WO2024095667A1 - Positive electrode for secondary batteries, and secondary battery - Google Patents

Positive electrode for secondary batteries, and secondary battery Download PDF

Info

Publication number
WO2024095667A1
WO2024095667A1 PCT/JP2023/036155 JP2023036155W WO2024095667A1 WO 2024095667 A1 WO2024095667 A1 WO 2024095667A1 JP 2023036155 W JP2023036155 W JP 2023036155W WO 2024095667 A1 WO2024095667 A1 WO 2024095667A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
region
composite oxide
secondary battery
lithium metal
Prior art date
Application number
PCT/JP2023/036155
Other languages
French (fr)
Japanese (ja)
Inventor
大河 深堀
昂輝 守田
林太郎 名取
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2024095667A1 publication Critical patent/WO2024095667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • This disclosure relates to a positive electrode for a secondary battery and a secondary battery using the positive electrode.
  • Patent Document 1 discloses a positive electrode that uses a mixture of two types of lithium metal composite oxide with different average particle sizes as the positive electrode active material.
  • Patent Document 1 describes the effect that the density of the positive electrode can be increased to achieve high capacity.
  • Patent Document 1 describes the effect that the density of the positive electrode can be increased to achieve high capacity.
  • the penetration of the electrolyte in the thickness direction of the mixture layer is insufficient, resulting in a decrease in rapid charging performance.
  • the mixture layer becomes dense the decrease in rapid charging performance becomes more significant.
  • the purpose of this disclosure is to provide a positive electrode that can realize a secondary battery with high capacity and excellent rapid charging performance.
  • the positive electrode for a secondary battery comprises a positive electrode core and a positive electrode mixture layer disposed on the positive electrode core, the positive electrode mixture layer including first and second regions arranged alternately in at least one of the length and width directions of the positive electrode core, the first lithium metal composite oxide included in the first region has a particle size distribution with two or more peaks, and the second lithium metal composite oxide included in the second region has a particle size distribution with one peak.
  • the secondary battery disclosed herein comprises the above-mentioned positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode disclosed herein can provide a secondary battery with high capacity and excellent rapid charging performance.
  • FIG. 1 is a cross-sectional view of a secondary battery according to an embodiment
  • FIG. 2 is a front view of a positive electrode according to an embodiment of the present invention.
  • 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 13 is a diagram showing a modified example of a positive electrode.
  • FIG. 13 is a diagram showing a modified example of a positive electrode.
  • the inventors have succeeded in realizing a secondary battery that has high capacity and excellent rapid charging performance by providing first and second regions in the positive electrode mixture layer, each having a different particle size distribution of the positive electrode active material, and arranging the first and second regions alternately in at least one of the length direction and width direction of the positive electrode core.
  • the second region which is made of positive electrode active material having a particle size distribution with one peak, voids suitable for the penetration of electrolyte are formed.
  • the function of this second region greatly improves the permeability of the electrolyte throughout the mixture layer, and the electrolyte also quickly penetrates in the thickness direction of the mixture layer. As a result, excellent rapid charging performance is obtained.
  • the first region which is composed of a positive electrode active material having a particle size distribution with two or more peaks, has good filling properties of the active material, which contributes to high capacity.
  • the first region is also supplied with electrolyte from the adjacent second region.
  • a secondary battery using the positive electrode according to the present disclosure can achieve both high capacity and excellent rapid charging performance to a high degree.
  • the electrolyte is smoothly supplied to the entire mixture layer, a uniform battery reaction occurs over a wide area of the mixture layer, and cycle characteristics are also greatly improved.
  • a cylindrical battery 10 in which a wound electrode body 14 is housed in a cylindrical exterior can 16 with a bottom is exemplified as a secondary battery, but the exterior body of the battery is not limited to a cylindrical exterior can.
  • Other embodiments of the secondary battery according to the present disclosure include a prismatic battery with a prismatic exterior can, a coin battery with a coin-shaped exterior can, and a pouch-type battery with an exterior body composed of a laminate sheet including a metal layer and a resin layer.
  • the electrode body is not limited to a wound type, and may be a laminated type electrode body in which multiple positive electrodes and multiple negative electrodes are alternately stacked with separators between them.
  • the electrolyte may be an aqueous electrolyte, but a nonaqueous electrolyte is used in this embodiment.
  • the cylindrical battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that contains the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 has a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are wound in a spiral shape with the separator 13 interposed therebetween.
  • the outer can 16 is a cylindrical metal container with a bottom that is open at one axial end, and the opening of the outer can 16 is closed by a sealing body 17.
  • the sealing body 17 side of the battery is referred to as the top
  • the bottom side of the outer can 16 is referred to as the bottom.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • an electrolyte salt dissolved in the non-aqueous solvent.
  • esters, ethers, nitriles, amides, and mixed solvents of two or more of these are used as the non-aqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and mixed solvents of these.
  • the non-aqueous solvent may contain a halogen-substituted product (e.g., fluoroethylene carbonate, etc.) in which at least a part of the hydrogen of these solvents is replaced with a halogen atom such as fluorine.
  • a halogen-substituted product e.g., fluoroethylene carbonate, etc.
  • a lithium salt such as LiPF6 is used as the electrolyte salt.
  • the positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 are all long, strip-like bodies that are wound in a spiral shape and stacked alternately in the radial direction of the electrode body 14.
  • the negative electrode 12 is formed to be slightly larger than the positive electrode 11 in order to prevent lithium precipitation. That is, the negative electrode 12 is formed to be longer in the length direction and width direction than the positive electrode 11.
  • the separator 13 is formed to be at least slightly larger than the positive electrode 11, and for example, two separators 13 are arranged to sandwich the positive electrode 11.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18, 19 are arranged above and below the electrode body 14.
  • the positive electrode lead 20 passes through a through hole in the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes outside the insulating plate 19 and extends toward the bottom side of the outer can 16.
  • the positive electrode lead 20 is connected to the underside of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 and is electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as the negative electrode terminal.
  • a gasket 28 is provided between the exterior can 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the exterior can 16 has a grooved portion 22 formed with a portion of the side surface that protrudes inward to support the sealing body 17.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior can 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the top of the exterior can 16 by the grooved portion 22 and the open end of the exterior can 16 that is crimped against the sealing body 17.
  • the sealing body 17 has a structure in which, in order from the electrode body 14 side, an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are stacked.
  • Each member constituting the sealing body 17 has, for example, a disk or ring shape, and each member except for the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective centers, and the insulating member 25 is interposed between their respective peripheral edges.
  • the positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 will be described in detail below, with particular focus on the positive electrode 11.
  • the positive electrode 11 has a positive electrode core 30 and a positive electrode mixture layer 31 arranged on the positive electrode core 30.
  • a foil of a metal stable in the potential range of the positive electrode 11, such as aluminum, an aluminum alloy, stainless steel, or titanium, or a film having the metal arranged on the surface can be used.
  • the positive electrode mixture layer 31 contains a positive electrode active material, a conductive agent, and a binder, and is preferably provided on both sides of the positive electrode core 30 except for the portion to which the positive electrode lead 20 is connected.
  • a protective layer containing inorganic particles and a binder may be arranged between the positive electrode core 30 and the positive electrode mixture layer 31, or on the positive electrode mixture layer 31.
  • the positive electrode 11 can be produced, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder onto the positive electrode core 30, drying the coating, and then compressing it to form a positive electrode mixture layer 31 on both sides of the positive electrode core 30.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder onto the positive electrode core 30, drying the coating, and then compressing it to form a positive electrode mixture layer 31 on both sides of the positive electrode core 30.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry may be prepared by adding a positive electrode active material to a conductive agent paste containing a conductive agent, a binder, and a dispersion medium.
  • the positive electrode mixture slurry and the conductive agent paste may contain a dispersant.
  • the positive electrode mixture layer 31 includes first and second regions, which have different physical properties and are arranged alternately in at least one of the length direction and width direction of the positive electrode core 30.
  • the positive electrode mixture layer 31 is formed using at least two types of positive electrode mixture slurries.
  • a lithium metal composite oxide is used as the positive electrode active material.
  • Metal elements contained in the lithium metal composite oxide include Li, Ni, Co, Mn, Al, Be, B, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, In, Sn, Sb, Ba, Ta, W, Pb, Bi, etc.
  • a suitable lithium metal composite oxide contains Li, Ni, and Co, and also contains at least one of Mn and Al.
  • the lithium metal composite oxide has, for example, a layered rock salt structure.
  • layered rock salt structures include layered rock salt structures belonging to space group R-3m and layered rock salt structures belonging to space group C2/m. Among these, from the viewpoints of high capacity and stability of the crystal structure, layered rock salt structures belonging to space group R-3m are preferred.
  • the content of elements in the composite oxide can be measured using an inductively coupled plasma atomic emission spectrometer (ICP-AES), an electron probe microanalyzer (EPMA), or an energy dispersive X-ray analyzer (EDX).
  • ICP-AES inductively coupled plasma atomic emission spectrometer
  • EPMA electron probe microanalyzer
  • EDX energy dispersive X-ray analyzer
  • the lithium metal composite oxide preferably has a Ni ratio of 50 mol% or more, more preferably 80 mol% or more, relative to the total number of moles of metal elements excluding Li.
  • the Ni content may be 85 mol% or more, or may be 90 mol% or more, relative to the total number of moles of metal elements excluding Li.
  • the upper limit of the Ni content is, for example, 95 mol%.
  • the Co content is preferably 1 mol% to 25 mol% relative to the total number of moles of metal elements excluding Li, and more preferably 2 mol% to 7 mol%. In this case, high capacity and high durability can be achieved while keeping material costs down.
  • the lithium metal composite oxide contains Mn the Mn content is, for example, mol% to 20 mol% relative to the total number of moles of metal elements excluding Li. In this case, it becomes easier to achieve both high capacity and high durability.
  • the lithium metal composite oxide contains Al
  • the Al content is, for example, 0.1 mol% to 7 mol% relative to the total number of moles of metal elements excluding Li.
  • FIG. 2 is a front view of the positive electrode 11, and shows a schematic diagram of the positive electrode 11 in an expanded state.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • the positive electrode mixture layer 31 includes first regions 35 and second regions 36 arranged alternately in the longitudinal direction of the positive electrode core 30 (positive electrode 11).
  • the first regions 35 and second regions 36 have different physical properties, and in this embodiment, are arranged alternately along the longitudinal direction of the positive electrode core 30, and are formed in a striped pattern when viewed from the front of the positive electrode mixture layer 31 (positive electrode 11).
  • the first lithium metal composite oxide contained in the first region 35 has a particle size distribution with two or more peaks
  • the second lithium metal composite oxide contained in the second region 36 has a particle size distribution with one peak.
  • the first region 35 and the second region 36 may differ from each other in physical properties other than the particle size distribution of the positive electrode active material (e.g., porosity, BET specific surface area, etc.).
  • the positive electrode mixture layer may have three or more regions with different particle size distributions of the positive electrode active material.
  • the first region 35 which is made of a positive electrode active material having a particle size distribution with two or more peaks, has good filling properties of the active material, which contributes to high capacity.
  • the second region 36 which is made of a positive electrode active material having a particle size distribution with one peak, voids suitable for the penetration of the electrolyte are easily formed. This function of the second region 36 greatly improves the permeability of the electrolyte throughout the positive electrode mixture layer 31, resulting in excellent rapid charging performance.
  • the electrolyte is also supplied to the first region 35 from the adjacent second region 36.
  • the second region 36 functions as a supply path for the electrolyte, and the electrolyte is smoothly supplied to the entire positive electrode mixture layer 31, so that a uniform battery reaction occurs over a wide area of the positive electrode mixture layer 31, and the cycle characteristics are also improved.
  • the BET specific surface area of the first region 35 and the second region 36 may be substantially the same, or the BET specific surface area of the second region 36 may be larger than the BET specific surface area of the first region 35.
  • the BET specific surface area of each region is measured by a BET method using nitrogen gas with the mixture layer (each region) peeled off from the positive electrode core 30 as a sample, and can be measured by a commercially available measuring device such as Macsorb's HM model-1201.
  • the BET specific surface area of the first region 35 is 1.5 m 2 /g or more and 2.5 m 2 /g or less
  • the BET specific surface area of the second region 36 is 2.0 m 2 /g or more and 3.0 m 2 /g or less.
  • the porosity of the first region 35 and the second region 36 may be substantially the same, but preferably the porosity of the second region 36 is greater than that of the first region 35.
  • the packing density of the positive electrode active material is high and the porosity tends to be small.
  • the porosity of the first region 35 is, for example, 10% to 30%, and preferably 15% to 25%.
  • the porosity of the second region 36 is, for example, 15% to 35%, and preferably 20% to 30%.
  • the porosity of the first region 35 and the second region 36 can be measured by the following method.
  • (3) The SEM image of the cross section of the positive electrode mixture layer 31 is input into a computer, and is color-coded into three colors based on contrast using image analysis software (for example, ImageJ manufactured by the National Institutes of Health), with intermediate colors representing voids.
  • a measurement area is selected from the processed image, the total area of voids within that area is found, and the proportion of voids in the measurement area (porosity) is calculated.
  • the first regions 35 and the second regions 36 are alternately arranged in the longitudinal direction of the positive electrode core 30 and are formed in a striped pattern.
  • the shape of the first regions 35 and the second regions 36 when viewed from the front but in the example shown in FIG. 2, they are formed in a rectangular shape when viewed from the front.
  • the shape and size of each first region 35 do not have to be the same, but it is preferable that they are substantially the same from the standpoint of uniformity of the electrode reaction (the same applies to the second regions 36). Note that if only a small portion of the regions have different shapes and sizes, the same effect is achieved as when the regions have uniform shapes and sizes.
  • the first region 35 and the second region 36 can be formed, for example, by using different positive electrode mixture slurries. After the first positive electrode mixture slurry that forms the first region 35 is intermittently applied to the surface of the positive electrode core 30 along the length of the positive electrode core 30, the second positive electrode mixture slurry that forms the second region 36 is intermittently applied to the parts where the first positive electrode mixture slurry is not applied, thereby forming the stripes shown in FIG. 2. It is also possible to simultaneously apply the first and second positive electrode mixture slurries to different places on the surface of the positive electrode core 30 to form the stripes.
  • D50 means the particle size at which the cumulative frequency in the volume-based particle size distribution is 50% from the smallest particle size.
  • the physical properties such as particle size distribution of the positive electrode active material are preferably substantially the same in the multiple first regions 35.
  • the particle size distribution of the positive electrode active material in each first region 35 is substantially the same.
  • the physical properties such as particle size distribution of the positive electrode active material are preferably substantially the same in the multiple second regions 36.
  • the particle size distribution of the positive electrode active material is substantially the same in the thickness direction of the first region 35.
  • the particle size distribution of the positive electrode active material is substantially the same in the vicinity of the positive electrode core 30 of the first region 35 and in the vicinity of the surface of the first region 35 away from the positive electrode core 30 (the same applies to the second region 36).
  • the thicknesses of the first region 35 and the second region 36 are preferably approximately the same.
  • the length of the first region 35 along the length direction of the positive electrode core 30 may be equal to or less than the length of the second region 36 along the length direction of the positive electrode core 30, but is preferably longer than the length of the second region 36. In this case, high capacity and excellent rapid charging performance can be more highly compatible.
  • each of the first region 35 and the second region 36 extends longer in the width direction than in the length direction of the positive electrode core 30.
  • the length of the first region 35 along the length direction of the positive electrode core 30 is referred to as "width W1"
  • the length of the second region 36 along the length direction of the positive electrode core 30 is referred to as "width W2".
  • the first region 35 and the second region 36 are preferably formed over the entire width of the positive electrode core 30. In this case, high capacity and excellent rapid charging performance can be more effectively combined.
  • the widths W1 and W2 of the regions may vary in the width direction of the positive electrode core 30, but in this embodiment, each region is formed with substantially the same width along the width direction of the positive electrode core 30. Furthermore, the width W1 of each first region 35 is substantially the same, and the width W2 of each second region 36 is also substantially the same, so that stripes of the first regions 35 and the second regions 36 are regularly repeated in the length direction of the positive electrode core 30.
  • the width W1 of the first region 35 is preferably 1.1 times or more, more preferably 1.5 times or more, and particularly preferably 2.0 times or more or 2.5 times or more, of the width W2 of the second region 36.
  • the upper limit of the ratio (W1/W2) of the width W1 to the width W2 is not particularly limited, but examples are 10.0 times, 9.0 times, or 8.0 times.
  • Examples of suitable ranges of the ratio (W1/W2) are 1.5 times or more and 10.0 times or less, 1.5 times or more and 9.0 times or less, 1.5 times or more and 8.0 times or less, or 2.0 times or more and 8.0 times or less.
  • the suitable ratio (W1/W2) varies depending on the state of each region, but as long as the ratio (W1/W2) is generally within this range, high capacity and excellent rapid charging performance can be more highly compatible.
  • the width W1 of the first region 35 is, for example, 1 mm or more and 30 mm or less, more preferably 2 mm or more and 20 mm or less.
  • the width W2 of the second region 36 is, for example, 0.5 mm or more and 20 mm or less, more preferably 1 mm or more and 15 mm or less.
  • the length of the positive electrode 11 varies depending on the size of the cylindrical battery 10, and is, for example, 40 mm or more and 4000 mm or less.
  • the first region 35 and the second region 36 are arranged on one side of the positive electrode core 30 in the longitudinal direction of the positive electrode 11, for example, in the number of 1 to 2000.
  • the number of each of the first regions 35 and second regions 36 arranged in the longitudinal direction of the positive electrode 11 is determined from the above widths W1 and W2 and the length of the positive electrode 11.
  • the volumetric particle size distribution of the first lithium metal composite oxide which is the positive electrode active material contained in the first region 35, includes, for example, a first peak in a particle size range of 10 ⁇ m to 40 ⁇ m, and a second peak in a particle size range of 1 ⁇ m to 15 ⁇ m, which is smaller than the first peak. In this case, the filling property of the active material is improved.
  • the particle size distribution of the first lithium metal composite oxide may have three or more peaks, but the number of peaks is preferably two.
  • the peak top of the first peak is preferably in the particle size range of 12 ⁇ m to 30 ⁇ m, and more preferably in the particle size range of 15 ⁇ m to 25 ⁇ m.
  • the peak top of the second peak is preferably in the particle size range of 2 ⁇ m to 12 ⁇ m, and more preferably in the particle size range of 3 ⁇ m to 10 ⁇ m.
  • the D50 of the large particles is preferably 12 ⁇ m to 30 ⁇ m
  • the D50 of the small particles is preferably 2 ⁇ m to 12 ⁇ m.
  • the intensity ratio of the first peak to the second peak is not limited to a specific range, and the first peak intensity and the second peak intensity may be the same.
  • the intensity of the first peak is, for example, 0.5 to 9.0 times the intensity of the second peak, preferably 0.6 to 5.0 times, more preferably 1.2 to 4.0 times, and particularly preferably 1.5 to 3.0 times. In this case, the filling property of the active material is further improved.
  • the intensity ratio of the first peak to the second peak corresponds to the mass ratio of large particles to small particles, and the ratio of the first peak intensity to the second peak intensity increases as the content of large particles increases.
  • the mixing ratio (mass ratio) of large particles having a D50 of 12 ⁇ m or more and 30 ⁇ m or less and small particles having a D50 of 2 ⁇ m or more and 12 ⁇ m or less is, for example, 90:10 to 60:40.
  • the first and second peak intensity ratios can be adjusted within the above range. For example, when the mixing ratio of large particles to small particles is 90:10, the ratio of the first peak intensity to the second peak intensity is about 4, when the mixing ratio of large particles to small particles is 80:20, the peak intensity ratio is about 2, and when the mixing ratio of large particles to small particles is 50:50, the peak intensity ratio is about 0.6.
  • the second lithium metal composite oxide which is the positive electrode active material contained in the second region 36.
  • appropriate voids are formed in the second region 36, improving the permeability of the electrolyte.
  • the peak of the particle size distribution of the second lithium metal composite oxide is, for example, in the particle size range of 1 ⁇ m to 40 ⁇ m, and as a preferred example, in the particle size range of 1 ⁇ m to 15 ⁇ m.
  • the D50 of the second lithium metal composite oxide is, for example, 1 ⁇ m to 15 ⁇ m.
  • the lithium metal composite oxide may be, for example, a secondary particle formed by agglomeration of primary particles having an average particle size of 50 nm or more and 5 ⁇ m or less, or may be a non-agglomerated single particle.
  • a non-agglomerated single particle means a single primary particle (a single crystal particle having no internal grain boundaries) or a secondary particle formed by agglomeration of five or less primary particles.
  • a single particle is characterized by being harder and less likely to be crushed by compression during the manufacture of the positive electrode.
  • the large particles may be of secondary particle type, and the small particles may be of single particle type. Both the large particles and the small particles may be of secondary particle type.
  • the second lithium metal composite oxide contained in the second region 36 may also be of secondary particle type or single particle type, and for example, a composite oxide of the same type as the small particles of the first lithium metal composite oxide may be used.
  • the particle size distribution of the lithium metal composite oxide can be measured using a laser diffraction particle size distribution measuring device (e.g., MT3000II, manufactured by Microtrack Bell Co., Ltd.) with water as the dispersion medium.
  • the average particle size of the lithium metal composite oxide can also be determined by measuring the diameter of the circumscribed circle of the particles in the cross-sectional image of the positive electrode mixture layer 31. If it is difficult to measure the above particle size distribution, this average particle size can be applied instead of D50.
  • the cross-section of the positive electrode mixture layer 31 can be prepared by the cross polisher (CP) method, and the cross-sectional image is captured by SEM.
  • the average particle size can be calculated by averaging the particle sizes of any 100 particles from the SEM image.
  • the average particle size of the primary particles constituting the lithium metal composite oxide is, for example, 50 nm or more and 5.0 ⁇ m or less, and preferably 50 nm or more and 1.0 ⁇ m or less.
  • the average particle size of the primary particles is calculated by measuring the diameters of the circumscribed circles of 100 primary particles extracted by analyzing SEM images of the cross sections of the secondary particles, and averaging the measured values.
  • Lithium metal composite oxide can be synthesized, for example, by mixing and firing a composite oxide raw material containing Ni and Co and at least one of Mn and Al, and a Li raw material such as lithium hydroxide (LiOH). The fired product may be crushed, classified, etc., and may be washed with water.
  • a composite oxide raw material containing Ni, Co, etc. can be obtained, for example, by precipitating (co-precipitating) a composite hydroxide containing Ni, Co, etc., and then heat-treating the composite hydroxide.
  • the above composite hydroxides can be synthesized, for example, by dropping an alkaline solution such as sodium hydroxide into a stirred solution of metal salts containing Ni, Co, etc., and adjusting the pH to the alkaline side (for example, 8.5 to 12.5).
  • the particle size of the composite hydroxide tends to be smaller as the pH during synthesis is higher, and can also be controlled by adjusting the amount of metal salt solution added.
