 fliC gene Proteins 0.000 description 1
- 101150024911 fliT gene Proteins 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000007236 host immunity Effects 0.000 description 1
- 102000045719 human TLR5 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229940001882 lactobacillus reuteri Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 208000030194 mouth disease Diseases 0.000 description 1
- 101150056718 mprA gene Proteins 0.000 description 1
- 101150035917 mreB gene Proteins 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 101150014100 pilA gene Proteins 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000455 protein structure prediction Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 101150076849 rpoS gene Proteins 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 101150076229 snpA gene Proteins 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013520 translational research Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
Definitions
- the present disclosure relates to methods for designing or producing bacterial formulations that contain microorganisms that have a desired therapeutic effect in a subject.
- (Item 1) A method for designing or producing a bacterial formulation comprising a microorganism having a desired therapeutic effect in a subject, comprising: selecting or screening at least one gene associated with said therapeutic effect; modifying the gene; selecting a microorganism in which the expression level of the gene and/or the function of the protein produced by the gene is modified; A step of confirming whether the selected microorganism has the desired medicinal effect and selecting a microorganism having the medicinal effect; and optionally generating a population comprising said microorganism having said desired therapeutic effect.
- the method according to item 1, wherein the selection or screening of the gene comprises screening using a database and/or a genome library.
- the confirmation of the desired drug effect includes utilization of a drug gene resistance system, an enzyme activity based on the drug effect, a survival activity based on the drug effect, and/or a fixability of the microorganism in the subject. (Item 9) 14.
- the genes include genes associated with at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease. (Item 10) 15. The method according to any one of items 1 to 14, wherein the microorganism comprises Escherichia coli.
- microorganisms that have been modified in a specific manner, it is possible to design or produce bacterial preparations that contain microorganisms that have a desired medicinal effect in a subject, and this also makes it possible to efficiently produce bacterial preparations for various diseases.
- the efficacy of a drug it is possible to adjust the strength of the drug's efficacy (and its duration in the body), which not only improves the therapeutic effect but also makes it easier to predict the drug's efficacy in humans. If the strength of the drug's efficacy can be clearly improved, it will also have the effect of making it easier to set the endpoints of clinical trials.
- the strength of the drug's efficacy can be stabilized by improving its efficacy and suppressing the emergence of revertant mutants, it will be possible to reduce variation between production lots and make it easier to set biomarkers during clinical trials.
- FIG. 1-1 is a graph showing the results of a growth test of base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- FIG. 1-2 is a graph showing the results of a Congo Red staining experiment of CsgA in base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- 1-3 show the results of Western blotting of CsgA in base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- 1-4 are transmission electron microscope images of base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- FIG. 1-5 show the results of a Congo Red staining test of CsgA oligomers and a CsgA-CsgB intercellular complementation test for base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- Figures 1-6 show the results of inhibiting CsgA oligomerization in base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- Figures 1-7 show the results of inhibiting CsgA oligomerization in base-edited E. coli obtained by a method according to one embodiment of the present disclosure.
- Figures 1-8 show the results of inhibiting CsgA oligomerization in base-edited E.
- Figure 2-1 shows the genome editing sites of a microorganism obtained by a method in one embodiment of the present disclosure, its growth curve, and fimH binding strength.
- Figure 2-2 is a graph showing the results of a mannose bead binding test for the genome-edited strains BP3019, BP3021, and BP3026 obtained by a method according to one embodiment of the present disclosure.
- Figure 2-3 is a graph showing the results of a mannose bead binding test for the BP3019, BP3021, and BP3026 strains, which are genome-edited strains according to one embodiment of the present disclosure, compared to Sibofimloc in one embodiment of the present disclosure.
- Figures 2-4 are graphs showing the results of adhesion and invasion tests of genome-edited strains obtained by a method according to an embodiment of the present disclosure against T84 cells.
- Figure 2-5 is a graph showing the DAI score when the BP3026 strain, a genome-edited strain obtained by a method according to one embodiment of the present disclosure, was administered to mice.
- Figure 2-6 is a graph showing the measurement results of intestinal length when the BP3026 strain, a genome-edited strain obtained by a method according to one embodiment of the present disclosure, was administered to mice.
- FIG. 2-7 is a graph showing the results of an intestinal microbiota analysis according to one embodiment of the present disclosure.
- Figure 2-8 is a graph showing the results of a mannose bead binding test using a genome-edited strain of a two-component regulatory system gene group in one embodiment of the present disclosure.
- FIG. 3-1 shows the results of genome editing sites in a microorganism obtained by a method according to one embodiment of the present disclosure and its TLR5 activation ability.
- FIG. 3-3 is a photograph of electrophoresis confirming the expression of Flagellin in a microorganism obtained by the method according to one embodiment of the present disclosure.
- FIG. 4-1 is a graph showing the results of evaluating the biofilm formation of microorganisms obtained by a method according to one embodiment of the present disclosure.
- microorganisms refers to minute living organisms, including prokaryotes such as bacteria and actinomycetes, eukaryotes such as yeast and mold, lower algae, fungi, viruses, and even individual, separate cells of multicellular organisms such as animals and plants. Microorganisms also include natural microorganisms, as well as those cultured and artificially propagated, mutated microorganisms, and microorganisms artificially modified by transformation or other techniques.
- modification of a gene means that a nucleotide (e.g., dC) on a DNA strand is converted to another nucleotide (e.g., dT, dA, or dG) or deleted, or that a nucleotide or nucleotide sequence is inserted or added between certain nucleotides on a DNA strand.
- “modification” includes the substitution or deletion of one or more nucleotides at a targeted site of double-stranded DNA, or the insertion or addition of one or more nucleotides at a targeted site of double-stranded DNA.
- the double-stranded DNA to be modified is not particularly limited, but is preferably genomic DNA.
- the "targeted site" of double-stranded DNA means all or a part of the “target nucleotide sequence” that the nucleic acid sequence recognition module specifically recognizes and binds to, or the vicinity of the target nucleotide sequence (either one or both of the 5' upstream and 3' downstream), and the range can be appropriately adjusted between one base and several hundred bases in length depending on the purpose.
- gene is interpreted in the broadest sense and refers to a character string of nucleic acid or a sequence of a substance that carries it (e.g., nucleotides such as DNA or RNA), and preferably refers to a sequence or a substance that contains a sequence that exerts some function, and includes, for example, those that code for proteins, as well as adjacent transcriptional regulatory regions such as promoters and enhancers that control the timing and amount of transcription of the transcript as a transcription factor binding site, and adjacent transcriptional regulatory regions such as promoters and enhancers that control the timing and amount of transcription of the transcript as a transcription factor binding site.
- bacterial preparation refers to a powder or liquid preparation containing a group of useful microorganisms, which is expected to exert a medicinal effect alone or in combination with other substances.
- examples of the form of the bacterial preparation include, but are not limited to, oral capsules, tablets (for oral use), enema preparations, gargling liquids, and skin smears (ointments).
- the bacterial preparation may contain one or more types of microorganisms.
- pharmaceutical effect is interpreted in the broadest sense and refers to any biological effect brought about on a subject.
- a medicinal effect can be recognized as a change in some biological phenomenon or phenomenon caused by a biological effect in a subject. Typically, this includes, but is not limited to, improvement of a disease state and maintenance or improvement of health status through biological components such as probiotics.
- gene associated with drug efficacy refers to a gene that has some direct or indirect effect on drug efficacy.
- a gene associated with drug efficacy may be, for example, a gene associated with a disease, or a gene associated with a function that maintains health, such as immune function.
- genes associated with drug efficacy include the following genes: (1) Causative gene of a disease ⁇ a biosynthetic gene for a substance toxic to the host (treatment method: a strain of bacteria that has been knocked out and rendered non-functional is administered into the body to replace the toxic bacteria); (2) Biosynthetic genes of substances that contribute to treatment or are beneficial to health ⁇ enzyme genes derived from bacteria that can treat diseases or alleviate symptoms (treatment method: improving the expression level or enzyme activity of the gene); (3) Genes that degrade disease-causing or toxic substances: Enzyme genes derived from bacteria that can decompose or neutralize substances that are toxic to the host (treatment method: improve the expression level or enzyme activity of the gene); and (4) Genes that improve the host's immunity by improving immune activity or vaccine effect: Antimicrobial drugs (single or combined agents) and cancer immunotherapy (single or combined agents) are envisioned (treatment method: improve the expression level or enzyme activity of the gene).
- design when referring to, for example, a target microorganism or bacterial preparation, means to newly design it or provide a blueprint for it.
- function of a protein refers not only to the main function of the protein, but also to any function exerted by the protein.
- modifying the function of a gene refers to the act of directly or indirectly changing the function of the original gene before modification.
- a method for designing or producing a bacterial preparation containing a microorganism having a desired medicinal effect in a subject comprising the steps of selecting or screening at least one gene associated with the medicinal effect, modifying the gene, selecting a microorganism in which the expression level of the gene is modified and/or the function of a protein produced by the gene is modified, confirming whether the selected microorganism has the desired medicinal effect, selecting a microorganism having the medicinal effect, and, if necessary, generating a population containing the microorganism having the desired medicinal effect.
- the method of the present disclosure is useful as a design technique for a bacterial preparation with a desired effect.
- the step of selecting or screening at least one gene associated with a medicinal effect can be carried out as follows.
- the step of selecting at least one gene associated with a medicinal effect can be carried out, for example, by using a genomic library to compare clones that have each gene with clones that do not have the gene to select clones that have the desired medicinal effect.
- the target gene for the target disease and the bacteria are often genes whose correspondence between the two has been validated, and can be selected from database information such as literature, academic societies, and patents. Therefore, in one embodiment, based on the above information sources, at least one gene related to drug efficacy can be selected or screened using a so-called "reverse translational research" method that searches for drug discovery targets starting from large-scale human clinical findings. When screening from a genome library, it is necessary to efficiently verify the relationship with the disease by determining whether the hit target gene has been validated in human clinical trials.
- the process of selecting or screening at least one gene related to drug efficacy includes, for example, searching for drug efficacy-related genes in silico using a database based on information from literature, academic societies, patents, etc.
- the step of modifying a gene can be carried out by any method.
- Representative methods include classical mutation methods such as ultraviolet light, conventional molecular biology techniques, and genome editing techniques, and so-called non-cutting genome editing (genome editing that does not involve cutting the target nucleic acid molecule) can be preferably used.
- the modification in the method of the present disclosure may include point mutations in the target gene, as well as the insertion of a gene related to drug efficacy.
- the step of selecting microorganisms with altered gene expression levels and/or altered functions of proteins produced by the genes can be achieved by any test method related to the function or by testing microorganisms with the function.
- test method related to the function or by testing microorganisms with the function.
- Such techniques include measurement of the amount of target gene transcription (RNA amount), analysis of protein expression levels (including specific staining of target proteins), measurement of transcription activity such as reporter assays, migration tests, examination of growth curves (aerobic, anaerobic), and/or morphological observations under an electron microscope.
- the step of determining whether the selected microorganism has the desired efficacy and selecting the microorganism having the efficacy can be performed by any method capable of directly or indirectly measuring efficacy.
- Such techniques can include measurement of enzyme activity, adhesion tests to human or animal cells and tissues, analysis of bacterial interactions (e.g., biofilms), and/or behavior, biological response evaluation, or efficacy evaluation after administration to animals (wild type or disease model).
- the step of generating a population containing the microorganism having the desired therapeutic effect can use any method that can grow and/or culture the microorganism.
- the selection of microorganisms with medicinal properties can be performed by using a drug gene resistance system, an essential gene (auxotrophic marker), a gene that encodes an enzyme that catalyzes a color reaction (e.g., the lacZ gene), or a temperature tolerance method.
- an essential gene auxotrophic marker
- a gene that encodes an enzyme that catalyzes a color reaction e.g., the lacZ gene
- a temperature tolerance method e.g., a temperature tolerance method.
- confirmation of the desired pharmacological effect of the microorganism obtained by the method of the present disclosure can include the use of a drug gene resistance system, an enzyme activity based on the pharmacological effect, a survival activity based on the pharmacological effect, a migration activity of the microorganism, a fixability of the microorganism in the subject, a cell adhesion activity of the microorganism, an adhesion activity of the microorganism to a mucin layer, a fixation activity of the microorganism in an animal tissue, etc.
- the conditions for generating a population containing a microorganism having a desired therapeutic effect are not particularly limited as long as the microorganism can grow and/or amplify.
- the conditions for generating a population containing a microorganism having a desired therapeutic effect are not particularly limited as long as the microorganism can grow and/or amplify.
- the at least one gene related to medicinal efficacy can be selected based on examples of "disease-bacteria" combinations that contribute to the treatment of a disease by modifying the function of a bacterium presumed to be the cause of the disease.
- the at least one gene related to medicinal efficacy can include a gene related to at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease.
- the at least one gene related to the medicinal effect can include, for example, a gene related to at least one disease or function selected from the group consisting of various cancers (in combination with immune checkpoint inhibitors), digestive diseases (inflammatory bowel diseases (irritable bowel syndrome, Crohn's disease, etc.)), neurodegenerative diseases (Parkinson's disease, etc.), psychiatric diseases, autoimmune diseases, infectious diseases, metabolic diseases, respiratory diseases, liver diseases, cardiovascular diseases, oral diseases, skin diseases, and vaginitis.
- various cancers in combination with immune checkpoint inhibitors
- digestive diseases inflammatory bowel diseases (irritable bowel syndrome, Crohn's disease, etc.)
- neurodegenerative diseases Parkinson's disease, etc.
- psychiatric diseases autoimmune diseases, infectious diseases, metabolic diseases, respiratory diseases, liver diseases, cardiovascular diseases, oral diseases, skin diseases, and vaginitis.
- the method of the present disclosure can design or produce a bacterial preparation containing a microorganism having a desired medicinal effect for use in the treatment or prevention of tumors.
- tumor treatment or prevention include radiotherapy, molecular targeted drugs, and cancer immunotherapy using immune checkpoint inhibitors.
- TLR5 Toll-Like Receptor 5
- the method of the present disclosure can design or produce a bacterial preparation containing a microorganism that regulates or improves the activation ability of TLR5 in a host by modifying at least one gene related to the activation ability of TLR5.
- microorganisms obtained by the method disclosed herein are useful as a microbiome drug discovery technology that enhances the effectiveness of cancer immunotherapy using immune checkpoint inhibitors.
- the disclosed method can design or produce a bacterial preparation containing a microorganism having a desired medicinal effect for use in the treatment or prevention of an inflammatory disease.
- the inflammatory disease may be any disease that exhibits inflammatory symptoms, such as inflammatory bowel disease, lymphoproliferative disease, autoimmune disease, and autoinflammatory disease.
- Inflammatory bowel disease includes two diseases, Crohn's disease (CD) and ulcerative colitis (UC). Both of these diseases are known to cause accumulation of inflammatory macrophages.
- the disclosed method can design or produce a bacterial preparation containing a microorganism that reduces the accumulation of inflammatory macrophages in a host by modifying at least one gene associated with the reduction of inflammatory macrophage accumulation.
- the microorganisms obtained by the method of the present disclosure can suppress inflammation, reduce the accumulation of inflammatory macrophages, and/or reduce the accumulation of inflammatory cytokines in a host.
- the microorganisms obtained by the method of the present disclosure are useful as bacterial therapeutic preparations in the treatment of inflammatory diseases such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), celiac disease, primary sclerosing cholangitis, cystitis, and pyelonephritis.
- IBD inflammatory bowel disease
- CD Crohn's disease
- UC ulcerative colitis
- celiac disease primary sclerosing cholangitis
- cystitis and pyelonephritis.
- the disclosed method can design or produce a bacterial preparation containing a microorganism with a desired medicinal effect for use in the treatment or prevention of brain diseases.
- brain diseases include Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies, all of which are known to have a common accumulation of intracellular aggregates composed mainly of toxic oligomers of ⁇ -synuclein.
- PD Parkinson's disease
- MSA multiple system atrophy
- dementia with Lewy bodies all of which are known to have a common accumulation of intracellular aggregates composed mainly of toxic oligomers of ⁇ -synuclein.
- the disclosed method by modifying at least one gene related to the inhibition of ⁇ -synuclein aggregation, can design or produce a bacterial preparation containing a microorganism that inhibits ⁇ -synuclein aggregation in a host.
- microorganism obtained by the method disclosed herein inhibits ⁇ -synuclein aggregation in the host and is useful as a bacterial therapeutic agent for Parkinson's disease (PD), multiple system atrophy (MSA), or dementia with Lewy bodies (DLB), etc.
- PD Parkinson's disease
- MSA multiple system atrophy
- DLB dementia with Lewy bodies
- the modification of at least one gene in the microorganism can be performed using standard molecular biology techniques.
- the modification can include a point mutation in the gene, and a method for site-specifically and precisely modifying the target double-stranded polynucleotide can be, for example, a method of contacting the target double-stranded polynucleotide with a Cas protein and a guide RNA, or a method of contacting the target double-stranded polynucleotide with a complex of a Cas protein and a nucleic acid base conversion enzyme and a guide RNA.
- the Cas9 protein forms a complex with the guide RNA and binds to the target double-stranded polynucleotide.
- the Cas9 protein modifies the base sequence in the target polynucleotide by not cleaving the target double-stranded polynucleotide or by cleaving only one strand, i.e., without causing a double-stranded cleavage.
- the modification is preferably performed in single-base units.
- the specific and precise modification of the single base unit is preferably performed using a nucleic acid base conversion enzyme in the complex.
- the nucleic acid base conversion enzyme include deaminases.
- deaminases that can be used include cytosine deaminase, cytidine deaminase, adenosine deaminase, and the like.
- the complex in one embodiment may contain an Indel formation inhibitor such as uracil DNA glycosylase inhibitor (UGI) to inhibit Indel formation.
- UBI uracil DNA glycosylase inhibitor
- the specific and precise modification of the single base unit can also be achieved by using a method using a complex of a nucleic acid sequence recognition module and DNA glycosylase.
- a complex of a nucleic acid sequence recognition module and DNA glycosylase is expressed from an expression vector or RNA molecule introduced into a cell
- the nucleic acid sequence recognition module specifically recognizes and binds to a target nucleotide sequence in a double-stranded DNA of interest (e.g., genomic DNA)
- the action of the DNA glycosylase linked to the nucleic acid sequence recognition module causes an abasic reaction in the sense or antisense strand of the targeted site (which can be appropriately adjusted within a range of several hundred bases including all or part of the target nucleotide sequence or their vicinity), resulting in an abasic site (AP site) in one strand of the double-stranded DNA.
- the base excision repair (BER) system in the cell is activated, and first, an AP endonuclease recognizes the AP site and cuts the phosphate bond of one strand of DNA, and an exonuclease removes the abasic nucleotide. Next, a DNA polymerase inserts a new nucleotide using the opposite strand DNA as a template, and finally, a DNA ligase repairs the splice. When a repair error occurs at any stage of this BER, various mutations are introduced.
- the CRISPR-Cas system recognizes the sequence of a double-stranded DNA of interest using a guide RNA complementary to the target nucleotide sequence, and therefore any sequence can be targeted simply by synthesizing an oligo-RNA and/or oligo-DNA capable of specifically hybridizing with the target nucleotide sequence. Moreover, at the targeted site, the double-stranded DNA is unwound to generate a single-stranded region and an adjacent region having a loosened double-stranded DNA structure, so that a nucleic acid base conversion enzyme or DNA glycosylase can be efficiently acted on the targeted site specifically without combining a factor that changes the structure of the double-stranded DNA.
- a CRISPR-Cas system that does not have at least one DNA cleavage ability of Cas (CRISPR-mutant Cas) or a CRISPR-Cas system that does not have both DNA cleavage abilities of Cas (CRISPR-mutant Cas) can be preferably used as the nucleic acid sequence recognition module.
- the nucleic acid sequence recognition module of the present disclosure using CRISPR-mutant Cas is provided as a complex of an RNA molecule consisting of a guide RNA complementary to a target nucleotide sequence and a tracrRNA required for recruiting the mutant Cas protein, and the mutant Cas protein.
- the modification can be performed in any environment, in vivo or in vitro. In one embodiment, the modification can also be performed outside the body, i.e., ex vivo or in vitro.
- the modification of at least one gene in the microorganism used in the method of the present disclosure can include a mutation that generates a stop codon by the method described above.
- the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least 2, 3, 4, 5, 6, 7, or 8 mutations in a gene.
- modification of at least one gene in a microorganism used in the method of the present disclosure is preferably performed by base editing, preferably single base editing.
- the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least one mutation in each of at least two types of genes. In another embodiment, the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least two mutations in each of at least two types of genes.
- microorganisms that can be used in the methods of the present disclosure include, for example, members of the phyla of Escherichia coli, Lactococcus lactis, Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, or Verrucomicrobia, as well as members of the phyla of Bacteroides, Alistipes, Faecalis bacterium, Parabacteroides, Prevotella, and the like.
- Prevotella Roseburia, Ruminococcus, Clostridium, Oscillibacter, Gemmiger, Barnesiella, Dialister, Parasutterella ), Phascolarctobacterium, Propionibacterium, Sutterella, Blautia, Paraprevotella, Coprococcus, Odoribacter, Spiropla Spiroplasma, Anaerostipes, Ackermansia, Lactobacillus, Streptococcus, Bifidobacterium, Ackermansia, Megasphaera aera), Eubacterium, Bariatricus, Erysipelatoclostridium, Pediococcus, Enterococcus, Pseudoflavonifractor, Lachnospira Family Lachnospiraceae, Family Erysipelotrichaceae, Family Oscillospiraceae, Family Faecalicatena, Enterococcus casseliflavus, Enterococc
- Bifidobacterium animalis Bifidobacterium breve, Streptococcus cristatus, Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, Staphylococcus aureus, Staphylococcus epidermidis, Porphyromonas gingivalis, Clostridium acetobutylicum, Clostridium butyricum, Clostridium sporogenes, Clostridium cocleatum, Clostridium saccharogumia, Clostridium spiroforme, Clostridium innocuum, Clostridium ramosum, Clostridium hathewayi, Clostridium saccharolyticum, Clostridium Sindens, Clostridium sp.
- Clostridium bolteae Clostridium indolis, Clostridium lavalense, Clostridium asparagiforme, Clostridium symbiosum, Clostridiales bacterium, Fusobacterium nucleatum, Blautia hydrogenotrophic a, Blautia stercoris, Blautia wexlerae, Blautia producta, Blautia coccoides, Blautia hansenii, Blautia faecis, Blautia glucea, Blautia luti, Blautia schinkii, Megasphaera massiliensis, Megasp haera elsdenii, Megasphaera cerevisiae, Megasphaera indica, Megasphaera paucivorans, Megasphaera sueciensis, Megasphaera micronuciformis, Megasphaera hexanoica, Eubacterium contortum, Eubacter Eubacterium fissicatena
- the microorganisms that can be used in the methods of the present disclosure can inhabit the gut, oral cavity, and/or skin of a subject, for example, from a genus that constitutes at least about 0.1%, at least about 0.5%, at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, or at least about 40% of the total culturable microorganisms in the subject's feces.
- the microorganisms in the subject's gut or feces can be analyzed by any technique known in the art, including 16S ribosomal sequencing.
- Bacteroides is the most naturally abundant genus in the human gut, and exemplary Bacteroides species include B.
- eggerthii B. endodontalis, B. faecichinchillae, B. faecis, B. cephalosporin ... B. finegoldii, B. fluxus, B. forsythus, B. fragilis, B. furcosus, B. galacturonicus, B. gallinaceum, B. gallinarum, B. gingivalis, B. goldsteinii, B. gracilis, B. graminisolvens, B. helcogenes, B. B. heparinolyticus, B. hypermegas, B. intermedius, B. intestinalis, B. johnsonii, B. levvi, B. loescheii, B.
- reticulothermitis B. rodentium, B. ruminicola, B. salanitronis, B. salivosus, B. saliersiae, B. B. sartorii, B. sediment, B. splanchnicus, B. stercoris, B. stercoris, B. succinogenes, B. suis, B. tectus, B. termitidis, B. thetaiotaomicron, B. ureformis, B. uniformis, B. ureolyticus, B. veroralis, B.
- bacteria that may be present include B. vulgatus, B. xylanisolvens, B. xylanolyticus, and B.
- bacteria that may be present in the oral cavity include Streptococcus gordonii, Streptococcus mutans, and Streptococcus salivarius, and examples of bacteria that may be present in the skin include Staphylococcus aureus and Staphylococcus epidermidis.
- the microorganisms obtained by the methods of the present disclosure are capable of stably colonizing the human intestine, oral cavity, and/or skin.
- the microorganisms obtained by the methods of the present disclosure are capable of colonizing the intestine of a subject with increased abundance, stability, or ease of initial colonization in the intestine, for example, as compared to the same or similar microorganisms that have not been modified.
- the microorganism obtained by the method of the present disclosure may further include a gene related to a therapeutic agent.
- a gene related to a therapeutic agent may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification.
- the gene related to a therapeutic agent may be a type 1 fimbrin D-mannose specific adhesin (fimH) or the like.
- the microorganism obtained by the method of the present disclosure may further include a gene related to a diagnostic agent.
- a gene related to a diagnostic agent may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification.
- the gene related to a diagnostic agent may be a bacterial actin-like cytoskeleton protein (cell shape-determining protein (mreB)) or the like.
- the microorganism obtained by the method of the present disclosure may further include a gene related to a colonization property.
- a gene related to a colonization property may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification.
- the gene associated with fixation can be the DNA-binding transcriptional activator flhD.
- the transgene can inhibit functional expression of the target protein by the effect of a stop codon introduced as a result of single base editing.
- a microorganism contains genes or nucleic acids encoding multiple proteins, it is contemplated that open reading frames encoding two or more of the proteins can be present, for example, in a single operon.
- the microorganism obtained by the method of the present disclosure can be used as a therapeutic preparation, and such a therapeutic preparation can contain, for example, a therapeutically effective amount of the microorganism of the present disclosure, for example, at least about 0.01%, about 0.05%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.5%, about It may contain 2.0%, about 3.0%, about 4.0%, about 5.0%, about 6.0%, about 7.0%, about 8.0%, about 9.0%, about 10.0%, about 11.0%, about 12.0%, about 13.0%, about 14.0%, about 15.0%, about 16.0%, about 17.0%, about 18.0%, about 19.0%, about 20.0%, about 25.0%, about 30.0%, about 35.0%, about 40.0%, about 45.0%, about 50.0% or more.
- a therapeutically effective amount of the microorganism of the present disclosure for example, at least about 0.01%, about 0.05%
- the microorganisms obtained by the method of the present disclosure can be used to perform microbial replacement by administering base-edited microorganisms created by ex vivo editing into a patient's body, and can respond to the treatment of various diseases.
- Short Protocols in Molecular Biology A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F. M. (1995). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M. A. et al. (1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J. J. et al. (1999).
- gene synthesis and fragment synthesis services such as GeneArt, GenScript, Integrated DNA Technologies (IDT) can be used, and other references include, for example, Gait, M. J. (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M. J. (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F. (1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R. L. et al. (1992). The Biochemistry of the Nucleic Acids, Chapman &Hall; Shabarova, Z. et al. (1994).
- Example 1 Drug for treating Parkinson's disease (Example 1-1: Inhibition of CsgA oligomerization by modification of the curli pilus operon gene cluster)
- a base-edited strain was created by inserting a single stop codon into each of the csgA, csgE, and csgG genes using the E. coli ATCC47076 strain.
- the guide RNA was selected from the most N-terminal of the possible design positions. Specifically, a stop codon was introduced into the 72nd amino acid of 151 amino acids for csgA, the 45th amino acid of 129 amino acids for csgE, and the second amino acid from the N-terminus of 277 amino acids for csgG.
- a csgA-deficient strain, a csgB-deficient strain, and a csgDEFG operon-deficient strain were created using homologous recombination technology. After confirming that the introduced plasmid vector had been removed from all of the base-edited strains created, the following in vitro evaluation was performed.
- E. coli ATCC47076 wild-type strain, the base-edited strain, and the homologous recombinant strain were cultured overnight in LB liquid medium, smeared on YESCA agar medium, which is a medium for curli fimbria formation, and then statically cultured at 26 ° C. for 48 hours.
- EGCG a CsgA oligomerization inhibitor compound
- YESCA agar medium a final concentration of 10, 50, 100, and 500 ⁇ g / mL
- E. coli wild-type strain was smeared and cultured under the same conditions as above.
- the value for the csgA homologous recombination-deficient strain was set as the detection limit of this example, and is shown by the dotted line.
- EGCG which is known to have inhibitory effects on the formation of curli fimbriae, inhibited the formation of curli fimbriae in a concentration-dependent manner.
- the csgA-csgE-csgG triple base-edited strain inhibited the formation of curli fimbriae as strongly as or more strongly than the csgA homologous recombination-deficient strain.
- CsgA was detected using a commercially available anti-CsgA antibody.
- the cells were cultured on YESCA agar medium at 26 ° C for 48 hours, and the cells were collected.
- the detection band for CsgA is indicated by a black arrow.
- EGCG inhibited CsgA protein expression in a concentration-dependent manner (left side of Figure 1-3), and a correlation was confirmed with the quantitative results of CsgA by Congo red staining shown in Figure 1-2.
- no clear expression of CsgA protein was observed in either the homologous recombination-deficient strain or the base-edited strain (right side of Figure 1-3).
- E. coli was cultured on YESCA agar medium for 48 hours at 26° C. Bacteria collected from the agar medium were stained with uranyl acetate and then observed under a transmission electron microscope using the negative staining method (FIG. 1-4).
- the wild-type E. coli strain formed a deep red colony indicating the formation of CsgA oligomers.
- the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured alone, the formation of CsgA oligomers was inhibited and white colonies were formed.
- the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured after mixing in equal amounts, a deep red colony was formed, indicating that CsgA oligomers were formed by mutual complementation of CsgA and CsgB.
- the csgE base-edited strain formed white colonies when mixed in equal amounts with a csgA homologous recombination-deficient strain (CsgB donor), but when mixed in equal amounts with a csgB homologous recombination-deficient strain (CsgA donor), it formed light red colonies indicating the formation of a small amount of CsgA oligomers.
- the csgG base-edited strain (which maintained expression of CsgA monomers within the bacteria) and the triple base-edited strain of csgA-csgE-csgG formed white colonies, indicating that no CsgA oligomers were formed outside the bacteria in any combination.
- Example 1-2 Inhibition of CsgA oligomer formation by other base-edited strains
- Inhibition of CsgA oligomerization by mutants and multiple mutants of the curli pilus operon genes was evaluated in the same manner as in Example 1-1.
- Example 1-3 Inhibition of CsgA oligomerization by genome-edited strains of sigma factor genes, catabolite repressor genes, and two-component regulatory system genes.
- Example 1 Inhibition of oligomer formation of CsgA by mutants and multiple mutants of the sigma factor gene group, the catabolite repressor gene group, and the two-component control gene group was evaluated.
- Example 2 Inflammatory Bowel Disease (Example 2-1: Modification of fim fimbrial operon genes) Genome-edited strains were prepared by modifying the target gene and its editing site as shown in FIG. 2-1.
