WO2024095942A1 - 情報処理装置、情報処理方法、および、コンピュータプログラム - Google Patents
情報処理装置、情報処理方法、および、コンピュータプログラム Download PDFInfo
- Publication number
- WO2024095942A1 WO2024095942A1 PCT/JP2023/039023 JP2023039023W WO2024095942A1 WO 2024095942 A1 WO2024095942 A1 WO 2024095942A1 JP 2023039023 W JP2023039023 W JP 2023039023W WO 2024095942 A1 WO2024095942 A1 WO 2024095942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prognosis
- information processing
- processing device
- disease
- information
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 90
- 238000004590 computer program Methods 0.000 title claims description 7
- 238000003672 processing method Methods 0.000 title claims description 4
- 238000004393 prognosis Methods 0.000 claims abstract description 225
- 201000010099 disease Diseases 0.000 claims abstract description 96
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 96
- 238000010801 machine learning Methods 0.000 claims abstract description 22
- 230000007613 environmental effect Effects 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 41
- 230000009798 acute exacerbation Effects 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 38
- 230000034994 death Effects 0.000 claims description 26
- 231100000517 death Toxicity 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 239000003344 environmental pollutant Substances 0.000 claims description 7
- 210000002345 respiratory system Anatomy 0.000 claims description 7
- 230000007704 transition Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 31
- 208000029523 Interstitial Lung disease Diseases 0.000 description 23
- 238000012360 testing method Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 16
- 238000012795 verification Methods 0.000 description 11
- 238000003745 diagnosis Methods 0.000 description 9
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 230000003510 anti-fibrotic effect Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000010200 validation analysis Methods 0.000 description 4
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 3
- 238000009534 blood test Methods 0.000 description 3
- 238000013399 early diagnosis Methods 0.000 description 3
- 238000013213 extrapolation Methods 0.000 description 3
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 208000027932 Collagen disease Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 229940046731 calcineurin inhibitors Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004199 lung function Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 238000011903 nutritional therapy Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000009613 pulmonary function test Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000005586 smoking cessation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Definitions
- the technology disclosed in this specification relates to information processing for predicting the prognosis of patients suffering from a disease.
- Interstitial pneumonia is a general term for chronic progressive fibrotic lung diseases.
- Acute exacerbation of interstitial pneumonia is a condition in which the condition rapidly worsens within one month, and the prognosis is extremely poor, with an in-hospital mortality rate of approximately 50%. If acute exacerbations of interstitial pneumonia could be predicted with high accuracy, it would be possible, for example, to suppress onset with anti-fibrotic drugs and improve prognosis through early diagnosis and therapeutic intervention.
- Non-Patent Document 1 Previously, clinical models have been proposed to predict the risk of acute exacerbation in patients with idiopathic pulmonary fibrosis, a classification of interstitial pneumonia (see, for example, Non-Patent Document 1).
- the progression of interstitial pneumonia varies from patient to patient, and the patient's condition changes over time.
- the conventional prediction model described above does not take into account the chronological changes in disease factors, including the patient's condition, and as a result, has the problem of low prediction accuracy. This problem is not limited to prediction of acute exacerbations of interstitial pneumonia, but is a common problem in disease prognosis prediction in general.
- the information processing device disclosed in this specification is a device for predicting the prognosis of a target patient suffering from a disease, and includes a model acquisition unit, a target patient information acquisition unit, and a prognosis prediction execution unit.
- the model acquisition unit acquires a prognosis prediction model, which is a machine learning model that receives time-series information indicating the chronological changes of disease factors and outputs the prognosis of the disease.
- the target patient information acquisition unit acquires time-series information about the target patient.
- the prognosis prediction execution unit uses the time-series information about the target patient and the prognosis prediction model to execute a prediction of the prognosis of the target patient, and outputs the prognosis prediction result.
- This information processing device can predict the prognosis of a disease for each individual patient based on time-series information showing the chronological changes in disease factors, making it possible to predict the prognosis of the disease with high accuracy.
- the disease factors may include environmental factors.
- the disease factors may include environmental factors of the place of residence of the target patient.
- the environmental factors of the target patient's place of residence may be environmental factors of a location within a straight-line distance of 200 km from the target patient's current address.
- the environmental factors may include at least one of the presence of environmental pollutants and meteorological parameters.
- the time-series information may include information indicating the amount of change in the environmental factor.
- the time-series information may be information that identifies the values of the disease factors at regular time intervals.
- the time series information may include information that identifies at least the monthly values of the disease factors.
- the prognosis of the disease may include the occurrence of multiple events that are in a competing risk relationship
- the prognosis prediction model may be a model trained using a machine learning algorithm that corresponds to the multiple events that are in a competing risk relationship.
- the prognosis prediction model may be configured to output, as the prognosis of the disease, an index value representing the likelihood of an event occurring for a plurality of events in a competing risk relationship.
- the multiple events that are competing risks may include acute exacerbation and death.
- the disease may be a disease of the respiratory system or the circulatory system.
- the prognosis prediction execution unit may be configured to execute a virtual prognosis prediction for the target patient using virtual information in which a part of the time-series information for the target patient is changed and the prognosis prediction model, predict the effect of an intervention corresponding to the change based on the prediction result of the actual prognosis and the prediction result of the virtual prognosis, and output the prediction result of the effect of the intervention.
- the technology disclosed in this specification can be realized in various forms, such as an information processing device, an information processing method, a computer program that realizes the method, or a non-transitory recording medium on which the computer program is recorded.
- FIG. 1 is an explanatory diagram conceptually showing a prognosis prediction model MO according to the present embodiment. Diagram showing how to predict the effect of intervention based on prognosis prediction results
- FIG. 1 is an explanatory diagram showing a schematic configuration of an information processing device 100. 1 is a flowchart showing a prognosis prediction model acquisition process according to the present embodiment. An explanatory diagram showing specific examples of factors (feature amounts) of interstitial pneumonia
- FIG. 1 is an explanatory diagram conceptually illustrating an interpolation process for original information Io.
- FIG. 1 is an explanatory diagram showing an example of learning data LD obtained through preprocessing.
- a conceptual diagram of a model using LSTM 1 is a flowchart showing a prognosis prediction process according to the present embodiment.
- FIG. 1 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment. Another explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment Another explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment.
- FIG. 1 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment.
- FIG. 1 is an explanatory diagram showing an example of a prognosis prediction result by the prognosis prediction model MO of the embodiment.
- FIG. 13 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO according to another embodiment.
- FIG. 1 is an explanatory diagram showing an example of the importance of each disease factor in an embodiment.
- 11 is an explanatory diagram showing an example of the importance of each disease factor in another embodiment.
- An explanatory diagram showing the relationship between the upper limit of the straight-line distance from the patient's current address to the measurement station and the prediction accuracy.
- An explanatory diagram showing the relationship between the upper limit of the straight-line distance from the patient's current address to the measurement station and the prediction accuracy.
- FIG. 1 is an explanatory diagram conceptually showing the prognosis prediction model MO in this embodiment.
- the prognosis prediction model MO is a model for predicting the prognosis of a patient suffering from a disease.
- the prognosis prediction model MO is a machine learning model that inputs time-series information showing the time-series changes in disease factors (feature amounts) and outputs the prognosis of the disease.
- machine learning refers to a general term for techniques and methods for finding rules and patterns by using a computer to learn based on a large amount of data (i.e., data-driven), and includes deep learning.
- interstitial pneumonia is used as a specific example of a disease.
- Events of interstitial pneumonia include acute exacerbation and death. Since an acute exacerbation event does not occur after a death event occurs, the two can be said to be in a competing risk relationship.
- Factors (feature amounts) of interstitial pneumonia include, for example, patient background (whether or not a patient smokes, BMI, etc.), test findings (blood test, chest CT image, etc.), environmental factors (environmental pollutants such as NO2 and PM2.5 , meteorological parameters such as temperature, etc.), and treatment information (administration of antifibrotic agents, etc.).
- Time-series information indicating the chronological changes of these factors is, for example, information that specifies the values and changes of these factors at regular time intervals (for example, monthly) during a certain period (for example, the period from the initial diagnosis to the Mth month).
- the prognosis prediction by the prognosis prediction model MO involves, for example, the calculation of index values that indicate the possibility of each event occurring.
- the probability of acute exacerbation and death occurring at a certain timing e.g., M+N months
- prognosis prediction may be performed in other ways.
- the prognosis prediction may involve classification of the patient's predicted state (survival, acute exacerbation, death) based on the probability of acute exacerbation and death occurring at a certain timing.
- the prognosis of a disease can be accurately predicted for an individual patient based on time-series information showing the chronological changes in disease factors.
- the prognosis prediction results can be used for various purposes. For example, for a patient predicted to have a high probability of developing acute exacerbation, an anti-fibrotic drug can be administered to suppress the onset of the disease, or early diagnosis and treatment intervention can be performed to improve the prognosis.
- the effect of intervention can be predicted based on the prognosis prediction results.
- the upper part of Figure 2 shows an example of a prediction result of the occurrence probability of acute exacerbation and death based on actual time-series information.
- the lower part of Figure 2 shows an example of a virtual prediction result of the occurrence probability of acute exacerbation and death based on virtual information in which part of the time-series information has been changed to correspond to an expected intervention (e.g., smoking cessation, medication, rehabilitation, nutritional therapy, etc.).
- an expected intervention e.g., smoking cessation, medication, rehabilitation, nutritional therapy, etc.
- the effect of intervention corresponding to the above change e.g., a XX% reduction in the risk of acute exacerbation, a YY% reduction in the risk of death
- a decision can be made as to whether or not to actually perform the intervention.
- FIG. 3 is an explanatory diagram showing a schematic configuration of the information processing device 100.
- the information processing device 100 is configured by a computer (PC, server, etc.).
- the information processing device 100 includes a control unit 110, a storage unit 120, a display unit 130, an operation input unit 140, and an interface unit 150. These units are connected to each other via a bus 190 so that they can communicate with each other.
- the information processing device 100 may also include a speaker as an output means.
- the display unit 130 of the information processing device 100 is, for example, configured with a liquid crystal display or the like, and displays various images and information.
- the operation input unit 140 is, for example, configured with a keyboard, mouse, buttons, microphone, trackpad, etc., and accepts operations and instructions from an administrator.