  • Lithium metal composite oxides with different particle sizes can be produced by controlling the particle size of the composite hydroxide.
  • the firing process for the mixture of the composite oxide raw material and the Li raw material may be a multi-stage firing process including a first firing process and a second firing process at a higher temperature than the first firing process.
  • the mixture is fired in an oxygen atmosphere, and the oxygen concentration is set to 85% or more, for example.
  • a suitable first firing temperature varies somewhat depending on the composition of the mixture, but an example is 500°C or higher and 750°C or lower.
  • a suitable second firing temperature is, for example, 800°C or higher and 1150°C or lower. It is preferable that there is a temperature difference of 50°C or more between the temperatures of each firing process.
  • Non-aggregated single particles can be synthesized, for example, by increasing the pH of the alkaline aqueous solution used to synthesize the composite hydroxide compared to the case of synthesizing secondary particles formed by agglomeration of many primary particles.
  • they can also be synthesized by increasing the firing temperature.
  • An example of a suitable pH for the alkaline aqueous solution when synthesizing single particles is 10 to 11, and an example of a suitable firing temperature is 950 to 1100°C.
  • an alkaline aqueous solution with a pH of 9 to 10 is used, and the firing temperature is set to 950°C or lower.
  • Examples of the conductive agent contained in the positive electrode mixture layer 31 include carbon black such as acetylene black and ketjen black, graphite, carbon nanotubes (CNT), carbon nanofibers, graphene, metal fibers, metal powder, conductive whiskers, etc.
  • carbon black such as acetylene black and ketjen black
  • graphite carbon nanotubes (CNT)
  • carbon nanofibers carbon nanofibers
  • graphene graphene
  • metal fibers metal powder
  • conductive whiskers conductive whiskers
  • One type of conductive agent may be used alone, or multiple types may be used in combination.
  • the first region 35 and the second region 36 may contain, for example, the same type of conductive agent, but may also contain different conductive agents.
  • binder contained in the positive electrode mixture layer 31 examples include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), olefin resins such as polyethylene, polypropylene, ethylene-propylene-isoprene copolymer, and ethylene-propylene-butadiene copolymer, and acrylic resins such as polyacrylonitrile (PAN), polyimide, polyamide, and ethylene-acrylic acid copolymer. These resins may also be used in combination with carboxymethylcellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like.
  • CMC carboxymethylcellulose
  • PEO polyethylene oxide
  • One type of binder may be used alone, or multiple types may be used in combination.
  • the first region 35 and the second region 36 may contain, for example, the same type of binder, but may also contain different binders.
  • the conductive agent and binder content is, for example, 0.1 mass % or more and 5 mass % or less, respectively, relative to the mass of the positive electrode mixture layer 31.
  • the conductive agent amount in the first region 35 and the second region 36 may, for example, be substantially the same, but the conductive agent content in each region may be different.
  • the conductive agent content in the second region 36 is greater than the conductive agent content in the first region 35.
  • the binder amount in each region may, for example, be substantially the same, but the binder content in each region may be different.
  • FIGS. 4 and 5 are front views showing modified examples of the positive electrode 11.
  • the first regions 35 and the second regions 36 are alternately arranged only along the length direction of the positive electrode core 30, but as shown in FIGS. 4 and 5, the first regions 35 and the second regions 36 may be alternately arranged in both the length direction and the width direction of the positive electrode core 30.
  • the first regions 35 and the second regions 36 may be arranged in a random, irregular pattern, but from the viewpoints of stabilizing the battery performance and uniforming the battery reaction, it is preferable that they are arranged in a regular pattern.
  • the first regions 35 and second regions 36 may be alternately arranged only along the width direction of the positive electrode 11, but in the case of a striped shape, the shape shown in FIG. 2 is preferable.
  • a striped shape in which the second regions 36, which have good electrolyte permeability, are formed along the axial direction allows the electrolyte to be supplied to the electrode body 14 more smoothly.
  • the second region 36 may be arranged in a lattice pattern when viewed from the front of the positive electrode 11.
  • the lattice of the second region 36 is aligned along the width and length directions of the positive electrode 11, but the lattice may be formed along a direction that is inclined relative to the width and length directions.
  • the first region 35 surrounded by the lattice of the second region 36 has a square shape when viewed from the front, but may also have a rectangular shape.
  • the lattice-shaped second region 36 also functions as a supply path for the electrolyte, and a portion of the electrolyte is supplied to the first region 35 via the second region 36.
  • the first regions 35 may be arranged in a dot pattern when viewed from the front of the positive electrode 11.
  • the first regions 35 have, for example, a perfect circle shape when viewed from the front.
  • the first regions 35 are the same size and are arranged at equal intervals in the length direction of the positive electrode 11.
  • the first regions 35 are densely arranged so that the dots fill the recesses of the dots of the two first regions 35.
  • the second regions 36 are formed so as to fill the spaces between the dots of the first regions 35.
  • the second regions 36 function as a supply path for the electrolyte.
  • the second region 36 may be formed in a honeycomb shape (hexagonal shape) when viewed from the front of the positive electrode 11, or may have a shape other than a circle, a square, or a hexagon.
  • the first region 35 may also be formed in a lattice or honeycomb shape, or the second region 36 may be formed in a dot shape.
  • the negative electrode 12 has a negative electrode core 40 and a negative electrode mixture layer 41 arranged on the negative electrode core 40.
  • a foil of a metal stable in the potential range of the negative electrode 12 such as copper, a copper alloy, stainless steel, nickel, or a nickel alloy, or a film having the metal arranged on the surface can be used.
  • the negative electrode mixture layer 41 contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core 40 except for the portion to which the negative electrode lead 21 is connected.
  • a protective layer containing inorganic particles and a binder may be arranged between the negative electrode core 40 and the negative electrode core 40 or on the negative electrode mixture layer 41.
  • the negative electrode 12 can be produced, for example, by applying a negative electrode mixture slurry containing a negative electrode active material and a binder to the surface of the negative electrode core 40, drying the coating, and then compressing it to form a negative electrode mixture layer 41 on both sides of the negative electrode core 40.
  • Water for example, is used as the dispersion medium for the negative electrode mixture slurry.
  • the negative electrode mixture layer 41 may contain a conductive agent such as CNT, and the conductive agent may be the same as that of the positive electrode 11.
  • the negative electrode mixture slurry may contain a dispersant.
  • a carbon material that reversibly absorbs and releases lithium ions is generally used as the negative electrode active material.
  • Elements that alloy with Li, such as Si and Sn, and materials containing these elements may also be used as the negative electrode active material. Of these, materials containing Si are preferred.
  • Lithium titanate which has a higher charge/discharge potential relative to metallic lithium than carbon materials, may also be used as the negative electrode active material.
  • One type of negative electrode active material may be used alone, or multiple types may be used in combination.
  • the carbon material that functions as the negative electrode active material is, for example, at least one selected from the group consisting of natural graphite, artificial graphite, soft carbon, and hard carbon. Among them, it is preferable to use, as the carbon material, at least artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB), natural graphite such as flake graphite, massive graphite, and earthy graphite, or a mixture of these.
  • the volume-based D50 of the carbon material is, for example, 1 ⁇ m or more and 30 ⁇ m or less, and preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • silicon-containing materials that function as negative electrode active materials include silicon alloys, silicon compounds, and composite materials containing Si.
  • composite materials containing Si are preferred.
  • a suitable composite material is a composite particle containing an ion-conducting phase and a Si phase dispersed in the ion-conducting phase.
  • the ion-conducting phase is, for example, at least one selected from the group consisting of a silicate phase, a carbon phase, a silicide phase, and a silicon oxide phase.
  • the Si phase is formed by dispersing Si in the form of fine particles.
  • the ion-conducting phase is a continuous phase composed of a collection of particles finer than the Si phase.
  • the volume-based D50 of the silicon-containing material is, for example, 1 ⁇ m to 20 ⁇ m, or 1 ⁇ m to 15 ⁇ m.
  • the binder contained in the negative electrode mixture layer 41 may be fluororesin, olefin resin, PAN, polyimide, polyamide, acrylic resin, etc., but generally, polyvinyl acetate, styrene-butadiene rubber (SBR), etc. are used. Of these, it is preferable to use SBR.
  • SBR polyvinyl acetate, styrene-butadiene rubber
  • One type of binder may be used alone, or multiple types may be used in combination.
  • the negative electrode mixture layer 41 contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), etc. These also function as thickeners in the negative electrode mixture slurry.
  • a porous sheet having ion permeability and insulation is used for the separator 13.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the material of the separator 13 is preferably a polyolefin such as polyethylene or polypropylene, or cellulose.
  • the separator 13 may have a single layer structure or a multilayer structure.
  • the separator 13 may have, for example, a multilayer structure including a thermoplastic resin layer such as a polyolefin and a cellulose fiber layer, a two-layer structure of polyethylene (PE)/polypropylene (PP), or a three-layer structure of PE/PP/PE.
  • a filler layer containing an inorganic filler may be disposed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12.
  • inorganic fillers include oxides containing metal elements such as Ti, Al, Si, and Mg, and phosphate compounds.
  • the filler layer can be formed by applying a slurry containing the filler to the surface of the positive electrode 11, the negative electrode 12, or the separator 13.
  • a resin layer (heat-resistant layer) having high heat resistance such as aramid resin may be disposed on the surface of the separator 13.
  • the separator 13 may have, for example, a substrate made of a porous sheet and a filler layer or a heat-resistant layer disposed on the substrate.
  • Example 1 [Synthesis of lithium metal composite oxide X1] A composite hydroxide containing Ni, Co, and Al in a molar ratio of 85:10:5 was synthesized by coprecipitation, and heat-treated at 600°C to obtain a composite oxide. In the synthesis of the composite hydroxide, the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 ⁇ m. The obtained composite oxide and lithium hydroxide were mixed so that the molar ratio (Li/Me ratio) of the metal element (Me) in the composite oxide to Li in the lithium hydroxide was 1:1.020. This mixture was placed in a calcination furnace and calcined in two stages.
  • the mixture was heated from room temperature to 650 ° C (first calcination temperature) at a temperature increase rate of 3°C/min (first temperature increase rate) under an oxygen flow with an oxygen concentration of 95% (flow rate of 2mL/min per 10 cm3 and 5L/min per 1 kg of the mixture).
  • the mixture was then heated from 650°C to 750°C (second calcination temperature) at a temperature increase rate of 1°C/min (second temperature increase rate), and held at 750°C for 3 hours.
  • the calcined product was pulverized and washed with water to obtain lithium metal composite oxide X1 (NCA).
  • the volumetric D50 of lithium metal composite oxide X1 was measured using an MT3000II manufactured by Microtrack Bell Co., Ltd., with water as the dispersion medium, and was found to be 17 ⁇ m. From the SEM image, it was confirmed that the composite oxide was a secondary particle formed by the aggregation of primary particles with an average particle size of 500 nm.
  • lithium metal composite oxide X1 may be referred to as "large particle X1".
  • Lithium metal composite oxide X2 (NCA) was obtained in the same manner as lithium metal composite oxide X1, except that the pH and the amount of the metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 ⁇ m.
  • the volumetric D50 of lithium metal composite oxide X2 was measured using an MT3000II manufactured by Microtrack Bell Co., Ltd., with water as the dispersion medium, and was found to be 5 ⁇ m. From the SEM image, it was confirmed that the composite oxide was a secondary particle formed by the aggregation of primary particles with an average particle size of 500 nm.
  • lithium metal composite oxide X2 may be referred to as "small particles X2.”
  • first positive electrode mixture slurry As the positive electrode active material, a mixture of large particles X1 and small particles X2 in a mass ratio of 80: 20 was used. The positive electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a solid content mass ratio of 98: 1: 1, and a first positive electrode mixture slurry was prepared using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • a second positive electrode mixture slurry was prepared in the same manner as the first positive electrode mixture slurry, except that only the small particles X2 were used as the positive electrode active material.
  • the first positive electrode mixture slurry was intermittently applied to both sides of a positive electrode core made of aluminum foil to form a first coating film, and the coating film was dried. Then, the second positive electrode mixture slurry was applied to the portion where the first coating film was not present to form a second coating film, and the coating film was dried. At this time, the first and second positive electrode mixture slurries were applied so that the first and second coating films were alternately formed in the length direction of the positive electrode core, that is, in a striped shape as shown in FIG. 2. The first coating film became the first region of the positive electrode mixture layer, and the second coating film became the second region of the positive electrode mixture layer. In this example, the ratio of the width of the first region to the width of the second region was adjusted to 75:25. The average width of the first region was 7.5 mm, and the average width of the second region was 2.5 mm.
  • the coating (positive electrode mixture layer) was then rolled using a roller, and the positive electrode core was cut to a specified electrode size to obtain a positive electrode in which a positive electrode mixture layer was formed on both sides of the positive electrode core. An exposed portion was provided on a part of the positive electrode, where the surface of the positive electrode core was exposed.
  • the particle size distribution of the lithium metal composite oxide contained in the first region of the positive electrode mixture layer was measured using an MT3000II manufactured by Microtrack Bell Inc., with water as the dispersion medium, and showed two peaks at 17 ⁇ m and 5 ⁇ m.
  • the particle size distribution of the lithium metal composite oxide contained in the second region was similarly measured, and showed one peak at 5 ⁇ m.
  • the negative electrode active material a mixture of natural graphite and a silicon-containing material (a composite material in which fine Si phases are dispersed in a silicon oxide phase) in a mass ratio of 98:2 was used.
  • the negative electrode active material, a dispersion of sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed in a solid content mass ratio of 100:1:1, and a negative electrode mixture slurry was prepared using water as a dispersion medium.
  • the negative electrode mixture slurry was applied to both sides of a negative electrode core made of copper foil, and the coating film was dried.
  • the coating film was then rolled using a roller and cut to a predetermined electrode size to obtain a negative electrode in which a negative electrode mixture layer was formed on both sides of the negative electrode core. An exposed portion in which the surface of the negative electrode core was exposed was provided in a part of the negative electrode.
  • a non-aqueous electrolyte solution was prepared by dissolving LiPF6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) in a volume ratio of 3:3:4 (25 ° C.).
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • test cell non-aqueous electrolyte secondary battery
  • An aluminum lead was attached to the exposed portion of the positive electrode, and a nickel lead was attached to the exposed portion of the negative electrode, and the positive and negative electrodes were spirally wound with a polyolefin separator interposed therebetween to prepare a wound electrode assembly.
  • This electrode assembly was placed in a cylindrical outer can with a bottom, and the nonaqueous electrolyte was poured into it, and the opening of the outer can was then sealed with a sealer to obtain a test cell.
  • Example 2 A test cell was fabricated in the same manner as in Example 1, except that the ratio of the width of the first region to the width of the second region of the positive electrode mixture layer was changed to 50:50.
  • Example 3 A test cell was fabricated in the same manner as in Example 1, except that the ratio of the width of the first region to the width of the second region of the positive electrode mixture layer was changed to 25:75.
  • Example 4 A test cell was produced in the same manner as in Example 1, except that in the preparation of the first positive electrode mixture slurry, the mixing ratio of the large particles X1 and the small particles X2 was changed to 90:10.
  • Example 5 A test cell was produced in the same manner as in Example 1, except that in the preparation of the first positive electrode mixture slurry, the mixing ratio of the large particles X1 and the small particles X2 was changed to 50:50.
  • Example 1 A test cell was produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only the first positive electrode mixture slurry.
  • Example 2 A test cell was produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only the second positive electrode mixture slurry.
  • Example 6 A test cell was produced in the same manner as in Example 1, except that the second positive electrode mixture slurry was prepared using lithium metal composite oxide X3 (NCM) synthesized by the following method.
  • NCM lithium metal composite oxide X3
  • a lithium metal composite oxide X3 (NCM) was obtained in the same manner as the lithium metal composite oxide X1, except that a composite hydroxide containing Ni, Co, and Mn in a molar ratio of 85:10:5 was synthesized by a coprecipitation method, and the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 ⁇ m.
  • Example 7 A test cell was produced in the same manner as in Example 6 except that a first positive electrode mixture slurry was prepared using a mixture of lithium metal composite oxide X4 (NCM) synthesized by the following method and lithium metal composite oxide X3 of Example 6 in a mass ratio of 80:20 as a positive electrode active material.
  • NCM lithium metal composite oxide X4
  • Lithium metal composite oxide X4 (NCM) was obtained in the same manner as lithium metal composite oxide X3, except that the pH and the amount of metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 ⁇ m.
  • Example 8> A test cell was produced in the same manner as in Example 1, except that the second positive electrode mixture slurry was prepared using lithium metal composite oxide X5 (NCM) synthesized by the following method.
  • NCM lithium metal composite oxide X5
  • a composite oxide was obtained in the same manner as the lithium metal composite oxide X1, except that a composite hydroxide containing Ni, Co, and Mn in a molar ratio of 50:20:30 was synthesized by coprecipitation, and the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 ⁇ m.
  • the obtained composite oxide was heated from room temperature to 550 ° C.
  • first firing temperature at a heating rate of 3 ° C./min (first heating rate) under an oxygen stream with an oxygen concentration of 95% (flow rate of 2 mL/min per 10 cm3 and 5 L/min per kg of the mixture).
  • second firing temperature at a heating rate of 1 ° C./min (second heating rate) and held at 650 ° C. for 3 hours.
  • the fired product was crushed and washed with water to obtain lithium metal composite oxide X5 (NCM).
  • Example 9 A test cell was produced in the same manner as in Example 8 except that a first positive electrode mixture slurry was prepared using a mixture of lithium metal composite oxide X6 (NCM) synthesized by the following method and lithium metal composite oxide X5 of Example 8 in a mass ratio of 80:20 as a positive electrode active material.
  • NCM lithium metal composite oxide X6
  • Lithium metal composite oxide X6 (NCM) was obtained in the same manner as lithium metal composite oxide X5, except that the pH and the amount of the metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 ⁇ m.
  • Each test cell of the examples and comparative examples was evaluated for discharge capacity (initial discharge capacity per unit mass of positive electrode active material), rapid charge performance (permeability of electrolyte), and cycle characteristics (capacity retention rate after cycle test) using the methods described below, and the evaluation results are shown in Tables 1 and 2.
  • the rapid charge performance shown in Tables 1 and 2 is a relative value with the evaluation result of Comparative Example 1 taken as 100, and a smaller value indicates better rapid charge performance.
  • the particle size distribution of the positive electrode active material When the particle size distribution of the positive electrode active material is measured by scraping off the positive electrode mixture layer, the particle size distribution of the first region has two peaks, while the particle size distribution of the first region has one peak, but the particle size distribution of the positive electrode active material taken from the boundary between each region has two peaks. However, compared to the particle size distribution of the first region alone, the peak intensity on the small particle side is greater.
  • the boundary between the first and second regions can also be identified by SEM observation of the cross section of the positive electrode. Large particles can be observed in the cross-sectional SEM image of the first region, but no large particles can be seen in the cross-sectional SEM image of the second region.
  • the test cell was charged at a constant current of 0.3 It in a temperature environment of 25° C. until the battery voltage reached 4.2 V, and then charged at a constant voltage of 0.02 It at 4.2 V. Thereafter, the test cell was discharged at a constant current of 0.5 It until the battery voltage reached 2.5 V, and the discharge capacity was determined.
  • Ethylene carbonate (EC) was dropped to a thickness of 3 ⁇ m on the surface of the positive electrode mixture layer, and the time (permeation time) until the EC penetrated from the surface of the mixture layer to the inside and disappeared was measured.
  • the shorter the permeation time the better the permeability of the electrolyte in the positive electrode mixture layer.
  • the permeability of the electrolyte is closely related to the rapid charging performance of the battery, and the better the permeability, the higher the rapid charging performance.
  • test cells of the examples have better electrolyte permeability than the test cell of Comparative Example 1. Therefore, the test cells of the examples have excellent rapid charging performance. In addition, all of the test cells of the examples have higher capacity than the test cell of Comparative Example 2. Note that the test cell of Comparative Example 1 has high capacity but poor rapid charging performance, and the test cell of Comparative Example 2 has excellent rapid charging performance but low capacity. From these results, it can be understood that a secondary battery with high capacity and excellent rapid charging performance can be realized by providing first and second regions with different particle size distributions of the positive electrode active material in the positive electrode mixture layer, for example by arranging the first and second regions alternately in the longitudinal direction of the positive electrode core.
  • a positive electrode for a secondary battery comprising: a positive electrode core; and a positive electrode mixture layer disposed on the positive electrode core, the positive electrode mixture layer including first regions and second regions disposed alternately in at least one of a length direction and a width direction of the positive electrode core, a first lithium metal composite oxide contained in the first region having a particle size distribution with two or more peaks, and a second lithium metal composite oxide contained in the second region having a particle size distribution with one peak.
  • Configuration 2 The positive electrode for a secondary battery according to Configuration 1, wherein the volumetric particle size distribution of the first lithium metal composite oxide includes a first peak existing in a particle size range of 10 ⁇ m to 40 ⁇ m and a second peak existing in a particle size range of 1 ⁇ m to 15 ⁇ m, the second peak being smaller than the first peak.
  • Configuration 3 The positive electrode for a secondary battery according to configuration 1 or 2, wherein the first regions and the second regions are alternately arranged in the longitudinal direction of the positive electrode core.
  • Configuration 4 The positive electrode for a secondary battery according to Configuration 3, wherein a length of the first region along the longitudinal direction of the positive electrode core body is longer than a length of the second region along the longitudinal direction of the positive electrode core body.
  • Configuration 5 The positive electrode for a secondary battery according to configuration 3 or 4, wherein the first region and the second region are formed across the entire width of the positive electrode core.
  • Configuration 6 The positive electrode for a secondary battery according to Configuration 1 or 2, wherein at least one of the first region and the second region is arranged in a stripe pattern, a lattice pattern, a dot pattern, or a honeycomb pattern when viewed from the front of the positive electrode mixture layer.
  • Configuration 7 The positive electrode for a secondary battery according to any one of configurations 1 to 6, wherein the intensity of the first peak is 0.5 to 9 times the intensity of the second peak.
  • Configuration 8 The positive electrode for a secondary battery according to any one of configurations 1 to 7, wherein the second lithium metal composite oxide has a volume-based median diameter of 1 ⁇ m or more and 15 ⁇ m or less.
  • Configuration 9 The positive electrode for a secondary battery according to any one of configurations 1 to 8, wherein the first and second lithium metal composite oxides contain Li, Ni, and Co, and also contain at least one of Mn and Al, and a ratio of Ni to the total number of moles of metal elements excluding Li is 50 mol % or more.
  • Configuration 10 A secondary battery comprising the positive electrode for secondary batteries according to any one of configurations 1 to 9, a negative electrode, and an electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A positive electrode (11) according to one example of an embodiment is provided with a positive electrode core body (30) and a positive electrode mixture layer (31) that is disposed on the positive electrode core body (30). The positive electrode mixture layer (31) comprises first regions (35) and second regions (36) which are alternately arranged in at least one of the length direction and the width direction of the positive electrode core body (30). A first lithium metal composite oxide contained in the first regions (35) has a particle size distribution which has two or more peaks; and a second lithium metal composite oxide contained in the second regions (36) has a particle size distribution which has one peak.

