WO2024095639A1 - Light receiving element and electronic device - Google Patents

Light receiving element and electronic device Download PDF

Info

Publication number
WO2024095639A1
WO2024095639A1 PCT/JP2023/034818 JP2023034818W WO2024095639A1 WO 2024095639 A1 WO2024095639 A1 WO 2024095639A1 JP 2023034818 W JP2023034818 W JP 2023034818W WO 2024095639 A1 WO2024095639 A1 WO 2024095639A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
region
amplifier transistor
insulating film
pixel
Prior art date
Application number
PCT/JP2023/034818
Other languages
French (fr)
Japanese (ja)
Inventor
光児 布村
千広 荒井
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024095639A1 publication Critical patent/WO2024095639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • This disclosure relates to a light receiving element and an electronic device.
  • CMOS image sensors include a type in which pixel signals photoelectrically converted by photodiodes are read out to a source follower circuit for all pixels simultaneously. Reading out pixel signals from all pixels simultaneously, as in this type of CMOS image sensor, results in high power consumption. On the other hand, if you try to drive the amplifier transistor of the source follower circuit in a lower current range than before in order to reduce power consumption, it is expected that random noise (RN) will worsen. Thermal noise in the source follower circuit has a large impact on this deterioration of random noise.
  • the present disclosure therefore provides a light receiving element and electronic device capable of reducing random noise.
  • the light receiving element includes a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal.
  • a source follower circuit including an amplifier transistor that amplifies the pixel signal.
  • an insulating film is formed directly below each of the drain region and source region of the amplifier transistor.
  • the impurity concentration of the semiconductor well region between the drain region and the source region may be a concentration that is depleted to the same depth as the bottom ends of the drain region and the source region, or to a position deeper than the bottom ends while the amplifier transistor is operating.
  • the impurity concentration may be 10 times or more lower than 4e17 (cm ⁇ 3 ).
  • the semiconductor well region may also be an epitaxially grown layer of silicon.
  • the semiconductor well region may also have a silicon germanium layer directly below a channel region formed between the drain region and the source region while the amplifier transistor is in operation.
  • the thickness of the insulating film may also be at least deeper than the depletion layer that is generated while the amplifier transistor is in operation.
  • the thickness of the insulating film may be within 10% of the thickness of the semiconductor substrate on which the amplifier transistor is formed.
  • the insulating film may also surround the amplifier transistor.
  • each of the drain region and the source region may be a polysilicon film.
  • the insulating film may also be formed directly below a channel region that is formed between the drain region and the source region while the amplifier transistor is in operation.
  • the channel region may also be formed on a Si(110) surface.
  • the amplifier transistor may also be a Fin-type MOS transistor.
  • the amplifier transistor may also be disposed on the same semiconductor substrate as the photoelectric conversion circuit.
  • the amplifier transistor may also be disposed on a different semiconductor substrate from the photoelectric conversion circuit.
  • An electronic device includes a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal.
  • a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light
  • a source follower circuit including an amplifier transistor that amplifies the pixel signal.
  • an insulating film is formed directly below each of the drain region and source region of the amplifier transistor.
  • FIG. 1 is a block diagram showing an example of the configuration of a CMOS image sensor according to a first embodiment
  • FIG. 2 is a diagram showing a circuit configuration of a pixel in a pixel array portion.
  • 1 is a diagram showing an example of a stacked structure of a CMOS image sensor according to a first embodiment
  • 11 is a plan view showing an example of the layout of an upper pixel array unit.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG. 4.
  • 1A to 1C are cross-sectional views showing a step of forming a silicon oxide film on a semiconductor substrate.
  • 1A to 1C are cross-sectional views showing a step of forming an insulating film in a semiconductor substrate.
  • FIG. 11A to 11C are cross-sectional views showing a step of etching a part of an insulating film.
  • FIG. 2 is a cross-sectional view showing a selective epitaxial growth process.
  • FIG. 2 is a cross-sectional view showing a non-selective epitaxial growth step.
  • FIG. 11 is a cross-sectional view showing a planarization process.
  • 1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region.
  • 10A to 10C are cross-sectional views showing another example of a process for forming a silicon oxide film on a semiconductor substrate.
  • 10A to 10C are cross-sectional views showing another example of a process for forming an insulating film in a semiconductor substrate.
  • 11A to 11C are cross-sectional views showing a step of dividing an insulating film.
  • 10A to 10C are cross-sectional views showing another example of a step of etching a part of an insulating film.
  • FIG. 2 is a cross-sectional view showing a selective epitaxial growth process.
  • FIG. 2 is a cross-sectional view showing a non-selective epitaxial growth step.
  • FIG. 11 is a cross-sectional view showing a planarization process.
  • 1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region.
  • FIG. 11 is a cross-sectional view showing a structure of a first amplifier transistor according to a second embodiment.
  • FIG. 1 is a perspective view showing a structure of a general Fin-type MOS transistor.
  • FIG. 11 is a cross-sectional view showing a structure of a first amplifier transistor according to a third embodiment.
  • 1A to 1C are cross-sectional views showing a process for forming a semiconductor substrate.
  • 1A to 1C are cross-sectional views showing a step of forming a stopper film in a semiconductor substrate.
  • 1A to 1C are cross-sectional views showing a process of forming a trench for an ESS.
  • 1A to 1C are cross-sectional views showing a process of forming an ESS.
  • FIG. 11A to 11C are cross-sectional views showing a step of forming an insulating film in the trench and the ESS.
  • FIG. 11 is a cross-sectional view showing a planarization process.
  • 1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a first modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a second modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a third modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a fourth modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a first modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a second modified example.
  • FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a fourth modified example.
  • 17 is a cross-sectional view taken along the line BB shown in FIG. 16.
  • 17 is a cross-sectional view of the periphery of a transfer transistor and a first selection transistor in the layout shown in FIG. 16.
  • 13 is a cross-sectional view in which a Fin-type MOS transistor is applied to a first amplifier transistor according to a fourth modified example.
  • FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a fifth modified example.
  • FIG. 13 is a diagram showing a circuit configuration of a pixel according to a sixth modified example.
  • FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a sixth modified example.
  • FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a seventh modified example.
  • FIG. 13 is a diagram showing a configuration of a CMOS image sensor according to a fourth embodiment.
  • FIG. 11 is a cross-sectional view of a part of a CMOS image sensor according to a fourth embodiment, cut in the vertical direction.
  • FIG. 13 is a block diagram showing an example of the configuration of an electronic device according to a fifth embodiment.
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system; 4 is an explanatory diagram showing an example of the installation positions of an outside-vehicle information detection unit and an imaging unit;
  • First Embodiment Fig. 1 is a block diagram showing an example of the configuration of a CMOS image sensor according to the first embodiment.
  • the CMOS image sensor 1 shown in Fig. 1 includes a pixel array section 10, a vertical drive section 20, a column processing section 30, a horizontal drive section 40, a system control section 50, a signal processing section 60, and a memory section 70.
  • the pixel array section 10 has a plurality of pixels arranged two-dimensionally in a matrix. Each pixel has a photoelectric conversion element that generates and internally accumulates an electric charge whose amount corresponds to the amount of incident light. The circuit configuration of the pixel will be described later.
  • pixel array section 10 has pixel drive lines 80 connected to each pixel row, and vertical signal lines 90 connected to each pixel column.
  • the vertical drive unit 20 is composed of a shift register, an address decoder, etc., and drives each pixel of the pixel array unit 10 on a row basis, etc.
  • One end of a pixel drive line 80 is connected to the output terminal of the vertical drive unit 20 corresponding to each pixel row.
  • the column processing unit 30 has a signal processing circuit for each pixel column of the pixel array unit 10. Each signal processing circuit of the column processing unit 30 performs signal processing such as noise removal processing such as CDS (Correlated Double Sampling) processing and A/D (Analog/Digital) conversion processing on the pixel signals output from each pixel of the selected row through the vertical signal line 90.
  • the column processing unit 30 temporarily holds the pixel signals after signal processing.
  • the horizontal drive unit 40 is composed of a shift register, an address decoder, etc., and sequentially selects the signal processing circuits of the column processing unit 30. Through selective scanning by this horizontal drive unit 40, pixel signals that have been signal-processed by each signal processing circuit of the column processing unit 30 are output in sequence to the signal processing unit 60.
  • the system control unit 50 is composed of a timing generator that generates various timing signals, and controls the vertical drive unit 20, column processing unit 30, and horizontal drive unit 40 based on the various timing signals generated by the timing generator.
  • the signal processing unit 60 has at least an addition processing function.
  • the signal processing unit 60 performs various signal processing such as addition processing on the pixel signals output from the column processing unit 30. At this time, the signal processing unit 60 stores intermediate results of the signal processing in the memory unit 70 as necessary, and refers to them at the required timing.
  • the signal processing unit 60 outputs the pixel signals after signal processing.
  • the memory unit 70 is composed of DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), etc.
  • FIG. 2 is a diagram showing the circuit configuration of a pixel in the pixel array section 10.
  • the pixel 11 shown in FIG. 2 has a photoelectric conversion circuit 110, a first source follower circuit 120, a signal retention selection circuit 130, and a second source follower circuit 140. Each circuit will be described below.
  • the photoelectric conversion circuit 110 has a photodiode 111, a transfer transistor 112, a first reset transistor 113, and a discharge transistor 114.
  • the transfer transistor 112, the first reset transistor 113, and the discharge transistor 114 are configured, for example, with an N-channel MOS transistor.
  • the photodiode 111 converts incident light into electricity to generate an electric charge.
  • the anode of the photodiode 111 is connected to a ground having a reference potential.
  • the cathode of the photodiode 111 is connected to the transfer transistor 112 and the discharge transistor 114.
  • the transfer transistor 112 transfers charge from the photodiode 111 to the FD (Floating Diffusion) in accordance with a transfer signal TRG input to its gate from the vertical drive unit 20 through the pixel drive line 80.
  • the FD accumulates the charge and generates a pixel signal represented by a voltage according to the amount of charge.
  • the drain of the transfer transistor 112 is connected to the cathode of the photodiode 111, and the source is connected to the FD.
  • the first reset transistor 113 extracts charge from the FD to perform initialization in accordance with a first reset signal RST input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drain of the first reset transistor 113 is connected to a power supply line having a potential of the power supply voltage VDD, and the source is connected to the FD.
  • the discharge transistor 114 discharges and initializes the charge accumulated in the photodiode 111 in accordance with a discharge signal OFG input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drain of the discharge transistor 114 is connected to the cathode of the photodiode 111 and the drain of the transfer transistor 112.
  • the source of the discharge transistor 114 is connected to the power supply line.
  • the first source follower circuit 120 has a first amplifier transistor 121, a first selection transistor 122, a bias cut transistor 123, and a load transistor 124. Each transistor is connected in series between a power supply line having a potential of the power supply voltage VDD and ground, and is composed of, for example, an N-channel MOS transistor.
  • the first amplifier transistor 121 amplifies the voltage level of the pixel signal generated by the FD to a voltage V1 and outputs it to the signal holding and selection circuit 130.
  • the gate of the first amplifier transistor 121 is connected to the FD.
  • the drain is connected to the power supply line.
  • the source is connected to the drain of the first selection transistor 122.
  • the first selection transistor 122 switches whether or not to transmit the pixel signal amplified by the first amplifier transistor 121 to the signal holding selection circuit 130 according to a switching signal SW input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drain of the first selection transistor 122 is connected to the source of the first amplifier transistor 121, and the source is connected to the drain of the signal holding selection circuit 130 and the bias cut transistor 123.
  • the bias cut transistor 123 switches whether or not to supply current from the load transistor 124 according to a bias cut signal PC input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the bias cut transistor 123 is connected to the drain of the load transistor 124.
  • the load transistor 124 supplies a predetermined current into the first source follower circuit 120 according to the bias signal VB input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the load transistor 124 is connected to ground.
  • the signal retention selection circuit 130 has a first capacitive element 131, a second capacitive element 132, a first sampling transistor 133, a second sampling transistor 134, and a second reset transistor 135.
  • Each transistor is, for example, an N-channel MOS transistor.
  • each of the first capacitive element 131 and the second capacitive element 132 is commonly connected to the output terminal of the first source follower circuit 120 (the source of the first selection transistor 122).
  • the other end of the first capacitive element 131 is connected to the drain of the first sampling transistor 133.
  • the other end of the second capacitive element 132 is connected to the drain of the second sampling transistor 134.
  • the first sampling transistor 133 switches whether or not to output the pixel signal held in the first capacitance element 131 to the output node 136 according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the first sampling transistor 133 is connected to the output node 136.
  • the second sampling transistor 134 switches whether or not to output the pixel signal held in the second capacitance element 132 to the output node 136 according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the second sampling transistor 134 is also connected to the output node 136 in common with the source of the first sampling transistor 133.
  • the second reset transistor 135 initializes the voltage V2 of the output node 136 to a predetermined voltage VREG according to a second reset signal RB input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the voltage VREG is set to a potential lower than the power supply voltage VDD.
  • the drain of the second reset transistor 135 is connected to a voltage wiring having a potential of the voltage VREG, and the source is connected to the output node 136.
  • the second source follower circuit 140 is a circuit that selectively reads out and amplifies a signal from the signal holding and selection circuit 130, and has a second amplifier transistor 141, a second selection transistor 142, and a current source 143.
  • the second amplifier transistor 141 and the second selection transistor 142 are connected in series with each other and are composed of, for example, N-channel MOS transistors.
  • the gate of the second amplifier transistor 141 is connected to the output node 136 of the signal holding selection circuit 130.
  • the drain is connected to a power supply line having a potential of the power supply voltage VDD.
  • the source is connected to the drain of the second selection transistor 142.
  • the second selection transistor 142 switches whether or not to output the pixel signal amplified by the second amplifier transistor 141 to the signal line VSL according to the second selection signal SEL input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the second selection transistor 142 is connected to the signal line VSL and the current source 143.
  • the current source 143 is connected in series to the second selection transistor 142.
  • the current source 143 supplies a constant current to the second amplifier transistor 141 and the second selection transistor 142 in accordance with a control signal input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the vertical drive unit 20 supplies a high-level first reset signal RST and a transfer signal TRG to all pixels 11 at the start of exposure. This initializes the photodiodes 111.
  • the vertical drive unit 20 sets the second reset signal RB and the first sampling signal SR to high level for all pixels 11, and supplies a high-level first reset signal RST for the pulse period. This initializes the FD, and a pixel signal corresponding to the voltage level of the FD at that time is held in the first capacitance element 131.
  • the vertical drive unit 20 sets the second reset signal RB and the second sampling signal SD to high level for all pixels 11, and supplies a high-level transfer signal TRG for the pulse period.
  • a signal charge according to the amount of exposure is transferred to the FD, and a pixel signal according to the level of the FD at that time is held in the second capacitance element 132.
  • This type of exposure control in which exposure starts and ends simultaneously for all pixels 11, is called a global shutter method.
  • the photoelectric conversion circuits 110 of all pixels 11 generate pixel signals of the reset level and data level in sequence.
  • the pixel signal of the reset level is held in the first capacitance element 131, and the pixel signal of the data level is held in the second capacitance element 132.
  • the vertical drive unit 20 selects rows in sequence and outputs pixel signals of the reset level and data level for that row in sequence.
  • the vertical drive unit 20 sets the first reset signal RST and second selection signal SEL of the selected row to a high level, while supplying a high-level first sampling signal SR for a predetermined period of time. This connects the first capacitance element 131 to the output node 136, and the reset level is read out.
  • the vertical drive unit 20 After reading out the reset level, the vertical drive unit 20 supplies a high-level second reset signal RB for the pulse period while keeping the first reset signal RST and second selection signal SEL of the selected row at a high level. This initializes the voltage level of the output node 136. At this time, the first sampling transistor 133 and the second sampling transistor 134 are both in the off state, so the first capacitance element 131 and the second capacitance element 132 are disconnected from the output node 136.
  • the vertical drive unit 20 After initializing the output node 136, the vertical drive unit 20 supplies a high-level second sampling signal SD for a predetermined period of time while keeping the first reset signal RST and the second selection signal SEL of the selected row at a high level. This connects the second capacitance element 132 to the output node 136, and a pixel signal at a data level is read out.
  • FIG. 3 is a diagram showing an example of the stacked structure of the CMOS image sensor 1 according to the first embodiment.
  • the CMOS image sensor 1 according to this embodiment has a sensor chip 201 (first chip) and a logic chip 202 (second chip) stacked below the sensor chip 201.
  • the sensor chip 201 and logic chip 202 are electrically connected by, for example, so-called Cu-Cu bonding, which bonds Cu pads formed on each chip. Note that these chips can also be connected by vias or bumps in addition to Cu-Cu bonding.
  • the upper pixel array section 10a is arranged on the sensor chip 201.
  • the lower pixel array section 10b and the column processing section 30 are arranged on the logic chip 202.
  • the photoelectric conversion circuit 110, and the first amplifier transistor 121 and the first selection transistor 122 of the first source follower circuit 120 are arranged on the upper pixel array section 10a.
  • the bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120, the signal holding selection circuit 130, and the second source follower circuit 140 are arranged on the lower pixel array section 10b.
  • the layout of the sensor chip 201 and the logic chip 202 is not limited to the above layout.
  • all elements of the first source follower circuit 120 may be arranged on the logic chip 202. That is, the first source follower circuit 120 may be formed on a semiconductor substrate different from the semiconductor substrate on which the photoelectric conversion circuit 110 is formed. In this case, the arrangement space of the photodiode 111 in the sensor chip 201 is expanded, thereby improving the sensitivity.
  • the logic chip 202 also includes a vertical drive unit 20, a horizontal drive unit 40, a system control unit 50, a signal processing unit 60, and a memory unit 70, but these are not shown in FIG. 3.
  • FIG. 4 is a plan view showing an example of the layout of the upper pixel array section 10a.
  • an insulating film 115 is formed at the boundary between the area in which the FD, transfer transistor 112, and discharge transistor 114 are arranged and the area in which the first reset transistor 113 is arranged.
  • the insulating film 115 is an element isolation film formed as STI (Shallow Trench Isolation).
  • An insulating film 115 is also formed at the boundary between the area in which the first reset transistor 113 is arranged and the area in which the first selection transistor 122 is arranged. Furthermore, an insulating film 115 is also formed at the boundary between the area in which the first selection transistor 122 is arranged and the area in which the first amplifier transistor 121 is arranged. In particular, this insulating film 115 is formed so as to surround the first amplifier transistor 121.
  • this insulating film 115 is formed so as to surround the first amplifier transistor 121.
  • FIG. 5 is a cross-sectional view taken along the line A-A shown in FIG. 4.
  • the sensor chip 201 includes a semiconductor substrate 210.
  • This semiconductor substrate 210 is composed of an N-type base layer 211 and a P-type epitaxial growth layer 212 formed on the base layer 211.
  • a gate insulating film 112b of the transfer transistor 112 is formed on the epitaxial growth layer 212.
  • a gate electrode 112a of the transfer transistor 112 is formed on the gate insulating film 112b.
  • a sidewall insulating film 112c is formed on the side surface of the gate electrode 112a.
  • the gate electrode 112a can be formed using, for example, polysilicon.
  • the gate insulating film 112b and the sidewall insulating film 112c can be formed using, for example, silicon oxide (SiO 2 ).
  • An FD is formed in the drain region of the transfer transistor 112.
  • a photodiode 111 is formed in the source region of the transfer transistor 112.
  • a gate insulating film 121b of the first amplifier transistor 121 is also formed on the epitaxial growth layer 212.
  • a gate electrode 121a of the first amplifier transistor 121 is formed on the gate insulating film 121b.
  • a sidewall insulating film 121c is formed on a side surface of the gate electrode 121a.
  • the gate electrode 121a can be formed using, for example, polysilicon.
  • the gate insulating film 121b and the sidewall insulating film 121c can be formed using, for example, silicon oxide (SiO 2 ).
  • the drain region 121d and source region 121e of the first amplifier transistor 121 are formed in the epitaxial growth layer 212.
  • An insulating film 115 is formed directly below the drain region 121d and the source region 121e.
  • the CMOS image sensor 1 has two source follower circuits, the first source follower circuit 120 and the second source follower circuit 140, and therefore tends to consume large amounts of power. If an attempt is made to drive each transistor in each source follower circuit in a current range of nA order, which is lower than the conventional current range of ⁇ A order, in order to suppress this power consumption, it is expected that random noise will worsen.
  • the thermal noise of the first source follower circuit 120 in particular has a large effect on the deterioration of random noise.
  • V NSH V/sqrtHz
  • C Total capacity of V1 node (F)
  • ⁇ n1 A dimensionless parameter that depends on the bias, called the noise factor.
  • ⁇ n2 A dimensionless parameter that depends on the bias, called the noise factor.
  • the thermal noise V 2 NSH of the first source follower circuit 120 is determined by the ratio between gm1 of the first amplifier transistor 121 and gm2 of the load transistor 124, as shown in the following formula (2).
  • gm1 and gm2 are defined by the following equation (3).
  • gm1 and gm2 are electrical characteristics indicating how much current Ids can flow between the drain and source for each gate voltage Vg of the first amplifier transistor 121 and the load transistor 124.
  • the thermal noise V 2 NSH is improved by improving gm1 of the first amplifier transistor 121.
  • the relationship expressed by the following formula (4) holds among gm1, the capacitance C Dep of the depletion layer formed between the drain region 121d and the source region 121e, and the capacitance C ox of the gate insulating film 121b.
  • the drain-source current Ids of the first amplifier transistor 121 can be expressed by the following equations (5) and (6) when the Taur-Ning current equation is used in the subthreshold region.
  • ⁇ eff Effective mobility [cm 2 /V ⁇ s]
  • W Channel width [cm]
  • L Channel length [cm]
  • ⁇ Si Dielectric constant of silicon
  • q Elementary charge
  • Na Acceptor density (cm -3 )
  • ⁇ B Difference between Fermi potential and intrinsic potential [V]
  • k Boltzmann constant
  • T Absolute temperature [K]
  • Vg Gate voltage [V]
  • Vt Threshold voltage based on the definition of 2 ⁇ B [V]
  • m Body effect coefficient of MOSFET
  • Vds Source-drain voltage [V]
  • the body effect coefficient m can be expressed by the following equation (8).
  • the capacitance C Deep of the depletion layer can be reduced by increasing the width xd of the depletion layer.
  • This width xd can be expressed by the following formula (10).
  • ⁇ 0 Dielectric constant of vacuum
  • ⁇ B Surface potential
  • q Elementary charge
  • N A Impurity concentration of semiconductor well region
  • the depletion layer of the first amplifier transistor 121 can be expanded.
  • the insulating film 115 is formed immediately below the drain region 121d and the source region 121e. This makes it possible to increase the width xd of the depletion layer while suppressing the short channel effect even if the impurity concentration N A of the semiconductor well region is reduced.
  • the width xd of the depletion layer is estimated to be about 93 nm.
  • the capacitance C Dep of the depletion layer is about 1.97 (fF/ ⁇ m 2 ).
  • the width xd of the depletion layer is assumed to be about 565 nm.
  • the capacitance C Dep of the depletion layer is about 0.18 (fF/ ⁇ m 2 ).
  • the thickness t (see FIG. 5 ) of the insulating film 115 from the surface of the epitaxial growth layer 212 be within 10% of the thickness of the semiconductor substrate 210. For example, when the thickness of the semiconductor substrate 210 is about 6 ⁇ m, the thickness t of the insulating film 115 is about 510 nm.
  • the above values of the impurity concentration N A and the thickness t of the insulating film 115 are merely examples and are not limited to these values.
  • the impurity concentration N A may be a concentration that depletes the drain region 121d and the source region 121e to the same depth as the bottom ends of the drain region 121d and the source region 121e while the first amplifier transistor 121 is in operation, or to a position deeper than the bottom ends.
  • the insulating film 115 may be formed so that its thickness t is at least deeper than the depletion layer generated while the first amplifier transistor 121 is in operation.
  • the impurity concentration of the semiconductor well region may be different between the first amplifier transistor 121 and other pixel transistors such as the transfer transistor 112 and the first reset transistor 113. In other words, only the impurity concentration of the first amplifier transistor 121 may be lower than the impurity concentration of the other pixel transistors.
  • a silicon oxide film 213 is formed on the epitaxial growth layer 212 of the semiconductor substrate 210.
  • the silicon oxide film 213 can be formed by a commonly used film formation method such as thermal oxidation.
  • an insulating film 115 is formed in the epitaxial growth layer 212.
  • the insulating film 115 can be formed, for example, by filling a hole formed by etching a part of the epitaxial growth layer 212 with silicon oxide.
  • the silicon oxide can be filled using, for example, the ALD (Atomic Layer Deposition) method.
  • a portion of the insulating film 115 is etched using, for example, a mask.
  • the area to be etched is the area where the drain region 121d and source region 121e of the first amplifier transistor 121 are formed.
  • the epitaxial growth layer 212 between the insulating films 115 is selectively epitaxially grown to form the channel region 212a of the first amplifier transistor 121.
  • the epitaxial growth layer 212 is selectively epitaxially grown, for example, by a single-wafer thermal CVD (Chemical Vapor Deposition Method).
  • a single-wafer thermal CVD Chemical Vapor Deposition Method
  • nucleation is controlled by the effect of an etchant gas such as hydrogen chloride (HCl).
  • the above region is epitaxially grown at a film formation speed that increases the difference in film formation time with the silicon oxide film 213, so that the channel region 212a is formed only in the region of the epitaxial growth layer 212 exposed between the insulating films 115.
  • a polysilicon film 214 is formed on the silicon oxide film 213 by non-selective epitaxial growth, and the channel region 212a is further epitaxially grown.
  • epitaxial growth is also performed by a single-wafer thermal CVD (Chemical Vapor Deposition Method).
  • the etchant gas used in this non-selective epitaxial growth process is changed from the etchant gas used in the selective epitaxial growth process. In other words, an etchant gas that does not suppress nucleation is used.
  • epitaxial growth is performed at a film growth rate that reduces the difference in film growth time between the silicon oxide film 213 and the channel region 212a.
  • the film growth temperature (substrate temperature) in this non-selective epitaxial growth process is set to a temperature higher than the film growth temperature (substrate temperature) in the selective epitaxial growth process.
  • a planarization process is performed by CMP (Chemical Mechanical Polishing). This removes the silicon oxide film 213, part of the polysilicon film 214, and part of the channel region 212a. As a result, the polysilicon film 214 remains in the regions that will become the drain region 121d and the source region 121e on the silicon oxide film 213, and the channel region 212a remains between the remaining polysilicon film 214.
  • CMP Chemical Mechanical Polishing
  • a gate insulating film 121b, a gate electrode 121a, and a sidewall insulating film 121c are formed on the channel region 212a. Since these can be formed by a commonly used manufacturing process, detailed description is omitted.
  • an N-type impurity is implanted into the polysilicon film 214 remaining after the planarization process to form the drain region 121d and the source region 121e.
  • the concentration of this impurity is, for example, about 1e 20 cm ⁇ 3 .
  • the drain region 121d and the source region 121e it is not necessary to diffuse the impurity into the entire region, and it is sufficient that at least the portion in contact with the channel region 212a is a diffusion film. That is, the inside of the drain region 121d and the source region 121e may be a diffusion film, and the outside may be a polysilicon film. In this embodiment, the concentration of the P-type semiconductor well region including the channel region 212a is extremely low. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
  • the above-described method for manufacturing the first amplifier transistor 121 is an example, and is not limited to this.