- the display unit 130 may be equipped with a touch panel so as to function as the operation input unit 140.
- the interface unit 150 is, for example, configured with a LAN interface, USB interface, etc., and communicates with other devices via wired or wireless connection.
- the storage unit 120 of the information processing device 100 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), etc., and is used to store various programs and data, and as a working area when executing various programs, and as a temporary storage area for data.
- the storage unit 120 stores a prognosis prediction program CP, which is a computer program for executing the prognosis prediction model acquisition process and prognosis prediction process described below.
- the prognosis prediction program CP is provided in a state stored in a computer-readable recording medium (not shown), such as a CD-ROM, DVD-ROM, or USB memory, or is provided in a state that can be obtained from an external device (a server or other terminal device on a network) via the interface unit 150, and is stored in the storage unit 120 in a state that can be operated on the information processing device 100.
- a computer-readable recording medium such as a CD-ROM, DVD-ROM, or USB memory
- the memory unit 120 of the information processing device 100 stores learning data LD, prognosis prediction model MO, target patient information Ip, and prognosis prediction result data RD either in advance or during the execution of the prognosis prediction model acquisition process and prognosis prediction process described below.
- learning data LD prognosis prediction model MO
- target patient information Ip target patient information Ip
- prognosis prediction result data RD prognosis prediction result data RD
- the control unit 110 of the information processing device 100 is configured, for example, with a CPU, and controls the operation of the information processing device 100 by executing a computer program read from the storage unit 120.
- the control unit 110 reads a prognosis prediction program CP from the storage unit 120 and executes it, thereby functioning as an original information acquisition unit 111 for executing the prognosis prediction model acquisition process and prognosis prediction process described below, a learning data acquisition unit 112, a model acquisition unit 113, a target patient information acquisition unit 114, and a prognosis prediction execution unit 119.
- the functions of each of these units will be explained in conjunction with the explanation of the prognosis prediction model acquisition process and prognosis prediction process described below.
- the prognosis prediction model acquisition process is a process for acquiring a prognosis prediction model MO, which is a machine learning model for predicting the prognosis of a patient suffering from a disease (interstitial pneumonia).
- the information processing device 100 acquires the prognosis prediction model MO by creating the prognosis prediction model MO by a predetermined machine learning.
- the prognosis prediction model acquisition process is started in response to a user inputting a start instruction by operating the operation input unit 140 of the information processing device 100.
- the original information acquisition unit 111 (FIG. 3) of the information processing device 100 acquires information (hereinafter referred to as "original information Io") used to create the prognosis prediction model MO (S110).
- the original information Io is information that is the basis of the learning data LD used for training, verifying, and testing the prognosis prediction model MO.
- the original information Io is information that associates, for multiple patients suffering from interstitial pneumonia, time-series information showing the time-series changes in factors (feature values) of interstitial pneumonia with information showing prognosis.
- the original information Io is acquired via the interface unit 150 or via the operation input unit 140.
- FIG. 5 is an explanatory diagram showing specific examples of factors (feature quantities) of interstitial pneumonia.
- 44 factors classified into four types namely, patient background, test findings, environmental factors, and treatment information, are used as factors of interstitial pneumonia.
- the patient background includes, for example, the following 12 factors: Information on the patient background is obtained, for example, by interview, examination, or the like. Age, BMI, GAP score, current smoker, former smoker, IPF, PPFE, SSc, collagen disease, sex, CCI ⁇ 3, mMRC ⁇ 2
- the test findings include, for example, the following 18 factors:
- the information on the test findings is obtained, for example, from a blood test, a chest CT image, or the like.
- the environmental factors are factors related to the environment of the patient's residence, and include, for example, the presence (e.g., concentration) of environmental pollutants and meteorological parameters. More specifically, the environmental factors include, for example, the following 10 factors: - NO2 , NO, SO2 , PM2.5 , SPM, precipitation, temperature, season (autumn, summer, winter)
- representative values for a certain period of time e.g., monthly average value, daily average value
- the amount of change for a certain period of time e.g., the amount of change in the monthly average value, the amount of change in the daily average value
- the number of times that the standard value is exceeded for a certain period of time e.g., the number of days per month that the environmental standard value is exceeded, the number of hours per day that the environmental standard value is exceeded
- the patient's place of residence may be the area to which the patient's current address belongs.
- information on environmental pollutants, which are environmental factors can be obtained, for example, by referencing measurement data from a measurement station located in that area. Specifically, the measurement data from the measurement station closest in a straight line to the patient's current address is referenced. If there is no measurement station within a specified upper limit distance (for example, 100 km) from the patient's current address, data is considered missing for the environmental factor for which the measurement data from the measurement station was referenced.
- Measurement station data can be obtained, for example, from the website of the National Institute for Environmental Studies.
- Information on meteorological parameters (precipitation, temperature, season), which are environmental factors, can be obtained, for example, from the website of the Japan Meteorological Agency.
- the patient's place of residence may also be the room in which the patient lives (e.g., in a clean room).
- the information on the environmental factors can be obtained, for example, by referring to measurement data from a sensor installed in the room or a sensor attached to the patient.
- Information on environmental factors may also be obtained by referring to measurements taken by artificial satellites or predicted values from weather simulations.
- the treatment information includes, for example, the following four factors:
- the treatment information is obtained, for example, by recording the results of treatment. -Prednisolone, calcineurin inhibitors, immunosuppressants, antifibrotic agents
- the learning data acquisition unit 112 (FIG. 3) of the information processing device 100 performs preprocessing on the original information Io to acquire learning data LD (S120 in FIG. 4).
- preprocessing for example, interpolation, outlier removal, data expansion, etc. are performed.
- FIG. 6 is an explanatory diagram conceptually showing the interpolation process for the original information Io.
- the timing of the data for factors obtained by each test e.g., pulmonary function tests, blood tests, chest CT images
- the interpolation process is performed so that data at regular time intervals is obtained for all factors. The same applies to factors other than those obtained by tests.
- interpolation process it is preferable to select and execute an interpolation process suited to the characteristics of each factor. For example, for factors obtained by similar test items, it is preferable to perform the interpolation using multiple regression analysis using groups created by similar test items. For factors that are likely to be estimated from previous and next values, it is preferable to perform the interpolation using linear interpolation (interpolation) or nearest neighbor interpolation (extrapolation). For factors that show rapid fluctuations in a short period of time (e.g., CRP), it is preferable to perform the interpolation using nearest neighbor interpolation (interpolation, extrapolation). For categorical variables, it is preferable to perform the interpolation using nearest neighbor interpolation (interpolation, extrapolation).
- FIG. 7 is an explanatory diagram showing an example of learning data LD obtained after preprocessing.
- the learning data LD is data in which time-series information (monthly data in the example of FIG. 7) showing the chronological changes of each factor (feature amount) is associated with information showing the prognosis at each timing (correct answer label).
- FIG. 7 shows data of a patient who developed acute exacerbation t months after the initial diagnosis.
- the model acquisition unit 113 of the information processing device 100 creates a prognosis prediction model MO by machine learning using the learning data LD (S130 in FIG. 4).
- Various known machine learning algorithms can be used for machine learning to create the prognosis prediction model MO.
- LSTM Long Short Term Memory
- FIG. 8 is an explanatory diagram conceptually showing a model using LSTM.
- LSTM is an RNN (Recurrent Neural Network) capable of handling time-series information that has been improved to solve the gradient vanishing problem.
- the model is updated so that the loss calculated from the output value y t and the correct label Y t when the feature amount X t at the tth month is input is reduced.
- the Dynamic-DeepHit model may be used to create the prognosis prediction model MO.
- the Dynamic-DeepHit model is a known machine learning algorithm that supports multiple events in a competing risk relationship. As described above, acute exacerbation and death, which are events of interstitial pneumonia, are in a competing risk relationship, so if a machine learning algorithm that supports multiple events in a competing risk relationship is used, a prognosis prediction model MO with high prediction accuracy can be created. Details of the Dynamic-DeepHit model are described in, for example, the following literature. Lee Changhee and 3 others, "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks," Proceedings of the 31st AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2018, pp. 2314-2321
- the prognosis prediction model MO created by machine learning is stored in the memory unit 120 of the information processing device 100. This completes the process of acquiring the prognosis prediction model MO ( Figure 4).
- a portion of the learning data LD is used as training data for updating the model's parameters (weights, etc.)
- another portion of the learning data LD is used as verification data for setting hyperparameters
- another portion of the learning data LD is used as test data for checking the generalization performance of the model.
- the prognosis prediction process is a process for predicting the prognosis (predicting the risk of acute exacerbation and death) of a patient suffering from interstitial pneumonia using a prognosis prediction model MO.
- the prognosis prediction process is started in response to a user inputting a start instruction by operating the operation input unit 140 of the information processing device 100.
- the target patient information acquisition unit 114 (FIG. 3) of the information processing device 100 acquires the target patient information Ip (S310).
- the target patient information Ip is the above-mentioned time-series information about the patient who is the target of the prognosis prediction process.
- the target patient information Ip is acquired via the interface unit 150 or via the operation input unit 140, and is stored in the memory unit 120.
- the prognosis prediction execution unit 119 ( Figure 3) of the information processing device 100 executes a prognosis prediction for the target patient using the target patient information Ip and the prognosis prediction model MO (S320). That is, the prognosis prediction execution unit 119 inputs the target patient information Ip to the prognosis prediction model MO, thereby obtaining the prognosis prediction result output from the prognosis prediction model MO.
- the prognosis prediction execution unit 119 generates prognosis prediction result data RD, which is information indicating the prognosis prediction result, and stores it in the memory unit 120 of the information processing device 100.
- the prognosis prediction execution unit 119 outputs the prognosis prediction result based on the prognosis prediction result data RD (S330). For example, the prognosis prediction execution unit 119 causes the display unit 130 to display the prognosis prediction result. This completes the prognosis prediction process.
- doctors can refer to the displayed prognosis prediction results and, for patients who are predicted to have a high probability of developing acute exacerbations, administer anti-fibrotic drugs to suppress the onset of the disease or perform early diagnosis and treatment intervention to improve the prognosis.