Description

二次電池用正極および二次電池Positive electrode for secondary battery and secondary battery
 本開示は、二次電池用正極、および当該正極を用いた二次電池に関する。 This disclosure relates to a positive electrode for a secondary battery and a secondary battery using the positive electrode.
 近年、リチウムイオン電池等の二次電池は、車載用途、蓄電用途など、高容量、高耐久、急速充電性能等が要求される用途に広く用いられている。二次電池の主要構成要素である正極は、これらの性能に大きく影響するため、正極について多くの検討が行われてきた。例えば、特許文献1には、正極活物質として、平均粒径が異なる2種類のリチウム金属複合酸化物を混合して用いた正極が開示されている。 In recent years, secondary batteries such as lithium-ion batteries have been widely used in applications requiring high capacity, high durability, and rapid charging performance, such as in-vehicle applications and power storage applications. The positive electrode, which is a major component of secondary batteries, has a significant effect on these performances, so much research has been done on the positive electrode. For example, Patent Document 1 discloses a positive electrode that uses a mixture of two types of lithium metal composite oxide with different average particle sizes as the positive electrode active material.
特許第7049551号Patent No. 7049551
 特許文献1には、正極の密度を高めて高容量化できる、との効果が記載されている。しかし、大粒子と小粒子を混合して正極合剤層を形成すると、合剤層の厚み方向における電解液の浸透が不十分となり急速充電性能が低下すると考えられる。特に、合剤層が高密度になれば、急速充電性能の低下がより顕著になる。本開示の目的は、高容量で、急速充電性能に優れた二次電池を実現可能な正極を提供することである。 Patent Document 1 describes the effect that the density of the positive electrode can be increased to achieve high capacity. However, when large particles and small particles are mixed to form a positive electrode mixture layer, it is believed that the penetration of the electrolyte in the thickness direction of the mixture layer is insufficient, resulting in a decrease in rapid charging performance. In particular, if the mixture layer becomes dense, the decrease in rapid charging performance becomes more significant. The purpose of this disclosure is to provide a positive electrode that can realize a secondary battery with high capacity and excellent rapid charging performance.
 本開示に係る二次電池用正極は、正極芯体と、正極芯体上に配置された正極合剤層とを備え、正極合剤層は、正極芯体の長さ方向および幅方向の少なくとも一方の方向に交互に配置された第1領域および第2領域を含み、第1領域に含まれる第1のリチウム金属複合酸化物は、ピークが2つ以上存在する粒度分布を有し、第2領域に含まれる第2のリチウム金属複合酸化物は、ピークが1つの粒度分布を有する。 The positive electrode for a secondary battery according to the present disclosure comprises a positive electrode core and a positive electrode mixture layer disposed on the positive electrode core, the positive electrode mixture layer including first and second regions arranged alternately in at least one of the length and width directions of the positive electrode core, the first lithium metal composite oxide included in the first region has a particle size distribution with two or more peaks, and the second lithium metal composite oxide included in the second region has a particle size distribution with one peak.
 本開示に係る二次電池は、上記正極と、負極と、電解質とを備える。 The secondary battery disclosed herein comprises the above-mentioned positive electrode, a negative electrode, and an electrolyte.
 本開示に係る正極によれば、高容量で、急速充電性能に優れた二次電池を提供できる。 The positive electrode disclosed herein can provide a secondary battery with high capacity and excellent rapid charging performance.
実施形態の一例である二次電池の断面図である。1 is a cross-sectional view of a secondary battery according to an embodiment; 実施形態の一例である正極の正面図である。FIG. 2 is a front view of a positive electrode according to an embodiment of the present invention. 図2中のAA線断面図である。3 is a cross-sectional view taken along line AA in FIG. 2. 正極の変形例を示す図である。FIG. 13 is a diagram showing a modified example of a positive electrode. 正極の変形例を示す図である。FIG. 13 is a diagram showing a modified example of a positive electrode.
 本発明者らは、上記課題について鋭意検討した結果、正極合剤層に正極活物質の粒度分布が異なる第1および第2の領域を設け、第1および第2の領域を正極芯体の長さ方向および幅方向の少なくとも一方の方向に交互に配置することにより、高容量でありながら、急速充電性能に優れた二次電池を実現することに成功した。ピークが1つの粒度分布を有する正極活物質により構成される第2領域には、電解液の浸透に好適な空隙が形成される。そして、この第2領域の機能により、合剤層全体における電解液の浸透性が大きく向上し、合剤層の厚み方向にも迅速に電解液が浸透する。その結果、優れた急速充電性能が得られる。 As a result of intensive research into the above problem, the inventors have succeeded in realizing a secondary battery that has high capacity and excellent rapid charging performance by providing first and second regions in the positive electrode mixture layer, each having a different particle size distribution of the positive electrode active material, and arranging the first and second regions alternately in at least one of the length direction and width direction of the positive electrode core. In the second region, which is made of positive electrode active material having a particle size distribution with one peak, voids suitable for the penetration of electrolyte are formed. Furthermore, the function of this second region greatly improves the permeability of the electrolyte throughout the mixture layer, and the electrolyte also quickly penetrates in the thickness direction of the mixture layer. As a result, excellent rapid charging performance is obtained.
 他方、ピークが2つ以上の粒度分布を有する正極活物質により構成される第1領域は、活物質の充填性が良好で高容量化に寄与する。そして、第1領域には、隣接する第2領域からも電解液が供給される。本開示に係る正極を用いた二次電池によれば、高容量と優れた急速充電性能を高度に両立できる。また、合剤層の全体に電解液がスムーズに供給されるため、合剤層の広範囲で均質な電池反応が起こり、サイクル特性も大きく改善される。 On the other hand, the first region, which is composed of a positive electrode active material having a particle size distribution with two or more peaks, has good filling properties of the active material, which contributes to high capacity. The first region is also supplied with electrolyte from the adjacent second region. A secondary battery using the positive electrode according to the present disclosure can achieve both high capacity and excellent rapid charging performance to a high degree. In addition, because the electrolyte is smoothly supplied to the entire mixture layer, a uniform battery reaction occurs over a wide area of the mixture layer, and cycle characteristics are also greatly improved.
 以下、図面を参照しながら、本開示に係る二次電池用正極、および当該正極を用いた二次電池の実施形態の一例について詳細に説明する。なお、以下で説明する複数の実施形態、変形例の各構成要素を選択的に組み合わせてなる構成は本開示の範囲に含まれている。 Below, with reference to the drawings, a detailed description will be given of an example of an embodiment of a positive electrode for a secondary battery according to the present disclosure, and a secondary battery using the positive electrode. Note that configurations that selectively combine the components of the multiple embodiments and modified examples described below are included within the scope of the present disclosure.
 以下で説明する実施形態では、二次電池として、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池10を例示するが、電池の外装体は円筒形の外装缶に限定されない。本開示に係る二次電池の他の実施形態としては、角形の外装缶を備えた角形電池、コイン形の外装缶を備えたコイン形電池、および金属層および樹脂層を含むラミネートシートで構成された外装体を備えたパウチ型電池が挙げられる。また、電極体は巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。また、電解質は水系電解質であってもよいが、本実施形態では非水電解質を用いるものとする。 In the embodiment described below, a cylindrical battery 10 in which a wound electrode body 14 is housed in a cylindrical exterior can 16 with a bottom is exemplified as a secondary battery, but the exterior body of the battery is not limited to a cylindrical exterior can. Other embodiments of the secondary battery according to the present disclosure include a prismatic battery with a prismatic exterior can, a coin battery with a coin-shaped exterior can, and a pouch-type battery with an exterior body composed of a laminate sheet including a metal layer and a resin layer. In addition, the electrode body is not limited to a wound type, and may be a laminated type electrode body in which multiple positive electrodes and multiple negative electrodes are alternately stacked with separators between them. In addition, the electrolyte may be an aqueous electrolyte, but a nonaqueous electrolyte is used in this embodiment.
 図1は、実施形態の一例である円筒形電池10の軸方向断面を模式的に示す図である。図1に示すように、円筒形電池10は、巻回型の電極体14と、非水電解質と、電極体14および非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、およびセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一端側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。 1 is a schematic diagram showing an axial cross section of a cylindrical battery 10 according to an embodiment of the present invention. As shown in FIG. 1, the cylindrical battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that contains the electrode body 14 and the non-aqueous electrolyte. The electrode body 14 has a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are wound in a spiral shape with the separator 13 interposed therebetween. The outer can 16 is a cylindrical metal container with a bottom that is open at one axial end, and the opening of the outer can 16 is closed by a sealing body 17. In the following description, for convenience of explanation, the sealing body 17 side of the battery is referred to as the top, and the bottom side of the outer can 16 is referred to as the bottom.
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等が用いられる。非水溶媒の一例としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびこれらの混合溶媒等が挙げられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体(例えば、フルオロエチレンカーボネート等)を含有していてもよい。電解質塩には、例えば、LiPF等のリチウム塩が使用される。 The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. For example, esters, ethers, nitriles, amides, and mixed solvents of two or more of these are used as the non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and mixed solvents of these. The non-aqueous solvent may contain a halogen-substituted product (e.g., fluoroethylene carbonate, etc.) in which at least a part of the hydrogen of these solvents is replaced with a halogen atom such as fluorine. For example, a lithium salt such as LiPF6 is used as the electrolyte salt.
 電極体14を構成する正極11、負極12、およびセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長さ方向および幅方向に長く形成される。セパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば、正極11を挟むように2枚配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。 The positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 are all long, strip-like bodies that are wound in a spiral shape and stacked alternately in the radial direction of the electrode body 14. The negative electrode 12 is formed to be slightly larger than the positive electrode 11 in order to prevent lithium precipitation. That is, the negative electrode 12 is formed to be longer in the length direction and width direction than the positive electrode 11. The separator 13 is formed to be at least slightly larger than the positive electrode 11, and for example, two separators 13 are arranged to sandwich the positive electrode 11. The electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。 Insulating plates 18, 19 are arranged above and below the electrode body 14. In the example shown in FIG. 1, the positive electrode lead 20 passes through a through hole in the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes outside the insulating plate 19 and extends toward the bottom side of the outer can 16. The positive electrode lead 20 is connected to the underside of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 and is electrically connected to the internal terminal plate 23, serves as the positive electrode terminal. The negative electrode lead 21 is connected to the inner bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as the negative electrode terminal.
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。 A gasket 28 is provided between the exterior can 16 and the sealing body 17 to ensure airtightness inside the battery. The exterior can 16 has a grooved portion 22 formed with a portion of the side surface that protrudes inward to support the sealing body 17. The grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior can 16, and supports the sealing body 17 on its upper surface. The sealing body 17 is fixed to the top of the exterior can 16 by the grooved portion 22 and the open end of the exterior can 16 that is crimped against the sealing body 17.
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、およびキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。 The sealing body 17 has a structure in which, in order from the electrode body 14 side, an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are stacked. Each member constituting the sealing body 17 has, for example, a disk or ring shape, and each member except for the insulating member 25 is electrically connected to each other. The lower valve body 24 and the upper valve body 26 are connected at their respective centers, and the insulating member 25 is interposed between their respective peripheral edges. When the internal pressure of the battery increases due to abnormal heat generation, the lower valve body 24 deforms and breaks so as to push the upper valve body 26 toward the cap 27, thereby cutting off the current path between the lower valve body 24 and the upper valve body 26. When the internal pressure increases further, the upper valve body 26 breaks, and gas is discharged from the opening of the cap 27.
 以下、電極体14を構成する正極11、負極12、セパレータ13について、特に正極11について詳説する。 The positive electrode 11, negative electrode 12, and separator 13 that make up the electrode body 14 will be described in detail below, with particular focus on the positive electrode 11.
 [正極]
 正極11は、正極芯体30と、正極芯体30上に配置された正極合剤層31とを有する。正極芯体30には、アルミニウム、アルミニウム合金、ステンレス鋼、チタンなどの正極11の電位範囲で安定な金属の箔、当該金属を表面に配置したフィルム等を用いることができる。正極合剤層31は、正極活物質、導電剤、および結着剤を含み、正極リード20が接続される部分を除く正極芯体30の両面に設けられることが好ましい。正極芯体30と正極合剤層31の間、又は正極合剤層31上には、無機物粒子および結着剤を含む保護層が配置されていてもよい。
[Positive electrode]
The positive electrode 11 has a positive electrode core 30 and a positive electrode mixture layer 31 arranged on the positive electrode core 30. For the positive electrode core 30, a foil of a metal stable in the potential range of the positive electrode 11, such as aluminum, an aluminum alloy, stainless steel, or titanium, or a film having the metal arranged on the surface, can be used. The positive electrode mixture layer 31 contains a positive electrode active material, a conductive agent, and a binder, and is preferably provided on both sides of the positive electrode core 30 except for the portion to which the positive electrode lead 20 is connected. A protective layer containing inorganic particles and a binder may be arranged between the positive electrode core 30 and the positive electrode mixture layer 31, or on the positive electrode mixture layer 31.
 正極11は、例えば、正極芯体30上に正極活物質、導電剤、及び結着剤を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合剤層31を正極芯体30の両面に形成することにより作製できる。正極合剤スラリーの分散媒には、例えば、N-メチル-2-ピロリドン(NMP)が用いられる。正極合剤スラリーは、導電剤、結着剤および分散媒を含む導電剤ペーストに、正極活物質を添加することにより調製されてもよい。正極合剤スラリーおよび導電剤ペーストは、分散剤を含んでいてもよい。 The positive electrode 11 can be produced, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder onto the positive electrode core 30, drying the coating, and then compressing it to form a positive electrode mixture layer 31 on both sides of the positive electrode core 30. For example, N-methyl-2-pyrrolidone (NMP) is used as the dispersion medium for the positive electrode mixture slurry. The positive electrode mixture slurry may be prepared by adding a positive electrode active material to a conductive agent paste containing a conductive agent, a binder, and a dispersion medium. The positive electrode mixture slurry and the conductive agent paste may contain a dispersant.
 詳しくは後述するが、正極合剤層31は、正極芯体30の長さ方向および幅方向の少なくとも一方の方向に交互に配置された、互いに物性が異なる第1領域および第2領域を含む。正極合剤層31は、少なくとも2種類の正極合剤スラリーを用いて形成される。 Although details will be described later, the positive electrode mixture layer 31 includes first and second regions, which have different physical properties and are arranged alternately in at least one of the length direction and width direction of the positive electrode core 30. The positive electrode mixture layer 31 is formed using at least two types of positive electrode mixture slurries.
 正極活物質には、リチウム金属複合酸化物が用いられる。リチウム金属複合酸化物に含有される金属元素としては、Li、Ni、Co、Mn、Al、Be、B、Na、Mg、Si、K、Ca、Sc、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Y、Zr、Nb、Mo、In、Sn、Sb、Ba、Ta、W、Pb、Bi等が挙げられる。好適なリチウム金属複合酸化物は、Li、Ni、およびCoを含有し、且つMnおよびAlの少なくとも一方を含有する。 A lithium metal composite oxide is used as the positive electrode active material. Metal elements contained in the lithium metal composite oxide include Li, Ni, Co, Mn, Al, Be, B, Na, Mg, Si, K, Ca, Sc, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, In, Sn, Sb, Ba, Ta, W, Pb, Bi, etc. A suitable lithium metal composite oxide contains Li, Ni, and Co, and also contains at least one of Mn and Al.
 リチウム金属複合酸化物は、例えば、層状岩塩構造を有する。層状岩塩構造の例としては、空間群R-3mに属する層状岩塩構造、空間群C2/mに属する層状岩塩構造等が挙げられる。中でも、高容量化、結晶構造の安定性の観点から、空間群R-3mに属する層状岩塩構造が好ましい。なお、複合酸化物中の元素の含有率は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、又はエネルギー分散型X線分析装置(EDX)により測定できる。 The lithium metal composite oxide has, for example, a layered rock salt structure. Examples of layered rock salt structures include layered rock salt structures belonging to space group R-3m and layered rock salt structures belonging to space group C2/m. Among these, from the viewpoints of high capacity and stability of the crystal structure, layered rock salt structures belonging to space group R-3m are preferred. The content of elements in the composite oxide can be measured using an inductively coupled plasma atomic emission spectrometer (ICP-AES), an electron probe microanalyzer (EPMA), or an energy dispersive X-ray analyzer (EDX).