- the parent strain of each genome-edited strain was ATCC25922 or ATCC700926 as shown in FIG. 1.
- FIG. 2-1 shows the Growth Curve of each genome-edited strain, as well as the results of the mannose bead binding test and the hemagglutination test described below.
- the target genes to be edited were fimA, fimC, fimD, fimH, papG, papD, and csgA, each used alone or in combination.
- the gRNA for each target gene was designed mainly to introduce a stop codon to the 5' end side, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure prediction.
- Example 2-2 Effect of genome-edited strain on fimH binding ability
- the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains was evaluated.
- a hemagglutination test was performed to evaluate the expression level of functional E. coli FimH.
- the hemagglutination test was carried out as follows. This test utilizes the property that E. coli FimH specifically binds to glycoproteins mainly composed of mannose expressed on the surface of guinea pig-derived red blood cells.
- the E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37°C for 24 hours. The E. coli was further diluted 100-fold with LB medium and cultured at 37°C for an additional 24 hours.
- E. coli solution was dispensed into a 96-well U-bottom plate to prepare a 2-fold dilution series.
- the guinea pig red blood cell solution was adjusted to a final concentration of 10% (w/v), and then guinea pig red blood cells (containing mannose as necessary) were dispensed so that each well had a uniform final concentration of 1%.
- coli at any concentration was contacted with 1% (w/v) guinea pig red blood cells, and then the wells were left to stand at 4° C. for 4 hours, after which a photograph was taken from above the 96-well plate.
- the dilution rate of the bacterial solution was determined from the well in which an agglutination reaction was observed and which had the lowest turbidity of the bacterial solution, and this was expressed as a numerical value as the natural logarithm of 2.
- Example 2-3 Mannose bead binding test
- the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains was evaluated.
- a mannose bead binding test was performed.
- Mannose bead binding test The mannose bead binding test was carried out as follows. This test utilizes the property that E. coli FimH specifically binds to mannose fixed to the surface of agarose beads. This test system is more stable than the biological sample guinea pig red blood cells, and is expected to realize more accurate quantitative evaluation.
- the E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37 ° C for 24 hours. The E. coli was further diluted 100 times with LB medium and cultured at 37 ° C for an additional 24 or 48 hours.
- the results are shown in Figure 2-1.
- the fimC or fimH single-deficient strains had reduced binding to mannose beads, indicating that the binding strength of fimH was further reduced.
- the FimC-FimH double-deficient strain constructed to completely eliminate FimH function had reduced binding to mannose beads compared to other base-edited strains, indicating that the binding strength of fimH was further reduced.
- the base-edited strains disclosed herein, including the FimC-FimH double-deficient strain are expected to have a permanent inhibitory effect due to base editing.
- the FimC-FimH double-deficient strain will be the first IBD treatment that targets FimC.
- Figure 2-2 shows the results of mannose bead binding tests for the wild-type strains ATCC700926, BP3019, BP3021, and BP3026.
- tests were also conducted for the wild-type strain ATCC700926 in the presence of mannose beads as well as mannose that was not bound to beads.
- the mannose concentrations were 0, 0.5, 5, and 50 mM, respectively.
- Figures 2-3 show the results when Sibofimloc (EB8018, TAK018, jointly developed with Enterome, France, and Takeda Pharmaceutical), a small molecule FimH inhibitor that inhibits adhesion of AIEC to the intestinal epithelium, was used.
- the Sibofimloc concentrations were 0, 0.1, 1, and 10 ⁇ M.
- T84 cells Human colon cancer cell line T84 cells (CCL-248, ATCC) have intestinal epithelial cell-like properties and are used to evaluate the adhesion and invasion of intestinal bacteria to intestinal epithelial cells.
- 10% FBS-containing D-MEM / Ham's F-12 medium (048-29785, Fujifilm Wako Pure Chemical Industries, Ltd.) was used.
- T84 cells were seeded on a 24-well plate at 8 x 10 5 cells/well and cultured overnight in a CO 2 incubator (37°C, 5% CO 2 ).
- E. coli was added to each T84 cell at 100 CFU, and co-cultured at 37°C for 2 hours in a CO 2 incubator.
- Triton was added to the well to a final concentration of 0.1% to detach the T84 cells, and the bacteria were collected to obtain total E. coli.
- the well was washed five times with 1 mL of phosphate-buffered saline to remove non-adherent bacteria, and then Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected to obtain adherent E. coli.
- To collect invasive E. coli the well was washed twice with 1 mL of phosphate-buffered saline, and then gentamicin was added to 100 ⁇ g/mL and cultured at 37 ° C. for 2 hours in a CO 2 incubator.
- Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected. The collected bacteria were smeared on LB plates, cultured overnight at 37 ° C. in an incubator, and the number of colonies was measured. The number of adherent bacteria or the number of invasive E. coli was calculated as a percentage by dividing the number of adherent E. coli or invasive E. coli by the total E. coli. As a result, BP3026 reduced the number of attached and invaded E. coli compared to the wild-type strain (FIG. 2-4).
- Example 5 Drug efficacy test in in vivo DSS colitis model
- the efficacy test in an in vivo DSS colitis model was carried out as follows. Eight-week-old C57BL/6J mice (male, Jackson Laboratory Japan Co., Ltd.) were allowed to drink 3% dextran sulfate sodium (hereinafter referred to as DSS, Fujifilm Wako Pure Chemical Industries, Ltd.) aqueous solution ad libitum from the start of the test (Day 0) to the end of the test (Day 7) to induce enteritis in the mice. Tap water was given to the untreated group instead of the 3% DSS aqueous solution. The ATCC700926 strain was used as the wild-type E.
- DSS dextran sulfate sodium
- the DAI score is a score given to the diarrhea and bloody stool condition on a scale of 0 to 3, and the diarrhea score, bloody stool score, and the sum of both scores are the score of the individual, with the lower the score value, the more the symptoms induced by DSS are alleviated.
- the measurement of the colon length utilizes the property that the colon length of mice with intestinal inflammation generally shortens, and when DSS-induced intestinal inflammation is suppressed, the shortening of the colon length is suppressed, so that the closer the colon length is to that of untreated mice, the more effective the treatment is.
- the intestinal microbiota analysis was performed as follows. On Day 7 of the efficacy test of the DSS colitis model, feces from each mouse were collected and stored at -80°C until DNA extraction. Mouse feces were freeze-dried using a VD-250R Freeze Dryer (TAITEC), and then crushed for 2 minutes at 1,500 rpm with a Multi-Beads Shocker (Yasui Kikai). Lysis Solution F (Nippon Gene) was added to the crushed mouse feces and allowed to stand at 65°C for 10 minutes. Then, the mixture was centrifuged at 12,000 x g for 2 minutes, and the supernatant was separated.
- TITEC VD-250R Freeze Dryer
- Lysis Solution F (Nippon Gene) was added to the crushed mouse feces and allowed to stand at 65°C for 10 minutes. Then, the mixture was centrifuged at 12,000 x g for 2 minutes, and the supernatant was separated.
- DNA was purified from the separated solution using a Lab-Aid824s DNA Extraction kit (ZEESAN).
- ZEESAN Lab-Aid824s DNA Extraction kit
- the purified DNA was subjected to concentration measurement using LX (Bio Tek) and QuantiFluor dsDNA System (Promega).
- LX Bio Tek
- QuantiFluor dsDNA System Promega
- the library concentration was measured using Synergy H 1 (Bio Tek) and QuantiFluor dsDNA System.
- the quality of the library was confirmed using Fragment Analyzer and dsDNA 915 Reagent Kit (Advanced Analytical Technologies). Sequencing was performed under the condition of 2 x 300 bp using MiSeq system and MiSeq Reagent Kit v 3 (Illumina).
- Example 3 Cancer immunotherapy (Example 3-1: Measurement of TLR5 activation ability of genome-edited strains)
- the TLR5 activation ability of each strain was measured using genome-edited strains prepared by modifying the target genes and their editing sites as shown in Figures 3-1 and 3-2.
- the target genes to be edited were fliC, fliD, flgE, fliF, flgK, flgM, flgN, fliT, and sigD, each of which was used alone.
- the gRNA for each target gene was designed mainly to introduce a stop codon at the 5' end, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure.
- TLR5 activation ability was measured as follows. The strains to be evaluated were cultured overnight (12-18 hours) at 37°C in Brain Heart infusion medium, washed with Opti-MEM medium, and the turbidity (660 nm) was measured. The turbidity was adjusted to 1.0 with Opti-MEM medium, and then a bacterial solution was prepared by diluting 104 times with Opti-MEM. The following three types of plasmids were introduced into human embryonic kidney cells HEK293T to construct cells for evaluating TLR5 activation ability.
- the three types of plasmids are a plasmid that forcibly expresses human TLR5, a plasmid that places the NanoLuc (registered trademark) gene under the control of an activation-responsive sequence to evaluate the activation ability of TLR5, and a plasmid that constitutively expresses the firefly luciferase gene that functions as an internal standard.
- the three types of plasmids were introduced into HEK293T cells, and after 16 to 20 hours, the diluted bacterial solution prepared above was added in an amount of 1/10 of the medium in which the plasmid-introduced cells grew, and the cells were co-cultured at 37°C for 4 hours.
- the TLR5 activation ability was measured using the activity of NanoLuc as an index using Promega's Nano-Glo (registered trademark) Dual-Luciferase (registered trademark) Reporter Assay System. Following the recommended protocol, the activity of firefly luciferase, which is the internal standard, was measured, and then the activity of NanoLuc, which reflects TLR5 activation, was measured. NanoLuc activity was standardized with firefly luciferase activity to evaluate the TLR5 activation ability of each strain.
- Example 3-2 Confirmation of Flagellin expression
- MTM medium 1% w/v Bacto Peptone, 0.5% w/v NaCl, 0.3% w/v Beet extract
- the culture was heat-treated at 60°C for 20 minutes.
- the culture was centrifuged at 2,900 ⁇ g for 10 minutes, and the supernatant was filtered through a 0.22 ⁇ m filter.
- 15 mL of the filtrate was concentrated to 1 mL using Amicon-15 (MWCO 10k, Millipore). 450 ⁇ L of the concentrated solution was diluted with Protein G PLUS-Agarose.
- the agarose beads were suspended in 45 ⁇ L of 1 ⁇ Laemmli dye and heat-treated at 95° C. for 5 minutes to elute the bound protein from the beads. After centrifugation at 1,000 ⁇ g for 2 minutes, the supernatant was collected and used as a TLR5-binding protein sample.
- Flagellin-derived bands were detected in the wild-type strain and the flgN-, fliD-, and flgK-edited strains, but no Flagellin bands were detected in the fliC- and fliF-edited strains ( Figure 3-3).
- Example 3-3 Other Genetic Modifications
- Example 3-4 Evaluation of the antitumor effect of Enterococcus alone or in combination with immune checkpoint inhibitors using a tumor-bearing mouse model
- a tumor-bearing mouse model was created using a mouse colon cancer cell line, and the E. casseriflavus wild-type strain or its genome-edited strain was administered alone or in combination with an anti-PD-1 antibody (anti-mouse PD-1 [CD279], clone: RMP1-14, Bio X Cell) which is an immune checkpoint inhibitor, to evaluate the antitumor effect.
- an anti-PD-1 antibody anti-mouse PD-1 [CD279], clone: RMP1-14, Bio X Cell
- Mouse colon cancer cell line MC38 (Cat. No. ENH204-FP, Kerafast) is a C57BL/6J mouse (6 weeks old, female, Jackson Laboratory Japan Co., Ltd.), and CT26 (Cat. No. CRL-2638, ATCC) is a BALB/c mouse (6 weeks old, female, Jackson Laboratory Japan Co., Ltd.), and 100 ⁇ L of each cell suspended in physiological saline is subcutaneously transplanted into the right flank of each mouse.
- the tumor diameter of the mouse is measured, and the estimated tumor volume (long diameter x short diameter x short diameter / 2) is calculated. Based on the estimated tumor volume, the group is divided and designated as Day 0. On Days 0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, and 25, E. The E.
- casseriflavus wild-type strain and its genome-edited strain are prepared in phosphate-buffered saline to give 10 9 CFU/100 ⁇ L, and 100 ⁇ L per individual is forcibly administered orally.
- the anti-PD-1 antibody is administered into the tail vein at 5 mg/kg per individual on days 0, 3, 7, 10, and 14. Under the above administration conditions of the bacterial solution and anti-PD-1 antibody, the E. casseriflavus wild-type strain or its genome-edited strain alone, or in combination with the anti-PD-1 antibody, is administered.
- the estimated tumor volume and body weight of the mice are measured twice a week from day 0.
- Tumor growth is expected to be suppressed in the group administered the genome-edited strain alone and in the group administered the genome-edited strain in combination with an anti-PD-1 antibody.
- Examples 3-5 Cancer Treatment
- a strain with enhanced TLR5 activation ability is orally administered to a cancer patient (regardless of the type of cancer) in the form of a tablet or capsule, and the strain is allowed to exist transiently or ideally become established in the intestine of the patient, stimulating the host's immune cells and enhancing the immune response to cancer cells.
- ICI in combination, it is possible to inhibit the suppressive effect of cancer cells on immune cells, and it is expected that the reactivity of activated immune cells to cancer cells will be enhanced.
- the timing of administration of the strain can be either simultaneous administration or administration of the strain prior to ICI.
- the strain may be administered multiple times. Even in patients who have a low response to cancer immunotherapy using ICI alone, it is expected that the response of ICI will be increased by combining it with the strain.
- Example 4 Measurement of biofilm formation by Streptococcus mutans
- Example 4 Measurement of biofilm formation by Streptococcus mutans
- the preculture solution was inoculated into 2 mL of BHI liquid medium to give an OD 600 of 0.1, and then cultured at 37°C until the OD 600 reached 0.3 to 0.9.
- the bacterial solution was adjusted to give an OD 600 of 0.005 in 5% sucrose-containing BHI liquid medium, and 200 ⁇ L of the prepared bacterial solution was added to each well of a 96-well plate, followed by culture at 37°C for 24 hours in an anaerobic jar containing a decarbonizing agent.
- the disclosed method makes it possible to design or produce bacterial preparations containing microorganisms that have a desired medicinal effect in a subject, and also makes it possible to efficiently produce bacterial preparations for various diseases, which is expected to have a wide range of applications in the medical field.
- SEQ ID NO:1 Nucleic acid sequence of csgA from Escherichia coli SEQ ID NO:2: Amino acid sequence of csgA from Escherichia coli SEQ ID NO:3: Nucleic acid sequence of csgB from Escherichia coli SEQ ID NO:4: Amino acid sequence of csgB from Escherichia coli SEQ ID NO:5: Nucleic acid sequence of csgC from Escherichia coli SEQ ID NO:6: Amino acid sequence of csgC from Escherichia coli SEQ ID NO:7: Nucleic acid sequence of csgD from Escherichia coli SEQ ID NO:8: Amino acid sequence of csgD from Escherichia coli SEQ ID NO:9: Nucleic acid sequence of csgE from Escherichia coli SEQ ID NO:10: Amino acid sequence of csgE from Escher
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present disclosure provides a technique for efficiently designing or producing a bacterial preparation utilizing a bacterium capable of exhibiting a desired trait or a desired efficacy. More specifically, the present disclosure provides a method for designing or producing a bacterial preparation containing a microorganism having a desired pharmacological efficacy in a subject, the method comprising: a step of selecting or screening for at least one gene associated with the pharmacological efficacy; a step of modifying the gene; a step of selecting a microorganism in which the expression level of the gene is altered and/or a microorganism in which the function of a protein produced by the gene is modified; a step of confirming whether or not the selected microorganism has the desired pharmacological efficacy and then selecting a microorganism having the pharmacological efficacy; and an optional step of producing a mass containing the microorganism having the desired pharmacological efficacy if necessary.
Description
本開示は、対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産する方法に関する。
The present disclosure relates to methods for designing or producing bacterial formulations that contain microorganisms that have a desired therapeutic effect in a subject.
近年、種々の感染症や潰瘍性大腸炎、癌等の幅広い疾患を対象として、その治療や予防のために、単数または複数の細菌からなる製剤を医薬品として開発する試みが行われており、数多くの細菌種が試験されている。このような細菌製剤では、野生型の細菌だけでなく、野生型の細菌がもつ遺伝子を改変して目的の形質を付与し、その改変した遺伝子をもつ細菌を利用して細菌製剤とすることもできる。したがって、目的の形質や所望の効果を発揮する細菌を利用した細菌製剤の効率的なデザイン手法や生産手法が望まれている。
In recent years, attempts have been made to develop pharmaceutical preparations consisting of single or multiple bacteria for the treatment and prevention of a wide range of diseases, including various infectious diseases, ulcerative colitis, and cancer, and numerous bacterial species have been tested. Such bacterial preparations can be made not only using wild-type bacteria, but also by modifying the genes of wild-type bacteria to give them the desired traits, and then using bacteria carrying the modified genes to make bacterial preparations. Therefore, there is a demand for efficient design and production methods for bacterial preparations that use bacteria that have the desired traits or effects.
抗体製剤から遺伝子治療に至るまで、今日の生物学的製剤の領域においては、自然界から提供されたものをそのまま活用することはなく、遺伝子改変技術によって治療効果や安全性面の改善が常に行われ、より強力かつ特異性のより高い生物学的製剤が開発されている。同様に、マイクロバイオーム治療製剤も自然界に存在している野生型菌を活用するだけでは、望まれる薬効と安全性を兼ね備えることは困難であり、最適な塩基編集技術を活用した塩基編集LBP製剤の開発が必要とされる。
In today's field of biological products, from antibody preparations to gene therapy, we do not simply use what nature has provided us with, but rather constantly use gene modification technology to improve therapeutic efficacy and safety, leading to the development of more powerful and more specific biological products. Similarly, it is difficult for microbiome therapeutic products to combine the desired efficacy and safety simply by utilizing wild-type bacteria that exist in nature, and so there is a need to develop base-edited LBP preparations that utilize optimal base editing technology.
したがって、本開示は以下を提供する。
(項目1)
対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産する方法であって、
該薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程と、
該遺伝子を改変する工程と、
該遺伝子の発現レベルが改変された微生物および/または該遺伝子によって産生されるタンパク質の機能が改変された微生物を選択する工程と、
選択された該微生物について、該所望の薬効を有するかどうかを確認し、該薬効を有する微生物を選択する工程と、
必要に応じて該所望の薬効を有する該微生物を含む集団を生成する工程と
を含む、方法。
(項目2)
前記遺伝子の選択またはスクリーニングは、データベースおよび/またはゲノムライブラリーを用いたスクリーニングを含む、上記項目1に記載の方法。
(項目3)
前記改変が、ゲノム編集を含む、上記項目1または2に記載の方法。
(項目4)
前記改変が、前記遺伝子における点変異を含む、上記項目1~3のいずれか一項に記載の方法。
(項目5)
前記改変が、終止コドンを生じさせる変異を含む、上記項目1~4のいずれか一項に記載の方法。
(項目5a)
前記改変が、対象となる核酸分子の切断を伴わないゲノム編集を含む、上記項目1~5のいずれか一項に記載の方法。
(項目6)
前記改変が、前記少なくとも1つの遺伝子における少なくとも2ヶ所の変異を含む、上記項目1~5のいずれか一項に記載の方法。
(項目7)
前記薬効を有する微生物の選択は、薬剤遺伝子耐性システムの利用、必須遺伝子(栄養要求性マーカー)の利用、呈色反応を触媒する酵素をコードする遺伝子の利用、温度耐性の利用を含む、上記項目1~6のいずれか一項に記載の方法。
(項目8)
前記所望の薬効の確認は、薬剤遺伝子耐性システムの利用、前記薬効に基づく酵素活性、前記薬効に基づく生存活性、および/または前記対象における前記微生物の定着性を含む、上記項目1~7のいずれか一項に記載の方法。
(項目9)
前記遺伝子が、炎症性腸疾患、パーキンソン病、癌免疫、う蝕、および歯周病からなる群から選択される少なくとも1つの疾患または機能に関連する遺伝子を含む、上記項目1~13のいずれか一項に記載の方法。
(項目10)
前記微生物が大腸菌を含む、上記項目1~14のいずれか一項に記載の方法。 Thus, the present disclosure provides:
(Item 1)
1. A method for designing or producing a bacterial formulation comprising a microorganism having a desired therapeutic effect in a subject, comprising:
selecting or screening at least one gene associated with said therapeutic effect;
modifying the gene;
selecting a microorganism in which the expression level of the gene and/or the function of the protein produced by the gene is modified;
A step of confirming whether the selected microorganism has the desired medicinal effect and selecting a microorganism having the medicinal effect;
and optionally generating a population comprising said microorganism having said desired therapeutic effect.
(Item 2)
The method according to item 1, wherein the selection or screening of the gene comprises screening using a database and/or a genome library.
(Item 3)
The method according to any one of items 1 to 2, wherein the modification comprises genome editing.
(Item 4)
4. The method according to any one of items 1 to 3, wherein the modification comprises a point mutation in the gene.
(Item 5)
5. The method according to any one of items 1 to 4, wherein the modification comprises a mutation that generates a stop codon.
(Item 5a)
The method according to any one of items 1 to 5, wherein the modification comprises genome editing without cleavage of the target nucleic acid molecule.
(Item 6)
6. The method according to any one of items 1 to 5, wherein the modification comprises at least two mutations in the at least one gene.
(Item 7)
The method according to any one of items 1 to 6, wherein the selection of a microorganism having a medicinal effect comprises use of a drug gene resistance system, use of an essential gene (auxotrophic marker), use of a gene encoding an enzyme that catalyzes a color reaction, or use of temperature tolerance.
(Item 8)
The method according to any one of items 1 to 7, wherein the confirmation of the desired drug effect includes utilization of a drug gene resistance system, an enzyme activity based on the drug effect, a survival activity based on the drug effect, and/or a fixability of the microorganism in the subject.
(Item 9)
14. The method according to any one of items 1 to 13, wherein the genes include genes associated with at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease.
(Item 10)
15. The method according to any one of items 1 to 14, wherein the microorganism comprises Escherichia coli.
(項目1)
対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産する方法であって、
該薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程と、
該遺伝子を改変する工程と、
該遺伝子の発現レベルが改変された微生物および/または該遺伝子によって産生されるタンパク質の機能が改変された微生物を選択する工程と、
選択された該微生物について、該所望の薬効を有するかどうかを確認し、該薬効を有する微生物を選択する工程と、
必要に応じて該所望の薬効を有する該微生物を含む集団を生成する工程と
を含む、方法。
(項目2)
前記遺伝子の選択またはスクリーニングは、データベースおよび/またはゲノムライブラリーを用いたスクリーニングを含む、上記項目1に記載の方法。
(項目3)
前記改変が、ゲノム編集を含む、上記項目1または2に記載の方法。
(項目4)
前記改変が、前記遺伝子における点変異を含む、上記項目1~3のいずれか一項に記載の方法。
(項目5)
前記改変が、終止コドンを生じさせる変異を含む、上記項目1~4のいずれか一項に記載の方法。
(項目5a)
前記改変が、対象となる核酸分子の切断を伴わないゲノム編集を含む、上記項目1~5のいずれか一項に記載の方法。
(項目6)
前記改変が、前記少なくとも1つの遺伝子における少なくとも2ヶ所の変異を含む、上記項目1~5のいずれか一項に記載の方法。
(項目7)
前記薬効を有する微生物の選択は、薬剤遺伝子耐性システムの利用、必須遺伝子(栄養要求性マーカー)の利用、呈色反応を触媒する酵素をコードする遺伝子の利用、温度耐性の利用を含む、上記項目1~6のいずれか一項に記載の方法。
(項目8)
前記所望の薬効の確認は、薬剤遺伝子耐性システムの利用、前記薬効に基づく酵素活性、前記薬効に基づく生存活性、および/または前記対象における前記微生物の定着性を含む、上記項目1~7のいずれか一項に記載の方法。
(項目9)
前記遺伝子が、炎症性腸疾患、パーキンソン病、癌免疫、う蝕、および歯周病からなる群から選択される少なくとも1つの疾患または機能に関連する遺伝子を含む、上記項目1~13のいずれか一項に記載の方法。
(項目10)
前記微生物が大腸菌を含む、上記項目1~14のいずれか一項に記載の方法。 Thus, the present disclosure provides:
(Item 1)
1. A method for designing or producing a bacterial formulation comprising a microorganism having a desired therapeutic effect in a subject, comprising:
selecting or screening at least one gene associated with said therapeutic effect;
modifying the gene;
selecting a microorganism in which the expression level of the gene and/or the function of the protein produced by the gene is modified;
A step of confirming whether the selected microorganism has the desired medicinal effect and selecting a microorganism having the medicinal effect;
and optionally generating a population comprising said microorganism having said desired therapeutic effect.
(Item 2)
The method according to item 1, wherein the selection or screening of the gene comprises screening using a database and/or a genome library.
(Item 3)
The method according to any one of items 1 to 2, wherein the modification comprises genome editing.
(Item 4)
4. The method according to any one of items 1 to 3, wherein the modification comprises a point mutation in the gene.
(Item 5)
5. The method according to any one of items 1 to 4, wherein the modification comprises a mutation that generates a stop codon.
(Item 5a)
The method according to any one of items 1 to 5, wherein the modification comprises genome editing without cleavage of the target nucleic acid molecule.
(Item 6)
6. The method according to any one of items 1 to 5, wherein the modification comprises at least two mutations in the at least one gene.
(Item 7)
The method according to any one of items 1 to 6, wherein the selection of a microorganism having a medicinal effect comprises use of a drug gene resistance system, use of an essential gene (auxotrophic marker), use of a gene encoding an enzyme that catalyzes a color reaction, or use of temperature tolerance.
(Item 8)
The method according to any one of items 1 to 7, wherein the confirmation of the desired drug effect includes utilization of a drug gene resistance system, an enzyme activity based on the drug effect, a survival activity based on the drug effect, and/or a fixability of the microorganism in the subject.
(Item 9)
14. The method according to any one of items 1 to 13, wherein the genes include genes associated with at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease.
(Item 10)
15. The method according to any one of items 1 to 14, wherein the microorganism comprises Escherichia coli.
本開示において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。なお、本開示のさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
It is contemplated that one or more of the features described above may be provided in combinations other than those explicitly stated. Further embodiments and advantages of the present disclosure will be recognized by those skilled in the art upon reading and understanding the following detailed description, if necessary.
なお、上記した以外の本開示の特徴及び顕著な作用・効果は、以下の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。
Furthermore, the features and notable actions and effects of the present disclosure other than those described above will become clear to those skilled in the art by referring to the following description of the embodiments of the invention and the drawings.
本開示により、所定の改変を施した微生物を利用することにより、対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産することができ、またこれにより、種々の疾患に応じた細菌製剤を効率的に生産することができる。
With the present disclosure, by utilizing microorganisms that have been modified in a specific manner, it is possible to design or produce bacterial preparations that contain microorganisms that have a desired medicinal effect in a subject, and this also makes it possible to efficiently produce bacterial preparations for various diseases.
また薬効をデザインすることで、薬効の強さ(および生体内持続性)の調節が可能となり、この結果、治療効果の向上のみならず、ヒトでの薬効が予測しやすくなる。薬効の強さが明確に向上できれば、臨床試験のエンドポイントが設定しやすくなるという効果も得ることができる。
In addition, by designing the efficacy of a drug, it is possible to adjust the strength of the drug's efficacy (and its duration in the body), which not only improves the therapeutic effect but also makes it easier to predict the drug's efficacy in humans. If the strength of the drug's efficacy can be clearly improved, it will also have the effect of making it easier to set the endpoints of clinical trials.
さらに、薬効の向上や復帰変異株の出現抑制の実現によって薬効の強さが安定すれば、製造ロット間のばらつきが抑制でき、また臨床試験時のバイオマーカーの設定を容易にすることもできる。
Furthermore, if the strength of the drug's efficacy can be stabilized by improving its efficacy and suppressing the emergence of revertant mutants, it will be possible to reduce variation between production lots and make it easier to set biomarkers during clinical trials.
以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
The present disclosure will be described below while showing the best mode. Throughout this specification, singular expressions should be understood to include the concept of the plural, unless otherwise specified. Thus, singular articles (e.g., in the case of English, "a," "an," "the," etc.) should be understood to include the concept of the plural, unless otherwise specified. In addition, terms used in this specification should be understood to be used in the sense commonly used in the field, unless otherwise specified. Thus, unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. In the case of conflict, the present specification (including definitions) will take precedence.
以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。
The following provides definitions of terms specifically used in this specification and/or provides an explanation of basic technical content as appropriate.
本明細書において、「約」とは、後に続く数値の±10%を意味する。
In this specification, "about" means ±10% of the numerical value that follows.
本明細書において、「微生物」とは、微小な生物を指し、例えば、細菌や放線菌などの原核生物、酵母やカビなどの真核生物、下等藻類、真菌、ウイルス等の他、動物や植物などの多細胞生物であっても個々に別々に存在する細胞も含まれる。また微生物には、天然の微生物のほか、それらを培養して人為的に増殖させたもの、それらが突然変異したもの、または形質転換その他の手法によって、人為的に改変した微生物等も含まれる。
In this specification, "microorganisms" refers to minute living organisms, including prokaryotes such as bacteria and actinomycetes, eukaryotes such as yeast and mold, lower algae, fungi, viruses, and even individual, separate cells of multicellular organisms such as animals and plants. Microorganisms also include natural microorganisms, as well as those cultured and artificially propagated, mutated microorganisms, and microorganisms artificially modified by transformation or other techniques.
本明細書において、遺伝子の「改変」とは、DNA鎖上のあるヌクレオチド(例えば、dC)が、他のヌクレオチド(例えば、dT、dA又はdG)に変換されるか、欠失すること、あるいはDNA鎖上のあるヌクレオチド間にヌクレオチドもしくはヌクレオチド配列が挿入もしくは付加されることを意味する。本明細書における「改変」には、二本鎖DNAの標的化した部位の1以上のヌクレオチドの置換、欠失、または二本鎖DNAの標的化した部位への1以上のヌクレオチドの挿入もしくは付加を含む。ここで、改変される二本鎖DNAは特に制限されないが、好ましくはゲノムDNAである。また、二本鎖DNAの「標的化した部位」とは、核酸配列認識モジュールが特異的に認識して結合する「標的ヌクレオチド配列」の全部もしくは一部、又はそれと該標的ヌクレオチド配列の近傍(5’上流及び3’下流のいずれか一方又は両方)を意味し、その範囲は目的に応じて、1塩基~数百塩基長の間で適宜調節することができる。
In this specification, "modification" of a gene means that a nucleotide (e.g., dC) on a DNA strand is converted to another nucleotide (e.g., dT, dA, or dG) or deleted, or that a nucleotide or nucleotide sequence is inserted or added between certain nucleotides on a DNA strand. In this specification, "modification" includes the substitution or deletion of one or more nucleotides at a targeted site of double-stranded DNA, or the insertion or addition of one or more nucleotides at a targeted site of double-stranded DNA. Here, the double-stranded DNA to be modified is not particularly limited, but is preferably genomic DNA. In addition, the "targeted site" of double-stranded DNA means all or a part of the "target nucleotide sequence" that the nucleic acid sequence recognition module specifically recognizes and binds to, or the vicinity of the target nucleotide sequence (either one or both of the 5' upstream and 3' downstream), and the range can be appropriately adjusted between one base and several hundred bases in length depending on the purpose.