  • Figures 7A to 7H another example of the method for manufacturing the first amplifier transistor 121 according to this embodiment will be described. Note that in this example, redundant descriptions of manufacturing steps similar to those described using Figures 6A to 6G will be omitted.
  • a silicon oxide film 213 is formed on a base layer 211 of a semiconductor substrate 210.
  • the insulating film 115 is formed.
  • the insulating film 115 can be formed, for example, by filling a hole formed by etching a part of the base layer 211 with silicon oxide using an ALD method or the like.
  • the insulating film 115 is formed in the formation region of the drain region 121d and the source region 121e of the first amplifier transistor 121 as shown in FIG. 6B.
  • the insulating film 115 is formed over the entire formation region of the first amplifier transistor 121.
  • the insulating film 115 is divided.
  • the division is at a portion that will become the channel region 212a of the first amplifier transistor 121.
  • the insulating film 115 can be divided by etching using, for example, an RIE (Reactive Ion Etching) device.
  • a portion of the insulating film 115 is etched using, for example, a mask.
  • the area to be etched is the area where the drain region 121d and source region 121e of the first amplifier transistor 121 are formed.
  • the etched portions of the insulating film 115 are selectively epitaxially grown to form a channel region 212a, which is a P-type epitaxial growth layer.
  • a polysilicon film 214 is formed on the silicon oxide film 213 by non-selective epitaxial growth, and the channel region 212a is further epitaxially grown.
  • a planarization process is performed by CMP. This removes the silicon oxide film 213, part of the polysilicon film 214, and part of the channel region 212a. As a result, the polysilicon film 214 remains in the regions that will become the drain region 121d and the source region 121e on the silicon oxide film 213, and the channel region 212a remains between the remaining polysilicon film 214.
  • an epitaxial growth layer 212 is formed on the upper part of the base layer 211, and a gate insulating film 121b, a gate electrode 121a, and a sidewall insulating film 121c are formed on the channel region 212a.
  • an N-type impurity is implanted into the polysilicon film 214 remaining after the planarization process to form the drain region 121d and the source region 121e.
  • the concentration of this impurity is, for example, about 1e 20 cm ⁇ 3 .
  • the drain region 121d and the source region 121e it is not necessary to diffuse the impurity into the entire region, and it is sufficient that at least the part in contact with the channel region 212a is a diffusion film. That is, the inside of the drain region 121d and the source region 121e may be a diffusion film, and the outside may be a polysilicon film. In this example, the concentration of the P-type semiconductor well region including the channel region 212a is extremely low. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
  • the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120 even when the first amplifier transistor 121 is driven with a low current. Therefore, the CMOS image sensor 1 according to this embodiment makes it possible to reduce random noise while suppressing power consumption.
  • the second embodiment will be described below.
  • the structure of the first amplifier transistor 121 is different from that of the first embodiment. Therefore, only the structure of the first amplifier transistor 121 will be described here, and other descriptions will be omitted.
  • FIG. 8 is a cross-sectional view showing the structure of the first amplifier transistor 121 according to the second embodiment.
  • the same components as those in the first embodiment are given the same reference numerals.
  • a SiGe (silicon germanium) layer 215 is formed directly below the channel region 212a. That is, the epitaxial growth layer 212 of the first amplifier transistor 121 has a three-layer structure of a first silicon layer which is the channel region 212a, a SiGe layer 215, and a second silicon layer stacked on the SiGe layer 215.
  • the SiGe layer 215 can be formed during the selective epitaxial growth process shown in FIG. 6D or FIG. 7E.
  • the etchant gas introduced into the thermal CVD apparatus is switched from a first etchant gas for forming the SiGe layer 215 in the film formation apparatus to a second etchant gas for forming the channel region 212a. This allows the SiGe layer 215 and the channel region 212a to be selectively formed between the insulating films 115.
  • the interatomic distance of the SiGe layer 215 formed as described above is larger than the interatomic distance of silicon in the channel region 212a. Therefore, tensile stress is generated in the channel region 212a in the channel length direction (see the arrow in FIG. 8). This improves the electron mobility in the channel region 212a, and gm1 of the first amplifier transistor 121 increases. As a result, as shown in the formula (1) described in the first embodiment, the thermal noise V 2 NSH of the first source follower circuit 120 can be further reduced. Therefore, according to this embodiment, it is possible to further reduce random noise.
  • the third embodiment will be described.
  • the structure of the first amplifier transistor 121 is different from that of the first embodiment. Therefore, here too, only the structure of the first amplifier transistor 121 will be described, and other descriptions will be omitted.
  • the crystal plane of the channel region 212a will be arranged on the Si(111) surface, which has relatively many defects. In this case, there is a concern that the electrical characteristics may deteriorate.
  • the structure of a Fin-type MOS transistor is applied to the first amplifier transistor 121.
  • the structure of a general Fin-type MOS transistor will be described with reference to FIG. 9.
  • FIG. 9 is a perspective view showing the structure of a typical Fin-type MOS transistor.
  • a silicon oxide film 1150 is formed on a silicon substrate 2120.
  • a gate electrode 1210a having a so-called double gate structure is formed in the silicon oxide film 1150.
  • a drain region 1210d and a source region 1210e are arranged opposite each other with the gate electrode 1210a in between.
  • FIG. 10 is a cross-sectional view showing the structure of the first amplifier transistor 121 according to the third embodiment. Since FIG. 10 is a cross-sectional view, the drain region 121d and the source region 121e are omitted. However, similar to the Fin-type MOS transistor 1210, the drain region 121d is formed on the rear side of the gate electrode 121a, and the source region 121e is formed on the front side of the gate electrode 121a. Also, an insulating film 115 is formed directly below the drain region 121d and the source region 121e, similar to the other embodiments described above.
  • a semiconductor substrate 210 is formed, which is made of a base layer 211 on which an epitaxial growth layer 212 is not formed.
  • a part of the insulating film 115 is formed in the base layer 211.
  • This insulating film 115 can be formed, for example, by filling holes formed in the base layer 211 by etching or the like with silicon oxide using the ALD method or the like.
  • This insulating film 115 functions as a stopper film for ESS (Empty Space in Silicon), which will be described later.
  • a silicon nitride (SiN) film 216 is formed on the base layer 211. Then, a silicon oxide (SiO 2 ) film 217 is formed on the silicon nitride film 216. Then, a trench 218 for ESS, which will be described later, is formed. The trench 218 penetrates the silicon nitride film 216 and the silicon oxide film 217, and terminates at the base layer 211. In the base layer 211, the trench 218 is formed on the inside of the stopper film (insulating film 115). The depth of the trench 218 is shallower than the stopper film.
  • ESS 219 is formed in base layer 211.
  • ESS 219 can be formed by, for example, flowing an alkaline etching solution through trench 218 to highly selectively etch the Si(110) surface relative to the Si(111) surface. This etching stops at insulating film 115. This completes ESS 219 extending in the direction of the Si(110) surface.
  • the insulating film 115 is completed by filling the trench 218 and the ESS 219 with silicon oxide using the ALD method. As a result, a pseudo FD-SOI (Fully Depleted Silicon On Insulator) structure is formed.
  • a planarization process is performed by CMP. This removes the silicon nitride film 216 and the silicon oxide film 217.
  • an epitaxial growth layer 212 is formed on the upper part of the base layer 211, and a gate electrode 121a and a sidewall insulating film 121c of a double gate structure are formed. In this process, a drain region 121d and a source region 121e are also formed.
  • the epitaxial growth layer 212 i.e., the P-type semiconductor well region including the channel region 212a, has an extremely low concentration. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
  • the channel region 212a can be formed on the Si(110) surface, which has relatively few crystal defects. This makes it possible to improve the electrical characteristics of the first amplifier transistor 121.
  • an insulating film 115 is formed directly below the drain region 121d and the source region 121e. This makes it possible to make the impurity concentration of the channel region 212a extremely low while suppressing the short channel effect. This makes it possible to reduce random noise even when the first amplifier transistor 121 is driven in a low current region. Note that in this embodiment, the insulating film 115 is formed not only directly below the drain region 121d and the source region 121e, but also directly below the channel region 212a.
  • FIG. 12 is a diagram showing a circuit configuration of a pixel according to a first modified example.
  • the pixel 11a shown in Fig. 12 has a photoelectric conversion circuit 110a, a first source follower circuit 120a, a signal holding selection circuit 130a, and a second source follower circuit 140a.
  • the photoelectric conversion circuit 110a has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
  • the first source follower circuit 120a has a first amplifier transistor 121 and a bias cut transistor 123. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
  • the signal holding selection circuit 130a has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, and a second sampling transistor 134.
  • one end of each of the first capacitance element 131 and the second capacitance element 132 is connected to a power supply line having a potential of the power supply voltage VDD.
  • the other end of the first capacitance element 131 is connected to the source of the first sampling transistor 133.
  • the other end of the second capacitance element 132 is connected to the source of the second sampling transistor 134.
  • the first sampling transistor 133 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the first capacitance element 131 according to the first sampling signal SR input to its gate from the vertical drive unit 20 through the pixel drive line 80.
  • the second sampling transistor 134 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the second capacitance element 132 according to the second sampling signal SD input to its gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drains of the sampling transistors are commonly connected to the output terminal of the first source follower circuit 120a.
  • the second source follower circuit 140a has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. In the second source follower circuit 140a, these circuit elements are connected to the first capacitance element 131 and the second capacitance element 132, respectively, to form a pair.
  • the photoelectric conversion circuit 110a and the first amplifier transistor 121 of the first source follower circuit 120a are arranged on the sensor chip 201.
  • the bias cut transistor 123 of the first source follower circuit 120a, the signal hold selection circuit 130a, and the second source follower circuit 140a are arranged on the logic chip 202.
  • the arrangement of the sensor chip 201 and the pixels 11a in the sensor chip 201 is not limited to the arrangement described above.
  • an insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120a even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
  • Fig. 13 is a diagram showing a circuit configuration of a pixel according to a second modified example.
  • the pixel 11b shown in Fig. 13 has a photoelectric conversion circuit 110b, a first source follower circuit 120b, a signal holding selection circuit 130b, and a second source follower circuit 140b.
  • the photoelectric conversion circuit 110b has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
  • the first source follower circuit 120b has a first amplifier transistor 121 and a bias cut transistor 123. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
  • the signal holding selection circuit 130b has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, and a second sampling transistor 134.
  • one end of the first capacitance element 131 is connected to a power supply line having a potential of the power supply voltage VDD.
  • the other end of the first capacitance element 131 is connected to the source of the first sampling transistor 133 and one end of the second capacitance element 132.
  • the other end of the second capacitance element 132 is connected to the output node 136.
  • the first sampling transistor 133 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the first capacitance element 131 and the second capacitance element 132 according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drain of the first sampling transistor 133 is commonly connected to the output terminal of the first source follower circuit 120a.
  • the second sampling transistor 134 resets the potential of the output node 136 according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the drain of the second sampling transistor 134 is connected to the power supply line, and the source is connected to the output node 136.
  • the second source follower circuit 140b has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
  • the photoelectric conversion circuit 110b and the first amplifier transistor 121 of the first source follower circuit 120b are arranged on the sensor chip 201.
  • the bias cut transistor 123, signal hold selection circuit 130b, and second source follower circuit 140b of the first source follower circuit 120b are arranged on the logic chip 202.
  • the arrangement of the sensor chip 201 and the pixel 11b in the sensor chip 201 is not limited to the arrangement described above.
  • an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120b even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
  • Fig. 14 is a diagram showing a circuit configuration of a pixel according to a third modified example.
  • the pixel 11c shown in Fig. 14 has a photoelectric conversion circuit 110c, a first source follower circuit 120c, a signal holding selection circuit 130c, and a second source follower circuit 140c.
  • the photoelectric conversion circuit 110c has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
  • the first source follower circuit 120c has a first amplifier transistor 121, a bias cut transistor 123, and a load transistor 124. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
  • the signal holding selection circuit 130c has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, a second sampling transistor 134, and a switching transistor 137.
  • one end of each of the first capacitance element 131 and the second capacitance element 132 is connected to a power supply line having a potential of the power supply voltage VDD.
  • the other end of the first capacitance element 131 is connected to the drain of the first sampling transistor 133.
  • the other end of the second capacitance element 132 is connected to the drain of the second sampling transistor 134.
  • the first sampling transistor 133 switches whether or not to output the pixel signal held in the first capacitance element 131 to the second source follower circuit 140c according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the first sampling transistor 133 is connected to the source of the switching transistor 137 and the output node 136.
  • the second sampling transistor 134 switches whether or not to output the pixel signal held in the second capacitance element 132 to the second source follower circuit 140c according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80.
  • the source of the second sampling transistor 134 is connected to the source of the switching transistor 137 and the output node 136.
  • the switching transistor 137 is composed of an N-channel MOS transistor.
  • a switching signal SH is input to the gate of the switching transistor 137 from the vertical drive unit 20 through the pixel drive line 80.
  • the switching transistor 137 is turned on based on the switching signal SH, the signal amplified by the first source follower circuit 120c is held in the first capacitance element 131 or the second capacitance element 132.
  • the second source follower circuit 140c has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
  • the photoelectric conversion circuit 110c and the first amplifier transistor 121 of the first source follower circuit 120c are arranged on the sensor chip 201.
  • the bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120c, the signal hold selection circuit 130b, and the second source follower circuit 140b are arranged on the logic chip 202.
  • the arrangement of the sensor chip 201 and the pixel 11c in the sensor chip 201 is not limited to the arrangement described above.
  • an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
  • FIG. 15 is a diagram showing a circuit configuration of a pixel according to a fourth modified example.
  • the pixel 11d shown in Fig. 15 has a photoelectric conversion circuit 110d, a first source follower circuit 120d, a signal holding selection circuit 130d, and a second source follower circuit 140d.
  • the photoelectric conversion circuit 110d has a photodiode 111, a transfer transistor 112, a first reset transistor 113, a switching transistor 116, and a capacitance element 117.
  • the switching transistor 116 is configured as an N-channel MOS transistor and is disposed between the first reset transistor 113 and the FD.
  • One end of the capacitance element 117 is connected to the drain of the switching transistor 116, and the other end is grounded.
  • a drive signal FDG is input from the vertical drive unit 20 to the gate of the switching transistor 116. When the switching transistor 116 is turned on based on the drive signal FDG, the charge held in the capacitance element 117 is transferred to the FD.
  • the circuit configurations of the first source follower circuit 120d, the signal holding selection circuit 130d, and the second source follower circuit 140d are the same as those in the first embodiment, and therefore will not be described.
  • the second reset transistor 135 of the signal holding selection circuit 130d and the second source follower circuit 140d are shared by four pixels 11d.
  • FIG. 16 is a plan view showing an example of the layout of a sensor chip 201 according to the fourth modified example. Also, FIG. 17 is a cross-sectional view taken along the cutting line B-B shown in FIG. 16.
  • the first amplifier transistor 121 and the first selection transistor 122 of the photoelectric conversion circuit 110d and the first source follower circuit 120d of the pixel 11d are arranged on the sensor chip 201.
  • the remaining circuit elements of the pixel 11d are arranged on the logic chip 202.
  • the first selection transistor 122 arranged on the sensor chip 201 is electrically connected to the bias cut transistor 123 arranged on the logic chip 202, for example, via a wiring that passes through the sensor chip 201 or a pad provided on the upper surface of the sensor chip 201.
  • a plurality of pixels 11d arranged on the sensor chip 201 are separated by an isolation film 220.
  • the isolation film 220 is, for example, a front full trench isolation (FFTI) type isolation film formed in a trench penetrating the semiconductor substrate 210.
  • a sidewall film made of, for example, silicon oxide is formed in the isolation film 220, and a filler made of polysilicon is embedded inside the sidewall film.
  • the filler in the FFTI is not limited to polysilicon.
  • an insulating film such as an oxide film may be formed in a single layer or multiple layers in the FFTI.
  • at least one type of conductive material such as a metal material or polysilicon may be formed in the FFTI.
  • an isolation film 220 is formed directly below the insulating film 115a in contact with the source region 121e, while an isolation film 200 is not formed directly below the insulating film 115b in contact with the drain region 121d. Furthermore, the thickness of the insulating film 115b from the surface of the semiconductor substrate 210 is thicker than that of the insulating film 115a.
  • FIG. 18 is a cross-sectional view of the transfer transistor 112 and the first selection transistor 122 in the layout shown in FIG. 16.
  • the isolation film 220 shown in FIG. 18 is also formed penetrating the semiconductor substrate 210.
  • a light-shielding film 221 that prevents light from leaking to adjacent pixels is formed on the back side (lower side of the drawing) of the isolation film 220.
  • the light-shielding film 221 is made of a metal material such as tungsten.
  • An OCL (on-chip lens) 222 that focuses incident light on the photodiode 111 is formed on the back side of the semiconductor substrate 210.
  • a trench 223 is opened on the surface side (upper side of the drawing) of the semiconductor substrate 210.
  • a transfer transistor 112 is provided in the trench 223.
  • An active region (Pwell) 224 is formed in the upper part of the semiconductor substrate 210.
  • An element isolation region 225 is formed in the active region 224.
  • the transfer transistor 112 may be of a recessed type in which the gate is formed in the trench 223, or may be of a planar type in which the gate is formed on the semiconductor substrate 210.
  • a P-type solid-phase diffusion layer 226 and an N-type solid-phase diffusion layer 227 are formed in this order from the isolation film 220 side toward the photodiode 111.
  • the photodiode 111 is composed of N-type regions. Photoelectric conversion takes place in some or all of these N-type regions.
  • a sidewall film 228 is formed on the inner wall of the separation film 220.
  • a filler material 229 is embedded inside the sidewall film 228.
  • silicon oxide or silicon nitride may be used for the sidewall film 228.
  • polysilicon or doped polysilicon may be used for the filler material 229. Note that the filler material 229 is not limited to these polysilicon materials.
  • the P-type solid-phase diffusion layer 226 is formed up to the rear surface silicon interface 240.
  • the N-type solid-phase diffusion layer 227 does not contact the rear surface silicon interface 240.
  • a gap is provided between the N-type solid-phase diffusion layer 227 and the rear surface silicon interface 240.
  • a P-type region 241 is provided between the photodiode 111 and the N-type solid-phase diffusion layer 227 and the back silicon interface 240, i.e., in the region of the semiconductor substrate 210 where the photodiode 111 and the like are not formed.
  • the pinning near the back silicon interface 240 is not weakened, so that it is possible to prevent the occurrence of a situation in which the generated charge flows into the photodiode 111 and the dark characteristics deteriorate.
  • the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. As a result, even if the first amplifier transistor 121 is driven with a low current, the increase in thermal noise of the first source follower circuit 120c can be suppressed. Therefore, in this modified example, it is possible to reduce random noise while suppressing power consumption.
  • the thickness of the insulating film 115b not in contact with the isolation film 220 is made thicker than the thickness of the insulating film 115a in contact with the isolation film 220, so that the area of the low-concentration channel region 212a can be sufficiently secured.
  • the first amplifier transistor 121 may have a SiGe (silicon germanium) layer 215 formed directly under the channel region 212a, as described in the second embodiment. In this case, it is possible to further reduce random noise. Also, the first amplifier transistor 121 may be a Fin-type MOS transistor as described in the third embodiment.
  • FIG. 19 is a cross-sectional view of the fourth modified example in which a Fin-type MOS transistor is applied to the first amplifier transistor 121.
  • a Fin-type MOS transistor is applied to the first amplifier transistor 121, the thickness of the insulating film 115a in contact with the isolation film 220 is equal to the thickness of the insulating film 115b that is not in contact with the isolation film 220.
  • (Fifth Modification) 20 is a plan view showing an example of the layout of a sensor chip 201 according to the fifth modification.
  • the size of the sensor chip 201 according to this modification is the same as that of the fourth modification.
  • the circuit configurations of the pixels 11e arranged on the sensor chip 201 and the logic chip 202 are also the same as those of the fourth modification.
  • the multiple pixels 11e arranged on the sensor chip 201 are separated by an isolation layer 230.
  • the circuit elements of each pixel 11e are also separated by the isolation layer 230.
  • the isolation layer 230 is formed, for example, by injecting P-type impurities into the semiconductor substrate 210. Therefore, the isolation layer 230 is not provided under the insulating film 115 that contacts the drain region 121d and the source region 121e of the first amplifier transistor 121.
  • an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
  • FIG. 21 is a diagram showing a circuit configuration of a pixel according to a sixth modified example.
  • the pixel 11f shown in Fig. 21 has a photoelectric conversion circuit 110f, a first source follower circuit 120f, a signal holding selection circuit 130f, and a second source follower circuit 140f.
  • the photoelectric conversion circuit 110f has a photodiode 111, a transfer transistor 112, a first reset transistor 113, a discharge transistor 114, a switching transistor 116, and a capacitance element 117. That is, the photoelectric conversion circuit 110f according to this modification has a discharge transistor 114 in addition to the circuit elements of the photoelectric conversion circuit 110d according to the fourth modification.
  • the discharge transistor 114 is the same as in the first embodiment, so a description thereof will be omitted.
  • the circuit configurations of the first source follower circuit 120f, the signal holding selection circuit 130f, and the second source follower circuit 140f are also similar to those in the first embodiment, and therefore will not be described.
  • the second reset transistor 135 of the signal holding selection circuit 130f and the second source follower circuit 140f are shared by four pixels 11d, as in the fourth and fifth modifications.
  • FIG. 22 is a plan view showing an example of the layout of the sensor chip 201 according to the sixth modified example.
  • the size of the sensor chip 201 according to this modified example is larger than the size of the sensor chip 201 according to the fourth modified example.
  • the circuit configuration of the pixels 11e arranged on the sensor chip 201 and the logic chip 202 is also similar to that of the fourth modified example.
  • the emission transistor 114 is arranged on the sensor chip 201.
  • the multiple pixels 11f arranged on the sensor chip 201 are separated by an isolation film 220. Therefore, in the first amplifier transistor 121, the isolation film 220 is formed directly below the insulating film 115a in contact with the source region 121e, while the isolation film 200 is not formed directly below the insulating film 115b in contact with the drain region 121d. Furthermore, the thickness of the insulating film 115b from the surface of the semiconductor substrate 210 is thicker than that of the insulating film 115a.
  • the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modified example as well, it is possible to reduce random noise while suppressing power consumption.
  • the thickness of the insulating film 115b not in contact with the isolation film 220 is made thicker than the thickness of the insulating film 115a in contact with the isolation film 220, so that the low concentration channel region 212a can be sufficiently secured.
  • the first amplifier transistor 121 may have a SiGe (silicon germanium) layer 215 formed directly under the channel region 212a as described in the second embodiment. In this case, it is possible to further reduce random noise.
  • the first amplifier transistor 121 may have a structure having the SiGe (silicon germanium) layer 215 described in the second embodiment, or may have a structure of a Fin-type MOS transistor described in the third embodiment.
  • (Seventh Modification) 23 is a plan view showing an example of the layout of the sensor chip 201 according to the seventh modification.
  • the size of the sensor chip 201 according to this modification is the same as that of the sixth modification.
  • the circuit configurations of the pixels 11f arranged on the sensor chip 201 and the logic chip 202 are also the same as those of the sixth modification.
  • the multiple pixels 11f arranged on the sensor chip 201 are separated by the separation layer 230, as in the fifth modification described above.
  • the circuit elements of each pixel 11f are also separated by the separation layer 230.
  • an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
  • the CMOS image sensor 4 includes a first chip 401, a second chip 402, and a third chip 403. The first chip 401, the second chip 402, and the third chip 403 are stacked.
  • the first chip 401 is provided with a first pixel array section 401a.
  • a plurality of sensor pixels 401b are arranged two-dimensionally in a matrix.
  • the photodiode 111, the transfer transistor 112, the FD, the first reset transistor 113, and the discharge transistor 114 of the photoelectric conversion circuit 110 are arranged.
  • the first amplifier transistor 121 and the first selection transistor 122 of the first source follower circuit 120 are also arranged.
  • the second chip 402 is provided with a second pixel array section 402a.
  • the bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120 are arranged in the second pixel array section 402a.
  • the signal retention selection circuit 130 and the second source follower circuit 140 are also arranged in the second pixel array section 402a.
  • the pixel drive lines 80 extend in the row direction
  • the vertical signal lines 90 extend in the column direction.
  • the third chip 403 is provided with a logic circuit 431.
  • the logic circuit 431 includes a vertical drive unit 20, a column processing unit 30, a horizontal drive unit 40, and a system control unit 50.
  • FIG. 25 is a vertical cross-sectional view of a portion of the CMOS image sensor 4 according to the fourth embodiment.
  • a first chip 401, a second chip 402, and a third chip 403 are stacked in this order.
  • a color filter 500 and a light receiving lens 600 are provided on the back side (light incident surface side) of the first chip 401.
  • one color filter 500 and one light receiving lens 600 are each provided for each sensor pixel 401b.
  • the CMOS image sensor 4 is a back-illuminated type.
  • the first chip 401 is constructed by laminating an insulating layer 46 on a first semiconductor substrate 410.
  • the first chip 401 has the insulating layer 46 as part of an interlayer insulating film 51.
  • the insulating layer 46 is provided in the gap between the first semiconductor substrate 410 and a second semiconductor substrate 420, which will be described later.
  • the first semiconductor substrate 410 is made of a silicon substrate.
  • the first semiconductor substrate 410 has a p-well layer 42, for example, in a part of the surface and in its vicinity, and has a photodiode 111 of a different conductivity type from the p-well layer 42 in the other region (region deeper than the p-well layer 42).
  • the p-well layer 42 is made of a p-type semiconductor region.
  • the photodiode 111 is made of a semiconductor region of a different conductivity type (specifically, n-type) from the p-well layer 42.
  • the first semiconductor substrate 410 has an FD in the p-well layer 42 as a semiconductor region of a different conductivity type (specifically, n-type) from the p-well layer 42.
  • the first chip 401 has a configuration in which a transfer transistor 112 and an FD are provided on the front side (the side opposite the light incident surface, the second chip 402 side) of the first semiconductor substrate 410.
  • the first chip 401 has an element isolation section 43 that isolates each sensor pixel 401b.
  • the element isolation portion 43 is formed extending in the normal direction of the first semiconductor substrate 410 (direction perpendicular to the surface of the first semiconductor substrate 410).
  • the element isolation portion 43 is provided between two adjacent sensor pixels 401b.
  • the element isolation portion 43 electrically isolates the adjacent sensor pixels 401b.
  • the element isolation portion 43 is made of, for example, silicon oxide.
  • the element isolation portion 43 penetrates, for example, the first semiconductor substrate 410.
  • the first chip 401 further has, for example, a p-well layer 44 that is a side surface of the element isolation section 43 and is in contact with the surface on the photodiode 111 side.
  • the p-well layer 44 is composed of a semiconductor region of a different conductivity type (specifically, p-type) from the photodiode 111.
  • the first chip 401 further has, for example, a fixed charge film 45 in contact with the back surface of the first semiconductor substrate 410.
  • the fixed charge film 45 is negatively charged in order to suppress the generation of dark current due to the interface state on the light-receiving surface side of the first semiconductor substrate 410.