 リチウム金属複合酸化物は、Liを除く金属元素の総モル数に対するNiの割合が50モル%以上であることが好ましく、80モル%以上であることがより好ましい。Niの含有率を50モル%以上とすることで、高容量の電池が得られ、本開示の構成を採用することによる効果がより顕著になる。Niの含有率は、Liを除く金属元素の総モル数に対して、85モル%以上であってもよく、90モル%以上であってもよい。Niの含有率の上限は、例えば、95モル%である。 The lithium metal composite oxide preferably has a Ni ratio of 50 mol% or more, more preferably 80 mol% or more, relative to the total number of moles of metal elements excluding Li. By making the Ni content 50 mol% or more, a high-capacity battery can be obtained, and the effect of adopting the configuration of the present disclosure becomes more pronounced. The Ni content may be 85 mol% or more, or may be 90 mol% or more, relative to the total number of moles of metal elements excluding Li. The upper limit of the Ni content is, for example, 95 mol%.
 リチウム金属複合酸化物がCoを含有する場合、Coの含有率は、Liを除く金属元素の総モル数に対して1モル%以上25モル%以下が好ましく、2モル%以上7モル%以下がより好ましい。この場合、材料コストを抑えながら、高容量と高耐久を両立できる。リチウム金属複合酸化物がMnを含有する場合、Mnの含有率は、例えば、Liを除く金属元素の総モル数に対してモル%以上20モル%以下である。この場合、高容量と高耐久を両立し易くなる。リチウム金属複合酸化物がAlを含有する場合、Alの含有率は、例えば、Liを除く金属元素の総モル数に対して0.1モル%以上7モル%以下である。 When the lithium metal composite oxide contains Co, the Co content is preferably 1 mol% to 25 mol% relative to the total number of moles of metal elements excluding Li, and more preferably 2 mol% to 7 mol%. In this case, high capacity and high durability can be achieved while keeping material costs down. When the lithium metal composite oxide contains Mn, the Mn content is, for example, mol% to 20 mol% relative to the total number of moles of metal elements excluding Li. In this case, it becomes easier to achieve both high capacity and high durability. When the lithium metal composite oxide contains Al, the Al content is, for example, 0.1 mol% to 7 mol% relative to the total number of moles of metal elements excluding Li.
 図2は、正極11の正面図であって、正極11を展開した状態を模式的に示す。図3は、図2中のAA線断面図である。図2および図3に示すように、正極合剤層31は、正極芯体30(正極11)の長さ方向に交互に配置された第1領域35および第2領域36を含む。第1領域35および第2領域36は、互いに物性が異なる領域であって、本実施形態では、正極芯体30の長さ方向に沿って交互に配置され、正極合剤層31(正極11)の正面視においてストライプ状に形成されている。 FIG. 2 is a front view of the positive electrode 11, and shows a schematic diagram of the positive electrode 11 in an expanded state. FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. As shown in FIGS. 2 and 3, the positive electrode mixture layer 31 includes first regions 35 and second regions 36 arranged alternately in the longitudinal direction of the positive electrode core 30 (positive electrode 11). The first regions 35 and second regions 36 have different physical properties, and in this embodiment, are arranged alternately along the longitudinal direction of the positive electrode core 30, and are formed in a striped pattern when viewed from the front of the positive electrode mixture layer 31 (positive electrode 11).
 正極11では、第1領域35に含まれる第1のリチウム金属複合酸化物が、ピークが2つ以上存在する粒度分布を有し、第2領域36に含まれる第2のリチウム金属複合酸化物が、ピークが1つの粒度分布を有する。本発明者らの検討の結果、正極合剤層31に正極活物質の粒度分布が異なる第1領域35と第2領域36を設け、当該各領域を正極芯体30の長さ方向に交互に配置することにより、高容量でありながら、急速充電性能に優れた円筒形電池10を実現できることが分かった。 In the positive electrode 11, the first lithium metal composite oxide contained in the first region 35 has a particle size distribution with two or more peaks, and the second lithium metal composite oxide contained in the second region 36 has a particle size distribution with one peak. As a result of the inventors' investigations, it was found that by providing the positive electrode mixture layer 31 with the first region 35 and the second region 36, which have different particle size distributions of the positive electrode active material, and by arranging these regions alternately in the longitudinal direction of the positive electrode core 30, it is possible to realize a cylindrical battery 10 that has both high capacity and excellent rapid charging performance.
 なお、本開示の目的を損なわない範囲で、第1領域35と第2領域36は正極活物質の粒度分布以外の物性(例えば、空隙率、BET比表面積など)が互いに異なっていてもよい。また、正極合剤層には、正極活物質の粒度分布が異なる3つ以上の領域が存在してもよい。 In addition, to the extent that the objective of this disclosure is not impaired, the first region 35 and the second region 36 may differ from each other in physical properties other than the particle size distribution of the positive electrode active material (e.g., porosity, BET specific surface area, etc.). Furthermore, the positive electrode mixture layer may have three or more regions with different particle size distributions of the positive electrode active material.
 正極11において、ピークが2つ以上の粒度分布を有する正極活物質により構成される第1領域35は、活物質の充填性が良好で高容量化に寄与する。他方、ピークが1つの粒度分布を有する正極活物質により構成される第2領域36には、電解液の浸透に好適な空隙が形成され易い。この第2領域36の機能により、正極合剤層31の全体における電解液の浸透性が大きく向上するため、優れた急速充電性能が得られる。また、第1領域35には、隣接する第2領域36からも電解液が供給される。第2領域36は電解液の供給パスとして機能し、正極合剤層31の全体に電解液がスムーズに供給されるため、正極合剤層31の広範囲で均質な電池反応が起こり、サイクル特性も改善される。 In the positive electrode 11, the first region 35, which is made of a positive electrode active material having a particle size distribution with two or more peaks, has good filling properties of the active material, which contributes to high capacity. On the other hand, in the second region 36, which is made of a positive electrode active material having a particle size distribution with one peak, voids suitable for the penetration of the electrolyte are easily formed. This function of the second region 36 greatly improves the permeability of the electrolyte throughout the positive electrode mixture layer 31, resulting in excellent rapid charging performance. In addition, the electrolyte is also supplied to the first region 35 from the adjacent second region 36. The second region 36 functions as a supply path for the electrolyte, and the electrolyte is smoothly supplied to the entire positive electrode mixture layer 31, so that a uniform battery reaction occurs over a wide area of the positive electrode mixture layer 31, and the cycle characteristics are also improved.
 第1領域35と第2領域36のBET比表面積は、実質的に同じであってもよく、第2領域36のBET比表面積が第1領域35のBET比表面積より大きくてもよい。各領域のBET比表面積は、正極芯体30から剥離した合剤層(各領域)をサンプルとして窒素ガスを用いたBET法により測定され、例えば、Macsorb社のHM model-1201等の市販の測定装置によって測定できる。例えば、第1領域35のBET比表面積は、1.5m/g以上2.5m/g以下であり、第2領域36のBET比表面積は、2.0m/g以上3.0m/g以下である。 The BET specific surface area of the first region 35 and the second region 36 may be substantially the same, or the BET specific surface area of the second region 36 may be larger than the BET specific surface area of the first region 35. The BET specific surface area of each region is measured by a BET method using nitrogen gas with the mixture layer (each region) peeled off from the positive electrode core 30 as a sample, and can be measured by a commercially available measuring device such as Macsorb's HM model-1201. For example, the BET specific surface area of the first region 35 is 1.5 m 2 /g or more and 2.5 m 2 /g or less, and the BET specific surface area of the second region 36 is 2.0 m 2 /g or more and 3.0 m 2 /g or less.
 第1領域35と第2領域36の空隙率は、実質的に同じであってもよいが、好ましくは第2領域36の空隙率の方が、第1領域35の空隙率より大きい。第1領域35では、正極活物質の充填密度が高くなり空隙率は小さくなり易い。第1領域35の空隙率は、例えば、10%以上30%以下であり、好ましくは15%以上25%以下である。第2領域36の空隙率は、例えば、15%以上35%以下であり、好ましくは20%以上30%以下である。 The porosity of the first region 35 and the second region 36 may be substantially the same, but preferably the porosity of the second region 36 is greater than that of the first region 35. In the first region 35, the packing density of the positive electrode active material is high and the porosity tends to be small. The porosity of the first region 35 is, for example, 10% to 30%, and preferably 15% to 25%. The porosity of the second region 36 is, for example, 15% to 35%, and preferably 20% to 30%.
 第1領域35および第2領域36の空隙率は、以下の方法で測定できる。
(1)イオンミリング装置を用いて、正極合剤層31の断面を露出させる。
(2)走査型電子顕微鏡(SEM)を用いて、露出させた正極合剤層31の断面の反射電子像を撮影する。反射電子像を撮影する際の倍率は、例えば、1000~5000倍である。
(3)正極合剤層31の断面のSEM画像をコンピュータに取り込み、画像解析ソフト(例えば、アメリカ国立衛生研究所製、ImageJ)を用いて、コントラストから3色に色分けし、中間色を空隙とする。
(4)処理画像から測定対象領域を選択して、当該領域内の空隙の総面積を求め、測定対象領域に占める空隙の割合(空隙率)を算出する。
The porosity of the first region 35 and the second region 36 can be measured by the following method.
(1) Using an ion milling device, a cross section of the positive electrode mixture layer 31 is exposed.
(2) Using a scanning electron microscope (SEM), a reflected electron image of the cross section of the exposed positive electrode mixture layer 31 is taken. The magnification when taking the reflected electron image is, for example, 1000 to 5000 times.
(3) The SEM image of the cross section of the positive electrode mixture layer 31 is input into a computer, and is color-coded into three colors based on contrast using image analysis software (for example, ImageJ manufactured by the National Institutes of Health), with intermediate colors representing voids.
(4) A measurement area is selected from the processed image, the total area of voids within that area is found, and the proportion of voids in the measurement area (porosity) is calculated.
 第1領域35と第2領域36は、上記の通り、正極芯体30の長さ方向に交互に配置され、ストライプ状に形成されている。第1領域35および第2領域36の正面視形状は特に限定されないが、図2に示す例では、正面視矩形状に形成されている。各第1領域35の形状および大きさは、同じでなくてもよいが、電極反応の均一化等の観点から実質的に同じであることが好ましい(第2領域36についても同様)。なお、極一部の領域の形状および大きさを異ならせた程度であれば、領域の形状および大きさが均一である場合と同様の効果が奏される。 As described above, the first regions 35 and the second regions 36 are alternately arranged in the longitudinal direction of the positive electrode core 30 and are formed in a striped pattern. There are no particular limitations on the shape of the first regions 35 and the second regions 36 when viewed from the front, but in the example shown in FIG. 2, they are formed in a rectangular shape when viewed from the front. The shape and size of each first region 35 do not have to be the same, but it is preferable that they are substantially the same from the standpoint of uniformity of the electrode reaction (the same applies to the second regions 36). Note that if only a small portion of the regions have different shapes and sizes, the same effect is achieved as when the regions have uniform shapes and sizes.
 第1領域35と第2領域36は、例えば、互いに異なる正極合剤スラリーを用いて形成できる。第1領域35を形成する第1の正極合剤スラリーを正極芯体30の長さ方向に沿って正極芯体30の表面に間欠塗布した後、第2領域36を形成する第2の正極合剤スラリーを第1の正極合剤スラリーが塗布されていない部分に間欠塗布することで、図2に例示するストライプが形成される。なお、第1および第2の正極合剤スラリーを正極芯体30の表面の異なる場所に同時に塗布してストライプを形成することも可能である。 The first region 35 and the second region 36 can be formed, for example, by using different positive electrode mixture slurries. After the first positive electrode mixture slurry that forms the first region 35 is intermittently applied to the surface of the positive electrode core 30 along the length of the positive electrode core 30, the second positive electrode mixture slurry that forms the second region 36 is intermittently applied to the parts where the first positive electrode mixture slurry is not applied, thereby forming the stripes shown in FIG. 2. It is also possible to simultaneously apply the first and second positive electrode mixture slurries to different places on the surface of the positive electrode core 30 to form the stripes.
 詳しくは後述するが、第1の正極合剤スラリーには体積基準のメジアン径(以下、「D50」という場合がある)が異なる2種類の正極活物質が添加され、第2の正極合剤スラリーには1種類の正極活物質が添加される。本明細書において、D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味する。 As will be described in more detail later, two types of positive electrode active materials with different volume-based median diameters (hereinafter sometimes referred to as "D50") are added to the first positive electrode mixture slurry, and one type of positive electrode active material is added to the second positive electrode mixture slurry. In this specification, D50 means the particle size at which the cumulative frequency in the volume-based particle size distribution is 50% from the smallest particle size.
 複数の第1領域35において、正極活物質の粒度分布等の物性は実質的に同じであることが好ましい。同じ第1の正極合剤スラリーを用いて各第1領域35を形成することにより、各第1領域35における正極活物質の粒度分布は実質的に同じになる。同様に、複数の第2領域36において、正極活物質の粒度分布等の物性は実質的に同じであることが好ましい。また、第1領域35の厚み方向において正極活物質の粒度分布は実質的に同じであり、例えば、第1領域35の正極芯体30の近傍と、正極芯体30から離れた第1領域35の表面近傍とで正極活物質の粒度分布は実質的に同じである(第2領域36についても同様)。第1領域35と第2領域36の厚みは、同程度であることが好ましい。 The physical properties such as particle size distribution of the positive electrode active material are preferably substantially the same in the multiple first regions 35. By forming each first region 35 using the same first positive electrode mixture slurry, the particle size distribution of the positive electrode active material in each first region 35 is substantially the same. Similarly, the physical properties such as particle size distribution of the positive electrode active material are preferably substantially the same in the multiple second regions 36. Furthermore, the particle size distribution of the positive electrode active material is substantially the same in the thickness direction of the first region 35. For example, the particle size distribution of the positive electrode active material is substantially the same in the vicinity of the positive electrode core 30 of the first region 35 and in the vicinity of the surface of the first region 35 away from the positive electrode core 30 (the same applies to the second region 36). The thicknesses of the first region 35 and the second region 36 are preferably approximately the same.
 正極芯体30の長さ方向に沿った第1領域35の長さは、正極芯体30の長さ方向に沿った第2領域36の長さ以下であってもよいが、好ましくは第2領域36の長さより長い。この場合、高容量と優れた急速充電性能をより高度に両立できる。本実施形態では、第1領域35および第2領域36の各々が、正極芯体30の長さ方向よりも幅方向に長く延びている。以下では、正極芯体30の長さ方向に沿った第1領域35の長さを「幅W1」とし、正極芯体30の長さ方向に沿った第2領域36の長さを「幅W2」とする。 The length of the first region 35 along the length direction of the positive electrode core 30 may be equal to or less than the length of the second region 36 along the length direction of the positive electrode core 30, but is preferably longer than the length of the second region 36. In this case, high capacity and excellent rapid charging performance can be more highly compatible. In this embodiment, each of the first region 35 and the second region 36 extends longer in the width direction than in the length direction of the positive electrode core 30. Hereinafter, the length of the first region 35 along the length direction of the positive electrode core 30 is referred to as "width W1", and the length of the second region 36 along the length direction of the positive electrode core 30 is referred to as "width W2".
 第1領域35と第2領域36は、正極芯体30の幅方向全長にわたって形成されていることが好ましい。この場合、高容量と優れた急速充電性能をより高度に両立できる。各領域の幅W1,W2は、正極芯体30の幅方向において変化していてもよいが、本実施形態において、各領域は正極芯体30の幅方向に沿って実質的に同じ幅で形成されている。また、各第1領域35の幅W1は実質的に同じであり、各第2領域36の幅W2も実質的に同じであるから、正極芯体30の長さ方向には第1領域35と第2領域36が規則的に繰り返されてなるストライプが形成される。 The first region 35 and the second region 36 are preferably formed over the entire width of the positive electrode core 30. In this case, high capacity and excellent rapid charging performance can be more effectively combined. The widths W1 and W2 of the regions may vary in the width direction of the positive electrode core 30, but in this embodiment, each region is formed with substantially the same width along the width direction of the positive electrode core 30. Furthermore, the width W1 of each first region 35 is substantially the same, and the width W2 of each second region 36 is also substantially the same, so that stripes of the first regions 35 and the second regions 36 are regularly repeated in the length direction of the positive electrode core 30.
 第1領域35の幅W1は、第2領域36の幅W2の1.1倍以上が好ましく、1.5倍以上がより好ましく、2.0倍以上又は2.5倍以上が特に好ましい。幅W2に対する幅W1の比率(W1/W2)の上限は特に限定されないが、一例としては、10.0倍、9.0倍、又は8.0倍である。比率(W1/W2)の好適な範囲の一例は、1.5倍以上10.0倍以下、1.5倍以上9.0倍以下、1.5倍以上8.0倍以下、又は2.0倍以上8.0倍以下である。好適な比率(W1/W2)は各領域の状態によっても異なるが、概ね比率(W1/W2)が当該範囲内であれば、高容量と優れた急速充電性能をより高度に両立できる。 The width W1 of the first region 35 is preferably 1.1 times or more, more preferably 1.5 times or more, and particularly preferably 2.0 times or more or 2.5 times or more, of the width W2 of the second region 36. The upper limit of the ratio (W1/W2) of the width W1 to the width W2 is not particularly limited, but examples are 10.0 times, 9.0 times, or 8.0 times. Examples of suitable ranges of the ratio (W1/W2) are 1.5 times or more and 10.0 times or less, 1.5 times or more and 9.0 times or less, 1.5 times or more and 8.0 times or less, or 2.0 times or more and 8.0 times or less. The suitable ratio (W1/W2) varies depending on the state of each region, but as long as the ratio (W1/W2) is generally within this range, high capacity and excellent rapid charging performance can be more highly compatible.
 第1領域35の幅W1は、例えば、1mm以上30mm以下であり、より好ましくは2mm以上20mm以下である。第2領域36の幅W2は、例えば0.5mm以上20mm以下であり、より好ましくは1mm以上15mm以下である。正極11の長さは、円筒形電池10の大きさ等によっても異なるが、一例としては40mm以上4000mm以下である。この場合、第1領域35と第2領域36は、正極芯体30の片側において、正極11の長さ方向にそれぞれ、例えば、1個以上2000個以下の数だけ配置される。正極11の長さ方向に並ぶ第1領域35と第2領域36の各々の個数は、上記幅W1,W2と正極11の長さから求められる。 The width W1 of the first region 35 is, for example, 1 mm or more and 30 mm or less, more preferably 2 mm or more and 20 mm or less. The width W2 of the second region 36 is, for example, 0.5 mm or more and 20 mm or less, more preferably 1 mm or more and 15 mm or less. The length of the positive electrode 11 varies depending on the size of the cylindrical battery 10, and is, for example, 40 mm or more and 4000 mm or less. In this case, the first region 35 and the second region 36 are arranged on one side of the positive electrode core 30 in the longitudinal direction of the positive electrode 11, for example, in the number of 1 to 2000. The number of each of the first regions 35 and second regions 36 arranged in the longitudinal direction of the positive electrode 11 is determined from the above widths W1 and W2 and the length of the positive electrode 11.