- the prognosis prediction execution unit 119 may use virtual information obtained by changing part of the time-series information for the target patient and the prognosis prediction model MO to execute a virtual prognosis prediction for the target patient, predict the effect of an intervention corresponding to the above-mentioned changes based on the prediction result of the actual prognosis and the prediction result of the virtual prognosis, and output the prediction result of the effect of the intervention. In this way, a decision can be made as to whether or not to actually perform the intervention based on the output prediction result of the effect of the intervention.
- the prognosis prediction model MO of this example was created through a multi-center, retrospective study of interstitial pneumonia patients newly diagnosed at two hospitals (Tosei Public Hospital and Hamamatsu University School of Medicine) from 2008 to 2015. Of the 839 cases from Tosei Public Hospital, 80% were used as training data for model construction, and the remaining 20% were used as validation data for internal validity verification. In addition, 336 cases from Hamamatsu University School of Medicine were used as test data for external validity (generalization performance) verification.
- Figure 10 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment.
- Figure 10 shows the results of internal validity verification using validation data (C-index value) and external validity verification using test data (same) for the prognosis prediction model MO created using the Dynamic-DeepFit model described above.
- C-index value internal validity verification using validation data
- test data standarde
- T 6, 12, 24, 36
- a high C-index value of 0.85 or more was obtained for both acute exacerbation and death, and it can be said that the prognosis prediction model MO of the embodiment generally achieves high prediction accuracy.
- the C-index is an index of prediction accuracy indicating that the larger the value (maximum value: 1), the better the model's performance.
- FIGS. 11 and 12 are other explanatory diagrams showing the prediction accuracy of the prognosis prediction model MO of the embodiment.
- FIG. 11 and FIG. 12 show the results of internal validity verification (C-index value) and external validity verification (same) when monthly concentration or amount of change is used as the environmental factor.
- FIG. 11 is an embodiment using data from the time of initial diagnosis up to 12 months later
- FIG. 12 is an embodiment using data from the time of initial diagnosis up to 24 months later.
- the embodiment using amount of change as the environmental factor achieves prediction accuracy equal to or higher than that of the embodiment using monthly concentration as the environmental factor.
- FIG. 13 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of the embodiment.
- FIG. 13 shows the results of external validity verification of the prediction of acute exacerbation by a model that predicts only acute exacerbation (acute exacerbation model) created using the Dynamic-DeepFit model (C-index value), the results of external validity verification of the prediction of death by a model that predicts only death (death model) (same), and the results of external validity verification of the prediction of acute exacerbation and death by a model that predicts both acute exacerbation and death, which are in a competing risk relationship (competing model) (same).
- the prediction accuracy of the model that takes into account competing risks was as high as the prediction accuracy of the model that takes into account only acute exacerbation or only death. Therefore, it can be said that high prediction accuracy can be achieved by the model that takes into account competing risks.
- FIG. 14 is an explanatory diagram showing an example of a prognosis prediction result by the prognosis prediction model MO of the embodiment.
- FIG. 14 shows the result of predicting the cumulative occurrence probability of each event using test data from the first diagnosis to the 24th month using the prognosis prediction model MO created using the Dynamic-DeepFit model.
- Column A of FIG. 14 shows an example using test data in which an acute exacerbation occurred 38 months after the first diagnosis
- column B of FIG. 14 shows an example using test data in which a patient died 54 months after the first diagnosis
- column C of FIG. 14 shows an example using test data in which survival was terminated 81 months after the first diagnosis.
- the probability of death is consistently higher than the example shown in column A of FIG. 14.
- the probability of both acute exacerbation and death is consistently lower than the examples shown in columns A and B of FIG. 14. In this way, it can be said that the prognosis prediction model MO of the embodiment generally achieves high prediction accuracy.
- FIG. 15 is an explanatory diagram showing the prediction accuracy of the prognosis prediction model MO of another embodiment.
- FIG. 15 shows the results of internal validity verification using validation data (Balanced-Accuracy and F1 score values) for the prognosis prediction model MO created using the LSTM shown in FIG. 8.
- the values of Balanced-Accuracy and F1 score are both around 0.6, achieving a reasonable level of prediction accuracy.
- the learning data LD used to create the prognosis prediction model MO
- the proportion of data with the correct label "survival" is very high.
- the learning data LD is imbalanced data.
- the cross entropy weight Wj was variously changed according to the following formula (1) to confirm the prediction accuracy of the model.
- the cause may be, for example, a problem with the definition of the "predicted event” that cases with different prediction probabilities of "acute exacerbation” can be classified as the same "acute exacerbation,” and a problem of similarity between events that acute exacerbation is a fatal pathology.
- FIG. 16 is an explanatory diagram showing an example of the importance of each factor of a disease in an embodiment.
- FIG. 16 shows the importance of each factor (top 20) determined by examining the change in the risk of acute exacerbation when the value that each factor (feature amount) can take is changed, and assuming that the greater the change in risk, the higher the importance (contribution).
- some environmental factors SPM, NO 2 , PM 2.5
- FVC, DLco factors related to lung function
- GAP score factors related to severity
- FIG. 17 is an explanatory diagram showing an example of the importance of each factor of a disease in another embodiment.
- FIG. 17 shows the importance of each factor in the same way as FIG. 16, but in the example of FIG. 17, in addition to the monthly average value, the change amount from the previous month (the environmental factor name with "diff" added to the end in FIG. 17) is adopted as the environmental factor.
- the change amount from the previous month is adopted as the environmental factor.
- the change amount from the previous month is adopted as the environmental factor.
- the change amount from the previous month is adopted as the environmental factor.
- the change amount from the previous month is adopted as the environmental factor.
- the change amount from the previous month is adopted as the environmental factor.
- the change amount from the previous month is high. Therefore, it can be said that it is preferable to use the change amount for a certain period in addition to the representative value for each certain period or instead of the representative value for each certain period as the environmental factor used for predicting the prognosis of interstitial pneumonia.
- FIGS. 18 and 19 are explanatory diagrams showing the relationship between the upper limit of the straight-line distance from the patient's current address to a measurement station (upper limit distance R) and prediction accuracy.
- upper limit distance R a measurement station
- FIG. 18 shows the change in the number of data items (number of data items when there is no missing data: 68,261 items (person-month)) associated with changes in the upper limit distance R for each environmental factor. As shown in FIG. 18, the larger the value of the upper limit distance R, the fewer the number of missing data items for each environmental factor.
- Figure 19 shows the change in prediction accuracy of acute exacerbations and deaths with changes in the upper distance limit R. Whether training data, validation data, or test data is used, prediction accuracy is highest when the upper distance limit R is 50 km or 100 km. If the upper distance limit R is too large, there will be less data loss, but the deviation from the actual environment to which the patient was exposed will increase, and prediction accuracy will decrease. From the results shown in Figure 19, it can be said that it is preferable for the upper distance limit R to be 20 km or more and 100 km or less.
- the information processing device 100 of this embodiment is a device for predicting the prognosis of a target patient suffering from a disease, and includes a model acquisition unit 113, a target patient information acquisition unit 114, and a prognosis prediction execution unit 119.
- the model acquisition unit 113 receives time-series information indicating the chronological changes of disease factors and acquires a prognosis prediction model MO, which is a machine learning model that outputs the prognosis of the disease.
- the target patient information acquisition unit 114 acquires time-series information about the target patient.
- the prognosis prediction execution unit 119 uses the time-series information about the target patient and the prognosis prediction model MO to execute a prediction of the prognosis of the target patient, and outputs a prognosis prediction result.
- the information processing device 100 of this embodiment can predict the prognosis of a disease for each individual patient based on time-series information that indicates the chronological changes in disease factors. Therefore, the information processing device 100 of this embodiment can predict the prognosis of a disease with high accuracy.
- disease factors include environmental factors. Therefore, according to the information processing device 100 of this embodiment, by using information showing the time-series changes in environmental factors that can have a significant impact on the prognosis of the disease, it is possible to predict the prognosis of the disease with higher accuracy.
- disease factors include environmental factors of the target patient's place of residence. Therefore, according to the information processing device 100 of this embodiment, by using information that indicates the chronological changes in factors related to the environment to which the target patient is primarily exposed, it is possible to predict the prognosis of the disease with even greater accuracy than when, for example, environmental factors of the location of the hospital to which the target patient is treated are used.
- the environmental factors include at least one of the presence of environmental pollutants and meteorological parameters. Therefore, according to the information processing device 100 of this embodiment, the prognosis of a disease can be predicted with even higher accuracy by using information indicating the time-series changes in environmental factors that can have a significant impact on the prognosis of the disease.
- the time series information includes information indicating the amount of change in environmental factors. Therefore, according to the information processing device 100 of this embodiment, by using information indicating the amount of change in environmental factors that can have a significant impact on the prognosis of a disease, it is possible to predict the prognosis of a disease with even higher accuracy.
- the time series information includes information that identifies the values of disease factors at regular time intervals. Therefore, according to the information processing device 100 of this embodiment, it is possible to predict the prognosis of a disease with even higher accuracy compared to the case where information that irregularly identifies the values of disease factors is used.
- the time series information includes information that identifies the values of disease factors for at least each month. Therefore, according to the information processing device 100 of this embodiment, by using time series information that shows monthly changes in disease factors, it is possible to predict the prognosis of the disease with even higher accuracy.
- the prognosis of a disease includes the occurrence of multiple events that are in a competing risk relationship
- the prognosis prediction model MO is a model trained using a machine learning algorithm that corresponds to multiple events that are in a competing risk relationship. Therefore, according to the information processing device 100 of this embodiment, it is possible to predict the occurrence of multiple events that are in a competing risk relationship with high accuracy.
- the prognosis prediction model MO is a model that outputs an index value representing the possibility of an event occurring for multiple events that are in a competing risk relationship as the prognosis of a disease. Therefore, according to the information processing device 100 of this embodiment, it is possible to predict with high accuracy the occurrence of multiple events that are in a competing risk relationship.
- the multiple events that are competing risks include acute exacerbation and death. Therefore, according to the information processing device 100 of this embodiment, it is possible to predict with high accuracy the occurrence of each of the competing risks, acute exacerbation and death.
- the disease is a disease of the respiratory system or the circulatory system. Therefore, according to the information processing device 100 of this embodiment, it is possible to predict the prognosis of a disease of the respiratory system or the circulatory system with high accuracy by using time-series information that indicates the chronological changes in the factors of the disease of the respiratory system or the circulatory system.