  • the fixed charge film 45 is formed, for example, by an insulating film having a negative fixed charge. Examples of materials for such insulating films include hafnium oxide, zirconium oxide, aluminum oxide, titanium oxide, and tantalum oxide.
  • a hole accumulation layer is formed at the interface on the light-receiving surface side of the first semiconductor substrate 410 due to the electric field induced by the fixed charge film 45. This hole accumulation layer suppresses the generation of electrons from the interface.
  • the color filter 500 is provided on the back surface side of the first semiconductor substrate 410.
  • the color filter 500 is provided, for example, in contact with the fixed charge film 45 and is provided at a position facing the sensor pixel 401b via the fixed charge film 45.
  • the light receiving lens 600 is provided, for example, in contact with the color filter 500 and is provided in a position facing the sensor pixel 401b via the color filter 500 and the fixed charge film 45.
  • the second chip 402 is configured by laminating an insulating layer 52 on the second semiconductor substrate 420.
  • the second chip 402 has the insulating layer 52 as a part of the interlayer insulating film 51.
  • the insulating layer 52 is provided in the gap between the second semiconductor substrate 420 and the third semiconductor substrate 430.
  • the second semiconductor substrate 420 is configured of a silicon substrate.
  • the second chip 402 is configured such that a second pixel array section 402a is provided on the surface side (third chip 403 side) of the second semiconductor substrate 420.
  • the second chip 402 is bonded to the first chip 401 with the back surface of the second semiconductor substrate 420 facing the surface side of the first semiconductor substrate 410. In other words, the second chip 402 is bonded to the first chip 401 face-to-back.
  • the second chip 402 further has an insulating layer 53 penetrating the second semiconductor substrate 420 in the same layer as the second semiconductor substrate 420.
  • the second chip 402 has an insulating layer 53 as part of the interlayer insulating film 51.
  • the insulating layer 53 is provided to cover the side of the through wiring 54 described below.
  • the stack consisting of the first chip 401 and the second chip 402 has an interlayer insulating film 51 and through-wires 54 provided within the interlayer insulating film 51.
  • the stack has one through-wire 54 for each sensor pixel 401b.
  • the through-wires 54 extend in the normal direction of the second semiconductor substrate 420 and are provided penetrating a portion of the interlayer insulating film 51 that includes the insulating layer 53.
  • the first chip 401 and the second chip 402 are electrically connected to each other by the through-wires 54.
  • the through-wires 54 are electrically connected to the FD and the connection wires 55 described below.
  • the second chip 402 has, for example, a plurality of connection parts 59 in the insulating layer 52 that are electrically connected to the second pixel array part 402a and the second semiconductor substrate 420.
  • the second chip 402 further has, for example, a wiring layer 56 on the insulating layer 52.
  • the wiring layer 56 has, for example, an insulating layer 57, and a plurality of pixel drive lines 80 and a plurality of vertical signal lines 90 provided in the insulating layer 57.
  • the wiring layer 56 further has, for example, a plurality of connection wires 55 in the insulating layer 57, one for each of the four sensor pixels 401b.
  • connection wiring 55 electrically connects each of the through wirings 54 electrically connected to the FDs included in the four sensor pixels 401b that share the second pixel array unit 402a.
  • the total number of through wirings 54 is greater than the total number of sensor pixels 401b included in the first chip 401, and is twice the total number of sensor pixels 401b included in the first chip 401.
  • the total number of through wirings 54 is greater than the total number of sensor pixels 401b included in the first chip 401, and is three times the total number of sensor pixels 401b included in the first chip 401.
  • the wiring layer 56 further has, for example, a plurality of pad electrodes 58 in the insulating layer 57.
  • Each pad electrode 58 is formed of a metal such as Cu (copper) or Al (aluminum). Each pad electrode 58 is exposed on the surface of the wiring layer 56.
  • Each pad electrode 58 is used for electrical connection between the second chip 402 and the third chip 403, and for bonding the second chip 402 and the third chip 403 together.
  • the multiple pad electrodes 58 are provided, for example, one for each pixel drive line 80 and vertical signal line 90.
  • the total number of pad electrodes 58 is less than the total number of sensor pixels 401b included in the first chip 401.
  • the third chip 403 is configured, for example, by laminating an interlayer insulating film 61 on a third semiconductor substrate 430.
  • the third semiconductor substrate 430 is configured as a silicon substrate.
  • the third chip 403 is configured such that a logic circuit 431 is provided on the surface side portion of the third semiconductor substrate 430.
  • the third chip 403 further has, for example, a wiring layer 62 on the interlayer insulating film 61.
  • the wiring layer 62 has, for example, an insulating layer 63 and a plurality of pad electrodes 64 provided in the insulating layer 63.
  • the plurality of pad electrodes 64 are electrically connected to the logic circuit 431.
  • Each pad electrode 64 is formed of, for example, Cu (copper).
  • Each pad electrode 64 is exposed on the surface of the wiring layer 62.
  • Each pad electrode 64 is used for electrically connecting the second chip 402 and the third chip 403 and for bonding the second chip 402 and the third chip 403 together.
  • the number of pad electrodes 64 does not necessarily have to be multiple, and even one pad electrode 64 can be electrically connected to the logic circuit 431.
  • the second chip 402 and the third chip 403 are electrically connected to each other by bonding the pad electrodes 58, 64. That is, the gate of the transfer transistor 112 is electrically connected to the logic circuit 431 via the through-wire 54 and the pad electrodes 58, 64.
  • the third chip 403 is bonded to the second chip 402 with the surface of the third semiconductor substrate 430 facing the surface side of the second semiconductor substrate 420. That is, the third chip 403 is bonded to the second chip 402 face-to-face.
  • the first amplifier transistor 121 is provided in the second pixel array section 402a of the second chip 402.
  • an insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121, as in the first embodiment described above. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect.
  • the first amplifier transistor 121 is driven with a low current, the increase in thermal noise of the first source follower circuit 120c can be suppressed. Therefore, in this embodiment as well, it is possible to reduce random noise while suppressing power consumption.
  • the bonding form between the second chip 402 and the third chip is Cu-Cu bonding, which is bonding between pad electrodes
  • the bonding form between the first chip 401 and the second chip 402 is TSV (Through-Silicon Via) bonding, which is bonding between through-hole wiring.
  • TSV Through-Silicon Via
  • FIG. 26 is a block diagram showing an example of the configuration of an electronic device according to the fifth embodiment.
  • the electronic device 1000 shown in FIG. 26 is a video camera, a digital still camera, or the like.
  • the electronic device 1000 includes a lens group 1001, a solid-state CMOS image sensor 4002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008.
  • the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, the operation unit 1007, and the power supply unit 1008 are interconnected via a bus line 1009.
  • the lens group 1001 captures incident light (image light) from a subject and forms an image on the imaging surface of the solid-state CMOS image sensor 4002.
  • the solid-state CMOS image sensor 4002 is any one of the CMOS image sensors of each of the above-mentioned embodiments.
  • the solid-state CMOS image sensor 4002 converts the amount of incident light formed on the imaging surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal as a pixel signal to the DSP circuit 1003.
  • the DSP circuit 1003 performs a predetermined image processing on the pixel signals supplied from the solid-state CMOS image sensor 4002, and supplies the processed image signals to the frame memory 1004 on a frame-by-frame basis for temporary storage.
  • the display unit 1005 is, for example, a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on pixel signals on a frame-by-frame basis that are temporarily stored in the frame memory 1004.
  • a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on pixel signals on a frame-by-frame basis that are temporarily stored in the frame memory 1004.
  • the recording unit 1006 is composed of a DVD (Digital Versatile Disk), flash memory, etc., and reads out and records the pixel signals on a frame-by-frame basis that are temporarily stored in the frame memory 1004.
  • DVD Digital Versatile Disk
  • flash memory etc.
  • the operation unit 1007 issues operation commands for various functions of the electronic device 1000 under the operation of a user.
  • the power supply unit 1008 supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, and the operation unit 1007.
  • Electronic devices to which this technology can be applied include any device that uses a CMOS image sensor in its image capture section (photoelectric conversion section), such as the electronic device 1000, a portable terminal device with an imaging function, and a copying machine that uses a CMOS image sensor in its image reading section.
  • any one of the CMOS image sensors according to the above-mentioned embodiments is mounted as the solid-state CMOS image sensor 4002. Therefore, the solid-state CMOS image sensor 4002 has a low random noise function, which makes it possible to improve imaging performance.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
  • FIG. 27 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030.
  • the outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images.
  • the outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received.
  • the imaging unit 12031 can output the electrical signal as an image, or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 28 shows an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
  • the imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100.
  • the imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100.
  • the images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
  • FIG. 28 shows an example of the imaging ranges of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door.
  • an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
  • the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian.
  • the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian.
  • the audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology disclosed herein can be applied to, for example, the imaging unit 12031.
  • the imaging unit 12031 can be equipped with the above-mentioned CMOS image sensor.
  • the present technology can be configured as follows. (1) a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light; a source follower circuit including an amplifier transistor that amplifies the pixel signal; an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor; (2) The photodiode according to (1), wherein the impurity concentration of the semiconductor well region between the drain region and the source region is a concentration that depletes the semiconductor well region to the same depth as the bottom ends of the drain region and the source region or to a position deeper than the bottom ends while the amplifier transistor is operating. (3) The light-receiving element according to (2), wherein the impurity concentration is 10 times or more lower than 4e17 (cm ⁇ 3 ).
  • the amplifier transistor is a Fin-type MOS transistor.
  • An electronic device including a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal, an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor.
  • CMOS image sensor 110 photoelectric conversion circuit 115: insulating film 120: first source follower circuit 121: first amplifier transistor 121d: drain region 121e: source region 212: epitaxial growth layer 212a: channel region 214: polysilicon film 215: SiGe layer 1000: electronic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[Problem] To provide a light receiving element in which random noise is reduced. [Solution] A light receiving element according to an aspect of the present disclosure comprises a photoelectric conversion circuit that outputs a pixel signal obtained by performing photoelectric conversion on input light, and a source follower circuit that includes an amplification transistor for amplifying the pixel signal. In the light receiving element, an insulating film is formed under each of a drain region and a source region of the amplification transistor.

Description

受光素子および電子機器Photodetector and electronic device
 本開示は、受光素子および電子機器に関する。 This disclosure relates to a light receiving element and an electronic device.
 CMOSイメージセンサには、フォトダイオードで光電変換された画素信号を全画素同時にソースフォロワ回路に読み出すタイプがある。このタイプのCMOSイメージセンサのように全画素同時に画素信号を読み出すと消費電力が大きくなる。その一方で、消費電力を抑制するために従来よりも低い電流領域でソースフォロワ回路のアンプトランジスタを駆動しようとすると、ランダムノイズ(RN)が悪化することが想定される。このランダムノイズの悪化には、ソースフォロワ回路の熱雑音の影響が大きい。 CMOS image sensors include a type in which pixel signals photoelectrically converted by photodiodes are read out to a source follower circuit for all pixels simultaneously. Reading out pixel signals from all pixels simultaneously, as in this type of CMOS image sensor, results in high power consumption. On the other hand, if you try to drive the amplifier transistor of the source follower circuit in a lower current range than before in order to reduce power consumption, it is expected that random noise (RN) will worsen. Thermal noise in the source follower circuit has a large impact on this deterioration of random noise.
特開2016-42557号公報JP 2016-42557 A
 そこで、本開示は、ランダムノイズを低減することが可能な受光素子および電子機器を提供する。 The present disclosure therefore provides a light receiving element and electronic device capable of reducing random noise.
 本開示の一態様に係る受光素子は、入射光を光電変換した画素信号を出力する光電変換回路と、画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を備える。この受光素子では、アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている。 The light receiving element according to one embodiment of the present disclosure includes a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal. In this light receiving element, an insulating film is formed directly below each of the drain region and source region of the amplifier transistor.
 また、前記ドレイン領域と前記ソース領域との間における半導体ウェル領域の不純物濃度が、前記アンプトランジスタの駆動中に前記ドレイン領域および前記ソース領域の各々の下端部と同じ深さか、または前記下端部よりも深い位置まで空乏化する濃度であってもよい。 In addition, the impurity concentration of the semiconductor well region between the drain region and the source region may be a concentration that is depleted to the same depth as the bottom ends of the drain region and the source region, or to a position deeper than the bottom ends while the amplifier transistor is operating.
 また、前記不純物濃度が、4e17(cm-3)よりも10倍以上低くてもよい。 The impurity concentration may be 10 times or more lower than 4e17 (cm −3 ).
 また、前記半導体ウェル領域は、シリコンのエピタキシャル成長層であってもよい。 The semiconductor well region may also be an epitaxially grown layer of silicon.
 また、前記半導体ウェル領域は、前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にシリコンゲルマニウム層を有していてもよい。 The semiconductor well region may also have a silicon germanium layer directly below a channel region formed between the drain region and the source region while the amplifier transistor is in operation.
 また、前記絶縁膜の厚さが、前記アンプトランジスタの駆動中に生成される空乏層より少なくとも深くてもよい。 The thickness of the insulating film may also be at least deeper than the depletion layer that is generated while the amplifier transistor is in operation.
 また、前記絶縁膜の厚さが、前記アンプトランジスタを形成する半導体基板の厚さに対して10%以内であってもよい。 The thickness of the insulating film may be within 10% of the thickness of the semiconductor substrate on which the amplifier transistor is formed.
 また、前記絶縁膜が、前記アンプトランジスタを囲んでいてもよい。 The insulating film may also surround the amplifier transistor.
 また、前記ドレイン領域および前記ソース領域の各々一部が、ポリシリコン膜であってもよい。 Furthermore, a portion of each of the drain region and the source region may be a polysilicon film.
 また、前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にも前記絶縁膜が形成されていてもよい。 The insulating film may also be formed directly below a channel region that is formed between the drain region and the source region while the amplifier transistor is in operation.
 また、前記チャネル領域が、Si(110)面に形成されていてもよい。 The channel region may also be formed on a Si(110) surface.
 また、前記アンプトランジスタが、Fin型MOSトランジスタであってもよい。 The amplifier transistor may also be a Fin-type MOS transistor.
 また、前記アンプトランジスタが、前記光電変換回路と同じ半導体基板に配置されていてもよい。 The amplifier transistor may also be disposed on the same semiconductor substrate as the photoelectric conversion circuit.
 また、前記アンプトランジスタが、前記光電変換回路と異なる半導体基板に配置されていてもよい。 The amplifier transistor may also be disposed on a different semiconductor substrate from the photoelectric conversion circuit.
 本開示の一態様に係る電子機器は、入射光を光電変換した画素信号を出力する光電変換回路と、前記画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を含む受光素子を備える。この電子機器では、前記アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている。 An electronic device according to one aspect of the present disclosure includes a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal. In this electronic device, an insulating film is formed directly below each of the drain region and source region of the amplifier transistor.
第1実施形態に係るCMOSイメージセンサの構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of a CMOS image sensor according to a first embodiment; 画素アレイ部の画素の回路構成を示す図である。FIG. 2 is a diagram showing a circuit configuration of a pixel in a pixel array portion. 第1実施形態に係るCMOSイメージセンサの積層構造の一例を示す図である。1 is a diagram showing an example of a stacked structure of a CMOS image sensor according to a first embodiment; 上側画素アレイ部のレイアウトの一例を示す平面図である。11 is a plan view showing an example of the layout of an upper pixel array unit. FIG. 図4に示す切断線A-Aに沿った断面図である。5 is a cross-sectional view taken along the line AA shown in FIG. 4. 半導体基板上に酸化シリコン膜を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming a silicon oxide film on a semiconductor substrate. 半導体基板内に絶縁膜を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming an insulating film in a semiconductor substrate. 絶縁膜の一部をエッチングする工程を示す断面図である。11A to 11C are cross-sectional views showing a step of etching a part of an insulating film. 選択的エピタキシャル成長工程を示す断面図である。FIG. 2 is a cross-sectional view showing a selective epitaxial growth process. 非選択エピタキシャル成長工程を示す断面図である。FIG. 2 is a cross-sectional view showing a non-selective epitaxial growth step. 平坦化処理工程を示す断面図である。FIG. 11 is a cross-sectional view showing a planarization process. ゲート電極、ドレイン領域、およびソース領域を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region. 半導体基板上に酸化シリコン膜を形成する工程の別例を示す断面図である。10A to 10C are cross-sectional views showing another example of a process for forming a silicon oxide film on a semiconductor substrate. 半導体基板内に絶縁膜を形成する工程の別例を示す断面図である。10A to 10C are cross-sectional views showing another example of a process for forming an insulating film in a semiconductor substrate. 絶縁膜を分断する工程を示す断面図である。11A to 11C are cross-sectional views showing a step of dividing an insulating film. 絶縁膜の一部をエッチングする工程の別例を示す断面図である。10A to 10C are cross-sectional views showing another example of a step of etching a part of an insulating film. 選択的エピタキシャル成長工程を示す断面図である。FIG. 2 is a cross-sectional view showing a selective epitaxial growth process. 非選択エピタキシャル成長工程を示す断面図である。FIG. 2 is a cross-sectional view showing a non-selective epitaxial growth step. 平坦化処理工程を示す断面図である。FIG. 11 is a cross-sectional view showing a planarization process. ゲート電極、ドレイン領域、およびソース領域を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region. 第2実施形態に係る第1アンプトランジスタの構造を示す断面図である。11 is a cross-sectional view showing a structure of a first amplifier transistor according to a second embodiment. 一般的なFin型MOSトランジスタの構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of a general Fin-type MOS transistor. 第3実施形態に係る第1アンプトランジスタの構造を示す断面図である。FIG. 11 is a cross-sectional view showing a structure of a first amplifier transistor according to a third embodiment. 半導体基板を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a process for forming a semiconductor substrate. 半導体基板内にストッパー膜を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming a stopper film in a semiconductor substrate. ESS用のトレンチを形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a process of forming a trench for an ESS. ESSを形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a process of forming an ESS. トレンチおよびESSに絶縁膜を形成する工程を示す断面図である。11A to 11C are cross-sectional views showing a step of forming an insulating film in the trench and the ESS. 平坦化処理工程を示す断面図である。FIG. 11 is a cross-sectional view showing a planarization process. ゲート電極、ドレイン領域、およびソース領域を形成する工程を示す断面図である。1A to 1C are cross-sectional views showing a step of forming a gate electrode, a drain region, and a source region. 第1変形例に係る画素の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a pixel according to a first modified example. 第2変形例に係る画素の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a pixel according to a second modified example. 第3変形例に係る画素の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a pixel according to a third modified example. は、第4変形例に係る画素の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a pixel according to a fourth modified example. 第4変形例に係るセンサチップのレイアウトの一例を示す平面図である。FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a fourth modified example. 図16に示す切断線B-Bに沿った断面図である。17 is a cross-sectional view taken along the line BB shown in FIG. 16. 図16に示すレイアウトにおいて、転送トランジスタおよび第1選択トランジスタ周辺の断面図である。17 is a cross-sectional view of the periphery of a transfer transistor and a first selection transistor in the layout shown in FIG. 16. 第4変形例に係る第1アンプトランジスタにFin型MOSトランジスタを適用した断面図である。13 is a cross-sectional view in which a Fin-type MOS transistor is applied to a first amplifier transistor according to a fourth modified example. 第5変形例に係るセンサチップのレイアウトの一例を示す平面図である。FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a fifth modified example. 第6変形例に係る画素の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a pixel according to a sixth modified example. 第6変形例に係るセンサチップのレイアウトの一例を示す平面図である。FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a sixth modified example. 第7変形例に係るセンサチップのレイアウトの一例を示す平面図である。FIG. 13 is a plan view showing an example of a layout of a sensor chip according to a seventh modified example. 第4実施形態に係るCMOSイメージセンサの構成を示す図である。FIG. 13 is a diagram showing a configuration of a CMOS image sensor according to a fourth embodiment. 第4実施形態に係るCMOSイメージセンサの一部を垂直方向に切断した断面図である。FIG. 11 is a cross-sectional view of a part of a CMOS image sensor according to a fourth embodiment, cut in the vertical direction. 第5実施形態に係る電子機器の構成例を示すブロック図である。FIG. 13 is a block diagram showing an example of the configuration of an electronic device according to a fifth embodiment. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。4 is an explanatory diagram showing an example of the installation positions of an outside-vehicle information detection unit and an imaging unit; FIG.
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。下記の実施形態では、本開示に係る受光素子を、被写体の画像を撮像して各画素の画素信号を出力するCMOSイメージセンサに適用した例について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Below, a preferred embodiment of the present disclosure will be described in detail with reference to the attached drawings. In the following embodiment, an example will be described in which a light receiving element according to the present disclosure is applied to a CMOS image sensor that captures an image of a subject and outputs a pixel signal for each pixel. Note that in this specification and drawings, components that have substantially the same functional configuration will be assigned the same reference numerals to avoid redundant description.
 (第1実施形態)
 図1は、第1実施形態に係るCMOSイメージセンサの構成例を示すブロック図である。図1に示すCMOSイメージセンサ1は、画素アレイ部10、垂直駆動部20、カラム処理部30、水平駆動部40、システム制御部50、信号処理部60、およびメモリ部70を備える。
First Embodiment
Fig. 1 is a block diagram showing an example of the configuration of a CMOS image sensor according to the first embodiment. The CMOS image sensor 1 shown in Fig. 1 includes a pixel array section 10, a vertical drive section 20, a column processing section 30, a horizontal drive section 40, a system control section 50, a signal processing section 60, and a memory section 70.
 画素アレイ部10には、複数の画素が行列状に2次元配置されている。各画素は、入射光の光量に応じた電荷量の電荷を発生して内部に蓄積する光電変換素子を有する。画素の回路構成については、後述する。また、画素アレイ部10には、画素行ごとに画素駆動線80が接続され、画素列ごとに垂直信号線90が接続されている。 The pixel array section 10 has a plurality of pixels arranged two-dimensionally in a matrix. Each pixel has a photoelectric conversion element that generates and internally accumulates an electric charge whose amount corresponds to the amount of incident light. The circuit configuration of the pixel will be described later. In addition, pixel array section 10 has pixel drive lines 80 connected to each pixel row, and vertical signal lines 90 connected to each pixel column.
 垂直駆動部20は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部10の各画素を行単位等で駆動する。垂直駆動部20の各画素行に対応した出力端には、画素駆動線80の一端が接続されている。 The vertical drive unit 20 is composed of a shift register, an address decoder, etc., and drives each pixel of the pixel array unit 10 on a row basis, etc. One end of a pixel drive line 80 is connected to the output terminal of the vertical drive unit 20 corresponding to each pixel row.
 カラム処理部30は、画素アレイ部10の画素列ごとに信号処理回路を有する。カラム処理部30の各信号処理回路は、選択行の各画素から垂直信号線90を通じて出力される画素信号に対して、CDS(Correlated Double Sampling)処理等のノイズ除去処理、A/D(Analog/Digital)変換処理等の信号処理を行う。カラム処理部30は、信号処理後の画素信号を一時的に保持する。 The column processing unit 30 has a signal processing circuit for each pixel column of the pixel array unit 10. Each signal processing circuit of the column processing unit 30 performs signal processing such as noise removal processing such as CDS (Correlated Double Sampling) processing and A/D (Analog/Digital) conversion processing on the pixel signals output from each pixel of the selected row through the vertical signal line 90. The column processing unit 30 temporarily holds the pixel signals after signal processing.
 水平駆動部40は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部30の信号処理回路を順番に選択する。この水平駆動部40による選択走査により、カラム処理部30の各信号処理回路で信号処理された画素信号が順番に信号処理部60に出力される。 The horizontal drive unit 40 is composed of a shift register, an address decoder, etc., and sequentially selects the signal processing circuits of the column processing unit 30. Through selective scanning by this horizontal drive unit 40, pixel signals that have been signal-processed by each signal processing circuit of the column processing unit 30 are output in sequence to the signal processing unit 60.
 システム制御部50は、各種のタイミング信号を生成するタイミングジェネレータ等によって構成され、タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動部20、カラム処理部30、および水平駆動部40を制御する。 The system control unit 50 is composed of a timing generator that generates various timing signals, and controls the vertical drive unit 20, column processing unit 30, and horizontal drive unit 40 based on the various timing signals generated by the timing generator.
 信号処理部60は、少なくとも加算処理機能を有する。信号処理部60は、カラム処理部30から出力される画素信号に対して加算処理等の種々の信号処理を行う。このとき、信号処理部60は、必要に応じて、信号処理の途中結果などをメモリ部70に格納し、必要なタイミングで参照する。信号処理部60は、信号処理後の画素信号を出力する。 The signal processing unit 60 has at least an addition processing function. The signal processing unit 60 performs various signal processing such as addition processing on the pixel signals output from the column processing unit 30. At this time, the signal processing unit 60 stores intermediate results of the signal processing in the memory unit 70 as necessary, and refers to them at the required timing. The signal processing unit 60 outputs the pixel signals after signal processing.
 メモリ部70は、DRAM(Dynamic Random Access Memory)やSRAM( Static Random Access Memory)などにより構成される。 The memory unit 70 is composed of DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), etc.
 図2は、画素アレイ部10の画素の回路構成を示す図である。図2に示す画素11は、光電変換回路110と、第1ソースフォロワ回路120と、信号保持選択回路130と、第2ソースフォロワ回路140と、を有する。以下、各回路について説明する。 FIG. 2 is a diagram showing the circuit configuration of a pixel in the pixel array section 10. The pixel 11 shown in FIG. 2 has a photoelectric conversion circuit 110, a first source follower circuit 120, a signal retention selection circuit 130, and a second source follower circuit 140. Each circuit will be described below.
 光電変換回路110は、フォトダイオード111、転送トランジスタ112、第1リセットトランジスタ113、および排出トランジスタ114を有する。転送トランジスタ112、第1リセットトランジスタ113、および排出トランジスタ114は、例えばNチャネル型のMOSトランジスタで構成されている。 The photoelectric conversion circuit 110 has a photodiode 111, a transfer transistor 112, a first reset transistor 113, and a discharge transistor 114. The transfer transistor 112, the first reset transistor 113, and the discharge transistor 114 are configured, for example, with an N-channel MOS transistor.
 フォトダイオード111は、入射光を光電変換して電荷を生成する。フォトダイオード111のアノードは、基準電位を有するグランドに接地されている。フォトダイオード111のカソードは、転送トランジスタ112および排出トランジスタ114に接続されている。 The photodiode 111 converts incident light into electricity to generate an electric charge. The anode of the photodiode 111 is connected to a ground having a reference potential. The cathode of the photodiode 111 is connected to the transfer transistor 112 and the discharge transistor 114.
 転送トランジスタ112は、垂直駆動部20から画素駆動線80を通じてゲートに入力された転送信号TRGに従って、フォトダイオード111からFD(Floating Diffusion)へ電荷を転送する。FDは、電荷を蓄積し、電荷量に応じた電圧で示される画素信号を生成する。転送トランジスタ112のドレインは、フォトダイオード111のカソードに接続され、ソースは、FDに接続されている。 The transfer transistor 112 transfers charge from the photodiode 111 to the FD (Floating Diffusion) in accordance with a transfer signal TRG input to its gate from the vertical drive unit 20 through the pixel drive line 80. The FD accumulates the charge and generates a pixel signal represented by a voltage according to the amount of charge. The drain of the transfer transistor 112 is connected to the cathode of the photodiode 111, and the source is connected to the FD.