本明細書において、「遺伝子」とは最広義に解釈され、核酸の文字列またはそれを担う物質(例えば、DNA、RNAなどのヌクレオチド)の配列をいい、好ましくは、なんらかの機能を発揮する配列または配列を含む物質であって、例えば、タンパク質をコードするもののほか、転写因子結合部位として、転写産物の転写時期と生産量を制御するプロモーターやエンハンサーなどの隣接した転写調節領域、転写因子結合部位として、転写産物の転写時期と生産量を制御するプロモーターやエンハンサーなどの隣接した転写調節領域なども包含される。
In this specification, "gene" is interpreted in the broadest sense and refers to a character string of nucleic acid or a sequence of a substance that carries it (e.g., nucleotides such as DNA or RNA), and preferably refers to a sequence or a substance that contains a sequence that exerts some function, and includes, for example, those that code for proteins, as well as adjacent transcriptional regulatory regions such as promoters and enhancers that control the timing and amount of transcription of the transcript as a transcription factor binding site, and adjacent transcriptional regulatory regions such as promoters and enhancers that control the timing and amount of transcription of the transcript as a transcription factor binding site.
本明細書において、「細菌製剤」とは、有用な微生物群を含む粉末または液体の製剤であり、単独でまたは他の物と組み合わせて薬効を発揮することが期待される剤をいう。細菌製剤の形態としては、例えば、経口カプセル剤、錠剤(経口用)、浣腸製剤、うがい液剤、皮膚への塗抹剤(軟膏剤)などを挙げることができるがこれらに限定されない。また、細菌製剤に含まれる微生物は1種であっても複数種であってもよい。
In this specification, the term "bacterial preparation" refers to a powder or liquid preparation containing a group of useful microorganisms, which is expected to exert a medicinal effect alone or in combination with other substances. Examples of the form of the bacterial preparation include, but are not limited to, oral capsules, tablets (for oral use), enema preparations, gargling liquids, and skin smears (ointments). Furthermore, the bacterial preparation may contain one or more types of microorganisms.
本明細書において、「薬効」とは、最広義に解釈され、対象に対して、もたらされる何らかの生物学的な効果をいう。薬効は、対象における何らかの生物学的またはそれに起因する現象の変化によって認識することができる。典型的には、疾患状態が改善することやプロバイオティクスなどの生物学的成分により健康状態を維持または向上することなどが含まれるがそれに限定されない。
In this specification, "pharmaceutical effect" is interpreted in the broadest sense and refers to any biological effect brought about on a subject. A medicinal effect can be recognized as a change in some biological phenomenon or phenomenon caused by a biological effect in a subject. Typically, this includes, but is not limited to, improvement of a disease state and maintenance or improvement of health status through biological components such as probiotics.
本明細書において、「薬効に関連する遺伝子」とは、薬効に何らかの直接的または間接的な影響を有する遺伝子をいう。薬効に関連する遺伝子は、例えば、その遺伝子が疾患に関連するものであってもよく、その遺伝子が免疫機能などの健康を維持する機能に関連するものであってもよい。薬効に関連する遺伝子としては、例えば、以下のような遺伝子を挙げることができる。
(1)疾患の原因遺伝子→宿主にとって毒性を有する物質の生合成遺伝子(治療方法:該遺伝子をノックアウトして機能不全にした菌株を生体内に投与し、毒性を有する菌と置換させる);
(2)治療に資するもしくは健康に有益な物質の生合成遺伝子→疾患を治療もしくは症状を緩和できる細菌由来の酵素遺伝子(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる);
(3)疾患原因物質もしくは毒性物質の分解蛋白遺伝子→宿主にとって毒性を有する物質を分解もしくは無力化できる細菌由来の酵素遺伝子(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる);および
(4)免疫活性の向上もしくはワクチン効果によって宿主の免疫力を向上させる遺伝子→感染症薬(単剤もしくは併用剤)やがん免疫(単剤もしくは併用剤)を想定(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる) As used herein, the term "gene associated with drug efficacy" refers to a gene that has some direct or indirect effect on drug efficacy. A gene associated with drug efficacy may be, for example, a gene associated with a disease, or a gene associated with a function that maintains health, such as immune function. Examples of genes associated with drug efficacy include the following genes:
(1) Causative gene of a disease → a biosynthetic gene for a substance toxic to the host (treatment method: a strain of bacteria that has been knocked out and rendered non-functional is administered into the body to replace the toxic bacteria);
(2) Biosynthetic genes of substances that contribute to treatment or are beneficial to health → enzyme genes derived from bacteria that can treat diseases or alleviate symptoms (treatment method: improving the expression level or enzyme activity of the gene);
(3) Genes that degrade disease-causing or toxic substances: Enzyme genes derived from bacteria that can decompose or neutralize substances that are toxic to the host (treatment method: improve the expression level or enzyme activity of the gene); and (4) Genes that improve the host's immunity by improving immune activity or vaccine effect: Antimicrobial drugs (single or combined agents) and cancer immunotherapy (single or combined agents) are envisioned (treatment method: improve the expression level or enzyme activity of the gene).
(1)疾患の原因遺伝子→宿主にとって毒性を有する物質の生合成遺伝子(治療方法:該遺伝子をノックアウトして機能不全にした菌株を生体内に投与し、毒性を有する菌と置換させる);
(2)治療に資するもしくは健康に有益な物質の生合成遺伝子→疾患を治療もしくは症状を緩和できる細菌由来の酵素遺伝子(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる);
(3)疾患原因物質もしくは毒性物質の分解蛋白遺伝子→宿主にとって毒性を有する物質を分解もしくは無力化できる細菌由来の酵素遺伝子(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる);および
(4)免疫活性の向上もしくはワクチン効果によって宿主の免疫力を向上させる遺伝子→感染症薬(単剤もしくは併用剤)やがん免疫(単剤もしくは併用剤)を想定(治療方法:該遺伝子の発現量もしくは酵素活性を向上させる) As used herein, the term "gene associated with drug efficacy" refers to a gene that has some direct or indirect effect on drug efficacy. A gene associated with drug efficacy may be, for example, a gene associated with a disease, or a gene associated with a function that maintains health, such as immune function. Examples of genes associated with drug efficacy include the following genes:
(1) Causative gene of a disease → a biosynthetic gene for a substance toxic to the host (treatment method: a strain of bacteria that has been knocked out and rendered non-functional is administered into the body to replace the toxic bacteria);
(2) Biosynthetic genes of substances that contribute to treatment or are beneficial to health → enzyme genes derived from bacteria that can treat diseases or alleviate symptoms (treatment method: improving the expression level or enzyme activity of the gene);
(3) Genes that degrade disease-causing or toxic substances: Enzyme genes derived from bacteria that can decompose or neutralize substances that are toxic to the host (treatment method: improve the expression level or enzyme activity of the gene); and (4) Genes that improve the host's immunity by improving immune activity or vaccine effect: Antimicrobial drugs (single or combined agents) and cancer immunotherapy (single or combined agents) are envisioned (treatment method: improve the expression level or enzyme activity of the gene).
本明細書において、「デザイン」とは、例えば、対象となる微生物または細菌製剤についていうとき、これを新たに設計ないし、その設計図を提供することをいう。
In this specification, "design," when referring to, for example, a target microorganism or bacterial preparation, means to newly design it or provide a blueprint for it.
本明細書において、「タンパク質の機能」とは、そのタンパク質が備える主要な機能に限られず、そのタンパク質によって奏される何等かの機能をいう。
In this specification, "function of a protein" refers not only to the main function of the protein, but also to any function exerted by the protein.
本明細書において、遺伝子の機能が「改変」とは、もとの改変前の遺伝子の機能が、当該改変によって何らかの直接的または間接的な変化をする行為をいう。
In this specification, "modifying" the function of a gene refers to the act of directly or indirectly changing the function of the original gene before modification.
(好ましい実施形態)
以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでない。したがって、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができる。 Preferred Embodiments
Preferred embodiments of the present disclosure are described below. The embodiments provided below are provided for a better understanding of the present disclosure, and the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in consideration of the description in this specification. In addition, the following embodiments of the present disclosure can be used alone or in combination.
以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでない。したがって、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができる。 Preferred Embodiments
Preferred embodiments of the present disclosure are described below. The embodiments provided below are provided for a better understanding of the present disclosure, and the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in consideration of the description in this specification. In addition, the following embodiments of the present disclosure can be used alone or in combination.
本開示の一局面において、対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産する方法であって、該薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程と、該遺伝子を改変する工程と、該遺伝子の発現レベルが改変された微生物および/または該遺伝子によって産生されるタンパク質の機能が改変された微生物を選択する工程と、選択された該微生物について、該所望の薬効を有するかどうかを確認し、該薬効を有する微生物を選択する工程と、必要に応じて該所望の薬効を有する該微生物を含む集団を生成する工程とを含む、方法が提供される。本開示の方法は、所望の効果を備えた細菌製剤の設計技術として有用である。
In one aspect of the present disclosure, there is provided a method for designing or producing a bacterial preparation containing a microorganism having a desired medicinal effect in a subject, the method comprising the steps of selecting or screening at least one gene associated with the medicinal effect, modifying the gene, selecting a microorganism in which the expression level of the gene is modified and/or the function of a protein produced by the gene is modified, confirming whether the selected microorganism has the desired medicinal effect, selecting a microorganism having the medicinal effect, and, if necessary, generating a population containing the microorganism having the desired medicinal effect. The method of the present disclosure is useful as a design technique for a bacterial preparation with a desired effect.
改変微生物の細菌製剤としての利用については、2020年にゲノム編集技術の利用により得られた医薬品関連生物の取り扱いが通知されており、この通知では、カルタヘナ法の規制対象外と判断された場合であっても(すなわち、最終的に得られた生物に細胞外で加工した核酸が含まれない場合でも)、生物多様性への影響が生ずる恐れがあると判断された場合、生物多様性に対する影響を防止するために必要な措置を執ることが求められている。生物多様性に対する影響とは、対象生物が体外排出される際、競合する生物との優位性の有無、または、影響を受ける可能性のある野生動植物等の有無を評価することである。こうしたリスクを特定し予め届け出ることが、臨床試験開始の要件に課される可能性がある。このため、ゲノム編集技術を利用した微生物製剤を臨床試験の開始のみならず、実臨床で活用されるためには、体外排出後の非増殖性に関する情報(生残条件、生残時間等)を明示できるようにすることが最も現実的と考えられる。
Regarding the use of modified microorganisms as bacterial preparations, a notice was issued in 2020 on the handling of pharmaceutical-related organisms obtained using genome editing technology. This notice requires that even if it is determined that the organism is not subject to the Cartagena Protocol (i.e., even if the final organism does not contain nucleic acids processed outside the cell), if it is determined that there is a risk of an impact on biodiversity, necessary measures must be taken to prevent the impact on biodiversity. The impact on biodiversity refers to the assessment of whether the target organism has an advantage over competing organisms when it is discharged from the body, or the presence or absence of wild animals and plants that may be affected. Identifying and notifying such risks in advance may be required to start clinical trials. For this reason, in order for microbial preparations using genome editing technology to be used not only in clinical trials but also in actual clinical practice, it is considered most realistic to be able to clearly indicate information on non-proliferation after discharge from the body (survival conditions, survival time, etc.).
一つの実施形態において、薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程は、以下のように実施され得る。薬効に関連する少なくとも1つの遺伝子を選択する工程は、例えば、ゲノムライブラリーを用いてそれぞれの遺伝子をもつクローンと持たないクローンとを比較して目的の薬効をもつクローンを選択することができる。
In one embodiment, the step of selecting or screening at least one gene associated with a medicinal effect can be carried out as follows. The step of selecting at least one gene associated with a medicinal effect can be carried out, for example, by using a genomic library to compare clones that have each gene with clones that do not have the gene to select clones that have the desired medicinal effect.
マイクロバイオーム創薬の場合、対象疾患とその細菌側の標的遺伝子は、両者の対応関係がバリデートされた遺伝子を対象とする場合が多く、文献・学会・特許などのデータベース情報から選抜することができる。したがって、一実施形態において、上記情報源を元に、規模の大きなヒトでの臨床知見を出発点として創薬標的を探索するいわゆる「リバーストランスレーショナルリサーチ」の手法を用いて薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングすることができる。ゲノムライブラリーからスクリーニングする場合には、ヒットした標的遺伝子がヒト臨床でバリデートされているかについて、効率よく疾患との関係性を検証する必要がある。
In the case of microbiome drug discovery, the target gene for the target disease and the bacteria are often genes whose correspondence between the two has been validated, and can be selected from database information such as literature, academic societies, and patents. Therefore, in one embodiment, based on the above information sources, at least one gene related to drug efficacy can be selected or screened using a so-called "reverse translational research" method that searches for drug discovery targets starting from large-scale human clinical findings. When screening from a genome library, it is necessary to efficiently verify the relationship with the disease by determining whether the hit target gene has been validated in human clinical trials.
薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程としては、例えば、文献・学会・特許などの情報をベースにしたデータベースを用いて、インシリコで薬効関連遺伝子を探索することを含む。
The process of selecting or screening at least one gene related to drug efficacy includes, for example, searching for drug efficacy-related genes in silico using a database based on information from literature, academic societies, patents, etc.
一つの実施形態において、遺伝子を改変する工程は、任意の方法で実施され得る。代表的には、紫外線などの古典的変異方法、従来の分子生物学的手法、およびゲノム編集技術が挙げられ、いわゆる切らないゲノム編集(対象となる核酸分子の切断を伴わないゲノム編集)が好ましく用いられ得る。
In one embodiment, the step of modifying a gene can be carried out by any method. Representative methods include classical mutation methods such as ultraviolet light, conventional molecular biology techniques, and genome editing techniques, and so-called non-cutting genome editing (genome editing that does not involve cutting the target nucleic acid molecule) can be preferably used.
本開示の一実施形態において、本開示の方法における改変は、標的となる遺伝子における点変異の他、薬効関連遺伝子の挿入などが挙げられる。
In one embodiment of the present disclosure, the modification in the method of the present disclosure may include point mutations in the target gene, as well as the insertion of a gene related to drug efficacy.
一つの実施形態において、遺伝子の発現レベルが改変された微生物および/または該遺伝子によって産生されるタンパク質の機能が改変された微生物を選択する工程は、その機能に関連する何らかの試験法や、その機能を有する微生物を試験することで達成され得る。そのような技術としては、標的とする遺伝子転写量(RNA量)の測定、蛋白質の発現量解析(標的蛋白質の特異的染色法を含む)、レポーターアッセイ等の転写活性の測定、遊走性試験、生育曲線の検討(好気性、嫌気性)、および/または電子顕微鏡での形態観察などを挙げることができる。
In one embodiment, the step of selecting microorganisms with altered gene expression levels and/or altered functions of proteins produced by the genes can be achieved by any test method related to the function or by testing microorganisms with the function. Such techniques include measurement of the amount of target gene transcription (RNA amount), analysis of protein expression levels (including specific staining of target proteins), measurement of transcription activity such as reporter assays, migration tests, examination of growth curves (aerobic, anaerobic), and/or morphological observations under an electron microscope.
一つの実施形態において、選択された該微生物について、該所望の薬効を有するかどうかを確認し、該薬効を有する微生物を選択する工程は、薬効を直接または間接的に測定し得る任意の方法で実施することができる。そのような技術としては、酵素活性の測定、ヒトもしくは動物細胞および組織への接着性試験、細菌間の相互作用解析(例:バイオフィルム)、および/または動物(野生型もしくは疾患モデル)への投与後の挙動、生体反応評価もしくは薬効評価などを挙げることができる。
In one embodiment, the step of determining whether the selected microorganism has the desired efficacy and selecting the microorganism having the efficacy can be performed by any method capable of directly or indirectly measuring efficacy. Such techniques can include measurement of enzyme activity, adhesion tests to human or animal cells and tissues, analysis of bacterial interactions (e.g., biofilms), and/or behavior, biological response evaluation, or efficacy evaluation after administration to animals (wild type or disease model).
一つの実施形態において、所望の薬効を有する該微生物を含む集団を生成する工程はその微生物を増殖させ、および/または培養し得る方法であれば任意の方法を用いることができる。
In one embodiment, the step of generating a population containing the microorganism having the desired therapeutic effect can use any method that can grow and/or culture the microorganism.
一つの実施形態において、薬効を有する微生物の選択は、薬剤遺伝子耐性システムの利用する手法、必須遺伝子(栄養要求性マーカー)を利用する手法、呈色反応を触媒する酵素をコードする遺伝子(lacZ遺伝子など)を利用する手法、温度耐性を利用する手法などによって行うことができる
In one embodiment, the selection of microorganisms with medicinal properties can be performed by using a drug gene resistance system, an essential gene (auxotrophic marker), a gene that encodes an enzyme that catalyzes a color reaction (e.g., the lacZ gene), or a temperature tolerance method.
一つの実施形態において、本開示の方法によって得られる微生物の所望の薬効の確認は、薬剤遺伝子耐性システムの利用、前記薬効に基づく酵素活性、前記薬効に基づく生存活性、前記微生物の遊走活性、前記対象における前記微生物の定着性、前記微生物の細胞接着活性、前記微生物のムチン層への接着活性、前記微生物の動物組織内での定着活性などを含むことができる。
In one embodiment, confirmation of the desired pharmacological effect of the microorganism obtained by the method of the present disclosure can include the use of a drug gene resistance system, an enzyme activity based on the pharmacological effect, a survival activity based on the pharmacological effect, a migration activity of the microorganism, a fixability of the microorganism in the subject, a cell adhesion activity of the microorganism, an adhesion activity of the microorganism to a mucin layer, a fixation activity of the microorganism in an animal tissue, etc.
一実施形態において、所望の薬効を有する微生物を含む集団の生成は、当該微生物が増殖し、および/または増幅することができる条件下であれば特に限られない。細菌製剤を生産する際には、例えば、好気性および/または嫌気性条件下での生育曲線を野生株(親株)のものと比較することで、製剤化で課題となる大量培養しにくいクローンを避けることができる。
In one embodiment, the conditions for generating a population containing a microorganism having a desired therapeutic effect are not particularly limited as long as the microorganism can grow and/or amplify. When producing a bacterial formulation, for example, by comparing the growth curve under aerobic and/or anaerobic conditions with that of a wild-type strain (parent strain), it is possible to avoid clones that are difficult to mass-cultivate, which is an issue in formulation.
一実施形態において、薬効に関連する少なくとも1つの遺伝子は、疾患の原因と推定される細菌の機能を改変することで疾患の治療に資する「疾患-細菌」の組み合わせ例を対象として選択することができる。例えば、薬効に関連する少なくとも1つの遺伝子は炎症性腸疾患、パーキンソン病、癌免疫、う蝕、歯周病からなる群から選択される少なくとも1つの疾患または機能に関連する遺伝子を含むことができる。
In one embodiment, the at least one gene related to medicinal efficacy can be selected based on examples of "disease-bacteria" combinations that contribute to the treatment of a disease by modifying the function of a bacterium presumed to be the cause of the disease. For example, the at least one gene related to medicinal efficacy can include a gene related to at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease.
一実施形態において、薬効に関連する少なくとも1つの遺伝子は、例えば、各種癌(免疫チェックポイント阻害剤との併用)、消化器疾患(炎症性腸疾患(過敏性腸症候群、クローン病)など)、神経変性疾患(パーキンソン病など)、精神疾患、自己免疫疾患、感染症、代謝疾患、呼吸器疾患、肝臓疾患、心血管系疾患、口腔疾患、皮膚疾患、膣炎からなる群から選択される少なくとも1つの疾患または機能に関連する遺伝子を含むことができる。
In one embodiment, the at least one gene related to the medicinal effect can include, for example, a gene related to at least one disease or function selected from the group consisting of various cancers (in combination with immune checkpoint inhibitors), digestive diseases (inflammatory bowel diseases (irritable bowel syndrome, Crohn's disease, etc.)), neurodegenerative diseases (Parkinson's disease, etc.), psychiatric diseases, autoimmune diseases, infectious diseases, metabolic diseases, respiratory diseases, liver diseases, cardiovascular diseases, oral diseases, skin diseases, and vaginitis.
一実施形態において、本開示の方法は、腫瘍の治療または予防に使用される細菌製剤について、所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産することができる。腫瘍の治療または予防としては、例えば、放射線療法、分子標的薬、免疫チェックポイント阻害剤によるがん免疫療法によるものを挙げることができる。免疫応答や抗腫瘍機能においては、Toll-Like Receptor 5(TLR5)の活性化が関与していることが知られている。一実施形態において、本開示の方法によって、TLR5の活性化能に関連する少なくとも1つの遺伝子を改変することで、宿主におけるTLR5の活性化能を調節し、または向上させる微生物を含む細菌製剤をデザインまたは生産することができる。
In one embodiment, the method of the present disclosure can design or produce a bacterial preparation containing a microorganism having a desired medicinal effect for use in the treatment or prevention of tumors. Examples of tumor treatment or prevention include radiotherapy, molecular targeted drugs, and cancer immunotherapy using immune checkpoint inhibitors. It is known that activation of Toll-Like Receptor 5 (TLR5) is involved in immune responses and anti-tumor functions. In one embodiment, the method of the present disclosure can design or produce a bacterial preparation containing a microorganism that regulates or improves the activation ability of TLR5 in a host by modifying at least one gene related to the activation ability of TLR5.
本開示の方法によって得られる微生物は、免疫チェックポイント阻害剤によるがん免疫療法の効果を高めるマイクロバイオーム創薬技術として有用である。
The microorganisms obtained by the method disclosed herein are useful as a microbiome drug discovery technology that enhances the effectiveness of cancer immunotherapy using immune checkpoint inhibitors.
一実施形態において、本開示の方法は、炎症性疾患の治療または予防に使用される細菌製剤について、所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産することができる。炎症性疾患としては、炎症性の症状を呈する任意の疾患であればよく、例えば、炎症性腸疾患、リンパ増殖性疾患、自己免疫疾患、自己炎症性疾患などを挙げることができる。また炎症性腸疾患はクローン病(Crohn’s disease,CD)および潰瘍性大腸炎(Ulcerative colitis,UC)の2つの疾患を含む。これらの疾患ではいずれも炎症性マクロファージが蓄積することが知られている。一実施形態において、本開示の方法によって、炎症性マクロファージの蓄積低下に関連する少なくとも1つの遺伝子を改変することで、宿主における炎症性マクロファージの蓄積を低下させる微生物を含む細菌製剤をデザインまたは生産することができる。
In one embodiment, the disclosed method can design or produce a bacterial preparation containing a microorganism having a desired medicinal effect for use in the treatment or prevention of an inflammatory disease. The inflammatory disease may be any disease that exhibits inflammatory symptoms, such as inflammatory bowel disease, lymphoproliferative disease, autoimmune disease, and autoinflammatory disease. Inflammatory bowel disease includes two diseases, Crohn's disease (CD) and ulcerative colitis (UC). Both of these diseases are known to cause accumulation of inflammatory macrophages. In one embodiment, the disclosed method can design or produce a bacterial preparation containing a microorganism that reduces the accumulation of inflammatory macrophages in a host by modifying at least one gene associated with the reduction of inflammatory macrophage accumulation.
本開示の方法によって得られる微生物は、宿主における炎症を抑制し、炎症性マクロファージの蓄積を低下させ、および/または炎症性サイトカインの蓄積を低下させることができる。したがって、本開示の方法によって得られる微生物は、クローン病(CD)および潰瘍性大腸炎(UC)を含む炎症性腸疾患(IBD)、セリアック病(Celiac disease)、原発性硬化性胆管炎(Primary sclerosing cholangitis)、膀胱炎、腎盂腎炎等の炎症性疾患の治療における細菌治療製剤として有用である。
The microorganisms obtained by the method of the present disclosure can suppress inflammation, reduce the accumulation of inflammatory macrophages, and/or reduce the accumulation of inflammatory cytokines in a host. Thus, the microorganisms obtained by the method of the present disclosure are useful as bacterial therapeutic preparations in the treatment of inflammatory diseases such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), celiac disease, primary sclerosing cholangitis, cystitis, and pyelonephritis.
一実施形態において、本開示の方法は、脳内疾患の治療または予防に使用される細菌製剤について、所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産することができる。脳内疾患としては、パーキンソン病(Parkinson’s disease,PD)、多系統萎縮症(Multiple system atrophy,MSA)、またはレビー小体型認知症等の疾患を挙げることができ、これらはいずれもαシヌクレインの毒性オリゴマーを主成分とする細胞内凝集体が共通して蓄積していることが知られている。一実施形態において、αシヌクレインの凝集抑制に関連する少なくとも1つの遺伝子を改変することで、本開示の方法によって、宿主におけるαシヌクレインの凝集を抑制させる微生物を含む細菌製剤をデザインまたは生産することができる。
In one embodiment, the disclosed method can design or produce a bacterial preparation containing a microorganism with a desired medicinal effect for use in the treatment or prevention of brain diseases. Examples of brain diseases include Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies, all of which are known to have a common accumulation of intracellular aggregates composed mainly of toxic oligomers of α-synuclein. In one embodiment, by modifying at least one gene related to the inhibition of α-synuclein aggregation, the disclosed method can design or produce a bacterial preparation containing a microorganism that inhibits α-synuclein aggregation in a host.
本開示の方法によって得られる微生物は、宿主におけるαシヌクレインの凝集を抑制し、パーキンソン病(PD)、多系統萎縮症(MSA)、またはレビー小体型認知症(DLB)などの細菌治療製剤として有用である。
The microorganism obtained by the method disclosed herein inhibits α-synuclein aggregation in the host and is useful as a bacterial therapeutic agent for Parkinson's disease (PD), multiple system atrophy (MSA), or dementia with Lewy bodies (DLB), etc.
一実施形態において、本開示の方法において、微生物における少なくとも1つの遺伝子の改変は、標準的な分子生物学の手法を利用することができる。一実施形態において、改変は遺伝子における点変異を含むことができ、標的二本鎖ポリヌクレオチドを部位特異的にかつ正確に修飾するための方法として、例えば標的二本鎖ポリヌクレオチドと、Casタンパク質と、ガイドRNAとを接触させる方法、または標的二本鎖ポリヌクレオチドと、Casタンパク質と核酸塩基変換酵素との複合体と、ガイドRNAとを接触させる方法などを用いることができる。このような方法では、Cas9タンパク質とガイドRNAとが複合体を形成し、標的二本鎖ポリヌクレオチドに結合する。ここで、Cas9タンパク質は、前記標的二本鎖ポリヌクレオチドを切断しないか又は一方の鎖のみを切断して、すなわち、二本鎖切断を起こすことなく、標的ポリヌクレオチド内の塩基配列を修飾する。一実施形態において、修飾は好ましくは一塩基単位で行われる。
In one embodiment, in the method of the present disclosure, the modification of at least one gene in the microorganism can be performed using standard molecular biology techniques. In one embodiment, the modification can include a point mutation in the gene, and a method for site-specifically and precisely modifying the target double-stranded polynucleotide can be, for example, a method of contacting the target double-stranded polynucleotide with a Cas protein and a guide RNA, or a method of contacting the target double-stranded polynucleotide with a complex of a Cas protein and a nucleic acid base conversion enzyme and a guide RNA. In such a method, the Cas9 protein forms a complex with the guide RNA and binds to the target double-stranded polynucleotide. Here, the Cas9 protein modifies the base sequence in the target polynucleotide by not cleaving the target double-stranded polynucleotide or by cleaving only one strand, i.e., without causing a double-stranded cleavage. In one embodiment, the modification is preferably performed in single-base units.
一実施形態において、上記の一塩基単位の特異的かつ正確な修飾(一塩基編集)は、好ましくは、複合体中の核酸塩基変換酵素を用いて行われる。核酸塩基変換酵素としては、デアミナーゼ(脱アミノ化酵素)が挙げられる。デアミナーゼとしては、例えば、シトシンデアミナーゼ、シチジンデアミナーゼ、アデノシンデアミナーゼ等を使用することができる。一実施形態における複合体は、係る核酸塩基変換酵素に加えて、Indel形成を阻害するため、uracil DNA glycosylase inhibitor(UGI)といったIndel形成阻害因子を含んでいてもよい。
In one embodiment, the specific and precise modification of the single base unit (single base editing) is preferably performed using a nucleic acid base conversion enzyme in the complex. Examples of the nucleic acid base conversion enzyme include deaminases. Examples of deaminases that can be used include cytosine deaminase, cytidine deaminase, adenosine deaminase, and the like. In addition to the nucleic acid base conversion enzyme, the complex in one embodiment may contain an Indel formation inhibitor such as uracil DNA glycosylase inhibitor (UGI) to inhibit Indel formation.
一実施形態において、上記の一塩基単位の特異的かつ正確な修飾(一塩基編集)は、核酸配列認識モジュールとDNAグリコシラーゼとの複合体を用いた手法を利用することもでき、細胞内に導入された発現ベクター又はRNA分子から、核酸配列認識モジュールとDNAグリコシラーゼとの複合体が発現すると、該核酸配列認識モジュールが目的の二本鎖DNA(例、ゲノムDNA)内の標的ヌクレオチド配列を特異的に認識して結合し、該核酸配列認識モジュールに連結されたDNAグリコシラーゼの作用により、標的化された部位(標的ヌクレオチド配列の全部もしくは一部又はそれらの近傍を含む数百塩基の範囲内で適宜調節できる)のセンス鎖もしくはアンチセンス鎖で脱塩基反応が起こり、二本鎖DNAの一方の鎖に無塩基部位(AP部位)が生じる。すると、細胞内の塩基除去修復(BER)系が作動し、まずAPエンドヌクレアーゼがAP部位を認識してDNA片鎖のリン酸結合を切断し、エキソヌクレアーゼが脱塩基されたヌクレオチドを除去する。次にDNAポリメラーゼが反対鎖DNAを鋳型として新たにヌクレオチドを挿入し、最後にDNAリガーゼが繋ぎ目を修復する。このBERのいずれかの段階で修復ミスが起こることにより、種々の変異が導入される。上述のように、酵素活性を失っているがAP部位への結合能を保持する変異APエンドヌクレアーゼを併用することにより、細胞内のBER機構が阻害され、修復ミスの頻度、したがって変異導入効率を向上させることができる。
In one embodiment, the specific and precise modification of the single base unit (single base editing) can also be achieved by using a method using a complex of a nucleic acid sequence recognition module and DNA glycosylase. When a complex of a nucleic acid sequence recognition module and DNA glycosylase is expressed from an expression vector or RNA molecule introduced into a cell, the nucleic acid sequence recognition module specifically recognizes and binds to a target nucleotide sequence in a double-stranded DNA of interest (e.g., genomic DNA), and the action of the DNA glycosylase linked to the nucleic acid sequence recognition module causes an abasic reaction in the sense or antisense strand of the targeted site (which can be appropriately adjusted within a range of several hundred bases including all or part of the target nucleotide sequence or their vicinity), resulting in an abasic site (AP site) in one strand of the double-stranded DNA. Then, the base excision repair (BER) system in the cell is activated, and first, an AP endonuclease recognizes the AP site and cuts the phosphate bond of one strand of DNA, and an exonuclease removes the abasic nucleotide. Next, a DNA polymerase inserts a new nucleotide using the opposite strand DNA as a template, and finally, a DNA ligase repairs the splice. When a repair error occurs at any stage of this BER, various mutations are introduced. As mentioned above, by using a mutant AP endonuclease that has lost its enzymatic activity but retains the ability to bind to AP sites, the BER mechanism in the cell is inhibited, and the frequency of repair errors, and therefore the efficiency of mutation introduction, can be improved.