- the prognosis prediction execution unit 119 may use virtual information in which part of the time-series information about the target patient has been changed and the prognosis prediction model MO to execute a virtual prognosis prediction for the target patient, predict the effect of an intervention corresponding to the above changes based on the actual prognosis prediction result and the virtual prognosis prediction result, and output the prediction result of the effect of the intervention.
- a decision can be made as to whether or not to actually perform the intervention based on the output prediction result of the effect of the intervention.
- the configuration of the information processing device 100 in the above embodiment is merely an example and can be modified in various ways.
- the contents of the prognosis prediction model acquisition process and the prognosis prediction process in the above embodiment are merely an example and can be modified in various ways.
- the information processing device 100 acquires the prognosis prediction model MO by creating the prognosis prediction model MO, but the information processing device 100 may acquire a prognosis prediction model MO generated by another device.
- the disease factors (feature values) and machine learning algorithms used to create the prognosis prediction model MO in the above embodiment are merely examples and can be modified in various ways.
- feature values other than those exemplified in the above embodiment may be used as feature values used to create the prognosis prediction model MO, or some of the feature values exemplified in the above embodiment may not be used.
- algorithms other than Dynamic-DeepFit and LSTM may be used as machine learning algorithms used to create the prognosis prediction model MO.
- information processing for predicting the prognosis of a patient suffering from interstitial pneumonia is exemplified, but the technology disclosed in this specification is not limited to interstitial pneumonia and can be similarly applied to predicting the prognosis of a patient suffering from a disease. Since the prognosis of a respiratory or circulatory system disease is thought to be significantly influenced by environmental factors, it is preferable that the disease factors used to predict the prognosis of a respiratory or circulatory system disease include environmental factors.
- Information processing device 110 Control unit 111: Raw information acquisition unit 112: Learning data acquisition unit 113: Model acquisition unit 114: Target patient information acquisition unit 119: Prognosis prediction execution unit 120: Memory unit 130: Display unit 140: Operation input unit 150: Interface unit 190: Bus CP: Prognosis prediction program LD: Learning data MO: Prognosis prediction model RD: Prognosis prediction result data
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
疾病に罹患した対象患者の予後を予測するための情報処理装置は、モデル取得部と、対象患者情報取得部と、予後予測実行部とを備える。モデル取得部は、疾病の因子の時系列的な変遷を示す時系列情報を入力とし疾病の予後を出力とする機械学習モデルである予後予測モデルを取得する。対象患者情報取得部は、対象患者についての時系列情報を取得する。予後予測実行部は、対象患者についての時系列情報と予後予測モデルとを用いて、対象患者の予後の予測を実行し、予後の予測結果を出力する。
Description
本明細書に開示される技術は、疾病に罹患した患者の予後を予測するための情報処理に関する。
間質性肺炎は、慢性進行性の線維性肺疾患の総称である。間質性肺炎の急性増悪は、1ヶ月以内に急激な病状の悪化を来す病態であり、院内死亡率約50%と極めて予後不良な病態である。間質性肺炎の急性増悪を高精度に予測することができれば、例えば、抗線維化薬により発症を抑制したり、早期診断・治療介入により予後を改善したりすることが可能である。
従来、間質性肺炎の一分類である特発性肺線維症の患者における急性増悪リスクの予測のための臨床モデルが提案されている(例えば、非特許文献1参照)。
キ ウー(Qi Wu)、外5名、「特発性肺線維症患者における急性増悪リスクの予測のための臨床モデル(A Clinical Model for the Prediction of Acute Exacerbation Risk in Patients with Idiopathic Pulmonary Fibrosis)」、バイオメッド・リサーチ・インターナショナル(BioMed Research International)、ヒンダウィ(Hindawi)、2020年号、p.1-6
間質性肺炎の病状進行は患者毎に多様であり、患者の状態は経時的に変化する。上記従来の予測モデルでは、患者の状態を含む疾病の因子の時系列的な変遷を考慮しておらず、その結果、予測精度が低いという課題がある。なお、このような課題は、間質性肺炎の急性増悪の予測に限らず、疾病の予後予測一般に共通する課題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される情報処理装置は、疾病に罹患した対象患者の予後を予測するための装置であって、モデル取得部と、対象患者情報取得部と、予後予測実行部とを備える。モデル取得部は、疾病の因子の時系列的な変遷を示す時系列情報を入力とし疾病の予後を出力とする機械学習モデルである予後予測モデルを取得する。対象患者情報取得部は、対象患者についての時系列情報を取得する。予後予測実行部は、対象患者についての時系列情報と予後予測モデルとを用いて、対象患者の予後の予測を実行し、予後の予測結果を出力する。
本情報処理装置によれば、個々の患者毎に、疾病の因子の時系列的な変遷を示す時系列情報に基づき疾病の予後を予測することができ、疾病の予後を高精度に予測することができる。
(2)上記情報処理装置において、前記疾病の因子は、環境因子を含む構成としてもよい。本構成を採用すれば、疾病の予後に大きな影響を与え得る環境因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をより高精度に予測することができる。
(3)上記情報処理装置において、前記疾病の因子は、前記対象患者の居住地の環境因子を含む構成としてもよい。本構成を採用すれば、例えば対象患者が通院する病院の立地点の環境因子を用いる場合と比較して、対象患者が主として晒される環境に関する因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
(4)上記情報処理装置において、前記対象患者の居住地の環境因子は、前記対象患者の現住所からの直線距離が200km以内の地点の環境因子であるとしてもよい。本構成を採用すれば、対象患者の現住所から比較的近い地点の環境因子を用いることにより、対象患者が主として晒される環境に関する因子の時系列的な変遷をより適格に示す情報を用いることができ、疾病の予後を極めて高精度に予測することができる。
(5)上記情報処理装置において、前記環境因子は、環境汚染物質の存在状況と、気象パラメータと、の少なくとも一方を含む構成としてもよい。本構成を採用すれば、疾病の予後に大きな影響を与え得る環境因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
(6)上記情報処理装置において、前記時系列情報は、前記環境因子の変化量を示す情報を含む構成としてもよい。本構成を採用すれば、疾病の予後に大きな影響を与え得る環境因子の変化量を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
(7)上記情報処理装置において、前記時系列情報は、一定の時間的間隔で前記疾病の因子の値を特定する情報である構成としてもよい。本構成を採用すれば、不定期に疾病の因子の値を特定する情報を用いる場合と比較して、疾病の予後をさらに高精度に予測することができる。
(8)上記情報処理装置において、前記時系列情報は、少なくとも月毎の前記疾病の因子の値を特定する情報を含む構成としてもよい。本構成を採用すれば、疾病の因子について月毎の変遷を示す時系列情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
(9)上記情報処理装置において、前記疾病の予後は、競合リスクの関係にある複数のイベントの発生を含み、前記予後予測モデルは、前記競合リスクの関係にある複数のイベントに対応した機械学習アルゴリズムを用いて学習されたモデルである構成としてもよい。本構成を採用すれば、競合リスクの関係にある複数のイベントの発生を高精度に予測することができる。
(10)上記情報処理装置において、前記予後予測モデルは、前記疾病の予後として、前記競合リスクの関係にある複数のイベントについて、イベントが発生する可能性を表す指標値を出力するモデルである構成としてもよい。本構成を採用すれば、競合リスクの関係にある複数のイベントの発生を高精度に予測することができる。
(11)上記情報処理装置において、前記競合リスクの関係にある複数のイベントは、急性増悪と、死亡とを含む構成としてもよい。本構成を採用すれば、競合リスクの関係にある急性増悪および死亡のそれぞれの発生を高精度に予測することができる。
(12)上記情報処理装置において、前記疾病は、呼吸器系または循環器系の疾病である構成としてもよい。本構成を採用すれば、呼吸器系または循環器系の疾病の因子の時系列的な変遷を示す時系列情報を用いて、呼吸器系または循環器系の疾病の予後を高精度に予測することができる。