 第1リセットトランジスタ113は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第1リセット信号RSTに従って、FDから電荷を引き抜いて初期化する。第1リセットトランジスタ113のドレインは、電源電圧VDDの電位を有する電源線に接続され、ソースは、FDに接続されている。 The first reset transistor 113 extracts charge from the FD to perform initialization in accordance with a first reset signal RST input to the gate from the vertical drive unit 20 through the pixel drive line 80. The drain of the first reset transistor 113 is connected to a power supply line having a potential of the power supply voltage VDD, and the source is connected to the FD.
 排出トランジスタ114は、垂直駆動部20から画素駆動線80を通じてゲートに入力された排出信号OFGに従って、フォトダイオード111に蓄積された電荷を排出して初期化する。排出トランジスタ114のドレインは、フォトダイオード111のカソードおよび転送トランジスタ112のドレインに接続されている。排出トランジスタ114のソースは、上記電源線に接続されている。 The discharge transistor 114 discharges and initializes the charge accumulated in the photodiode 111 in accordance with a discharge signal OFG input to the gate from the vertical drive unit 20 through the pixel drive line 80. The drain of the discharge transistor 114 is connected to the cathode of the photodiode 111 and the drain of the transfer transistor 112. The source of the discharge transistor 114 is connected to the power supply line.
 第1ソースフォロワ回路120は、第1アンプトランジスタ121、第1選択トランジスタ122、バイアスカットトランジスタ123、および負荷トランジスタ124を有する。各トランジスタは、電源電圧VDDの電位を有する電源線とグランドとの間で直列に接続され、例えばNチャネル型のMOSトランジスタで構成されている。 The first source follower circuit 120 has a first amplifier transistor 121, a first selection transistor 122, a bias cut transistor 123, and a load transistor 124. Each transistor is connected in series between a power supply line having a potential of the power supply voltage VDD and ground, and is composed of, for example, an N-channel MOS transistor.
 第1アンプトランジスタ121は、FDで生成された画素信号の電圧レベルを電圧V1に増幅して信号保持選択回路130に出力する。第1アンプトランジスタ121のゲートは、FDに接続されている。ドレインは、上記電源線に接続されている。ソースは、第1選択トランジスタ122のドレインに接続されている。 The first amplifier transistor 121 amplifies the voltage level of the pixel signal generated by the FD to a voltage V1 and outputs it to the signal holding and selection circuit 130. The gate of the first amplifier transistor 121 is connected to the FD. The drain is connected to the power supply line. The source is connected to the drain of the first selection transistor 122.
 第1選択トランジスタ122は、垂直駆動部20から画素駆動線80を通じてゲートに入力された切替信号SWに従って、第1アンプトランジスタ121で増幅された画素信号を信号保持選択回路130に伝送するか否かを切り替える。第1選択トランジスタ122のドレインは、第1アンプトランジスタ121のソースに接続され、ソースは、信号保持選択回路130およびバイアスカットトランジスタ123のドレインに接続されている。 The first selection transistor 122 switches whether or not to transmit the pixel signal amplified by the first amplifier transistor 121 to the signal holding selection circuit 130 according to a switching signal SW input to the gate from the vertical drive unit 20 through the pixel drive line 80. The drain of the first selection transistor 122 is connected to the source of the first amplifier transistor 121, and the source is connected to the drain of the signal holding selection circuit 130 and the bias cut transistor 123.
 バイアスカットトランジスタ123は、垂直駆動部20から画素駆動線80を通じてゲートに入力されたバイアスカット信号PCに従って、負荷トランジスタ124からの電流供給を行うか否かを切り替える。バイアスカットトランジスタ123のソースは、負荷トランジスタ124のドレインに接続されている。 The bias cut transistor 123 switches whether or not to supply current from the load transistor 124 according to a bias cut signal PC input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the bias cut transistor 123 is connected to the drain of the load transistor 124.
 負荷トランジスタ124は、垂直駆動部20から画素駆動線80を通じてゲートに入力されたバイアス信号VBに従って、所定の電流を第1ソースフォロワ回路120内に供給する。負荷トランジスタ124のソースはグランドに接地されている。 The load transistor 124 supplies a predetermined current into the first source follower circuit 120 according to the bias signal VB input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the load transistor 124 is connected to ground.
 信号保持選択回路130は、第1容量素子131、第2容量素子132、第1サンプリングトランジスタ133、第2サンプリングトランジスタ134、および第2リセットトランジスタ135を有する。各トランジスタは、例えばNチャネル型のMOSトランジスタで構成されている。 The signal retention selection circuit 130 has a first capacitive element 131, a second capacitive element 132, a first sampling transistor 133, a second sampling transistor 134, and a second reset transistor 135. Each transistor is, for example, an N-channel MOS transistor.
 第1容量素子131および第2容量素子132のそれぞれの一端は、第1ソースフォロワ回路120の出力端子(第1選択トランジスタ122のソース)に共通に接続されている第1容量素子131の他端は、第1サンプリングトランジスタ133のドレインに接続されている。第2容量素子132の他端は、第2サンプリングトランジスタ134のドレインに接続されている。 One end of each of the first capacitive element 131 and the second capacitive element 132 is commonly connected to the output terminal of the first source follower circuit 120 (the source of the first selection transistor 122). The other end of the first capacitive element 131 is connected to the drain of the first sampling transistor 133. The other end of the second capacitive element 132 is connected to the drain of the second sampling transistor 134.
 第1サンプリングトランジスタ133は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第1サンプリング信号SRに従って、第1容量素子131に保持された画素信号を出力ノード136へ出力するか否かを切り替える。第1サンプリングトランジスタ133のソースは、出力ノード136に接続されている。 The first sampling transistor 133 switches whether or not to output the pixel signal held in the first capacitance element 131 to the output node 136 according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the first sampling transistor 133 is connected to the output node 136.
 第2サンプリングトランジスタ134は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2サンプリング信号SDに従って、第2容量素子132に保持された画素信号を出力ノード136へ出力するか否かを切り替える。第2サンプリングトランジスタ134のソースも、第1サンプリングトランジスタ133のソースと共通に出力ノード136に接続されている。 The second sampling transistor 134 switches whether or not to output the pixel signal held in the second capacitance element 132 to the output node 136 according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the second sampling transistor 134 is also connected to the output node 136 in common with the source of the first sampling transistor 133.
 第2リセットトランジスタ135は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2リセット信号RBに従って、出力ノード136の電圧V2を所定の電圧VREGに初期化する。電圧VREGは、電源電圧VDDよりも低い電位に設定されている。第2リセットトランジスタ135のドレインは、電圧VREGの電位を有する電圧配線に接続され、ソースは出力ノード136に接続されている。 The second reset transistor 135 initializes the voltage V2 of the output node 136 to a predetermined voltage VREG according to a second reset signal RB input to the gate from the vertical drive unit 20 through the pixel drive line 80. The voltage VREG is set to a potential lower than the power supply voltage VDD. The drain of the second reset transistor 135 is connected to a voltage wiring having a potential of the voltage VREG, and the source is connected to the output node 136.
 第2ソースフォロワ回路140は、信号保持選択回路130から信号を選択的に読み出して増幅する回路であり、第2アンプトランジスタ141と、第2選択トランジスタ142と、電流源143と、を有する。互いに直列に接続されている第2アンプトランジスタ141および第2選択トランジスタ142は、例えばNチャネル型のMOSトランジスタで構成されている。 The second source follower circuit 140 is a circuit that selectively reads out and amplifies a signal from the signal holding and selection circuit 130, and has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. The second amplifier transistor 141 and the second selection transistor 142 are connected in series with each other and are composed of, for example, N-channel MOS transistors.
 第2アンプトランジスタ141のゲートは信号保持選択回路130の出力ノード136に接続されている。また、ドレインは電源電圧VDDの電位を有する電源線に接続されている。さらに、ソースは、第2選択トランジスタ142のドレインに接続されている。 The gate of the second amplifier transistor 141 is connected to the output node 136 of the signal holding selection circuit 130. In addition, the drain is connected to a power supply line having a potential of the power supply voltage VDD. Furthermore, the source is connected to the drain of the second selection transistor 142.
 第2選択トランジスタ142は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2選択信号SELに従って、第2アンプトランジスタ141で増幅された画素信号を信号線VSLに出力するか否かを切り替える。第2選択トランジスタ142のソースは、信号線VSlおよび電流源143に接続されている。 The second selection transistor 142 switches whether or not to output the pixel signal amplified by the second amplifier transistor 141 to the signal line VSL according to the second selection signal SEL input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the second selection transistor 142 is connected to the signal line VSL and the current source 143.
 電流源143は、第2選択トランジスタ142に直列に接続されている。電流源143は、垂直駆動部20から画素駆動線80を通じてゲートに入力された制御信号に従って、第2アンプトランジスタ141および第2選択トランジスタ142に一定の電流を供給する。 The current source 143 is connected in series to the second selection transistor 142. The current source 143 supplies a constant current to the second amplifier transistor 141 and the second selection transistor 142 in accordance with a control signal input to the gate from the vertical drive unit 20 through the pixel drive line 80.
 上記のように構成されたCMOSイメージセンサ1では、垂直駆動部20は、露光開始時に全画素11へハイレベルの第1リセット信号RSTおよび転送信号TRGを供給する。これにより、フォトダイオード111が初期化される。 In the CMOS image sensor 1 configured as described above, the vertical drive unit 20 supplies a high-level first reset signal RST and a transfer signal TRG to all pixels 11 at the start of exposure. This initializes the photodiodes 111.
 続いて、垂直駆動部20は、露光終了の直前に、全画素11について第2リセット信号RBおよび第1サンプリング信号SRをハイレベルにしつつ、パルス期間に亘ってハイレベルの第1リセット信号RSTを供給する。これにより、FDが初期化され、そのときのFDの電圧レベルに応じた画素信号が第1容量素子131に保持される。 Next, just before the end of exposure, the vertical drive unit 20 sets the second reset signal RB and the first sampling signal SR to high level for all pixels 11, and supplies a high-level first reset signal RST for the pulse period. This initializes the FD, and a pixel signal corresponding to the voltage level of the FD at that time is held in the first capacitance element 131.
 その後、垂直駆動部20は、露光終了時に、全画素11について第2リセット信号RBおよび第2サンプリング信号SDをハイレベルにしつつ、パルス期間に亘ってハイレベルの転送信号TRGを供給する。これにより、露光量に応じた信号電荷がFDへ転送され、そのときのFDのレベルに応じた画素信号が第2容量素子132に保持される。 After that, when the exposure is completed, the vertical drive unit 20 sets the second reset signal RB and the second sampling signal SD to high level for all pixels 11, and supplies a high-level transfer signal TRG for the pulse period. As a result, a signal charge according to the amount of exposure is transferred to the FD, and a pixel signal according to the level of the FD at that time is held in the second capacitance element 132.
 このように全画素11について同時に露光を開始し、終了する露光制御は、グローバルシャッター方式と呼ばれる。この露光制御により、全画素11の光電変換回路110は、リセットレベルおよびデータレベルの画素信号を順に生成する。リセットレベルの画素信号は、第1容量素子131に保持され、データレベルの画素信号は、第2容量素子132に保持される。 This type of exposure control, in which exposure starts and ends simultaneously for all pixels 11, is called a global shutter method. With this exposure control, the photoelectric conversion circuits 110 of all pixels 11 generate pixel signals of the reset level and data level in sequence. The pixel signal of the reset level is held in the first capacitance element 131, and the pixel signal of the data level is held in the second capacitance element 132.
 露光終了後に垂直駆動部20は、行を順に選択して、その行のリセットレベルおよびデータレベルの画素信号を順に出力させる。リセットレベルの画素信号を出力させる際に、垂直駆動部20は、選択した行の第1リセット信号RSTおよび第2選択信号SELをハイレベルにしつつ、ハイレベルの第1サンプリング信号SRを所定期間に亘って供給する。これにより、第1容量素子131が出力ノード136に接続され、リセットレベルが読み出される。 After exposure is complete, the vertical drive unit 20 selects rows in sequence and outputs pixel signals of the reset level and data level for that row in sequence. When outputting a pixel signal of the reset level, the vertical drive unit 20 sets the first reset signal RST and second selection signal SEL of the selected row to a high level, while supplying a high-level first sampling signal SR for a predetermined period of time. This connects the first capacitance element 131 to the output node 136, and the reset level is read out.
 リセットレベルの読出し後に垂直駆動部20は、選択した行の第1リセット信号RSTおよび第2選択信号SELをハイレベルにしたままで、ハイレベルの第2リセット信号RBをパルス期間に亘って供給する。これにより、出力ノード136の電圧レベルが初期化される。このとき、第1サンプリングトランジスタ133および第2サンプリングトランジスタ134は両方ともオフ状態であるため、第1容量素子131および第2容量素子132は、出力ノード136から切り離される。 After reading out the reset level, the vertical drive unit 20 supplies a high-level second reset signal RB for the pulse period while keeping the first reset signal RST and second selection signal SEL of the selected row at a high level. This initializes the voltage level of the output node 136. At this time, the first sampling transistor 133 and the second sampling transistor 134 are both in the off state, so the first capacitance element 131 and the second capacitance element 132 are disconnected from the output node 136.
 出力ノード136の初期化後に、垂直駆動部20は、選択した行の第1リセット信号RSTおよび第2選択信号SELをハイレベルにしたままで、ハイレベルの第2サンプリング信号SDを所定期間に亘って供給する。これにより、第2容量素子132が出力ノード136に接続され、データレベルの画素信号が読み出される。 After initializing the output node 136, the vertical drive unit 20 supplies a high-level second sampling signal SD for a predetermined period of time while keeping the first reset signal RST and the second selection signal SEL of the selected row at a high level. This connects the second capacitance element 132 to the output node 136, and a pixel signal at a data level is read out.
 図3は、第1実施形態に係るCMOSイメージセンサ1の積層構造の一例を示す図である。本実施形態に係るCMOSイメージセンサ1は、センサチップ201(第1チップ)と、センサチップ201の下側に積層されるロジックチップ202(第2チップ)と、を有する。センサチップ201およびロジックチップ202は、例えば、各チップに形成されたCuパッド同士を接合する、いわゆるCu-Cu接合により電気的に接続される。なお、これらのチップは、Cu-Cu接合の他、ビアやバンプにより接続することもできる。 FIG. 3 is a diagram showing an example of the stacked structure of the CMOS image sensor 1 according to the first embodiment. The CMOS image sensor 1 according to this embodiment has a sensor chip 201 (first chip) and a logic chip 202 (second chip) stacked below the sensor chip 201. The sensor chip 201 and logic chip 202 are electrically connected by, for example, so-called Cu-Cu bonding, which bonds Cu pads formed on each chip. Note that these chips can also be connected by vias or bumps in addition to Cu-Cu bonding.
 センサチップ201には、上側画素アレイ部10aが配置される。ロジックチップ202には、下側画素アレイ部10bとカラム処理部30とが配置される。画素アレイ部10内の画素11ごとに、その一部が、上側画素アレイ部10aに配置され、残りが下側画素アレイ部10bに配置される。例えば、上側画素アレイ部10aには、光電変換回路110と、第1ソースフォロワ回路120の第1アンプトランジスタ121および第1選択トランジスタ122とが配置されている。この場合、第1ソースフォロワ回路120のバイアスカットトランジスタ123および負荷トランジスタ124と、信号保持選択回路130、および第2ソースフォロワ回路140が、下側画素アレイ部10bに配置される。 The upper pixel array section 10a is arranged on the sensor chip 201. The lower pixel array section 10b and the column processing section 30 are arranged on the logic chip 202. For each pixel 11 in the pixel array section 10, a part of it is arranged on the upper pixel array section 10a, and the rest is arranged on the lower pixel array section 10b. For example, the photoelectric conversion circuit 110, and the first amplifier transistor 121 and the first selection transistor 122 of the first source follower circuit 120 are arranged on the upper pixel array section 10a. In this case, the bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120, the signal holding selection circuit 130, and the second source follower circuit 140 are arranged on the lower pixel array section 10b.
 なお、センサチップ201およびロジックチップ202のレイアウトは、上記レイアウトに限定されない。例えば、第1ソースフォロワ回路120の全素子が、ロジックチップ202に配置されていてもよい。すなわち、第1ソースフォロワ回路120は、光電変換回路110が形成された半導体基板とは、異なる半導体基板に形成されていてもよい。この場合、センサチップ201におけるフォトダイオード111の配置スペースが広がるため、感度を向上させることができる。 The layout of the sensor chip 201 and the logic chip 202 is not limited to the above layout. For example, all elements of the first source follower circuit 120 may be arranged on the logic chip 202. That is, the first source follower circuit 120 may be formed on a semiconductor substrate different from the semiconductor substrate on which the photoelectric conversion circuit 110 is formed. In this case, the arrangement space of the photodiode 111 in the sensor chip 201 is expanded, thereby improving the sensitivity.
 また、ロジックチップ202には、カラム処理部30に加えて、垂直駆動部20、水平駆動部40、システム制御部50、信号処理部60、およびメモリ部70も配置されるが、これらは、図3において記載を省略している。 In addition to the column processing unit 30, the logic chip 202 also includes a vertical drive unit 20, a horizontal drive unit 40, a system control unit 50, a signal processing unit 60, and a memory unit 70, but these are not shown in FIG. 3.
 図4は、上側画素アレイ部10aのレイアウトの一例を示す平面図である。図4に示すように、上側画素アレイ部10aでは、FD、転送トランジスタ112、および排出トランジスタ114が配置されたエリアと、第1リセットトランジスタ113が配置されたエリアとの境界には、絶縁膜115が形成されている。絶縁膜115は、STI(Shallow Trench Isolation)として形成される素子分離膜である。 FIG. 4 is a plan view showing an example of the layout of the upper pixel array section 10a. As shown in FIG. 4, in the upper pixel array section 10a, an insulating film 115 is formed at the boundary between the area in which the FD, transfer transistor 112, and discharge transistor 114 are arranged and the area in which the first reset transistor 113 is arranged. The insulating film 115 is an element isolation film formed as STI (Shallow Trench Isolation).
 また、第1リセットトランジスタ113が配置されたエリアと、第1選択トランジスタ122が配置されたエリアの境界部分にも絶縁膜115が形成されている。さらに、第1選択トランジスタ122が配置されたエリアと、第1アンプトランジスタ121が配置されたエリアとの境界にも絶縁膜115が形成されている。特に、この絶縁膜115は、第1アンプトランジスタ121を囲むように形成されている。ここで、図5を参照して、センサチップ201の一部の断面構造について説明する。 An insulating film 115 is also formed at the boundary between the area in which the first reset transistor 113 is arranged and the area in which the first selection transistor 122 is arranged. Furthermore, an insulating film 115 is also formed at the boundary between the area in which the first selection transistor 122 is arranged and the area in which the first amplifier transistor 121 is arranged. In particular, this insulating film 115 is formed so as to surround the first amplifier transistor 121. Here, the cross-sectional structure of a portion of the sensor chip 201 will be described with reference to FIG. 5.
 図5は、図4に示す切断線A-Aに沿った断面図である。図5に示すように、センサチップ201は、半導体基板210を含む。この半導体基板210は、N型の基層211と、基層211上に形成されたP型のエピタキシャル成長層212と、で構成されている。 FIG. 5 is a cross-sectional view taken along the line A-A shown in FIG. 4. As shown in FIG. 5, the sensor chip 201 includes a semiconductor substrate 210. This semiconductor substrate 210 is composed of an N-type base layer 211 and a P-type epitaxial growth layer 212 formed on the base layer 211.
 エピタキシャル成長層212上には、転送トランジスタ112のゲート絶縁膜112bが形成されている。ゲート絶縁膜112b上には、転送トランジスタ112のゲート電極112aが形成されている。ゲート電極112aの側面には、サイドウォール絶縁膜112cが形成されている。ゲート電極112aは、例えばポリシリコンを用いて形成することができる。また、ゲート絶縁膜112bおよびサイドウォール絶縁膜112cは、例えば酸化シリコン(SiO)を用いて形成することができる。転送トランジスタ112のドレイン領域には、FDが形成されている。また、転送トランジスタ112のソース領域には、フォトダイオード111が形成されている。 A gate insulating film 112b of the transfer transistor 112 is formed on the epitaxial growth layer 212. A gate electrode 112a of the transfer transistor 112 is formed on the gate insulating film 112b. A sidewall insulating film 112c is formed on the side surface of the gate electrode 112a. The gate electrode 112a can be formed using, for example, polysilicon. Furthermore, the gate insulating film 112b and the sidewall insulating film 112c can be formed using, for example, silicon oxide (SiO 2 ). An FD is formed in the drain region of the transfer transistor 112. Furthermore, a photodiode 111 is formed in the source region of the transfer transistor 112.
 また、エピタキシャル成長層212上には、第1アンプトランジスタ121のゲート絶縁膜121bも形成されている。ゲート絶縁膜121b上には、第1アンプトランジスタ121のゲート電極121aが形成されている。ゲート電極121aの側面には、サイドウォール絶縁膜121cが形成されている。ゲート電極121aは、例えばポリシリコンを用いて形成することができる。また、ゲート絶縁膜121bおよびサイドウォール絶縁膜121cは、例えば酸化シリコン(SiO)を用いて形成することができる。 In addition, a gate insulating film 121b of the first amplifier transistor 121 is also formed on the epitaxial growth layer 212. A gate electrode 121a of the first amplifier transistor 121 is formed on the gate insulating film 121b. A sidewall insulating film 121c is formed on a side surface of the gate electrode 121a. The gate electrode 121a can be formed using, for example, polysilicon. In addition, the gate insulating film 121b and the sidewall insulating film 121c can be formed using, for example, silicon oxide (SiO 2 ).
 エピタキシャル成長層212内には、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eが形成されている。ドレイン領域121dおよびソース領域121eの直下には、絶縁膜115が形成されている。 The drain region 121d and source region 121e of the first amplifier transistor 121 are formed in the epitaxial growth layer 212. An insulating film 115 is formed directly below the drain region 121d and the source region 121e.
 本実施形態に係るCMOSイメージセンサ1には、上述したように、第1ソースフォロワ回路120および第2ソースフォロワ回路140という2つのソースフォロワ回路が設けられているため、消費電力が大きくなる傾向にある。この消費電力を抑制するために、各ソースフォロワ回路の各トランジスタを従来のμAオーダの電流領域よりも低いnAオーダの電流領域で駆動しようとすると、ランダムノイズの悪化が想定される。ランダムノイズの悪化には、特に第1ソースフォロワ回路120の熱雑音の影響が大きい。 As described above, the CMOS image sensor 1 according to this embodiment has two source follower circuits, the first source follower circuit 120 and the second source follower circuit 140, and therefore tends to consume large amounts of power. If an attempt is made to drive each transistor in each source follower circuit in a current range of nA order, which is lower than the conventional current range of μA order, in order to suppress this power consumption, it is expected that random noise will worsen. The thermal noise of the first source follower circuit 120 in particular has a large effect on the deterioration of random noise.
 一般的なソースフォロワ回路のノイズVNSH(V/sqrtHz)は、下記の式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
ここで、
K:ボルツマン定数(=1.38×10-23J/K)
C:V1ノードの全容量(F)
γn1:ノイズ因子(noise factor)と呼ばれるバイアスに依存する無次元のパラメータ
γn2:ノイズ因子(noise factor)と呼ばれるバイアスに依存する無次元のパラメータ
The noise V NSH (V/sqrtHz) of a typical source follower circuit can be expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
here,
K: Boltzmann constant (=1.38× 10-23 J/K)
C: Total capacity of V1 node (F)
γ n1 : A dimensionless parameter that depends on the bias, called the noise factor. γ n2 : A dimensionless parameter that depends on the bias, called the noise factor.
 上記式(1)に基づいて、第1ソースフォロワ回路120の熱雑音V NSHは、下記の式(2)に示すように、第1アンプトランジスタ121のgm1と負荷トランジスタ124のgm2との比率で決まる。
Figure JPOXMLDOC01-appb-M000002
Based on the above formula (1), the thermal noise V 2 NSH of the first source follower circuit 120 is determined by the ratio between gm1 of the first amplifier transistor 121 and gm2 of the load transistor 124, as shown in the following formula (2).
Figure JPOXMLDOC01-appb-M000002
 ここで、gm1およびgm2は、下記の式(3)で定義される。
Figure JPOXMLDOC01-appb-M000003
Here, gm1 and gm2 are defined by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 式(3)に示すように、gm1およびgm2は、第1アンプトランジスタ121と負荷トランジスタ124の各ゲート電圧Vgに対してドレイン-ソース間にどの程度電流Idsを流すことができるかを示す電気的特性である。本実施形態では、第1アンプトランジスタ121のgm1を向上させることによって、熱雑音V NSHを改善する。 As shown in formula (3), gm1 and gm2 are electrical characteristics indicating how much current Ids can flow between the drain and source for each gate voltage Vg of the first amplifier transistor 121 and the load transistor 124. In this embodiment, the thermal noise V 2 NSH is improved by improving gm1 of the first amplifier transistor 121.
 第1アンプトランジスタ121において、gm1と、ドレイン領域121dおよびソース領域121eとの間に形成される空乏層の容量CDepと、ゲート絶縁膜121bの容量Coxとの間には、下記の式(4)で表される関係が成り立つ。
Figure JPOXMLDOC01-appb-M000004
In the first amplifier transistor 121, the relationship expressed by the following formula (4) holds among gm1, the capacitance C Dep of the depletion layer formed between the drain region 121d and the source region 121e, and the capacitance C ox of the gate insulating film 121b.
Figure JPOXMLDOC01-appb-M000004
 第1アンプトランジスタ121のドレイン-ソース間の電流Idsは、サブスレッショルド領域にTaur-Ningによる電流式を使うと、下記の式(5)および(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
ここで、
μeff:実効移動度[cm2/V・s]
W:チャネル幅[cm]
L:チャネル長[cm]
εSi:シリコンの誘電率
q:素電荷量
Na:アクセプタ密度(cm-3)
ΨB:フェルミ・ポテンシャルと真性ポテンシャルの差[V]
k:ボルツマン定数
T:絶対温度[K]
Vg:ゲート電圧[V]
Vt:2ΨBの定義に基づく閾値電圧[V]
m:MOSFETのボディ効果係数
Vds:ソース・ドレイン電圧[V]
The drain-source current Ids of the first amplifier transistor 121 can be expressed by the following equations (5) and (6) when the Taur-Ning current equation is used in the subthreshold region.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
here,
μ eff : Effective mobility [cm 2 /V·s]
W: Channel width [cm]
L: Channel length [cm]
ε Si : Dielectric constant of silicon q: Elementary charge Na: Acceptor density (cm -3 )
Ψ B : Difference between Fermi potential and intrinsic potential [V]
k: Boltzmann constant T: Absolute temperature [K]
Vg: Gate voltage [V]
Vt: Threshold voltage based on the definition of 2Ψ B [V]
m: Body effect coefficient of MOSFET Vds: Source-drain voltage [V]
 ここで、gmをその定義に従って計算すると、下記の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000007
Here, when gm is calculated according to its definition, it can be expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 式(7)において、ボディ効果係数mは、以下の式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
In equation (7), the body effect coefficient m can be expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
上記式(8)を上記式(7)に代入すると、上記式(4)の関係を導出することができる。式(4)に示すように、第1アンプトランジスタ121の空乏層の容量CDepを低減すると、gm1が向上する。この容量CDepと、シリコンの誘電率εSiと、空乏層の深さ方向の長さである幅xd(図5参照)との間には、下記の式(9)で表される関係が成り立つ。
Figure JPOXMLDOC01-appb-M000009
By substituting the above formula (8) into the above formula (7), the relationship of the above formula (4) can be derived. As shown in formula (4), reducing the capacitance C Dep of the depletion layer of the first amplifier transistor 121 improves gm1. The relationship expressed by the following formula (9) holds between this capacitance C Dep , the dielectric constant ε Si of silicon, and the width xd (see FIG. 5), which is the length in the depth direction of the depletion layer.