CRISPR-Casシステムは、標的ヌクレオチド配列に対して相補的なガイドRNAにより目的の二本鎖DNAの配列を認識するので、標的ヌクレオチド配列と特異的にハイブリッド形成し得るオリゴRNAおよび/またはオリゴDNAを合成するだけで、任意の配列を標的化することができ、しかも標的化された部位において、二本鎖DNAをほどいて一本鎖構造の領域と、それに隣接する緩んだ二本鎖DNA構造をとる領域とを生成するため、二本鎖DNAの構造を変化させる因子を組み合わせることなく、標的化された部位特異的に核酸塩基変換酵素やDNAグリコシラーゼを効率よく作用させることができる。したがって、本開示のより好ましい実施態様においては、核酸配列認識モジュールとして、Casの少なくとも1つのDNA切断能を持たないCRISPR-Casシステム(CRISPR-変異Cas)、またはCasの両方のDNA切断能を持たないCRISPR-Casシステム(CRISPR-変異Cas)を好ましく用いることができる。
The CRISPR-Cas system recognizes the sequence of a double-stranded DNA of interest using a guide RNA complementary to the target nucleotide sequence, and therefore any sequence can be targeted simply by synthesizing an oligo-RNA and/or oligo-DNA capable of specifically hybridizing with the target nucleotide sequence. Moreover, at the targeted site, the double-stranded DNA is unwound to generate a single-stranded region and an adjacent region having a loosened double-stranded DNA structure, so that a nucleic acid base conversion enzyme or DNA glycosylase can be efficiently acted on the targeted site specifically without combining a factor that changes the structure of the double-stranded DNA. Therefore, in a more preferred embodiment of the present disclosure, a CRISPR-Cas system that does not have at least one DNA cleavage ability of Cas (CRISPR-mutant Cas) or a CRISPR-Cas system that does not have both DNA cleavage abilities of Cas (CRISPR-mutant Cas) can be preferably used as the nucleic acid sequence recognition module.
CRISPR-変異Casを用いた本開示の核酸配列認識モジュールは、標的ヌクレオチド配列と相補的なガイドRNAと、変異Casタンパク質のリクルートに必要なtracrRNAとからなるRNA分子と変異Casタンパク質との複合体として提供される。
The nucleic acid sequence recognition module of the present disclosure using CRISPR-mutant Cas is provided as a complex of an RNA molecule consisting of a guide RNA complementary to a target nucleotide sequence and a tracrRNA required for recruiting the mutant Cas protein, and the mutant Cas protein.
一実施形態において、改変はin vivo又はin vitroの任意の環境で行うことができる。一実施形態において、改変は、生体外、すなわちex vivo又はin vitroで行うこともできる。
In one embodiment, the modification can be performed in any environment, in vivo or in vitro. In one embodiment, the modification can also be performed outside the body, i.e., ex vivo or in vitro.
本開示の一実施形態において、本開示の方法において用いられる微生物における少なくとも1つの遺伝子の改変は、上記のような手法により、終止コドンを生じさせる変異を含むことができる。
In one embodiment of the present disclosure, the modification of at least one gene in the microorganism used in the method of the present disclosure can include a mutation that generates a stop codon by the method described above.
本開示の一実施形態において、本開示の方法において用いられる微生物における少なくとも1つの遺伝子の改変は、ある1つの遺伝子において少なくとも2ヶ所、3ヶ所、4ヶ所、5ヶ所、6ヶ所、7ヶ所、または8ヶ所の変異を含むことができる。
In one embodiment of the present disclosure, the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least 2, 3, 4, 5, 6, 7, or 8 mutations in a gene.
本開示の一実施形態において、本開示の方法において用いられる微生物における少なくとも1つの遺伝子の改変は、塩基編集、好ましくは一塩基編集によって行うことが好ましい。
In one embodiment of the present disclosure, modification of at least one gene in a microorganism used in the method of the present disclosure is preferably performed by base editing, preferably single base editing.
本開示の一実施形態において、本開示の方法において用いられる微生物における少なくとも1つの遺伝子の改変は、少なくとも2種の遺伝子におけるそれぞれ少なくとも1ヶ所の変異を含むことができる。他の実施形態において、本開示の方法において用いられる微生物における少なくとも1つの遺伝子の改変は、少なくとも2種の遺伝子におけるそれぞれ少なくとも2ヶ所の変異を含むことができる。
In one embodiment of the present disclosure, the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least one mutation in each of at least two types of genes. In another embodiment, the modification of at least one gene in the microorganism used in the method of the present disclosure can include at least two mutations in each of at least two types of genes.
一実施形態において、本開示の方法において用いることのできる微生物は、例えば、大腸菌(Escherichia coli)、ラクトコッカス・ラクチス(Lactococcus lactis)、バクテロイデス門(Bacteroidetes)、ファーミキューテス門(Firmicute)、アクチノ細菌(Actinobacteria)、プロテオ細菌(Proteobacteria)、フソバクテリア門(Fusobacteria)又はウェルコミクロビウム門(Verrucomicrobia)の門のメンバー及びバクテロイデス(Bacteroides)、アリスティペス(Alistipes)、フィーカリバクテリウム(Faecalibacterium)、パラバクテロイデス(Parabacteroides)、プレボテラ(Prevotella)、ロセブリア(Roseburia)、ルミノコッカス(Ruminococcus)、クロストリジウム(Clostridium)、オシリバクター(Oscillibacter)、ジェミガー(Gemmiger)、バルネシエラ(Barnesiella)、ディアリスター(Dialister)、パラステレラ(Parasutterella)、ファスコラークトバクテリウム(Phascolarctobacterium)、プロピオニバクテリウム(Propionibacterium)、サテレラ(Sutterella)、ブラウティア(Blautia)、パラプレボテラ(Paraprevotella)、コプロコッカス(Coprococcus)、オドリバクター(Odoribacter)、スピロプラズマ(Spiroplasma)、アナエロスティペス(Anaerostipes)、アッケルマンシア(Akkermansia)、ラクトバチラス(Lactobacillus)、ストレプトコッカス(Streptococcus)ビフィドバクテリウム(Bifidobacterium)、アッカーマンシア(Akkermansia)、メガスファエラ(Megasphaera)、ユーバクテリウム(Eubacterium)、バリアトリクス(Bariatricus)、エリュシペラトクロスチリジウム(Erysipelatoclostridium)、ペディオコッカス(Pediococcus)エンテロコッカス(Enterococcus)、シュードフラボニフラクター(Pseudoflavonifractor)、ラクノスピラ科細菌(Lachnospiraceae)、エリシペロトリクス科細菌(Erysipelotrichaceae)オシロスピラ科細菌(Oscillospiraceae)、、フィーカリカテナ(Faecalicatena)属の細菌、Enterococcus casseliflavus、Enteroccocus gallinarum、Enterococcus faecalis、Enterococcus hirae、Enterococcus mundtii、Lactiplantibacillus plantarum、Lactobacillus gasseri、Akkermansia muciniphila、Faecalibacterium prausnitzii、Bifidobacterium spp.、Bifidobacterium animalis、Bifidobacterium breve、Streptococcus cristatus、Streptococcus gordonii、Streptococcus mutans、Streptococcus salivarius、Staphylococcus aureus、Staphylococcus epidermidis、Porphyromonas gingivalis、Clostridium acetobutylicum、Clostridium butyricum、Clostridium sporogenes、Clostridium cocleatum、Clostridium saccharogumia、Clostridium spiroforme、Clostridium innocuum、Clostridium ramosum、Clostridium hathewayi、Clostridium saccharolyticum、Clostridium scindens、Clostridium sp.、Clostridium bolteae、Clostridium indolis、Clostridium lavalense、Clostridium asparagiforme、Clostridium symbiosum、Clostridiales bacterium、Fusobacterium nucleatum、Blautia hydrogenotrophica、Blautia stercoris、Blautia wexlerae、Blautia producta、Blautia coccoides、Blautia hansenii、Blautia faecis、Blautia glucerasea、Blautia luti、Blautia schinkii、Megasphaera massiliensis、Megasphaera elsdenii、Megasphaera cerevisiae、Megasphaera indica、Megasphaera paucivorans、Megasphaera sueciensis、Megasphaera micronuciformis、Megasphaera hexanoica、Eubacterium contortum、Eubacterium fissicatena、Eubacterium limosum、Eubacterium rectale、Eubacterium aerofaciens、Eubacterium callanderi、 Eubacterium eligens、 Eubacterium hallii、Bariatricus massiliensis、Anaerostipes hadrus、Anaerostipes butyraticus、Anaerostipes rhamnosivorans、Anaerostipes caccae、Anaerotruncus colihominis、Faecalicatena fissicatena、Faecalicatena contorta、Erysipelatoclostridium ramosum、Parabacteroides distasonis、Parabacteroides merdae、Parabacteroides goldsteinii、Parabacteroides johnsonii、Pediococcus acidilactici、Pediococcus cellicola、Pediococcus claussenii、Pediococcus damnosus、Pediococcus ethanolidurans、Pediococcus inopinatus、Pediococcus parvulus、Pediococcus pentosaceus、Pediococcus stilesii、Roseburia hominis、Roseburia intestinalis、Roseburia faecis、Roseburia massiliensis、Roseburia cecicola、Roseburia inulinivorans、Bacteroides coprocola、Bacteroides thetaiotaomicron、Bacteroides fragilis、Bacteroides thetaiotaomicron、Bacteroides sp.、Pseudoflavonifractor capillosus、Lachnospiraceae bacterium、Lachnospiraceae sp.、Erysipelotrichaceae bacterium、Ruminococcus sp.、Oscillospiraceae bacterium、Oscillibacter valericigenes、およびLactobacillus reuteriなどが挙げられる。
In one embodiment, microorganisms that can be used in the methods of the present disclosure include, for example, members of the phyla of Escherichia coli, Lactococcus lactis, Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, or Verrucomicrobia, as well as members of the phyla of Bacteroides, Alistipes, Faecalis bacterium, Parabacteroides, Prevotella, and the like. Prevotella, Roseburia, Ruminococcus, Clostridium, Oscillibacter, Gemmiger, Barnesiella, Dialister, Parasutterella ), Phascolarctobacterium, Propionibacterium, Sutterella, Blautia, Paraprevotella, Coprococcus, Odoribacter, Spiropla Spiroplasma, Anaerostipes, Ackermansia, Lactobacillus, Streptococcus, Bifidobacterium, Ackermansia, Megasphaera aera), Eubacterium, Bariatricus, Erysipelatoclostridium, Pediococcus, Enterococcus, Pseudoflavonifractor, Lachnospira Family Lachnospiraceae, Family Erysipelotrichaceae, Family Oscillospiraceae, Family Faecalicatena, Enterococcus casseliflavus, Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus mundtii, Lactiplantibacillus plantarum, Lactobacillus gasseri, Ackermansia muciniphila, Faecalibacterium prausnitzii, Bifidobacterium spp. , Bifidobacterium animalis, Bifidobacterium breve, Streptococcus cristatus, Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, Staphylococcus aureus, Staphylococcus epidermidis, Porphyromonas gingivalis, Clostridium acetobutylicum, Clostridium butyricum, Clostridium sporogenes, Clostridium cocleatum, Clostridium saccharogumia, Clostridium spiroforme, Clostridium innocuum, Clostridium ramosum, Clostridium hathewayi, Clostridium saccharolyticum, Clostridium sindens, Clostridium sp. , Clostridium bolteae, Clostridium indolis, Clostridium lavalense, Clostridium asparagiforme, Clostridium symbiosum, Clostridiales bacterium, Fusobacterium nucleatum, Blautia hydrogenotrophic a, Blautia stercoris, Blautia wexlerae, Blautia producta, Blautia coccoides, Blautia hansenii, Blautia faecis, Blautia glucea, Blautia luti, Blautia schinkii, Megasphaera massiliensis, Megasp haera elsdenii, Megasphaera cerevisiae, Megasphaera indica, Megasphaera paucivorans, Megasphaera sueciensis, Megasphaera micronuciformis, Megasphaera hexanoica, Eubacterium contortum, Eubacter Eubacterium fissicatena, Eubacterium limosum, Eubacterium rectale, Eubacterium aerofaciens, Eubacterium callanderi, Eubacterium eligens, Eubacterium hallii, Bariatricus massiliensis, Anaerostipes ha drus, Anaerostipes butyraticus, Anaerostipes rhamnosivorans, Anaerostipes caccae, Anaerotruncus colihominis, Faecalicatena fissicatena, Faecalicatena contorta, Erysipelatoclostridium ramosum , Parabacteroides distasonis, Parabacteroides merdae, Parabacteroides goldsteinii, Parabacteroides johnsonii, Pediococcus acidilactici, Pediococcus cellicola, Pediococcus claussenii, Pediococcus us damnosus, Pediococcus ethanolidurans, Pediococcus inopinatus, Pediococcus parvulus, Pediococcus pentosaceus, Pediococcus stilesii, Roseburia hominis, Roseburia intestinalis, Roseburia faecii s, Roseburia massiliensis, Roseburia ceicola, Roseburia inulinivorans, Bacteroides coprocola, Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides sp. , Pseudoflavonifractor capillosus, Lachnospiraceae bacterium, Lachnospiraceae sp. , Erysipelotrichaceae bacterium, Ruminococcus sp., Oscillospiraceae bacterium, Oscillibacter valericigenes, and Lactobacillus reuteri.
一実施形態において、本開示の方法において用いることのできる微生物は、対象の腸内、口腔、および/または皮膚などに生息することができ、例えば、対象の糞便中の全培養可能微生物の少なくとも約0.1%、少なくとも約0.5%、少なくとも約1%、少なくとも約5%、少なくとも約10%、少なくとも約20%、少なくとも約30%、又は少なくとも約40%超を構成する属のものである。対象の腸又は糞便中の微生物は、16Sリボソーム配列決定を含む当技術分野で公知の任意の技術によって分析することができる。例えばバクテロイデス(Bacteroides)は、ヒト腸内で最も天然に豊富な属であり、例示的なバクテロイデス(Bacteroides)種としては、B.アシジファシエンス(B.acidifaciens)、B.アミロフィルス(B.amylophilus)、B.アサッカロリチクス(B.asaccharolyticus)、B.バルネシアエス(B.barnesiaes)、B.ビビウス(B.bivius)、B.ブッカエ(B.buccae)、B.ブッカリス(B.buccalis)、B.カッカエ(B.caccae)、B.カエシコラ(B.caecicola)、B.カエシガリナルム(B.caecigallinarum)、B.カピロサス(B.capillosus)、B.カピルス(B.capillus)、B.セルロシリチクス(B.cellulosilyticus)、B.セルロソルベンス(B.cellulosolvens)、B.チンチラ(B.chinchilla)、B.クラルス(B.clarus)、B.コアギュランス(B.coagulans)、B.コプロコラ(B.coprocola)、B.コプロフィルス(B.coprophilus)、B.コプロスイス(B.coprosuis)、B.コルポリス(B.corporis)、B.デンチコラ(B.denticola)、B.ジシエンス(B.disiens)、B.ジスタソニス(B.distasonis)、B.ドレイ(B.dorei)、B.エゲルチイ(B.eggerthii)、B.エンドドンタリス(B.endodontalis)、B.ファエシチンチラエ(B.faecichinchillae)、B.ファエシス(B.faecis)、B.フィネゴルジイ(B.finegoldii)、B.フルクスス(B.fluxus)、B.フォルシスス(B.forsythus)、B.フラギリス(B.fragilis)、B.フルコスス(B.furcosus)、B.ガラクツロニクス(B.galacturonicus)、B.ガリナセウム(B.gallinaceum)、B.ガリナルム(B.gallinarum)、B.ギンギバリス(B.gingivalis)、B.ゴルドステイニイ(B.goldsteinii)、B.グラシリス(B.gracilis)、B.グラミニソルベンス(B.graminisolvens)、B.ヘルコゲネス(B.helcogenes)、B.ヘパリノリチクス(B.heparinolyticus)、B.ヒペルメガス(B.hypermegas)、B.インテルメジウス(B.intermedius)、B.インテスチナリス(B.intestinalis)、B.ジョンソニイ(B.johnsonii)、B.レビイ(B.levvi)、B.ロエシェイイ(B.loescheii)、B.ルチ(B.luti)、B.マカカエ(B.macacae)、B.マシリエンシス(B.massiliensis)、B.メラニノゲニクス(B.melaninogenicus)、B.メルダエ(B.merdae)、B.ミクロフスス(B.microfusus)、B.ムルアチアシヅス(B.multiacidus)、B.ノドスス(B.nodosus)、B.ノルジイ(B.nordii)、B.オクラセウス(B.ochraceus)、B.オレイシプレヌス(B.oleiciplenus)、B.オラリス(B.oralis)、B.オリス(B.oris)、B.オウロルム(B.oulorum)、B.オバタス(B.ovatus)、B.パウロサッカロリチクス(B.paurosaccharolyticus)、B.ペクチノフィルス(B.pectinophilus)、B.ペントサセウス(B.pentosaceus)、B.プレベイウス(B.plebeius)、B.ニューモシンテス(B.pneumosintes)、B.ポリプラグマツス(B.polypragmatus)、B.プラエアクツス(B.praeacutus)、B.プロピオニシファシエンス(B.propionicifaciens)、B.プトレジニス(B.putredinis)、B.ピオゲネス(B.pyogenes)、B.レチキュロテルミチス(B.reticulotermitis)、B.ロデンチウム(B.rodentium)、B.ルミニコラ(B.ruminicola)、B.サラニトロニス(B.salanitronis)、B.サリボスス(B.salivosus)、B.サリエルシアエ(B.salyersiae)、B.サルトリイ(B.sartorii)、B.セジメント(B.sediment)、B.スプランクニクス(B.splanchnicus)、B.ステルコリロソリス(B.stercorirosoris)、B.ステルコリス(B.stercoris)、B.スシノゲネス(B.succinogenes)、B.スイス(B.suis)、B.テクツス(B.tectus)、B.テルミチジス(B.termitidis)、B.テタイオタオミクロン(B.thetaiotaomicron)、B.ウレフォルミス(B.uniformis)、B.ウレオリチクス(B.ureolyticus)、B.ベロラリス(B.veroralis)、B.ブルガツス(B.vulgatus)、B.キシラニソルベンス(B.xylanisolvens)、B.キシラノリチクス(B.xylanolyticus)又はB.ズーグレオフォンナンス(B.zoogleofonnans)を挙げることができる。また口腔細菌としてはStreptococcus gordonii、Streptococcus mutans、Streptococcus salivariusなどを、皮膚常在菌としてはStaphylococcus aureus、Staphylococcus epidermidisなどをそれぞれ挙げることができる。
In one embodiment, the microorganisms that can be used in the methods of the present disclosure can inhabit the gut, oral cavity, and/or skin of a subject, for example, from a genus that constitutes at least about 0.1%, at least about 0.5%, at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 30%, or at least about 40% of the total culturable microorganisms in the subject's feces. The microorganisms in the subject's gut or feces can be analyzed by any technique known in the art, including 16S ribosomal sequencing. For example, Bacteroides is the most naturally abundant genus in the human gut, and exemplary Bacteroides species include B. acidifaciens, B. amylophilus, B. asaccharolyticus, B. spp. ... B. barnesiaes, B. bivius, B. buccae, B. buccalis, B. caccae, B. caecicola, B. caecigallinarum, B. capillosus, B. capillus, B. cellulosilyticus, B. cellulosolvens, B. chinchilla, B. clarus, B. B. coagulans, B. coprocola, B. coprophilus, B. coprosuis, B. corporis, B. denticola, B. disiens, B. distasonis, B. dorei, B. eggerthii, B. endodontalis, B. faecichinchillae, B. faecis, B. cephalosporin ... B. finegoldii, B. fluxus, B. forsythus, B. fragilis, B. furcosus, B. galacturonicus, B. gallinaceum, B. gallinarum, B. gingivalis, B. goldsteinii, B. gracilis, B. graminisolvens, B. helcogenes, B. B. heparinolyticus, B. hypermegas, B. intermedius, B. intestinalis, B. johnsonii, B. levvi, B. loescheii, B. luti, B. macacae, B. massiliensis, B. melaninogenicus, B. merdae, B. microfusus, B. B. multiacidus, B. nodosus, B. nordii, B. ochraceus, B. oleiciplenus, B. oralis, B. oris, B. aurorum, B. ovatus, B. paurosaccharolyticus, B. pectinophilus, B. pentosaceus, B. plebeius, B. B. pneumosintes, B. polypragmatus, B. praeactus, B. propionicifaciens, B. putredinis, B. pyogenes, B. reticulothermitis, B. rodentium, B. ruminicola, B. salanitronis, B. salivosus, B. saliersiae, B. B. sartorii, B. sediment, B. splanchnicus, B. stercoris, B. stercoris, B. succinogenes, B. suis, B. tectus, B. termitidis, B. thetaiotaomicron, B. ureformis, B. uniformis, B. ureolyticus, B. veroralis, B. Examples of bacteria that may be present include B. vulgatus, B. xylanisolvens, B. xylanolyticus, and B. zoogleofonnans. Examples of bacteria that may be present in the oral cavity include Streptococcus gordonii, Streptococcus mutans, and Streptococcus salivarius, and examples of bacteria that may be present in the skin include Staphylococcus aureus and Staphylococcus epidermidis.
一実施形態において、本開示の方法によって得られる微生物は、ヒト腸内、口腔、および/または皮膚で安定にコロニー形成することができる。本開示の方法によって得られる微生物は、例えば、改変されていない同一のまたは類似の微生物と比較して、腸内において増加した存在量、安定性、または初期コロニー形成の容易さで対象の腸内にコロニー形成することができる。
In one embodiment, the microorganisms obtained by the methods of the present disclosure are capable of stably colonizing the human intestine, oral cavity, and/or skin. The microorganisms obtained by the methods of the present disclosure are capable of colonizing the intestine of a subject with increased abundance, stability, or ease of initial colonization in the intestine, for example, as compared to the same or similar microorganisms that have not been modified.
一実施形態において、本開示の方法によって得られる微生物は、治療用の関連遺伝子をさらに含むことができる。このような治療用の関連遺伝子は微生物がもとからもっているものでもよく、または所望の効果を発揮する遺伝子をそのまま、または一部改変して導入することもできる。一実施形態において、治療用の関連遺伝子は、I型線毛D-マンノース特異的アドヘシン(Type 1 fimbrin D-mannose specific adhesin:fimH)などを挙げることができる。一実施形態において、本開示の方法によって得られる微生物は、診断用の関連遺伝子をさらに含むことができる。このような診断用の関連遺伝子は微生物がもとからもっているものでもよく、または所望の効果を発揮する遺伝子をそのまま、または一部改変して導入することもできる。一実施形態において、診断用の関連遺伝子は、細菌のアクチン様細胞骨格タンパク質(Cell shape-determining protein:mreB)などを挙げることができる。一実施形態において、本開示の方法によって得られる微生物は、定着性に関連する遺伝子をさらに含むことができる。このような定着性に関連する遺伝子は微生物がもとからもっているものでもよく、または所望の効果を発揮する遺伝子をそのまま、または一部改変して導入することもできる。一実施形態において、定着性に関連する遺伝子は、DNA結合型転写活性化因子(DNA-binding transcriptional activator)flhDなどを挙げることができる。
In one embodiment, the microorganism obtained by the method of the present disclosure may further include a gene related to a therapeutic agent. Such a gene related to a therapeutic agent may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification. In one embodiment, the gene related to a therapeutic agent may be a type 1 fimbrin D-mannose specific adhesin (fimH) or the like. In one embodiment, the microorganism obtained by the method of the present disclosure may further include a gene related to a diagnostic agent. Such a gene related to a diagnostic agent may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification. In one embodiment, the gene related to a diagnostic agent may be a bacterial actin-like cytoskeleton protein (cell shape-determining protein (mreB)) or the like. In one embodiment, the microorganism obtained by the method of the present disclosure may further include a gene related to a colonization property. Such a gene related to a colonization property may be one that the microorganism originally possesses, or a gene that exerts a desired effect may be introduced as is or with a partial modification. In one embodiment, the gene associated with fixation can be the DNA-binding transcriptional activator flhD.
一実施形態において、導入遺伝子は、一塩基編集の結果として導入される終止コドンの影響によって、標的タンパク質の機能的発現を阻害することができる。微生物が複数のタンパク質をコードする遺伝子又は核酸を含む場合、タンパク質の2つ以上をコードするオープンリーディングフレームは、例えば、単一のオペロンに存在し得ることが意図される。
In one embodiment, the transgene can inhibit functional expression of the target protein by the effect of a stop codon introduced as a result of single base editing. When a microorganism contains genes or nucleic acids encoding multiple proteins, it is contemplated that open reading frames encoding two or more of the proteins can be present, for example, in a single operon.
本開示の一実施形態において、本開示の方法によって得られる微生物は、治療用製剤として利用することもでき、そのような治療用製剤は、例えば治療上有効の量の本開示の微生物を、例えば微生物の重量比で、少なくとも約0.01%、約0.05%、約0.1%、約0.2%、約0.3%、約0.4%、約0.5%、約0.6%、約0.7%、約0.8%、約0.9%、約1.0%,約1.5%、約2.0%、約3.0%、約4.0%、約5.0%、約6.0%、約7.0%、約8.0%、約9.0%、約10.0%、約11.0%、約12.0%、約13.0%、約14.0%、約15.0%、約16.0%、約17.0%、約18.0%、約19.0%、約20.0%、約25.0%、約30.0%、約35.0%、約40.0%、約45.0%、約50.0%またはそれ以上含むことが可能である。
In one embodiment of the present disclosure, the microorganism obtained by the method of the present disclosure can be used as a therapeutic preparation, and such a therapeutic preparation can contain, for example, a therapeutically effective amount of the microorganism of the present disclosure, for example, at least about 0.01%, about 0.05%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1.0%, about 1.5%, about It may contain 2.0%, about 3.0%, about 4.0%, about 5.0%, about 6.0%, about 7.0%, about 8.0%, about 9.0%, about 10.0%, about 11.0%, about 12.0%, about 13.0%, about 14.0%, about 15.0%, about 16.0%, about 17.0%, about 18.0%, about 19.0%, about 20.0%, about 25.0%, about 30.0%, about 35.0%, about 40.0%, about 45.0%, about 50.0% or more.
本開示の一実施形態において、本開示の方法によって得られる微生物は、体外で編集して創出した塩基編集微生物を患者体内に投与することによって微生物置換を行うことができ、各種疾患の治療に応答することができる。
In one embodiment of the present disclosure, the microorganisms obtained by the method of the present disclosure can be used to perform microbial replacement by administering base-edited microorganisms created by ex vivo editing into a patient's body, and can respond to the treatment of various diseases.
他の局面において、本開示の方法を実現するためのシステム、および/また装置が提供される。
In another aspect, a system and/or an apparatus for implementing the method of the present disclosure is provided.
(一般技術)
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F.M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F.M.(1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M.A.(1990).PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F.M.(1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F.M. (1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M.A. et al.(1995).PCR Strategies, Academic Press; Ausubel, F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J.J. et al.(1999). PCR Applications: Protocols for Functional Genomics, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。 (General Technology)
The molecular biological techniques, biochemical techniques, and microbiological techniques used herein are well known and commonly used in the art, and may be selected from those described in, for example, Sambrook J. et al. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor and its 3rd Ed. (2001); Ausubel, F. M. (1987). Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F. M. (1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M. A. (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F. M. (1992). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F. M. (1995). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M. A. et al. (1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J. J. et al. (1999). These are described in, for example, PCR Applications: Protocols for Functional Genomics, Academic Press, Special Edition of Experimental Medicine, "Gene Introduction & Expression Analysis Experimental Methods," Yodosha, 1997, the relevant portions of which (possibly in their entirety) are incorporated herein by reference.
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F.M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F.M.(1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M.A.(1990).PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F.M.(1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F.M. (1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M.A. et al.(1995).PCR Strategies, Academic Press; Ausubel, F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J.J. et al.(1999). PCR Applications: Protocols for Functional Genomics, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。 (General Technology)
The molecular biological techniques, biochemical techniques, and microbiological techniques used herein are well known and commonly used in the art, and may be selected from those described in, for example, Sambrook J. et al. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor and its 3rd Ed. (2001); Ausubel, F. M. (1987). Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F. M. (1989). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M. A. (1990). PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F. M. (1992). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F. M. (1995). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M. A. et al. (1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J. J. et al. (1999). These are described in, for example, PCR Applications: Protocols for Functional Genomics, Academic Press, Special Edition of Experimental Medicine, "Gene Introduction & Expression Analysis Experimental Methods," Yodosha, 1997, the relevant portions of which (possibly in their entirety) are incorporated herein by reference.
人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えばGeneArt、GenScript、Integrated DNA Technologies(IDT)などの遺伝子合成やフラグメント合成サービスを用いることもでき、その他、例えば、Gait, M.J.(1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M.J.(1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F.(1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R.L. et al.(1992). The Biochemistry of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al.(1994).Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G.M. et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G.T.(I996). Bioconjugate Techniques, Academic Pressなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
For DNA synthesis technology and nucleic acid chemistry to create artificially synthesized genes, gene synthesis and fragment synthesis services such as GeneArt, GenScript, Integrated DNA Technologies (IDT) can be used, and other references include, for example, Gait, M. J. (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M. J. (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F. (1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R. L. et al. (1992). The Biochemistry of the Nucleic Acids, Chapman &Hall; Shabarova, Z. et al. (1994). Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G. M. et al. (1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G. T. (1996). Bioconjugate Techniques, Academic Press, etc., the relevant portions of which are incorporated herein by reference.
本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。
本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 In this specification, "or" is used when "at least one or more" of the items listed in the sentence can be employed. The same applies to "alternative." In this specification, when it is specified that "within the range" of "two values," the range includes the two values themselves.
All references cited herein, including scientific literature, patents, patent applications, and the like, are hereby incorporated by reference in their entirety to the same extent as if each was specifically set forth.
本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 In this specification, "or" is used when "at least one or more" of the items listed in the sentence can be employed. The same applies to "alternative." In this specification, when it is specified that "within the range" of "two values," the range includes the two values themselves.
All references cited herein, including scientific literature, patents, patent applications, and the like, are hereby incorporated by reference in their entirety to the same extent as if each was specifically set forth.
以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。
The present disclosure has been described above by showing preferred embodiments for ease of understanding. Below, the present disclosure will be described based on examples, but the above description and the following examples are provided for illustrative purposes only and are not provided for the purpose of limiting the present disclosure. Therefore, the scope of the present disclosure is not limited to the embodiments or examples specifically described in this specification, but is limited only by the scope of the claims.
(実施例1:パーキンソン病治療薬)
(実施例1-1:カーリー線毛オペロン遺伝子群の改変によるCsgAのオリゴマー形成阻害)
本実施例では、大腸菌ATCC47076株を対象に、各csgA、csgE、csgG遺伝子に対して単独のストップコドンを挿入した塩基編集株を作出した。ガイドRNAは設計可能箇所のうち最もN末端側を選択した。具体的には、csgAは151アミノ酸のうちの72番目、csgEは129アミノ酸のうちの45番目、csgGは277アミノ酸のうち、N末から2番目のアミノ酸相当部位にストップコドンを導入した。すべての塩基編集菌株は、好気性条件において、in vitro増殖性に問題は認められなかった(図1-1)。csgA-csgE-csgGの三重編集株は次の方法で作出した。csgEおよびcsgGのガイドRNAをデュアルに搭載した塩基編集用ベクターを構築し、csgEおよびcsgGの二重塩基編集株を作出した。その後、csgE-csgG二重塩基編集株に対して、csgAのガイドRNAベクターを導入し、csgA-csgE-csgGの三重塩基編集株を作出した。各作成段階でin vitro増殖性に問題がないことを確認した(図1-1)。 Example 1: Drug for treating Parkinson's disease
(Example 1-1: Inhibition of CsgA oligomerization by modification of the curli pilus operon gene cluster)
In this example, a base-edited strain was created by inserting a single stop codon into each of the csgA, csgE, and csgG genes using the E. coli ATCC47076 strain. The guide RNA was selected from the most N-terminal of the possible design positions. Specifically, a stop codon was introduced into the 72nd amino acid of 151 amino acids for csgA, the 45th amino acid of 129 amino acids for csgE, and the second amino acid from the N-terminus of 277 amino acids for csgG. All base-edited strains showed no problems with in vitro growth under aerobic conditions (Figure 1-1). A triple-edited strain of csgA-csgE-csgG was created by the following method. A base-editing vector carrying dual guide RNAs of csgE and csgG was constructed, and a double base-edited strain of csgE and csgG was created. Then, a csgA guide RNA vector was introduced into the csgE-csgG double base-edited strain to produce a csgA-csgE-csgG triple base-edited strain. It was confirmed that there were no problems with in vitro proliferation at each stage of production (Figure 1-1).
(実施例1-1:カーリー線毛オペロン遺伝子群の改変によるCsgAのオリゴマー形成阻害)
本実施例では、大腸菌ATCC47076株を対象に、各csgA、csgE、csgG遺伝子に対して単独のストップコドンを挿入した塩基編集株を作出した。ガイドRNAは設計可能箇所のうち最もN末端側を選択した。具体的には、csgAは151アミノ酸のうちの72番目、csgEは129アミノ酸のうちの45番目、csgGは277アミノ酸のうち、N末から2番目のアミノ酸相当部位にストップコドンを導入した。すべての塩基編集菌株は、好気性条件において、in vitro増殖性に問題は認められなかった(図1-1)。csgA-csgE-csgGの三重編集株は次の方法で作出した。csgEおよびcsgGのガイドRNAをデュアルに搭載した塩基編集用ベクターを構築し、csgEおよびcsgGの二重塩基編集株を作出した。その後、csgE-csgG二重塩基編集株に対して、csgAのガイドRNAベクターを導入し、csgA-csgE-csgGの三重塩基編集株を作出した。各作成段階でin vitro増殖性に問題がないことを確認した(図1-1)。 Example 1: Drug for treating Parkinson's disease
(Example 1-1: Inhibition of CsgA oligomerization by modification of the curli pilus operon gene cluster)
In this example, a base-edited strain was created by inserting a single stop codon into each of the csgA, csgE, and csgG genes using the E. coli ATCC47076 strain. The guide RNA was selected from the most N-terminal of the possible design positions. Specifically, a stop codon was introduced into the 72nd amino acid of 151 amino acids for csgA, the 45th amino acid of 129 amino acids for csgE, and the second amino acid from the N-terminus of 277 amino acids for csgG. All base-edited strains showed no problems with in vitro growth under aerobic conditions (Figure 1-1). A triple-edited strain of csgA-csgE-csgG was created by the following method. A base-editing vector carrying dual guide RNAs of csgE and csgG was constructed, and a double base-edited strain of csgE and csgG was created. Then, a csgA guide RNA vector was introduced into the csgE-csgG double base-edited strain to produce a csgA-csgE-csgG triple base-edited strain. It was confirmed that there were no problems with in vitro proliferation at each stage of production (Figure 1-1).
比較対照のため、相同組換え技術により、csgA欠損株、csgB欠損株、csgDEFGオペロンの欠損株をそれぞれ作出した。作出した塩基編集株は全て導入したプラスミドベクターが除去されていることを確認後、以下に示すin vitro評価を実施した。
For comparison purposes, a csgA-deficient strain, a csgB-deficient strain, and a csgDEFG operon-deficient strain were created using homologous recombination technology. After confirming that the introduced plasmid vector had been removed from all of the base-edited strains created, the following in vitro evaluation was performed.
<コンゴーレッドによるCsgA染色実験(蛍光強度)>
大腸菌カーリー線毛の定量評価には、アミロイド染色試薬であるコンゴーレッドを使用した。大腸菌ATCC47076野生株、作出した塩基編集株ならびに相同組換え株をLB液体培地にて一晩培養し、カーリー線毛形成用培地であるYESCA寒天培地に塗抹後、26℃にて48時間静置培養を行った。CsgAオリゴマー形成阻害化合物であるEGCGは、終濃度10、50、100、500μg/mLとなるようYESCA寒天培地作製時に混合し、大腸菌野生株を塗抹して上記と同条件で培養した。 <CsgA staining experiment with Congo red (fluorescence intensity)>
Congo red, an amyloid staining reagent, was used to quantitatively evaluate E. coli curli fimbriae. E. coli ATCC47076 wild-type strain, the base-edited strain, and the homologous recombinant strain were cultured overnight in LB liquid medium, smeared on YESCA agar medium, which is a medium for curli fimbria formation, and then statically cultured at 26 ° C. for 48 hours. EGCG, a CsgA oligomerization inhibitor compound, was mixed at the time of preparation of the YESCA agar medium to a final concentration of 10, 50, 100, and 500 μg / mL, and the E. coli wild-type strain was smeared and cultured under the same conditions as above.
大腸菌カーリー線毛の定量評価には、アミロイド染色試薬であるコンゴーレッドを使用した。大腸菌ATCC47076野生株、作出した塩基編集株ならびに相同組換え株をLB液体培地にて一晩培養し、カーリー線毛形成用培地であるYESCA寒天培地に塗抹後、26℃にて48時間静置培養を行った。CsgAオリゴマー形成阻害化合物であるEGCGは、終濃度10、50、100、500μg/mLとなるようYESCA寒天培地作製時に混合し、大腸菌野生株を塗抹して上記と同条件で培養した。 <CsgA staining experiment with Congo red (fluorescence intensity)>
Congo red, an amyloid staining reagent, was used to quantitatively evaluate E. coli curli fimbriae. E. coli ATCC47076 wild-type strain, the base-edited strain, and the homologous recombinant strain were cultured overnight in LB liquid medium, smeared on YESCA agar medium, which is a medium for curli fimbria formation, and then statically cultured at 26 ° C. for 48 hours. EGCG, a CsgA oligomerization inhibitor compound, was mixed at the time of preparation of the YESCA agar medium to a final concentration of 10, 50, 100, and 500 μg / mL, and the E. coli wild-type strain was smeared and cultured under the same conditions as above.
48時間培養後の菌体を採取し、PBSに懸濁後、OD600(nm)にて濁度を測定した。全ての菌液の濁度をOD600=5となるよう調製後、遠心後に上清を除去した。
集菌した菌体に15μg/mLのコンゴーレッドを含むPBS 1mLに懸濁し、10分間室温で静置した。再度遠心して上清除去後、菌体を少量のPBSに再懸濁し、コンゴーレッドを溶出させた。大腸菌カーリー線毛の定量は、励起波長470nm、蛍光波長620nmにて実施した。 After 48 hours of culture, the cells were harvested and suspended in PBS, and the turbidity was measured at OD600 (nm). The turbidity of all the cell suspensions was adjusted to OD600 = 5, and the supernatant was removed after centrifugation.
The collected cells were suspended in 1 mL of PBS containing 15 μg/mL Congo Red and allowed to stand at room temperature for 10 minutes. After centrifuging again to remove the supernatant, the cells were resuspended in a small amount of PBS to elute Congo Red. Quantification of E. coli curli fimbriae was performed at an excitation wavelength of 470 nm and a fluorescence wavelength of 620 nm.
集菌した菌体に15μg/mLのコンゴーレッドを含むPBS 1mLに懸濁し、10分間室温で静置した。再度遠心して上清除去後、菌体を少量のPBSに再懸濁し、コンゴーレッドを溶出させた。大腸菌カーリー線毛の定量は、励起波長470nm、蛍光波長620nmにて実施した。 After 48 hours of culture, the cells were harvested and suspended in PBS, and the turbidity was measured at OD600 (nm). The turbidity of all the cell suspensions was adjusted to OD600 = 5, and the supernatant was removed after centrifugation.
The collected cells were suspended in 1 mL of PBS containing 15 μg/mL Congo Red and allowed to stand at room temperature for 10 minutes. After centrifuging again to remove the supernatant, the cells were resuspended in a small amount of PBS to elute Congo Red. Quantification of E. coli curli fimbriae was performed at an excitation wavelength of 470 nm and a fluorescence wavelength of 620 nm.
大腸菌野生株のカーリー線毛の形成量を100とした時の各菌株の相対値(平均値+標準誤差,n=3)で示した(図1-2)。csgA相同組換え欠損株に対する値を本実施例の検出限界値と設定し、点線で示した。
The amount of curli fimbriae formed by the wild-type E. coli strain is shown as a relative value (average value + standard error, n = 3) for each strain (Figure 1-2), with the amount of curli fimbriae formed by the wild-type E. coli strain taken as 100. The value for the csgA homologous recombination-deficient strain was set as the detection limit of this example, and is shown by the dotted line.
カーリー線毛の形成阻害効果が知られているEGCGは、濃度依存的にカーリー線毛の形成を阻害した。また、csgA-csgE-csgG三重塩基編集株は、csgA相同組換え欠損株と同等以上にカーリー線毛の形成を強力に阻害することを確認した。
EGCG, which is known to have inhibitory effects on the formation of curli fimbriae, inhibited the formation of curli fimbriae in a concentration-dependent manner. In addition, it was confirmed that the csgA-csgE-csgG triple base-edited strain inhibited the formation of curli fimbriae as strongly as or more strongly than the csgA homologous recombination-deficient strain.
<CsgAウェスタンブロッティング>
市販の抗CsgA抗体を用いてCsgAの検出を行った。YESCA寒天培地上で26℃にて48時間培養し、菌体を回収した。濁度OD600=1に調製した菌液を二分割し、一方はタンパク定量を実施し、もう一方はウェスタンブロッティング用サンプル用としてギ酸を添加した懸濁液を調製した。ギ酸を完全に乾燥させる目的でチューブの蓋を開けた状態で37℃、3時間加温後、蓋を開けたまま一晩室温で放置した。このサンプルにSDS bufferを添加して懸濁後、コスモバイオ社の15%ゲルを使用し、1ウェル当たり2μgのタンパクをアプライしてSDS-PAGEを行った。転写にはトランスブロットTurboおよびトランスブロット Turbo転写パックPVDF膜(いずれもBioRad社)を使用した。固定および抗体反応は、iBind Flex Western System(invitrogen社)を使用した。一次抗体はCSGA Antibody(CUSABIO社)を1/1,000、二次抗体はAnti-rabbit IgG, HRP-linked Antibody(Cell Signaling社)を1/2,000に希釈して使用した。化学発光の検出試薬として、ECL Prime Western Blotting Detection Reagents(Cytiva社)を使用した。ウェスタンブロッティングの結果を図1-3に示す。 <CsgA Western blotting>
CsgA was detected using a commercially available anti-CsgA antibody. The cells were cultured on YESCA agar medium at 26 ° C for 48 hours, and the cells were collected. The bacterial solution prepared to a turbidity of OD600 = 1 was divided into two, one of which was subjected to protein quantification, and the other was prepared as a suspension with formic acid added for use as a sample for Western blotting. In order to completely dry the formic acid, the tube was heated at 37 ° C for 3 hours with the lid open, and then left at room temperature overnight with the lid open. After adding SDS buffer to this sample and suspending it, 2 μg of protein per well was applied to a 15% gel from Cosmo Bio Co., Ltd., and SDS-PAGE was performed. Transblot Turbo and Transblot Turbo Transfer Pack PVDF membranes (both BioRad) were used for transfer. For fixation and antibody reaction, iBind Flex Western System (Invitrogen) was used. The primary antibody was CSGA Antibody (CUSABIO) diluted 1/1,000, and the secondary antibody was Anti-rabbit IgG, HRP-linked Antibody (Cell Signaling) diluted 1/2,000. ECL Prime Western Blotting Detection Reagents (Cytiva) were used as the chemiluminescent detection reagent. The results of Western blotting are shown in Figure 1-3.
市販の抗CsgA抗体を用いてCsgAの検出を行った。YESCA寒天培地上で26℃にて48時間培養し、菌体を回収した。濁度OD600=1に調製した菌液を二分割し、一方はタンパク定量を実施し、もう一方はウェスタンブロッティング用サンプル用としてギ酸を添加した懸濁液を調製した。ギ酸を完全に乾燥させる目的でチューブの蓋を開けた状態で37℃、3時間加温後、蓋を開けたまま一晩室温で放置した。このサンプルにSDS bufferを添加して懸濁後、コスモバイオ社の15%ゲルを使用し、1ウェル当たり2μgのタンパクをアプライしてSDS-PAGEを行った。転写にはトランスブロットTurboおよびトランスブロット Turbo転写パックPVDF膜(いずれもBioRad社)を使用した。固定および抗体反応は、iBind Flex Western System(invitrogen社)を使用した。一次抗体はCSGA Antibody(CUSABIO社)を1/1,000、二次抗体はAnti-rabbit IgG, HRP-linked Antibody(Cell Signaling社)を1/2,000に希釈して使用した。化学発光の検出試薬として、ECL Prime Western Blotting Detection Reagents(Cytiva社)を使用した。ウェスタンブロッティングの結果を図1-3に示す。 <CsgA Western blotting>
CsgA was detected using a commercially available anti-CsgA antibody. The cells were cultured on YESCA agar medium at 26 ° C for 48 hours, and the cells were collected. The bacterial solution prepared to a turbidity of OD600 = 1 was divided into two, one of which was subjected to protein quantification, and the other was prepared as a suspension with formic acid added for use as a sample for Western blotting. In order to completely dry the formic acid, the tube was heated at 37 ° C for 3 hours with the lid open, and then left at room temperature overnight with the lid open. After adding SDS buffer to this sample and suspending it, 2 μg of protein per well was applied to a 15% gel from Cosmo Bio Co., Ltd., and SDS-PAGE was performed. Transblot Turbo and Transblot Turbo Transfer Pack PVDF membranes (both BioRad) were used for transfer. For fixation and antibody reaction, iBind Flex Western System (Invitrogen) was used. The primary antibody was CSGA Antibody (CUSABIO) diluted 1/1,000, and the secondary antibody was Anti-rabbit IgG, HRP-linked Antibody (Cell Signaling) diluted 1/2,000. ECL Prime Western Blotting Detection Reagents (Cytiva) were used as the chemiluminescent detection reagent. The results of Western blotting are shown in Figure 1-3.
CsgAの検出バンドを黒矢印で示す。EGCGは濃度依存的にCsgAタンパク発現を阻害しており(図1-3左側)、図1-2で示したコンゴーレッド染色によるCsgAの定量結果との相関性が確認された。一方、相同組換え欠損株、塩基編集株はいずれもCsgAタンパクの明確な発現は認められなかった(図1-3右側)。
The detection band for CsgA is indicated by a black arrow. EGCG inhibited CsgA protein expression in a concentration-dependent manner (left side of Figure 1-3), and a correlation was confirmed with the quantitative results of CsgA by Congo red staining shown in Figure 1-2. On the other hand, no clear expression of CsgA protein was observed in either the homologous recombination-deficient strain or the base-edited strain (right side of Figure 1-3).
<透過電子顕微鏡を用いた大腸菌の観察>
Curli線毛を形成させるために、大腸菌をYESCA寒天培地上で26℃にて48時間培養した。寒天培地上から回収した菌体を酢酸ウランで染色後、ネガティブ染色法にて透過電子顕微鏡を用いて観察した(図1-4)。 <Observation of E. coli using a transmission electron microscope>
To form curli, E. coli was cultured on YESCA agar medium for 48 hours at 26° C. Bacteria collected from the agar medium were stained with uranyl acetate and then observed under a transmission electron microscope using the negative staining method (FIG. 1-4).
Curli線毛を形成させるために、大腸菌をYESCA寒天培地上で26℃にて48時間培養した。寒天培地上から回収した菌体を酢酸ウランで染色後、ネガティブ染色法にて透過電子顕微鏡を用いて観察した(図1-4)。 <Observation of E. coli using a transmission electron microscope>
To form curli, E. coli was cultured on YESCA agar medium for 48 hours at 26° C. Bacteria collected from the agar medium were stained with uranyl acetate and then observed under a transmission electron microscope using the negative staining method (FIG. 1-4).
(結果)
大腸菌野生株では線毛が観察されたが、csgAの塩基編集株では観察されなかった。 (result)
Pili were observed in the wild-type E. coli strain but not in the csgA base-edited strain.
大腸菌野生株では線毛が観察されたが、csgAの塩基編集株では観察されなかった。 (result)
Pili were observed in the wild-type E. coli strain but not in the csgA base-edited strain.
<コンゴーレッドによるCsgAオリゴマーの染色試験(寒天培養)>
コンゴーレッドを含む寒天培地上での生育菌体の色調変化を観察した。大腸菌ATCC47076の野生株、作出した塩基編集株ならびに相同組換え株をLB液体培地にて一晩培養後、OD600=3に濁度を調製した。当該菌液を終濃度10μg/mLのコンゴーレッドおよび終濃度10μg/mLのクマシーブリリアントブルーを含むYESCA寒天培地上に5μLスポット後、26℃にて48時間静置培養を行い、さらに4℃にて72時間インキュベートし、CsgAのオリゴマー形成量を観察した(図1-5)。また、csgA相同組換え欠損株(CsgBドナー)またはcsgB相同組換え欠損株(CsgAドナー)と各供試菌株を等量混合し、上記と同様の条件にてCsgA-CsgBの菌体間相補性試験を行い、CsgAのオリゴマー形成量を観察した(図1-5)。 <Congo Red staining test for CsgA oligomers (agar culture)>
The color change of the grown bacteria on the agar medium containing Congo Red was observed. The wild-type strain of E. coli ATCC47076, the base-edited strain, and the homologous recombinant strain were cultured overnight in LB liquid medium, and the turbidity was adjusted to OD600 = 3. The bacterial solution was spotted on a YESCA agar medium containing a final concentration of 10 μg / mL of Congo Red and a final concentration of 10 μg / mL of Coomassie Brilliant Blue, 5 μL, and then statically cultured at 26 ° C. for 48 hours, and further incubated at 4 ° C. for 72 hours to observe the amount of CsgA oligomer formation (Figure 1-5). In addition, the csgA homologous recombination-deficient strain (CsgB donor) or the csgB homologous recombination-deficient strain (CsgA donor) was mixed with each test strain in equal amounts, and a CsgA-CsgB bacterial cell complementation test was performed under the same conditions as above, and the amount of CsgA oligomer formation was observed (Figure 1-5).
コンゴーレッドを含む寒天培地上での生育菌体の色調変化を観察した。大腸菌ATCC47076の野生株、作出した塩基編集株ならびに相同組換え株をLB液体培地にて一晩培養後、OD600=3に濁度を調製した。当該菌液を終濃度10μg/mLのコンゴーレッドおよび終濃度10μg/mLのクマシーブリリアントブルーを含むYESCA寒天培地上に5μLスポット後、26℃にて48時間静置培養を行い、さらに4℃にて72時間インキュベートし、CsgAのオリゴマー形成量を観察した(図1-5)。また、csgA相同組換え欠損株(CsgBドナー)またはcsgB相同組換え欠損株(CsgAドナー)と各供試菌株を等量混合し、上記と同様の条件にてCsgA-CsgBの菌体間相補性試験を行い、CsgAのオリゴマー形成量を観察した(図1-5)。 <Congo Red staining test for CsgA oligomers (agar culture)>
The color change of the grown bacteria on the agar medium containing Congo Red was observed. The wild-type strain of E. coli ATCC47076, the base-edited strain, and the homologous recombinant strain were cultured overnight in LB liquid medium, and the turbidity was adjusted to OD600 = 3. The bacterial solution was spotted on a YESCA agar medium containing a final concentration of 10 μg / mL of Congo Red and a final concentration of 10 μg / mL of Coomassie Brilliant Blue, 5 μL, and then statically cultured at 26 ° C. for 48 hours, and further incubated at 4 ° C. for 72 hours to observe the amount of CsgA oligomer formation (Figure 1-5). In addition, the csgA homologous recombination-deficient strain (CsgB donor) or the csgB homologous recombination-deficient strain (CsgA donor) was mixed with each test strain in equal amounts, and a CsgA-CsgB bacterial cell complementation test was performed under the same conditions as above, and the amount of CsgA oligomer formation was observed (Figure 1-5).
(結果)
大腸菌野生株はCsgAのオリゴマー形成を示す濃赤色のコロニーを形成した。またcsgA相同組換え欠損株およびcsgB相同組換え欠損株はそれぞれ単独培養したところ、CsgAオリゴマー形成が阻害され、白色コロニーを形成した。しかし、csgA相同組換え欠損株とcsgB相同組換え欠損株を等量混合後に培養した結果、CsgAとCsgBを相互に補うことによりCsgAのオリゴマーが形成されたことを示す濃赤色のコロニーが形成された。 (result)
The wild-type E. coli strain formed a deep red colony indicating the formation of CsgA oligomers. In addition, when the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured alone, the formation of CsgA oligomers was inhibited and white colonies were formed. However, when the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured after mixing in equal amounts, a deep red colony was formed, indicating that CsgA oligomers were formed by mutual complementation of CsgA and CsgB.
大腸菌野生株はCsgAのオリゴマー形成を示す濃赤色のコロニーを形成した。またcsgA相同組換え欠損株およびcsgB相同組換え欠損株はそれぞれ単独培養したところ、CsgAオリゴマー形成が阻害され、白色コロニーを形成した。しかし、csgA相同組換え欠損株とcsgB相同組換え欠損株を等量混合後に培養した結果、CsgAとCsgBを相互に補うことによりCsgAのオリゴマーが形成されたことを示す濃赤色のコロニーが形成された。 (result)
The wild-type E. coli strain formed a deep red colony indicating the formation of CsgA oligomers. In addition, when the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured alone, the formation of CsgA oligomers was inhibited and white colonies were formed. However, when the csgA homologous recombination-deficient strain and the csgB homologous recombination-deficient strain were cultured after mixing in equal amounts, a deep red colony was formed, indicating that CsgA oligomers were formed by mutual complementation of CsgA and CsgB.
csgA塩基編集株の単独では、想定どおりにCsgAのβシート構造が部分的に形成された可能性から、薄赤色コロニーだった。一方で、csgB相同組換え欠損株と混合すると、CsgAのオリゴマー形成を示す濃赤色コロニーを形成した。
When the csgA base-edited strain was used alone, it produced light red colonies, likely due to partial formation of the beta-sheet structure of CsgA as expected. On the other hand, when it was mixed with a csgB homologous recombination-deficient strain, it produced dark red colonies, indicating oligomerization of CsgA.
csgE塩基編集株は、CsgAモノマーの菌体内における構造が不安定化した結果、csgA相同組換え欠損株(CsgBドナー)と等量混合した際は白色コロニーだったが、csgB相同組換え欠損株(CsgAドナー)と等量混合した際にはCsgAの少量のオリゴマー形成を示す薄赤色コロニーを形成した。
As a result of the instability of the intracellular structure of the CsgA monomer, the csgE base-edited strain formed white colonies when mixed in equal amounts with a csgA homologous recombination-deficient strain (CsgB donor), but when mixed in equal amounts with a csgB homologous recombination-deficient strain (CsgA donor), it formed light red colonies indicating the formation of a small amount of CsgA oligomers.
csgG塩基編集株(菌体内にてCsgAモノマーの発現は維持)ならびにcsgA-csgE-csgGの三重塩基編集株は、いずれの組み合わせにおいても菌体外にてCsgAのオリゴマーが形成されないことを示す白色コロニーを形成した。
The csgG base-edited strain (which maintained expression of CsgA monomers within the bacteria) and the triple base-edited strain of csgA-csgE-csgG formed white colonies, indicating that no CsgA oligomers were formed outside the bacteria in any combination.
以上の結果から、csgA単体欠損株に比べて、csgA-csgE-csgGの三重塩基編集大腸菌は、共培養によるCsgA-CsgBの菌体間相補性試験の結果、CsgAのオリゴマー形成を強力に阻害することが証明された。
These results demonstrate that, compared to a csgA single deletion strain, the csgA-csgE-csgG triple base-edited E. coli strongly inhibits the formation of CsgA oligomers as a result of a CsgA-CsgB cell-cell complementation test by co-culture.
EGCGは濃度依存的にCsgAオリゴマーの発現を阻害したが、臨床想定濃度を上回る高濃度を作用させても、100%阻害することはできなかった(図1-2)。これに対して、本特許にて作出した三重塩基編集大腸菌はCsgAのオリゴマーの形成が100%阻害されていること、そのCsgAオリゴマー形成の完全阻害は、他の大腸菌株が産生するCsgAやCsgBの影響を受けず、阻害が継続することをin vitro試験にて確認した。
EGCG inhibited the expression of CsgA oligomers in a concentration-dependent manner, but even at concentrations higher than the clinically anticipated concentration, it was not possible to achieve 100% inhibition (Figure 1-2). In contrast, in vitro testing confirmed that the triple base-edited E. coli produced in this patent inhibited the formation of CsgA oligomers 100%, and that this complete inhibition of CsgA oligomer formation was not affected by CsgA or CsgB produced by other E. coli strains, and that the inhibition continued.
これらの結果より、CsgAオリゴマー形成阻害を有するEGCGよりも、本開示にて作出した三重塩基編集大腸菌の方がCsgAオリゴマーの形成が強固に阻害することが証明された。
These results demonstrate that the triple base-edited E. coli produced in this disclosure inhibits the formation of CsgA oligomers more strongly than EGCG, which inhibits CsgA oligomer formation.
(実施例1-2:その他の塩基編集株によるCsgAのオリゴマー形成阻害)
実施例1-1と同様にして、カーリー線毛オペロン遺伝子群の変異株および多重変異株によるCsgAのオリゴマー形成阻害を評価した。 (Example 1-2: Inhibition of CsgA oligomer formation by other base-edited strains)
Inhibition of CsgA oligomerization by mutants and multiple mutants of the curli pilus operon genes was evaluated in the same manner as in Example 1-1.
実施例1-1と同様にして、カーリー線毛オペロン遺伝子群の変異株および多重変異株によるCsgAのオリゴマー形成阻害を評価した。 (Example 1-2: Inhibition of CsgA oligomer formation by other base-edited strains)
Inhibition of CsgA oligomerization by mutants and multiple mutants of the curli pilus operon genes was evaluated in the same manner as in Example 1-1.
結果を図1-6および1-7に示す。この結果から、本開示にて作出した塩基編集大腸菌がCsgAオリゴマーの形成を阻害することが確認できる。
The results are shown in Figures 1-6 and 1-7. These results confirm that the base-edited E. coli produced in this disclosure inhibits the formation of CsgA oligomers.
(実施例1-3:シグマ因子遺伝子群、カタボライト抑制因子遺伝子群、および二成分制御系遺伝子群のゲノム編集株によるCsgAのオリゴマー形成阻害)
実施例1と同様にして、シグマ因子遺伝子群、カタボライト抑制因子遺伝子群、および二成分制御系遺伝子群の変異株および多重変異株によるCsgAのオリゴマー形成阻害を評価した。 (Example 1-3: Inhibition of CsgA oligomerization by genome-edited strains of sigma factor genes, catabolite repressor genes, and two-component regulatory system genes)
In the same manner as in Example 1, the inhibition of oligomer formation of CsgA by mutants and multiple mutants of the sigma factor gene group, the catabolite repressor gene group, and the two-component control gene group was evaluated.
実施例1と同様にして、シグマ因子遺伝子群、カタボライト抑制因子遺伝子群、および二成分制御系遺伝子群の変異株および多重変異株によるCsgAのオリゴマー形成阻害を評価した。 (Example 1-3: Inhibition of CsgA oligomerization by genome-edited strains of sigma factor genes, catabolite repressor genes, and two-component regulatory system genes)
In the same manner as in Example 1, the inhibition of oligomer formation of CsgA by mutants and multiple mutants of the sigma factor gene group, the catabolite repressor gene group, and the two-component control gene group was evaluated.
結果を図1-8に示す。破壊株についてCongo Red Binding Assayを行ったところ、BP4087-P(rpoS-)、BP4091-P(ompR-)、BP4093-P(ompR-)はwtと比較し蛍光強度が半分程度となった。
The results are shown in Figure 1-8. When the Congo Red Binding Assay was performed on the disrupted strains, the fluorescence intensity of BP4087-P (rpoS-), BP4091-P (ompR-), and BP4093-P (ompR-) was approximately half that of the wild type.
(実施例2:炎症性腸疾患)
(実施例2-1:fim線毛オペロン遺伝子群の改変)
図2-1に示すとおりの標的遺伝子およびその編集箇所を改変してゲノム編集株を作製した。各ゲノム編集株の親株は図1に示すとおりATCC25922株またはATCC700926株を用いた。図2-1には、それぞれのゲノム編集株のGrowth Curve、並びに後述のマンノースビーズ結合性試験、および赤血球凝集試験の結果を示した。編集を施す標的遺伝子は、fimA、fimC、fimD、fimH、papG、papD、およびcsgAをそれぞれ単独で、または組み合わせて用いた。各標的遺伝子に対するgRNAの設計は、タンパク質機能の完全な欠損を誘発する5’末端側への終止コドンの導入を主とし、タンパク質の構造予測から想定される活性部位等へのアミノ酸置換を誘発するようにした。 Example 2: Inflammatory Bowel Disease
(Example 2-1: Modification of fim fimbrial operon genes)
Genome-edited strains were prepared by modifying the target gene and its editing site as shown in FIG. 2-1. The parent strain of each genome-edited strain was ATCC25922 or ATCC700926 as shown in FIG. 1. FIG. 2-1 shows the Growth Curve of each genome-edited strain, as well as the results of the mannose bead binding test and the hemagglutination test described below. The target genes to be edited were fimA, fimC, fimD, fimH, papG, papD, and csgA, each used alone or in combination. The gRNA for each target gene was designed mainly to introduce a stop codon to the 5' end side, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure prediction.
(実施例2-1:fim線毛オペロン遺伝子群の改変)
図2-1に示すとおりの標的遺伝子およびその編集箇所を改変してゲノム編集株を作製した。各ゲノム編集株の親株は図1に示すとおりATCC25922株またはATCC700926株を用いた。図2-1には、それぞれのゲノム編集株のGrowth Curve、並びに後述のマンノースビーズ結合性試験、および赤血球凝集試験の結果を示した。編集を施す標的遺伝子は、fimA、fimC、fimD、fimH、papG、papD、およびcsgAをそれぞれ単独で、または組み合わせて用いた。各標的遺伝子に対するgRNAの設計は、タンパク質機能の完全な欠損を誘発する5’末端側への終止コドンの導入を主とし、タンパク質の構造予測から想定される活性部位等へのアミノ酸置換を誘発するようにした。 Example 2: Inflammatory Bowel Disease
(Example 2-1: Modification of fim fimbrial operon genes)
Genome-edited strains were prepared by modifying the target gene and its editing site as shown in FIG. 2-1. The parent strain of each genome-edited strain was ATCC25922 or ATCC700926 as shown in FIG. 1. FIG. 2-1 shows the Growth Curve of each genome-edited strain, as well as the results of the mannose bead binding test and the hemagglutination test described below. The target genes to be edited were fimA, fimC, fimD, fimH, papG, papD, and csgA, each used alone or in combination. The gRNA for each target gene was designed mainly to introduce a stop codon to the 5' end side, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure prediction.
図2-1に示すとおり、多くの改変菌株において良好なGrowth Curveを示しており、標的遺伝子を改変することによる生存への影響はないことが確認できた。
As shown in Figure 2-1, many of the modified strains showed good growth curves, confirming that modifying the target gene had no effect on survival.
(実施例2-2:ゲノム編集株によるfimH結合力への影響)
実施例2-1で作製したゲノム編集株を用いて、fim線毛オペロン遺伝子群および線毛関連遺伝子群の変異株、ならびに多重変異株によるfimH結合力を評価した。この実施例では赤血球凝集試験を行い、機能的な大腸菌FimHの発現量を評価した。 (Example 2-2: Effect of genome-edited strain on fimH binding ability)
Using the genome-edited strain prepared in Example 2-1, the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains, was evaluated. In this example, a hemagglutination test was performed to evaluate the expression level of functional E. coli FimH.
実施例2-1で作製したゲノム編集株を用いて、fim線毛オペロン遺伝子群および線毛関連遺伝子群の変異株、ならびに多重変異株によるfimH結合力を評価した。この実施例では赤血球凝集試験を行い、機能的な大腸菌FimHの発現量を評価した。 (Example 2-2: Effect of genome-edited strain on fimH binding ability)
Using the genome-edited strain prepared in Example 2-1, the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains, was evaluated. In this example, a hemagglutination test was performed to evaluate the expression level of functional E. coli FimH.
<赤血球凝集試験>
赤血球凝集試験は以下のとおりに行った。
本試験は、モルモット由来赤血球の表層に発現するマンノースを主体とする糖タンパク質に対して大腸菌のFimHが特異的に結合する性質を利用したものである。試験に供する大腸菌は、2mLのLB培地に植菌し、37℃で24時間静置培養した。さらに、LB培地で100倍希釈し、追加で37℃、24時間静置培養した。合計48時間の培養完了後、培養液を1mL採取し、室温にて9700×gで1分間遠心集菌後、上清を除去し、濁度2.0 ODまたは10.0 ODになるようにPBSに再懸濁した。得られた大腸菌液を96ウェルU底プレートに分注し、2倍希釈系列を作製した。モルモット赤血球溶液を終濃度10%(w/v)に調整後、各ウェルが一律終濃度1%になるようにモルモット赤血球(必要に応じマンノースを含む)を分注した。任意の濃度の大腸菌液と1%(w/v)モルモット赤血球を接触させてから、4℃にて4時間静置後、96ウェルプレートの上部より写真撮影を行った。凝集反応が見られ、かつ、最も低い菌液濁度を有するウェルから菌液の希釈率を求め、これを2の自然対数として数値化した。 <Hemagglutination test>
The hemagglutination test was carried out as follows.
This test utilizes the property that E. coli FimH specifically binds to glycoproteins mainly composed of mannose expressed on the surface of guinea pig-derived red blood cells. The E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37°C for 24 hours. The E. coli was further diluted 100-fold with LB medium and cultured at 37°C for an additional 24 hours. After a total of 48 hours of culture, 1 mL of the culture solution was collected, centrifuged at 9700×g for 1 minute at room temperature to collect the cells, the supernatant was removed, and the cells were resuspended in PBS to a turbidity of 2.0 OD or 10.0 OD. The resulting E. coli solution was dispensed into a 96-well U-bottom plate to prepare a 2-fold dilution series. The guinea pig red blood cell solution was adjusted to a final concentration of 10% (w/v), and then guinea pig red blood cells (containing mannose as necessary) were dispensed so that each well had a uniform final concentration of 1%. A solution of E. coli at any concentration was contacted with 1% (w/v) guinea pig red blood cells, and then the wells were left to stand at 4° C. for 4 hours, after which a photograph was taken from above the 96-well plate. The dilution rate of the bacterial solution was determined from the well in which an agglutination reaction was observed and which had the lowest turbidity of the bacterial solution, and this was expressed as a numerical value as the natural logarithm of 2.
赤血球凝集試験は以下のとおりに行った。
本試験は、モルモット由来赤血球の表層に発現するマンノースを主体とする糖タンパク質に対して大腸菌のFimHが特異的に結合する性質を利用したものである。試験に供する大腸菌は、2mLのLB培地に植菌し、37℃で24時間静置培養した。さらに、LB培地で100倍希釈し、追加で37℃、24時間静置培養した。合計48時間の培養完了後、培養液を1mL採取し、室温にて9700×gで1分間遠心集菌後、上清を除去し、濁度2.0 ODまたは10.0 ODになるようにPBSに再懸濁した。得られた大腸菌液を96ウェルU底プレートに分注し、2倍希釈系列を作製した。モルモット赤血球溶液を終濃度10%(w/v)に調整後、各ウェルが一律終濃度1%になるようにモルモット赤血球(必要に応じマンノースを含む)を分注した。任意の濃度の大腸菌液と1%(w/v)モルモット赤血球を接触させてから、4℃にて4時間静置後、96ウェルプレートの上部より写真撮影を行った。凝集反応が見られ、かつ、最も低い菌液濁度を有するウェルから菌液の希釈率を求め、これを2の自然対数として数値化した。 <Hemagglutination test>
The hemagglutination test was carried out as follows.
This test utilizes the property that E. coli FimH specifically binds to glycoproteins mainly composed of mannose expressed on the surface of guinea pig-derived red blood cells. The E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37°C for 24 hours. The E. coli was further diluted 100-fold with LB medium and cultured at 37°C for an additional 24 hours. After a total of 48 hours of culture, 1 mL of the culture solution was collected, centrifuged at 9700×g for 1 minute at room temperature to collect the cells, the supernatant was removed, and the cells were resuspended in PBS to a turbidity of 2.0 OD or 10.0 OD. The resulting E. coli solution was dispensed into a 96-well U-bottom plate to prepare a 2-fold dilution series. The guinea pig red blood cell solution was adjusted to a final concentration of 10% (w/v), and then guinea pig red blood cells (containing mannose as necessary) were dispensed so that each well had a uniform final concentration of 1%. A solution of E. coli at any concentration was contacted with 1% (w/v) guinea pig red blood cells, and then the wells were left to stand at 4° C. for 4 hours, after which a photograph was taken from above the 96-well plate. The dilution rate of the bacterial solution was determined from the well in which an agglutination reaction was observed and which had the lowest turbidity of the bacterial solution, and this was expressed as a numerical value as the natural logarithm of 2.
結果を図2-1に示した。この結果からもわかるとおり、fimCまたはfimHの単独欠損株において赤血球凝集が低下しており、このことから、本開示のゲノム編集株では、大腸菌I型線毛の発現量もしくは大腸菌FimHの機能的な発現量が低下していることがわかる。さらに、FimH機能の完全欠損のために構築したFimC-FimHの二重欠損株は、他の塩基編集株と比較しても、赤血球凝集が低下しており、機能的な大腸菌FimHの発現量の抑制効果を得ることができた。
The results are shown in Figure 2-1. As can be seen from these results, hemagglutination was reduced in strains that were singly deficient in either fimC or fimH, indicating that the expression level of E. coli type I fimbriae or the functional expression level of E. coli FimH is reduced in the genome-edited strain disclosed herein. Furthermore, the FimC-FimH double-deficient strain constructed to completely eliminate FimH function had reduced hemagglutination compared to other base-edited strains, and was able to suppress the expression level of functional E. coli FimH.
(実施例2-3:マンノースビーズ結合性試験)
実施例2-1で作製したゲノム編集株を用いて、fim線毛オペロン遺伝子群および線毛関連遺伝子群の変異株、ならびに多重変異株によるfimH結合力を評価した。この実施例ではマンノースビーズ結合性試験を行った。 (Example 2-3: Mannose bead binding test)
Using the genome-edited strain prepared in Example 2-1, the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains, was evaluated. In this example, a mannose bead binding test was performed.
実施例2-1で作製したゲノム編集株を用いて、fim線毛オペロン遺伝子群および線毛関連遺伝子群の変異株、ならびに多重変異株によるfimH結合力を評価した。この実施例ではマンノースビーズ結合性試験を行った。 (Example 2-3: Mannose bead binding test)
Using the genome-edited strain prepared in Example 2-1, the fimH binding ability of mutant strains of the fim pilus operon gene group and the fimbrial-related gene group, as well as multiple mutant strains, was evaluated. In this example, a mannose bead binding test was performed.
<マンノースビーズ結合性試験>
マンノースビーズ結合性試験は以下のとおりに行った。
本試験は、アガロースビーズ表層に固定されたマンノースに対して大腸菌のFimHが特異的に結合する性質を利用したものである。生体試料であるモルモット赤血球を使用するよりも、本試験系の方が安定稼働に優れ、より精度の高い定量評価の実現を期待したものである。試験に供する大腸菌は、2mLのLB培地に植菌し、37℃で24時間静置培養した。さらに、LB培地で100倍希釈し、追加で37℃、24時間または48時間静置培養した。合計48時間または72時間の培養完了後、培養液を1mL採取し、室温にて9700×gで1分間遠心集菌後、上清を除去し、濁度1.0 ODになるようにPBSに再懸濁した。調製した菌液とマンノースビーズ(終濃度10mg/mL)を混合し、4℃で4時間、穏やかに攪拌しながらインキュベーションした。マンノースビーズへの非特異的な大腸菌の吸着を除去するため、マンノースビーズをPBSにて3回洗浄後、ビーズ式細胞破砕機を用いて大腸菌の破砕を行った。大腸菌のゲノムDNAを精製・抽出後、マンノースに特異的に結合していた大腸菌数を定量するため、大腸菌の16S rRNA領域にアニールするプライマーセット(Fw: catgccgcgtgtatgaagaa(配列番号37), Rv: cgggtaacgtcaatgagcaaa(配列番号38))を用いた定量PCRを実施した。検量線は、大腸菌野生株のゲノムDNAを鋳型とし、上記プライマーセットで増幅したDNA断片を精製し、濃度を測定したものを希釈系列として使用した。 Mannose bead binding test
The mannose bead binding test was carried out as follows.
This test utilizes the property that E. coli FimH specifically binds to mannose fixed to the surface of agarose beads. This test system is more stable than the biological sample guinea pig red blood cells, and is expected to realize more accurate quantitative evaluation. The E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37 ° C for 24 hours. The E. coli was further diluted 100 times with LB medium and cultured at 37 ° C for an additional 24 or 48 hours. After a total of 48 or 72 hours of culture, 1 mL of the culture solution was collected, centrifuged at 9700 × g for 1 minute at room temperature to collect the bacteria, the supernatant was removed, and the mixture was resuspended in PBS to a turbidity of 1.0 OD. The prepared bacterial solution was mixed with mannose beads (final concentration 10 mg / mL) and incubated at 4 ° C for 4 hours with gentle stirring. In order to remove non-specific adsorption of E. coli to the mannose beads, the mannose beads were washed three times with PBS, and then E. coli was disrupted using a bead cell disrupter. After purifying and extracting the genomic DNA of E. coli, quantitative PCR was carried out using a primer set (Fw: catgccgcgtgtatgaagaa (SEQ ID NO: 37), Rv: cgggtaacgtcaatgagcaaa (SEQ ID NO: 38)) that anneals to the 16S rRNA region of E. coli in order to quantify the number of E. coli that were specifically bound to mannose. For the calibration curve, a dilution series was used in which the genomic DNA of E. coli wild-type strain was used as a template, the DNA fragments amplified with the above primer set were purified, and the concentrations were measured.
マンノースビーズ結合性試験は以下のとおりに行った。
本試験は、アガロースビーズ表層に固定されたマンノースに対して大腸菌のFimHが特異的に結合する性質を利用したものである。生体試料であるモルモット赤血球を使用するよりも、本試験系の方が安定稼働に優れ、より精度の高い定量評価の実現を期待したものである。試験に供する大腸菌は、2mLのLB培地に植菌し、37℃で24時間静置培養した。さらに、LB培地で100倍希釈し、追加で37℃、24時間または48時間静置培養した。合計48時間または72時間の培養完了後、培養液を1mL採取し、室温にて9700×gで1分間遠心集菌後、上清を除去し、濁度1.0 ODになるようにPBSに再懸濁した。調製した菌液とマンノースビーズ(終濃度10mg/mL)を混合し、4℃で4時間、穏やかに攪拌しながらインキュベーションした。マンノースビーズへの非特異的な大腸菌の吸着を除去するため、マンノースビーズをPBSにて3回洗浄後、ビーズ式細胞破砕機を用いて大腸菌の破砕を行った。大腸菌のゲノムDNAを精製・抽出後、マンノースに特異的に結合していた大腸菌数を定量するため、大腸菌の16S rRNA領域にアニールするプライマーセット(Fw: catgccgcgtgtatgaagaa(配列番号37), Rv: cgggtaacgtcaatgagcaaa(配列番号38))を用いた定量PCRを実施した。検量線は、大腸菌野生株のゲノムDNAを鋳型とし、上記プライマーセットで増幅したDNA断片を精製し、濃度を測定したものを希釈系列として使用した。 Mannose bead binding test
The mannose bead binding test was carried out as follows.
This test utilizes the property that E. coli FimH specifically binds to mannose fixed to the surface of agarose beads. This test system is more stable than the biological sample guinea pig red blood cells, and is expected to realize more accurate quantitative evaluation. The E. coli used in the test was inoculated into 2 mL of LB medium and cultured at 37 ° C for 24 hours. The E. coli was further diluted 100 times with LB medium and cultured at 37 ° C for an additional 24 or 48 hours. After a total of 48 or 72 hours of culture, 1 mL of the culture solution was collected, centrifuged at 9700 × g for 1 minute at room temperature to collect the bacteria, the supernatant was removed, and the mixture was resuspended in PBS to a turbidity of 1.0 OD. The prepared bacterial solution was mixed with mannose beads (final concentration 10 mg / mL) and incubated at 4 ° C for 4 hours with gentle stirring. In order to remove non-specific adsorption of E. coli to the mannose beads, the mannose beads were washed three times with PBS, and then E. coli was disrupted using a bead cell disrupter. After purifying and extracting the genomic DNA of E. coli, quantitative PCR was carried out using a primer set (Fw: catgccgcgtgtatgaagaa (SEQ ID NO: 37), Rv: cgggtaacgtcaatgagcaaa (SEQ ID NO: 38)) that anneals to the 16S rRNA region of E. coli in order to quantify the number of E. coli that were specifically bound to mannose. For the calibration curve, a dilution series was used in which the genomic DNA of E. coli wild-type strain was used as a template, the DNA fragments amplified with the above primer set were purified, and the concentrations were measured.
結果を図2-1に示した。この結果からもわかるとおり、fimCまたはfimHの単独欠損株においてマンノースビーズ結合性が低下しており、fimHによる結合力がより低下したことがわかった。さらに、FimH機能の完全欠損のために構築したFimC-FimHの二重欠損株は、他の塩基編集株と比較しても、マンノースビーズ結合性が低下しており、fimHによる結合力がより低下したことがわかった。またFimC-FimHの二重欠損株を含む本開示の塩基編集株は、低分子、核酸医薬とは異なり、塩基編集したために永続的な阻害効果が期待できる。またFimC-FimHの二重欠損株はFimCを標的とした初めてのIBD治療薬となる。
The results are shown in Figure 2-1. As can be seen from these results, the fimC or fimH single-deficient strains had reduced binding to mannose beads, indicating that the binding strength of fimH was further reduced. Furthermore, the FimC-FimH double-deficient strain constructed to completely eliminate FimH function had reduced binding to mannose beads compared to other base-edited strains, indicating that the binding strength of fimH was further reduced. Furthermore, unlike small molecule and nucleic acid drugs, the base-edited strains disclosed herein, including the FimC-FimH double-deficient strain, are expected to have a permanent inhibitory effect due to base editing. Furthermore, the FimC-FimH double-deficient strain will be the first IBD treatment that targets FimC.
また図2-2に、野生株ATCC700926、BP3019株、BP3021株、BP3026株のマンノースビーズ結合性試験結果を示した。菌がマンノース特異的に結合することを確認するため、野生株ATCC700926に関しては、マンノースビーズに加え、ビーズに結合していないマンノースを添加した状態での試験も実施した。マンノース濃度はそれぞれ0、0.5、5、50mMとした。
Figure 2-2 shows the results of mannose bead binding tests for the wild-type strains ATCC700926, BP3019, BP3021, and BP3026. To confirm that the bacteria bind specifically to mannose, tests were also conducted for the wild-type strain ATCC700926 in the presence of mannose beads as well as mannose that was not bound to beads. The mannose concentrations were 0, 0.5, 5, and 50 mM, respectively.
またコントロールとしてAIECの腸管上皮への接着を阻害する低分子FimH阻害化合物であるSibofimloc(EB8018, TAK018、仏Enterome社および武田薬品工業との共同開発)を用いた場合の結果を図2-3に示した。Sibofimloc濃度はそれぞれ0、0.1、1、10μMとした。
As a control, Figures 2-3 show the results when Sibofimloc (EB8018, TAK018, jointly developed with Enterome, France, and Takeda Pharmaceutical), a small molecule FimH inhibitor that inhibits adhesion of AIEC to the intestinal epithelium, was used. The Sibofimloc concentrations were 0, 0.1, 1, and 10 μM.
この結果からもわかるとおり、いずれの塩基編集株においてもマンノースビーズ結合性が低下しており、fimHによる結合力が低下していることがわかった。またAIECの腸管上皮への接着を阻害することが知られているSibofimlocと比較しても、本開示の塩基編集株のマンノースビーズ結合性が低下しており、fimHによる結合力が低下していることがわかった。
As can be seen from these results, all base-edited strains showed reduced mannose bead binding and reduced binding strength via fimH. Furthermore, compared to Sibofimloc, which is known to inhibit adhesion of AIEC to the intestinal epithelium, the base-edited strains of the present disclosure showed reduced mannose bead binding and reduced binding strength via fimH.
(実施例2-4:T84細胞に対する接着・侵入試験)
ヒト結腸癌細胞株T84細胞(CCL-248、ATCC)は腸上皮細胞様の性質を有しており、腸内細菌の腸上皮細胞への接着および侵入評価に用いられている。T84細胞の培養には、10% FBS含有D-MEM / Ham’s F-12培地(048-29785、富士フイルム和光純薬)を使用した。24wellプレートにT84細胞を8×105 cells/wellとなるように播種し、CO2インキュベーターにて一晩培養(37℃、5% CO2)した。T84細胞1細胞に対し、大腸菌が100 CFUとなるように添加し、CO2インキュベーターにて37℃、2時間共培養を行った。その後、終濃度が0.1%となるようにTritonをwellに添加することでT84細胞を剥離させ、菌を回収して総大腸菌とした。また、wellをリン酸緩衝生理食塩水1mLで5回洗浄し非接着菌を除去した後、終濃度が0.1%となるようにTritonをwellに添加しT84細胞を剥離させ、菌を回収して接着大腸菌とした。侵入大腸菌の回収には、wellをリン酸緩衝生理食塩水1mLで2回洗浄した後、ゲンタマイシンを100μg/mLとなるように添加しCO2インキュベーターにて37℃、2時間培養した。終濃度が0.1%となるようにTritonをwellに添加しT84細胞を剥離させ、菌を回収した。回収した菌はそれぞれLBプレートに塗抹し、インキュベンターにて37℃、一晩培養した後、コロニー数を測定した。接着大腸菌または侵入大腸菌を総大腸菌で割ることで、接着菌数または侵入大腸菌数をパーセンテージにて算出した。
その結果、BP3026は野生株と比較し、接着菌数および侵入大腸菌数が減少した(図2-4)。 (Example 2-4: Adhesion and invasion test for T84 cells)
Human colon cancer cell line T84 cells (CCL-248, ATCC) have intestinal epithelial cell-like properties and are used to evaluate the adhesion and invasion of intestinal bacteria to intestinal epithelial cells. For the culture of T84 cells, 10% FBS-containing D-MEM / Ham's F-12 medium (048-29785, Fujifilm Wako Pure Chemical Industries, Ltd.) was used. T84 cells were seeded on a 24-well plate at 8 x 10 5 cells/well and cultured overnight in a CO 2 incubator (37°C, 5% CO 2 ). E. coli was added to each T84 cell at 100 CFU, and co-cultured at 37°C for 2 hours in a CO 2 incubator. Thereafter, Triton was added to the well to a final concentration of 0.1% to detach the T84 cells, and the bacteria were collected to obtain total E. coli. In addition, the well was washed five times with 1 mL of phosphate-buffered saline to remove non-adherent bacteria, and then Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected to obtain adherent E. coli. To collect invasive E. coli, the well was washed twice with 1 mL of phosphate-buffered saline, and then gentamicin was added to 100 μg/mL and cultured at 37 ° C. for 2 hours in a CO 2 incubator. Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected. The collected bacteria were smeared on LB plates, cultured overnight at 37 ° C. in an incubator, and the number of colonies was measured. The number of adherent bacteria or the number of invasive E. coli was calculated as a percentage by dividing the number of adherent E. coli or invasive E. coli by the total E. coli.
As a result, BP3026 reduced the number of attached and invaded E. coli compared to the wild-type strain (FIG. 2-4).
ヒト結腸癌細胞株T84細胞(CCL-248、ATCC)は腸上皮細胞様の性質を有しており、腸内細菌の腸上皮細胞への接着および侵入評価に用いられている。T84細胞の培養には、10% FBS含有D-MEM / Ham’s F-12培地(048-29785、富士フイルム和光純薬)を使用した。24wellプレートにT84細胞を8×105 cells/wellとなるように播種し、CO2インキュベーターにて一晩培養(37℃、5% CO2)した。T84細胞1細胞に対し、大腸菌が100 CFUとなるように添加し、CO2インキュベーターにて37℃、2時間共培養を行った。その後、終濃度が0.1%となるようにTritonをwellに添加することでT84細胞を剥離させ、菌を回収して総大腸菌とした。また、wellをリン酸緩衝生理食塩水1mLで5回洗浄し非接着菌を除去した後、終濃度が0.1%となるようにTritonをwellに添加しT84細胞を剥離させ、菌を回収して接着大腸菌とした。侵入大腸菌の回収には、wellをリン酸緩衝生理食塩水1mLで2回洗浄した後、ゲンタマイシンを100μg/mLとなるように添加しCO2インキュベーターにて37℃、2時間培養した。終濃度が0.1%となるようにTritonをwellに添加しT84細胞を剥離させ、菌を回収した。回収した菌はそれぞれLBプレートに塗抹し、インキュベンターにて37℃、一晩培養した後、コロニー数を測定した。接着大腸菌または侵入大腸菌を総大腸菌で割ることで、接着菌数または侵入大腸菌数をパーセンテージにて算出した。
その結果、BP3026は野生株と比較し、接着菌数および侵入大腸菌数が減少した(図2-4)。 (Example 2-4: Adhesion and invasion test for T84 cells)
Human colon cancer cell line T84 cells (CCL-248, ATCC) have intestinal epithelial cell-like properties and are used to evaluate the adhesion and invasion of intestinal bacteria to intestinal epithelial cells. For the culture of T84 cells, 10% FBS-containing D-MEM / Ham's F-12 medium (048-29785, Fujifilm Wako Pure Chemical Industries, Ltd.) was used. T84 cells were seeded on a 24-well plate at 8 x 10 5 cells/well and cultured overnight in a CO 2 incubator (37°C, 5% CO 2 ). E. coli was added to each T84 cell at 100 CFU, and co-cultured at 37°C for 2 hours in a CO 2 incubator. Thereafter, Triton was added to the well to a final concentration of 0.1% to detach the T84 cells, and the bacteria were collected to obtain total E. coli. In addition, the well was washed five times with 1 mL of phosphate-buffered saline to remove non-adherent bacteria, and then Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected to obtain adherent E. coli. To collect invasive E. coli, the well was washed twice with 1 mL of phosphate-buffered saline, and then gentamicin was added to 100 μg/mL and cultured at 37 ° C. for 2 hours in a CO 2 incubator. Triton was added to the well to a final concentration of 0.1%, T84 cells were detached, and the bacteria were collected. The collected bacteria were smeared on LB plates, cultured overnight at 37 ° C. in an incubator, and the number of colonies was measured. The number of adherent bacteria or the number of invasive E. coli was calculated as a percentage by dividing the number of adherent E. coli or invasive E. coli by the total E. coli.
As a result, BP3026 reduced the number of attached and invaded E. coli compared to the wild-type strain (FIG. 2-4).
(実施例5:In vivo DSS腸炎モデルでの薬効試験)
続いて、実施例1で作製したゲノム編集株を用いて、In vivo DSS腸炎モデルでの薬効試験を行った。 (Example 5: Drug efficacy test in in vivo DSS colitis model)
Next, using the genome-edited strain prepared in Example 1, a drug efficacy test was conducted in an in vivo DSS colitis model.
続いて、実施例1で作製したゲノム編集株を用いて、In vivo DSS腸炎モデルでの薬効試験を行った。 (Example 5: Drug efficacy test in in vivo DSS colitis model)
Next, using the genome-edited strain prepared in Example 1, a drug efficacy test was conducted in an in vivo DSS colitis model.
<In vivo DSS腸炎モデルでの薬効試験>
In vivo DSS腸炎モデルでの薬効試験は以下のとおりに行った。
8週齢のC57BL/6Jマウス(オス、ジャクソン・ラボラトリー・ジャパン株式会社)に対して、試験開始日(Day 0)から試験終了日(Day 7)まで3%デキストラン硫酸ナトリウム(Dextran Sulfate Sodium; 以下DSS、富士フイルム和光純薬株式会社)水溶液を自由飲水させることでマウスに腸炎を誘発させた。無処置群には3%DSS水溶液の代わりに水道水を与えた。大腸菌野生株としてATCC700926株を用い、ゲノム編集菌としてATCC700926株を基に塩基編集したBP3026株(fimC: W49*, Q87*およびfimH: Q83*, R84*)を用いて、マウス1個体につき10の9乗CFU(Colony Forming Unit)の菌懸濁液を1日1回、7日間経口投与した。陽性対象として、市販中のIBD治療薬であるサラゾスルファピリジン(以下SASP)をヒト投与量に相当する100mg/kgを、1日1回、7日間経口投与した。薬理学的な評価は、継時的なDAI(Disease Activity Index)スコア観察およびDay 7に摘出した大腸長の計測によって実施した。DAIスコアとは、下痢および血便状態について0~3の基準によりスコア付けを行い、下痢スコア、血便スコアおよび両スコアの総和を当該個体のスコアとし、スコア値が低いほどDSSにより誘発された各症状が緩和されたことを示す。大腸長の測定とは、腸管炎症を起こしたマウスの大腸長が一般的に短縮する性質を利用したものであり、DSSにより誘発された腸管炎症が抑制された場合、大腸長の短縮が抑制されるため、無処理マウスの大腸長に近づくほど治療効果があったとみなされる。 <Drug efficacy test in in vivo DSS colitis model>
The efficacy test in an in vivo DSS colitis model was carried out as follows.
Eight-week-old C57BL/6J mice (male, Jackson Laboratory Japan Co., Ltd.) were allowed to drink 3% dextran sulfate sodium (hereinafter referred to as DSS, Fujifilm Wako Pure Chemical Industries, Ltd.) aqueous solution ad libitum from the start of the test (Day 0) to the end of the test (Day 7) to induce enteritis in the mice. Tap water was given to the untreated group instead of the 3% DSS aqueous solution. The ATCC700926 strain was used as the wild-type E. coli strain, and the BP3026 strain (fimC: W49*, Q87* and fimH: Q83*, R84*) that was base-edited based on the ATCC700926 strain was used as the genome-edited strain. A bacterial suspension of 10 9 CFU (Colony Forming Unit) per mouse was orally administered once a day for 7 days. As a positive control, salazosulfapyridine (hereinafter referred to as SASP), a commercially available IBD treatment drug, was orally administered at 100 mg/kg, equivalent to the human dose, once a day for 7 days. Pharmacological evaluation was performed by observing the DAI (Disease Activity Index) score over time and measuring the length of the colon excised on Day 7. The DAI score is a score given to the diarrhea and bloody stool condition on a scale of 0 to 3, and the diarrhea score, bloody stool score, and the sum of both scores are the score of the individual, with the lower the score value, the more the symptoms induced by DSS are alleviated. The measurement of the colon length utilizes the property that the colon length of mice with intestinal inflammation generally shortens, and when DSS-induced intestinal inflammation is suppressed, the shortening of the colon length is suppressed, so that the closer the colon length is to that of untreated mice, the more effective the treatment is.
In vivo DSS腸炎モデルでの薬効試験は以下のとおりに行った。
8週齢のC57BL/6Jマウス(オス、ジャクソン・ラボラトリー・ジャパン株式会社)に対して、試験開始日(Day 0)から試験終了日(Day 7)まで3%デキストラン硫酸ナトリウム(Dextran Sulfate Sodium; 以下DSS、富士フイルム和光純薬株式会社)水溶液を自由飲水させることでマウスに腸炎を誘発させた。無処置群には3%DSS水溶液の代わりに水道水を与えた。大腸菌野生株としてATCC700926株を用い、ゲノム編集菌としてATCC700926株を基に塩基編集したBP3026株(fimC: W49*, Q87*およびfimH: Q83*, R84*)を用いて、マウス1個体につき10の9乗CFU(Colony Forming Unit)の菌懸濁液を1日1回、7日間経口投与した。陽性対象として、市販中のIBD治療薬であるサラゾスルファピリジン(以下SASP)をヒト投与量に相当する100mg/kgを、1日1回、7日間経口投与した。薬理学的な評価は、継時的なDAI(Disease Activity Index)スコア観察およびDay 7に摘出した大腸長の計測によって実施した。DAIスコアとは、下痢および血便状態について0~3の基準によりスコア付けを行い、下痢スコア、血便スコアおよび両スコアの総和を当該個体のスコアとし、スコア値が低いほどDSSにより誘発された各症状が緩和されたことを示す。大腸長の測定とは、腸管炎症を起こしたマウスの大腸長が一般的に短縮する性質を利用したものであり、DSSにより誘発された腸管炎症が抑制された場合、大腸長の短縮が抑制されるため、無処理マウスの大腸長に近づくほど治療効果があったとみなされる。 <Drug efficacy test in in vivo DSS colitis model>
The efficacy test in an in vivo DSS colitis model was carried out as follows.
Eight-week-old C57BL/6J mice (male, Jackson Laboratory Japan Co., Ltd.) were allowed to drink 3% dextran sulfate sodium (hereinafter referred to as DSS, Fujifilm Wako Pure Chemical Industries, Ltd.) aqueous solution ad libitum from the start of the test (Day 0) to the end of the test (Day 7) to induce enteritis in the mice. Tap water was given to the untreated group instead of the 3% DSS aqueous solution. The ATCC700926 strain was used as the wild-type E. coli strain, and the BP3026 strain (fimC: W49*, Q87* and fimH: Q83*, R84*) that was base-edited based on the ATCC700926 strain was used as the genome-edited strain. A bacterial suspension of 10 9 CFU (Colony Forming Unit) per mouse was orally administered once a day for 7 days. As a positive control, salazosulfapyridine (hereinafter referred to as SASP), a commercially available IBD treatment drug, was orally administered at 100 mg/kg, equivalent to the human dose, once a day for 7 days. Pharmacological evaluation was performed by observing the DAI (Disease Activity Index) score over time and measuring the length of the colon excised on Day 7. The DAI score is a score given to the diarrhea and bloody stool condition on a scale of 0 to 3, and the diarrhea score, bloody stool score, and the sum of both scores are the score of the individual, with the lower the score value, the more the symptoms induced by DSS are alleviated. The measurement of the colon length utilizes the property that the colon length of mice with intestinal inflammation generally shortens, and when DSS-induced intestinal inflammation is suppressed, the shortening of the colon length is suppressed, so that the closer the colon length is to that of untreated mice, the more effective the treatment is.
DAIスコアの結果を図2-5に、また大腸長の測定結果を図2-6にそれぞれ示した。この結果からもわかるとおり、FimH機能の完全欠損のために構築したFimC-FimHの二重欠損株(BP3026)は、DAIスコアを低下させ、DSSにより誘発された各症状を緩和できることがわかる。また二重欠損株(BP3026)では、親株(ATCC700926)と比較して大腸長が無処理マウスの大腸長に近づいており、腸管炎症の抑制効果を確認することができた。
The results of the DAI score and the measurement results of the colon length are shown in Figure 2-5 and Figure 2-6, respectively. As can be seen from these results, the FimC-FimH double-deficient strain (BP3026), constructed to completely eliminate FimH function, reduced the DAI score and alleviated the symptoms induced by DSS. Furthermore, in the double-deficient strain (BP3026), the colon length was closer to that of untreated mice compared to the parent strain (ATCC700926), confirming the inhibitory effect on intestinal inflammation.
<腸内細菌叢解析>
腸内細菌叢解析は以下のとおりに行った。
DSS腸炎モデル薬効試験Day7にて、各マウスの糞を採取し、DNA抽出時まで-80℃にて保存した。VD-250R Freeze Dryer(TAITEC)用いてマウス糞を凍結乾燥した後、マルチビーズショッカー(安井器械)で1,500rpm、2分間粉砕した。破砕したマウス糞にLysis Solution F(ニッポンジーン)を添加し、65℃で10分間静置した。その後、12,000×gで2分間遠心分離し、上清を分取した。Lab-Aid824s DNA Extraction kit(ZEESAN)を用いて、分取した溶液からDNAを精製した。精製したDNAはLX(Bio Tek)とQuantiFluor dsDNA System(Promega)を用いて濃度測定を行った。精製したDNAから2-step tailed PCR法を用いてライブラリーを作製した後、Synergy H 1(Bio Tek)とQuantiFluor dsDNA Systemを用いて、ライブラリーの濃度測定を行った。Fragment AnalyzerとdsDNA 915 Reagent Kit(Advanced Analytical Technologies)を用いてライブラリーの品質確認を行った。MiSeqシステムとMiSeq Reagent Kit v 3(Illumina)を用いて、2×300bpの条件でシーケンシングを行った。FASTX Toolkit(ver.0.0.14)のfastx_barcode_splitter toolを用いて得られたリード配列の読み始めが使用したプライマー配列と完全に一致するリード配列のみを抽出した。抽出したリードからプライマー配列をFASTX Toolkitのfastx_trimerで削除した。その後、sickle(ver.1.33)を用いて品質値が20未満の配列を取り除き、130塩基以下の長さとなった配列とそのペア配列を破棄した。ペアエンドリード結合スクリプトFLASH(ver. 1.2.11)を用いてリードを結合した。Qiime 2(ver.2022.8)のdada 2プラグインでキメラ配列とノイズ配列を除去した後、代表配列とASV表を出力した。feature classifierプラグインを用いて、取得した代表配列とGreengene(ver.13_8)の97% OTUを比較し系統推定を行った。マウス糞中の各菌の割合を科(family)毎に算出した。 <Intestinal flora analysis>
The intestinal microbiota analysis was performed as follows.
On Day 7 of the efficacy test of the DSS colitis model, feces from each mouse were collected and stored at -80°C until DNA extraction. Mouse feces were freeze-dried using a VD-250R Freeze Dryer (TAITEC), and then crushed for 2 minutes at 1,500 rpm with a Multi-Beads Shocker (Yasui Kikai). Lysis Solution F (Nippon Gene) was added to the crushed mouse feces and allowed to stand at 65°C for 10 minutes. Then, the mixture was centrifuged at 12,000 x g for 2 minutes, and the supernatant was separated. DNA was purified from the separated solution using a Lab-Aid824s DNA Extraction kit (ZEESAN). The purified DNA was subjected to concentration measurement using LX (Bio Tek) and QuantiFluor dsDNA System (Promega). After preparing a library from the purified DNA using 2-step tailed PCR method, the library concentration was measured using Synergy H 1 (Bio Tek) and QuantiFluor dsDNA System. The quality of the library was confirmed using Fragment Analyzer and dsDNA 915 Reagent Kit (Advanced Analytical Technologies). Sequencing was performed under the condition of 2 x 300 bp using MiSeq system and MiSeq Reagent Kit v 3 (Illumina). Only the read sequences whose beginnings of the read sequences obtained using the fastx_barcode_splitter tool of FASTX Toolkit (ver. 0.0.14) completely matched the primer sequences used were extracted. The primer sequences were deleted from the extracted reads using fastx_trimer of FASTX Toolkit. Then, sequences with a quality value of less than 20 were removed using sickle (ver. 1.33), and sequences with a length of 130 bases or less and their paired sequences were discarded. The reads were combined using the paired-end read combination script FLASH (ver. 1.2.11). After removing chimeric sequences and noise sequences using the dada 2 plug-in of Qiime 2 (ver. 2022.8), the representative sequences and ASV table were output. Using the feature classifier plug-in, the representative sequences obtained were compared with the 97% OTU of Greengene (ver. 13_8) to perform phylogenetic estimation. The proportion of each bacterium in mouse feces was calculated for each family.
腸内細菌叢解析は以下のとおりに行った。
DSS腸炎モデル薬効試験Day7にて、各マウスの糞を採取し、DNA抽出時まで-80℃にて保存した。VD-250R Freeze Dryer(TAITEC)用いてマウス糞を凍結乾燥した後、マルチビーズショッカー(安井器械)で1,500rpm、2分間粉砕した。破砕したマウス糞にLysis Solution F(ニッポンジーン)を添加し、65℃で10分間静置した。その後、12,000×gで2分間遠心分離し、上清を分取した。Lab-Aid824s DNA Extraction kit(ZEESAN)を用いて、分取した溶液からDNAを精製した。精製したDNAはLX(Bio Tek)とQuantiFluor dsDNA System(Promega)を用いて濃度測定を行った。精製したDNAから2-step tailed PCR法を用いてライブラリーを作製した後、Synergy H 1(Bio Tek)とQuantiFluor dsDNA Systemを用いて、ライブラリーの濃度測定を行った。Fragment AnalyzerとdsDNA 915 Reagent Kit(Advanced Analytical Technologies)を用いてライブラリーの品質確認を行った。MiSeqシステムとMiSeq Reagent Kit v 3(Illumina)を用いて、2×300bpの条件でシーケンシングを行った。FASTX Toolkit(ver.0.0.14)のfastx_barcode_splitter toolを用いて得られたリード配列の読み始めが使用したプライマー配列と完全に一致するリード配列のみを抽出した。抽出したリードからプライマー配列をFASTX Toolkitのfastx_trimerで削除した。その後、sickle(ver.1.33)を用いて品質値が20未満の配列を取り除き、130塩基以下の長さとなった配列とそのペア配列を破棄した。ペアエンドリード結合スクリプトFLASH(ver. 1.2.11)を用いてリードを結合した。Qiime 2(ver.2022.8)のdada 2プラグインでキメラ配列とノイズ配列を除去した後、代表配列とASV表を出力した。feature classifierプラグインを用いて、取得した代表配列とGreengene(ver.13_8)の97% OTUを比較し系統推定を行った。マウス糞中の各菌の割合を科(family)毎に算出した。 <Intestinal flora analysis>
The intestinal microbiota analysis was performed as follows.
On Day 7 of the efficacy test of the DSS colitis model, feces from each mouse were collected and stored at -80°C until DNA extraction. Mouse feces were freeze-dried using a VD-250R Freeze Dryer (TAITEC), and then crushed for 2 minutes at 1,500 rpm with a Multi-Beads Shocker (Yasui Kikai). Lysis Solution F (Nippon Gene) was added to the crushed mouse feces and allowed to stand at 65°C for 10 minutes. Then, the mixture was centrifuged at 12,000 x g for 2 minutes, and the supernatant was separated. DNA was purified from the separated solution using a Lab-Aid824s DNA Extraction kit (ZEESAN). The purified DNA was subjected to concentration measurement using LX (Bio Tek) and QuantiFluor dsDNA System (Promega). After preparing a library from the purified DNA using 2-step tailed PCR method, the library concentration was measured using Synergy H 1 (Bio Tek) and QuantiFluor dsDNA System. The quality of the library was confirmed using Fragment Analyzer and dsDNA 915 Reagent Kit (Advanced Analytical Technologies). Sequencing was performed under the condition of 2 x 300 bp using MiSeq system and MiSeq Reagent Kit v 3 (Illumina). Only the read sequences whose beginnings of the read sequences obtained using the fastx_barcode_splitter tool of FASTX Toolkit (ver. 0.0.14) completely matched the primer sequences used were extracted. The primer sequences were deleted from the extracted reads using fastx_trimer of FASTX Toolkit. Then, sequences with a quality value of less than 20 were removed using sickle (ver. 1.33), and sequences with a length of 130 bases or less and their paired sequences were discarded. The reads were combined using the paired-end read combination script FLASH (ver. 1.2.11). After removing chimeric sequences and noise sequences using the dada 2 plug-in of Qiime 2 (ver. 2022.8), the representative sequences and ASV table were output. Using the feature classifier plug-in, the representative sequences obtained were compared with the 97% OTU of Greengene (ver. 13_8) to perform phylogenetic estimation. The proportion of each bacterium in mouse feces was calculated for each family.
その結果、大腸菌野生株投与群とゲノム編集菌投与群では、投与した大腸菌を含むと予想されるEnterobacteriaeの存在が確認されたとともに、菌叢全体に大きな変化はみられなかった(図2-7)。
As a result, in both the group administered the wild-type E. coli strain and the group administered the genome-edited bacteria, the presence of Enterobacteriaceae, which is expected to contain the administered E. coli, was confirmed, and no significant changes were observed in the overall bacterial flora (Figure 2-7).
(実施例6:二成分制御系遺伝子群の塩基編集株によるfimH結合力への影響)
二成分制御系遺伝子群のゲノム編集株によるfimH結合力を評価した(マンノースビーズ結合性試験)。 (Example 6: Effect of base-edited strains of two-component regulatory gene clusters on fimH binding ability)
The fimH binding strength of genome-edited strains of the two-component regulatory system gene group was evaluated (mannose bead binding test).
二成分制御系遺伝子群のゲノム編集株によるfimH結合力を評価した(マンノースビーズ結合性試験)。 (Example 6: Effect of base-edited strains of two-component regulatory gene clusters on fimH binding ability)
The fimH binding strength of genome-edited strains of the two-component regulatory system gene group was evaluated (mannose bead binding test).
結果を図2-8に示す。rcsBおよびqseCの破壊株をそれぞれ作成し、In vitroマンノースビーズ結合性試験を行ったところ、fimオペロンを相同組換えにて破壊した株(ΔfimB-H)と比較し、同程度まで結合を抑制した。
The results are shown in Figure 2-8. We created rcsB and qseC knockout strains and performed an in vitro mannose bead binding test. The binding was suppressed to the same extent as in a strain in which the fim operon was knocked out by homologous recombination (ΔfimB-H).
(実施例3:癌免疫療法)
(実施例3-1:ゲノム編集株のTLR5活性化能の測定)
図3-1および3-2に示すとおりの標的遺伝子およびその編集箇所を改変して作製したゲノム編集株を用いて、それぞれの菌株のTLR5活性化能を測定した。編集を施す標的遺伝子は、fliC、fliD、flgE、fliF、flgK、flgM、flgN、fliT、およびsigDをそれぞれ単独で用いた。各標的遺伝子に対するgRNAの設計は、タンパク質機能の完全な欠損を誘発する5’末端側への終止コドンの導入を主とし、タンパク質の構造予測から想定される活性部位等へのアミノ酸置換を誘発するようにした。 Example 3: Cancer immunotherapy
(Example 3-1: Measurement of TLR5 activation ability of genome-edited strains)
The TLR5 activation ability of each strain was measured using genome-edited strains prepared by modifying the target genes and their editing sites as shown in Figures 3-1 and 3-2. The target genes to be edited were fliC, fliD, flgE, fliF, flgK, flgM, flgN, fliT, and sigD, each of which was used alone. The gRNA for each target gene was designed mainly to introduce a stop codon at the 5' end, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure.
(実施例3-1:ゲノム編集株のTLR5活性化能の測定)
図3-1および3-2に示すとおりの標的遺伝子およびその編集箇所を改変して作製したゲノム編集株を用いて、それぞれの菌株のTLR5活性化能を測定した。編集を施す標的遺伝子は、fliC、fliD、flgE、fliF、flgK、flgM、flgN、fliT、およびsigDをそれぞれ単独で用いた。各標的遺伝子に対するgRNAの設計は、タンパク質機能の完全な欠損を誘発する5’末端側への終止コドンの導入を主とし、タンパク質の構造予測から想定される活性部位等へのアミノ酸置換を誘発するようにした。 Example 3: Cancer immunotherapy
(Example 3-1: Measurement of TLR5 activation ability of genome-edited strains)
The TLR5 activation ability of each strain was measured using genome-edited strains prepared by modifying the target genes and their editing sites as shown in Figures 3-1 and 3-2. The target genes to be edited were fliC, fliD, flgE, fliF, flgK, flgM, flgN, fliT, and sigD, each of which was used alone. The gRNA for each target gene was designed mainly to introduce a stop codon at the 5' end, which induces a complete loss of protein function, and to induce amino acid substitutions in the active site, etc., predicted from the protein structure.
腸球菌E.casseliflavus ATCC700327株において、上記遺伝子のゲノム編集を施した後、安定した菌株を樹立しTLR5活性化能を測定した。
After genome editing of the above genes in the enterococcus E. casseliflavus ATCC700327 strain, a stable strain was established and its TLR5 activation ability was measured.
<TLR5活性化能の測定>
TLR5活性化能の測定は以下のとおりに行った。
評価する菌株はBrain Heart infusion培地で37℃で一晩培養後(12~18時間)、Opti-MEM培地で洗浄し、濁度(660nm)を計測した。濁度が1.0となるようにOpti-MEM培地で調整した後、Opti-MEMで104倍希釈した菌液を調製した。ヒト胚性腎臓細胞HEK293Tに以下の3種類のプラスミドを導入し、TLR5活性化能評価細胞を構築した。 <Measurement of TLR5 activation ability>
The TLR5 activation ability was measured as follows.
The strains to be evaluated were cultured overnight (12-18 hours) at 37°C in Brain Heart infusion medium, washed with Opti-MEM medium, and the turbidity (660 nm) was measured. The turbidity was adjusted to 1.0 with Opti-MEM medium, and then a bacterial solution was prepared by diluting 104 times with Opti-MEM. The following three types of plasmids were introduced into human embryonic kidney cells HEK293T to construct cells for evaluating TLR5 activation ability.
TLR5活性化能の測定は以下のとおりに行った。
評価する菌株はBrain Heart infusion培地で37℃で一晩培養後(12~18時間)、Opti-MEM培地で洗浄し、濁度(660nm)を計測した。濁度が1.0となるようにOpti-MEM培地で調整した後、Opti-MEMで104倍希釈した菌液を調製した。ヒト胚性腎臓細胞HEK293Tに以下の3種類のプラスミドを導入し、TLR5活性化能評価細胞を構築した。 <Measurement of TLR5 activation ability>
The TLR5 activation ability was measured as follows.
The strains to be evaluated were cultured overnight (12-18 hours) at 37°C in Brain Heart infusion medium, washed with Opti-MEM medium, and the turbidity (660 nm) was measured. The turbidity was adjusted to 1.0 with Opti-MEM medium, and then a bacterial solution was prepared by diluting 104 times with Opti-MEM. The following three types of plasmids were introduced into human embryonic kidney cells HEK293T to construct cells for evaluating TLR5 activation ability.
3種類のプラスミドは、ヒトTLR5を強制発現させるプラスミド、TLR5の活性化能を評価する活性化に対して応答する配列の制御下にNanoLuc(登録商標)遺伝子を配したプラスミド、そして内部標準として機能するホタルルシフェラーゼ遺伝子を恒常的に発現するプラスミドである。3種類のプラスミドをHEK293T細胞に導入し、16~20時間経過後、上記で調製した希釈菌液をプラスミド導入細胞が生育する培地の1/10量添加し、37℃で4時間共培養した。プロメガ社のNano-Glo(登録商標) Dual-Luciferase(登録商標) Reporter Assay Systemを用いてNanoLucの活性を指標にTLR5活性化能を測定した。推奨プロトコルに従い、内部標準であるホタルルシフェラーゼ活性を測定後、TLR5活性化を反映するNanoLucの活性を測定した。NanoLuc活性をホタルルシフェラーゼ活性で標準化し、各菌株のTLR5活性化能を評価した。
The three types of plasmids are a plasmid that forcibly expresses human TLR5, a plasmid that places the NanoLuc (registered trademark) gene under the control of an activation-responsive sequence to evaluate the activation ability of TLR5, and a plasmid that constitutively expresses the firefly luciferase gene that functions as an internal standard. The three types of plasmids were introduced into HEK293T cells, and after 16 to 20 hours, the diluted bacterial solution prepared above was added in an amount of 1/10 of the medium in which the plasmid-introduced cells grew, and the cells were co-cultured at 37°C for 4 hours. The TLR5 activation ability was measured using the activity of NanoLuc as an index using Promega's Nano-Glo (registered trademark) Dual-Luciferase (registered trademark) Reporter Assay System. Following the recommended protocol, the activity of firefly luciferase, which is the internal standard, was measured, and then the activity of NanoLuc, which reflects TLR5 activation, was measured. NanoLuc activity was standardized with firefly luciferase activity to evaluate the TLR5 activation ability of each strain.
結果を図3-1および3-2に示した。これらの図に示すとおり、Flagellinの発現および/または分泌量増強のために構築したゲノム編集腸球菌株のTLR5活性化能は、野生株のものよりも向上していた。
The results are shown in Figures 3-1 and 3-2. As shown in these figures, the TLR5 activation ability of the genome-edited enterococcus strain constructed to enhance Flagellin expression and/or secretion was improved compared to that of the wild-type strain.
(実施例3-2:Flagellinの発現確認)
対象菌株を20mLのMTM培地(1% w/v Bacto Peptone,0.5% w/v NaCl, 0.3% w/v Beef extract)に植菌し、37℃で一晩振盪培養(16~24時間)した。培養液を60℃で20分熱処理した。2,900×gで10分間遠心し、上清を0.22μmフィルターろ過した。ろ液15mLをAmicon-15(MWCO 10k, Millipore)で1mLになるまで濃縮した。濃縮液450μLに対して、Protein G PLUS-Agarose
(Santa cruz)を20μL添加し、4℃で一時間転倒混和した。遠心後、上清を430μL回収し前処理サンプルとした。1μgのRecombinant Mouse TLR5 Fc Chimera Protein (R&D systems)と20μLのProtein G PLUS-Agaroseを混合し、複合体を形成させた後、前処理サンプルに添加し、4℃で1~3時間転倒混和した。1,000×gで2分間遠心しアガロースビーズを沈殿させ、上清を除去し、500μL PBSで懸濁した。この遠心、懸濁の操作を合計で3回繰り返した後、45μLの1×Laemmli dyeでアガロースビーズを懸濁し、95℃で5分間熱処理しビーズから結合タンパク質を溶出した。1,000×gで2分間遠心後、上清を回収しTLR5結合タンパク質サンプルとした。 (Example 3-2: Confirmation of Flagellin expression)
The target strain was inoculated into 20 mL of MTM medium (1% w/v Bacto Peptone, 0.5% w/v NaCl, 0.3% w/v Beet extract) and cultured overnight (16-24 hours) at 37°C with shaking. The culture was heat-treated at 60°C for 20 minutes. The culture was centrifuged at 2,900×g for 10 minutes, and the supernatant was filtered through a 0.22 μm filter. 15 mL of the filtrate was concentrated to 1 mL using Amicon-15 (MWCO 10k, Millipore). 450 μL of the concentrated solution was diluted with Protein G PLUS-Agarose.
(Santa Cruz) was added at 20 μL, and the mixture was mixed by inversion at 4 ° C for 1 hour. After centrifugation, 430 μL of the supernatant was collected and used as the pre-treated sample. 1 μg of Recombinant Mouse TLR5 Fc Chimera Protein (R & D systems) was mixed with 20 μL of Protein G PLUS-Agarose to form a complex, which was then added to the pre-treated sample and mixed by inversion at 4 ° C for 1 to 3 hours. The agarose beads were precipitated by centrifugation at 1,000 × g for 2 minutes, the supernatant was removed, and the beads were suspended in 500 μL PBS. After repeating this centrifugation and suspension procedure three times in total, the agarose beads were suspended in 45 μL of 1× Laemmli dye and heat-treated at 95° C. for 5 minutes to elute the bound protein from the beads. After centrifugation at 1,000×g for 2 minutes, the supernatant was collected and used as a TLR5-binding protein sample.
対象菌株を20mLのMTM培地(1% w/v Bacto Peptone,0.5% w/v NaCl, 0.3% w/v Beef extract)に植菌し、37℃で一晩振盪培養(16~24時間)した。培養液を60℃で20分熱処理した。2,900×gで10分間遠心し、上清を0.22μmフィルターろ過した。ろ液15mLをAmicon-15(MWCO 10k, Millipore)で1mLになるまで濃縮した。濃縮液450μLに対して、Protein G PLUS-Agarose
(Santa cruz)を20μL添加し、4℃で一時間転倒混和した。遠心後、上清を430μL回収し前処理サンプルとした。1μgのRecombinant Mouse TLR5 Fc Chimera Protein (R&D systems)と20μLのProtein G PLUS-Agaroseを混合し、複合体を形成させた後、前処理サンプルに添加し、4℃で1~3時間転倒混和した。1,000×gで2分間遠心しアガロースビーズを沈殿させ、上清を除去し、500μL PBSで懸濁した。この遠心、懸濁の操作を合計で3回繰り返した後、45μLの1×Laemmli dyeでアガロースビーズを懸濁し、95℃で5分間熱処理しビーズから結合タンパク質を溶出した。1,000×gで2分間遠心後、上清を回収しTLR5結合タンパク質サンプルとした。 (Example 3-2: Confirmation of Flagellin expression)
The target strain was inoculated into 20 mL of MTM medium (1% w/v Bacto Peptone, 0.5% w/v NaCl, 0.3% w/v Beet extract) and cultured overnight (16-24 hours) at 37°C with shaking. The culture was heat-treated at 60°C for 20 minutes. The culture was centrifuged at 2,900×g for 10 minutes, and the supernatant was filtered through a 0.22 μm filter. 15 mL of the filtrate was concentrated to 1 mL using Amicon-15 (MWCO 10k, Millipore). 450 μL of the concentrated solution was diluted with Protein G PLUS-Agarose.
(Santa Cruz) was added at 20 μL, and the mixture was mixed by inversion at 4 ° C for 1 hour. After centrifugation, 430 μL of the supernatant was collected and used as the pre-treated sample. 1 μg of Recombinant Mouse TLR5 Fc Chimera Protein (R & D systems) was mixed with 20 μL of Protein G PLUS-Agarose to form a complex, which was then added to the pre-treated sample and mixed by inversion at 4 ° C for 1 to 3 hours. The agarose beads were precipitated by centrifugation at 1,000 × g for 2 minutes, the supernatant was removed, and the beads were suspended in 500 μL PBS. After repeating this centrifugation and suspension procedure three times in total, the agarose beads were suspended in 45 μL of 1× Laemmli dye and heat-treated at 95° C. for 5 minutes to elute the bound protein from the beads. After centrifugation at 1,000×g for 2 minutes, the supernatant was collected and used as a TLR5-binding protein sample.
10% TGX gel(Bio-Rad)にサンプル15μLをアプライした。30mA/gelの定電流で45~60分間電気泳動した。Coomassie染色液でゲルを染色し、Milli-Q水で洗浄・脱色した。
15 μL of sample was applied to a 10% TGX gel (Bio-Rad). Electrophoresis was performed for 45 to 60 minutes at a constant current of 30 mA/gel. The gel was stained with Coomassie staining solution, and washed and destained with Milli-Q water.
その結果、野生株、flgN、fliD、flgK編集株ではFlagellin由来のバンドが検出されたが、fliC、fliF編集株ではFlagellinのバンドは検出されなかった(図3-3)。
As a result, Flagellin-derived bands were detected in the wild-type strain and the flgN-, fliD-, and flgK-edited strains, but no Flagellin bands were detected in the fliC- and fliF-edited strains (Figure 3-3).
(実施例3-3:その他の遺伝子改変)
転写因子の一つであるmprAを実施例1と同様に塩基編集により機能不全とすることで、鞭毛関連遺伝子群のマスター制御因子が活性化され、結果的にflagellinの発現量が増加し、TLR5の活性化能を増強することが期待される。 (Example 3-3: Other Genetic Modifications)
By rendering mprA, a transcription factor, dysfunctional by base editing as in Example 1, the master regulatory factor of the flagellum-related gene group is activated, which is expected to result in increased expression of flagellin and enhanced activation ability of TLR5.
転写因子の一つであるmprAを実施例1と同様に塩基編集により機能不全とすることで、鞭毛関連遺伝子群のマスター制御因子が活性化され、結果的にflagellinの発現量が増加し、TLR5の活性化能を増強することが期待される。 (Example 3-3: Other Genetic Modifications)
By rendering mprA, a transcription factor, dysfunctional by base editing as in Example 1, the master regulatory factor of the flagellum-related gene group is activated, which is expected to result in increased expression of flagellin and enhanced activation ability of TLR5.
(実施例3-4:担癌マウスモデルを用いたEnterococcus菌の単独、または免疫チェックポイント阻害剤との併用による抗腫瘍効果の評価)
マウス大腸癌細胞株を用いて作製した担癌マウスモデルにE. casseriflavus野生株、またはそのゲノム編集株を単独、あるいは免疫チェックポイント阻害剤である抗PD-1抗体(anti-mouse PD-1[CD279], clone:RMP1-14, Bio X Cell社)と併用で投与し、抗腫瘍効果を評価する。 (Example 3-4: Evaluation of the antitumor effect of Enterococcus alone or in combination with immune checkpoint inhibitors using a tumor-bearing mouse model)
A tumor-bearing mouse model was created using a mouse colon cancer cell line, and the E. casseriflavus wild-type strain or its genome-edited strain was administered alone or in combination with an anti-PD-1 antibody (anti-mouse PD-1 [CD279], clone: RMP1-14, Bio X Cell) which is an immune checkpoint inhibitor, to evaluate the antitumor effect.
マウス大腸癌細胞株を用いて作製した担癌マウスモデルにE. casseriflavus野生株、またはそのゲノム編集株を単独、あるいは免疫チェックポイント阻害剤である抗PD-1抗体(anti-mouse PD-1[CD279], clone:RMP1-14, Bio X Cell社)と併用で投与し、抗腫瘍効果を評価する。 (Example 3-4: Evaluation of the antitumor effect of Enterococcus alone or in combination with immune checkpoint inhibitors using a tumor-bearing mouse model)
A tumor-bearing mouse model was created using a mouse colon cancer cell line, and the E. casseriflavus wild-type strain or its genome-edited strain was administered alone or in combination with an anti-PD-1 antibody (anti-mouse PD-1 [CD279], clone: RMP1-14, Bio X Cell) which is an immune checkpoint inhibitor, to evaluate the antitumor effect.
マウス大腸癌細胞株MC38(Cat. No. ENH204-FP, Kerafast社)はC57BL/6Jマウス(6週齢、雌、ジャクソン・ラボラトリー・ジャパン株式会社)、CT26(Cat. No. CRL-2638, ATCC)はBALB/cマウス(6週齢、雌、ジャクソン・ラボラトリー・ジャパン株式会社)のそれぞれ右側腹部皮下に対して、生理食塩水に懸濁した3×107cells/mLの各細胞を100μLずつ皮下移植する。移植1週間後にマウスの腫瘍径を測定し、推定腫瘍体積(長径×短径×短径/2)を算出する。推定腫瘍体積に基づき群分けを行い、Day 0とする。Day 0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 25に、E. casseriflavus野生株およびそのゲノム編集株を109CFU/100μLとなるようにリン酸緩衝生理食塩水で調製し、1個体当たり100μLを強制経口投与する。抗PD-1抗体はDay 0, 3, 7, 10, 14に1個体当たり5mg/kgとなるように尾静脈内投与する。以上の菌液および抗PD-1抗体の投与条件にて、E. casseriflavus野生株またはそのゲノム編集株単独、あるいは抗PD-1抗体との併用投与を実施する。Day 0から週2回、マウスの推定腫瘍体積と体重を測定する。
Mouse colon cancer cell line MC38 (Cat. No. ENH204-FP, Kerafast) is a C57BL/6J mouse (6 weeks old, female, Jackson Laboratory Japan Co., Ltd.), and CT26 (Cat. No. CRL-2638, ATCC) is a BALB/c mouse (6 weeks old, female, Jackson Laboratory Japan Co., Ltd.), and 100 μL of each cell suspended in physiological saline is subcutaneously transplanted into the right flank of each mouse. One week after transplantation, the tumor diameter of the mouse is measured, and the estimated tumor volume (long diameter x short diameter x short diameter / 2) is calculated. Based on the estimated tumor volume, the group is divided and designated as Day 0. On Days 0, 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, and 25, E. The E. casseriflavus wild-type strain and its genome-edited strain are prepared in phosphate-buffered saline to give 10 9 CFU/100 μL, and 100 μL per individual is forcibly administered orally. The anti-PD-1 antibody is administered into the tail vein at 5 mg/kg per individual on days 0, 3, 7, 10, and 14. Under the above administration conditions of the bacterial solution and anti-PD-1 antibody, the E. casseriflavus wild-type strain or its genome-edited strain alone, or in combination with the anti-PD-1 antibody, is administered. The estimated tumor volume and body weight of the mice are measured twice a week from day 0.
ゲノム編集株の単独投与群、ゲノム編集株と抗PD-1抗体の併用投与群では、腫瘍の増殖抑制が期待される。
Tumor growth is expected to be suppressed in the group administered the genome-edited strain alone and in the group administered the genome-edited strain in combination with an anti-PD-1 antibody.
(実施例3-5:癌治療)
TLR5活性化能が増強された菌株をがん患者(がんの種類は問わない)に錠剤またはカプセルなどにより経口投与し患者の腸内にて当該菌株を一過的に存在あるいは理想的には定着させることで宿主の免疫細胞を刺激し、がん細胞に対する免疫反応を増強する。ICIを併用することで、がん細胞の免疫細胞に対する抑制作用を阻害することができ、活性化された免疫細胞によるがん細胞への反応性が亢進することが期待される。 (Examples 3-5: Cancer Treatment)
A strain with enhanced TLR5 activation ability is orally administered to a cancer patient (regardless of the type of cancer) in the form of a tablet or capsule, and the strain is allowed to exist transiently or ideally become established in the intestine of the patient, stimulating the host's immune cells and enhancing the immune response to cancer cells. By using ICI in combination, it is possible to inhibit the suppressive effect of cancer cells on immune cells, and it is expected that the reactivity of activated immune cells to cancer cells will be enhanced.
TLR5活性化能が増強された菌株をがん患者(がんの種類は問わない)に錠剤またはカプセルなどにより経口投与し患者の腸内にて当該菌株を一過的に存在あるいは理想的には定着させることで宿主の免疫細胞を刺激し、がん細胞に対する免疫反応を増強する。ICIを併用することで、がん細胞の免疫細胞に対する抑制作用を阻害することができ、活性化された免疫細胞によるがん細胞への反応性が亢進することが期待される。 (Examples 3-5: Cancer Treatment)
A strain with enhanced TLR5 activation ability is orally administered to a cancer patient (regardless of the type of cancer) in the form of a tablet or capsule, and the strain is allowed to exist transiently or ideally become established in the intestine of the patient, stimulating the host's immune cells and enhancing the immune response to cancer cells. By using ICI in combination, it is possible to inhibit the suppressive effect of cancer cells on immune cells, and it is expected that the reactivity of activated immune cells to cancer cells will be enhanced.
ICIを併用する場合の菌株投与のタイミングは、同時投与あるいは菌株をICIに先行して投与する2パターンがある。当該菌株の患者体内での定着性によっては、菌株を複数回投与することもある。ICI単独でのがん免疫療法では反応性が低い患者でも、当該菌株との併用によりICIの反応性を高めることが期待される。
When used in combination with ICI, the timing of administration of the strain can be either simultaneous administration or administration of the strain prior to ICI. Depending on the degree to which the strain adheres to the patient's body, the strain may be administered multiple times. Even in patients who have a low response to cancer immunotherapy using ICI alone, it is expected that the response of ICI will be increased by combining it with the strain.
(実施例4:Streptococcus mutansのバイオフィルム形成測定)
(実験手順)
・前培養
菌株をブレインハートインフュージョン(BHI)寒天培地に植菌し37℃にて一晩培養した。培養後のコロニーをBHI液体培地1mLへ植菌し37℃にて一晩、静置培養した。 (Example 4: Measurement of biofilm formation by Streptococcus mutans)
(Experimental Procedure)
- Pre-culture The strain was inoculated onto a brain heart infusion (BHI) agar medium and cultured overnight at 37° C. The colony after culture was inoculated into 1 mL of a BHI liquid medium and cultured statically overnight at 37° C.
(実験手順)
・前培養
菌株をブレインハートインフュージョン(BHI)寒天培地に植菌し37℃にて一晩培養した。培養後のコロニーをBHI液体培地1mLへ植菌し37℃にて一晩、静置培養した。 (Example 4: Measurement of biofilm formation by Streptococcus mutans)
(Experimental Procedure)
- Pre-culture The strain was inoculated onto a brain heart infusion (BHI) agar medium and cultured overnight at 37° C. The colony after culture was inoculated into 1 mL of a BHI liquid medium and cultured statically overnight at 37° C.
・菌液の本培養
前培養液をOD600=0.1となるようにBHI液体培地2mLへ植菌後、OD600=0.3~0.9となるまで37℃で静置培養した。培養液を5%スクロース含有BHI液体培地へOD600=0.005となるよう菌液を調整し、96-well plateの各ウェルへ調製した菌液200μLを添加し脱炭素剤を入れた嫌気ジャー内にて37℃、24時間培養した。 - Main culture of bacterial solution The preculture solution was inoculated into 2 mL of BHI liquid medium to give an OD 600 of 0.1, and then cultured at 37°C until the OD 600 reached 0.3 to 0.9. The bacterial solution was adjusted to give an OD 600 of 0.005 in 5% sucrose-containing BHI liquid medium, and 200 μL of the prepared bacterial solution was added to each well of a 96-well plate, followed by culture at 37°C for 24 hours in an anaerobic jar containing a decarbonizing agent.
前培養液をOD600=0.1となるようにBHI液体培地2mLへ植菌後、OD600=0.3~0.9となるまで37℃で静置培養した。培養液を5%スクロース含有BHI液体培地へOD600=0.005となるよう菌液を調整し、96-well plateの各ウェルへ調製した菌液200μLを添加し脱炭素剤を入れた嫌気ジャー内にて37℃、24時間培養した。 - Main culture of bacterial solution The preculture solution was inoculated into 2 mL of BHI liquid medium to give an OD 600 of 0.1, and then cultured at 37°C until the OD 600 reached 0.3 to 0.9. The bacterial solution was adjusted to give an OD 600 of 0.005 in 5% sucrose-containing BHI liquid medium, and 200 μL of the prepared bacterial solution was added to each well of a 96-well plate, followed by culture at 37°C for 24 hours in an anaerobic jar containing a decarbonizing agent.
・クリスタルバイオレット染色によるバイオフィルム形成評価
96-well plateにて培養した菌液の上清を取り除き、各ウェルへ200μLのりん酸緩衝生理食塩水(PBS)溶液を添加し、洗浄した。もう一度、洗浄を行った。その後、0.01% クリスタルバイオレット溶液を200μL添加し、室温で20分間遮光条件下にて静置した。クリスタルバイオレッド溶液を取り除き、PBS溶液 200μLを添加し洗浄した。もう一度、洗浄をした。 Evaluation of biofilm formation by crystal violet staining The supernatant of the bacterial solution cultured in a 96-well plate was removed, and 200 μL of phosphate-buffered saline (PBS) solution was added to each well and washed. Washing was performed once more. Then, 200 μL of 0.01% crystal violet solution was added, and the well was left to stand at room temperature for 20 minutes under light-shielded conditions. The crystal violet solution was removed, and 200 μL of PBS solution was added and washed. Washing was performed once more.
96-well plateにて培養した菌液の上清を取り除き、各ウェルへ200μLのりん酸緩衝生理食塩水(PBS)溶液を添加し、洗浄した。もう一度、洗浄を行った。その後、0.01% クリスタルバイオレット溶液を200μL添加し、室温で20分間遮光条件下にて静置した。クリスタルバイオレッド溶液を取り除き、PBS溶液 200μLを添加し洗浄した。もう一度、洗浄をした。 Evaluation of biofilm formation by crystal violet staining The supernatant of the bacterial solution cultured in a 96-well plate was removed, and 200 μL of phosphate-buffered saline (PBS) solution was added to each well and washed. Washing was performed once more. Then, 200 μL of 0.01% crystal violet solution was added, and the well was left to stand at room temperature for 20 minutes under light-shielded conditions. The crystal violet solution was removed, and 200 μL of PBS solution was added and washed. Washing was performed once more.
各ウェルへ200μLのエタノールを添加後、室温で30分間遮光条件下にて静置し染色液の溶出を行なった。溶出した溶液100μLのABS590を測定した。
After adding 200 μL of ethanol to each well, the plate was left to stand at room temperature for 30 minutes in the dark to elute the staining solution. ABS 590 in 100 μL of the eluted solution was measured.
結果を以下の表1および図4-1に示した。
The results are shown in Table 1 below and in FIG.
(注記)
以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、日本国特許庁に2022年11月4日に出願された特願2022-177706に対して優先権主張を伴うものであり、その内容は、本願においてすべての内容が参考として援用される。 (Note)
As described above, the present disclosure has been illustrated using preferred embodiments of the present disclosure, but it is understood that the scope of the present disclosure should be interpreted only by the scope of the claims. It is understood that the patents, patent applications and other documents cited in this specification should be incorporated by reference to this specification in the same manner as if the contents themselves were specifically described in this specification. This application claims priority to Japanese Patent Application No. 2022-177706 filed on November 4, 2022 at the Japan Patent Office, the contents of which are incorporated by reference in their entirety in this application.
以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、日本国特許庁に2022年11月4日に出願された特願2022-177706に対して優先権主張を伴うものであり、その内容は、本願においてすべての内容が参考として援用される。 (Note)
As described above, the present disclosure has been illustrated using preferred embodiments of the present disclosure, but it is understood that the scope of the present disclosure should be interpreted only by the scope of the claims. It is understood that the patents, patent applications and other documents cited in this specification should be incorporated by reference to this specification in the same manner as if the contents themselves were specifically described in this specification. This application claims priority to Japanese Patent Application No. 2022-177706 filed on November 4, 2022 at the Japan Patent Office, the contents of which are incorporated by reference in their entirety in this application.
本開示の方法によって、対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産することができ、またこれにより、種々の疾患に応じた細菌製剤を効率的に生産することができるため、医療分野において幅広い応用が期待できる。
The disclosed method makes it possible to design or produce bacterial preparations containing microorganisms that have a desired medicinal effect in a subject, and also makes it possible to efficiently produce bacterial preparations for various diseases, which is expected to have a wide range of applications in the medical field.
配列番号1:Escherichia coliのcsgAの核酸配列
配列番号2:Escherichia coliのcsgAのアミノ酸配列
配列番号3:Escherichia coliのcsgBの核酸配列
配列番号4:Escherichia coliのcsgBのアミノ酸配列
配列番号5:Escherichia coliのcsgCの核酸配列
配列番号6:Escherichia coliのcsgCのアミノ酸配列
配列番号7:Escherichia coliのcsgDの核酸配列
配列番号8:Escherichia coliのcsgDのアミノ酸配列
配列番号9:Escherichia coliのcsgEの核酸配列
配列番号10:Escherichia coliのcsgEのアミノ酸配列
配列番号11:Escherichia coliのcsgFの核酸配列
配列番号12:Escherichia coliのcsgFのアミノ酸配列
配列番号13:Escherichia coliのcsgGの核酸配列
配列番号14:Escherichia coliのcsgGのアミノ酸配列
配列番号15:Escherichia coliのrpoSの核酸配列
配列番号16:Escherichia coliのrpoSのアミノ酸配列
配列番号17:Escherichia coliのcrpの核酸配列
配列番号18:Escherichia coliのcrpのアミノ酸配列
配列番号19:Escherichia coliのompRの核酸配列
配列番号20:Escherichia coliのompRのアミノ酸配列
配列番号21:Escherichia coliのfimAの核酸配列
配列番号22:Escherichia coliのfimAのアミノ酸配列
配列番号23:Escherichia coliのfimCの核酸配列
配列番号24:Escherichia coliのfimCのアミノ酸配列
配列番号25:Escherichia coliのfimDの核酸配列
配列番号26:Escherichia coliのfimDのアミノ酸配列
配列番号27:Escherichia coliのrcsBの核酸配列
配列番号28:Escherichia coliのrcsBのアミノ酸配列
配列番号29:Escherichia coliのqseCの核酸配列
配列番号30:Escherichia coliのqseCのアミノ酸配列
配列番号31:Escherichia coliのpapDの核酸配列
配列番号32:Escherichia coliのpapDのアミノ酸配列
配列番号33:Escherichia coliのpapGの核酸配列
配列番号34:Escherichia coliのpapGのアミノ酸配列
配列番号35:Escherichia coliのcsgAの核酸配列
配列番号36:Escherichia coliのcsgAのアミノ酸配列
配列番号37:マンノース結合性試験において用いた大腸菌の16S rRNA領域にアニールするフォワードプライマー
配列番号38:マンノース結合性試験において用いた大腸菌の16S rRNA領域にアニールするリバースプライマー
配列番号39:E_casseliflavusのfliC(hag)の核酸配列
配列番号40:E_casseliflavusのfliDの核酸配列
配列番号41:E_casseliflavusのflgEの核酸配列
配列番号42:E_casseliflavusのfliFの核酸配列
配列番号43:E_casseliflavusのflgKの核酸配列
配列番号44:E_casseliflavusのflgMの核酸配列
配列番号45:E_casseliflavusのflgNの核酸配列
配列番号46:E_casseliflavusのfliTの核酸配列
配列番号47:E_casseliflavusのsigDの核酸配列 SEQ ID NO:1: Nucleic acid sequence of csgA from Escherichia coli SEQ ID NO:2: Amino acid sequence of csgA from Escherichia coli SEQ ID NO:3: Nucleic acid sequence of csgB from Escherichia coli SEQ ID NO:4: Amino acid sequence of csgB from Escherichia coli SEQ ID NO:5: Nucleic acid sequence of csgC from Escherichia coli SEQ ID NO:6: Amino acid sequence of csgC from Escherichia coli SEQ ID NO:7: Nucleic acid sequence of csgD from Escherichia coli SEQ ID NO:8: Amino acid sequence of csgD from Escherichia coli SEQ ID NO:9: Nucleic acid sequence of csgE from Escherichia coli SEQ ID NO:10: Amino acid sequence of csgE from Escherichia coli SEQ ID NO:11: Nucleic acid sequence of csgF from Escherichia coli SEQ ID NO:12: Amino acid sequence of csgF from Escherichia coli SEQ ID NO:13: Nucleic acid sequence of csgG from Escherichia coli SEQ ID NO:14: Amino acid sequence of csgG from Escherichia coli SEQ ID NO:15: SEQ ID NO:16: Amino acid sequence of rpoS from Escherichia coli SEQ ID NO:17: Nucleic acid sequence of crp from Escherichia coli SEQ ID NO:18: Amino acid sequence of crp from Escherichia coli SEQ ID NO:19: Nucleic acid sequence of ompR from Escherichia coli SEQ ID NO:20: Amino acid sequence of ompR from Escherichia coli SEQ ID NO:21: Nucleic acid sequence of fimA from Escherichia coli SEQ ID NO:22: Amino acid sequence of fimA from Escherichia coli SEQ ID NO:23: Nucleic acid sequence of fimC from Escherichia coli SEQ ID NO:24: Amino acid sequence of fimC from Escherichia coli SEQ ID NO:25: Nucleic acid sequence of fimD from Escherichia coli SEQ ID NO:26: Amino acid sequence of fimD from Escherichia coli SEQ ID NO:27: Nucleic acid sequence of rcsB from Escherichia coli SEQ ID NO:28: Amino acid sequence of rcsB from Escherichia coli SEQ ID NO:29: SEQ ID NO:30: Escherichia coli qseC amino acid sequence SEQ ID NO:31: Escherichia coli papD nucleic acid sequence SEQ ID NO:32: Escherichia coli papD amino acid sequence SEQ ID NO:33: Escherichia coli papG nucleic acid sequence SEQ ID NO:34: Escherichia coli papG amino acid sequence SEQ ID NO:35: Escherichia coli csgA nucleic acid sequence SEQ ID NO:36: Escherichia coli csgA amino acid sequence SEQ ID NO:37: Forward primer annealing to the 16S rRNA region of E. coli used in the mannose binding test SEQ ID NO:38: Escherichia coli 16S rRNA region used in the mannose binding test Reverse primer annealing to the rRNA region SEQ ID NO: 39: Nucleic acid sequence of fliC(hag) of E_casseliflavus SEQ ID NO: 40: Nucleic acid sequence of fliD of E_casseliflavus SEQ ID NO: 41: Nucleic acid sequence of flgE of E_casseliflavus SEQ ID NO: 42: Nucleic acid sequence of fliF of E_casseliflavus SEQ ID NO: 43: Nucleic acid sequence of flgK of E_casseliflavus SEQ ID NO: 44: Nucleic acid sequence of flgM of E_casseliflavus SEQ ID NO: 45: Nucleic acid sequence of flgN of E_casseliflavus SEQ ID NO: 46: Nucleic acid sequence of fliT of E_casseliflavus SEQ ID NO: 47: Nucleic acid sequence of sigD of E_casseliflavus
配列番号2:Escherichia coliのcsgAのアミノ酸配列
配列番号3:Escherichia coliのcsgBの核酸配列
配列番号4:Escherichia coliのcsgBのアミノ酸配列
配列番号5:Escherichia coliのcsgCの核酸配列
配列番号6:Escherichia coliのcsgCのアミノ酸配列
配列番号7:Escherichia coliのcsgDの核酸配列
配列番号8:Escherichia coliのcsgDのアミノ酸配列
配列番号9:Escherichia coliのcsgEの核酸配列
配列番号10:Escherichia coliのcsgEのアミノ酸配列
配列番号11:Escherichia coliのcsgFの核酸配列
配列番号12:Escherichia coliのcsgFのアミノ酸配列
配列番号13:Escherichia coliのcsgGの核酸配列
配列番号14:Escherichia coliのcsgGのアミノ酸配列
配列番号15:Escherichia coliのrpoSの核酸配列
配列番号16:Escherichia coliのrpoSのアミノ酸配列
配列番号17:Escherichia coliのcrpの核酸配列
配列番号18:Escherichia coliのcrpのアミノ酸配列
配列番号19:Escherichia coliのompRの核酸配列
配列番号20:Escherichia coliのompRのアミノ酸配列
配列番号21:Escherichia coliのfimAの核酸配列
配列番号22:Escherichia coliのfimAのアミノ酸配列
配列番号23:Escherichia coliのfimCの核酸配列
配列番号24:Escherichia coliのfimCのアミノ酸配列
配列番号25:Escherichia coliのfimDの核酸配列
配列番号26:Escherichia coliのfimDのアミノ酸配列
配列番号27:Escherichia coliのrcsBの核酸配列
配列番号28:Escherichia coliのrcsBのアミノ酸配列
配列番号29:Escherichia coliのqseCの核酸配列
配列番号30:Escherichia coliのqseCのアミノ酸配列
配列番号31:Escherichia coliのpapDの核酸配列
配列番号32:Escherichia coliのpapDのアミノ酸配列
配列番号33:Escherichia coliのpapGの核酸配列
配列番号34:Escherichia coliのpapGのアミノ酸配列
配列番号35:Escherichia coliのcsgAの核酸配列
配列番号36:Escherichia coliのcsgAのアミノ酸配列
配列番号37:マンノース結合性試験において用いた大腸菌の16S rRNA領域にアニールするフォワードプライマー
配列番号38:マンノース結合性試験において用いた大腸菌の16S rRNA領域にアニールするリバースプライマー
配列番号39:E_casseliflavusのfliC(hag)の核酸配列
配列番号40:E_casseliflavusのfliDの核酸配列
配列番号41:E_casseliflavusのflgEの核酸配列
配列番号42:E_casseliflavusのfliFの核酸配列
配列番号43:E_casseliflavusのflgKの核酸配列
配列番号44:E_casseliflavusのflgMの核酸配列
配列番号45:E_casseliflavusのflgNの核酸配列
配列番号46:E_casseliflavusのfliTの核酸配列
配列番号47:E_casseliflavusのsigDの核酸配列 SEQ ID NO:1: Nucleic acid sequence of csgA from Escherichia coli SEQ ID NO:2: Amino acid sequence of csgA from Escherichia coli SEQ ID NO:3: Nucleic acid sequence of csgB from Escherichia coli SEQ ID NO:4: Amino acid sequence of csgB from Escherichia coli SEQ ID NO:5: Nucleic acid sequence of csgC from Escherichia coli SEQ ID NO:6: Amino acid sequence of csgC from Escherichia coli SEQ ID NO:7: Nucleic acid sequence of csgD from Escherichia coli SEQ ID NO:8: Amino acid sequence of csgD from Escherichia coli SEQ ID NO:9: Nucleic acid sequence of csgE from Escherichia coli SEQ ID NO:10: Amino acid sequence of csgE from Escherichia coli SEQ ID NO:11: Nucleic acid sequence of csgF from Escherichia coli SEQ ID NO:12: Amino acid sequence of csgF from Escherichia coli SEQ ID NO:13: Nucleic acid sequence of csgG from Escherichia coli SEQ ID NO:14: Amino acid sequence of csgG from Escherichia coli SEQ ID NO:15: SEQ ID NO:16: Amino acid sequence of rpoS from Escherichia coli SEQ ID NO:17: Nucleic acid sequence of crp from Escherichia coli SEQ ID NO:18: Amino acid sequence of crp from Escherichia coli SEQ ID NO:19: Nucleic acid sequence of ompR from Escherichia coli SEQ ID NO:20: Amino acid sequence of ompR from Escherichia coli SEQ ID NO:21: Nucleic acid sequence of fimA from Escherichia coli SEQ ID NO:22: Amino acid sequence of fimA from Escherichia coli SEQ ID NO:23: Nucleic acid sequence of fimC from Escherichia coli SEQ ID NO:24: Amino acid sequence of fimC from Escherichia coli SEQ ID NO:25: Nucleic acid sequence of fimD from Escherichia coli SEQ ID NO:26: Amino acid sequence of fimD from Escherichia coli SEQ ID NO:27: Nucleic acid sequence of rcsB from Escherichia coli SEQ ID NO:28: Amino acid sequence of rcsB from Escherichia coli SEQ ID NO:29: SEQ ID NO:30: Escherichia coli qseC amino acid sequence SEQ ID NO:31: Escherichia coli papD nucleic acid sequence SEQ ID NO:32: Escherichia coli papD amino acid sequence SEQ ID NO:33: Escherichia coli papG nucleic acid sequence SEQ ID NO:34: Escherichia coli papG amino acid sequence SEQ ID NO:35: Escherichia coli csgA nucleic acid sequence SEQ ID NO:36: Escherichia coli csgA amino acid sequence SEQ ID NO:37: Forward primer annealing to the 16S rRNA region of E. coli used in the mannose binding test SEQ ID NO:38: Escherichia coli 16S rRNA region used in the mannose binding test Reverse primer annealing to the rRNA region SEQ ID NO: 39: Nucleic acid sequence of fliC(hag) of E_casseliflavus SEQ ID NO: 40: Nucleic acid sequence of fliD of E_casseliflavus SEQ ID NO: 41: Nucleic acid sequence of flgE of E_casseliflavus SEQ ID NO: 42: Nucleic acid sequence of fliF of E_casseliflavus SEQ ID NO: 43: Nucleic acid sequence of flgK of E_casseliflavus SEQ ID NO: 44: Nucleic acid sequence of flgM of E_casseliflavus SEQ ID NO: 45: Nucleic acid sequence of flgN of E_casseliflavus SEQ ID NO: 46: Nucleic acid sequence of fliT of E_casseliflavus SEQ ID NO: 47: Nucleic acid sequence of sigD of E_casseliflavus
Claims (10)
- 対象において所望の薬効を有する微生物を含む細菌製剤をデザインまたは生産する方法であって、
該薬効に関連する少なくとも1つの遺伝子を選択し、またはスクリーニングする工程と、
該遺伝子を改変する工程と、
該遺伝子の発現レベルが改変された微生物および/または該遺伝子によって産生されるタンパク質の機能が改変された微生物を選択する工程と、
選択された該微生物について、該所望の薬効を有するかどうかを確認し、該薬効を有する微生物を選択する工程と、
必要に応じて該所望の薬効を有する該微生物を含む集団を生成する工程と
を含む、方法。 1. A method for designing or producing a bacterial formulation comprising a microorganism having a desired therapeutic effect in a subject, comprising:
selecting or screening at least one gene associated with said therapeutic effect;
modifying the gene;
selecting a microorganism in which the expression level of the gene and/or the function of the protein produced by the gene is modified;
A step of confirming whether the selected microorganism has the desired medicinal effect and selecting a microorganism having the medicinal effect;
and optionally generating a population comprising said microorganism having said desired therapeutic effect. - 前記遺伝子の選択またはスクリーニングは、データベースおよび/またはゲノムライブラリーを用いたスクリーニングを含む、請求項1に記載の方法。 The method of claim 1, wherein the selection or screening of the gene includes screening using a database and/or a genomic library.
- 前記改変が、ゲノム編集を含む、請求項1または2に記載の方法。 The method of claim 1 or 2, wherein the modification includes genome editing.
- 前記改変が、前記遺伝子における点変異を含む、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the modification comprises a point mutation in the gene.
- 前記改変が、終止コドンを生じさせる変異を含む、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the modification includes a mutation that generates a stop codon.
- 前記改変が、前記少なくとも1つの遺伝子における少なくとも2ヶ所の変異を含む、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the modification includes at least two mutations in the at least one gene.
- 前記薬効を有する微生物の選択は、薬剤遺伝子耐性システムの利用、必須遺伝子(栄養要求性マーカー)の利用、呈色反応を触媒する酵素をコードする遺伝子の利用、温度耐性の利用を含む、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the selection of the microorganism having the medicinal effect includes the use of a drug gene resistance system, an essential gene (auxotrophic marker), a gene encoding an enzyme that catalyzes a color reaction, and temperature tolerance.
- 前記所望の薬効の確認は、薬剤遺伝子耐性システムの利用、前記薬効に基づく酵素活性、前記薬効に基づく生存活性、および/または前記対象における前記微生物の定着性を含む、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the confirmation of the desired drug effect includes the use of a drug gene resistance system, an enzyme activity based on the drug effect, a survival activity based on the drug effect, and/or the fixability of the microorganism in the subject.
- 前記遺伝子が、炎症性腸疾患、パーキンソン病、癌免疫、う蝕、および歯周病からなる群から選択される少なくとも1つの疾患または機能に関連する遺伝子を含む、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the gene includes a gene associated with at least one disease or function selected from the group consisting of inflammatory bowel disease, Parkinson's disease, cancer immunity, dental caries, and periodontal disease.
- 前記微生物が大腸菌を含む、請求項1~9のいずれか一項に記載の方法。 The method according to any one of claims 1 to 9, wherein the microorganism comprises Escherichia coli.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-177706 | 2022-11-04 | ||
JP2022177706 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024096125A1 true WO2024096125A1 (en) | 2024-05-10 |
Family
ID=90930757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/039720 WO2024096125A1 (en) | 2022-11-04 | 2023-11-02 | Method for designing or producing bacterial preparation containing microorganism having desired pharmacological efficacy |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024096125A1 (en) |
-
2023
- 2023-11-02 WO PCT/JP2023/039720 patent/WO2024096125A1/en unknown
Non-Patent Citations (2)
Title |
---|
ANONYMOUS: "Development of Microbiome Therapeutics", BIO PALETTE CO., LTD, 22 April 2021 (2021-04-22), pages 1 - 3, XP093167417, Retrieved from the Internet <URL:https://www.biopalette.co.jp/microbiome/> * |
ANONYMOUS: "Technology", BIO PALETTE CO., LTD, 22 April 2021 (2021-04-22), pages 1 - 6, XP093167431, Retrieved from the Internet <URL:https://www.biopalette.co.jp/technology/> * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7369690B2 (en) | Bacterial extracellular vesicles | |
CA2968325A1 (en) | Intestinal microbiota and gvhd | |
ES2986675T3 (en) | Bacteriophage for the treatment and prevention of bacteria-associated cancers | |
JP2022133363A (en) | Bacteria that induce Th1 cells | |
Peña-Cearra et al. | Akkermansia muciniphila-induced trained immune phenotype increases bacterial intracellular survival and attenuates inflammation | |
US10350281B2 (en) | Production and application of protozoa cultures of Histomonas meleagridis (H. meleagridis) | |
WO2024096125A1 (en) | Method for designing or producing bacterial preparation containing microorganism having desired pharmacological efficacy | |
JP2022546117A (en) | COMPOSITIONS COMPRISING BACTERIAL SPECIES AND RELATED METHODS | |
Lu et al. | MshK mutation reduces pathogenicity of Aeromonas veronii by modulating swimming ability, biofilm formation capacity, pili structure and virulence gene expression | |
JP2024534805A (en) | Commensal bacteria promote endocrine resistance through androgen biosynthesis in prostate cancer | |
WO2024096121A1 (en) | Inflammation-suppressing microorganism and production method for same | |
Methner et al. | Salmonella Enteritidis with double deletion in phoP fliC and a competitive exclusion culture elicit substantial additive protective effects against Salmonella exposure in newly hatched chicks | |
WO2024096120A1 (en) | Microorganism having improved colonization properties in host and method for producing same | |
US20240358773A1 (en) | Parabacteroides Goldsteinii to Treat or Prevent Inflammatory and AutoImmune Diseases | |
Zaidi et al. | mltG gene deletion mitigated virulence potential of Streptococcus mutans: An in-vitro, ex-situ and in-vivo study | |
WO2021221110A1 (en) | Small intestinal bacterium inducing proliferation or activation of th1 cells and/or th17 cells | |
TWI639697B (en) | Lactobacillus strain, composition comprising the same and uses thereof | |
EP4046643A1 (en) | A method of treating or preventing colorectal cancer | |
Osbelt | Influence of the intestinal microbiota composition on the individual susceptibility towards enteric infections in healthy individuals and hematological patients | |
Vorst | The Role of Salmonella Pathogenicity Island-2 (SPI-2) in the Course of Neonatal Non-typhoidal Salmonella Infections | |
Xia | PATHOGENIC MECHANISMS OF CITROBACTER RODENTIUM INFECTION IN IMMUNOCOMPROMISED ANIMALS | |
Peña-Cearra et al. | immune phenotype increases bacterial intracellular survival and attenuates inflammation | |
Ghazanfar et al. | Prevalence and Antibiotic Susceptibility of Thermophilic Campylobacter jejuni from Commercial Broiler Farms in and Around Lahore | |
Nordraak | Antibiotics against bovine mastitis pathogens: resistance and novel targets | |
WO2022158434A1 (en) | Composition for decomposition of trypsin or tmprss2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885879 Country of ref document: EP Kind code of ref document: A1 |