 第1領域35に含まれる正極活物質である第1のリチウム金属複合酸化物の体積基準の粒度分布には、例えば、10μm以上40μm以下の粒径範囲に存在する第1のピークと、1μm以上15μm以下の粒径範囲であって、且つ第1のピークよりも小さな粒径範囲に存在する第2のピークとが含まれる。この場合、活物質の充填性が向上する。第1のリチウム金属複合酸化物の粒度分布には3つ以上のピークが存在してもよいが、ピークの数は2つが好ましい。 The volumetric particle size distribution of the first lithium metal composite oxide, which is the positive electrode active material contained in the first region 35, includes, for example, a first peak in a particle size range of 10 μm to 40 μm, and a second peak in a particle size range of 1 μm to 15 μm, which is smaller than the first peak. In this case, the filling property of the active material is improved. The particle size distribution of the first lithium metal composite oxide may have three or more peaks, but the number of peaks is preferably two.
 上記第1のピークのピークトップは、12μm以上30μm以下の粒径範囲にあることが好ましく、15μm以上25μm以下の粒径範囲にあることがより好ましい。上記第2のピークのピークトップは、2μm以上12μm以下の粒径範囲にあることが好ましく、3μm以上10μm以下の粒径範囲にあることがより好ましい。第1領域35を形成する第1の正極合剤スラリーにD50が異なる2種類のリチウム金属複合酸化物を添加する場合、大粒子のD50が12μm以上30μm以下であることが好ましく、小粒子のD50が2μm以上12μm以下であることが好ましい。 The peak top of the first peak is preferably in the particle size range of 12 μm to 30 μm, and more preferably in the particle size range of 15 μm to 25 μm. The peak top of the second peak is preferably in the particle size range of 2 μm to 12 μm, and more preferably in the particle size range of 3 μm to 10 μm. When two types of lithium metal composite oxides with different D50 are added to the first positive electrode mixture slurry that forms the first region 35, the D50 of the large particles is preferably 12 μm to 30 μm, and the D50 of the small particles is preferably 2 μm to 12 μm.
 第1のピークと第2のピークの強度比は、特定の範囲に限定されず、第1のピーク強度と第2のピーク強度は同じであってもよい。第1のピークの強度は、例えば、第2のピークの強度の0.5倍以上9.0倍以下であり、好ましくは0.6倍以上5.0倍以下、より好ましくは1.2倍以上4.0倍以下、特に好ましくは1.5倍以上3.0倍以下である。この場合、活物質の充填性がさらに向上する。第1のピークと第2のピークの強度比は大粒子と小粒子の質量割合に対応し、大粒子の含有率が大きくなると、第2のピーク強度に対する第1のピーク強度の比率は大きくなる。 The intensity ratio of the first peak to the second peak is not limited to a specific range, and the first peak intensity and the second peak intensity may be the same. The intensity of the first peak is, for example, 0.5 to 9.0 times the intensity of the second peak, preferably 0.6 to 5.0 times, more preferably 1.2 to 4.0 times, and particularly preferably 1.5 to 3.0 times. In this case, the filling property of the active material is further improved. The intensity ratio of the first peak to the second peak corresponds to the mass ratio of large particles to small particles, and the ratio of the first peak intensity to the second peak intensity increases as the content of large particles increases.
 なお、第1領域35を形成する第1の正極合剤スラリーにおいて、D50が12μm以上30μm以下である大粒子と、D50が2μm以上12μm以下である小粒子との混合比(質量比)は、例えば、90:10~60:40である。この場合、第1および第2のピーク強度比を上記範囲内に調整できる。例えば、大粒子と小粒子の混合比が90:10である場合、第1のピーク強度と第2のピーク強度の比率は4程度であり、大粒子と小粒子の混合比が80:20の場合、ピーク強度比は2程度、大粒子と小粒子の混合比が50:50の場合、ピーク強度比は0.6程度である。  In the first positive electrode mixture slurry that forms the first region 35, the mixing ratio (mass ratio) of large particles having a D50 of 12 μm or more and 30 μm or less and small particles having a D50 of 2 μm or more and 12 μm or less is, for example, 90:10 to 60:40. In this case, the first and second peak intensity ratios can be adjusted within the above range. For example, when the mixing ratio of large particles to small particles is 90:10, the ratio of the first peak intensity to the second peak intensity is about 4, when the mixing ratio of large particles to small particles is 80:20, the peak intensity ratio is about 2, and when the mixing ratio of large particles to small particles is 50:50, the peak intensity ratio is about 0.6.
 第2領域36に含まれる正極活物質である第2のリチウム金属複合酸化物の体積基準の粒度分布には、上記の通り、ピークが1つだけ存在する。この場合、第2領域36には適度な空隙が形成され、電解液の浸透性が良好になる。なお、極小さな2つ目のピーク(例えば、1つ目のピーク強度の3%未満の強度のピーク)が存在する程度であれば、ピークが完全に1つである場合と同様の効果が奏される。第2のリチウム金属複合酸化物の粒度分布のピークは、例えば、1μm以上40μm以下の粒径範囲に存在し、好適な一例としては、1μm以上15μm以下の粒径範囲に存在する。第2のリチウム金属複合酸化物のD50は、例えば、1μm以上15μm以下である。 As described above, there is only one peak in the volumetric particle size distribution of the second lithium metal composite oxide, which is the positive electrode active material contained in the second region 36. In this case, appropriate voids are formed in the second region 36, improving the permeability of the electrolyte. If there is only a very small second peak (e.g., a peak with an intensity less than 3% of the intensity of the first peak), the same effect as when there is only one peak is achieved. The peak of the particle size distribution of the second lithium metal composite oxide is, for example, in the particle size range of 1 μm to 40 μm, and as a preferred example, in the particle size range of 1 μm to 15 μm. The D50 of the second lithium metal composite oxide is, for example, 1 μm to 15 μm.
 リチウム金属複合酸化物は、例えば、平均粒径が50nm以上5μm以下の一次粒子が凝集してなる二次粒子であってもよく、非凝集の単粒子であってもよい。本明細書において、非凝集の単粒子は、単一の一次粒子(内部に粒界を有さない単結晶の粒子)、又は5個以下の一次粒子が凝集して形成された二次粒子を意味するものとする。単粒子は、多数の一次粒子が凝集してなる二次粒子と比べて、粒子が硬く、正極製造時の圧縮により押し潰され難いという特徴がある。 The lithium metal composite oxide may be, for example, a secondary particle formed by agglomeration of primary particles having an average particle size of 50 nm or more and 5 μm or less, or may be a non-agglomerated single particle. In this specification, a non-agglomerated single particle means a single primary particle (a single crystal particle having no internal grain boundaries) or a secondary particle formed by agglomeration of five or less primary particles. Compared to secondary particles formed by agglomeration of many primary particles, a single particle is characterized by being harder and less likely to be crushed by compression during the manufacture of the positive electrode.
 第1領域35に含まれる第1のリチウム金属複合酸化物について、例えば、大粒子に二次粒子タイプを用い、小粒子に単粒子タイプを用いてもよい。なお、大粒子、小粒子のいずれも二次粒子タイプであってもよい。第2領域36に含まれる第2のリチウム金属複合酸化物も、二次粒子、単粒子のいずれであってもよく、例えば、第1のリチウム金属複合酸化物の小粒子と同種の複合酸化物を用いてもよい。 For the first lithium metal composite oxide contained in the first region 35, for example, the large particles may be of secondary particle type, and the small particles may be of single particle type. Both the large particles and the small particles may be of secondary particle type. The second lithium metal composite oxide contained in the second region 36 may also be of secondary particle type or single particle type, and for example, a composite oxide of the same type as the small particles of the first lithium metal composite oxide may be used.
 リチウム金属複合酸化物の粒度分布は、レーザー回折式粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。なお、リチウム金属複合酸化物の平均粒径は、正極合剤層31の断面画像中の粒子の外接円の直径を測定して求めることもでき、上記粒度分布の測定が難しい場合は、D50の代わりに当該平均粒径を適用できる。正極合剤層31の断面はクロスポリッシャー(CP)法により作製でき、断面画像はSEMにより撮像される。平均粒径は、SEM像より任意の100個の粒子の粒径を平均して算出できる。 The particle size distribution of the lithium metal composite oxide can be measured using a laser diffraction particle size distribution measuring device (e.g., MT3000II, manufactured by Microtrack Bell Co., Ltd.) with water as the dispersion medium. The average particle size of the lithium metal composite oxide can also be determined by measuring the diameter of the circumscribed circle of the particles in the cross-sectional image of the positive electrode mixture layer 31. If it is difficult to measure the above particle size distribution, this average particle size can be applied instead of D50. The cross-section of the positive electrode mixture layer 31 can be prepared by the cross polisher (CP) method, and the cross-sectional image is captured by SEM. The average particle size can be calculated by averaging the particle sizes of any 100 particles from the SEM image.
 リチウム金属複合酸化物を構成する一次粒子の平均粒径は、例えば、50nm以上5.0μm以下であり、好ましくは50nm以上1.0μm以下である。一次粒子の平均粒径は、二次粒子断面のSEM画像の解析により抽出された一次粒子の100個の外接円の直径を計測し、計測値を平均して算出される。 The average particle size of the primary particles constituting the lithium metal composite oxide is, for example, 50 nm or more and 5.0 μm or less, and preferably 50 nm or more and 1.0 μm or less. The average particle size of the primary particles is calculated by measuring the diameters of the circumscribed circles of 100 primary particles extracted by analyzing SEM images of the cross sections of the secondary particles, and averaging the measured values.
 リチウム金属複合酸化物は、例えば、NiおよびCoを含有し、且つMnおよびAlの少なくとも一方を含有する複合酸化物原料、および水酸化リチウム(LiOH)等のLi原料を混合して焼成することにより合成できる。焼成物は、粉砕、分級等がされてもよく、水洗されてもよい。Ni、Co等を含有する複合酸化物原料は、例えば、Ni、Co等を含有する複合水酸化物を析出(共沈)させ、当該複合水酸化物を熱処理することで得られる。 Lithium metal composite oxide can be synthesized, for example, by mixing and firing a composite oxide raw material containing Ni and Co and at least one of Mn and Al, and a Li raw material such as lithium hydroxide (LiOH). The fired product may be crushed, classified, etc., and may be washed with water. A composite oxide raw material containing Ni, Co, etc. can be obtained, for example, by precipitating (co-precipitating) a composite hydroxide containing Ni, Co, etc., and then heat-treating the composite hydroxide.
 上記複合水酸化物は、例えば、Ni、Co等を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば、8.5以上12.5以下)に調整することにより合成できる。複合水酸化物の粒径は、合成時のpHが高いほど小さくなる傾向にあり、また添加する金属塩の溶液量を調整することによっても制御可能である。粒径が異なるリチウム金属複合酸化物は、複合水酸化物の粒径を制御することで作り分けることができる。 The above composite hydroxides can be synthesized, for example, by dropping an alkaline solution such as sodium hydroxide into a stirred solution of metal salts containing Ni, Co, etc., and adjusting the pH to the alkaline side (for example, 8.5 to 12.5). The particle size of the composite hydroxide tends to be smaller as the pH during synthesis is higher, and can also be controlled by adjusting the amount of metal salt solution added. Lithium metal composite oxides with different particle sizes can be produced by controlling the particle size of the composite hydroxide.
 複合酸化物原料とLi原料の混合物の焼成工程は、第1の焼成工程と、第1の焼成工程よりも高温の第2の焼成工程とを含む多段焼成工程であってもよい。混合物の焼成は酸素雰囲気下で行われ、このとき、例えば、酸素濃度を85%以上に設定する。好適な第1の焼成温度は、混合物の組成によっても多少異なるが、一例としては500℃以上750℃以下である。好適な第2の焼成温度は、例えば、800℃以上1150℃以下である。各焼成工程の温度には50℃以上の温度差があることが好ましい。 The firing process for the mixture of the composite oxide raw material and the Li raw material may be a multi-stage firing process including a first firing process and a second firing process at a higher temperature than the first firing process. The mixture is fired in an oxygen atmosphere, and the oxygen concentration is set to 85% or more, for example. A suitable first firing temperature varies somewhat depending on the composition of the mixture, but an example is 500°C or higher and 750°C or lower. A suitable second firing temperature is, for example, 800°C or higher and 1150°C or lower. It is preferable that there is a temperature difference of 50°C or more between the temperatures of each firing process.
 非凝集の単粒子は、例えば、多数の一次粒子が凝集してなる二次粒子を合成する場合よりも、複合水酸化物を合成する際に使用するアルカリ性水溶液のpHを高くすることにより合成できる。或いは、アルカリ性水溶液のpHを高くする代わりに、又はこれに加えて、焼成温度を高くすることによっても合成できる。単粒子を合成する際のアルカリ性水溶液の好適なpHの一例は10~11であり、焼成温度の好適な一例は950~1100℃である。二次粒子を合成する際には、例えば、pHが9~10のアルカリ性水溶液を用い、焼成温度を950℃以下にする。 Non-aggregated single particles can be synthesized, for example, by increasing the pH of the alkaline aqueous solution used to synthesize the composite hydroxide compared to the case of synthesizing secondary particles formed by agglomeration of many primary particles. Alternatively, instead of or in addition to increasing the pH of the alkaline aqueous solution, they can also be synthesized by increasing the firing temperature. An example of a suitable pH for the alkaline aqueous solution when synthesizing single particles is 10 to 11, and an example of a suitable firing temperature is 950 to 1100°C. When synthesizing secondary particles, for example, an alkaline aqueous solution with a pH of 9 to 10 is used, and the firing temperature is set to 950°C or lower.
 正極合剤層31に含まれる導電剤としては、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンナノファイバー、グラフェン、金属繊維、金属粉末、導電性ウィスカーなどが例示できる。導電剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。第1領域35と第2領域36は、例えば、同種の導電剤を含むが、異なる導電剤を含んでいてもよい。 Examples of the conductive agent contained in the positive electrode mixture layer 31 include carbon black such as acetylene black and ketjen black, graphite, carbon nanotubes (CNT), carbon nanofibers, graphene, metal fibers, metal powder, conductive whiskers, etc. One type of conductive agent may be used alone, or multiple types may be used in combination. The first region 35 and the second region 36 may contain, for example, the same type of conductive agent, but may also contain different conductive agents.
 正極合剤層31に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の含フッ素樹脂、ポリエチレン、ポリプロピレン、エチレン-プロピレン-イソプレン共重合体、エチレン-プロピレン-ブタジエン共重合体等のオレフィン系樹脂、ポリアクリロニトリル(PAN)、ポリイミド、ポリアミド、エチレン-アクリル酸共重合体等のアクリル樹脂などが例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。結着剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。第1領域35と第2領域36は、例えば、同種の結着剤を含むが、異なる結着剤を含んでいてもよい。 Examples of the binder contained in the positive electrode mixture layer 31 include fluorine-containing resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), olefin resins such as polyethylene, polypropylene, ethylene-propylene-isoprene copolymer, and ethylene-propylene-butadiene copolymer, and acrylic resins such as polyacrylonitrile (PAN), polyimide, polyamide, and ethylene-acrylic acid copolymer. These resins may also be used in combination with carboxymethylcellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like. One type of binder may be used alone, or multiple types may be used in combination. The first region 35 and the second region 36 may contain, for example, the same type of binder, but may also contain different binders.
 導電剤および結着剤の含有率は、それぞれ、正極合剤層31の質量に対して、例えば、0.1質量%以上5質量%以下である。第1領域35と第2領域36における導電剤量は、例えば、実質的に同じであるが、各領域で導電剤の含有率が異なっていてもよい。一例としては、第2領域36における導電剤の含有率を第1領域35における導電剤の含有率より大きくすることが挙げられる。結着剤についても同様に、各領域における結着剤量は、例えば、実質的に同じであるが、各領域で結着剤の含有率が異なっていてもよい。 The conductive agent and binder content is, for example, 0.1 mass % or more and 5 mass % or less, respectively, relative to the mass of the positive electrode mixture layer 31. The conductive agent amount in the first region 35 and the second region 36 may, for example, be substantially the same, but the conductive agent content in each region may be different. One example is that the conductive agent content in the second region 36 is greater than the conductive agent content in the first region 35. Similarly, the binder amount in each region may, for example, be substantially the same, but the binder content in each region may be different.
 図4および図5は、正極11の変形例を示す正面図である。図2に示す例では、第1領域35と第2領域36が正極芯体30の長さ方向のみに沿って交互に配置されているが、図4および図5に示すように、第1領域35と第2領域36は正極芯体30の長さ方向および幅方向の両方向に交互に配置されていてもよい。第1領域35と第2領域36は、ランダムで不規則なパターンで配置されてもよいが、電池性能の安定化、電池反応の均一化等の観点から、規則的なパターンで配置されることが好ましい。 FIGS. 4 and 5 are front views showing modified examples of the positive electrode 11. In the example shown in FIG. 2, the first regions 35 and the second regions 36 are alternately arranged only along the length direction of the positive electrode core 30, but as shown in FIGS. 4 and 5, the first regions 35 and the second regions 36 may be alternately arranged in both the length direction and the width direction of the positive electrode core 30. The first regions 35 and the second regions 36 may be arranged in a random, irregular pattern, but from the viewpoints of stabilizing the battery performance and uniforming the battery reaction, it is preferable that they are arranged in a regular pattern.
 なお、第1領域35と第2領域36は正極11の幅方向のみに沿って交互に配置されてもよいが、ストライプ形状の場合、好ましくは図2に例示する形状である。円筒形電池10では、充放電に伴う電極体14の体積変化が大きくなると、電極体14の軸方向に電解液が押し出される場合がある。このため、電解液の浸透性が良好な第2領域36が軸方向に沿うように形成されたストライプ形状によれば、電極体14への電解液の供給がよりスムーズになる。 The first regions 35 and second regions 36 may be alternately arranged only along the width direction of the positive electrode 11, but in the case of a striped shape, the shape shown in FIG. 2 is preferable. In a cylindrical battery 10, when the volume change of the electrode body 14 due to charging and discharging becomes large, the electrolyte may be pushed out in the axial direction of the electrode body 14. For this reason, a striped shape in which the second regions 36, which have good electrolyte permeability, are formed along the axial direction allows the electrolyte to be supplied to the electrode body 14 more smoothly.
 図4に示すように、第2領域36は、正極11の正面視において格子状に配置されていてもよい。図4に示す例では、第2領域36の格子が正極11の幅方向および長さ方向に沿っているが、格子は幅方向および長さ方向に対して傾斜する方向に沿って形成されてもよい。第2領域36の格子に囲まれた第1領域35は、正面視正方形状を有するが、長方形状であってもよい。この場合も、格子状の第2領域36が電解液の供給パスとして機能し、電解液の一部は第2領域36を介して第1領域35に供給される。 As shown in FIG. 4, the second region 36 may be arranged in a lattice pattern when viewed from the front of the positive electrode 11. In the example shown in FIG. 4, the lattice of the second region 36 is aligned along the width and length directions of the positive electrode 11, but the lattice may be formed along a direction that is inclined relative to the width and length directions. The first region 35 surrounded by the lattice of the second region 36 has a square shape when viewed from the front, but may also have a rectangular shape. In this case, the lattice-shaped second region 36 also functions as a supply path for the electrolyte, and a portion of the electrolyte is supplied to the first region 35 via the second region 36.
 図5に示すように、第1領域35は、正極11の正面視においてドット状に配置されていてもよい。第1領域35は、例えば、正面視真円形状を有する。図5に示す例では、各第1領域35は、互いに同じ大きさで、正極11の長さ方向に等間隔で配置されている。正極11の幅方向には、2つの第1領域35のドットの窪みにドットを埋めるように密に配置されている。そして、第1領域35のドットの間を埋めるように第2領域36が形成されている。この場合も、第2領域36が電解液の供給パスとして機能する。 As shown in FIG. 5, the first regions 35 may be arranged in a dot pattern when viewed from the front of the positive electrode 11. The first regions 35 have, for example, a perfect circle shape when viewed from the front. In the example shown in FIG. 5, the first regions 35 are the same size and are arranged at equal intervals in the length direction of the positive electrode 11. In the width direction of the positive electrode 11, the first regions 35 are densely arranged so that the dots fill the recesses of the dots of the two first regions 35. Then, the second regions 36 are formed so as to fill the spaces between the dots of the first regions 35. In this case as well, the second regions 36 function as a supply path for the electrolyte.
 なお、第2領域36は、正極11の正面視においてハニカム状(六角形状)に形成されていてもよく、円形、四角形、六角形以外の形状を有していてもよい。また、第1領域35を格子状又はハニカム状に形成することも可能であり、或いは第2領域36をドット状に形成することも可能である。 The second region 36 may be formed in a honeycomb shape (hexagonal shape) when viewed from the front of the positive electrode 11, or may have a shape other than a circle, a square, or a hexagon. The first region 35 may also be formed in a lattice or honeycomb shape, or the second region 36 may be formed in a dot shape.
 [負極]
 図1に示すように、負極12は、負極芯体40と、負極芯体40上に配置された負極合剤層41とを有する。負極芯体40には、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金などの負極12の電位範囲で安定な金属の箔、当該金属を表面に配置したフィルム等を用いることができる。負極合剤層41は、負極活物質および結着剤を含み、負極リード21が接続される部分を除く負極芯体40の両面に設けられることが好ましい。負極芯体40と負極芯体40の間、又は負極合剤層41上には、無機物粒子および結着剤を含む保護層が配置されていてもよい。
[Negative electrode]
As shown in FIG. 1, the negative electrode 12 has a negative electrode core 40 and a negative electrode mixture layer 41 arranged on the negative electrode core 40. For the negative electrode core 40, a foil of a metal stable in the potential range of the negative electrode 12, such as copper, a copper alloy, stainless steel, nickel, or a nickel alloy, or a film having the metal arranged on the surface can be used. The negative electrode mixture layer 41 contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core 40 except for the portion to which the negative electrode lead 21 is connected. A protective layer containing inorganic particles and a binder may be arranged between the negative electrode core 40 and the negative electrode core 40 or on the negative electrode mixture layer 41.
 負極12は、例えば、負極芯体40の表面に負極活物質および結着剤を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合剤層41を負極芯体40の両面に形成することにより作製できる。負極合剤スラリーの分散媒には、例えば、水が用いられる。負極合剤層41には、CNT等の導電剤が含まれていてもよく、導電剤には正極11の場合と同様の導電剤を用いることができる。負極合剤スラリーは、分散剤を含んでいてもよい。 The negative electrode 12 can be produced, for example, by applying a negative electrode mixture slurry containing a negative electrode active material and a binder to the surface of the negative electrode core 40, drying the coating, and then compressing it to form a negative electrode mixture layer 41 on both sides of the negative electrode core 40. Water, for example, is used as the dispersion medium for the negative electrode mixture slurry. The negative electrode mixture layer 41 may contain a conductive agent such as CNT, and the conductive agent may be the same as that of the positive electrode 11. The negative electrode mixture slurry may contain a dispersant.
 負極活物質には、一般的に、リチウムイオンを可逆的に吸蔵、放出する炭素材料が用いられる。負極活物質には、Si、Sn等のLiと合金化する元素、当該元素を含有する材料などを用いてもよい。中でも、Siを含有する材料が好ましい。また、負極活物質として、金属リチウムに対する充放電の電位が炭素材料等より高いチタン酸リチウムなどを用いることもできる。負極活物質は、1種類を単独で用いてもよいし、複数種を併用してもよい。 A carbon material that reversibly absorbs and releases lithium ions is generally used as the negative electrode active material. Elements that alloy with Li, such as Si and Sn, and materials containing these elements may also be used as the negative electrode active material. Of these, materials containing Si are preferred. Lithium titanate, which has a higher charge/discharge potential relative to metallic lithium than carbon materials, may also be used as the negative electrode active material. One type of negative electrode active material may be used alone, or multiple types may be used in combination.
 負極活物質として機能する炭素材料は、例えば、天然黒鉛、人造黒鉛、ソフトカーボン、およびハードカーボンからなる群より選択される少なくとも1種である。中でも、炭素材料として、少なくとも、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、又はこれらの混合物を用いることが好ましい。炭素材料の体積基準のD50は、例えば、1μm以上30μm以下であり、好ましくは5μm以上25μm以下である。 The carbon material that functions as the negative electrode active material is, for example, at least one selected from the group consisting of natural graphite, artificial graphite, soft carbon, and hard carbon. Among them, it is preferable to use, as the carbon material, at least artificial graphite such as massive artificial graphite (MAG) and graphitized mesophase carbon microbeads (MCMB), natural graphite such as flake graphite, massive graphite, and earthy graphite, or a mixture of these. The volume-based D50 of the carbon material is, for example, 1 μm or more and 30 μm or less, and preferably 5 μm or more and 25 μm or less.
 負極活物質として機能するケイ素含有材料の一例としては、ケイ素合金、ケイ素化合物、およびSiを含有する複合材料が挙げられる。中でもSiを含有する複合材料が好ましい。好適な複合材料は、イオン伝導相と、イオン伝導相中に分散したSi相とを含む複合粒子である。イオン伝導相は、例えば、シリケート相、炭素相、シリサイド相、および酸化ケイ素相からなる群より選択される少なくとも1種である。Si相は、Siが微細な粒子状に分散して形成されている。イオン伝導相は、Si相よりも微細な粒子の集合によって構成される連続相である。ケイ素含有材料の体積基準のD50は、例えば、1μm以上20μm以下、又は1μm以上15μm以下である。 Examples of silicon-containing materials that function as negative electrode active materials include silicon alloys, silicon compounds, and composite materials containing Si. Among these, composite materials containing Si are preferred. A suitable composite material is a composite particle containing an ion-conducting phase and a Si phase dispersed in the ion-conducting phase. The ion-conducting phase is, for example, at least one selected from the group consisting of a silicate phase, a carbon phase, a silicide phase, and a silicon oxide phase. The Si phase is formed by dispersing Si in the form of fine particles. The ion-conducting phase is a continuous phase composed of a collection of particles finer than the Si phase. The volume-based D50 of the silicon-containing material is, for example, 1 μm to 20 μm, or 1 μm to 15 μm.
 負極合剤層41に含まれる結着剤には、正極11の場合と同様に、フッ素樹脂、オレフィン系樹脂、PAN、ポリイミド、ポリアミド、アクリル樹脂等を用いてもよいが、一般的には、ポリ酢酸ビニル、スチレン-ブタジエンゴム(SBR)等が用いられる。中でも、SBRを用いることが好ましい。結着剤は、1種類を単独で用いてもよいし、複数種を併用してもよい。また、負極合剤層41は、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などを含むことが好ましい。これらは、負極合剤スラリー中において増粘剤としても機能する。 As in the case of the positive electrode 11, the binder contained in the negative electrode mixture layer 41 may be fluororesin, olefin resin, PAN, polyimide, polyamide, acrylic resin, etc., but generally, polyvinyl acetate, styrene-butadiene rubber (SBR), etc. are used. Of these, it is preferable to use SBR. One type of binder may be used alone, or multiple types may be used in combination. In addition, it is preferable that the negative electrode mixture layer 41 contains CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), etc. These also function as thickeners in the negative electrode mixture slurry.
 [セパレータ]
 セパレータ13には、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、複層構造であってもよい。セパレータ13は、例えば、ポリオレフィン等の熱可塑性樹脂層およびセルロース繊維層を含む複層構造、ポリエチレン(PE)/ポリプロピレン(PP)の二層構造、又はPE/PP/PEの三層構造を有していてもよい。
[Separator]
A porous sheet having ion permeability and insulation is used for the separator 13. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. The material of the separator 13 is preferably a polyolefin such as polyethylene or polypropylene, or cellulose. The separator 13 may have a single layer structure or a multilayer structure. The separator 13 may have, for example, a multilayer structure including a thermoplastic resin layer such as a polyolefin and a cellulose fiber layer, a two-layer structure of polyethylene (PE)/polypropylene (PP), or a three-layer structure of PE/PP/PE.
 パレータ13と正極11および負極12の少なくとも一方との界面には、無機物フィラーを含むフィラー層が配置されていてもよい。無機物フィラーとしては、例えば、Ti、Al、Si、Mg等の金属元素を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、当該フィラーを含有するスラリーを正極11、負極12、又はセパレータ13の表面に塗布して形成することができる。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層(耐熱層)が配置されていてもよい。セパレータ13は、例えば、多孔性シートからなる基材と、基材上に配置されたフィラー層又は耐熱層とを有していてもよい。 A filler layer containing an inorganic filler may be disposed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12. Examples of inorganic fillers include oxides containing metal elements such as Ti, Al, Si, and Mg, and phosphate compounds. The filler layer can be formed by applying a slurry containing the filler to the surface of the positive electrode 11, the negative electrode 12, or the separator 13. In addition, a resin layer (heat-resistant layer) having high heat resistance such as aramid resin may be disposed on the surface of the separator 13. The separator 13 may have, for example, a substrate made of a porous sheet and a filler layer or a heat-resistant layer disposed on the substrate.
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be further explained below with reference to examples, but the present disclosure is not limited to these examples.
 <実施例1>
 [リチウム金属複合酸化物X1の合成]
 共沈法により、Ni、Co、Alを85:10:5のモル比で含有する複合水酸化物を合成し、600℃で熱処理して複合酸化物を得た。複合水酸化物の合成において、最終的に得られるリチウム金属複合酸化物のD50が15~20μm程度となるように、pHおよび金属塩溶液の量を調整した。得られた複合酸化物と、水酸化リチウムとを、複合酸化物中の金属元素(Me)と水酸化リチウムのLiとのモル比(Li/Me比)が1:1.020となるように混合した。この混合物を焼成炉に投入し、2段階の焼成を行った。
Example 1
[Synthesis of lithium metal composite oxide X1]
A composite hydroxide containing Ni, Co, and Al in a molar ratio of 85:10:5 was synthesized by coprecipitation, and heat-treated at 600°C to obtain a composite oxide. In the synthesis of the composite hydroxide, the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 μm. The obtained composite oxide and lithium hydroxide were mixed so that the molar ratio (Li/Me ratio) of the metal element (Me) in the composite oxide to Li in the lithium hydroxide was 1:1.020. This mixture was placed in a calcination furnace and calcined in two stages.
 焼成工程では、酸素濃度95%の酸素気流下(10cmあたり2mL/minおよび混合物1kgあたり5L/minの流量)、3℃/minの昇温速度(第1の昇温速度)で、室温から650℃(第1の焼成温度)まで昇温した。その後、1℃/minの昇温速度(第2の昇温速度)で、650℃から750℃(第2の焼成温度)まで昇温し、750℃で3時間保持した。当該焼成物を粉砕後、水洗して、リチウム金属複合酸化物X1(NCA)を得た。 In the calcination step, the mixture was heated from room temperature to 650 ° C (first calcination temperature) at a temperature increase rate of 3°C/min (first temperature increase rate) under an oxygen flow with an oxygen concentration of 95% (flow rate of 2mL/min per 10 cm3 and 5L/min per 1 kg of the mixture). The mixture was then heated from 650°C to 750°C (second calcination temperature) at a temperature increase rate of 1°C/min (second temperature increase rate), and held at 750°C for 3 hours. The calcined product was pulverized and washed with water to obtain lithium metal composite oxide X1 (NCA).
 マイクロトラック・ベル株式会社製、MT3000IIを用い、水を分散媒として測定したリチウム金属複合酸化物X1の体積基準のD50は17μmであった。SEM画像から、当該複合酸化物は、平均粒径500nmの一次粒子が凝集して形成された二次粒子であることが確認された。以下、リチウム金属複合酸化物X1を「大粒子X1」という場合がある。 The volumetric D50 of lithium metal composite oxide X1 was measured using an MT3000II manufactured by Microtrack Bell Co., Ltd., with water as the dispersion medium, and was found to be 17 μm. From the SEM image, it was confirmed that the composite oxide was a secondary particle formed by the aggregation of primary particles with an average particle size of 500 nm. Hereinafter, lithium metal composite oxide X1 may be referred to as "large particle X1".
 [リチウム金属複合酸化物X2の合成]
 最終的に得られるリチウム金属複合酸化物のD50が3~8μm程度となるように、複合水酸化物合成時のpHおよび金属塩溶液の量を調整したこと以外は、リチウム金属複合酸化物X1と同様の方法でリチウム金属複合酸化物X2(NCA)を得た。
[Synthesis of lithium metal composite oxide X2]
Lithium metal composite oxide X2 (NCA) was obtained in the same manner as lithium metal composite oxide X1, except that the pH and the amount of the metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 μm.
 マイクロトラック・ベル株式会社製、MT3000IIを用い、水を分散媒として測定したリチウム金属複合酸化物X2の体積基準のD50は5μmであった。SEM画像から、当該複合酸化物は、平均粒径500nmの一次粒子が凝集して形成された二次粒子であることが確認された。以下、リチウム金属複合酸化物X2を「小粒子X2」という場合がある。 The volumetric D50 of lithium metal composite oxide X2 was measured using an MT3000II manufactured by Microtrack Bell Co., Ltd., with water as the dispersion medium, and was found to be 5 μm. From the SEM image, it was confirmed that the composite oxide was a secondary particle formed by the aggregation of primary particles with an average particle size of 500 nm. Hereinafter, lithium metal composite oxide X2 may be referred to as "small particles X2."
 [第1の正極合剤スラリーの調製]
 正極活物質として、大粒子X1と小粒子X2を80:20の質量比で混合したものを用いた。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)を、98:1:1の固形分質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて第1の正極合剤スラリーを調製した。
[Preparation of first positive electrode mixture slurry]
As the positive electrode active material, a mixture of large particles X1 and small particles X2 in a mass ratio of 80: 20 was used. The positive electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) were mixed in a solid content mass ratio of 98: 1: 1, and a first positive electrode mixture slurry was prepared using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
 [第2の正極合剤スラリーの調製]
 正極活物質として、小粒子X2のみを用いたこと以外は、第1の正極合剤スラリーと同様の方法で第2の正極合剤スラリーを調製した。
[Preparation of second positive electrode mixture slurry]
A second positive electrode mixture slurry was prepared in the same manner as the first positive electrode mixture slurry, except that only the small particles X2 were used as the positive electrode active material.
 [正極の作製]
 第1の正極合剤スラリーをアルミニウム箔からなる正極芯体の両面に間欠塗布して第1の塗膜を形成し、当該塗膜を乾燥させた。その後、第2の正極合剤スラリーを第1の塗膜が存在しない部分に塗布して第2の塗膜を形成し、当該塗膜を乾燥させた。このとき、正極芯体の長さ方向に第1および第2の塗膜が交互に形成されるように、即ち図2に示すようなストライプ状となるように、第1および第2の正極合剤スラリーを塗布した。なお、第1の塗膜が正極合剤層の第1領域となり、第2の塗膜が正極合剤層の第2領域となる。本実施例では、第1領域の幅と第2領域の幅の比率を75:25に調整した。第1領域の幅の平均値は7.5mm、第2領域の幅の平均値は2.5mmであった。
[Preparation of Positive Electrode]
The first positive electrode mixture slurry was intermittently applied to both sides of a positive electrode core made of aluminum foil to form a first coating film, and the coating film was dried. Then, the second positive electrode mixture slurry was applied to the portion where the first coating film was not present to form a second coating film, and the coating film was dried. At this time, the first and second positive electrode mixture slurries were applied so that the first and second coating films were alternately formed in the length direction of the positive electrode core, that is, in a striped shape as shown in FIG. 2. The first coating film became the first region of the positive electrode mixture layer, and the second coating film became the second region of the positive electrode mixture layer. In this example, the ratio of the width of the first region to the width of the second region was adjusted to 75:25. The average width of the first region was 7.5 mm, and the average width of the second region was 2.5 mm.
 次に、ローラーを用いて塗膜(正極合剤層)を圧延し、正極芯体を所定の電極サイズに切断して、正極芯体の両面に正極合剤層が形成された正極を得た。なお、正極の一部に正極芯体の表面が露出した露出部を設けた。正極合剤層の第1領域に含まれるリチウム金属複合酸化物について、マイクロトラック・ベル株式会社製、MT3000IIを用い、水を分散媒として測定した粒度分布には、17μmと5μmの位置に2つのピークが存在する。第2領域に含まれるリチウム金属複合酸化物について、同様に測定した粒度分布には、5μmの位置に1つのピークが存在する。 The coating (positive electrode mixture layer) was then rolled using a roller, and the positive electrode core was cut to a specified electrode size to obtain a positive electrode in which a positive electrode mixture layer was formed on both sides of the positive electrode core. An exposed portion was provided on a part of the positive electrode, where the surface of the positive electrode core was exposed. The particle size distribution of the lithium metal composite oxide contained in the first region of the positive electrode mixture layer was measured using an MT3000II manufactured by Microtrack Bell Inc., with water as the dispersion medium, and showed two peaks at 17 μm and 5 μm. The particle size distribution of the lithium metal composite oxide contained in the second region was similarly measured, and showed one peak at 5 μm.
 [負極の作製]
 負極活物質として、天然黒鉛とケイ素含有材料(酸化ケイ素相中に微細なSi相が分散した複合材料)を98:2の質量比で混合したものを用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)のディスパージョンを、100:1:1の固形分質量比で混合し、分散媒として水を用いて負極合剤スラリーを調製した。当該負極合剤スラリーを銅箔からなる負極芯体の両面に塗布し、塗膜を乾燥させた後、ローラーを用いて塗膜を圧延し、所定の電極サイズに切断して、負極芯体の両面に負極合剤層が形成された負極を得た。なお、負極の一部に負極芯体の表面が露出した露出部を設けた。
[Preparation of negative electrode]
As the negative electrode active material, a mixture of natural graphite and a silicon-containing material (a composite material in which fine Si phases are dispersed in a silicon oxide phase) in a mass ratio of 98:2 was used. The negative electrode active material, a dispersion of sodium carboxymethylcellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed in a solid content mass ratio of 100:1:1, and a negative electrode mixture slurry was prepared using water as a dispersion medium. The negative electrode mixture slurry was applied to both sides of a negative electrode core made of copper foil, and the coating film was dried. The coating film was then rolled using a roller and cut to a predetermined electrode size to obtain a negative electrode in which a negative electrode mixture layer was formed on both sides of the negative electrode core. An exposed portion in which the surface of the negative electrode core was exposed was provided in a part of the negative electrode.
 [非水電解液の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)を、3:3:4の体積比(25℃)で混合した混合溶媒に対して、LiPFを1.2モル/リットルの濃度で溶解させて非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
A non-aqueous electrolyte solution was prepared by dissolving LiPF6 at a concentration of 1.2 mol/L in a mixed solvent of ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) in a volume ratio of 3:3:4 (25 ° C.).
 [試験セル(非水電解質二次電池)の作製]
 上記正極の露出部にアルミニウムリードを、上記負極の露出部にニッケルリードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回し、巻回型の電極体を作製した。この電極体を有底円筒形状の外装缶内に収容し、上記非水電解液を注入した後、外装缶の開口部を封口体で塞いで試験セルを得た。
[Preparation of test cell (non-aqueous electrolyte secondary battery)]
An aluminum lead was attached to the exposed portion of the positive electrode, and a nickel lead was attached to the exposed portion of the negative electrode, and the positive and negative electrodes were spirally wound with a polyolefin separator interposed therebetween to prepare a wound electrode assembly. This electrode assembly was placed in a cylindrical outer can with a bottom, and the nonaqueous electrolyte was poured into it, and the opening of the outer can was then sealed with a sealer to obtain a test cell.
 <実施例2>
 正極合剤層の第1領域の幅と第2領域の幅の比率を50:50に変更したこと以外は、実施例1と同様にして試験セルを作製した。
Example 2
A test cell was fabricated in the same manner as in Example 1, except that the ratio of the width of the first region to the width of the second region of the positive electrode mixture layer was changed to 50:50.
 <実施例3>
 正極合剤層の第1領域の幅と第2領域の幅の比率を25:75に変更したこと以外は、実施例1と同様にして試験セルを作製した。
Example 3
A test cell was fabricated in the same manner as in Example 1, except that the ratio of the width of the first region to the width of the second region of the positive electrode mixture layer was changed to 25:75.
 <実施例4>
 第1の正極合剤スラリーの調製において、大粒子X1と小粒子X2の混合比を90:10に変更したこと以外は、実施例1と同様にして試験セルを作製した。
Example 4
A test cell was produced in the same manner as in Example 1, except that in the preparation of the first positive electrode mixture slurry, the mixing ratio of the large particles X1 and the small particles X2 was changed to 90:10.
 <実施例5>
 第1の正極合剤スラリーの調製において、大粒子X1と小粒子X2の混合比を50:50に変更したこと以外は、実施例1と同様にして試験セルを作製した。
Example 5
A test cell was produced in the same manner as in Example 1, except that in the preparation of the first positive electrode mixture slurry, the mixing ratio of the large particles X1 and the small particles X2 was changed to 50:50.
 <比較例1>
 第1の正極合剤スラリーのみを用いて正極合剤層を形成したこと以外は、実施例1と同様にして試験セルを作製した。
<Comparative Example 1>
A test cell was produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only the first positive electrode mixture slurry.
 <比較例2>
 第2の正極合剤スラリーのみを用いて正極合剤層を形成したこと以外は、実施例1と同様にして試験セルを作製した。
<Comparative Example 2>
A test cell was produced in the same manner as in Example 1, except that the positive electrode mixture layer was formed using only the second positive electrode mixture slurry.
 <実施例6>
 下記の方法により合成されるリチウム金属複合酸化物X3(NCM)を用いて第2の正極合剤スラリーを調製したこと以外は、実施例1と同様にして試験セルを作製した。
 [リチウム金属複合酸化物X3の合成]
 共沈法により、Ni、Co、Mnを85:10:5のモル比で含有する複合水酸化物を合成したこと、および最終的に得られるリチウム金属複合酸化物のD50が3~8μm程度となるように、pHおよび金属塩溶液の量を調整したこと以外は、リチウム金属複合酸化物X1と同様の方法でリチウム金属複合酸化物X3(NCM)を得た。
Example 6
A test cell was produced in the same manner as in Example 1, except that the second positive electrode mixture slurry was prepared using lithium metal composite oxide X3 (NCM) synthesized by the following method.
[Synthesis of lithium metal composite oxide X3]
A lithium metal composite oxide X3 (NCM) was obtained in the same manner as the lithium metal composite oxide X1, except that a composite hydroxide containing Ni, Co, and Mn in a molar ratio of 85:10:5 was synthesized by a coprecipitation method, and the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 μm.
 <実施例7>
 正極活物質として、下記の方法により合成されるリチウム金属複合酸化物X4(NCM)と、実施例6のリチウム金属複合酸化物X3を80:20の質量比で混合したものを用いて第1の正極合剤スラリーを調製したこと以外は、実施例6と同様にして試験セルを作製した。
 [リチウム金属複合酸化物X4の合成]
 最終的に得られるリチウム金属複合酸化物のD50が15~20μm程度となるように、複合水酸化物合成時のpHおよび金属塩溶液の量を調整したこと以外は、リチウム金属複合酸化物X3と同様の方法でリチウム金属複合酸化物X4(NCM)を得た。
Example 7
A test cell was produced in the same manner as in Example 6 except that a first positive electrode mixture slurry was prepared using a mixture of lithium metal composite oxide X4 (NCM) synthesized by the following method and lithium metal composite oxide X3 of Example 6 in a mass ratio of 80:20 as a positive electrode active material.
[Synthesis of lithium metal composite oxide X4]
Lithium metal composite oxide X4 (NCM) was obtained in the same manner as lithium metal composite oxide X3, except that the pH and the amount of metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 μm.
 <実施例8>
 下記の方法により合成されるリチウム金属複合酸化物X5(NCM)を用いて第2の正極合剤スラリーを調製したこと以外は、実施例1と同様にして試験セルを作製した。
 [リチウム金属複合酸化物X5の合成]
 共沈法により、Ni、Co、Mnを50:20:30のモル比で含有する複合水酸化物を合成したこと、および最終的に得られるリチウム金属複合酸化物のD50が3~8μm程度となるように、pHおよび金属塩溶液の量を調整したこと以外は、リチウム金属複合酸化物X1と同様の方法で複合酸化物を得た。得られた複合酸化物を、酸素濃度95%の酸素気流下(10cm3あたり2mL/minおよび混合物1kgあたり5L/minの流量)、3℃/minの昇温速度(第1の昇温速度)で、室温から550℃(第1の焼成温度)まで昇温した。その後、1℃/minの昇温速度(第2の昇温速度)で、550℃から650℃(第2の焼成温度)まで昇温し、650℃で3時間保持した。当該焼成物を粉砕後、水洗して、リチウム金属複合酸化物X5(NCM)を得た。
<Example 8>
A test cell was produced in the same manner as in Example 1, except that the second positive electrode mixture slurry was prepared using lithium metal composite oxide X5 (NCM) synthesized by the following method.
[Synthesis of lithium metal composite oxide X5]
A composite oxide was obtained in the same manner as the lithium metal composite oxide X1, except that a composite hydroxide containing Ni, Co, and Mn in a molar ratio of 50:20:30 was synthesized by coprecipitation, and the pH and the amount of the metal salt solution were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 3 to 8 μm. The obtained composite oxide was heated from room temperature to 550 ° C. (first firing temperature) at a heating rate of 3 ° C./min (first heating rate) under an oxygen stream with an oxygen concentration of 95% (flow rate of 2 mL/min per 10 cm3 and 5 L/min per kg of the mixture). Thereafter, the temperature was raised from 550 ° C. to 650 ° C. (second firing temperature) at a heating rate of 1 ° C./min (second heating rate) and held at 650 ° C. for 3 hours. The fired product was crushed and washed with water to obtain lithium metal composite oxide X5 (NCM).
 <実施例9>
 正極活物質として、下記の方法により合成されるリチウム金属複合酸化物X6(NCM)と、実施例8のリチウム金属複合酸化物X5を80:20の質量比で混合したものを用いて第1の正極合剤スラリーを調製したこと以外は、実施例8と同様にして試験セルを作製した。
 [リチウム金属複合酸化物X6の合成]
 最終的に得られるリチウム金属複合酸化物のD50が15~20μm程度となるように、複合水酸化物合成時のpHおよび金属塩溶液の量を調整したこと以外は、リチウム金属複合酸化物X5と同様の方法でリチウム金属複合酸化物X6(NCM)を得た。
<Example 9>
A test cell was produced in the same manner as in Example 8 except that a first positive electrode mixture slurry was prepared using a mixture of lithium metal composite oxide X6 (NCM) synthesized by the following method and lithium metal composite oxide X5 of Example 8 in a mass ratio of 80:20 as a positive electrode active material.
[Synthesis of lithium metal composite oxide X6]
Lithium metal composite oxide X6 (NCM) was obtained in the same manner as lithium metal composite oxide X5, except that the pH and the amount of the metal salt solution during the synthesis of the composite hydroxide were adjusted so that the D50 of the finally obtained lithium metal composite oxide was about 15 to 20 μm.
 実施例および比較例の各試験セルについて、下記の方法により、放電容量(正極活物質の単位質量あたりの初期放電容量)、急速充電性能(電解液の浸透性)、およびサイクル特性(サイクル試験後の容量維持率)の評価を行い、評価結果を表1および表2に示した。表1および表2に示す急速充電性能は、比較例1の評価結果を100とする相対値であり、数値が小さいほど急速充電性能に優れることを意味する。 Each test cell of the examples and comparative examples was evaluated for discharge capacity (initial discharge capacity per unit mass of positive electrode active material), rapid charge performance (permeability of electrolyte), and cycle characteristics (capacity retention rate after cycle test) using the methods described below, and the evaluation results are shown in Tables 1 and 2. The rapid charge performance shown in Tables 1 and 2 is a relative value with the evaluation result of Comparative Example 1 taken as 100, and a smaller value indicates better rapid charge performance.
 なお、正極合剤層を削って正極活物質の粒度分布を測定すると、第1領域の粒度分布には2つのピークが存在し、第1領域の粒度分布には1つのピークが存在するが、各領域の境界から採取した正極活物質の粒度分布には、2つのピークが存在する。但し、第1領域単体の粒度分布と比較して、小粒子側のピーク強度が大きくなる。また、正極断面のSEM観察によっても第1領域と第2領域の境界を特定できる。第1領域の断面SEM画像には大粒子が観察されるが、第2領域の断面SEM画像には大粒子が見られない。 When the particle size distribution of the positive electrode active material is measured by scraping off the positive electrode mixture layer, the particle size distribution of the first region has two peaks, while the particle size distribution of the first region has one peak, but the particle size distribution of the positive electrode active material taken from the boundary between each region has two peaks. However, compared to the particle size distribution of the first region alone, the peak intensity on the small particle side is greater. The boundary between the first and second regions can also be identified by SEM observation of the cross section of the positive electrode. Large particles can be observed in the cross-sectional SEM image of the first region, but no large particles can be seen in the cross-sectional SEM image of the second region.
 [放電容量の評価]
 試験セルを、25℃の温度環境下、0.3Itで電池電圧が4.2Vになるまで定電流充電した後、4.2Vで電流値が0.02Itになるまで定電圧充電した。その後、0.5Itで電池電圧が2.5Vになるまで定電流放電し、放電容量を求めた。
[Evaluation of Discharge Capacity]
The test cell was charged at a constant current of 0.3 It in a temperature environment of 25° C. until the battery voltage reached 4.2 V, and then charged at a constant voltage of 0.02 It at 4.2 V. Thereafter, the test cell was discharged at a constant current of 0.5 It until the battery voltage reached 2.5 V, and the discharge capacity was determined.
 [急速充電性能の評価]
 正極合剤層の表面にエチレンカーボネート(EC)を3μm滴下し、ECが合剤層表面から内部に浸透して消失するまでの時間(浸透時間)を計測した。この浸透時間が短いほど、正極合剤層の電解液の浸透性に優れることを意味する。電解液の浸透性は、電池の急速充電性能と密接に関連し、浸透性に優れるほど急速充電性能が高くなる。
[Evaluation of rapid charging performance]
Ethylene carbonate (EC) was dropped to a thickness of 3 μm on the surface of the positive electrode mixture layer, and the time (permeation time) until the EC penetrated from the surface of the mixture layer to the inside and disappeared was measured. The shorter the permeation time, the better the permeability of the electrolyte in the positive electrode mixture layer. The permeability of the electrolyte is closely related to the rapid charging performance of the battery, and the better the permeability, the higher the rapid charging performance.
 [サイクル特性の評価]
 試験セルを、25℃の温度環境下、0.3Itで電池電圧が4.2Vになるまで定電流充電した後、4.2Vで電流値が0.02Itになるまで定電圧充電した。その後、0.5Itで電池電圧が2.5Vになるまで定電流放電した。この充放電を1サイクルとして、400サイクル行い、1サイクル目の放電容量と、300サイクル目の放電容量を求めて、下記式により容量維持率を算出した。
 容量維持率(%)=(300サイクル目放電容量÷1サイクル目放電容量)×100
[Evaluation of cycle characteristics]
The test cell was charged at a constant current of 0.3 It in a temperature environment of 25° C. until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current value reached 0.02 It. Thereafter, the test cell was discharged at a constant current of 0.5 It until the battery voltage reached 2.5 V. This charge/discharge cycle was counted as one cycle, and 400 cycles were performed. The discharge capacity at the first cycle and the discharge capacity at the 300th cycle were determined, and the capacity retention rate was calculated by the following formula.
Capacity retention rate (%)=(300th cycle discharge capacity/1st cycle discharge capacity)×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の試験セルはいずれも、比較例1の試験セルと比べて電解液の浸透性が良好である。よって、実施例の試験セルは急速充電性能に優れる。また、実施例の試験セルはいずれも、比較例2の試験セルと比べて高容量である。なお、比較例1の試験セルは、高容量であるが急速充電性能に劣り、比較例2の試験セルは急速充電性能に優れるが容量が低い。この結果から、正極合剤層に正極活物質の粒度分布が異なる第1および第2の領域を設けて、例えば、第1および第2の領域を正極芯体の長さ方向に交互に配置することにより、高容量で急速充電性能に優れた二次電池を実現できることが理解される。 As shown in Table 1, all of the test cells of the examples have better electrolyte permeability than the test cell of Comparative Example 1. Therefore, the test cells of the examples have excellent rapid charging performance. In addition, all of the test cells of the examples have higher capacity than the test cell of Comparative Example 2. Note that the test cell of Comparative Example 1 has high capacity but poor rapid charging performance, and the test cell of Comparative Example 2 has excellent rapid charging performance but low capacity. From these results, it can be understood that a secondary battery with high capacity and excellent rapid charging performance can be realized by providing first and second regions with different particle size distributions of the positive electrode active material in the positive electrode mixture layer, for example by arranging the first and second regions alternately in the longitudinal direction of the positive electrode core.
 表2に示す結果から、正極活物質の組成を変化させた場合も、正極合剤層の第1および第2領域の機能により、高容量と優れた急速充電性能を両立できることが理解される。実施例の試験セルでは、正極活物質の組成に依らず優れた急速充電性能が得られる。 From the results shown in Table 2, it can be seen that even when the composition of the positive electrode active material is changed, it is possible to achieve both high capacity and excellent rapid charging performance due to the functions of the first and second regions of the positive electrode mixture layer. In the test cells of the examples, excellent rapid charging performance is obtained regardless of the composition of the positive electrode active material.
 本開示は、以下の実施形態によりさらに説明される。
 構成1:正極芯体と、前記正極芯体上に配置された正極合剤層とを備え、前記正極合剤層は、前記正極芯体の長さ方向および幅方向の少なくとも一方の方向に交互に配置された第1領域および第2領域を含み、前記第1領域に含まれる第1のリチウム金属複合酸化物は、ピークが2つ以上存在する粒度分布を有し、前記第2領域に含まれる第2のリチウム金属複合酸化物は、ピークが1つの粒度分布を有する、二次電池用正極。
 構成2:第1のリチウム金属複合酸化物の体積基準の粒度分布には、10μm以上40μm以下の粒径範囲に存在する第1のピークと、1μm以上15μm以下の粒径範囲であって、且つ前記第1のピークよりも小さな粒径範囲に存在する第2のピークとが含まれる、構成1に記載の二次電池用正極。
 構成3:前記第1領域および前記第2領域は、前記正極芯体の長さ方向に交互に配置されている、構成1又は2に記載の二次電池用正極。
 構成4:前記正極芯体の長さ方向に沿った前記第1領域の長さは、前記正極芯体の長さ方向に沿った前記第2領域の長さより長い、構成3に記載の二次電池用正極。
 構成5:前記第1領域および前記第2領域は、前記正極芯体の幅方向全長にわたって形成されている、構成3又は4に記載の二次電池用正極。
 構成6:前記第1領域および前記第2領域の少なくとも一方は、前記正極合剤層の正面視において、ストライプ状、格子状、ドット状、又はハニカム状に配置されている、構成1又は2に記載の二次電池用正極。
 構成7:前記第1のピークの強度は、前記第2のピークの強度の0.5倍以上9倍以下である、構成1~6のいずれか1つに記載の二次電池用正極。
 構成8:前記第2のリチウム金属複合酸化物の体積基準のメジアン径は、1μm以上15μm以下である、構成1~7のいずれか1つに記載の二次電池用正極。
 構成9:前記第1および前記第2のリチウム金属複合酸化物は、Li、Ni、およびCoを含有し、且つMnおよびAlの少なくとも一方を含有し、Liを除く金属元素の総モル数に対するNiの割合が50モル%以上である、構成1~8のいずれか1つに記載の二次電池用正極。
 構成10:構成1~9のいずれか1つに記載の二次電池用正極と、負極と、電解質とを備える、二次電池。
The present disclosure is further illustrated by the following embodiments.
Configuration 1: A positive electrode for a secondary battery, comprising: a positive electrode core; and a positive electrode mixture layer disposed on the positive electrode core, the positive electrode mixture layer including first regions and second regions disposed alternately in at least one of a length direction and a width direction of the positive electrode core, a first lithium metal composite oxide contained in the first region having a particle size distribution with two or more peaks, and a second lithium metal composite oxide contained in the second region having a particle size distribution with one peak.
Configuration 2: The positive electrode for a secondary battery according to Configuration 1, wherein the volumetric particle size distribution of the first lithium metal composite oxide includes a first peak existing in a particle size range of 10 μm to 40 μm and a second peak existing in a particle size range of 1 μm to 15 μm, the second peak being smaller than the first peak.
Configuration 3: The positive electrode for a secondary battery according to configuration 1 or 2, wherein the first regions and the second regions are alternately arranged in the longitudinal direction of the positive electrode core.
Configuration 4: The positive electrode for a secondary battery according to Configuration 3, wherein a length of the first region along the longitudinal direction of the positive electrode core body is longer than a length of the second region along the longitudinal direction of the positive electrode core body.
Configuration 5: The positive electrode for a secondary battery according to configuration 3 or 4, wherein the first region and the second region are formed across the entire width of the positive electrode core.
Configuration 6: The positive electrode for a secondary battery according to Configuration 1 or 2, wherein at least one of the first region and the second region is arranged in a stripe pattern, a lattice pattern, a dot pattern, or a honeycomb pattern when viewed from the front of the positive electrode mixture layer.
Configuration 7: The positive electrode for a secondary battery according to any one of configurations 1 to 6, wherein the intensity of the first peak is 0.5 to 9 times the intensity of the second peak.
Configuration 8: The positive electrode for a secondary battery according to any one of configurations 1 to 7, wherein the second lithium metal composite oxide has a volume-based median diameter of 1 μm or more and 15 μm or less.
Configuration 9: The positive electrode for a secondary battery according to any one of configurations 1 to 8, wherein the first and second lithium metal composite oxides contain Li, Ni, and Co, and also contain at least one of Mn and Al, and a ratio of Ni to the total number of moles of metal elements excluding Li is 50 mol % or more.
Configuration 10: A secondary battery comprising the positive electrode for secondary batteries according to any one of configurations 1 to 9, a negative electrode, and an electrolyte.
 10 円筒形電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 正極芯体、31 正極合剤層、35 第1領域、36 第2領域、40 負極芯体、41 負極合剤層
 
REFERENCE SIGNS LIST 10 Cylindrical battery, 11 Positive electrode, 12 Negative electrode, 13 Separator, 14 Electrode body, 16 Outer can, 17 Sealing body, 18, 19 Insulating plate, 20 Positive electrode lead, 21 Negative electrode lead, 22 Grooved portion, 23 Internal terminal plate, 24 Lower valve body, 25 Insulating member, 26 Upper valve body, 27 Cap, 28 Gasket, 30 Positive electrode core, 31 Positive electrode mixture layer, 35 First region, 36 Second region, 40 Negative electrode core, 41 Negative electrode mixture layer

Claims (10)

  1.  正極芯体と、前記正極芯体上に配置された正極合剤層とを備え、
     前記正極合剤層は、前記正極芯体の長さ方向および幅方向の少なくとも一方の方向に交互に配置された第1領域および第2領域を含み、
     前記第1領域に含まれる第1のリチウム金属複合酸化物は、ピークが2つ以上存在する粒度分布を有し、
     前記第2領域に含まれる第2のリチウム金属複合酸化物は、ピークが1つの粒度分布を有する、二次電池用正極。
    A positive electrode core and a positive electrode mixture layer disposed on the positive electrode core,
    the positive electrode mixture layer includes first regions and second regions alternately arranged in at least one of a length direction and a width direction of the positive electrode core,
    the first lithium metal composite oxide contained in the first region has a particle size distribution with two or more peaks;
    The second lithium metal composite oxide contained in the second region has a particle size distribution with one peak.
  2.  第1のリチウム金属複合酸化物の体積基準の粒度分布には、10μm以上40μm以下の粒径範囲に存在する第1のピークと、1μm以上15μm以下の粒径範囲であって、且つ前記第1のピークよりも小さな粒径範囲に存在する第2のピークとが含まれる、請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the volumetric particle size distribution of the first lithium metal composite oxide includes a first peak present in a particle size range of 10 μm to 40 μm and a second peak present in a particle size range of 1 μm to 15 μm, the second peak being smaller than the first peak.
  3.  前記第1領域および前記第2領域は、前記正極芯体の長さ方向に交互に配置されている、請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the first region and the second region are arranged alternately in the longitudinal direction of the positive electrode core.
  4.  前記正極芯体の長さ方向に沿った前記第1領域の長さは、前記正極芯体の長さ方向に沿った前記第2領域の長さより長い、請求項3に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 3, wherein the length of the first region along the length direction of the positive electrode core is longer than the length of the second region along the length direction of the positive electrode core.
  5.  前記第1領域および前記第2領域は、前記正極芯体の幅方向全長にわたって形成されている、請求項3に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 3, wherein the first region and the second region are formed over the entire width of the positive electrode core.
  6.  前記第1領域および前記第2領域の少なくとも一方は、前記正極合剤層の正面視において、ストライプ状、格子状、ドット状、又はハニカム状に配置されている、請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein at least one of the first region and the second region is arranged in a stripe pattern, a lattice pattern, a dot pattern, or a honeycomb pattern when viewed from the front of the positive electrode mixture layer.
  7.  前記第1のピークの強度は、前記第2のピークの強度の0.5倍以上9倍以下である、請求項2に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 2, wherein the intensity of the first peak is 0.5 to 9 times the intensity of the second peak.
  8.  前記第2のリチウム金属複合酸化物の体積基準のメジアン径は、1μm以上15μm以下である、請求項2に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 2, wherein the volume-based median diameter of the second lithium metal composite oxide is 1 μm or more and 15 μm or less.
  9.  前記第1および前記第2のリチウム金属複合酸化物は、Li、Ni、およびCoを含有し、且つMnおよびAlの少なくとも一方を含有し、Liを除く金属元素の総モル数に対するNiの割合が50モル%以上である、請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the first and second lithium metal composite oxides contain Li, Ni, and Co, and also contain at least one of Mn and Al, and the ratio of Ni to the total number of moles of metal elements excluding Li is 50 mol % or more.
  10.  請求項1~9のいずれか一項に記載の二次電池用正極と、
     負極と、
     電解質と、
     を備える、二次電池。
     
    The positive electrode for a secondary battery according to any one of claims 1 to 9,
    A negative electrode;
    An electrolyte;
    A secondary battery comprising:
PCT/JP2023/036155 2022-10-31 2023-10-04 Positive electrode for secondary batteries, and secondary battery WO2024095667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-174961 2022-10-31
JP2022174961 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095667A1 true WO2024095667A1 (en) 2024-05-10

Family

ID=90930380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036155 WO2024095667A1 (en) 2022-10-31 2023-10-04 Positive electrode for secondary batteries, and secondary battery

Country Status (1)

Country Link
WO (1) WO2024095667A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175739A (en) * 2010-02-23 2011-09-08 Hitachi Ltd Lithium secondary battery, and manufacturing method therefor
JP2013114847A (en) * 2011-11-28 2013-06-10 Panasonic Corp Lithium ion secondary batty and method for manufacturing the same
JP2013246900A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Secondary battery
JP2018137187A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Lithium ion secondary battery and method for manufacturing the same
JP2018535520A (en) * 2015-12-10 2018-11-29 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including the same
WO2021132115A1 (en) * 2019-12-25 2021-07-01 三洋電機株式会社 Electrode for secondary batteries, and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175739A (en) * 2010-02-23 2011-09-08 Hitachi Ltd Lithium secondary battery, and manufacturing method therefor
JP2013114847A (en) * 2011-11-28 2013-06-10 Panasonic Corp Lithium ion secondary batty and method for manufacturing the same
JP2013246900A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Secondary battery
JP2018535520A (en) * 2015-12-10 2018-11-29 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including the same
JP2018137187A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Lithium ion secondary battery and method for manufacturing the same
WO2021132115A1 (en) * 2019-12-25 2021-07-01 三洋電機株式会社 Electrode for secondary batteries, and secondary battery

Similar Documents

Publication Publication Date Title
JP5175826B2 (en) Active material particles and use thereof
WO2010051565A1 (en) Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
JP7324119B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020195091A1 (en) Secondary battery
WO2023054041A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2021241027A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2024095667A1 (en) Positive electrode for secondary batteries, and secondary battery
WO2024095686A1 (en) Positive electrode for secondary battery, and secondary battery
WO2020189324A1 (en) Secondary cell
JP7325050B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2024095670A1 (en) Positive electrode for secondary batteries, and secondary battery
WO2024024364A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2023204077A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2024090148A1 (en) Non-aqueous electrolyte secondary battery
WO2024004578A1 (en) Non-aqueous electrolyte secondary battery
WO2024070385A1 (en) Nonaqueous electrolyte secondary battery
WO2023189467A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2022070648A1 (en) Non-aqueous electrolyte secondary battery
WO2021220626A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2023068229A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
WO2024062866A1 (en) Positive electrode active material for secondary batteries, and secondary battery
WO2024004577A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7496533B2 (en) Secondary battery
WO2024062848A1 (en) Secondary battery positive electrode active material and secondary battery
WO2023074427A1 (en) Nonaqueous electrolyte secondary battery