Figure JPOXMLDOC01-appb-M000009
 式(9)に示すように、空乏層の幅xdを大きくすると、空乏層の容量CDepを低減することができる。この幅xdは、下記の式(10)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
ここで、
ε:真空の誘電率
φ:表面ポテンシャル
q:素電荷量
:半導体ウェル領域の不純物濃度
As shown in formula (9), the capacitance C Deep of the depletion layer can be reduced by increasing the width xd of the depletion layer. This width xd can be expressed by the following formula (10).
Figure JPOXMLDOC01-appb-M000010
here,
ε 0 : Dielectric constant of vacuum φ B : Surface potential q : Elementary charge N A : Impurity concentration of semiconductor well region
 式(10)に示すように、エピタキシャル成長層212におけるドレイン領域121dおよびソース領域121eとの間に位置する半導体ウェル領域の不純物濃度Nを低くすると、第1アンプトランジスタ121の空乏層を広げることができる。 As shown in formula (10), by lowering the impurity concentration N A of the semiconductor well region located between the drain region 121 d and the source region 121 e in the epitaxial growth layer 212 , the depletion layer of the first amplifier transistor 121 can be expanded.
 しかし、単に半導体ウェル領域の不純物濃度Nを低くすると、ゲート絶縁膜121b直下のチャネル領域の空乏層だけでなく、ドレイン領域121dおよびソース領域121eの直下の空乏層も広がってしまう。その結果、短チャネル効果で第1アンプトランジスタ121の電気的性能が低下してしまう。 However, simply lowering the impurity concentration N A of the semiconductor well region causes the depletion layer in the channel region directly below the gate insulating film 121 b to expand, as well as the depletion layers directly below the drain region 121 d and the source region 121 e, resulting in a short channel effect that degrades the electrical performance of the first amplifier transistor 121.
 そこで、本実施形態では、ドレイン領域121dおよびソース領域121eの直下に絶縁膜115を形成する。これにより、半導体ウェル領域の不純物濃度Nを低くしても、短チャネル効果を抑制しつつ、空乏層の幅xdを大きくすることができる。 Therefore, in this embodiment, the insulating film 115 is formed immediately below the drain region 121d and the source region 121e. This makes it possible to increase the width xd of the depletion layer while suppressing the short channel effect even if the impurity concentration N A of the semiconductor well region is reduced.
 ドレイン領域およびソース領域の直下に絶縁膜が形成されていない従来のアンプトランジスタにおいて、例えば、半導体ウェル領域の不純物濃度Nが4e17(cm-3)であり、ゲート電圧Vg=2.9V、ドレイン電圧Vd=2.9V、およびソース電圧Vs=1.8Vの電圧設定で駆動する場合、空乏層の幅xdは約93nmと想定される。その結果、空乏層の容量CDepは約1.97(fF/μm)となる。 In a conventional amplifier transistor in which no insulating film is formed directly below the drain and source regions, for example, when the impurity concentration N A of the semiconductor well region is 4e 17 (cm -3 ) and the device is driven with voltage settings of gate voltage Vg = 2.9 V, drain voltage Vd = 2.9 V, and source voltage Vs = 1.8 V, the width xd of the depletion layer is estimated to be about 93 nm. As a result, the capacitance C Dep of the depletion layer is about 1.97 (fF/μm 2 ).
 これに対し、本実施形態の第1アンプトランジスタ121において、半導体ウェル領域の不純物濃度Nが、4e17(cm-3)よりも10倍以上低い1e16(cm-3)であり、上記と同じ電圧設定で駆動する場合、空乏層の幅xdは約565nmと想定される。その結果、空乏層の容量CDepは約0.18(fF/μm)となる。このような空乏層の幅xdの広がりに対応するために、エピタキシャル成長層212表面からの絶縁膜115の厚さt(図5参照)は、半導体基板210の厚さに対して10%以内であることが望ましい。例えば、半導体基板210の厚さが6μm程度である場合、絶縁膜115の厚さtは、510nm程度である。 In contrast, in the first amplifier transistor 121 of this embodiment, when the impurity concentration N A of the semiconductor well region is 1e 16 (cm −3 ), which is 10 times lower than 4e 17 (cm −3 ), and the transistor is driven with the same voltage setting as above, the width xd of the depletion layer is assumed to be about 565 nm. As a result, the capacitance C Dep of the depletion layer is about 0.18 (fF/μm 2 ). In order to accommodate the expansion of the width xd of the depletion layer, it is desirable that the thickness t (see FIG. 5 ) of the insulating film 115 from the surface of the epitaxial growth layer 212 be within 10% of the thickness of the semiconductor substrate 210. For example, when the thickness of the semiconductor substrate 210 is about 6 μm, the thickness t of the insulating film 115 is about 510 nm.
 なお、上記の不純物濃度Nの値や、絶縁膜115の厚さtの値は、一例であり、これらの値に限定されるものではない。不純物濃度Nは、第1アンプトランジスタ121の駆動中にドレイン領域121dおよびソース領域121eの各々の下端部と同じ深さか、または下端部よりも深い位置まで空乏化する濃度であればよい。また、絶縁膜115は、その厚さtが、第1アンプトランジスタ121の駆動中に生成される空乏層より少なくとも深くなるように形成されていればよい。 The above values of the impurity concentration N A and the thickness t of the insulating film 115 are merely examples and are not limited to these values. The impurity concentration N A may be a concentration that depletes the drain region 121d and the source region 121e to the same depth as the bottom ends of the drain region 121d and the source region 121e while the first amplifier transistor 121 is in operation, or to a position deeper than the bottom ends. The insulating film 115 may be formed so that its thickness t is at least deeper than the depletion layer generated while the first amplifier transistor 121 is in operation.
 また、第1アンプトランジスタ121と、転送トランジスタ112や第1リセットトランジスタ113等の他の画素トランジスタとの間で、半導体ウェル領域の不純物濃度が異なっていてもよい。すなわち、第1アンプトランジスタ121の不純物濃度のみが、他の画素トランジスタの不純物濃度よりも低くてもよい。 In addition, the impurity concentration of the semiconductor well region may be different between the first amplifier transistor 121 and other pixel transistors such as the transfer transistor 112 and the first reset transistor 113. In other words, only the impurity concentration of the first amplifier transistor 121 may be lower than the impurity concentration of the other pixel transistors.
 以下、図6A~図6Gを参照して、本実施形態に係る第1アンプトランジスタ121の製造方法の一例について説明する。 Below, an example of a method for manufacturing the first amplifier transistor 121 according to this embodiment will be described with reference to Figures 6A to 6G.
 まず、図6Aに示すように、半導体基板210のエピタキシャル成長層212上に酸化シリコン膜213を成膜する。酸化シリコン膜213は、例えば熱酸化等の通常用いられる成膜方法で形成することができる。 First, as shown in FIG. 6A, a silicon oxide film 213 is formed on the epitaxial growth layer 212 of the semiconductor substrate 210. The silicon oxide film 213 can be formed by a commonly used film formation method such as thermal oxidation.
 次に、図6Bに示すように、エピタキシャル成長層212内に絶縁膜115を形成する。絶縁膜115は、例えば、エピタキシャル成長層212の一部をエッチングして形成されたホール内にシリコン酸化物を埋め込むことによって、形成することができる。なお、シリコン酸化物は、例えばALD(Atomic Layer Deposition)法を用いて埋め込むことができる。 Next, as shown in FIG. 6B, an insulating film 115 is formed in the epitaxial growth layer 212. The insulating film 115 can be formed, for example, by filling a hole formed by etching a part of the epitaxial growth layer 212 with silicon oxide. The silicon oxide can be filled using, for example, the ALD (Atomic Layer Deposition) method.
 次に、図6Cに示すように、例えばマスク等を用いて絶縁膜115の一部をエッチングする。エッチングされる箇所は、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの形成領域である。 Next, as shown in FIG. 6C, a portion of the insulating film 115 is etched using, for example, a mask. The area to be etched is the area where the drain region 121d and source region 121e of the first amplifier transistor 121 are formed.
 次に、図6Dに示すように、絶縁膜115間のエピタキシャル成長層212を選択的にエピタキシャル成長させることによって、第1アンプトランジスタ121のチャネル領域212aを形成する。この工程では、例えば枚葉方式の熱CVD(Chemical Vapor Deposition Method)方式でエピタキシャル成長層212を選択的にエピタキシャル成長させる。この熱CVD方式では、例えば塩化水素(HCl)などのエッチャントガスの効果で核生成を制御する。このとき、絶縁膜115間で露出しているエピタキシャル成長層212の領域のみにチャネル領域212aが成膜されるように、酸化シリコン膜213との成膜時間の差が大きくなる成膜速度で上記領域をエピタキシャル成長させる。 Next, as shown in FIG. 6D, the epitaxial growth layer 212 between the insulating films 115 is selectively epitaxially grown to form the channel region 212a of the first amplifier transistor 121. In this process, the epitaxial growth layer 212 is selectively epitaxially grown, for example, by a single-wafer thermal CVD (Chemical Vapor Deposition Method). In this thermal CVD method, nucleation is controlled by the effect of an etchant gas such as hydrogen chloride (HCl). At this time, the above region is epitaxially grown at a film formation speed that increases the difference in film formation time with the silicon oxide film 213, so that the channel region 212a is formed only in the region of the epitaxial growth layer 212 exposed between the insulating films 115.
 次に、図6Eに示すように、非選択エピタキシャル成長によって、酸化シリコン膜213上にポリシリコン膜214を形成するとともに、チャネル領域212aをさらにエピタキシャル成長させる。この工程でも、枚葉方式の熱CVD(Chemical Vapor Deposition Method)方式でエピタキシャル成長を行う。ただし、この非選択エピタキシャル成長工程で用いるエッチャントガスは、上記選択エピタキシャル成長工程で用いるエッチャントガスから変更される。すなわち、核生成を抑制しないエッチャントガスが用いられる。また、この非選択エピタキシャル成長工程では、酸化シリコン膜213とチャネル領域212aとの間で成膜時間の差が小さくなるような成膜速度でエピタキシャル成長を行う。さらに、この非選択エピタキシャル成長工程の成膜温度(基板温度)は、上記選択エピタキシャル成長工程の成膜温度(基板温度)よりも高い温度に設定される。 Next, as shown in FIG. 6E, a polysilicon film 214 is formed on the silicon oxide film 213 by non-selective epitaxial growth, and the channel region 212a is further epitaxially grown. In this process, epitaxial growth is also performed by a single-wafer thermal CVD (Chemical Vapor Deposition Method). However, the etchant gas used in this non-selective epitaxial growth process is changed from the etchant gas used in the selective epitaxial growth process. In other words, an etchant gas that does not suppress nucleation is used. In addition, in this non-selective epitaxial growth process, epitaxial growth is performed at a film growth rate that reduces the difference in film growth time between the silicon oxide film 213 and the channel region 212a. Furthermore, the film growth temperature (substrate temperature) in this non-selective epitaxial growth process is set to a temperature higher than the film growth temperature (substrate temperature) in the selective epitaxial growth process.
 次に、図6Fに示すように、CMP(Chemical Mechanical Polishing)によって、平坦化処理を行う。これにより、酸化シリコン膜213、ポリシリコン膜214の一部、およびチャネル領域212aの一部が除去される。その結果、酸化シリコン膜213上におけるドレイン領域121dおよびソース領域121eになる領域にポリシリコン膜214が残り、残ったポリシリコン膜214間にチャネル領域212aが残る。 Next, as shown in FIG. 6F, a planarization process is performed by CMP (Chemical Mechanical Polishing). This removes the silicon oxide film 213, part of the polysilicon film 214, and part of the channel region 212a. As a result, the polysilicon film 214 remains in the regions that will become the drain region 121d and the source region 121e on the silicon oxide film 213, and the channel region 212a remains between the remaining polysilicon film 214.
 最後に、図6Gに示すように、チャネル領域212a上にゲート絶縁膜121b、ゲート電極121a、およびサイドウォール絶縁膜121cを形成する。なお、これらは、通常用いられる製造プロセスで形成することができるため、詳細な説明を省略する。また、この工程では、上記平坦化処理で残ったポリシリコン膜214にN型の不純物を注入してドレイン領域121dおよびソース領域121eを形成する。この不純物の濃度は、例えば1e20cm-3程度である。ただし、ドレイン領域121dおよびソース領域121eでは、不純物を全領域に拡散させる必要はなく、少なくともチャネル領域212aに接する部分が拡散膜であればよい。すなわち、ドレイン領域121dおよびソース領域121eの内側が拡散膜で、外側がポリシリコン膜であってもよい。なお、本実施形態では、チャネル領域212aを含むP型の半導体ウェル領域は、その濃度が極低濃度である。そのため、この半導体ウェル領域は、イオン注入ではなくエピタキシャル成長によって形成されたノンドープ型の領域である。 Finally, as shown in FIG. 6G, a gate insulating film 121b, a gate electrode 121a, and a sidewall insulating film 121c are formed on the channel region 212a. Since these can be formed by a commonly used manufacturing process, detailed description is omitted. In this process, an N-type impurity is implanted into the polysilicon film 214 remaining after the planarization process to form the drain region 121d and the source region 121e. The concentration of this impurity is, for example, about 1e 20 cm −3 . However, in the drain region 121d and the source region 121e, it is not necessary to diffuse the impurity into the entire region, and it is sufficient that at least the portion in contact with the channel region 212a is a diffusion film. That is, the inside of the drain region 121d and the source region 121e may be a diffusion film, and the outside may be a polysilicon film. In this embodiment, the concentration of the P-type semiconductor well region including the channel region 212a is extremely low. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
 上述した第1アンプトランジスタ121の製造方法は、一例であり、これに限定されない。ここで、図7A~図7Hを参照して、本実施形態に係る第1アンプトランジスタ121の製造方法の別例について説明する。なお、本例では、図6A~図6Gを用いて製造工程と同様の製造工程については、重複する説明を省略する。 The above-described method for manufacturing the first amplifier transistor 121 is an example, and is not limited to this. Here, with reference to Figures 7A to 7H, another example of the method for manufacturing the first amplifier transistor 121 according to this embodiment will be described. Note that in this example, redundant descriptions of manufacturing steps similar to those described using Figures 6A to 6G will be omitted.
 本例では、図7Aに示すように、半導体基板210の基層211上に、酸化シリコン膜213を成膜する。 In this example, as shown in FIG. 7A, a silicon oxide film 213 is formed on a base layer 211 of a semiconductor substrate 210.
 次に、図7Bに示すように、絶縁膜115を成膜する。絶縁膜115は、例えば、基層211の一部をエッチングして形成されたホール内にALD法等を用いてシリコン酸化物で埋め込むことによって、形成することができる。上述した例では、絶縁膜115は、図6Bにしめすように第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの形成領域に形成されている。一方、本例では、絶縁膜115は、第1アンプトランジスタ121の形成領域全体に形成されている。 Next, as shown in FIG. 7B, the insulating film 115 is formed. The insulating film 115 can be formed, for example, by filling a hole formed by etching a part of the base layer 211 with silicon oxide using an ALD method or the like. In the above example, the insulating film 115 is formed in the formation region of the drain region 121d and the source region 121e of the first amplifier transistor 121 as shown in FIG. 6B. On the other hand, in this example, the insulating film 115 is formed over the entire formation region of the first amplifier transistor 121.
 次に、図7Cに示すように、絶縁膜115を分断する。分断箇所は、第1アンプトランジスタ121のチャネル領域212aとなる部分である。絶縁膜115は、例えばRIE(Reactive Ion Etching)装置等を用いたエッチングによって分断することができる。 Next, as shown in FIG. 7C, the insulating film 115 is divided. The division is at a portion that will become the channel region 212a of the first amplifier transistor 121. The insulating film 115 can be divided by etching using, for example, an RIE (Reactive Ion Etching) device.
 次に、図7Dに示すように、例えばマスク等を用いて絶縁膜115の一部をエッチングする。エッチングされる箇所は、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの形成領域である。 Next, as shown in FIG. 7D, a portion of the insulating film 115 is etched using, for example, a mask. The area to be etched is the area where the drain region 121d and source region 121e of the first amplifier transistor 121 are formed.
 次に、図7Eに示すように、絶縁膜115のエッチング箇所を選択的にエピタキシャル成長させることによって、P型のエピタキシャル成長層であるチャネル領域212aを形成する。 Next, as shown in FIG. 7E, the etched portions of the insulating film 115 are selectively epitaxially grown to form a channel region 212a, which is a P-type epitaxial growth layer.
 次に、図7Fに示すように、非選択エピタキシャル成長によって、酸化シリコン膜213上にポリシリコン膜214を形成するとともに、チャネル領域212aをさらにエピタキシャル成長させる。 Next, as shown in FIG. 7F, a polysilicon film 214 is formed on the silicon oxide film 213 by non-selective epitaxial growth, and the channel region 212a is further epitaxially grown.
 次に、図7Gに示すように、CMPによって、平坦化処理を行う。これにより、酸化シリコン膜213、ポリシリコン膜214の一部、およびチャネル領域212aの一部が除去される。その結果、酸化シリコン膜213上におけるドレイン領域121dおよびソース領域121eになる領域にポリシリコン膜214が残り、残ったポリシリコン膜214間にチャネル領域212aが残る。 Next, as shown in FIG. 7G, a planarization process is performed by CMP. This removes the silicon oxide film 213, part of the polysilicon film 214, and part of the channel region 212a. As a result, the polysilicon film 214 remains in the regions that will become the drain region 121d and the source region 121e on the silicon oxide film 213, and the channel region 212a remains between the remaining polysilicon film 214.
 最後に、図7Hに示すように、基層211の上部にエピタキシャル成長層212を形成するとともに、チャネル領域212a上にゲート絶縁膜121b、ゲート電極121a、およびサイドウォール絶縁膜121cを形成する。また、この工程では、上記平坦化処理で残ったポリシリコン膜214にN型の不純物を注入してドレイン領域121dおよびソース領域121eも形成する。この不純物の濃度は、例えば1e20cm-3程度である。ただし、ドレイン領域121dおよびソース領域121eでは、不純物を全領域に拡散させる必要はなく、少なくともチャネル領域212aに接する部分が拡散膜であればよい。すなわち、ドレイン領域121dおよびソース領域121eの内側が拡散膜で、外側がポリシリコン膜であってもよい。なお、本例でも、チャネル領域212aを含むP型の半導体ウェル領域は、その濃度が極低濃度である。そのため、この半導体ウェル領域は、イオン注入ではなくエピタキシャル成長によって形成されたノンドープ型の領域である。 Finally, as shown in FIG. 7H, an epitaxial growth layer 212 is formed on the upper part of the base layer 211, and a gate insulating film 121b, a gate electrode 121a, and a sidewall insulating film 121c are formed on the channel region 212a. In this process, an N-type impurity is implanted into the polysilicon film 214 remaining after the planarization process to form the drain region 121d and the source region 121e. The concentration of this impurity is, for example, about 1e 20 cm −3 . However, in the drain region 121d and the source region 121e, it is not necessary to diffuse the impurity into the entire region, and it is sufficient that at least the part in contact with the channel region 212a is a diffusion film. That is, the inside of the drain region 121d and the source region 121e may be a diffusion film, and the outside may be a polysilicon film. In this example, the concentration of the P-type semiconductor well region including the channel region 212a is extremely low. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
 上述した本実施形態では、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120の熱雑音の増大を抑制することができる。したがって、本実施形態に係るCMOSイメージセンサ1によれば、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In the above-described embodiment, the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120 even when the first amplifier transistor 121 is driven with a low current. Therefore, the CMOS image sensor 1 according to this embodiment makes it possible to reduce random noise while suppressing power consumption.
 (第2実施形態)
 以下、第2実施形態について説明する。本実施形態に係るCMOSイメージセンサでは、第1アンプトランジスタ121の構造が第1実施形態と異なる。そのため、ここでは、第1アンプトランジスタ121の構造についてのみ説明し、その他の説明は省略する。
Second Embodiment
The second embodiment will be described below. In the CMOS image sensor according to this embodiment, the structure of the first amplifier transistor 121 is different from that of the first embodiment. Therefore, only the structure of the first amplifier transistor 121 will be described here, and other descriptions will be omitted.
 図8は、第2実施形態に係る第1アンプトランジスタ121の構造を示す断面図である。図8では、第1実施形態と同様の構成要素には同じ符号を付している。本実施形態に係る第1アンプトランジスタ121では、SiGe(シリコンゲルマニウム)層215がチャネル領域212aの直下に形成されている。すなわち、第1アンプトランジスタ121のエピタキシャル成長層212は、チャネル領域212aである第1シリコン層、SiGe層215、SiGe層215に積層されている第2シリコン層の3層構造となっている。 FIG. 8 is a cross-sectional view showing the structure of the first amplifier transistor 121 according to the second embodiment. In FIG. 8, the same components as those in the first embodiment are given the same reference numerals. In the first amplifier transistor 121 according to this embodiment, a SiGe (silicon germanium) layer 215 is formed directly below the channel region 212a. That is, the epitaxial growth layer 212 of the first amplifier transistor 121 has a three-layer structure of a first silicon layer which is the channel region 212a, a SiGe layer 215, and a second silicon layer stacked on the SiGe layer 215.
 SiGe層215は、図6Dまたは図7Eに示す選択エピタキシャル成長工程時に、形成することができる。この工程では、例えば熱CVD装置に内に導入するエッチャントガスを、成膜装置内にSiGe層215を形成するための第1エッチャントガスからチャネル領域212aを形成するための第2エッチャントガスに切り替えている。これにより、絶縁膜115間にSiGe層215およびチャネル領域212aを選択的に形成することができる。 The SiGe layer 215 can be formed during the selective epitaxial growth process shown in FIG. 6D or FIG. 7E. In this process, for example, the etchant gas introduced into the thermal CVD apparatus is switched from a first etchant gas for forming the SiGe layer 215 in the film formation apparatus to a second etchant gas for forming the channel region 212a. This allows the SiGe layer 215 and the channel region 212a to be selectively formed between the insulating films 115.
 上記のように形成されたSiGe層215の原子間距離は、チャネル領域212aのシリコンの原子間距離よりも大きい。そのため、チャネル領域212a内では、チャネル長方向に引っ張り応力が生じる(図8の矢印参照)。これにより、チャネル領域212a内における電子移動度が向上するので、第1アンプトランジスタ121のgm1が大きくなる。その結果、第1実施形態で説明した式(1)に示すように、第1ソースフォロワ回路120の熱雑音V NSHをさらに低減することができる。よって、本実施形態によれば、ランダムノイズをより一層低減することが可能となる。 The interatomic distance of the SiGe layer 215 formed as described above is larger than the interatomic distance of silicon in the channel region 212a. Therefore, tensile stress is generated in the channel region 212a in the channel length direction (see the arrow in FIG. 8). This improves the electron mobility in the channel region 212a, and gm1 of the first amplifier transistor 121 increases. As a result, as shown in the formula (1) described in the first embodiment, the thermal noise V 2 NSH of the first source follower circuit 120 can be further reduced. Therefore, according to this embodiment, it is possible to further reduce random noise.
 (第3実施形態)
 以下、第3実施形態について説明する。本実施形態に係るCMOSイメージセンサでは、第1アンプトランジスタ121の構造が第1実施形態と異なる。そのため、ここでも、第1アンプトランジスタ121の構造についてのみ説明し、その他の説明は省略する。
Third Embodiment
Hereinafter, the third embodiment will be described. In the CMOS image sensor according to this embodiment, the structure of the first amplifier transistor 121 is different from that of the first embodiment. Therefore, here too, only the structure of the first amplifier transistor 121 will be described, and other descriptions will be omitted.
 第1アンプトランジスタ121をSi(111)面に配置する場合、チャネル領域212aの結晶面が、比較的欠陥の多いSi(111)面に配置される。この場合、電気的特性の悪化が懸念される。 If the first amplifier transistor 121 is arranged on the Si(111) surface, the crystal plane of the channel region 212a will be arranged on the Si(111) surface, which has relatively many defects. In this case, there is a concern that the electrical characteristics may deteriorate.
 そこで、本実施形態では、Fin型MOSトランジスタの構造を第1アンプトランジスタ121に適用する。ここで、まず、図9を参照して一般的なFin型MOSトランジスタの構造を説明する。 Therefore, in this embodiment, the structure of a Fin-type MOS transistor is applied to the first amplifier transistor 121. First, the structure of a general Fin-type MOS transistor will be described with reference to FIG. 9.
 図9は、一般的なFin型MOSトランジスタの構造を示す斜視図である。図9に示すFin型MOSトランジスタ1210では、シリコン基板2120の上に酸化シリコン膜1150が形成されている。酸化シリコン膜1150内には、いわゆるダブルゲート構造のゲート電極1210aが形成されている。また、酸化シリコン膜1150内では、ドレイン領域1210dおよびソース領域1210eが、ゲート電極1210aを挟んで対向配置されている。 FIG. 9 is a perspective view showing the structure of a typical Fin-type MOS transistor. In the Fin-type MOS transistor 1210 shown in FIG. 9, a silicon oxide film 1150 is formed on a silicon substrate 2120. A gate electrode 1210a having a so-called double gate structure is formed in the silicon oxide film 1150. Also, in the silicon oxide film 1150, a drain region 1210d and a source region 1210e are arranged opposite each other with the gate electrode 1210a in between.
 上記のような構造を有するFin型MOSトランジスタ1210では、ゲート電極1210aに駆動電圧が印加されると、チャネル領域は、Si(111)面よりも欠陥の少ないSi(110)面に生じる。そのため、電気的特性の悪化を回避することができる。 In the Fin-type MOS transistor 1210 having the above structure, when a drive voltage is applied to the gate electrode 1210a, a channel region is generated on the Si(110) surface, which has fewer defects than the Si(111) surface. This makes it possible to avoid deterioration of electrical characteristics.
 以上説明したFin型MOSトランジスタ1210に続いて、本実施形態に係る第1アンプトランジスタ121の構造を説明する。 Following the above-described Fin-type MOS transistor 1210, the structure of the first amplifier transistor 121 according to this embodiment will now be described.
 図10は、第3実施形態に係る第1アンプトランジスタ121の構造を示す断面図である。なお、図10は、断面図であるため、ドレイン領域121dおよびソース領域121eの記載を省略している。ただし、Fin型MOSトランジスタ1210と同様に、ドレイン領域121dはゲート電極121aの奥側に形成され、ソース領域121eはゲート電極121aの手前側に形成されている。また、ドレイン領域121dおよびソース領域121eの直下には、上述した他の実施形態と同様に絶縁膜115が形成されている。 FIG. 10 is a cross-sectional view showing the structure of the first amplifier transistor 121 according to the third embodiment. Since FIG. 10 is a cross-sectional view, the drain region 121d and the source region 121e are omitted. However, similar to the Fin-type MOS transistor 1210, the drain region 121d is formed on the rear side of the gate electrode 121a, and the source region 121e is formed on the front side of the gate electrode 121a. Also, an insulating film 115 is formed directly below the drain region 121d and the source region 121e, similar to the other embodiments described above.