(13)上記情報処理装置において、前記予後予測実行部は、前記対象患者についての前記時系列情報の一部を変更した仮想情報と、前記予後予測モデルとを用いて、前記対象患者の仮想的な予後の予測を実行し、実際の予後の予測結果と仮想的な予後の予測結果とに基づき、前記変更に対応する介入の効果を予測し、前記介入の効果の予測結果を出力する構成としてもよい。本構成を採用すれば、出力された介入の効果の予測結果に基づき、実際に介入を行うか否かの判断を行うことができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、情報処理装置、情報処理方法、それらの方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
A.実施形態:
A-1.予後予測モデルMOの概要:
はじめに、本実施形態における予後予測モデルMOの概要を説明する。図1は、本実施形態における予後予測モデルMOを概念的に示す説明図である。予後予測モデルMOは、疾病に罹患した患者の予後を予測するためのモデルである。予後予測モデルMOは、疾病の因子(特徴量)の時系列的な変遷を示す時系列情報を入力とし、疾病の予後を出力とする機械学習モデルである。なお、本明細書において、機械学習とは、コンピュータを用いて大量のデータに基づき(すなわち、データ駆動型で)学習を行うことにより、ルールやパターンを見出す技術や手法の総称を意味し、深層学習を含む。
A-1.予後予測モデルMOの概要:
はじめに、本実施形態における予後予測モデルMOの概要を説明する。図1は、本実施形態における予後予測モデルMOを概念的に示す説明図である。予後予測モデルMOは、疾病に罹患した患者の予後を予測するためのモデルである。予後予測モデルMOは、疾病の因子(特徴量)の時系列的な変遷を示す時系列情報を入力とし、疾病の予後を出力とする機械学習モデルである。なお、本明細書において、機械学習とは、コンピュータを用いて大量のデータに基づき(すなわち、データ駆動型で)学習を行うことにより、ルールやパターンを見出す技術や手法の総称を意味し、深層学習を含む。
本実施形態では、疾病の具体例として間質性肺炎を用いる。間質性肺炎のイベントとしては、急性増悪および死亡が挙げられる。死亡イベントが発生した後に急性増悪イベントは発生しないため、両者は競合リスクの関係にあると言える。
間質性肺炎の因子(特徴量)としては、例えば、患者背景(喫煙の有無、BMI等)、検査所見(血液検査、胸部CT画像等)、環境因子(NO2、PM2.5等の環境汚染物質、気温等の気象パラメータ等)、治療情報(抗線維化剤の投与等)が挙げられる。これらの因子の時系列的な変遷を示す時系列情報は、例えば、ある期間(例えば、初回診断時からMヶ月目までの期間)において、一定の時間的間隔で(例えば、月毎に)これらの因子の値や変化量を特定する情報である。
予後予測モデルMOによる予後予測としては、例えば、各イベントが発生する可能性を表す指標値の算出が行われる。図1に示す例では、予後予測として、あるタイミング(例えば、M+Nヶ月目)における急性増悪および死亡の発生確率が算出されている。ただし、他の態様により予後予測が実行されてもよい。例えば、予後予測として、あるタイミングにおける急性増悪および死亡の発生確率に基づき、患者の予測状態(生存、急性増悪、死亡)の分類が行われてもよい。
本実施形態の予後予測モデルMOを用いることにより、個々の患者について、疾病の因子の時系列的な変遷を示す時系列情報に基づき、疾病の予後を精度良く予測することができる。予後予測結果は、種々の用途に利用することができる。例えば、急性増悪の発症の可能性が高いと予測された患者に対し、抗線維化薬を投与して発症を抑制したり、早期診断・治療介入を行って予後を改善させたりすることができる。
また、図2に示すように、予後予測結果に基づき介入の効果を予測することができる。図2の上段には、実際の時系列情報に基づく急性増悪および死亡についての発生確率の予測結果の一例を示している。また、図2の下段には、想定される介入(例えば、禁煙、薬剤、リハビリ、栄養療法等)に対応させて時系列情報の一部を変更した仮想情報に基づく急性増悪および死亡についての発生確率の仮想的な予測結果の一例を示している。実際の時系列情報に基づく予後予測結果と仮想情報に基づく予後予測結果とに基づき、上記変更に対応する介入の効果(例えば、急性増悪のリスクがXX%減少、死亡のリスクがYY%減少)を予測することができる。出力された介入の効果の予測結果に基づき、実際に介入を行うか否かの判断を行うことができる。
A-2.情報処理装置100の構成:
次に、予後予測モデルMOの作成や予後予測モデルMOを用いた予後予測を実行するための情報処理装置100の構成を説明する。図3は、情報処理装置100の概略構成を示す説明図である。情報処理装置100は、コンピュータ(PC、サーバ等)により構成されている。
次に、予後予測モデルMOの作成や予後予測モデルMOを用いた予後予測を実行するための情報処理装置100の構成を説明する。図3は、情報処理装置100の概略構成を示す説明図である。情報処理装置100は、コンピュータ(PC、サーバ等)により構成されている。
情報処理装置100は、制御部110と、記憶部120と、表示部130と、操作入力部140と、インターフェース部150とを備える。これらの各部は、バス190を介して互いに通信可能に接続されている。なお、情報処理装置100が出力手段としてのスピーカを備えていてもよい。
情報処理装置100の表示部130は、例えば液晶ディスプレイ等により構成され、各種の画像や情報を表示する。操作入力部140は、例えばキーボードやマウス、ボタン、マイク、トラックパッド等により構成され、管理者の操作や指示を受け付ける。なお、表示部130がタッチパネルを備えることにより、操作入力部140として機能するとしてもよい。インターフェース部150は、例えばLANインターフェースやUSBインターフェース等により構成され、有線または無線により他の装置との通信を行う。
情報処理装置100の記憶部120は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、各種のプログラムやデータを記憶したり、各種のプログラムを実行する際の作業領域やデータの一時的な記憶領域として利用されたりする。例えば、記憶部120には、後述する予後予測モデル取得処理や予後予測処理を実行するためのコンピュータプログラムである予後予測プログラムCPが格納されている。予後予測プログラムCPは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体(不図示)に格納された状態で提供され、あるいは、インターフェース部150を介して外部装置(ネットワーク上のサーバや他の端末装置)から取得可能な状態で提供され、情報処理装置100上で動作可能な状態で記憶部120に格納される。
また、情報処理装置100の記憶部120には、予め、または、後述する予後予測モデル取得処理や予後予測処理の実行中に、学習用データLDと、予後予測モデルMOと、対象患者情報Ipと、予後予測結果データRDとが格納される。これらの情報やデータの内容については、後述する予後予測モデル取得処理および予後予測処理の説明に合わせて説明する。
情報処理装置100の制御部110は、例えばCPU等により構成され、記憶部120から読み出したコンピュータプログラムを実行することにより、情報処理装置100の動作を制御する。例えば、制御部110は、記憶部120から予後予測プログラムCPを読み出して実行することにより、後述の予後予測モデル取得処理および予後予測処理を実行するための原情報取得部111と、学習用データ取得部112と、モデル取得部113と、対象患者情報取得部114と、予後予測実行部119として機能する。これら各部の機能については、後述の予後予測モデル取得処理および予後予測処理の説明に合わせて説明する。
A-3.予後予測モデル取得処理:
次に、本実施形態の情報処理装置100により実行される予後予測モデル取得処理について説明する。図4は、本実施形態における予後予測モデル取得処理を示すフローチャートである。予後予測モデル取得処理は、疾病(間質性肺炎)に罹患した患者の予後を予測するための機械学習モデルである予後予測モデルMOを取得する処理である。本実施形態では、情報処理装置100は、自ら所定の機械学習によって予後予測モデルMOを作成することにより、予後予測モデルMOを取得する。予後予測モデル取得処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
次に、本実施形態の情報処理装置100により実行される予後予測モデル取得処理について説明する。図4は、本実施形態における予後予測モデル取得処理を示すフローチャートである。予後予測モデル取得処理は、疾病(間質性肺炎)に罹患した患者の予後を予測するための機械学習モデルである予後予測モデルMOを取得する処理である。本実施形態では、情報処理装置100は、自ら所定の機械学習によって予後予測モデルMOを作成することにより、予後予測モデルMOを取得する。予後予測モデル取得処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
はじめに、情報処理装置100の原情報取得部111(図3)が、予後予測モデルMOの作成に用いられる情報(以下、「原情報Io」という。)を取得する(S110)。原情報Ioは、予後予測モデルMOの訓練、検証、テストに用いられる学習用データLDの母体となる情報である。原情報Ioは、具体的には、間質性肺炎に罹患した複数の患者について、間質性肺炎の因子(特徴量)の時系列的な変遷を示す時系列情報と、予後を示す情報とが対応付けられた情報である。原情報Ioは、インターフェース部150を介してあるいは操作入力部140を介して取得される。
図5は、間質性肺炎の因子(特徴量)の具体例を示す説明図である。本実施形態では、間質性肺炎の因子として、患者背景、検査所見、環境因子、治療情報という4種類に分類される44個の因子を用いている。
患者背景は、例えば以下の12個の因子を含む。患者背景の情報は、例えば問診や検査等により得られる。
・年齢、BMI、GAPスコア、現喫煙者、元喫煙者、IPF、PPFE、SSc、膠原病、性別、CCI≧3、mMRC≧2
・年齢、BMI、GAPスコア、現喫煙者、元喫煙者、IPF、PPFE、SSc、膠原病、性別、CCI≧3、mMRC≧2
検査所見は、例えば以下の18個の因子を含む。検査所見の情報は、例えば血液検査や胸部CT画像等により得られる。
・LDH、BNP、WBC、好中球、リンパ球、好酸球、アルブミン、KL-6、SP-D、FVC(%pred)、FEV1(%pred)、DLco(%pred)、6分間歩行距離、PCO2、PO2、SpO2最低値、logCRP、CT画像UIPパターン
・LDH、BNP、WBC、好中球、リンパ球、好酸球、アルブミン、KL-6、SP-D、FVC(%pred)、FEV1(%pred)、DLco(%pred)、6分間歩行距離、PCO2、PO2、SpO2最低値、logCRP、CT画像UIPパターン
環境因子は、患者の居住地の環境に関する因子であり、例えば環境汚染物質の存在状況(例えば濃度)と、気象パラメータとを含む。より具体的には、環境因子は、例えば以下の10個の因子を含む。
・NO2、NO、SO2、PM2.5、SPM、降雨量、気温、季節(秋、夏、冬)
・NO2、NO、SO2、PM2.5、SPM、降雨量、気温、季節(秋、夏、冬)
環境因子としては、例えば、一定期間毎の代表値(例えば、月平均値、日平均値)、一定期間毎の変化量(例えば、月平均値の変化量、日平均値の変化量)、および/または、一定期間毎の基準値からの超過数(例えば、月毎の環境基準値超過日数、日毎の環境基準値超過時間)を用いることができる。
なお、患者の居住地とは、患者の現住所が属する地域であってもよい。この場合には、環境因子のうちの環境汚染物質に関する情報は、例えば、該地域に位置する測定局の測定データを参照することにより得られる。具体的には、患者の現住所からの直線距離が最も近い測定局の測定データが参照される。患者の現住所から所定の上限距離(例えば、100km)の範囲に測定局が存在しない場合には、測定局の測定データを参照した環境因子についてデータ欠損とする。測定局のデータは、例えば国立環境研究所のウェブサイトから取得することができる。また、環境因子のうちの気象パラメータ(降水量、気温、季節)に関する情報は、例えば気象庁のウェブサイトから取得することができる。
また、患者の居住地とは、患者が生活する室内(例えば、クリーンルーム内)であってもよい。この場合には、環境因子の少なくとも一部の情報は、例えば、該室内に設置されたセンサー、または患者に取り付けられたセンサーによる測定データを参照することにより得られる。
なお、環境因子の情報は、人工衛星による測定値や気象シミュレーションによる予測値を参照して取得してもよい。
治療情報は、例えば以下の4個の因子を含む。治療情報は、例えば治療実績の記録等により得られる。