 上記のように構成された第1アンプトランジスタ121でも、ゲート電極1210aに駆動電圧が印加されると、チャネル領域212aがSi(110)面に生じる。そのため、電気的特性の悪化を回避することができる。また、ドレイン領域121dおよびソース領域121eの直下には、絶縁膜115が形成されているため、空乏層の広がりを抑制することができる。 Even in the first amplifier transistor 121 configured as described above, when a drive voltage is applied to the gate electrode 1210a, a channel region 212a is generated on the Si(110) surface. This makes it possible to avoid deterioration of electrical characteristics. In addition, since an insulating film 115 is formed directly below the drain region 121d and the source region 121e, the expansion of the depletion layer can be suppressed.
 以下、図11A~図11Gを参照して、本実施形態に係る第1アンプトランジスタ121の製造方法の一例について説明する。 Below, an example of a method for manufacturing the first amplifier transistor 121 according to this embodiment will be described with reference to Figures 11A to 11G.
 まず、図11Aに示すように、エピタキシャル成長層212が形成されていない基層211から成る半導体基板210を形成する。 First, as shown in FIG. 11A, a semiconductor substrate 210 is formed, which is made of a base layer 211 on which an epitaxial growth layer 212 is not formed.
 次に、図11Bに示すように、基層211内に絶縁膜115の一部を形成する。この絶縁膜115は、例えば、基層211にエッチング等により形成されたホール内にALD法等を用いてシリコン酸化物を埋め込むことによって、形成することができる。この絶縁膜115は、後述するESS(Empty Space in Silicon)のストッパー膜として機能する。 Next, as shown in FIG. 11B, a part of the insulating film 115 is formed in the base layer 211. This insulating film 115 can be formed, for example, by filling holes formed in the base layer 211 by etching or the like with silicon oxide using the ALD method or the like. This insulating film 115 functions as a stopper film for ESS (Empty Space in Silicon), which will be described later.
 次に、図11Cに示すように、基層211上に窒化シリコン(SiN)膜216を形成する。続いて、窒化シリコン膜216上に酸化シリコン(SiO)膜217を形成する。続いて、後述するESS用のトレンチ218を形成する。トレンチ218は、窒化シリコン膜216および酸化シリコン膜217を貫通し、基層211で終端する。基層211内において、トレンチ218は、ストッパー膜(絶縁膜115)の内側に形成されている。また、トレンチ218の深さは、上記ストッパー膜よりも浅い。 11C, a silicon nitride (SiN) film 216 is formed on the base layer 211. Then, a silicon oxide (SiO 2 ) film 217 is formed on the silicon nitride film 216. Then, a trench 218 for ESS, which will be described later, is formed. The trench 218 penetrates the silicon nitride film 216 and the silicon oxide film 217, and terminates at the base layer 211. In the base layer 211, the trench 218 is formed on the inside of the stopper film (insulating film 115). The depth of the trench 218 is shallower than the stopper film.
 次に、図11Dに示すように、基層211内にESS219を形成する。ESS219は、例えばアルカリ性のエッチング液をトレンチ218から流入させることによって、Si(111)面に対してSi(110)面を高選択にエッチングすることによって形成することができる。このエッチングは、上記絶縁膜115でストップする。これにより、Si(110)面方向に延びるESS219が完成する。 Next, as shown in FIG. 11D, ESS 219 is formed in base layer 211. ESS 219 can be formed by, for example, flowing an alkaline etching solution through trench 218 to highly selectively etch the Si(110) surface relative to the Si(111) surface. This etching stops at insulating film 115. This completes ESS 219 extending in the direction of the Si(110) surface.
 次に、図11Eに示すように、ALD法を用いてシリコン酸化物をトレンチ218およびESS219に埋め込むことによって、絶縁膜115が完成する。その結果、疑似的なFD-SOI(Fully Depleted Silicon On Insulator)構造が形成される。 Next, as shown in FIG. 11E, the insulating film 115 is completed by filling the trench 218 and the ESS 219 with silicon oxide using the ALD method. As a result, a pseudo FD-SOI (Fully Depleted Silicon On Insulator) structure is formed.
 次に、図11Fに示すように、CMPによって平坦化処理を行う。これにより、窒化シリコン膜216および酸化シリコン膜217が除去される。 Next, as shown in FIG. 11F, a planarization process is performed by CMP. This removes the silicon nitride film 216 and the silicon oxide film 217.
 最後に、図11Gに示すように、基層211の上部にエピタキシャル成長層212を形成するとともに、ダブルゲート構造のゲート電極121aおよびサイドウォール絶縁膜121cを形成する。また、この工程では、ドレイン領域121dおよびソース領域121eも形成する。本実施形態でも、エピタキシャル成長層212、すなわち、チャネル領域212aを含むP型の半導体ウェル領域は、その濃度が極低濃度である。そのため、この半導体ウェル領域は、イオン注入ではなくエピタキシャル成長によって形成されたノンドープ型の領域である。 Finally, as shown in FIG. 11G, an epitaxial growth layer 212 is formed on the upper part of the base layer 211, and a gate electrode 121a and a sidewall insulating film 121c of a double gate structure are formed. In this process, a drain region 121d and a source region 121e are also formed. In this embodiment, too, the epitaxial growth layer 212, i.e., the P-type semiconductor well region including the channel region 212a, has an extremely low concentration. Therefore, this semiconductor well region is a non-doped region formed by epitaxial growth rather than ion implantation.
 以上説明した本実施形態によれば、第1アンプトランジスタ121がFin型MOSトランジスタであるため、チャネル領域212aを、比較的結晶欠陥の少ないSi(110)面に形成することができる。そのため、第1アンプトランジスタ121の電気的特性を改善することが可能となる。 In the present embodiment described above, since the first amplifier transistor 121 is a Fin-type MOS transistor, the channel region 212a can be formed on the Si(110) surface, which has relatively few crystal defects. This makes it possible to improve the electrical characteristics of the first amplifier transistor 121.
 また、本実施形態でも、他の実施形態と同様に、ドレイン領域121dおよびソース領域121eの直下には、絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつチャネル領域212aの不純物濃度を極低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流領域で駆動しても、ランダムノイズを低減することが可能となる。なお、本実施形態では、絶縁膜115は、ドレイン領域121dおよびソース領域121eの直下だけでなく、チャネル領域212aの直下にも形成されている。 In this embodiment, as in the other embodiments, an insulating film 115 is formed directly below the drain region 121d and the source region 121e. This makes it possible to make the impurity concentration of the channel region 212a extremely low while suppressing the short channel effect. This makes it possible to reduce random noise even when the first amplifier transistor 121 is driven in a low current region. Note that in this embodiment, the insulating film 115 is formed not only directly below the drain region 121d and the source region 121e, but also directly below the channel region 212a.
 (第1変形例)
 図12は、第1変形例に係る画素の回路構成を示す図である。なお、図12では、上述した第1実施形態に係る画素11と同様の回路素子には、同じ符号を付す。図12に示す画素11aは、光電変換回路110aと、第1ソースフォロワ回路120aと、信号保持選択回路130aと、第2ソースフォロワ回路140aと、を有する。
(First Modification)
Fig. 12 is a diagram showing a circuit configuration of a pixel according to a first modified example. In Fig. 12, the same circuit elements as those of the pixel 11 according to the first embodiment described above are denoted by the same reference numerals. The pixel 11a shown in Fig. 12 has a photoelectric conversion circuit 110a, a first source follower circuit 120a, a signal holding selection circuit 130a, and a second source follower circuit 140a.
 光電変換回路110aは、フォトダイオード111、転送トランジスタ112、および第1リセットトランジスタ113を有する。これらの回路素子については、第1実施形態で説明しているため、詳細な説明を省略する。 The photoelectric conversion circuit 110a has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
 第1ソースフォロワ回路120aは、第1アンプトランジスタ121およびバイアスカットトランジスタ123を有する。これらの回路素子についても、第1実施形態で説明しているため、詳細な説明を省略する。 The first source follower circuit 120a has a first amplifier transistor 121 and a bias cut transistor 123. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
 信号保持選択回路130aは、第1容量素子131、第2容量素子132、第1サンプリングトランジスタ133、および第2サンプリングトランジスタ134を有する。信号保持選択回路130aでは、第1容量素子131および第2容量素子132のそれぞれの一端は、電源電圧VDDの電位を有する電源線に接続されている。第1容量素子131の他端は、第1サンプリングトランジスタ133のソースに接続されている。第2容量素子132の他端は、第2サンプリングトランジスタ134のソースに接続されている。 The signal holding selection circuit 130a has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, and a second sampling transistor 134. In the signal holding selection circuit 130a, one end of each of the first capacitance element 131 and the second capacitance element 132 is connected to a power supply line having a potential of the power supply voltage VDD. The other end of the first capacitance element 131 is connected to the source of the first sampling transistor 133. The other end of the second capacitance element 132 is connected to the source of the second sampling transistor 134.
 第1サンプリングトランジスタ133は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第1サンプリング信号SRに従って、第1ソースフォロワ回路120aで増幅された画素信号を第1容量素子131に保持するか否かを切り替える。一方、第2サンプリングトランジスタ134は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2サンプリング信号SDに従って、第1ソースフォロワ回路120aで増幅された画素信号を第2容量素子132に保持するか否かを切り替える。各サンプリングトランジスタのドレインは、第1ソースフォロワ回路120aの出力端子に共通に接続されている。 The first sampling transistor 133 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the first capacitance element 131 according to the first sampling signal SR input to its gate from the vertical drive unit 20 through the pixel drive line 80. Meanwhile, the second sampling transistor 134 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the second capacitance element 132 according to the second sampling signal SD input to its gate from the vertical drive unit 20 through the pixel drive line 80. The drains of the sampling transistors are commonly connected to the output terminal of the first source follower circuit 120a.
 第2ソースフォロワ回路140aは、第2アンプトランジスタ141と、第2選択トランジスタ142と、電流源143と、を有する。第2ソースフォロワ回路140aでは、これらの回路素子が、第1容量素子131および第2容量素子132にそれぞれ接続されて一対となっている。 The second source follower circuit 140a has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. In the second source follower circuit 140a, these circuit elements are connected to the first capacitance element 131 and the second capacitance element 132, respectively, to form a pair.
 上記のように構成された画素11aでは、例えば、光電変換回路110aおよび第1ソースフォロワ回路120aの第1アンプトランジスタ121が、センサチップ201に配置されている。また、第1ソースフォロワ回路120aのバイアスカットトランジスタ123、信号保持選択回路130aおよび第2ソースフォロワ回路140aがロジックチップ202に配置されている。ただし、センサチップ201およびセンサチップ201における画素11aの配置構成は、上記の配置構成に限定されない。 In the pixel 11a configured as described above, for example, the photoelectric conversion circuit 110a and the first amplifier transistor 121 of the first source follower circuit 120a are arranged on the sensor chip 201. Also, the bias cut transistor 123 of the first source follower circuit 120a, the signal hold selection circuit 130a, and the second source follower circuit 140a are arranged on the logic chip 202. However, the arrangement of the sensor chip 201 and the pixels 11a in the sensor chip 201 is not limited to the arrangement described above.
 本変形例においても、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120aの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In this modification, as in the first embodiment described above, an insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120a even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
 (第2変形例)
 図13は、第2変形例に係る画素の回路構成を示す図である。なお、図13でも、上述した第1実施形態に係る画素11と同様の回路素子には、同じ符号を付す。図13に示す画素11bは、光電変換回路110bと、第1ソースフォロワ回路120bと、信号保持選択回路130bと、第2ソースフォロワ回路140bと、を有する。
(Second Modification)
Fig. 13 is a diagram showing a circuit configuration of a pixel according to a second modified example. In Fig. 13, the same circuit elements as those of the pixel 11 according to the first embodiment described above are denoted by the same reference numerals. The pixel 11b shown in Fig. 13 has a photoelectric conversion circuit 110b, a first source follower circuit 120b, a signal holding selection circuit 130b, and a second source follower circuit 140b.
 光電変換回路110bは、フォトダイオード111、転送トランジスタ112、および第1リセットトランジスタ113を有する。これらの回路素子については、第1実施形態で説明しているため、詳細な説明を省略する。 The photoelectric conversion circuit 110b has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
 第1ソースフォロワ回路120bは、第1アンプトランジスタ121およびバイアスカットトランジスタ123を有する。これらの回路素子についても、第1実施形態で説明しているため、詳細な説明を省略する。 The first source follower circuit 120b has a first amplifier transistor 121 and a bias cut transistor 123. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
 信号保持選択回路130bは、第1容量素子131、第2容量素子132、第1サンプリングトランジスタ133、および第2サンプリングトランジスタ134を有する。信号保持選択回路130bでは、第1容量素子131の一端は、電源電圧VDDの電位を有する電源線に接続されている。第1容量素子131の他端は、第1サンプリングトランジスタ133のソースと第2容量素子132の一端に接続されている。第2容量素子132の他端は、出力ノード136に接続されている。 The signal holding selection circuit 130b has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, and a second sampling transistor 134. In the signal holding selection circuit 130b, one end of the first capacitance element 131 is connected to a power supply line having a potential of the power supply voltage VDD. The other end of the first capacitance element 131 is connected to the source of the first sampling transistor 133 and one end of the second capacitance element 132. The other end of the second capacitance element 132 is connected to the output node 136.
 第1サンプリングトランジスタ133は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第1サンプリング信号SRに従って、第1ソースフォロワ回路120aで増幅された画素信号を第1容量素子131および第2容量素子132に保持するか否かを切り替える。第1サンプリングトランジスタ133のドレインは、第1ソースフォロワ回路120aの出力端子に共通に接続されている。 The first sampling transistor 133 switches whether or not to hold the pixel signal amplified by the first source follower circuit 120a in the first capacitance element 131 and the second capacitance element 132 according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80. The drain of the first sampling transistor 133 is commonly connected to the output terminal of the first source follower circuit 120a.
 第2サンプリングトランジスタ134は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2サンプリング信号SDに従って、出力ノード136の電位をリセットする。第2サンプリングトランジスタ134のドレインは、上記電源線に接続され、ソースは、出力ノード136に接続されている。 The second sampling transistor 134 resets the potential of the output node 136 according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80. The drain of the second sampling transistor 134 is connected to the power supply line, and the source is connected to the output node 136.
 第2ソースフォロワ回路140bは、第2アンプトランジスタ141と、第2選択トランジスタ142と、電流源143と、を有する。これらの回路素子については、第1実施形態で説明しているため、詳細な説明を省略する。 The second source follower circuit 140b has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
 上記のように構成された画素11bでは、例えば、光電変換回路110bおよび第1ソースフォロワ回路120bの第1アンプトランジスタ121が、センサチップ201に配置されている。また、第1ソースフォロワ回路120bのバイアスカットトランジスタ123、信号保持選択回路130bおよび第2ソースフォロワ回路140bがロジックチップ202に配置されている。ただし、センサチップ201およびセンサチップ201における画素11bの配置構成は、上記の配置構成に限定されない。 In the pixel 11b configured as described above, for example, the photoelectric conversion circuit 110b and the first amplifier transistor 121 of the first source follower circuit 120b are arranged on the sensor chip 201. Also, the bias cut transistor 123, signal hold selection circuit 130b, and second source follower circuit 140b of the first source follower circuit 120b are arranged on the logic chip 202. However, the arrangement of the sensor chip 201 and the pixel 11b in the sensor chip 201 is not limited to the arrangement described above.
 本変形例においても、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120bの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In this modification, as in the first embodiment described above, an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120b even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
 (第3変形例)
 図14は、第3変形例に係る画素の回路構成を示す図である。なお、図14でも、上述した第1実施形態に係る画素11と同様の回路素子には、同じ符号を付す。図14に示す画素11cは、光電変換回路110cと、第1ソースフォロワ回路120cと、信号保持選択回路130cと、第2ソースフォロワ回路140cと、を有する。
(Third Modification)
Fig. 14 is a diagram showing a circuit configuration of a pixel according to a third modified example. In Fig. 14, the same circuit elements as those of the pixel 11 according to the first embodiment described above are denoted by the same reference numerals. The pixel 11c shown in Fig. 14 has a photoelectric conversion circuit 110c, a first source follower circuit 120c, a signal holding selection circuit 130c, and a second source follower circuit 140c.
 光電変換回路110cは、フォトダイオード111、転送トランジスタ112、および第1リセットトランジスタ113を有する。これらの回路素子については、第1実施形態で説明しているため、詳細な説明を省略する。 The photoelectric conversion circuit 110c has a photodiode 111, a transfer transistor 112, and a first reset transistor 113. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
 第1ソースフォロワ回路120cは、第1アンプトランジスタ121、バイアスカットトランジスタ123、および負荷トランジスタ124を有する。これらの回路素子についても、第1実施形態で説明しているため、詳細な説明を省略する。 The first source follower circuit 120c has a first amplifier transistor 121, a bias cut transistor 123, and a load transistor 124. These circuit elements are also described in the first embodiment, so detailed description will be omitted.
 信号保持選択回路130cは、第1容量素子131、第2容量素子132、第1サンプリングトランジスタ133、第2サンプリングトランジスタ134、および切替トランジスタ137を有する。信号保持選択回路130cでは、第1容量素子131および第2容量素子132のそれぞれの一端は、電源電圧VDDの電位を有する電源線に接続されている。第1容量素子131の他端は、第1サンプリングトランジスタ133のドレインに接続されている。第2容量素子132の他端は、第2サンプリングトランジスタ134のドレインに接続されている。 The signal holding selection circuit 130c has a first capacitance element 131, a second capacitance element 132, a first sampling transistor 133, a second sampling transistor 134, and a switching transistor 137. In the signal holding selection circuit 130c, one end of each of the first capacitance element 131 and the second capacitance element 132 is connected to a power supply line having a potential of the power supply voltage VDD. The other end of the first capacitance element 131 is connected to the drain of the first sampling transistor 133. The other end of the second capacitance element 132 is connected to the drain of the second sampling transistor 134.
 第1サンプリングトランジスタ133は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第1サンプリング信号SRに従って、第1容量素子131に保持された画素信号を第2ソースフォロワ回路140cに出力するか否かを切り替える。第1サンプリングトランジスタ133のソースは、切替トランジスタ137のソースおよび出力ノード136に接続されている。 The first sampling transistor 133 switches whether or not to output the pixel signal held in the first capacitance element 131 to the second source follower circuit 140c according to the first sampling signal SR input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the first sampling transistor 133 is connected to the source of the switching transistor 137 and the output node 136.
 第2サンプリングトランジスタ134は、垂直駆動部20から画素駆動線80を通じてゲートに入力された第2サンプリング信号SDに従って、第2容量素子132に保持された画素信号を第2ソースフォロワ回路140cに出力するか否かを切り替える。第2サンプリングトランジスタ134のソースは、切替トランジスタ137のソースおよび出力ノード136に接続されている。 The second sampling transistor 134 switches whether or not to output the pixel signal held in the second capacitance element 132 to the second source follower circuit 140c according to the second sampling signal SD input to the gate from the vertical drive unit 20 through the pixel drive line 80. The source of the second sampling transistor 134 is connected to the source of the switching transistor 137 and the output node 136.
 切替トランジスタ137は、Nチャネル型のMOSトランジスタで構成されている。切替トランジスタ137のゲートには、垂直駆動部20から画素駆動線80を通じて切替信号SHが入力される。切替トランジスタ137が、切替信号SHに基づいてオンすると、第1ソースフォロワ回路120cで増幅された信号が、第1容量素子131または第2容量素子132に保持される。 The switching transistor 137 is composed of an N-channel MOS transistor. A switching signal SH is input to the gate of the switching transistor 137 from the vertical drive unit 20 through the pixel drive line 80. When the switching transistor 137 is turned on based on the switching signal SH, the signal amplified by the first source follower circuit 120c is held in the first capacitance element 131 or the second capacitance element 132.
 第2ソースフォロワ回路140cは、第2アンプトランジスタ141と、第2選択トランジスタ142と、電流源143と、を有する。これらの回路素子については、第1実施形態で説明しているため、詳細な説明を省略する。 The second source follower circuit 140c has a second amplifier transistor 141, a second selection transistor 142, and a current source 143. These circuit elements have been described in the first embodiment, so detailed description will be omitted.
 上記のように構成された画素11cでは、例えば、光電変換回路110cおよび第1ソースフォロワ回路120cの第1アンプトランジスタ121が、センサチップ201に配置されている。また、第1ソースフォロワ回路120cのバイアスカットトランジスタ123および負荷トランジスタ124、信号保持選択回路130b、並びに第2ソースフォロワ回路140bがロジックチップ202に配置されている。ただし、センサチップ201およびセンサチップ201における画素11cの配置構成は、上記の配置構成に限定されない。 In the pixel 11c configured as described above, for example, the photoelectric conversion circuit 110c and the first amplifier transistor 121 of the first source follower circuit 120c are arranged on the sensor chip 201. Also, the bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120c, the signal hold selection circuit 130b, and the second source follower circuit 140b are arranged on the logic chip 202. However, the arrangement of the sensor chip 201 and the pixel 11c in the sensor chip 201 is not limited to the arrangement described above.
 本変形例においても、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In this modification, as in the first embodiment described above, an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
 (第4変形例)
 図15は、第4変形例に係る画素の回路構成を示す図である。なお、図15では、上述した第1実施形態に係る画素11と同様の回路素子には、同じ符号を付す。図15に示す画素11dは、光電変換回路110dと、第1ソースフォロワ回路120dと、信号保持選択回路130dと、第2ソースフォロワ回路140dと、を有する。
(Fourth Modification)
Fig. 15 is a diagram showing a circuit configuration of a pixel according to a fourth modified example. In Fig. 15, the same circuit elements as those of the pixel 11 according to the first embodiment described above are denoted by the same reference numerals. The pixel 11d shown in Fig. 15 has a photoelectric conversion circuit 110d, a first source follower circuit 120d, a signal holding selection circuit 130d, and a second source follower circuit 140d.
 光電変換回路110dは、フォトダイオード111、転送トランジスタ112、第1リセットトランジスタ113、切替トランジスタ116、および容量素子117を有する。切替トランジスタ116は、Nチャネル型のMOSトランジスタで構成され、第1リセットトランジスタ113と、FDとの間に配置されている。容量素子117の一端は、切替トランジスタ116のドレインに接続され、他端は接地されている。切替トランジスタ116のゲートには、垂直駆動部20から駆動信号FDGが入力される。切替トランジスタ116が、駆動信号FDGに基づいてオン状態になると、容量素子117に保持された電荷がFDに転送される。 The photoelectric conversion circuit 110d has a photodiode 111, a transfer transistor 112, a first reset transistor 113, a switching transistor 116, and a capacitance element 117. The switching transistor 116 is configured as an N-channel MOS transistor and is disposed between the first reset transistor 113 and the FD. One end of the capacitance element 117 is connected to the drain of the switching transistor 116, and the other end is grounded. A drive signal FDG is input from the vertical drive unit 20 to the gate of the switching transistor 116. When the switching transistor 116 is turned on based on the drive signal FDG, the charge held in the capacitance element 117 is transferred to the FD.
 第1ソースフォロワ回路120d、信号保持選択回路130d、および第2ソースフォロワ回路140dの回路構成は、第1実施形態と同様であるため、説明を省略する。ただし、本変形例では、信号保持選択回路130dの第2リセットトランジスタ135と、第2ソースフォロワ回路140dとは、4つの画素11dで共有されている。 The circuit configurations of the first source follower circuit 120d, the signal holding selection circuit 130d, and the second source follower circuit 140d are the same as those in the first embodiment, and therefore will not be described. However, in this modified example, the second reset transistor 135 of the signal holding selection circuit 130d and the second source follower circuit 140d are shared by four pixels 11d.
 図16は、第4変形例に係るセンサチップ201のレイアウトの一例を示す平面図である。また、図17は、図16に示す切断線B-Bに沿った断面図である。 FIG. 16 is a plan view showing an example of the layout of a sensor chip 201 according to the fourth modified example. Also, FIG. 17 is a cross-sectional view taken along the cutting line B-B shown in FIG. 16.
 本変形例では、センサチップ201には、画素11dのうち、光電変換回路110dおよび第1ソースフォロワ回路120dの第1アンプトランジスタ121および第1選択トランジスタ122が、配置されている。画素11dの残りの回路素子は、ロジックチップ202に配置されている。第1ソースフォロワ回路120dにおいて、センサチップ201に配置された第1選択トランジスタ122は、例えば、センサチップ201を貫通する配線、またはセンサチップ201の上面に設けられたパッドを介して、ロジックチップ202に配置されたバイアスカットトランジスタ123と電気的に接続される。 In this modified example, the first amplifier transistor 121 and the first selection transistor 122 of the photoelectric conversion circuit 110d and the first source follower circuit 120d of the pixel 11d are arranged on the sensor chip 201. The remaining circuit elements of the pixel 11d are arranged on the logic chip 202. In the first source follower circuit 120d, the first selection transistor 122 arranged on the sensor chip 201 is electrically connected to the bias cut transistor 123 arranged on the logic chip 202, for example, via a wiring that passes through the sensor chip 201 or a pad provided on the upper surface of the sensor chip 201.
 また、本変形例では、図16に示すようにセンサチップ201に配置された複数の画素11dは、分離膜220によって、分離されている。分離膜220は、例えば、半導体基板210を貫通するトレンチ内に形成されるFFTI(Front Full Trench Isolation)型の分離膜である。分離膜220内には、例えば酸化シリコンから成る側壁膜が形成され、その側壁膜の内側には、ポリシリコンから成る充填剤が埋め込まれている。なお、FFTI内の充填剤はポリシリコンに限定されない。例えば、FFTI内には、酸化膜などの絶縁膜を単層または多層で形成してもよい。また、FFTI内には、絶縁膜だけでなく、金属材料、ポリシリコンなどの導電材を少なくとも1種形成してもよい。 In addition, in this modified example, as shown in FIG. 16, a plurality of pixels 11d arranged on the sensor chip 201 are separated by an isolation film 220. The isolation film 220 is, for example, a front full trench isolation (FFTI) type isolation film formed in a trench penetrating the semiconductor substrate 210. A sidewall film made of, for example, silicon oxide is formed in the isolation film 220, and a filler made of polysilicon is embedded inside the sidewall film. Note that the filler in the FFTI is not limited to polysilicon. For example, an insulating film such as an oxide film may be formed in a single layer or multiple layers in the FFTI. In addition to an insulating film, at least one type of conductive material such as a metal material or polysilicon may be formed in the FFTI.
 また、図17に示すように、第1アンプトランジスタ121では、ソース領域121eに接する絶縁膜115aの直下に分離膜220が形成されている一方で、ドレイン領域121dに接する絶縁膜115bの直下には分離膜200は形成されていない。さらに、半導体基板210の表面からの絶縁膜115bの厚さは、絶縁膜115aよりも厚い。 Also, as shown in FIG. 17, in the first amplifier transistor 121, an isolation film 220 is formed directly below the insulating film 115a in contact with the source region 121e, while an isolation film 200 is not formed directly below the insulating film 115b in contact with the drain region 121d. Furthermore, the thickness of the insulating film 115b from the surface of the semiconductor substrate 210 is thicker than that of the insulating film 115a.
 図18は、図16に示すレイアウトにおいて、転送トランジスタ112および第1選択トランジスタ122周辺の断面図である。図18に示す分離膜220も、半導体基板210を貫通して形成されている。分離膜220の裏面側(図面下側)には、隣接画素への光の漏れ出しを抑止する遮光膜221が形成されている。遮光膜221は、例えば、タングステン等の金属材から成る。半導体基板210の裏面側には、入射光をフォトダイオード111に集光させるOCL(オンチップレンズ)222が形成されている。 FIG. 18 is a cross-sectional view of the transfer transistor 112 and the first selection transistor 122 in the layout shown in FIG. 16. The isolation film 220 shown in FIG. 18 is also formed penetrating the semiconductor substrate 210. A light-shielding film 221 that prevents light from leaking to adjacent pixels is formed on the back side (lower side of the drawing) of the isolation film 220. The light-shielding film 221 is made of a metal material such as tungsten. An OCL (on-chip lens) 222 that focuses incident light on the photodiode 111 is formed on the back side of the semiconductor substrate 210.
 半導体基板210の表面側(図面上側)には、トレンチ223が開口している。トレンチ223には、転送トランジスタ112が設けられている。また、半導体基板210の上部には、アクティブ領域(Pwell)224が形成されている。アクティブ領域224内には、素子分離領域225が形成されている。なお、転送トランジスタ112は、トレンチ223内にゲートが形成される掘り込み形状であってもよいし、半導体基板210上にゲートが形成されるプレーナ型であってもよい。 A trench 223 is opened on the surface side (upper side of the drawing) of the semiconductor substrate 210. A transfer transistor 112 is provided in the trench 223. An active region (Pwell) 224 is formed in the upper part of the semiconductor substrate 210. An element isolation region 225 is formed in the active region 224. The transfer transistor 112 may be of a recessed type in which the gate is formed in the trench 223, or may be of a planar type in which the gate is formed on the semiconductor substrate 210.
 フォトダイオード111と分離膜220との間には、分離膜220側からフォトダイオード111に向かって順にP型固相拡散層226とN型固相拡散層227が形成されている。フォトダイオード111は、N型領域で構成されている。光電変換は、これらN型領域の一部、または全てにおいて行われる。 Between the photodiode 111 and the isolation film 220, a P-type solid-phase diffusion layer 226 and an N-type solid-phase diffusion layer 227 are formed in this order from the isolation film 220 side toward the photodiode 111. The photodiode 111 is composed of N-type regions. Photoelectric conversion takes place in some or all of these N-type regions.
 さらに、分離膜220の内壁には、側壁膜228が形成されている。側壁膜228の内側には、充填材229が埋め込まれている。側壁膜228には、例えば、酸化シリコンまたは窒化シリコンを用いることができる。一方、充填材229には、例えば、ポリシリコンまたはドーピングポリシリコンを用いることができる。なお、充填材229は、これらのポリシリコンに限定されない。 Furthermore, a sidewall film 228 is formed on the inner wall of the separation film 220. A filler material 229 is embedded inside the sidewall film 228. For example, silicon oxide or silicon nitride may be used for the sidewall film 228. On the other hand, for example, polysilicon or doped polysilicon may be used for the filler material 229. Note that the filler material 229 is not limited to these polysilicon materials.
 P型固相拡散層226は、裏面シリコン界面240に接するまで形成されている。一方、N型固相拡散層227は、裏面シリコン界面240に接していない。その結果、N型固相拡散層227と裏面シリコン界面240との間には、間隔が設けられている。 The P-type solid-phase diffusion layer 226 is formed up to the rear surface silicon interface 240. On the other hand, the N-type solid-phase diffusion layer 227 does not contact the rear surface silicon interface 240. As a result, a gap is provided between the N-type solid-phase diffusion layer 227 and the rear surface silicon interface 240.
 フォトダイオード111およびN型固相拡散層227と、裏面シリコン界面240との間、すなわち、半導体基板210においてフォトダイオード111等が形成されていない領域には、P型領域241が設けられている。これにより、フォトダイオード111およびN型固相拡散層227が、裏面シリコン界面240付近に存在しないことになる。その結果、裏面シリコン界面240付近におけるピニングの弱体化が生じないので、発生した電荷がフォトダイオード111に流れ込んでDark特性が悪化してしまう事態の発生を抑止することができる。なお、充填材229としてドーピングポリシリコンを充填した場合、または、ポリシリコンを充填した後にN型不純物またはP型不純物をドーピングした場合には、そこに負バイアスを印加すれば、分離膜220の側壁のピニングを強化することができるので、Dark特性をさらに改善することができる。 A P-type region 241 is provided between the photodiode 111 and the N-type solid-phase diffusion layer 227 and the back silicon interface 240, i.e., in the region of the semiconductor substrate 210 where the photodiode 111 and the like are not formed. This means that the photodiode 111 and the N-type solid-phase diffusion layer 227 are not present near the back silicon interface 240. As a result, the pinning near the back silicon interface 240 is not weakened, so that it is possible to prevent the occurrence of a situation in which the generated charge flows into the photodiode 111 and the dark characteristics deteriorate. Note that if doped polysilicon is filled as the filling material 229, or if N-type or P-type impurities are doped after filling polysilicon, applying a negative bias thereto can strengthen the pinning of the sidewall of the isolation film 220, thereby further improving the dark characteristics.
 上記のように構成された画素11dでも、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。特に本変形例では、分離膜220の接していない絶縁膜115bの厚さを分離膜220に接している絶縁膜115aの厚さよりも厚くすることによって、低濃度のチャネル領域212aの領域を十分に確保することができる。 In the pixel 11d configured as above, as in the first embodiment described above, the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. As a result, even if the first amplifier transistor 121 is driven with a low current, the increase in thermal noise of the first source follower circuit 120c can be suppressed. Therefore, in this modified example, it is possible to reduce random noise while suppressing power consumption. In particular, in this modified example, the thickness of the insulating film 115b not in contact with the isolation film 220 is made thicker than the thickness of the insulating film 115a in contact with the isolation film 220, so that the area of the low-concentration channel region 212a can be sufficiently secured.
 なお、本変形例では、第1アンプトランジスタ121には、第2実施形態で説明したように、SiGe(シリコンゲルマニウム)層215がチャネル領域212aの直下に形成されていてもよい。この場合、ランダムノイズをより一層低減することが可能となる。また、第1アンプトランジスタ121には、第3実施形態で説明したFin型MOSトランジスタを適用してもよい。 In this modification, the first amplifier transistor 121 may have a SiGe (silicon germanium) layer 215 formed directly under the channel region 212a, as described in the second embodiment. In this case, it is possible to further reduce random noise. Also, the first amplifier transistor 121 may be a Fin-type MOS transistor as described in the third embodiment.
 図19は、第4変形例に係る第1アンプトランジスタ121にFin型MOSトランジスタを適用した断面図である。第1アンプトランジスタ121にFin型MOSトランジスタを適用する場合、分離膜220に接する絶縁膜115aの厚さは、分離膜220に接しない絶縁膜115bの厚さと等しい。 FIG. 19 is a cross-sectional view of the fourth modified example in which a Fin-type MOS transistor is applied to the first amplifier transistor 121. When a Fin-type MOS transistor is applied to the first amplifier transistor 121, the thickness of the insulating film 115a in contact with the isolation film 220 is equal to the thickness of the insulating film 115b that is not in contact with the isolation film 220.
 (第5変形例)
 図20は、第5変形例に係るセンサチップ201のレイアウトの一例を示す平面図である。本変形例に係るセンサチップ201のサイズは、第4変形例と同じである。また、センサチップ201およびロジックチップ202にそれぞれ配置される画素11eの回路構成も第4変形例と同じである。
(Fifth Modification)
20 is a plan view showing an example of the layout of a sensor chip 201 according to the fifth modification. The size of the sensor chip 201 according to this modification is the same as that of the fourth modification. In addition, the circuit configurations of the pixels 11e arranged on the sensor chip 201 and the logic chip 202 are also the same as those of the fourth modification.
 その一方で、本変形例では、センサチップ201に配置された複数の画素11eが、分離層230によって、分離されている。また、各画素11eの回路素子も、分離層230によって、分離されている。分離層230は、例えば、半導体基板210にP型の不純物を注入することによって、形成される。そのため、分離層230は、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eにそれぞれ接する絶縁膜115の下には設けられていない。 On the other hand, in this modified example, the multiple pixels 11e arranged on the sensor chip 201 are separated by an isolation layer 230. The circuit elements of each pixel 11e are also separated by the isolation layer 230. The isolation layer 230 is formed, for example, by injecting P-type impurities into the semiconductor substrate 210. Therefore, the isolation layer 230 is not provided under the insulating film 115 that contacts the drain region 121d and the source region 121e of the first amplifier transistor 121.
 本変形例においても、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In this modification, as in the first embodiment described above, an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
 (第6変形例)
 図21は、第6変形例に係る画素の回路構成を示す図である。なお、図21では、上述した第1実施形態に係る画素11と同様の回路素子には、同じ符号を付す。図21に示す画素11fは、光電変換回路110fと、第1ソースフォロワ回路120fと、信号保持選択回路130fと、第2ソースフォロワ回路140fと、を有する。
(Sixth Modification)
Fig. 21 is a diagram showing a circuit configuration of a pixel according to a sixth modified example. In Fig. 21, the same circuit elements as those of the pixel 11 according to the first embodiment described above are denoted by the same reference numerals. The pixel 11f shown in Fig. 21 has a photoelectric conversion circuit 110f, a first source follower circuit 120f, a signal holding selection circuit 130f, and a second source follower circuit 140f.
 光電変換回路110fは、フォトダイオード111、転送トランジスタ112、第1リセットトランジスタ113、排出トランジスタ114、切替トランジスタ116、および容量素子117を有する。すなわち、本変形例に係る光電変換回路110fは、第4変形例に係る光電変換回路110dの回路素子に加えて、排出トランジスタ114を有する構成である。排出トランジスタ114については、第1実施形態と同様であるため、説明を省略する。 The photoelectric conversion circuit 110f has a photodiode 111, a transfer transistor 112, a first reset transistor 113, a discharge transistor 114, a switching transistor 116, and a capacitance element 117. That is, the photoelectric conversion circuit 110f according to this modification has a discharge transistor 114 in addition to the circuit elements of the photoelectric conversion circuit 110d according to the fourth modification. The discharge transistor 114 is the same as in the first embodiment, so a description thereof will be omitted.
 また、第1ソースフォロワ回路120f、信号保持選択回路130f、および第2ソースフォロワ回路140fの回路構成も、第1実施形態と同様であるため、説明を省略する。ただし、本変形例では、信号保持選択回路130fの第2リセットトランジスタ135と、第2ソースフォロワ回路140fとは、第4変形例および第5変形例と同様に4つの画素11dで共有されている。 The circuit configurations of the first source follower circuit 120f, the signal holding selection circuit 130f, and the second source follower circuit 140f are also similar to those in the first embodiment, and therefore will not be described. However, in this modification, the second reset transistor 135 of the signal holding selection circuit 130f and the second source follower circuit 140f are shared by four pixels 11d, as in the fourth and fifth modifications.
 図22は、第6変形例に係るセンサチップ201のレイアウトの一例を示す平面図である。本変形例に係るセンサチップ201のサイズは、第4変形例に係るセンサチップ201のサイズよりも大きい。その一方で、センサチップ201およびロジックチップ202にそれぞれ配置される画素11eの回路構成も第4変形例と同様である。なお、排出トランジスタ114は、センサチップ201に配置されている。 FIG. 22 is a plan view showing an example of the layout of the sensor chip 201 according to the sixth modified example. The size of the sensor chip 201 according to this modified example is larger than the size of the sensor chip 201 according to the fourth modified example. On the other hand, the circuit configuration of the pixels 11e arranged on the sensor chip 201 and the logic chip 202 is also similar to that of the fourth modified example. The emission transistor 114 is arranged on the sensor chip 201.
 また、本変形例では、第4変形例と同様に、センサチップ201に配置された複数の画素11fは、分離膜220によって、分離されている。そのため、第1アンプトランジスタ121では、ソース領域121eに接する絶縁膜115aの直下に分離膜220が形成されている一方で、ドレイン領域121dに接する絶縁膜115bの直下には分離膜200は形成されていない。さらに、半導体基板210の表面からの絶縁膜115bの厚さは、絶縁膜115aよりも厚い。 In addition, in this modification, similar to the fourth modification, the multiple pixels 11f arranged on the sensor chip 201 are separated by an isolation film 220. Therefore, in the first amplifier transistor 121, the isolation film 220 is formed directly below the insulating film 115a in contact with the source region 121e, while the isolation film 200 is not formed directly below the insulating film 115b in contact with the drain region 121d. Furthermore, the thickness of the insulating film 115b from the surface of the semiconductor substrate 210 is thicker than that of the insulating film 115a.
 上記のように構成された画素11fでも、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In the pixel 11f configured as above, as in the first embodiment described above, the insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modified example as well, it is possible to reduce random noise while suppressing power consumption.
 また、本変形例では、上述した第4変形例と同様に、分離膜220の接していない絶縁膜115bの厚さを分離膜220に接している絶縁膜115aの厚さよりも厚くすることによって、低濃度のチャネル領域212aの領域を十分に確保することができる。なお、本変形例では、第1アンプトランジスタ121には、第2実施形態で説明したように、SiGe(シリコンゲルマニウム)層215がチャネル領域212aの直下に形成されていてもよい。この場合、ランダムノイズをより一層低減することが可能となる。さらに、第1アンプトランジスタ121は、第2実施形態で説明したSiGe(シリコンゲルマニウム)層215を有する構造であってもよいし、第3実施形態で説明したFin型MOSトランジスタの構造であってもよい。 In addition, in this modification, as in the fourth modification described above, the thickness of the insulating film 115b not in contact with the isolation film 220 is made thicker than the thickness of the insulating film 115a in contact with the isolation film 220, so that the low concentration channel region 212a can be sufficiently secured. In this modification, the first amplifier transistor 121 may have a SiGe (silicon germanium) layer 215 formed directly under the channel region 212a as described in the second embodiment. In this case, it is possible to further reduce random noise. Furthermore, the first amplifier transistor 121 may have a structure having the SiGe (silicon germanium) layer 215 described in the second embodiment, or may have a structure of a Fin-type MOS transistor described in the third embodiment.
 (第7変形例)
 図23は、第7変形例に係るセンサチップ201のレイアウトの一例を示す平面図である。本変形例に係るセンサチップ201のサイズは、第6変形例と同じである。また、センサチップ201およびロジックチップ202にそれぞれ配置される画素11fの回路構成も第6変形例と同じである。
(Seventh Modification)
23 is a plan view showing an example of the layout of the sensor chip 201 according to the seventh modification. The size of the sensor chip 201 according to this modification is the same as that of the sixth modification. In addition, the circuit configurations of the pixels 11f arranged on the sensor chip 201 and the logic chip 202 are also the same as those of the sixth modification.
 その一方で、本変形例では、センサチップ201に配置された複数の画素11fが、上述した第5変形例と同様に、分離層230によって、分離されている。また、各画素11fの回路素子も、分離層230によって、分離されている。 On the other hand, in this modification, the multiple pixels 11f arranged on the sensor chip 201 are separated by the separation layer 230, as in the fifth modification described above. In addition, the circuit elements of each pixel 11f are also separated by the separation layer 230.
 本変形例においても、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本変形例においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In this modification, as in the first embodiment described above, an insulating film 115 is formed directly under the drain region 121d and source region 121e of the first amplifier transistor 121. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. This makes it possible to suppress an increase in thermal noise of the first source follower circuit 120c even when the first amplifier transistor 121 is driven with a low current. Therefore, in this modification as well, it is possible to reduce random noise while suppressing power consumption.
 (第4実施形態)
 図24は、第4実施形態に係るCMOSイメージセンサの構成を示す図である。上述した第1実施形態と同様の構成要素には、同じ符号を付し、詳細な説明を省略する。本実施形態に係るCMOSイメージセンサ4は、第1チップ401、第2チップ402、および第3チップ403を備える。第1チップ401、第2チップ402、および第3チップ403は、積層されている。
Fourth Embodiment
24 is a diagram showing the configuration of a CMOS image sensor according to the fourth embodiment. The same components as those in the above-described first embodiment are given the same reference numerals, and detailed description thereof will be omitted. The CMOS image sensor 4 according to this embodiment includes a first chip 401, a second chip 402, and a third chip 403. The first chip 401, the second chip 402, and the third chip 403 are stacked.
 第1チップ401には、第1画素アレイ部401aが設けられている。第1画素アレイ部401aには、複数のセンサ画素401bが行列状に2次元配置されている。センサ画素401bには、光電変換回路110のフォトダイオード111、転送トランジスタ112、FD、第1リセットトランジスタ113、および排出トランジスタ114が配置されている。加えて、センサ画素401bには、第1ソースフォロワ回路120の第1アンプトランジスタ121および第1選択トランジスタ122も配置されている。 The first chip 401 is provided with a first pixel array section 401a. In the first pixel array section 401a, a plurality of sensor pixels 401b are arranged two-dimensionally in a matrix. In the sensor pixel 401b, the photodiode 111, the transfer transistor 112, the FD, the first reset transistor 113, and the discharge transistor 114 of the photoelectric conversion circuit 110 are arranged. In addition, in the sensor pixel 401b, the first amplifier transistor 121 and the first selection transistor 122 of the first source follower circuit 120 are also arranged.
 第2チップ402には、第2画素アレイ部402aが設けられている。第2画素アレイ部402aには、第1ソースフォロワ回路120のバイアスカットトランジスタ123および負荷トランジスタ124が配置されている。加えて、第2画素アレイ部402aには、信号保持選択回路130および第2ソースフォロワ回路140も配置されている。また、第2画素アレイ部402aでは、画素駆動線80が行方向に延びるとともに、垂直信号線90が列方向に延びている。 The second chip 402 is provided with a second pixel array section 402a. The bias cut transistor 123 and the load transistor 124 of the first source follower circuit 120 are arranged in the second pixel array section 402a. In addition, the signal retention selection circuit 130 and the second source follower circuit 140 are also arranged in the second pixel array section 402a. In the second pixel array section 402a, the pixel drive lines 80 extend in the row direction, and the vertical signal lines 90 extend in the column direction.
 第3チップ403には、ロジック回路431が設けられている。ロジック回路431には、垂直駆動部20、カラム処理部30、水平駆動部40、およびシステム制御部50が配置されている。 The third chip 403 is provided with a logic circuit 431. The logic circuit 431 includes a vertical drive unit 20, a column processing unit 30, a horizontal drive unit 40, and a system control unit 50.
 図25は、第4実施形態に係るCMOSイメージセンサ4の一部を垂直方向に切断した断面図である。図25に示すように、CMOSイメージセンサ4では、第1チップ401、第2チップ402、および第3チップ403がこの順番で積層されている。さらに、第1チップ401の裏面側(光入射面側)に、カラーフィルタ500および受光レンズ600が設けられている。カラーフィルタ500および受光レンズ600は、それぞれ、例えば、センサ画素401bごとに1つずつ設けられている。つまり、CMOSイメージセンサ4は、裏面照射型となっている。 FIG. 25 is a vertical cross-sectional view of a portion of the CMOS image sensor 4 according to the fourth embodiment. As shown in FIG. 25, in the CMOS image sensor 4, a first chip 401, a second chip 402, and a third chip 403 are stacked in this order. Furthermore, a color filter 500 and a light receiving lens 600 are provided on the back side (light incident surface side) of the first chip 401. For example, one color filter 500 and one light receiving lens 600 are each provided for each sensor pixel 401b. In other words, the CMOS image sensor 4 is a back-illuminated type.
 第1チップ401は、第1半導体基板410上に絶縁層46を積層して構成されている。第1チップ401は、層間絶縁膜51の一部として、絶縁層46を有している。絶縁層46は、第1半導体基板410と、後述の第2半導体基板420との間隙に設けられている。 The first chip 401 is constructed by laminating an insulating layer 46 on a first semiconductor substrate 410. The first chip 401 has the insulating layer 46 as part of an interlayer insulating film 51. The insulating layer 46 is provided in the gap between the first semiconductor substrate 410 and a second semiconductor substrate 420, which will be described later.
 第1半導体基板410は、シリコン基板で構成されている。第1半導体基板410は、例えば、表面の一部およびその近傍に、pウェル層42を有しており、それ以外の領域(pウェル層42よりも深い領域)に、pウェル層42とは異なる導電型のフォトダイオード111を有している。pウェル層42は、p型の半導体領域で構成されている。フォトダイオード111は、pウェル層42とは異なる導電型(具体的にはn型)の半導体領域で構成されている。第1半導体基板410は、pウェル層42内に、pウェル層42とは異なる導電型(具体的にはn型)の半導体領域として、FDを有している。 The first semiconductor substrate 410 is made of a silicon substrate. The first semiconductor substrate 410 has a p-well layer 42, for example, in a part of the surface and in its vicinity, and has a photodiode 111 of a different conductivity type from the p-well layer 42 in the other region (region deeper than the p-well layer 42). The p-well layer 42 is made of a p-type semiconductor region. The photodiode 111 is made of a semiconductor region of a different conductivity type (specifically, n-type) from the p-well layer 42. The first semiconductor substrate 410 has an FD in the p-well layer 42 as a semiconductor region of a different conductivity type (specifically, n-type) from the p-well layer 42.
 第1チップ401は、第1半導体基板410の表面側(光入射面側とは反対側、第2チップ402側)の部分に、転送トランジスタ112およびFDが設けられた構成となっている。第1チップ401は、各センサ画素401bを分離する素子分離部43を有している。 The first chip 401 has a configuration in which a transfer transistor 112 and an FD are provided on the front side (the side opposite the light incident surface, the second chip 402 side) of the first semiconductor substrate 410. The first chip 401 has an element isolation section 43 that isolates each sensor pixel 401b.
 素子分離部43は、第1半導体基板410の法線方向(第1半導体基板410の表面に対して垂直な方向)に延在して形成されている。素子分離部43は、互いに隣接する2つのセンサ画素401bの間に設けられている。素子分離部43は、互いに隣接するセンサ画素401b同士を電気的に分離する。素子分離部43は、例えば、酸化シリコンによって構成されている。素子分離部43は、例えば、第1半導体基板410を貫通している。 The element isolation portion 43 is formed extending in the normal direction of the first semiconductor substrate 410 (direction perpendicular to the surface of the first semiconductor substrate 410). The element isolation portion 43 is provided between two adjacent sensor pixels 401b. The element isolation portion 43 electrically isolates the adjacent sensor pixels 401b. The element isolation portion 43 is made of, for example, silicon oxide. The element isolation portion 43 penetrates, for example, the first semiconductor substrate 410.
 第1チップ401は、例えば、さらに、素子分離部43の側面であって、かつ、フォトダイオード111側の面に接するpウェル層44を有している。pウェル層44は、フォトダイオード111とは異なる導電型(具体的にはp型)の半導体領域で構成されている。 The first chip 401 further has, for example, a p-well layer 44 that is a side surface of the element isolation section 43 and is in contact with the surface on the photodiode 111 side. The p-well layer 44 is composed of a semiconductor region of a different conductivity type (specifically, p-type) from the photodiode 111.
 第1チップ401は、例えば、さらに、第1半導体基板410の裏面に接する固定電荷膜45を有している。固定電荷膜45は、第1半導体基板410の受光面側の界面準位に起因する暗電流の発生を抑制するため、負に帯電している。固定電荷膜45は、例えば、負の固定電荷を有する絶縁膜によって形成されている。そのような絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタンまたは酸化タンタルが挙げられる。固定電荷膜45が誘起する電界により、第1半導体基板410の受光面側の界面にホール蓄積層が形成される。このホール蓄積層によって、界面からの電子の発生が抑制される。 The first chip 401 further has, for example, a fixed charge film 45 in contact with the back surface of the first semiconductor substrate 410. The fixed charge film 45 is negatively charged in order to suppress the generation of dark current due to the interface state on the light-receiving surface side of the first semiconductor substrate 410. The fixed charge film 45 is formed, for example, by an insulating film having a negative fixed charge. Examples of materials for such insulating films include hafnium oxide, zirconium oxide, aluminum oxide, titanium oxide, and tantalum oxide. A hole accumulation layer is formed at the interface on the light-receiving surface side of the first semiconductor substrate 410 due to the electric field induced by the fixed charge film 45. This hole accumulation layer suppresses the generation of electrons from the interface.
 カラーフィルタ500は、第1半導体基板410の裏面側に設けられている。カラーフィルタ500は、例えば、固定電荷膜45に接して設けられており、固定電荷膜45を介してセンサ画素401bと対向する位置に設けられている。 The color filter 500 is provided on the back surface side of the first semiconductor substrate 410. The color filter 500 is provided, for example, in contact with the fixed charge film 45 and is provided at a position facing the sensor pixel 401b via the fixed charge film 45.
 受光レンズ600は、例えば、カラーフィルタ500に接して設けられており、カラーフィルタ500および固定電荷膜45を介してセンサ画素401bと対向する位置に設けられている。 The light receiving lens 600 is provided, for example, in contact with the color filter 500 and is provided in a position facing the sensor pixel 401b via the color filter 500 and the fixed charge film 45.
 第2チップ402は、第2半導体基板420上に絶縁層52を積層して構成されている。第2チップ402は、層間絶縁膜51の一部として、絶縁層52を有している。絶縁層52は、第2半導体基板420と、第3半導体基板430との間隙に設けられている。第2半導体基板420は、シリコン基板で構成されている。第2チップ402は、第2半導体基板420の表面側(第3チップ403側)の部分に第2画素アレイ部402aが設けられた構成となっている。第2チップ402は、第1半導体基板410の表面側に第2半導体基板420の裏面を向けて第1チップ401に貼り合わされている。つまり、第2チップ402は、第1チップ401に、フェイストゥーバックで貼り合わされている。第2チップ402は、さらに、第2半導体基板420と同一の層内に、第2半導体基板420を貫通する絶縁層53を有している。第2チップ402は、層間絶縁膜51の一部として、絶縁層53を有している。絶縁層53は、後述の貫通配線54の側面を覆うように設けられている。 The second chip 402 is configured by laminating an insulating layer 52 on the second semiconductor substrate 420. The second chip 402 has the insulating layer 52 as a part of the interlayer insulating film 51. The insulating layer 52 is provided in the gap between the second semiconductor substrate 420 and the third semiconductor substrate 430. The second semiconductor substrate 420 is configured of a silicon substrate. The second chip 402 is configured such that a second pixel array section 402a is provided on the surface side (third chip 403 side) of the second semiconductor substrate 420. The second chip 402 is bonded to the first chip 401 with the back surface of the second semiconductor substrate 420 facing the surface side of the first semiconductor substrate 410. In other words, the second chip 402 is bonded to the first chip 401 face-to-back. The second chip 402 further has an insulating layer 53 penetrating the second semiconductor substrate 420 in the same layer as the second semiconductor substrate 420. The second chip 402 has an insulating layer 53 as part of the interlayer insulating film 51. The insulating layer 53 is provided to cover the side of the through wiring 54 described below.