・プレドニゾロン、カルシニューリン阻害剤、免疫抑制剤、抗線維化剤
・プレドニゾロン、カルシニューリン阻害剤、免疫抑制剤、抗線維化剤
次に、情報処理装置100の学習用データ取得部112(図3)が、原情報Ioに対する前処理を行うことにより、学習用データLDを取得する(図4のS120)。前処理としては、例えば、補間、外れ値除外、データ拡張等が実行される。
図6は、原情報Ioに対する補間処理を概念的に示す説明図である。図6の上段に示すように、補間処理前の状態では、各患者に対する各検査(例えば、肺機能検査、血液検査、胸部CT画像)の実施時期がバラバラであることに起因して、各検査により得られる因子のデータの時期がバラバラとなっている。そのため、本実施形態では、すべての因子について一定の時間的間隔のデータが得られるように、補間処理を実施している。検査により得られる因子以外についても同様である。
なお、補間処理の際には、各因子の特性に合わせた補間処理を選択して実行することが好ましい。例えば、互いに類似した検査項目により得られる因子については、類似した検査項目で作成した群による重回帰分析を用いて補間を行うとよい。また、前後の値からの推定可能性が高い因子については、線形補間(内挿)や最近傍補間(外挿)を用いて補間を行うとよい。また、短期間で急激な変動を示す因子(例えば、CRP)については、最近傍補間(内挿、外挿)を用いて補間を行うとよい。また、カテゴリー変数については、最近傍補間(内挿、外挿)を用いて補間を行うとよい。また、時間とデータとの関連性が低い因子(例えば、環境汚染物質)については、補間を行わずにデータ欠損とするとよい。このような補間処理を行うことにより、各因子の特性を損なうことなく、各因子について一定の時間的間隔のデータが得られる。
図7は、前処理を経て得られた学習用データLDの一例を示す説明図である。学習用データLDは、各因子(特徴量)の時系列的な変遷を示す時系列情報(図7の例では月毎のデータ)と、各タイミングにおける予後を示す情報(正解ラベル)とが対応付けられたデータである。図7には、初回診断時からtヶ月目に急性増悪を発症した患者のデータを示している。t-sヶ月以内の急性増悪発症を予測する場合、この患者のデータでは、1ヶ月目から(s-1)ヶ月目までは、「生存」ラベルが「1」で、残りのラベルが「0」とされており、sヶ月目以降は、「急性増悪」ラベルが「1」で、残りのラベルが「0」とされている。なお、tヶ月目より後は、ゼロパディングとされている。
次に、情報処理装置100のモデル取得部113(図3)が、学習用データLDを用いた機械学習により予後予測モデルMOを作成する(図4のS130)。予後予測モデルMOの作成のための機械学習には、公知の種々の機械学習アルゴリズムを利用可能である。例えば、予後予測モデルMOの作成のために、LSTM(Long Short Term Memory)が利用されてもよい。図8は、LSTMを用いたモデルを概念的に示す説明図である。LSTMは、時系列情報を取り扱うことが可能なRNN(Recurrent Neural Network)を、勾配消失問題を解消するために改良したものである。図8に示すように、LSTMを利用した予後予測モデルMOの作成では、tヶ月目の特徴量Xtを入力したときの出力値ytと正解ラベルYtとから算出される損失(Loss)が小さくなるようにモデルを更新していく。
あるいは、予後予測モデルMOの作成のために、Dynamic-DeepHitモデルが利用されてもよい。Dynamic-DeepHitモデルは、競合リスクの関係にある複数のイベントに対応した公知の機械学習アルゴリズムである。上述したように、間質性肺炎のイベントである急性増悪および死亡は競合リスクの関係にあるため、競合リスクの関係にある複数のイベントに対応した機械学習アルゴリズムを利用すれば、予測精度の高い予後予測モデルMOを作成することができる。なお、Dynamic-DeepHitモデルの詳細は、例えば以下の文献に記載されている。
・リー チャンヒ(Lee Changhee)、外3名、「DeepHit:競合リスクを伴う生存分析への深層学習アプローチ(DeepHit:A Deep Learning Approach to Survival Analysis with Competing Risks)」、第31回AAAI人工知能会議予稿集、アメリカ人工知能学会(Association for the Advancement of Artificial Intelligence)、2018年、p.2314-2321
・リー チャンヒ(Lee Changhee)、外3名、「DeepHit:競合リスクを伴う生存分析への深層学習アプローチ(DeepHit:A Deep Learning Approach to Survival Analysis with Competing Risks)」、第31回AAAI人工知能会議予稿集、アメリカ人工知能学会(Association for the Advancement of Artificial Intelligence)、2018年、p.2314-2321
機械学習により作成された予後予測モデルMOは、情報処理装置100の記憶部120に格納される。以上により、予後予測モデルMOの取得処理(図4)が完了する。なお、予後予測モデルMOの作成の際には、例えば、学習用データLDのうちの一部がモデルのパラメータ(重み等)の更新のための訓練データとして利用され、学習用データLDのうちの他の一部がハイパーパラメータの設定のための検証データとして利用され、学習用データLDのうちの他の一部がモデルの汎化性能を確認するためのテストデータとして利用される。
A-4.予後予測処理:
次に、本実施形態の情報処理装置100により実行される予後予測処理について説明する。図9は、本実施形態における予後予測処理を示すフローチャートである。予後予測処理は、予後予測モデルMOを用いて、間質性肺炎に罹患した患者の予後予測(急性増悪および死亡のリスクの予測)を行う処理である。予後予測処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
次に、本実施形態の情報処理装置100により実行される予後予測処理について説明する。図9は、本実施形態における予後予測処理を示すフローチャートである。予後予測処理は、予後予測モデルMOを用いて、間質性肺炎に罹患した患者の予後予測(急性増悪および死亡のリスクの予測)を行う処理である。予後予測処理は、ユーザが情報処理装置100の操作入力部140を操作して開始指示を入力したことに応じて開始される。
はじめに情報処理装置100の対象患者情報取得部114(図3)が、対象患者情報Ipを取得する(S310)。対象患者情報Ipは、予後予測処理の対象の患者についての上述した時系列情報である。対象患者情報Ipは、インターフェース部150を介してあるいは操作入力部140を介して取得され、記憶部120に格納される。
次に、情報処理装置100の予後予測実行部119(図3)が、対象患者情報Ipと予後予測モデルMOとを用いて、対象患者の予後予測を実行する(S320)。すなわち、予後予測実行部119は、予後予測モデルMOに対して対象患者情報Ipを入力することにより、予後予測モデルMOから出力される予後予測結果を取得する。予後予測実行部119は、予後予測結果を示す情報である予後予測結果データRDを生成し、情報処理装置100の記憶部120に格納する。
次に、予後予測実行部119は、予後予測結果データRDに基づき、予後予測結果を出力する(S330)。例えば、予後予測実行部119は、予後予測結果を表示部130に表示させる。以上により、予後予測処理が完了する。
例えば医師等は、表示された予後予測結果を参照し、急性増悪の発症の可能性が高いと予測された患者に対し、抗線維化薬を投与して発症を抑制したり、早期診断・治療介入を行って予後を改善させたりすることができる。
また、図2に示すように、予後予測実行部119は、対象患者についての時系列情報の一部を変更した仮想情報と、予後予測モデルMOとを用いて、対象患者の仮想的な予後の予測を実行し、実際の予後の予測結果と仮想的な予後の予測結果とに基づき、上記変更に対応する介入の効果を予測し、該介入の効果の予測結果を出力するとしてもよい。このようにすれば、出力された介入の効果の予測結果に基づき、実際に介入を行うか否かの判断を行うことができる。
A-5.実施例:
上述した予後予測モデルMOの実施例について、以下説明する。本実施例の予後予測モデルMOの作成は、2008年から2015年までに2つの病院(公立陶生病院および浜松医科大学)において新規診断された間質性肺炎患者を対象とした多施設・後方視的研究により行った。公立陶生病院の839件の症例のうち、80%をモデル構築のための訓練データとして用い、残りの20%を内的妥当性検証のための検証データとして用いた。また、浜松医科大学の336件の症例を、外的妥当性(汎化性能)検証のためのテストデータとして用いた。
上述した予後予測モデルMOの実施例について、以下説明する。本実施例の予後予測モデルMOの作成は、2008年から2015年までに2つの病院(公立陶生病院および浜松医科大学)において新規診断された間質性肺炎患者を対象とした多施設・後方視的研究により行った。公立陶生病院の839件の症例のうち、80%をモデル構築のための訓練データとして用い、残りの20%を内的妥当性検証のための検証データとして用いた。また、浜松医科大学の336件の症例を、外的妥当性(汎化性能)検証のためのテストデータとして用いた。
図10は、実施例の予後予測モデルMOの予測精度を示す説明図である。図10には、上述したDynamic-DeepHitモデルを利用して作成した予後予測モデルMOについて、検証データを用いた内的妥当性検証の結果(C-indexの値)、および、テストデータを用いた外的妥当性検証の結果(同)を示している。なお、図10の例では、初回診断時から12ヶ月後の時点を予測時点としたときの、Tヶ月後(T=6,12,24,36)の予後予測結果の精度を示している。図10に示すように、急性増悪および死亡の両方について0.85以上の高いC-indexの値を得ており、実施例の予後予測モデルMOは概ね高い予測精度を実現できていると言える。なお、C-indexは、値が大きいほど(最大値:1)モデルの性能が良いことを示す予測精度の指標である。
図11および図12は、実施例の予後予測モデルMOの予測精度を示す他の説明図である。図11および図12には、環境因子として月濃度または変化量を用いた場合のそれぞれにおける、内的妥当性検証の結果(C-indexの値)、および、外的妥当性検証の結果(同)を示している。図11は、初回診断時から12ヶ月後の時点までのデータを用いた実施例であり、図12は、初回診断時から24ヶ月後の時点までのデータを用いた実施例である。図11および図12に示すように、環境因子として変化量を用いた実施例では、環境因子として月濃度を用いた実施例と同等以上の高い予測精度を実現できている。
図13は、実施例の予後予測モデルMOの予測精度を示す説明図である。図13には、Dynamic-DeepHitモデルを利用して作成した、急性増悪のみを予測するモデル(急性増悪モデル)による急性増悪の予測の外的妥当性検証の結果(C-indexの値)、死亡のみを予測するモデル(死亡モデル)による死亡の予測の外的妥当性検証の結果(同)、競合リスクの関係にある急性増悪および死亡の両方を予測するモデル(競合モデル)による急性増悪および死亡の予測の外的妥当性検証の結果(同)を示している。図13に示すように、競合リスクを考慮したモデルによる予測精度は、急性増悪のみ、または、死亡のみを考慮したモデルによる予測精度と同程度に高かった。そのため、競合リスクを考慮したモデルによっても、高い予測精度を実現できると言える。
図14は、実施例の予後予測モデルMOによる予後予測結果の一例を示す説明図である。図14には、Dynamic-DeepHitモデルを利用して作成した予後予測モデルMOを利用して、初回診断時から24ヶ月目までのテストデータを用いて各イベントの累積発生確率を予測した結果を示している。図14のA欄は、初回診断時から38ヶ月目に急性増悪を発症したテストデータを用いた例を示しており、図14のB欄は、初回診断時から54ヶ月目に死亡したテストデータを用いた例を示しており、図14のC欄は、初回診断時から81ヶ月目に生存打ち切りとなったテストデータを用いた例を示している。図14のB欄に示す予測結果では、図14のA欄に示す例と比較して、死亡の確率が一貫して高くなっている。また、図14のC欄に示す予測結果では、図14のA欄およびB欄に示す例と比較して、急性増悪および死亡の確率が共に一貫して低くなっている。このように、実施例の予後予測モデルMOは、概ね高い予測精度を実現できていると言える。
図15は、他の実施例の予後予測モデルMOの予測精度を示す説明図である。図15には、図8に示すLSTMを利用して作成した予後予測モデルMOについて、検証データを用いた内的妥当性検証の結果(Balanced-AccuracyおよびF1スコアの値)を示している。後述する交差エントロピーの重みの調整をしていない例(図15の「k=0」の例)では、Balanced-AccuracyおよびF1スコアの値が共に0.6程度であり、それなりの予測精度を実現できている。
ここで、図7に示すように、予後予測モデルMOの作成に用いられる学習用データLDにおいては、正解ラベルが「生存」であるデータの割合が非常に高い。すなわち、学習用データLDは、不均衡なデータである。このようなデータの不均衡性の影響を補正するため、下記の式(1)に従い交差エントロピーの重みWjを種々変更して、モデルの予測精度を確認した。
Wj=(N/(M×Nj))k ・・・(1)
ただし、
・Wj:ラベル=jにおける重み
・N:総ラベル数
・M:クラス数
・Nj:ラベル=jの個数
・k:ハイパーパラメータ
Wj=(N/(M×Nj))k ・・・(1)
ただし、
・Wj:ラベル=jにおける重み
・N:総ラベル数
・M:クラス数
・Nj:ラベル=jの個数
・k:ハイパーパラメータ
しかしながら、図15に示すように、ハイパーパラメータkの値を調整して各ラベルの重みWjを変更しても、予測精度は向上しなかった。その原因としては、上述したデータ不均衡の問題に加えて、例えば「急性増悪」の予測確率が互いに異なるケースであっても同じ「急性増悪」に分類され得るという「予測イベント」の定義の問題や、急性増悪は致命的な病態であるというイベント間の類似性の問題が考えられる。以上のことから、間質性肺炎の急性増悪および/または死亡の予測のための予後予測モデルMOの作成には、上述した競合リスクの関係にある複数のイベントに対応した機械学習アルゴリズム(例えば、Dynamic-DeepHit)を利用することが好ましいと言える。
図16は、実施例における疾病の各因子の重要度の一例を示す説明図である。図16には、各因子(特徴量)が取り得る値を変化させたときの急性増悪のリスクの変化を調べ、リスクの変化が大きいほど重要度(寄与度)が高くなるとして決定した各因子(上位20個)の重要度を示している。図16に示すように、いくつかの環境因子(SPM、NO2、PM2.5)は、肺機能に関する因子(FVC、DLco)や重症度に関する因子(GAPスコア)より重要度が高くなっている。そのため、間質性肺炎の予後予測には、環境因子を用いることが好ましいと言える。
図17は、他の実施例における疾病の各因子の重要度の一例を示す説明図である。図17には、図16と同様に各因子の重要度を示しているが、図17の例では、環境因子として、月平均値に加えて、前月からの変化量(図17で環境因子の名称の末尾に「diff」を付したもの)を採用している。図17に示すように、いくつかの環境因子(PM2.5、NO、Ox)については、前月からの変化量の重要度が高くなっている。そのため、間質性肺炎の予後予測に用いる環境因子として、一定期間毎の代表値に加えて、あるいは、一定期間毎の代表値に代えて、一定期間毎の変化量を用いることが好ましいと言える。なお、図17に示す結果から、環境因子毎に、一定期間毎の代表値が重要であるか、それとも変化量が重要であるかが異なると言える。例えば、SPMは一定期間毎の代表値の重要度が高く、NOは変化量の重要度が高く、PM2.5およびOxは両者の重要度が高い。
図18および図19は、患者の現住所から測定局までの直線距離の上限値(上限距離R)と予測精度との関係を示す説明図である。上述したように、本実施例では、患者の現住所から所定の上限距離Rの範囲に測定局が存在しない場合には、測定局の測定データを参照した環境因子についてデータ欠損としている。図18には、各環境因子について、上限距離Rの変化に伴うデータ数(データ欠損が無い場合のデータ数:68,261件(人・月))の変化を示している。図18に示すように、上限距離Rの値が大きいほど、各環境因子のデータ欠損数が少なくなる。
図19には、上限距離Rの変化に伴う急性増悪および死亡の予測精度の変化を示している。訓練データ、検証データ、テストデータのいずれを用いた場合であっても、上限距離Rが50kmまたは100kmの場合に予測精度が最も高くなっている。上限距離Rが過大となると、データ欠損は少なくなるものの、実際に患者が晒された環境との乖離が大きくなり、予測精度が低下するものと考えられる。図19に示す結果から、上限距離Rは20km以上、100km以下であることが好ましいと言える。
A-6.本実施形態の効果:
以上説明したように、本実施形態の情報処理装置100は、疾病に罹患した対象患者の予後を予測するための装置であって、モデル取得部113と、対象患者情報取得部114と、予後予測実行部119とを備える。モデル取得部113は、疾病の因子の時系列的な変遷を示す時系列情報を入力とし、疾病の予後を出力とする機械学習モデルである予後予測モデルMOを取得する。対象患者情報取得部114は、対象患者についての時系列情報を取得する。予後予測実行部119は、対象患者についての時系列情報と予後予測モデルMOとを用いて、対象患者の予後の予測を実行し、予後の予測結果を出力する。
以上説明したように、本実施形態の情報処理装置100は、疾病に罹患した対象患者の予後を予測するための装置であって、モデル取得部113と、対象患者情報取得部114と、予後予測実行部119とを備える。モデル取得部113は、疾病の因子の時系列的な変遷を示す時系列情報を入力とし、疾病の予後を出力とする機械学習モデルである予後予測モデルMOを取得する。対象患者情報取得部114は、対象患者についての時系列情報を取得する。予後予測実行部119は、対象患者についての時系列情報と予後予測モデルMOとを用いて、対象患者の予後の予測を実行し、予後の予測結果を出力する。
このように、本実施形態の情報処理装置100によれば、個々の患者毎に、疾病の因子の時系列的な変遷を示す時系列情報に基づき疾病の予後を予測することができる。従って、本実施形態の情報処理装置100によれば、疾病の予後を高精度に予測することができる。
また、本実施形態では、疾病の因子は、環境因子を含む。そのため、本実施形態の情報処理装置100によれば、疾病の予後に大きな影響を与え得る環境因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をより高精度に予測することができる。
また、本実施形態では、疾病の因子は、対象患者の居住地の環境因子を含む。そのため、本実施形態の情報処理装置100によれば、例えば対象患者が通院する病院の立地点の環境因子を用いる場合と比較して、対象患者が主として晒される環境に関する因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
また、本実施形態では、環境因子は、環境汚染物質の存在状況と、気象パラメータと、の少なくとも一方を含む。そのため、本実施形態の情報処理装置100によれば、疾病の予後に大きな影響を与え得る環境因子の時系列的な変遷を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
また、本実施形態では、時系列情報は、環境因子の変化量を示す情報を含む。そのため、本実施形態の情報処理装置100によれば、疾病の予後に大きな影響を与え得る環境因子の変化量を示す情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
また、本実施形態では、時系列情報は、一定の時間的間隔で疾病の因子の値を特定する情報を含む。そのため、本実施形態の情報処理装置100によれば、不定期に疾病の因子の値を特定する情報を用いる場合と比較して、疾病の予後をさらに高精度に予測することができる。
また、本実施形態では、時系列情報は、少なくとも月毎の疾病の因子の値を特定する情報を含む。そのため、本実施形態の情報処理装置100によれば、疾病の因子について月毎の変遷を示す時系列情報を用いることにより、疾病の予後をさらに高精度に予測することができる。
また、本実施形態では、疾病の予後は、競合リスクの関係にある複数のイベントの発生を含み、予後予測モデルMOは、競合リスクの関係にある複数のイベントに対応した機械学習アルゴリズムを用いて学習されたモデルである。そのため、本実施形態の情報処理装置100によれば、競合リスクの関係にある複数のイベントの発生を高精度に予測することができる。
また、本実施形態では、予後予測モデルMOは、疾病の予後として、競合リスクの関係にある複数のイベントについて、イベントが発生する可能性を表す指標値を出力するモデルである。そのため、本実施形態の情報処理装置100によれば、競合リスクの関係にある複数のイベントの発生を高精度に予測することができる。
また、本実施形態では、競合リスクの関係にある複数のイベントは、急性増悪と、死亡とを含む。そのため、本実施形態の情報処理装置100によれば、競合リスクの関係にある急性増悪および死亡のそれぞれの発生を高精度に予測することができる。
また、本実施形態では、疾病は、呼吸器系または循環器系の疾病である。そのため、本実施形態の情報処理装置100によれば、呼吸器系または循環器系の疾病の因子の時系列的な変遷を示す時系列情報を用いて、呼吸器系または循環器系の疾病の予後を高精度に予測することができる。
また、本実施形態では、予後予測実行部119は、対象患者についての時系列情報の一部を変更した仮想情報と、予後予測モデルMOとを用いて、対象患者の仮想的な予後の予測を実行し、実際の予後の予測結果と仮想的な予後の予測結果とに基づき、上記変更に対応する介入の効果を予測し、該介入の効果の予測結果を出力するとしてもよい。このような構成とすれば、出力された介入の効果の予測結果に基づき、実際に介入を行うか否かの判断を行うことができる。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における情報処理装置100の構成は、あくまで一例であり、種々変形可能である。また、上記実施形態における予後予測モデル取得処理および予後予測処理の内容は、あくまで一例であり、種々変形可能である。例えば、上記実施形態では、情報処理装置100が、予後予測モデルMOを作成することによって予後予測モデルMOを取得しているが、情報処理装置100が、他の装置により生成された予後予測モデルMOを取得するとしてもよい。
上記実施形態における予後予測モデルMOの作成に用いられる疾病の因子(特徴量)や機械学習アルゴリズムは、あくまで一例であり、種々変形可能である。例えば、予後予測モデルMOの作成に用いられる特徴量として、上記実施形態において例示した特徴量以外の特徴量が用いられてもよいし、上記実施形態において例示した特徴量の一部が用いられなくてもよい。また、予後予測モデルMOの作成に用いられる機械学習アルゴリズムとして、Dynamic-DeepHitやLSTM以外のアルゴリズムが用いられてもよい。
上記実施形態では、間質性肺炎に罹患した患者の予後を予測するための情報処理を例示しているが、本明細書に開示される技術は、間質性肺炎に限らず、疾病に罹患した患者の予後の予測にも同様に適用可能である。なお、呼吸器系または循環器系の疾病の予後は、環境因子に大きく影響を受けると考えられることから、呼吸器系または循環器系の疾病の予後予測に用いられる疾病の因子は環境因子を含むことが好ましい。
上記実施形態において、ハードウェアによって実現されている構成の一部をソフトウェアに置き換えるようにしてもよく、反対に、ソフトウェアによって実現されている構成の一部をハードウェアに置き換えるようにしてもよい。
100:情報処理装置 110:制御部 111:原情報取得部 112:学習用データ取得部 113:モデル取得部 114:対象患者情報取得部 119:予後予測実行部 120:記憶部 130:表示部 140:操作入力部 150:インターフェース部 190:バス CP:予後予測プログラム LD:学習用データ MO:予後予測モデル RD:予後予測結果データ
Claims (15)
- 疾病に罹患した対象患者の予後を予測するための情報処理装置であって、
前記疾病の因子の時系列的な変遷を示す時系列情報を入力とし前記疾病の予後を出力とする機械学習モデルである予後予測モデルを取得するモデル取得部と、
前記対象患者についての前記時系列情報を取得する対象患者情報取得部と、
前記対象患者についての前記時系列情報と前記予後予測モデルとを用いて、前記対象患者の予後の予測を実行し、前記予後の予測結果を出力する予後予測実行部と、
を備える、情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記疾病の因子は、環境因子を含む、情報処理装置。 - 請求項2に記載の情報処理装置であって、
前記疾病の因子は、前記対象患者の居住地の環境因子を含む、情報処理装置。 - 請求項3に記載の情報処理装置であって、
前記対象患者の居住地の環境因子は、前記対象患者の現住所からの直線距離が200km以内の地点の環境因子である、情報処理装置。 - 請求項2または請求項3に記載の情報処理装置であって、
前記環境因子は、環境汚染物質の存在状況と、気象パラメータと、の少なくとも一方を含む、情報処理装置。 - 請求項2または請求項3に記載の情報処理装置であって、
前記時系列情報は、前記環境因子の変化量を示す情報を含む、情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記時系列情報は、一定の時間的間隔で前記疾病の因子の値を特定する情報である、情報処理装置。 - 請求項7に記載の情報処理装置であって、