 第1チップ401および第2チップ402から成る積層体は、層間絶縁膜51と、層間絶縁膜51内に設けられた貫通配線54を有している。上記積層体は、センサ画素401bごとに、1つの貫通配線54を有している。貫通配線54は、第2半導体基板420の法線方向に延びており、層間絶縁膜51のうち、絶縁層53を含む箇所を貫通して設けられている。第1チップ401および第2チップ402は、貫通配線54によって互いに電気的に接続されている。具体的には、貫通配線54は、FDおよび後述の接続配線55に電気的に接続されている。 The stack consisting of the first chip 401 and the second chip 402 has an interlayer insulating film 51 and through-wires 54 provided within the interlayer insulating film 51. The stack has one through-wire 54 for each sensor pixel 401b. The through-wires 54 extend in the normal direction of the second semiconductor substrate 420 and are provided penetrating a portion of the interlayer insulating film 51 that includes the insulating layer 53. The first chip 401 and the second chip 402 are electrically connected to each other by the through-wires 54. Specifically, the through-wires 54 are electrically connected to the FD and the connection wires 55 described below.
 第2チップ402は、例えば、絶縁層52内に、第2画素アレイ部402aや第2半導体基板420と電気的に接続された複数の接続部59を有している。第2チップ402は、さらに、例えば、絶縁層52上に配線層56を有している。配線層56は、例えば、絶縁層57と、絶縁層57内に設けられた複数の画素駆動線80および複数の垂直信号線90を有している。配線層56は、さらに、例えば、絶縁層57内に複数の接続配線55を4つのセンサ画素401bごとに1つずつ有している。 The second chip 402 has, for example, a plurality of connection parts 59 in the insulating layer 52 that are electrically connected to the second pixel array part 402a and the second semiconductor substrate 420. The second chip 402 further has, for example, a wiring layer 56 on the insulating layer 52. The wiring layer 56 has, for example, an insulating layer 57, and a plurality of pixel drive lines 80 and a plurality of vertical signal lines 90 provided in the insulating layer 57. The wiring layer 56 further has, for example, a plurality of connection wires 55 in the insulating layer 57, one for each of the four sensor pixels 401b.
 接続配線55は、第2画素アレイ部402aを共有する4つのセンサ画素401bに含まれるFDに電気的に接続された各貫通配線54を互いに電気的に接続している。ここで、貫通配線54の総数は、第1チップ401に含まれるセンサ画素401bの総数よりも多く、第1チップ401に含まれるセンサ画素401bの総数の2倍となっている。また、貫通配線54の総数は、第1チップ401に含まれるセンサ画素401bの総数よりも多く、第1チップ401に含まれるセンサ画素401bの総数の3倍となっている。 The connection wiring 55 electrically connects each of the through wirings 54 electrically connected to the FDs included in the four sensor pixels 401b that share the second pixel array unit 402a. Here, the total number of through wirings 54 is greater than the total number of sensor pixels 401b included in the first chip 401, and is twice the total number of sensor pixels 401b included in the first chip 401. In addition, the total number of through wirings 54 is greater than the total number of sensor pixels 401b included in the first chip 401, and is three times the total number of sensor pixels 401b included in the first chip 401.
 配線層56は、さらに、例えば、絶縁層57内に複数のパッド電極58を有している。各パッド電極58は、例えば、Cu(銅)、Al(アルミニウム)などの金属で形成されている。各パッド電極58は、配線層56の表面に露出している。各パッド電極58は、第2チップ402と第3チップ403との電気的な接続と、第2チップ402と第3チップ403との貼り合わせに用いられる。 The wiring layer 56 further has, for example, a plurality of pad electrodes 58 in the insulating layer 57. Each pad electrode 58 is formed of a metal such as Cu (copper) or Al (aluminum). Each pad electrode 58 is exposed on the surface of the wiring layer 56. Each pad electrode 58 is used for electrical connection between the second chip 402 and the third chip 403, and for bonding the second chip 402 and the third chip 403 together.
 複数のパッド電極58は、例えば、画素駆動線80および垂直信号線90ごとに1つずつ設けられている。ここで、パッド電極58の総数は、第1チップ401に含まれるセンサ画素401bの総数よりも少ない。 The multiple pad electrodes 58 are provided, for example, one for each pixel drive line 80 and vertical signal line 90. Here, the total number of pad electrodes 58 is less than the total number of sensor pixels 401b included in the first chip 401.
 第3チップ403は、例えば、第3半導体基板430上に層間絶縁膜61を積層して構成されている。第3半導体基板430は、シリコン基板で構成されている。第3チップ403は、第3半導体基板430の表面側の部分にロジック回路431が設けられた構成となっている。 The third chip 403 is configured, for example, by laminating an interlayer insulating film 61 on a third semiconductor substrate 430. The third semiconductor substrate 430 is configured as a silicon substrate. The third chip 403 is configured such that a logic circuit 431 is provided on the surface side portion of the third semiconductor substrate 430.
 第3チップ403は、さらに、例えば、層間絶縁膜61上に配線層62を有している。配線層62は、例えば、絶縁層63と、絶縁層63内に設けられた複数のパッド電極64を有している。複数のパッド電極64は、ロジック回路431と電気的に接続されている。各パッド電極64は、例えば、Cu(銅)で形成されている。各パッド電極64は、配線層62の表面に露出している。各パッド電極64は、第2チップ402と第3チップ403との電気的な接続と、第2チップ402と第3チップ403との貼り合わせに用いられる。また、パッド電極64は、必ずしも複数でなくてもよく、1つでもロジック回路431と電気的に接続が可能である。 The third chip 403 further has, for example, a wiring layer 62 on the interlayer insulating film 61. The wiring layer 62 has, for example, an insulating layer 63 and a plurality of pad electrodes 64 provided in the insulating layer 63. The plurality of pad electrodes 64 are electrically connected to the logic circuit 431. Each pad electrode 64 is formed of, for example, Cu (copper). Each pad electrode 64 is exposed on the surface of the wiring layer 62. Each pad electrode 64 is used for electrically connecting the second chip 402 and the third chip 403 and for bonding the second chip 402 and the third chip 403 together. In addition, the number of pad electrodes 64 does not necessarily have to be multiple, and even one pad electrode 64 can be electrically connected to the logic circuit 431.
 第2チップ402および第3チップ403は、パッド電極58,64同士の接合によって、互いに電気的に接続されている。つまり、転送トランジスタ112のゲートは、貫通配線54と、パッド電極58,64とを介して、ロジック回路431に電気的に接続されている。第3チップ403は、第2半導体基板420の表面側に第3半導体基板430の表面を向けて第2チップ402に貼り合わされている。つまり、第3チップ403は、第2チップ402に、フェイストゥーフェイスで貼り合わされている。 The second chip 402 and the third chip 403 are electrically connected to each other by bonding the pad electrodes 58, 64. That is, the gate of the transfer transistor 112 is electrically connected to the logic circuit 431 via the through-wire 54 and the pad electrodes 58, 64. The third chip 403 is bonded to the second chip 402 with the surface of the third semiconductor substrate 430 facing the surface side of the second semiconductor substrate 420. That is, the third chip 403 is bonded to the second chip 402 face-to-face.
 上記のように構成された本実施形態に係るCMOSイメージセンサ4では、第1アンプトランジスタ121は、第2チップ402の第2画素アレイ部402a内に設けられている。第2画素アレイ部402a内では、上述した第1実施形態と同様に、第1アンプトランジスタ121のドレイン領域121dおよびソース領域121eの直下に絶縁膜115が形成されている。そのため、短チャネル効果を抑制しつつドレイン領域121dとソース領域121eとの間におけるP型の半導体ウェル領域(チャネル領域212a)の不純物濃度を低濃度にすることができる。これにより、第1アンプトランジスタ121を低電流で駆動しても、第1ソースフォロワ回路120cの熱雑音の増大を抑制することができる。したがって、本実施形態においても、消費電力を抑制しつつランダムノイズを低減することが可能となる。 In the CMOS image sensor 4 according to this embodiment configured as described above, the first amplifier transistor 121 is provided in the second pixel array section 402a of the second chip 402. In the second pixel array section 402a, an insulating film 115 is formed directly under the drain region 121d and the source region 121e of the first amplifier transistor 121, as in the first embodiment described above. Therefore, the impurity concentration of the P-type semiconductor well region (channel region 212a) between the drain region 121d and the source region 121e can be made low while suppressing the short channel effect. As a result, even if the first amplifier transistor 121 is driven with a low current, the increase in thermal noise of the first source follower circuit 120c can be suppressed. Therefore, in this embodiment as well, it is possible to reduce random noise while suppressing power consumption.
 なお、本実施形態では、第2チップ402および第3チップの接合形態は、パッド電極同士の接合であるCu-Cu接合であるとともに、第1チップ401および第2チップ402の接合形態は、貫通配線の接合であるTSV(Through-Silicon Via)接合である。ただし、第2チップ402および第3チップ403をTSV接合で接合するとともに、第1チップ401および第2チップをCu-Cu接合で接合することも可能である。 In this embodiment, the bonding form between the second chip 402 and the third chip is Cu-Cu bonding, which is bonding between pad electrodes, and the bonding form between the first chip 401 and the second chip 402 is TSV (Through-Silicon Via) bonding, which is bonding between through-hole wiring. However, it is also possible to bond the second chip 402 and the third chip 403 with TSV bonding and to bond the first chip 401 and the second chip with Cu-Cu bonding.
 (第5実施形態)
 図26は、第5実施形態に係る電子機器の構成例を示すブロック図である。
Fifth Embodiment
FIG. 26 is a block diagram showing an example of the configuration of an electronic device according to the fifth embodiment.
 図26に示す電子機器1000は、ビデオカメラやデジタルスチルカメラ等である。電子機器1000は、レンズ群1001、固体CMOSイメージセンサ4002、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008を備える。DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、操作部1007、および電源部1008は、バスライン1009を介して相互に接続されている。 The electronic device 1000 shown in FIG. 26 is a video camera, a digital still camera, or the like. The electronic device 1000 includes a lens group 1001, a solid-state CMOS image sensor 4002, a DSP circuit 1003, a frame memory 1004, a display unit 1005, a recording unit 1006, an operation unit 1007, and a power supply unit 1008. The DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, the operation unit 1007, and the power supply unit 1008 are interconnected via a bus line 1009.
 レンズ群1001は、被写体からの入射光(像光)を取り込んで固体CMOSイメージセンサ4002の撮像面上に結像する。固体CMOSイメージセンサ4002は、上述した各実施形態のCMOSイメージセンサのいずれかである。固体CMOSイメージセンサ4002は、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1003に供給する。 The lens group 1001 captures incident light (image light) from a subject and forms an image on the imaging surface of the solid-state CMOS image sensor 4002. The solid-state CMOS image sensor 4002 is any one of the CMOS image sensors of each of the above-mentioned embodiments. The solid-state CMOS image sensor 4002 converts the amount of incident light formed on the imaging surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal as a pixel signal to the DSP circuit 1003.
 DSP回路1003は、固体CMOSイメージセンサ4002から供給される画素信号に対して所定の画像処理を行い、画像処理後の画像信号をフレーム単位でフレームメモリ1004に供給し、一時的に記憶させる。 The DSP circuit 1003 performs a predetermined image processing on the pixel signals supplied from the solid-state CMOS image sensor 4002, and supplies the processed image signals to the frame memory 1004 on a frame-by-frame basis for temporary storage.
 表示部1005は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号に基づいて、画像を表示する。 The display unit 1005 is, for example, a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays an image based on pixel signals on a frame-by-frame basis that are temporarily stored in the frame memory 1004.
 記録部1006は、DVD(Digital Versatile Disk)、フラッシュメモリ等からなり、フレームメモリ1004に一時的に記憶されたフレーム単位の画素信号を読み出し、記録する。 The recording unit 1006 is composed of a DVD (Digital Versatile Disk), flash memory, etc., and reads out and records the pixel signals on a frame-by-frame basis that are temporarily stored in the frame memory 1004.
 操作部1007は、ユーザによる操作の下に、電子機器1000 が持つ様々な機能について操作指令を発する。電源部1008は、DSP回路1003、フレームメモリ1004、表示部1005、記録部1006、および操作部1007に対して電力を供給する。 The operation unit 1007 issues operation commands for various functions of the electronic device 1000 under the operation of a user. The power supply unit 1008 supplies power to the DSP circuit 1003, the frame memory 1004, the display unit 1005, the recording unit 1006, and the operation unit 1007.
 本技術を適用する電子機器は、画像取込部( 光電変換部)にCMOSイメージセンサを用いる装置であればよく、電子機器1000のほか、撮像機能を有する携帯端末装置、画像読取部にCMOSイメージセンサを用いる複写機などがある。 Electronic devices to which this technology can be applied include any device that uses a CMOS image sensor in its image capture section (photoelectric conversion section), such as the electronic device 1000, a portable terminal device with an imaging function, and a copying machine that uses a CMOS image sensor in its image reading section.
 以上説明した本実施形態に係る電子機器1000では、上述した各実施形態のいずれかのCMOSイメージセンサが固体CMOSイメージセンサ4002として搭載されている。そのため、固体CMOSイメージセンサ4002は、低ランダムノイズの機能を有するため、撮像性能を向上させることが可能となる。 In the electronic device 1000 according to the present embodiment described above, any one of the CMOS image sensors according to the above-mentioned embodiments is mounted as the solid-state CMOS image sensor 4002. Therefore, the solid-state CMOS image sensor 4002 has a low random noise function, which makes it possible to improve imaging performance.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Application to moving objects>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
 図27は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 27 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図27に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 27, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030. The outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images. The outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received. The imaging unit 12031 can output the electrical signal as an image, or as distance measurement information. The light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図27の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In the example of FIG. 27, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図28は、撮像部12031の設置位置の例を示す図である。 FIG. 28 shows an example of the installation position of the imaging unit 12031.
 図28では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 28, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100. The imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100. The imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100. The images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
 なお、図28には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 28 shows an example of the imaging ranges of the imaging units 12101 to 12104. Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door. For example, an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian. When the microcomputer 12051 determines that a pedestrian is present in the captured image of the imaging units 12101 to 12104 and recognizes a pedestrian, the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian. The audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、撮像部12031に、上述のCMOSイメージセンサを実装することができる。撮像部12031に、本開示に係る技術を適用することにより、ランダムノイズを低減した撮像環境において、正確な距離情報を得ることができる。その結果、車両12100の機能性および安全性を高めることができる。 Above, an example of a vehicle control system to which the technology disclosed herein can be applied has been described. Of the configurations described above, the technology disclosed herein can be applied to, for example, the imaging unit 12031. Specifically, the imaging unit 12031 can be equipped with the above-mentioned CMOS image sensor. By applying the technology disclosed herein to the imaging unit 12031, accurate distance information can be obtained in an imaging environment with reduced random noise. As a result, the functionality and safety of the vehicle 12100 can be improved.
 なお、本技術は、以下のような構成をとることができる。
(1) 入射光を光電変換した画素信号を出力する光電変換回路と、
 前記画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を備え、
 前記アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている、受光素子。
(2) 前記ドレイン領域と前記ソース領域との間における半導体ウェル領域の不純物濃度が、前記アンプトランジスタの駆動中に前記ドレイン領域および前記ソース領域の各々の下端部と同じ深さか、または前記下端部よりも深い位置まで空乏化する濃度である、(1)に記載の受光素子。
(3) 前記不純物濃度が、4e17(cm-3)よりも10倍以上低い、(2)に記載の受光素子。
(4) 前記半導体ウェル領域は、シリコンのエピタキシャル成長層である、(2)または(3)に記載の受光素子。
(5) 前記半導体ウェル領域は、前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にシリコンゲルマニウム層を有する、(2)から(4)のいずれかに記載の受光素子。
(6) 前記絶縁膜の厚さが、前記アンプトランジスタの駆動中に生成される空乏層より少なくとも深い、(1)から(5)のいずれかに記載の受光素子。
(7) 前記絶縁膜の厚さが、前記アンプトランジスタを形成する半導体基板の厚さに対して10%以内である、(6)に記載の受光素子。
(8) 前記絶縁膜が、前記アンプトランジスタを囲んでいる、(1)から(7)のいずれかに記載の受光素子。
(9) 前記ドレイン領域および前記ソース領域の各々一部が、ポリシリコン膜である、(1)から(8)のいずれかに記載の受光素子。
(10) 前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にも前記絶縁膜が形成されている、(1)に記載の受光素子。
(11) 前記チャネル領域が、Si(110)面に形成される、(10)に記載の受光素子。
(12) 前記アンプトランジスタが、Fin型MOSトランジスタである、(11)に記載の受光素子。
(13) 前記アンプトランジスタが、前記光電変換回路と同じ半導体基板に配置されている、(1)から(12)のいずれかに記載の受光素子。
(14) 前記アンプトランジスタが、前記光電変換回路と異なる半導体基板に配置されている、(1)から(12)のいずれかに記載の受光素子。
(15) 入射光を光電変換した画素信号を出力する光電変換回路と、前記画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を含む受光素子を備える電子機器であって、
 前記アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている、電子機器。
The present technology can be configured as follows.
(1) a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light;
a source follower circuit including an amplifier transistor that amplifies the pixel signal;
an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor;
(2) The photodiode according to (1), wherein the impurity concentration of the semiconductor well region between the drain region and the source region is a concentration that depletes the semiconductor well region to the same depth as the bottom ends of the drain region and the source region or to a position deeper than the bottom ends while the amplifier transistor is operating.
(3) The light-receiving element according to (2), wherein the impurity concentration is 10 times or more lower than 4e17 (cm −3 ).
(4) The photodiode according to (2) or (3), wherein the semiconductor well region is an epitaxially grown layer of silicon.
(5) The photodiode according to any one of (2) to (4), wherein the semiconductor well region has a silicon germanium layer immediately below a channel region formed between the drain region and the source region during operation of the amplifier transistor.
(6) The light-receiving element according to any one of (1) to (5), wherein the insulating film has a thickness at least deeper than a depletion layer generated during operation of the amplifier transistor.
(7) The light-receiving element according to (6), wherein the thickness of the insulating film is within 10% of the thickness of a semiconductor substrate on which the amplifier transistor is formed.
(8) The light-receiving element according to any one of (1) to (7), wherein the insulating film surrounds the amplifier transistor.
(9) The light-receiving element according to any one of (1) to (8), wherein a part of each of the drain region and the source region is a polysilicon film.
(10) The light-receiving element according to (1), wherein the insulating film is also formed immediately below a channel region that is formed between the drain region and the source region while the amplifier transistor is in operation.
(11) The light-receiving element according to (10), wherein the channel region is formed on a Si(110) surface.
(12) The light receiving element according to (11), wherein the amplifier transistor is a Fin-type MOS transistor.
(13) The light-receiving element according to any one of (1) to (12), wherein the amplifier transistor and the photoelectric conversion circuit are disposed on the same semiconductor substrate.
(14) The light-receiving element according to any one of (1) to (12), wherein the amplifier transistor is disposed on a semiconductor substrate different from that on which the photoelectric conversion circuit is disposed.
(15) An electronic device including a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal,
an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 The aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that may be conceived by a person skilled in the art, and the effects of the present disclosure are not limited to the above. In other words, various additions, modifications, and partial deletions are possible within the scope that does not deviate from the conceptual idea and intent of the present disclosure derived from the contents defined in the claims and their equivalents.
1:CMOSイメージセンサ
110:光電変換回路
115:絶縁膜
120:第1ソースフォロワ回路
121:第1アンプトランジスタ
121d:ドレイン領域
121e:ソース領域
212:エピタキシャル成長層
212a:チャネル領域
214:ポリシリコン膜
215:SiGe層
1000:電子機器
1: CMOS image sensor 110: photoelectric conversion circuit 115: insulating film 120: first source follower circuit 121: first amplifier transistor 121d: drain region 121e: source region 212: epitaxial growth layer 212a: channel region 214: polysilicon film 215: SiGe layer 1000: electronic device

Claims (15)

  1.  入射光を光電変換した画素信号を出力する光電変換回路と、
     前記画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を備え、
     前記アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている、受光素子。
    a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light;
    a source follower circuit including an amplifier transistor that amplifies the pixel signal;
    an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor;
  2.  前記ドレイン領域と前記ソース領域との間における半導体ウェル領域の不純物濃度が、前記アンプトランジスタの駆動中に前記ドレイン領域および前記ソース領域の各々の下端部と同じ深さか、または前記下端部よりも深い位置まで空乏化する濃度である、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the impurity concentration of the semiconductor well region between the drain region and the source region is a concentration that depletes the semiconductor well region to the same depth as the bottom ends of the drain region and the source region, or to a position deeper than the bottom ends while the amplifier transistor is in operation.
  3.  前記不純物濃度が、4e17(cm-3)よりも10倍以上低い、請求項2に記載の受光素子。 3. The light-receiving element according to claim 2, wherein the impurity concentration is at least 10 times lower than 4e 17 (cm −3 ).
  4.  前記半導体ウェル領域は、シリコンのエピタキシャル成長層である、請求項2に記載の受光素子。 The light receiving element according to claim 2, wherein the semiconductor well region is an epitaxially grown layer of silicon.
  5.  前記半導体ウェル領域は、前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にシリコンゲルマニウム層を有する、請求項2に記載の受光素子。 The light receiving element according to claim 2, wherein the semiconductor well region has a silicon germanium layer directly below a channel region formed between the drain region and the source region while the amplifier transistor is in operation.
  6.  前記絶縁膜の厚さが、前記アンプトランジスタの駆動中に生成される空乏層より少なくとも深い、請求項1に記載の受光素子。 The photodetector according to claim 1, wherein the thickness of the insulating film is at least deeper than the depletion layer generated while the amplifier transistor is in operation.
  7.  前記絶縁膜の厚さが、前記アンプトランジスタを形成する半導体基板の厚さに対して10%以内である、請求項6に記載の受光素子。 The photodetector according to claim 6, wherein the thickness of the insulating film is within 10% of the thickness of the semiconductor substrate on which the amplifier transistor is formed.
  8.  前記絶縁膜が、前記アンプトランジスタを囲んでいる、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the insulating film surrounds the amplifier transistor.
  9.  前記ドレイン領域および前記ソース領域の各々一部が、ポリシリコン膜である、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein a portion of each of the drain region and the source region is a polysilicon film.
  10.  前記アンプトランジスタの駆動中に前記ドレイン領域と前記ソース領域との間に形成されるチャネル領域の直下にも前記絶縁膜が形成されている、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the insulating film is also formed directly below a channel region formed between the drain region and the source region while the amplifier transistor is in operation.
  11.  前記チャネル領域が、Si(110)面に形成される、請求項10に記載の受光素子。 The light receiving element according to claim 10, wherein the channel region is formed on a Si(110) surface.
  12.  前記アンプトランジスタが、Fin型MOSトランジスタである、請求項11に記載の受光素子。 The light receiving element according to claim 11, wherein the amplifier transistor is a Fin-type MOS transistor.
  13.  前記アンプトランジスタが、前記光電変換回路と同じ半導体基板に配置されている、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the amplifier transistor is disposed on the same semiconductor substrate as the photoelectric conversion circuit.
  14.  前記アンプトランジスタが、前記光電変換回路と異なる半導体基板に配置されている、請求項1に記載の受光素子。 The light receiving element according to claim 1, wherein the amplifier transistor is disposed on a semiconductor substrate different from the photoelectric conversion circuit.
  15.  入射光を光電変換した画素信号を出力する光電変換回路と、前記画素信号を増幅するアンプトランジスタを含むソースフォロワ回路と、を含む受光素子を備える電子機器であって、
     前記アンプトランジスタのドレイン領域およびソース領域の各々の直下に、絶縁膜が形成されている、電子機器。
    An electronic device including a light receiving element including a photoelectric conversion circuit that outputs a pixel signal obtained by photoelectrically converting incident light, and a source follower circuit including an amplifier transistor that amplifies the pixel signal,
    an insulating film is formed directly below each of the drain region and the source region of the amplifier transistor.
PCT/JP2023/034818 2022-10-31 2023-09-26 Light receiving element and electronic device WO2024095639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174898 2022-10-31
JP2022-174898 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095639A1 true WO2024095639A1 (en) 2024-05-10

Family

ID=90930246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034818 WO2024095639A1 (en) 2022-10-31 2023-09-26 Light receiving element and electronic device

Country Status (1)

Country Link
WO (1) WO2024095639A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120473A (en) * 1992-10-08 1994-04-28 Olympus Optical Co Ltd Solid-state image sensing device and driving method therefor the same
US20080179625A1 (en) * 2007-01-30 2008-07-31 Kyung-Ho Lee CMOS image sensor having transistor with conduction band offset
JP2009295890A (en) * 2008-06-06 2009-12-17 Sony Corp Mos transistor, solid-state imaging apparatus, electronic apparatus, and methods for manufacturing of them
JP2011254060A (en) * 2010-06-04 2011-12-15 Sharp Corp Semiconductor device
JP2018207000A (en) * 2017-06-06 2018-12-27 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2021084959A1 (en) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120473A (en) * 1992-10-08 1994-04-28 Olympus Optical Co Ltd Solid-state image sensing device and driving method therefor the same
US20080179625A1 (en) * 2007-01-30 2008-07-31 Kyung-Ho Lee CMOS image sensor having transistor with conduction band offset
JP2009295890A (en) * 2008-06-06 2009-12-17 Sony Corp Mos transistor, solid-state imaging apparatus, electronic apparatus, and methods for manufacturing of them
JP2011254060A (en) * 2010-06-04 2011-12-15 Sharp Corp Semiconductor device
JP2018207000A (en) * 2017-06-06 2018-12-27 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2021084959A1 (en) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 Imaging device and electronic device

Similar Documents

Publication Publication Date Title
CN110100312B (en) Solid-state imaging device and electronic apparatus
KR102504887B1 (en) Imaging element, method for producing imaging element, and electronic device
US20240105743A1 (en) Imaging device, manufacturing method thereof, and electronic apparatus
EP3709358B1 (en) Solid-state image pickup device and electronic apparatus
TWI816863B (en) Solid-state camera devices and electronic equipment
EP3709357A1 (en) Image pickup element and electronic apparatus
US11810932B2 (en) Solid-state imaging device and imaging device
EP4123709A1 (en) Imaging device and electronic instrument
KR20230168283A (en) Solid state imaging element, solid state imaging element manufacturing method, and electronic apparatus
WO2020045142A1 (en) Imaging device and electronic instrument
US11521998B2 (en) Solid-state imaging device and imaging device
EP4060740A1 (en) Solid-state imaging element and method for manufacturing same
WO2024095639A1 (en) Light receiving element and electronic device
US20240014229A1 (en) Solid-state imaging device and method for manufacturing same
WO2023171147A1 (en) Semiconductor device, optical detection device, and electronic apparatus
WO2023090053A1 (en) Light detection device and electronic apparatus
US20240178245A1 (en) Photodetection device
WO2023002592A1 (en) Solid-state imaging element, method for manufacturing same, and electronic apparatus
US20240170518A1 (en) Solid-state imaging device and electronic device
WO2023233873A1 (en) Light detecting device and electronic apparatus
WO2024095743A1 (en) Solid-state imaging device, manufacturing method of same, and electronic apparatus
US20240014230A1 (en) Solid-state imaging element, method of manufacturing the same, and electronic device
TW202414809A (en) Light detection device and camera device
CN118156280A (en) Imaging device and electronic equipment