前記時系列情報は、少なくとも月毎の前記疾病の因子の値を特定する情報を含む、情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記疾病の予後は、競合リスクの関係にある複数のイベントの発生を含み、
前記予後予測モデルは、前記競合リスクの関係にある複数のイベントに対応した機械学習アルゴリズムを用いて学習されたモデルである、情報処理装置。 - 請求項9に記載の情報処理装置であって、
前記予後予測モデルは、前記疾病の予後として、前記競合リスクの関係にある複数のイベントについて、イベントが発生する可能性を表す指標値を出力するモデルである、情報処理装置。 - 請求項9または請求項10に記載の情報処理装置であって、
前記競合リスクの関係にある複数のイベントは、急性増悪と、死亡とを含む、情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記疾病は、呼吸器系または循環器系の疾病である、情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記予後予測実行部は、前記対象患者についての前記時系列情報の一部を変更した仮想情報と、前記予後予測モデルとを用いて、前記対象患者の仮想的な予後の予測を実行し、実際の予後の予測結果と仮想的な予後の予測結果とに基づき、前記変更に対応する介入の効果を予測し、前記介入の効果の予測結果を出力する、情報処理装置。 - 疾病に罹患した対象患者の予後を予測するための情報処理方法であって、
前記疾病の因子の時系列的な変遷を示す時系列情報を入力とし前記疾病の予後を出力とする機械学習モデルである予後予測モデルを取得する工程と、
前記対象患者についての前記時系列情報を取得する工程と、
前記対象患者についての前記時系列情報と前記予後予測モデルとを用いて、前記対象患者の予後の予測を実行し、前記予後の予測結果を出力する工程と、
を備える、情報処理方法。 - 疾病に罹患した対象患者の予後を予測するためのコンピュータプログラムであって、
コンピュータに、
前記疾病の因子の時系列的な変遷を示す時系列情報を入力とし前記疾病の予後を出力とする機械学習モデルである予後予測モデルを取得する処理と、
前記対象患者についての前記時系列情報を取得する処理と、
前記対象患者についての前記時系列情報と前記予後予測モデルとを用いて、前記対象患者の予後の予測を実行し、前記予後の予測結果を出力する処理と、
を実行させる、コンピュータプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022175512 | 2022-11-01 | ||
JP2022-175512 | 2022-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095942A1 true WO2024095942A1 (ja) | 2024-05-10 |
Family
ID=90930589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/039023 WO2024095942A1 (ja) | 2022-11-01 | 2023-10-30 | 情報処理装置、情報処理方法、および、コンピュータプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024095942A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160314256A1 (en) * | 2015-04-22 | 2016-10-27 | Reciprocal Labs Corporation (D/B/A Propeller Health) | Predictive modeling of respiratory disease risk and events |
JP2020144471A (ja) * | 2019-03-04 | 2020-09-10 | 学校法人東海大学 | 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム |
WO2021182595A1 (ja) * | 2020-03-13 | 2021-09-16 | 京セラ株式会社 | 予測装置、予測システム、制御方法、および制御プログラム |
WO2021205828A1 (ja) * | 2020-04-10 | 2021-10-14 | 国立大学法人 東京大学 | 予後予測装置、及びプログラム |
-
2023
- 2023-10-30 WO PCT/JP2023/039023 patent/WO2024095942A1/ja active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160314256A1 (en) * | 2015-04-22 | 2016-10-27 | Reciprocal Labs Corporation (D/B/A Propeller Health) | Predictive modeling of respiratory disease risk and events |
JP2020144471A (ja) * | 2019-03-04 | 2020-09-10 | 学校法人東海大学 | 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム |
WO2021182595A1 (ja) * | 2020-03-13 | 2021-09-16 | 京セラ株式会社 | 予測装置、予測システム、制御方法、および制御プログラム |
WO2021205828A1 (ja) * | 2020-04-10 | 2021-10-14 | 国立大学法人 東京大学 | 予後予測装置、及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bone et al. | Risk factors for acquiring functional and cognitive disabilities during admission to a PICU | |
Siebert et al. | State-transition modeling: a report of the ISPOR-SMDM modeling good research practices task force–3 | |
JP6066826B2 (ja) | 分析システム及び保健事業支援方法 | |
Sorensen et al. | Cost-effectiveness of warfarin: trial versus “real-world” stroke prevention in atrial fibrillation | |
VanHouten et al. | Machine learning for risk prediction of acute coronary syndrome | |
Houchen-Wolloff et al. | Survival following pulmonary rehabilitation in patients with COPD: the effect of program completion and change in incremental shuttle walking test distance | |
Bernabeu-Mora et al. | Determinants of each domain of the Short Physical Performance Battery in COPD | |
JP7141711B2 (ja) | 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム | |
CN108231146B (zh) | 一种基于深度学习的医疗记录模型构建方法、系统及装置 | |
WO2021148966A1 (en) | A computer-implemented system and method for outputting a prediction of an exacerbation and/or hospitalization of asthma | |
Tong et al. | Testing the generalizability of an automated method for explaining machine learning predictions on asthma patients’ asthma hospital visits to an academic healthcare system | |
Lin et al. | External validation of an algorithm to identify patients with high data-completeness in electronic health records for comparative effectiveness research | |
WO2014052921A2 (en) | Patient health record similarity measure | |
Eisner et al. | The impact of SHS exposure on health status and exacerbations among patients with COPD | |
JP6137970B2 (ja) | 疾病管理プログラム及び疾病管理システム | |
Rootmensen et al. | Clinical phenotypes of obstructive airway diseases in an outpatient population | |
Braido et al. | Chronic obstructive lung disease “expert system”: Validation of a predictive tool for assisting diagnosis | |
Erickson et al. | Effect of race on asthma management and outcomes in a large, integrated managed care organization | |
Ducharme et al. | High physician adherence to phenotype-specific asthma guidelines, but large variability in phenotype assessment in children | |
Wang et al. | Early prediction of delirium upon intensive care unit admission: Model development, validation, and deployment | |
Saito et al. | Association of asthma education with asthma control evaluated by asthma control test, FEV1, and fractional exhaled nitric oxide | |
Luo et al. | Using temporal features to provide data-driven clinical early warnings for chronic obstructive pulmonary disease and asthma care management: protocol for a secondary analysis | |
WO2024095942A1 (ja) | 情報処理装置、情報処理方法、および、コンピュータプログラム | |
Osgood et al. | Estimating the relative impact of early-life infection exposure on later-life tuberculosis outcomes in a Canadian sample | |
Cook et al. | The influence of unemployment and disability status on clinical outcomes in patients receiving surgery for low back-related disorders: an observational study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885698 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |