WO2024095582A1 - Lubricating oil abnormality detection system, lubricating oil abnormality detection device, lubricating oil abnormality detection method, lubricating oil abnormality detection program and recording medium - Google Patents

Lubricating oil abnormality detection system, lubricating oil abnormality detection device, lubricating oil abnormality detection method, lubricating oil abnormality detection program and recording medium Download PDF

Info

Publication number
WO2024095582A1
WO2024095582A1 PCT/JP2023/031107 JP2023031107W WO2024095582A1 WO 2024095582 A1 WO2024095582 A1 WO 2024095582A1 JP 2023031107 W JP2023031107 W JP 2023031107W WO 2024095582 A1 WO2024095582 A1 WO 2024095582A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical characteristic
lubricant
unit
property
minimum value
Prior art date
Application number
PCT/JP2023/031107
Other languages
French (fr)
Japanese (ja)
Inventor
杜継 葛西
竜也 楠本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024095582A1 publication Critical patent/WO2024095582A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Definitions

  • the present invention relates to a lubricant abnormality detection system, a lubricant abnormality detection device, a lubricant abnormality detection method, a lubricant abnormality detection program, and a recording medium.
  • Patent Document 1 describes predicting failures in equipment that uses lubricating oil.
  • Patent Document 2 describes diagnosing the degree of deterioration based on color information of the lubricating oil.
  • One aspect of the present invention aims to provide a new technology for determining abnormal conditions in lubricating oil.
  • a lubricant abnormality detection system includes an electrical characteristic acquisition unit that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit that determines the minimum value at which the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the determination of the minimum value by the minimum value determination unit.
  • a lubricant abnormality detection device includes an electrical characteristic acquisition unit that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit that determines the minimum value at which the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the determination of the minimum value by the minimum value determination unit.
  • a lubricant abnormality detection method is a lubricant abnormality detection method executed by one or more computers, and includes an electrical characteristic acquisition step of acquiring electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination step of determining a minimum value that is the minimum value when the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormal condition determination step of determining an abnormal condition of the lubricant based on the electrical characteristic information acquired in the electrical characteristic acquisition step and the determination result of the minimum value in the minimum value determination step.
  • the lubricant abnormality detection device may be realized by a computer.
  • the lubricant abnormality detection program that causes the computer to operate as each part (software element) of the lubricant abnormality detection device to realize the lubricant abnormality detection device on a computer, and the computer-readable recording medium on which the program is recorded, also fall within the scope of the present invention.
  • a new technology can be provided for determining abnormal conditions in lubricating oil.
  • FIG. 1 is a block diagram showing an example of the configuration of a lubricant oil abnormality detection system according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing the flow of a lubricant abnormality detection method according to an embodiment of the present invention.
  • 1 is a graph showing the capacitance ratio at 30° C. versus ISOT test deterioration time for gas engine oil A containing a calcium detergent and having a calcium content of 0.29 wt %.
  • 4 is a graph showing the capacitance ratio at 30° C. versus ISOT test deterioration time for gas engine oil B containing a calcium detergent and having a calcium content of 0.10 wt %.
  • 1 is a graph showing the capacitance ratio at 30° C. versus the deterioration time in an ISOT test for an engine oil containing no metal-based detergent.
  • the inventors conducted a detailed analysis of the electrical properties of lubricants over time of use, and discovered that, depending on the type of lubricant containing a metal-based detergent, the electrical properties decrease with use and then have a minimum value when they begin to increase.
  • the electrical properties depend on the type and amount of polar substances, and as the amount of polar substances decreases, the electrical properties decrease, and as the amount of polar substances increases, the electrical properties increase. Since metal-based detergents are polar substances, it is believed that the electrical properties decrease as the metal-based detergent is consumed and its amount decreases.
  • the lubricant abnormality detection system is a new technology that determines the abnormal state of a lubricant by taking into account the minimum value.
  • FIG. 1 is a block diagram illustrating an example of the configuration of a lubricant abnormality detection system 1 according to this embodiment.
  • the lubricant abnormality detection system 1 includes a lubricant abnormality detection device 10, an electrical property sensor 20, a temperature sensor 30, and a property sensor 40.
  • the lubricant abnormality detection device 10 acquires values measured by each sensor, judges the abnormal state of the lubricant, and displays the judgment result of the abnormal state.
  • Examples of the lubricant abnormality detection device 10 include a computer terminal that can be carried by a user, a stationary computer terminal, and the like. In the case of a portable computer terminal, the user can check the judgment result of the abnormal state displayed on the lubricant abnormality detection device 10 at hand at any time.
  • the electrical property sensor 20, the temperature sensor 30, and the property sensor 40 may be permanently installed in a container such as a tank in which the lubricant is stored in a machine that uses the lubricant, or may be in contact with the lubricant as necessary.
  • a container such as a tank in which the lubricant is stored in a machine that uses the lubricant, or may be in contact with the lubricant as necessary.
  • the electrical properties, temperature, and properties of the lubricant in the container can be constantly and continuously measured.
  • the lubricant abnormality detection device 10 includes a control unit 100, a storage unit 200, and a display unit 300.
  • the control unit 100, the storage unit 200, the display unit 300, and a communication interface (not shown) described later are connected via a bus.
  • the control unit 100 and the storage unit 200 are included in the lubricant abnormality detection device 10, but are not limited to this configuration and may be included in an external server separate from the lubricant abnormality detection device 10. In this case, the lubricant abnormality detection device 10 displays the results determined by the external server.
  • the communication interface is an interface that connects to a network.
  • the communication interface may be, for example, a wired connection interface such as Ethernet (registered trademark) or a wireless connection interface such as WiFi (registered trademark), or may be a wired connection interface.
  • the communication interface connects the electrical characteristic acquisition unit 111 and the electrical characteristic sensor 20 so that the electrical characteristic acquisition unit 111 acquires electrical characteristic information from the electrical characteristic sensor 20.
  • the communication interface also connects the temperature acquisition unit 121 and the temperature sensor 30 so that the temperature acquisition unit 121 acquires temperature information from the temperature sensor 30.
  • the communication interface also connects the property acquisition unit 131 and the property sensor 40 so that the property acquisition unit 131 acquires property information from the property sensor 40.
  • the communication interface may connect the abnormal state determination unit 150 and an external server so that the abnormal state determination unit 150 outputs the abnormal state determination result to an external server separate from the lubricant abnormality detection device 10.
  • Control unit 100 The control unit 100 controls each part of the lubricant abnormality detection device 10 by executing a program stored in the storage unit 200.
  • the processor is configured by an integrated circuit such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), for example.
  • the control unit 100 includes an electrical property unit 110, a temperature unit 120, a property unit 130, a moving average value calculation unit 140, an abnormal state determination unit 150, and a display control unit 160.
  • the electrical characteristic unit 110 is a unit that performs processing related to electrical characteristics and includes an electrical characteristic acquisition section 111, an electrical characteristic temperature correction determination section 112, an electrical characteristic temperature correction section 113, a minimum value determination section 114, and an electrical characteristic comparison section 115.
  • the electrical characteristic acquisition unit 111 acquires electrical characteristic information indicating the electrical characteristics of the lubricant from the electrical characteristic sensor 20. Examples of electrical characteristics include capacitance, electrical conductivity, and dielectric constant.
  • the electrical characteristic acquisition unit 111 acquires the electrical characteristic information output from the electrical characteristic sensor 20 via the communication interface.
  • the electrical characteristic acquisition unit 111 outputs the acquired electrical characteristic information to the electrical characteristic temperature correction determination unit 112 and the memory unit 200.
  • the electrical characteristic information is information indicating the results of the measurement of the electrical characteristics of the lubricating oil by the electrical characteristic sensor 20.
  • the electrical characteristic sensor 20 will be described later.
  • the electrical characteristic temperature correction determination unit 112 determines whether or not temperature correction is required for the electrical characteristic information based on the temperature information acquired by the temperature acquisition unit 121 and the electrical characteristic information acquired by the electrical characteristic acquisition unit 111.
  • the electrical characteristic temperature correction determination unit 112 compares the temperature information acquired by the temperature acquisition unit 121 with a preset temperature range in which temperature correction of the electrical characteristic information is not required. If the temperature information acquired by the temperature acquisition unit 121 is included in this range, the electrical characteristic temperature correction determination unit 112 determines that temperature correction is not required for the electrical characteristic information. Also, if the temperature information acquired by the temperature acquisition unit 121 is not included in this range, the electrical characteristic temperature correction determination unit 112 determines that temperature correction is required for the electrical characteristic information.
  • the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information does not require temperature correction, it outputs the electrical characteristic information to the minimum value determination unit 114 and the storage unit 200. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information requires temperature correction, it outputs the determination result of whether or not the electrical characteristic information requires temperature correction to the electrical characteristic temperature correction unit 113 and the storage unit 200.
  • the electrical characteristic temperature correction unit 113 performs temperature correction of the electrical characteristic information. For example, the electrical characteristic temperature correction unit 113 accumulates temperature information and electrical characteristic information of the type of lubricant to be determined in advance as a database, and calculates a correction formula (relationship formula) based on the database. The electrical characteristic temperature correction unit 113 performs temperature correction of the electrical characteristic information by referring to the calculated correction formula. Since electrical characteristics are affected by temperature, the abnormality determination unit 150 can more accurately determine an abnormal state of the lubricant by having the electrical characteristic temperature correction unit 113 perform temperature correction.
  • the electrical characteristic temperature correction unit 113 outputs the electrical characteristic information after temperature correction to the minimum value determination unit 114 and the memory unit 200.
  • the electrical characteristic unit 110 is provided with the electrical characteristic temperature correction determination unit 112 and the electrical characteristic temperature correction unit 113, and the electrical characteristic information is corrected by temperature.
  • the electrical characteristic unit 110 may not be provided with the electrical characteristic temperature correction determination unit 112 and the electrical characteristic temperature correction unit 113.
  • the electrical characteristic information may or may not be corrected by temperature, and the need for temperature correction may or may not be determined. If the electrical characteristic unit 110 does not perform temperature correction of the electrical characteristic information, it is preferable to provide a temperature regulator (not shown) that controls the temperature of the lubricating oil near the electrodes of the electrical characteristic sensor 20.
  • the temperature regulator may be a housing having a space in which the electrodes of the electrical characteristic sensor 20 are stored. At least the detection unit of the temperature sensor 30 and a temperature change device (e.g., a heater) that changes the temperature are stored in the space in the housing in which the electrodes of the electrical characteristic sensor 20 are stored.
  • a temperature change device e.g., a heater
  • the temperature of the lubricant that has entered the space is detected based on the value of the temperature sensor 30.
  • the temperature change by the temperature change device may be performed by the control unit 100, or the user of the lubricant abnormality detection system may change the temperature based on the value of the temperature sensor 30 via a controller or the like for controlling the temperature.
  • the minimum value determination unit 114 determines the minimum value of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit 111 or the temperature-corrected electrical characteristic information corrected by the electrical characteristic temperature correction unit 113.
  • the minimum value is the minimum value at which the electrical characteristics decrease as the lubricant is used and then begin to increase. Specifically, the minimum value determination unit 114 (1) determines whether the lubricant being determined is a lubricant having a minimum value, and (2) if it is determined in (1) that the lubricant being determined is a lubricant having a minimum value, it determines the relationship between the current value and the minimum value.
  • the minimum value determination unit 114 refers to the change over time in the electrical characteristic information stored in the memory unit 200 to determine whether the lubricant being determined has a minimum value. If there is a downward trend from the initial value, the minimum value determination unit 114 determines that the lubricant has a minimum value. Also, if there is an upward trend from the initial value, the minimum value determination unit 114 determines that the lubricant does not have a minimum value.
  • the minimum value determination unit 114 refers to a database stored in advance in the storage unit 200 to determine whether the lubricant to be determined is a lubricant having a minimum value.
  • the database contains information on whether each type of lubricant has a minimum value (hereinafter also referred to as minimum value information).
  • the user inputs the type of lubricant to be determined via an input unit (not shown) of the lubricant abnormality detection device 10.
  • the minimum value determination unit 114 determines whether the minimum value information of the input lubricant type is included in the database.
  • the minimum value determination unit 114 determines whether the lubricant to be determined is a lubricant having a minimum value based on the minimum value information. If the minimum value determination unit 114 determines that the minimum value information of the input lubricant type is not included in the database, it may re-determine the lubricant by, for example, referring to the change over time in the electrical characteristic information described above.
  • the minimum value determination unit 114 determines in (1) that the lubricant to be determined has a minimum value, it determines the relationship between the current value and the minimum value in (2). It is preferable that the minimum value determination unit 114 always determines the relationship between the current value and the minimum value. For example, it is preferable to continue determining the minimum value even after once determining that the past value is a minimum value, or even after determining that the current value has already become a minimum value. For example, even if the electrical characteristic has decreased and then started to increase, it may decrease again and then start to increase. In this case, the minimum value determination unit 114 may determine that the minimum values at each time when the characteristic changes from a decrease to an increase are all minimum values.
  • the electrical characteristic may start to increase due to the mixing of fuel, even though the electrical characteristic that has decreased due to the influence of the metal-based cleaning agent has not reached the minimum value that the lubricant inherently has due to its properties. Similarly, the electrical characteristics may also increase due to the inclusion of metal (wear debris) and moisture.
  • the minimum value determination unit 114 may first determine that the minimum value when the electrical characteristics change from decreasing to increasing is also a minimum value, and may also determine that the minimum value when the electrical characteristics change from decreasing to increasing due to the presence of a metal-based cleaning agent is also a minimum value. In this way, it is preferable for the minimum value determination unit 114 to continuously determine the minimum values, from the viewpoint of preventing the minimum value caused by the metal-based cleaning agent from being overlooked, even when multiple minimum values occur.
  • the minimum value determination unit 114 determines whether a past value is a minimum value. In other words, whether the electrical characteristic has reached a minimum value can be determined by, for example, comparing the current value with the past value. Therefore, the minimum value determination unit 114 determines whether a past value prior to measuring the current value (for example, the measurement value in the immediately preceding measurement) was a minimum value.
  • the minimum value determination unit 114 first calculates the difference between the current value and the past value of the electrical characteristic.
  • the "current value” is the measurement value obtained by the current measurement as the target for determining an abnormal state.
  • the “past value” is the measurement value obtained by the measurement immediately before the current measurement.
  • the minimum value determination unit 114 compares the current difference with the previous difference, and determines whether the past value is a minimum value or not depending on whether there is a sign reversal (whether it is positive or negative).
  • the "current difference” is the difference between the current value and the past value
  • the "previous difference” is the difference between the measurement value obtained by the measurement immediately before the current measurement and the measurement value obtained by the measurement two measurements before the current measurement.
  • the minimum value determination unit 114 determines that the past value is a minimum value. Furthermore, if there is no sign reversal between the current difference and the previous difference, the minimum value determination unit 114 determines that the past value is not a minimum value. Specifically, a case will be described as an example in which the measured value changes from (1) 100 to (2) 90 to (3) 95. In this case, the difference between (1) and (2) is -10 (negative), and the difference between (2) and (3) is 5 (positive). The minimum value determination unit 114 determines that (2) is the minimum value because there is a reversal of sign between the difference between (1) and (2) and the difference between (2) and (3).
  • the minimum value determination unit 114 may compare the current difference with a preset difference threshold value, rather than comparing the current difference with the previous difference. As an example, the minimum value determination unit 114 compares the current value with the past value, and determines whether the calculated current difference is equal to or greater than the preset difference threshold value. If the calculated current difference is equal to or greater than the preset difference threshold value, the minimum value determination unit 114 determines that the past value is a minimum value. If the calculated current difference is less than the preset difference threshold value, the minimum value determination unit 114 determines that the past value is not a minimum value. Specifically, a case will be described in which the preset difference threshold value is 0, and the measured value changes from (1) 100 to (2) 90 to (3) 95.
  • the difference between (1) and (2) is -10, and the difference between (2) and (3) is 5.
  • the minimum value determination unit 114 determines that (2) is the minimum value because the difference between (2) and (3) is equal to or greater than the preset difference threshold.
  • the specific numerical value of the preset difference threshold described above is merely an example, and the preset difference threshold can be set as appropriate. Note that in this embodiment, the preset difference threshold is set to 0, but the threshold may be set taking error into consideration.
  • the minimum value determination unit 114 may determine that there is a minimum value between the past value and the current value if the current difference is zero. Specifically, a case where the measured value changes from (1) 100 ⁇ (2) 90 ⁇ (3) 90 ⁇ (4) 100 will be described as an example. In this case, the difference between (1) and (2) is -10, the difference between (2) and (3) is 0, and the difference between (3) and (4) is 10. Since the difference between (2) and (3) is 0, the minimum value determination unit 114 determines that there is a minimum value between (2) and (3). In this way, even if the current difference is zero, by making the determination as described above, it is possible to prevent the minimum value from being overlooked.
  • the minimum value determination unit 114 may make a determination using a trained model obtained by machine learning using the components, electrical property information, temperature information, property information, etc., and the presence or absence, value, etc. of minimum values of electrical properties as training data.
  • the specific configuration of the learning process for obtaining the minimum value determination result is not particularly limited, but machine learning methods such as support vector machines, linear regression, random forests, neural networks, gradient boosting trees, genetic algorithms, gradient descent, and Bayesian optimization can be used.
  • the current value of the electrical characteristic may be compared with a minimum value threshold value that is set in advance as a minimum value for each type of lubricant to determine the minimum value of the electrical characteristic. If the current value of the electrical characteristic is equal to or less than the threshold value, the minimum value determination unit 114 determines that the current value is a minimum value. If the current value of the electrical characteristic is greater than the threshold value, the minimum value determination unit 114 determines that the current value is not a minimum value.
  • the minimum value determination unit 114 may further determine the relationship between the past value or the current value and the minimum value. For example, the rate of change from a measurement value before the past value to the past value, or the rate of change from the past value to the current value, may be used to determine when the minimum value will be reached, or an estimated value of the minimum value may be calculated. In addition, for example, if a minimum value (or an estimated value thereof) based on the type of lubricant is stored in the storage unit 200 in advance, the difference from the minimum value may be determined. In addition, the time when the minimum value has already been reached may be determined based on the rate of change from a measurement value before the past value to the past value, or the rate of change from the past value to the current value, etc.
  • the minimum value determination unit 114 outputs the minimum value determination result to the electrical characteristic comparison unit 115, the moving average value calculation unit 140, the abnormal state determination unit 150, and the memory unit 200.
  • the electrical characteristic comparison unit 115 compares the current value of the electrical characteristic with a past value.
  • the current value of the electrical characteristic may be a value acquired by the electrical characteristic acquisition unit 111, a value corrected by the electrical characteristic temperature correction unit 113, or a moving average value of the electrical characteristic information calculated by the moving average value calculation unit 140.
  • the electrical characteristic comparison unit 115 may also correct the electrical characteristic information according to the judgment result of the minimum value judgment unit 114 to set it as the current value.
  • the electrical characteristic comparison unit 115 acquires past values of the electrical characteristic from the memory unit 200.
  • the electrical characteristic comparison unit 115 subtracts a past value from a current value of the electrical characteristic, and determines whether the calculated value is positive or negative. Further, for example, the electrical characteristic comparison unit 115 calculates the difference between the current value and the past value of the above-mentioned electrical characteristic, and compares the calculated difference with a preset difference threshold. Further, for example, the electrical characteristic comparison unit 115 determines whether the calculated difference is equal to or greater than a preset difference threshold.
  • the electrical characteristic comparison unit 115 outputs the comparison results of the electrical characteristic information to the abnormal state determination unit 150 and the memory unit 200.
  • the electrical characteristics comparison unit 115 may use the determination result to correct the electrical characteristics information and set the corrected value as a past value or a current value. For example, if it is known that the lubricant to be measured is a specific lubricant that contains a metal-based detergent, the electrical characteristics information can be corrected as follows.
  • the correction may be based on the difference between the behavior of the electrical characteristics when no abnormality occurs in a specific lubricant that contains a metal-based detergent and the behavior of the electrical characteristics when no abnormality occurs in the specific lubricant that does not contain a metal-based detergent.
  • the temperature unit 120 is a unit that performs processing related to temperature.
  • the temperature unit 120 includes a temperature acquisition unit 121.
  • the temperature acquisition unit 121 acquires temperature information indicating the temperature of the lubricating oil from the temperature sensor 30.
  • the temperature acquisition unit 121 may acquire the temperature information output from the temperature sensor 30 via a communication interface.
  • the temperature acquisition unit 121 outputs the acquired temperature information to the moving average calculation unit 140, the abnormal state determination unit 150, and the memory unit 200.
  • the temperature information is information indicating the results of the measurement of the temperature of the lubricating oil by the temperature sensor 30.
  • the temperature sensor 30 will be described later.
  • the current temperature value may be a value acquired by the temperature acquisition unit 121, or may be a moving average value of the temperature information calculated by the moving average value calculation unit 140 described later.
  • the property unit 130 includes a property acquisition section 131 , a property temperature correction determination section 132 , a property temperature correction section 133 , and a property comparison section 134 .
  • the property acquisition unit 131 acquires property information indicating the properties of the lubricating oil from the property sensor 40.
  • "property” refers to properties other than electrical properties and temperature.
  • properties include viscosity, density, acid value, base value, color tone, etc. In one aspect of the present invention, one or more of these properties may be measured.
  • the property acquisition unit 131 may acquire the property information output from the property sensor 40 via a communication interface.
  • the property acquisition unit 131 outputs the acquired property information to the property temperature correction determination unit 132 and the memory unit 200.
  • the property information is information indicating the results of the property sensor 40 measuring the properties of the lubricating oil. The property sensor 40 will be described later.
  • the property temperature correction determination unit 132 determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131.
  • the property temperature correction determination unit 132 compares the temperature information acquired by the temperature acquisition unit 121 with a preset temperature range in which temperature correction of the property information is not required. If the temperature information acquired by the temperature acquisition unit 121 is included in this range, the property temperature correction determination unit 132 determines that temperature correction is not required for the property information. Also, if the temperature information acquired by the temperature acquisition unit 121 is not included in this range, the property temperature correction determination unit 132 determines that temperature correction is required for the property information.
  • the property temperature correction determination unit 132 determines that the property information does not require temperature correction, it outputs the property information to the property comparison unit 134 and the storage unit 200. If the property temperature correction determination unit 132 determines that the property information requires temperature correction, it outputs the determination result of whether or not the property information requires temperature correction to the property temperature correction unit 133 and the storage unit 200.
  • the property temperature correction unit 133 When the property temperature correction determination unit 132 determines that temperature correction is necessary for the property information, the property temperature correction unit 133 performs temperature correction of the property information. For example, the property temperature correction unit 133 accumulates temperature information and viscosity information of the type of lubricant to be determined in advance as a database, and calculates a correction formula based on the database. The property temperature correction unit 133 performs temperature correction of the properties by referring to the calculated correction formula. Since the properties are affected by temperature, the property temperature correction unit 133 performs temperature correction, allowing the abnormality determination unit 150 to more accurately determine an abnormal state of the lubricant.
  • the property temperature correction unit 133 outputs the property information after temperature correction to the property comparison unit 134 and the memory unit 200.
  • the property comparison unit 134 compares the current property value with the past property value.
  • the current property value may be a value acquired by the property acquisition unit 131, may be a value corrected by the property temperature correction unit 133, or may be a moving average value of the property information calculated by the moving average calculation unit 140 described later.
  • the property comparison unit 134 also acquires past property values from the storage unit 200.
  • the property comparison unit 134 calculates the difference between the current property value and the past property value, and compares the calculated difference with a preset difference threshold.
  • the property comparison unit 134 determines whether the calculated difference is equal to or greater than the preset difference threshold.
  • the property comparison unit 134 subtracts the past property value from the current property value, and determines whether the calculated value is positive.
  • the property comparison unit 134 outputs the comparison results of the property information to the abnormal state determination unit 150 and the memory unit 200.
  • Moving average value calculation unit 140 When the moving average value is used as the current value in the electrical characteristic comparison unit 115, the abnormal state determination unit 150, and the property comparison unit 134, the moving average value calculation unit 140 calculates the moving average value based on multiple values per unit time of the electrical characteristic information, temperature information, and property information.
  • the moving average value calculation unit 140 outputs the calculated moving average value to the electrical characteristic comparison unit 115, the abnormal state determination unit 150, the property comparison unit 134, and the memory unit 200.
  • the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit 111 and the determination result of the minimum value by the minimum value determination unit 114. Specifically, the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the determination result of the minimum value determined by the minimum value determination unit 114 and the comparison result by the electrical characteristic comparison unit 115. By using the determination result of the minimum value, the abnormal state determination unit 150 can determine an abnormal state when the lubricant to be determined contains a metal-based detergent, thereby eliminating the cause of an extreme polarity change resulting from consumption of the metal-based detergent, and thus can determine an abnormal state with high accuracy.
  • the abnormal state determination unit 150 can determine an abnormal state of the lubricant by comparing the electrical characteristic information obtained by the electrical characteristic comparison unit 115 with a preset electrical characteristic abnormal value. Also, for example, the abnormal state determination unit 150 can more accurately detect an increase in the electrical characteristics by using the current value of the electrical characteristics corrected according to the result of the determination of the minimum value by the electrical characteristic comparison unit 115, and therefore can more accurately determine an abnormal state.
  • the abnormal state determination unit 150 may also determine an abnormal state based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131. Specifically, the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the minimum value determination result determined by the minimum value determination unit 114, the comparison result of the electrical property comparison unit 115, the temperature information acquired by the temperature acquisition unit 121, and the comparison result of the property comparison unit 134. By determining an abnormal state by further referring to the temperature information and property information, it is possible to determine an abnormal state with greater accuracy.
  • the abnormal state determination unit 150 determines the abnormal state by referring to the determination result of the minimum value. In this case, for example, the abnormal state determination unit 150 determines the abnormal state after the electrical characteristics reach a minimum value. In other words, in determining an abnormal state that may be affected by the electrical characteristics, the determination result of the minimum value is used as a trigger for the abnormal state determination unit 150 to start determining the abnormal state. By referring to the determination result of the minimum value in this way, it is possible to more accurately determine an abnormal state that may affect the electrical characteristics.
  • the abnormal state determination unit 150 may continue to determine the abnormal state regardless of the determination result of the minimum value. In other words, in this case, the abnormal state may be determined even before the electrical characteristics reach a minimum value.
  • the abnormal state is, for example, at least one selected from deterioration, fuel contamination, soot contamination, metal contamination, and water contamination.
  • Deterioration is, for example, deterioration due to at least one of oxidation and heat.
  • the capacitance tends to increase, the viscosity tends to increase, and the density tends to increase.
  • fuel contamination the capacitance tends to increase, the viscosity tends to decrease, and the density tends to decrease.
  • soot contamination the capacitance tends to decrease, the viscosity tends to increase, and the density tends to increase.
  • the abnormal state determination unit 150 refers to these tendencies to determine various abnormal states.
  • abnormal states that may be affected by the electrical characteristics as described above include deterioration and soot contamination.
  • the abnormal state determination unit 150 determines deterioration and soot contamination after the point in time when the electrical characteristics reach a minimum value by referring to the electrical characteristic information, temperature information, and property information from that point onward. In other words, when determining an abnormal state of deterioration and soot contamination, the abnormal state determination unit 150 does not determine deterioration and soot contamination until the electrical characteristics reach a minimum value. In other words, in determining deterioration and soot contamination, the determination result of the minimum value is used as a trigger for the abnormal state determination unit 150 to start determining deterioration and soot contamination.
  • the abnormal state determination unit 150 determines metal contamination, moisture contamination, etc. even before the electrical characteristics reach a minimum value. As mentioned above, even if the minimum value is measured two or more times as a result, the arrival of the first minimum value may be the trigger. If it is determined that there is a second minimum value after the first minimum value, or that there is a high possibility of this occurring, the trigger may not be the arrival of the first minimum value, but rather the arrival of the second or subsequent minimum values.
  • the abnormal state determination unit 150 outputs the abnormal state determination result to the display control unit 160.
  • the abnormal state determination unit 150 may also output the abnormal state determination result to an external server via a communication interface.
  • the display control unit 160 controls the display unit 300 to display the abnormal state determination result on the display unit 300.
  • the display control unit 160 outputs the abnormal state determination result determined by the abnormal state determination unit 150 to the display unit 300.
  • the display control unit 160 may cause the display unit 300 to display the current value of the electrical characteristic and a message indicating that the minimum value has not been reached before the electrical characteristic reaches the minimum value, or may not display information regarding the electrical characteristic until the electrical characteristic reaches the minimum value.
  • the storage unit 200 stores the program executed by the control unit 100 and various data used by the control unit 100.
  • the storage unit 200 is configured, for example, by a hard disk drive (HDD), a solid state drive (SSD), an electrically erasable programmable read-only memory (EEPROM (registered trademark)), a read only memory (ROM), a random access memory (RAM), or a combination of these.
  • a part or all of the memory is not limited to being built into the lubricant oil abnormality detection device 10, and may be externally attached via an input/output interface (not shown) such as a universal serial bus (USB).
  • a part or all of the storage unit 200 may be connected to the lubricant oil abnormality detection device 10 via a network as a device independent of the lubricant oil abnormality detection device 10.
  • the storage unit 200 stores various information.
  • the storage unit 200 stores information such as electrical characteristic information acquired by the electrical characteristic acquisition unit 111, temperature information acquired by the temperature acquisition unit 121, property information acquired by the property acquisition unit 131, electrical characteristic information after temperature correction by the electrical characteristic temperature correction unit 113, property information after temperature correction by the property temperature correction unit 133, the minimum value judgment result judged by the minimum value judgment unit 114, the comparison result by the electrical characteristic comparison unit 115, the comparison result by the property comparison unit 134, the moving average value calculated by the moving average value calculation unit 140, the abnormal state judgment result judged by the abnormal state judgment unit 150, and each preset threshold value.
  • Display unit 300 The display unit 300 is controlled by the display control unit 160.
  • the display unit 300 displays the abnormal state determination result by the abnormal state determination unit 150 that is output from the display control unit 160.
  • the electrical property sensor 20 is a sensor for measuring the electrical properties of the lubricant.
  • the electrical property sensor 20 is preferably provided with a comb-shaped electrode.
  • the comb-shaped electrode has a structure in which comb-shaped electrodes are interdigitated.
  • the comb-shaped electrode has such a structure, and thus the distance between the electrodes can be shortened.
  • the distance can be, for example, 20 ⁇ m.
  • the material of the electrode is preferably, for example, platinum.
  • the electrical property sensor 20 generates electrical property information, which is information indicating the results of measuring the electrical properties of the lubricant, based on the results, and transmits the electrical property information to the lubricant abnormality detection device 10.
  • the electrical property sensor 20 is described as having a comb-shaped electrode, but the electrical property sensor 20 in the present invention is not limited to such a form, and various conventionally known sensors can be adopted depending on the electrical properties of the object to be measured.
  • the temperature sensor 30 is a sensor for measuring the temperature of the lubricant.
  • the temperature sensor 30 is not particularly limited as long as it is a sensor that can appropriately measure the temperature of the lubricant in a desired range.
  • the temperature sensor 30 generates temperature information that is information indicating the result of measuring the temperature of the lubricant based on the result, and transmits the temperature information to the lubricant abnormality detection device 10.
  • the property sensor 40 is a sensor for measuring the properties of the lubricant.
  • the property sensor 40 is not particularly limited as long as it is a sensor that can appropriately measure the properties of the lubricant in a desired range.
  • the property sensor 40 generates property information that is information indicating the results of measuring the properties of the lubricant based on the results, and transmits the property information to the lubricant abnormality detection device 10.
  • the type of lubricant for which the lubricant abnormality detection system 1 according to the present embodiment judges an abnormal state is not particularly limited, and examples thereof include internal combustion engine oil, drive system oil, and equipment oil. Specific examples of lubricants include gas engine oil, gasoline engine oil, and diesel engine oil.
  • the lubricant may or may not contain a metal-based detergent, but the lubricant abnormality detection system 1 according to the present embodiment can be effectively used to judge the abnormal state of a lubricant containing a metal-based detergent.
  • the lubricant abnormality detection system 1 judges the abnormal state of the lubricant by taking into account the minimum value of the electrical characteristics, even if the lubricant contains a metal-based detergent, so that it can be judged with high accuracy.
  • Metal-based detergents are used not only in internal combustion engine oils but also in various drive system oils and various equipment oils, so the lubricant abnormality detection system 1 according to the present embodiment can be used to judge the abnormal state of various lubricants.
  • metal-based detergents examples include calcium detergents, magnesium detergents, and sodium detergents.
  • the lubricant abnormality detection system 1 executes a lubricant abnormality detection method.
  • Fig. 2 is a flow chart showing the flow of the lubricant abnormality detection method. As shown in Fig. 2, the lubricant abnormality detection method includes steps S101 to S110.
  • step S101 the electrical characteristic acquisition unit 111 acquires electrical characteristic information from the electrical characteristic sensor 20. Also in step S101, the temperature acquisition unit 121 acquires temperature information from the temperature sensor 30. Also in step S101, the property acquisition unit 131 acquires property information indicating the properties of the lubricating oil from the property sensor 40. The electrical characteristic acquisition unit 111 outputs the acquired electrical characteristic information to the electrical characteristic temperature correction determination unit 112 and the storage unit 200, and proceeds to step S102. The temperature acquisition unit 121 outputs the acquired temperature information to the moving average calculation unit 140, the abnormal state determination unit 150, and the storage unit 200, and proceeds to step S109. The property acquisition unit 131 outputs the acquired property information to the property temperature correction determination unit 132 and the storage unit 200, and proceeds to step S106.
  • step S102 the electrical characteristic temperature correction determination unit 112 determines whether or not the electrical characteristic information requires temperature correction based on the temperature information acquired by the temperature acquisition unit 121 and the electrical characteristic information acquired by the electrical characteristic acquisition unit 111. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information requires temperature correction (YES in step S102), the control unit 100 proceeds to processing of S103. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information does not require temperature correction (NO in step S102), the control unit 100 proceeds to processing of steps S104 and S105.
  • step S103 if the electrical characteristic temperature correction determination unit 112 determines that temperature correction is required for the electrical characteristic information, the electrical characteristic temperature correction unit 113 performs temperature correction on the electrical characteristic information.
  • the electrical characteristic temperature correction unit 113 outputs the temperature-corrected electrical characteristic information to the minimum value determination unit 114, the electrical characteristic comparison unit 115, and the storage unit 200, and proceeds to steps S104 and S105.
  • step S104 the minimum value determination unit 114 determines the minimum value of the lubricant.
  • the minimum value determination unit 114 outputs the determination result of the determined minimum value to the abnormal state determination unit 150 and the memory unit 200.
  • the minimum value determination unit 114 determines whether or not the electrical characteristic has reached a minimum value, and outputs the determination result to the abnormal state determination unit 150 and the memory unit 200.
  • step S105 the electrical characteristic comparison unit 115 compares the current value and the past value of the electrical characteristic. Specifically, the electrical characteristic comparison unit 115 uses the electrical characteristic information acquired in step S101, or the electrical characteristic information temperature-corrected in step S103 if temperature correction has been performed, as the current value. The electrical characteristic comparison unit 115 also acquires past values to be compared from the storage unit 200. Then, the electrical characteristic comparison unit 115 compares the current value and the past value. The electrical characteristic comparison unit 115 outputs the comparison result of the electrical characteristic information to the abnormal state determination unit 150 and the storage unit 200, and proceeds to step S110. Note that in step S105, the moving average value calculated by the moving average calculation unit 140 may be used as the current value and the past value of the electrical characteristic.
  • step S105 may be omitted depending on the result of step S104.
  • the comparison between the current value and the past value of the electrical characteristic performed in step S109 may be performed after it is determined in step S104 that the electrical characteristic has reached a minimum value, but may not be performed if it is determined that the electrical characteristic has not reached a minimum value.
  • step S106 the property temperature correction determination unit 132 determines whether or not the property information requires temperature correction based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131. If the property temperature correction determination unit 132 determines that the property information requires temperature correction (YES in step S106), the control unit 100 proceeds to processing of S107. If the property temperature correction determination unit 132 determines that the property information does not require temperature correction (NO in step S106), the control unit 100 proceeds to processing of step S108.
  • step S107 if the property temperature correction determination unit 132 determines that the property information requires temperature correction, the property temperature correction unit 133 performs temperature correction on the property information.
  • the property temperature correction unit 133 outputs the temperature-corrected property information to the property comparison unit 134 and the storage unit 200, and proceeds to step S108.
  • step S108 the property comparison unit 134 compares the current property value with the past property value. Specifically, the property comparison unit 134 uses the property information acquired in step S101, or, if temperature correction has been performed, the property information temperature-corrected in step S107 as the current property value. The property comparison unit 134 also acquires past values to be compared from the storage unit 200. The property comparison unit 134 then compares the current property value with the past property value. The property comparison unit 134 outputs the comparison result of the property information to the abnormal state determination unit 150 and the storage unit 200, and proceeds to step S109. In step S108, the moving average value calculated by the moving average calculation unit 140 may be used as the current property value and past property value. In this case, the moving average value of the property information is calculated by the moving average calculation unit 140 before step S108.
  • step S109 the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the result of the minimum value determination by the minimum value determination unit 114 in step S104, the result of the comparison of the electrical properties by the electrical properties comparison unit 115 in step S105, the temperature information acquired by the temperature acquisition unit 121 in step S101, and the result of the comparison of the properties by the property comparison unit 134 in step S108.
  • the abnormal state determination unit 150 outputs the result of the abnormal state determination to the display control unit 160 and the storage unit 200, and proceeds to step S110. Note that, depending on the result of step S104, some of step S109 is omitted.
  • step S109 the determination of an abnormal state that may be affected by the electrical properties described above (e.g., deterioration, soot contamination) is performed after it is determined in step S104 that the electrical properties have reached a minimum value, but is not performed if it is determined that the electrical properties have not reached a minimum value.
  • the electrical properties described above e.g., deterioration, soot contamination
  • step S110 the display control unit 160 causes the display unit 300 to display the abnormal state determination result determined by the abnormal state determination unit 150.
  • the display unit 300 displays the abnormal state determination result by the abnormal state determination unit 150 output from the display control unit 160.
  • the functions of the lubricant abnormality detection device 10 are realized by a program for causing a computer to function as the device, and by a program for causing a computer to function as each control block of the device (particularly each part included in the control unit 100).
  • the device includes a computer having at least one control device (e.g., a processor) and at least one storage device (e.g., a memory) as hardware for executing the program.
  • control device e.g., a processor
  • storage device e.g., a memory
  • the program may be stored in one or more non-transient computer-readable recording media.
  • the recording media may or may not be included in the device. In the latter case, the program may be provided to the system via any wired or wireless transmission medium.
  • each of the control blocks can be realized by a logic circuit.
  • a logic circuit for example, an integrated circuit in which a logic circuit that functions as each of the control blocks is formed is also included in the scope of the present invention.
  • each process described in each of the above embodiments may be executed by AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • the AI may run on the control device, or may run on another device (such as an edge computer or a cloud server).
  • the lubricant abnormality detection system (1) includes an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit.
  • an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant
  • a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase
  • an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit.
  • the lubricant abnormality detection system (1) according to aspect 2 further includes at least one of a temperature acquisition unit (121) that acquires temperature information indicating the temperature of the lubricant and a property acquisition unit (131) that acquires property information indicating the properties of the lubricant in accordance with aspect 1, and the abnormal state determination unit (150) may determine the abnormal state further based on the temperature information acquired by the temperature acquisition unit (121) and the property information acquired by the property acquisition unit (131).
  • the lubricant abnormality detection system (1) may further include a moving average calculation unit (140) that calculates a moving average based on a plurality of values per unit time of at least one selected from the electrical characteristic information, the temperature information, and the property information in aspect 2, and the abnormal state determination unit (150) may determine the abnormal state further based on the moving average value.
  • a moving average calculation unit (140) that calculates a moving average based on a plurality of values per unit time of at least one selected from the electrical characteristic information, the temperature information, and the property information in aspect 2, and the abnormal state determination unit (150) may determine the abnormal state further based on the moving average value.
  • the lubricant oil abnormality detection system (1) according to aspect 4 may be the lubricant oil abnormality detection system (1) according to aspect 2 or aspect 3, in which the property is at least one of viscosity and density.
  • the lubricant abnormality detection system (1) according to aspect 5 may be any one of aspects 1 to 4, in which the abnormal state is at least one selected from deterioration, fuel contamination, soot contamination, metal contamination, and water contamination.
  • the lubricant abnormality detection system (1) according to aspect 6 may further include, in aspect 2, an electrical characteristic temperature correction determination unit (112) that determines whether or not the electrical characteristic information requires temperature correction based on the temperature information acquired by the temperature acquisition unit (121) and the electrical characteristic information acquired by the electrical characteristic acquisition unit (111), and an electrical characteristic temperature correction unit (113) that performs temperature correction on the electrical characteristic information when the electrical characteristic temperature correction determination unit (112) determines that the electrical characteristic information requires temperature correction.
  • an electrical characteristic temperature correction determination unit (112) that determines whether or not the electrical characteristic information requires temperature correction based on the temperature information acquired by the temperature acquisition unit (121) and the electrical characteristic information acquired by the electrical characteristic acquisition unit (111)
  • an electrical characteristic temperature correction unit (113) that performs temperature correction on the electrical characteristic information when the electrical characteristic temperature correction determination unit (112) determines that the electrical characteristic information requires temperature correction.
  • the lubricant abnormality detection system (1) may further include, in aspect 2, a property temperature correction determination unit (132) that determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit (121) and the property information acquired by the property acquisition unit (131), and a property temperature correction unit (133) that performs temperature correction of the property information when the property temperature correction determination unit (132) determines that temperature correction is required for the property information.
  • a property temperature correction determination unit (132) that determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit (121) and the property information acquired by the property acquisition unit (131)
  • a property temperature correction unit (133) that performs temperature correction of the property information when the property temperature correction determination unit (132) determines that temperature correction is required for the property information.
  • the lubricant abnormality detection system (1) according to aspect 8 may further include an electrical characteristic sensor (20) that measures the electrical characteristics to obtain the electrical characteristic information in any one of aspects 1 to 7, and the electrical characteristic acquisition unit (111) may acquire the electrical characteristic information from the electrical characteristic sensor (20).
  • the lubricant abnormality detection system (1) according to aspect 9 may further include a display unit (300) that displays the abnormal state determination result by the abnormal state determination unit (150) in any one of aspects 1 to 8.
  • the lubricant abnormality detection device (10) includes an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit (114).
  • an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant
  • a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase
  • an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit (114).
  • the lubricant abnormality detection method is a lubricant abnormality detection method executed by one or more computers, and includes an electrical characteristic acquisition step (S101) for acquiring electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination step (S104) for determining a minimum value that is the minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination step (S109) for determining an abnormal state of the lubricant based on the electrical characteristic information acquired in the electrical characteristic acquisition step and the determination result of the minimum value in the minimum value determination step.
  • S101 electrical characteristic acquisition step
  • S104 minimum value determination step
  • S109 abnormal state determination step
  • the lubricant abnormality detection program according to aspect 12 is a lubricant abnormality detection program for causing a computer to function as the lubricant abnormality detection device (10) according to aspect 10, and is a lubricant abnormality detection program for causing a computer to function as the electrical characteristic acquisition unit (111), the minimum value determination unit (114), and the abnormal state determination unit (150).
  • the recording medium according to aspect 13 is a computer-readable recording medium on which the lubricant oil abnormality detection program according to aspect 12 is recorded.
  • FIG. 3 shows a graph showing the capacitance ratio at 30 ° C. versus the ISOT test deterioration time of gas engine oil A.
  • the deteriorated substances of the main component oil and additives other than the metallic detergent are polar substances, and it is thought that the electrical properties increase due to the deterioration of the main component oil and additives other than the metallic detergent and the increase in the amount of the deteriorated substances. Therefore, the increase after exceeding the minimum point of gas engine oil A and gas engine oil B containing metallic detergents is thought to be due to the deterioration of the main component oil and additives other than the metallic detergent. Furthermore, the increase in the capacitance of engine oil without metallic detergent from the initial value is thought to be due to the deterioration of the main component oil and additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A lubricating oil abnormality detection system (1), which is one embodiment of a lubricating oil abnormality detection system, comprises: an electrical properties acquisition unit (111) for acquiring the electrical properties of a lubricating oil; a minimum value determination unit (114) for determining a minimum value of the lubricating oil; and an abnormal state determination unit (150) for determining an abnormal state of the lubricating oil on the basis of the electrical properties and the determination result regarding the minimum value from the minimum value determination unit.

Description

潤滑油異常検知システム、潤滑油異常検知装置、潤滑油異常検知方法、潤滑油異常検知プログラム、及び記録媒体Lubricant oil abnormality detection system, lubricant oil abnormality detection device, lubricant oil abnormality detection method, lubricant oil abnormality detection program, and recording medium
 本発明は、潤滑油異常検知システム、潤滑油異常検知装置、潤滑油異常検知方法、潤滑油異常検知プログラム、及び記録媒体に関する。 The present invention relates to a lubricant abnormality detection system, a lubricant abnormality detection device, a lubricant abnormality detection method, a lubricant abnormality detection program, and a recording medium.
 特許文献1には、潤滑油を用いる機器の故障予知を行うことが記載されている。特許文献2には、潤滑油の色情報に基づいて劣化度診断をすることが記載されている。 Patent Document 1 describes predicting failures in equipment that uses lubricating oil. Patent Document 2 describes diagnosing the degree of deterioration based on color information of the lubricating oil.
日本国特開2021-167791号公報Japanese Patent Publication No. 2021-167791 日本国特開2020-012690号公報Japanese Patent Publication No. 2020-012690
 本発明の一態様は、潤滑油の異常状態を判定する新たな技術を提供することを目的とする。 One aspect of the present invention aims to provide a new technology for determining abnormal conditions in lubricating oil.
 前記の課題を解決するために、本発明の一態様に係る潤滑油異常検知システムは、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部と、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部と、前記電気特性取得部が取得した前記電気特性情報と前記極小値判定部による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部と、を備える。 In order to solve the above problem, a lubricant abnormality detection system according to one embodiment of the present invention includes an electrical characteristic acquisition unit that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit that determines the minimum value at which the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the determination of the minimum value by the minimum value determination unit.
 前記の課題を解決するために、本発明の一態様に係る潤滑油異常検知装置は、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部と、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部と、前記電気特性取得部が取得した前記電気特性情報と前記極小値判定部による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部と、を備える。 In order to solve the above problems, a lubricant abnormality detection device according to one embodiment of the present invention includes an electrical characteristic acquisition unit that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit that determines the minimum value at which the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the determination of the minimum value by the minimum value determination unit.
 前記の課題を解決するために、本発明の一態様に係る潤滑油異常検知方法は、1又は複数のコンピュータが実行する潤滑油異常検知方法であって、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得ステップと、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定ステップと、前記電気特性取得ステップで取得した前記電気特性情報と前記極小値判定ステップにおける前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定ステップと、を含む。 In order to solve the above problem, a lubricant abnormality detection method according to one aspect of the present invention is a lubricant abnormality detection method executed by one or more computers, and includes an electrical characteristic acquisition step of acquiring electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination step of determining a minimum value that is the minimum value when the electrical characteristics of the lubricant decrease with use and then begin to increase, and an abnormal condition determination step of determining an abnormal condition of the lubricant based on the electrical characteristic information acquired in the electrical characteristic acquisition step and the determination result of the minimum value in the minimum value determination step.
 本発明の一態様に係る潤滑油異常検知装置は、コンピュータによって実現してもよく、この場合には、コンピュータを潤滑油異常検知装置が備える各部(ソフトウェア要素)として動作させることにより前記潤滑油異常検知装置をコンピュータにて実現させる潤滑油異常検知プログラム、及びそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The lubricant abnormality detection device according to one aspect of the present invention may be realized by a computer. In this case, the lubricant abnormality detection program that causes the computer to operate as each part (software element) of the lubricant abnormality detection device to realize the lubricant abnormality detection device on a computer, and the computer-readable recording medium on which the program is recorded, also fall within the scope of the present invention.
 本発明の一態様によれば、潤滑油の異常状態を判定する新たな技術を提供することができる。 According to one aspect of the present invention, a new technology can be provided for determining abnormal conditions in lubricating oil.
本発明の一実施形態に係る潤滑油異常検知システムの構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a lubricant oil abnormality detection system according to an embodiment of the present invention. 本発明の一実施形態に係る潤滑油異常検知方法の流れを示すフロー図である。FIG. 2 is a flow chart showing the flow of a lubricant abnormality detection method according to an embodiment of the present invention. 0.29wt%のカルシウム分を含む、カルシウム清浄剤を含むガスエンジン油AのISOT試験劣化時間に対する30℃における静電容量比を示すグラフである。1 is a graph showing the capacitance ratio at 30° C. versus ISOT test deterioration time for gas engine oil A containing a calcium detergent and having a calcium content of 0.29 wt %. 0.10wt%のカルシウム分を含む、カルシウム清浄剤を含むガスエンジン油BのISOT試験劣化時間に対する30℃における静電容量比を示すグラフである。4 is a graph showing the capacitance ratio at 30° C. versus ISOT test deterioration time for gas engine oil B containing a calcium detergent and having a calcium content of 0.10 wt %. 金属系清浄剤無配合エンジン油のISOT試験劣化時間に対する30℃における静電容量比を示すグラフである。1 is a graph showing the capacitance ratio at 30° C. versus the deterioration time in an ISOT test for an engine oil containing no metal-based detergent.
 本発明者らは、後述する参考例で示すように、潤滑油の使用時間に対する電気特性を詳細に分析したところ、金属系清浄剤を含む潤滑油の種類によっては、使用に伴い電気特性が減少しその後上昇に転じる際の最小値である極小値を有することを新たに発見した。電気特性は、極性物質の種類及び量に依存し、極性物質の量が減少すると電気特性が小さくなり、極性物質の量が増加すると電気特性が大きくなる。金属系清浄剤は極性物質であるため、金属系清浄剤が消耗されて量が減少することにより、電気特性が小さくなると考えられる。一方、主成分の油及び金属系清浄剤以外の添加剤の劣化物質の多くは、極性物質であり、主成分の油及び金属系清浄剤以外の添加剤が劣化して当該劣化物質の量が増加することにより、電気特性が大きくなると考えられる。本発明者らは、これらの点に着眼して本発明を完成するに至った。本発明の一態様に係る潤滑油異常検知システムは、当該極小値を考慮して、潤滑油の異常状態を判定する新たな技術である。 As shown in the reference examples described below, the inventors conducted a detailed analysis of the electrical properties of lubricants over time of use, and discovered that, depending on the type of lubricant containing a metal-based detergent, the electrical properties decrease with use and then have a minimum value when they begin to increase. The electrical properties depend on the type and amount of polar substances, and as the amount of polar substances decreases, the electrical properties decrease, and as the amount of polar substances increases, the electrical properties increase. Since metal-based detergents are polar substances, it is believed that the electrical properties decrease as the metal-based detergent is consumed and its amount decreases. On the other hand, many of the deteriorated substances of the main component oil and additives other than the metal-based detergent are polar substances, and it is believed that the electrical properties increase as the main component oil and additives other than the metal-based detergent deteriorate and the amount of the deteriorated substances increases. The inventors focused on these points and completed the present invention. The lubricant abnormality detection system according to one aspect of the present invention is a new technology that determines the abnormal state of a lubricant by taking into account the minimum value.
 [実施形態]
 以下、本実施形態に係る潤滑油異常検知システム1の構成について、詳細に説明する。
[Embodiment]
The configuration of the lubricant oil abnormality detection system 1 according to this embodiment will be described in detail below.
 <潤滑油異常検知システム1の構成>
 図1は、本実施形態に係る潤滑油異常検知システム1の構成の一例を模式的に示すブロック図である。
<Configuration of lubricant abnormality detection system 1>
FIG. 1 is a block diagram illustrating an example of the configuration of a lubricant abnormality detection system 1 according to this embodiment.
 本実施形態に係る潤滑油異常検知システム1は、潤滑油異常検知装置10、電気特性センサ20、温度センサ30、及び性状センサ40を備えている。潤滑油異常検知装置10は、各センサが測定した値を取得し、潤滑油の異常状態を判定し、異常状態の判定結果を表示する。潤滑油異常検知装置10の態様としては、例えば、ユーザが携帯可能なコンピュータ端末、据え置き型のコンピュータ端末等が挙げられる。携帯可能なコンピュータ端末の場合、ユーザは、手元の潤滑油異常検知装置10に表示された異常状態の判定結果をいつでも確認することが可能である。また、電気特性センサ20、温度センサ30、及び性状センサ40は、例えば、潤滑油を使用する機械等における、当該潤滑油が格納されたタンク等の容器内に常設された態様でもよく、必要に応じて潤滑油に接触させる態様でもよい。容器内に常設する態様の場合、容器内の潤滑油の電気特性、温度、及び性状を、常に、継続的に測定することが可能である。 The lubricant abnormality detection system 1 according to this embodiment includes a lubricant abnormality detection device 10, an electrical property sensor 20, a temperature sensor 30, and a property sensor 40. The lubricant abnormality detection device 10 acquires values measured by each sensor, judges the abnormal state of the lubricant, and displays the judgment result of the abnormal state. Examples of the lubricant abnormality detection device 10 include a computer terminal that can be carried by a user, a stationary computer terminal, and the like. In the case of a portable computer terminal, the user can check the judgment result of the abnormal state displayed on the lubricant abnormality detection device 10 at hand at any time. In addition, the electrical property sensor 20, the temperature sensor 30, and the property sensor 40 may be permanently installed in a container such as a tank in which the lubricant is stored in a machine that uses the lubricant, or may be in contact with the lubricant as necessary. In the case of a permanent installation in a container, the electrical properties, temperature, and properties of the lubricant in the container can be constantly and continuously measured.
 (潤滑油異常検知装置10)
 潤滑油異常検知装置10は、制御ユニット100、記憶部200、及び表示部300を備えている。制御ユニット100、記憶部200、表示部300、及び後述する通信インターフェース(図示せず)はバスを介して接続される。本実施形態において、制御ユニット100及び記憶部200は潤滑油異常検知装置10に含まれているが、この構成に限らず、潤滑油異常検知装置10とは別体の、外部のサーバに含まれていてもよい。この場合、潤滑油異常検知装置10は、当該外部のサーバで判定された結果を表示する。なお、通信インターフェースは、ネットワークに接続するインターフェースである。通信インターフェースは、例えば、イーサネット(登録商標)等の有線接続インターフェース又はWiFi(登録商標)等の無線接続インターフェースによって構成されてもよく、有線接続インターフェースであってもよい。例えば、通信インターフェースは、電気特性取得部111が電気特性センサ20から電気特性情報を取得するために、電気特性取得部111と電気特性センサ20とを接続する。また、通信インターフェースは、温度取得部121が温度センサ30から温度情報を取得するために、温度取得部121と温度センサ30とを接続する。また、通信インターフェースは、性状取得部131が性状センサ40から性状情報を取得するために、性状取得部131と性状センサ40とを接続する。さらに、通信インターフェースは、異常状態判定部150が異常状態の判定結果を、潤滑油異常検知装置10とは別体の、外部のサーバに出力するために、異常状態判定部150と外部のサーバとを接続してもよい。
(Lubricant Abnormality Detection Device 10)
The lubricant abnormality detection device 10 includes a control unit 100, a storage unit 200, and a display unit 300. The control unit 100, the storage unit 200, the display unit 300, and a communication interface (not shown) described later are connected via a bus. In this embodiment, the control unit 100 and the storage unit 200 are included in the lubricant abnormality detection device 10, but are not limited to this configuration and may be included in an external server separate from the lubricant abnormality detection device 10. In this case, the lubricant abnormality detection device 10 displays the results determined by the external server. The communication interface is an interface that connects to a network. The communication interface may be, for example, a wired connection interface such as Ethernet (registered trademark) or a wireless connection interface such as WiFi (registered trademark), or may be a wired connection interface. For example, the communication interface connects the electrical characteristic acquisition unit 111 and the electrical characteristic sensor 20 so that the electrical characteristic acquisition unit 111 acquires electrical characteristic information from the electrical characteristic sensor 20. The communication interface also connects the temperature acquisition unit 121 and the temperature sensor 30 so that the temperature acquisition unit 121 acquires temperature information from the temperature sensor 30. The communication interface also connects the property acquisition unit 131 and the property sensor 40 so that the property acquisition unit 131 acquires property information from the property sensor 40. Furthermore, the communication interface may connect the abnormal state determination unit 150 and an external server so that the abnormal state determination unit 150 outputs the abnormal state determination result to an external server separate from the lubricant abnormality detection device 10.
 (制御ユニット100)
 制御ユニット100は、記憶部200に記憶されたプログラムを実行することにより、潤滑油異常検知装置10の各部を制御する。プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等の集積回路によって構成される。
(Control unit 100)
The control unit 100 controls each part of the lubricant abnormality detection device 10 by executing a program stored in the storage unit 200. The processor is configured by an integrated circuit such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), for example.
 次に、制御ユニット100の機能的構成について説明する。制御ユニット100は、電気特性ユニット110、温度ユニット120、性状ユニット130、移動平均値算出部140、異常状態判定部150、及び表示制御部160を備えている。 Next, the functional configuration of the control unit 100 will be described. The control unit 100 includes an electrical property unit 110, a temperature unit 120, a property unit 130, a moving average value calculation unit 140, an abnormal state determination unit 150, and a display control unit 160.
 (電気特性ユニット110)
 電気特性ユニット110は、電気特性に関する処理を行うユニットである。電気特性ユニット110は、電気特性取得部111、電気特性温度補正判定部112、電気特性温度補正部113、極小値判定部114、及び電気特性比較部115を備えている。
(Electrical Characteristic Unit 110)
The electrical characteristic unit 110 is a unit that performs processing related to electrical characteristics and includes an electrical characteristic acquisition section 111, an electrical characteristic temperature correction determination section 112, an electrical characteristic temperature correction section 113, a minimum value determination section 114, and an electrical characteristic comparison section 115.
 電気特性取得部111は、電気特性センサ20から潤滑油の電気特性を示す電気特性情報を取得する。電気特性としては、例えば、静電容量、電気伝導度、及び誘電率等が挙げられる。 The electrical characteristic acquisition unit 111 acquires electrical characteristic information indicating the electrical characteristics of the lubricant from the electrical characteristic sensor 20. Examples of electrical characteristics include capacitance, electrical conductivity, and dielectric constant.
 電気特性取得部111は、通信インターフェースを介して電気特性センサ20から出力された電気特性情報を取得する。電気特性取得部111は、取得した電気特性情報を電気特性温度補正判定部112及び記憶部200に出力する。電気特性情報は、電気特性センサ20が潤滑油の電気特性を測定した結果を示す情報である。電気特性センサ20については後述する。 The electrical characteristic acquisition unit 111 acquires the electrical characteristic information output from the electrical characteristic sensor 20 via the communication interface. The electrical characteristic acquisition unit 111 outputs the acquired electrical characteristic information to the electrical characteristic temperature correction determination unit 112 and the memory unit 200. The electrical characteristic information is information indicating the results of the measurement of the electrical characteristics of the lubricating oil by the electrical characteristic sensor 20. The electrical characteristic sensor 20 will be described later.
 電気特性温度補正判定部112は、温度取得部121が取得した温度情報と、電気特性取得部111が取得した電気特性情報とに基づいて、電気特性情報に温度補正が必要であるか否かを判定する。 The electrical characteristic temperature correction determination unit 112 determines whether or not temperature correction is required for the electrical characteristic information based on the temperature information acquired by the temperature acquisition unit 121 and the electrical characteristic information acquired by the electrical characteristic acquisition unit 111.
 例えば、電気特性温度補正判定部112は、温度取得部121が取得した温度情報と、予め設定された電気特性情報の温度補正が不要な温度の範囲とを比較する。電気特性温度補正判定部112は、温度取得部121が取得した温度情報が、当該範囲に含まれる場合、電気特性情報に温度補正は不要であると判定する。また、電気特性温度補正判定部112は、温度取得部121が取得した温度情報が、当該範囲に含まれない場合、電気特性情報に温度補正が必要であると判定する。 For example, the electrical characteristic temperature correction determination unit 112 compares the temperature information acquired by the temperature acquisition unit 121 with a preset temperature range in which temperature correction of the electrical characteristic information is not required. If the temperature information acquired by the temperature acquisition unit 121 is included in this range, the electrical characteristic temperature correction determination unit 112 determines that temperature correction is not required for the electrical characteristic information. Also, if the temperature information acquired by the temperature acquisition unit 121 is not included in this range, the electrical characteristic temperature correction determination unit 112 determines that temperature correction is required for the electrical characteristic information.
 電気特性温度補正判定部112は、電気特性情報に温度補正は不要であると判定した場合、電気特性情報を極小値判定部114及び記憶部200に出力する。電気特性温度補正判定部112は、電気特性情報に温度補正が必要であると判定した場合、電気特性情報の温度補正の要否の判定結果を電気特性温度補正部113及び記憶部200に出力する。 If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information does not require temperature correction, it outputs the electrical characteristic information to the minimum value determination unit 114 and the storage unit 200. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information requires temperature correction, it outputs the determination result of whether or not the electrical characteristic information requires temperature correction to the electrical characteristic temperature correction unit 113 and the storage unit 200.
 電気特性温度補正部113は、電気特性温度補正判定部112が電気特性情報に温度補正が必要であると判定した場合、電気特性情報の温度補正を行う。例えば、電気特性温度補正部113は、予め判定対象の潤滑油の種類の温度情報及び電気特性情報をデータベースとして蓄積して、当該データベースに基づいて補正式(関係式)を算出する。電気特性温度補正部113は、算出した補正式を参照して、電気特性情報の温度補正を行う。電気特性は温度による影響を受けるため、電気特性温度補正部113が温度補正を行うことにより、異常状態判定部150がより精度高く潤滑油の異常状態を判定できる。 If the electrical characteristic temperature correction determination unit 112 determines that temperature correction is required for the electrical characteristic information, the electrical characteristic temperature correction unit 113 performs temperature correction of the electrical characteristic information. For example, the electrical characteristic temperature correction unit 113 accumulates temperature information and electrical characteristic information of the type of lubricant to be determined in advance as a database, and calculates a correction formula (relationship formula) based on the database. The electrical characteristic temperature correction unit 113 performs temperature correction of the electrical characteristic information by referring to the calculated correction formula. Since electrical characteristics are affected by temperature, the abnormality determination unit 150 can more accurately determine an abnormal state of the lubricant by having the electrical characteristic temperature correction unit 113 perform temperature correction.
 電気特性温度補正部113は、温度補正後の電気特性情報を極小値判定部114及び記憶部200に出力する。 The electrical characteristic temperature correction unit 113 outputs the electrical characteristic information after temperature correction to the minimum value determination unit 114 and the memory unit 200.
 なお、本実施形態では、上述のように、電気特性ユニット110が電気特性温度補正判定部112及び電気特性温度補正部113を備え、電気特性情報の温度補正行う態様について説明しているが、本発明はこのような形態に限定されない。電気特性ユニット110は、電気特性温度補正判定部112及び電気特性温度補正部113を備えていなくてもよい。つまり、本発明においては、電気特性情報の温度補正をしてもよく、しなくてもよく、また、温度補正の要否の判定をしてもよく、しなくてもよい。電気特性ユニット110が電気特性情報の温度補正を行わない場合、電気特性センサ20が備える電極付近の潤滑油の温度をコントロールする温調器(図示せず)を設けることが好ましい。温調器は、電気特性センサ20の電極が格納される空間を有する筐体であってもよい。当該筐体の電気特性センサ20の電極が格納される空間には、少なくとも、温度センサ30の検知部と温度を変更する温度変更装置(例えばヒーターなど)と、が格納される。当該筐体の電極、温度センサ30の検知部、及び温度変更装置が格納された空間に潤滑油を入れることにより、当該空間に入った潤滑油の温度を温度センサ30の値に基づいて検知する。次いで、当該空間に入った潤滑油の温度が電気特性情報を取得するのに適切な値かどうかを確認する。必要に応じて、温度変更装置により、当該筐体の温度を変更する。当該温度変更装置による温度の変更は、制御ユニット100によって行われても良いし、温度センサ30の値を基に、当該潤滑油異常検知システムを用いるユーザが温度を制御するためのコントローラ等を介して温度を変更しても良い。 In this embodiment, as described above, the electrical characteristic unit 110 is provided with the electrical characteristic temperature correction determination unit 112 and the electrical characteristic temperature correction unit 113, and the electrical characteristic information is corrected by temperature. However, the present invention is not limited to this form. The electrical characteristic unit 110 may not be provided with the electrical characteristic temperature correction determination unit 112 and the electrical characteristic temperature correction unit 113. In other words, in the present invention, the electrical characteristic information may or may not be corrected by temperature, and the need for temperature correction may or may not be determined. If the electrical characteristic unit 110 does not perform temperature correction of the electrical characteristic information, it is preferable to provide a temperature regulator (not shown) that controls the temperature of the lubricating oil near the electrodes of the electrical characteristic sensor 20. The temperature regulator may be a housing having a space in which the electrodes of the electrical characteristic sensor 20 are stored. At least the detection unit of the temperature sensor 30 and a temperature change device (e.g., a heater) that changes the temperature are stored in the space in the housing in which the electrodes of the electrical characteristic sensor 20 are stored. By pouring lubricant into the space that houses the electrodes of the housing, the detection unit of the temperature sensor 30, and the temperature change device, the temperature of the lubricant that has entered the space is detected based on the value of the temperature sensor 30. Next, it is confirmed whether the temperature of the lubricant that has entered the space is an appropriate value for acquiring electrical characteristic information. If necessary, the temperature of the housing is changed by the temperature change device. The temperature change by the temperature change device may be performed by the control unit 100, or the user of the lubricant abnormality detection system may change the temperature based on the value of the temperature sensor 30 via a controller or the like for controlling the temperature.
 極小値判定部114は、電気特性取得部111が取得した電気特性情報又は電気特性温度補正部113が温度補正した温度補正後の電気特性情報に基づいて、潤滑油の極小値を判定する。極小値とは、潤滑油の使用に伴い電気特性が減少しその後上昇に転じる際の最小値である。具体的には、極小値判定部114は、(1)判定対象の潤滑油が極小値を有する潤滑油であるか否かを判定し、(2)(1)において判定対象の潤滑油が極小値を有する潤滑油であると判定した場合、現在値と極小値との関係を判定する。 The minimum value determination unit 114 determines the minimum value of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit 111 or the temperature-corrected electrical characteristic information corrected by the electrical characteristic temperature correction unit 113. The minimum value is the minimum value at which the electrical characteristics decrease as the lubricant is used and then begin to increase. Specifically, the minimum value determination unit 114 (1) determines whether the lubricant being determined is a lubricant having a minimum value, and (2) if it is determined in (1) that the lubricant being determined is a lubricant having a minimum value, it determines the relationship between the current value and the minimum value.
 まず、(1)において、極小値判定部114が判定対象の潤滑油が極小値を有する潤滑油であるか否かを判定する具体的な方法の例を以下に説明する。 First, in (1), an example of a specific method in which the minimum value determination unit 114 determines whether the lubricant being determined has a minimum value is described below.
 一例として、極小値判定部114は、記憶部200に格納されている電気特性情報の経時変化を参照して、判定対象の潤滑油が極小値を有するか否かを判定する。極小値判定部114は、初期値から下降傾向にある場合、極小値を有する潤滑油であると判定する。また、極小値判定部114は、初期値から上昇傾向にある場合、極小値を有さない潤滑油であると判定する。 As an example, the minimum value determination unit 114 refers to the change over time in the electrical characteristic information stored in the memory unit 200 to determine whether the lubricant being determined has a minimum value. If there is a downward trend from the initial value, the minimum value determination unit 114 determines that the lubricant has a minimum value. Also, if there is an upward trend from the initial value, the minimum value determination unit 114 determines that the lubricant does not have a minimum value.
 他の例として、極小値判定部114は、記憶部200に予め格納されたデータベースを参照して、判定対象の潤滑油が極小値を有する潤滑油であるか否かを判定する。例えば、データベースには、潤滑油の種類毎にそれぞれ極小値を有するか否かの情報(以下、極小値情報とも称する)が含まれている。ユーザは、潤滑油異常検知装置10の入力部(図示せず)を介して判定対象の潤滑油の種類を入力する。極小値判定部114は、入力された潤滑油の種類の極小値情報がデータベースに含まれているか否かを判定する。極小値判定部114は、入力された潤滑油の種類の極小値情報がデータベースに含まれていると判定した場合、当該極小値情報に基づいて、判定対象の潤滑油が極小値を有する潤滑油であるか否かを判定する。極小値判定部114は、入力された潤滑油の種類の極小値情報がデータベースに含まれていないと判定した場合には、例えば前述した電気特性情報の経時変化を参照して再判定すればよい。 As another example, the minimum value determination unit 114 refers to a database stored in advance in the storage unit 200 to determine whether the lubricant to be determined is a lubricant having a minimum value. For example, the database contains information on whether each type of lubricant has a minimum value (hereinafter also referred to as minimum value information). The user inputs the type of lubricant to be determined via an input unit (not shown) of the lubricant abnormality detection device 10. The minimum value determination unit 114 determines whether the minimum value information of the input lubricant type is included in the database. If the minimum value determination unit 114 determines that the minimum value information of the input lubricant type is included in the database, it determines whether the lubricant to be determined is a lubricant having a minimum value based on the minimum value information. If the minimum value determination unit 114 determines that the minimum value information of the input lubricant type is not included in the database, it may re-determine the lubricant by, for example, referring to the change over time in the electrical characteristic information described above.
 次に、極小値判定部114は、(1)において判定対象の潤滑油が極小値を有する潤滑油であると判定した場合、(2)において、現在値と極小値との関係を判定する。なお、極小値判定部114は、常に、現在値と極小値との関係を判定することが好ましい。例えば、一度、過去値が極小値であると判定した後、又は、既に現在は極小値となった後であると判定した後であっても、極小値の判定を継続して行うことが好ましい。例えば、電気特性が減少しその後上昇に転じたことが有っても、再度、電気特性が減少しその後上昇に転じることがある。この場合、それぞれの減少から上昇に転じる際の最小値を、極小値判定部114は、いずれも極小値であると判定してもよい。例えば、金属系清浄剤を含む潤滑油に燃料が混入するという異常状態が発生した場合、金属系清浄剤の影響により減少していた電気特性が当該潤滑油の性質上本来有している極小値に到達していないにも関わらず、燃料混入に起因して電気特性が上昇に転じることがある。また、同様に、金属(摩耗粉)混入及び水分混入に起因しても、電気特性が上昇に転じ得る。これらの場合、極小値判定部114は、最初に、減少から上昇に転じたときの最小値も極小値と判定し、金属系清浄剤であることに起因して、電気特性が減少から上昇に転じたときの最小値も極小値と判定してもよい。このように、極小値判定部114が極小値の判定を継続して行うことは、複数の極小値が生じる場合であっても金属系清浄剤に起因する極小値を見逃すことを防ぐことができる観点から好ましい。 Next, when the minimum value determination unit 114 determines in (1) that the lubricant to be determined has a minimum value, it determines the relationship between the current value and the minimum value in (2). It is preferable that the minimum value determination unit 114 always determines the relationship between the current value and the minimum value. For example, it is preferable to continue determining the minimum value even after once determining that the past value is a minimum value, or even after determining that the current value has already become a minimum value. For example, even if the electrical characteristic has decreased and then started to increase, it may decrease again and then start to increase. In this case, the minimum value determination unit 114 may determine that the minimum values at each time when the characteristic changes from a decrease to an increase are all minimum values. For example, when an abnormal state occurs in which fuel is mixed into a lubricant containing a metal-based cleaning agent, the electrical characteristic may start to increase due to the mixing of fuel, even though the electrical characteristic that has decreased due to the influence of the metal-based cleaning agent has not reached the minimum value that the lubricant inherently has due to its properties. Similarly, the electrical characteristics may also increase due to the inclusion of metal (wear debris) and moisture. In these cases, the minimum value determination unit 114 may first determine that the minimum value when the electrical characteristics change from decreasing to increasing is also a minimum value, and may also determine that the minimum value when the electrical characteristics change from decreasing to increasing due to the presence of a metal-based cleaning agent is also a minimum value. In this way, it is preferable for the minimum value determination unit 114 to continuously determine the minimum values, from the viewpoint of preventing the minimum value caused by the metal-based cleaning agent from being overlooked, even when multiple minimum values occur.
 (2)において、極小値判定部114が、過去値が極小値であるか否かを判定する具体的な方法の例を以下に説明する。つまり、電気特性が極小値に到達したか否かは、現在値と過去値との比較等によって判定できる。そのため、極小値判定部114は、現在値を測定した時より前の過去値(例えば直前の測定における測定値)が、極小値であったか否かを判定する。 In (2), an example of a specific method in which the minimum value determination unit 114 determines whether a past value is a minimum value is described below. In other words, whether the electrical characteristic has reached a minimum value can be determined by, for example, comparing the current value with the past value. Therefore, the minimum value determination unit 114 determines whether a past value prior to measuring the current value (for example, the measurement value in the immediately preceding measurement) was a minimum value.
 一例として、まず、極小値判定部114は、電気特性の現在値と過去値との差分を算出する。ここで「現在値」とは、異常状態を判定する対象として今回測定して得られた測定値である。「過去値」とは、現在の測定の一つ前に測定して得られた測定値である。次いで、極小値判定部114は、今回の差分と1つ前の差分とを比較して、符号の逆転があるか否か(正であるか負であるか)によって過去値が極小値であるか否かであるかを判定する。なお、「今回の差分」とは現在値と過去値との差分であり、「1つ前の差分」とは現在の測定の一つ前に測定して得られた測定値と現在の測定の二つ前に測定して得られた測定値との差分である。極小値判定部114は、今回の差分と1つ前の差分との符号の逆転があった場合、過去値が極小値であると判定する。また、極小値判定部114は、今回の差分と1つ前の差分との符号の逆転がなかった場合、過去値は極小値でないと判定する。具体的に、測定値が(1)100→(2)90→(3)95と推移した場合を一例として説明する。この場合、(1)と(2)との差分は-10(負)であり、(2)と(3)との差分は5(正)である。極小値判定部114は、(1)と(2)との差分と、(2)と(3)との差分との間で符号の逆転があったため、(2)が極小値であると判定する。 As an example, the minimum value determination unit 114 first calculates the difference between the current value and the past value of the electrical characteristic. Here, the "current value" is the measurement value obtained by the current measurement as the target for determining an abnormal state. The "past value" is the measurement value obtained by the measurement immediately before the current measurement. Next, the minimum value determination unit 114 compares the current difference with the previous difference, and determines whether the past value is a minimum value or not depending on whether there is a sign reversal (whether it is positive or negative). Note that the "current difference" is the difference between the current value and the past value, and the "previous difference" is the difference between the measurement value obtained by the measurement immediately before the current measurement and the measurement value obtained by the measurement two measurements before the current measurement. If there is a sign reversal between the current difference and the previous difference, the minimum value determination unit 114 determines that the past value is a minimum value. Furthermore, if there is no sign reversal between the current difference and the previous difference, the minimum value determination unit 114 determines that the past value is not a minimum value. Specifically, a case will be described as an example in which the measured value changes from (1) 100 to (2) 90 to (3) 95. In this case, the difference between (1) and (2) is -10 (negative), and the difference between (2) and (3) is 5 (positive). The minimum value determination unit 114 determines that (2) is the minimum value because there is a reversal of sign between the difference between (1) and (2) and the difference between (2) and (3).
 また、極小値判定部114は、今回の差分と1つ前の差分とを比較するのではなく、今回の差分と予め設定された差分の閾値とを比較してもよい。一例として、極小値判定部114は、現在値と過去値とを比較し、算出した今回の差分が予め設定された差分の閾値以上であるか否かを判定する。極小値判定部114は、算出した今回の差分が予め設定された差分が閾値以上である場合、過去値が極小値であると判定する。また、極小値判定部114は、算出した今回の差分が予め設定された差分の閾値未満である場合、過去値は極小値でないと判定する。具体的に、予め設定された差分の閾値が0であり、測定値が(1)100→(2)90→(3)95と推移した場合を一例として説明する。この場合、(1)と(2)との差分は-10であり、(2)と(3)との差分は5である。極小値判定部114は、(2)と(3)との差分が、予め設定された差分の閾値以上であるため、(2)が極小値であると判定する。上述した予め設定された差分の閾値の具体的な数値は単なる一例に過ぎず、予め設定された差分の閾値は適宜設定することができる。なお、本実施形態ではあらかじめ設定された差分の閾値を0としているが、誤差を考慮して閾値を設定しても良い。 In addition, the minimum value determination unit 114 may compare the current difference with a preset difference threshold value, rather than comparing the current difference with the previous difference. As an example, the minimum value determination unit 114 compares the current value with the past value, and determines whether the calculated current difference is equal to or greater than the preset difference threshold value. If the calculated current difference is equal to or greater than the preset difference threshold value, the minimum value determination unit 114 determines that the past value is a minimum value. If the calculated current difference is less than the preset difference threshold value, the minimum value determination unit 114 determines that the past value is not a minimum value. Specifically, a case will be described in which the preset difference threshold value is 0, and the measured value changes from (1) 100 to (2) 90 to (3) 95. In this case, the difference between (1) and (2) is -10, and the difference between (2) and (3) is 5. The minimum value determination unit 114 determines that (2) is the minimum value because the difference between (2) and (3) is equal to or greater than the preset difference threshold. The specific numerical value of the preset difference threshold described above is merely an example, and the preset difference threshold can be set as appropriate. Note that in this embodiment, the preset difference threshold is set to 0, but the threshold may be set taking error into consideration.
 なお、ここでは過去値が極小値であるか否かを判定する例について説明しているが、極小値判定部114は、今回の差分がゼロであった場合は、過去値と現在値との間に極小値があると判定してもよい。具体的に、測定値が(1)100→(2)90→(3)90→(4)100と推移した場合を一例として説明する。この場合、(1)と(2)との差分は-10であり、(2)と(3)との差分は0であり、(3)と(4)との差分は10である。極小値判定部114は、(2)と(3)との差分が0であるため、(2)と(3)との間に極小値があると判定する。このように今回の差分がゼロであった場合であっても、上述したように判定することにより、極小値を見逃してしまうことを防ぐことができる。 Note that although an example of determining whether a past value is a minimum value or not is described here, the minimum value determination unit 114 may determine that there is a minimum value between the past value and the current value if the current difference is zero. Specifically, a case where the measured value changes from (1) 100 → (2) 90 → (3) 90 → (4) 100 will be described as an example. In this case, the difference between (1) and (2) is -10, the difference between (2) and (3) is 0, and the difference between (3) and (4) is 10. Since the difference between (2) and (3) is 0, the minimum value determination unit 114 determines that there is a minimum value between (2) and (3). In this way, even if the current difference is zero, by making the determination as described above, it is possible to prevent the minimum value from being overlooked.
 さらに他の例として、極小値判定部114は、成分、電気特性情報、温度情報、及び性状情報等と、電気特性の極小値の有無、値等を教師データとする機械学習によって得られた学習済みモデルを用いて判定してもよい。極小値の判定結果を得るための学習処理の具体的な構成は特に限定されないが、例えば、サポートベクターマシン、線形回帰、ランダムフォレスト、ニューラルネットワーク、勾配ブースティング木、遺伝的アルゴリズム、勾配降下法、及びベイズ最適化等の機械学習的手法を用いることができる。 As yet another example, the minimum value determination unit 114 may make a determination using a trained model obtained by machine learning using the components, electrical property information, temperature information, property information, etc., and the presence or absence, value, etc. of minimum values of electrical properties as training data. The specific configuration of the learning process for obtaining the minimum value determination result is not particularly limited, but machine learning methods such as support vector machines, linear regression, random forests, neural networks, gradient boosting trees, genetic algorithms, gradient descent, and Bayesian optimization can be used.
 さらに他の例として、電気特性の現在値と潤滑油の種類毎に予め極小値として設定された極小値の閾値とを比較し、電気特性の極小値を判定してもよい。極小値判定部114は、電気特性の現在値が当該閾値以下である場合、現在値は極小値であると判定する。極小値判定部114は、電気特性の現在値が当該閾値よりも大きい場合、現在値は極小値でないと判定する。 As yet another example, the current value of the electrical characteristic may be compared with a minimum value threshold value that is set in advance as a minimum value for each type of lubricant to determine the minimum value of the electrical characteristic. If the current value of the electrical characteristic is equal to or less than the threshold value, the minimum value determination unit 114 determines that the current value is a minimum value. If the current value of the electrical characteristic is greater than the threshold value, the minimum value determination unit 114 determines that the current value is not a minimum value.
 また、極小値判定部114は、過去値又は現在値が極小値でないと判定した場合、つまり、極小値を有する潤滑油であるが、過去値又は現在値が極小値ではない場合、さらに過去値又は現在値と極小値との関係を判定してもよい。例えば、過去値より前の測定値から過去値までの変化率又は過去値から現在値までの変化率等を用いて、いつ極小値に達するかの判定を行ってもよいし、極小値の推定値を算出してもよい。また、例えば、予め記憶部200に当該潤滑油の種類に基づく極小値(又はその推定値)が記憶されている場合は、当該極小値との差を判定してもよい。また、過去値より前の測定値から過去値までの変化率又は過去値から現在値までの変化率等に基づいて、既に極小値となる時点を経過したか否かを判定してもよい。 In addition, when the minimum value determination unit 114 determines that the past value or the current value is not a minimum value, that is, when the lubricant has a minimum value but the past value or the current value is not a minimum value, the minimum value determination unit 114 may further determine the relationship between the past value or the current value and the minimum value. For example, the rate of change from a measurement value before the past value to the past value, or the rate of change from the past value to the current value, may be used to determine when the minimum value will be reached, or an estimated value of the minimum value may be calculated. In addition, for example, if a minimum value (or an estimated value thereof) based on the type of lubricant is stored in the storage unit 200 in advance, the difference from the minimum value may be determined. In addition, the time when the minimum value has already been reached may be determined based on the rate of change from a measurement value before the past value to the past value, or the rate of change from the past value to the current value, etc.
 極小値判定部114は、極小値の判定結果を、電気特性比較部115、移動平均値算出部140、異常状態判定部150、及び記憶部200に出力する。 The minimum value determination unit 114 outputs the minimum value determination result to the electrical characteristic comparison unit 115, the moving average value calculation unit 140, the abnormal state determination unit 150, and the memory unit 200.
 電気特性比較部115は、電気特性の現在値と過去値とを比較する。電気特性の現在値は、電気特性取得部111が取得した値であってもよく、電気特性温度補正部113によって補正された値であってもよく、移動平均値算出部140が算出した、電気特性情報の移動平均値であってもよい。また、電気特性比較部115は、極小値判定部114の判定結果に応じて電気特性情報を補正して、現在値としてもよい。電気特性比較部115は、記憶部200から電気特性の過去値を取得する。 The electrical characteristic comparison unit 115 compares the current value of the electrical characteristic with a past value. The current value of the electrical characteristic may be a value acquired by the electrical characteristic acquisition unit 111, a value corrected by the electrical characteristic temperature correction unit 113, or a moving average value of the electrical characteristic information calculated by the moving average value calculation unit 140. The electrical characteristic comparison unit 115 may also correct the electrical characteristic information according to the judgment result of the minimum value judgment unit 114 to set it as the current value. The electrical characteristic comparison unit 115 acquires past values of the electrical characteristic from the memory unit 200.
 また、例えば、電気特性比較部115は、電気特性の現在値から過去値を減算して、算出した値が正であるか負であるかを判定する。また、例えば、電気特性比較部115は、前述した電気特性の現在値と過去値との差分を算出して、算出した差分と予め設定された差分の閾値とを比較する。また、例えば、電気特性比較部115は、算出した差分が予め設定された差分の閾値以上であるか否かを判定する。 Furthermore, for example, the electrical characteristic comparison unit 115 subtracts a past value from a current value of the electrical characteristic, and determines whether the calculated value is positive or negative. Further, for example, the electrical characteristic comparison unit 115 calculates the difference between the current value and the past value of the above-mentioned electrical characteristic, and compares the calculated difference with a preset difference threshold. Further, for example, the electrical characteristic comparison unit 115 determines whether the calculated difference is equal to or greater than a preset difference threshold.
 電気特性比較部115は、電気特性情報の比較結果を、異常状態判定部150及び記憶部200に出力する。 The electrical characteristic comparison unit 115 outputs the comparison results of the electrical characteristic information to the abnormal state determination unit 150 and the memory unit 200.
 なお、本実施形態では、後述のように、電気特性が極小値に到達したことが判定されたことを契機として、当該時点以降に劣化及びすす混入を判定する形態について説明するが、本発明はこのような形態に限定されない。例えば、極小値判定部114の判定結果に応じて、電気特性比較部115は、当該判定結果を用いて電気特性情報を補正した値を過去値又は現在値としてもよい。例えば、測定対象の潤滑油が、金属系清浄剤を含む特定の潤滑油であることが分かっている場合、次のように電気特性情報を補正することが可能である。この場合、例えば、金属系清浄剤を含む特定の潤滑油において異常が生じない場合の電気特性の挙動と、金属系清浄剤を含まない当該特定の潤滑油において異常が生じない場合の電気特性の挙動との差分を基に、補正してもよい。 In this embodiment, as described below, a form will be described in which deterioration and soot contamination are judged after the determination that the electrical characteristics have reached a minimum value, but the present invention is not limited to this form. For example, depending on the determination result of the minimum value determination unit 114, the electrical characteristics comparison unit 115 may use the determination result to correct the electrical characteristics information and set the corrected value as a past value or a current value. For example, if it is known that the lubricant to be measured is a specific lubricant that contains a metal-based detergent, the electrical characteristics information can be corrected as follows. In this case, for example, the correction may be based on the difference between the behavior of the electrical characteristics when no abnormality occurs in a specific lubricant that contains a metal-based detergent and the behavior of the electrical characteristics when no abnormality occurs in the specific lubricant that does not contain a metal-based detergent.
 (温度ユニット120)
 温度ユニット120は、温度に関する処理を行うユニットである。温度ユニット120は、温度取得部121を備えている。
(Temperature Unit 120)
The temperature unit 120 is a unit that performs processing related to temperature. The temperature unit 120 includes a temperature acquisition unit 121.
 温度取得部121は、温度センサ30から潤滑油の温度を示す温度情報を取得する。温度取得部121は、通信インターフェースを介して温度センサ30から出力された温度情報を取得すればよい。温度取得部121は、取得した温度情報を、移動平均値算出部140、異常状態判定部150、及び記憶部200に出力する。温度情報は、温度センサ30が潤滑油の温度を測定した結果を示す情報である。温度センサ30については後述する。 The temperature acquisition unit 121 acquires temperature information indicating the temperature of the lubricating oil from the temperature sensor 30. The temperature acquisition unit 121 may acquire the temperature information output from the temperature sensor 30 via a communication interface. The temperature acquisition unit 121 outputs the acquired temperature information to the moving average calculation unit 140, the abnormal state determination unit 150, and the memory unit 200. The temperature information is information indicating the results of the measurement of the temperature of the lubricating oil by the temperature sensor 30. The temperature sensor 30 will be described later.
 温度の現在値は、温度取得部121が取得した値であってもよく、後述する移動平均値算出部140が算出した温度情報の移動平均値であってもよい。 The current temperature value may be a value acquired by the temperature acquisition unit 121, or may be a moving average value of the temperature information calculated by the moving average value calculation unit 140 described later.
 (性状ユニット130)
 性状ユニット130は、性状取得部131、性状温度補正判定部132、性状温度補正部133、及び性状比較部134を備えている。
(Property unit 130)
The property unit 130 includes a property acquisition section 131 , a property temperature correction determination section 132 , a property temperature correction section 133 , and a property comparison section 134 .
 性状取得部131は、性状センサ40から潤滑油の性状を示す性状情報を取得する。本明細書中において、「性状」とは、電気特性、温度以外の特性を意図する。例えば、性状は、粘度、密度、酸価、塩基価、色調等が挙げられる。本発明の一態様において、これらの性状は1種を測定してもよく、複数種を測定してもよい。性状取得部131は、通信インターフェースを介して性状センサ40から出力された性状情報を取得すればよい。性状取得部131は、取得した性状情報を性状温度補正判定部132及び記憶部200に出力する。性状情報は、性状センサ40が潤滑油の性状を測定した結果を示す情報である。性状センサ40については後述する。 The property acquisition unit 131 acquires property information indicating the properties of the lubricating oil from the property sensor 40. In this specification, "property" refers to properties other than electrical properties and temperature. For example, properties include viscosity, density, acid value, base value, color tone, etc. In one aspect of the present invention, one or more of these properties may be measured. The property acquisition unit 131 may acquire the property information output from the property sensor 40 via a communication interface. The property acquisition unit 131 outputs the acquired property information to the property temperature correction determination unit 132 and the memory unit 200. The property information is information indicating the results of the property sensor 40 measuring the properties of the lubricating oil. The property sensor 40 will be described later.
 性状温度補正判定部132は、温度取得部121が取得した温度情報と、性状取得部131が取得した性状情報とに基づいて、性状情報に温度補正が必要であるか否かを判定する。 The property temperature correction determination unit 132 determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131.
 例えば、性状温度補正判定部132は、温度取得部121が取得した温度情報と、予め設定された性状情報の温度補正が不要な温度の範囲とを比較する。性状温度補正判定部132は、温度取得部121が取得した温度情報が、当該範囲に含まれる場合、性状情報に温度補正は不要であると判定する。また、性状温度補正判定部132は、温度取得部121が取得した温度情報が、当該範囲に含まれない場合、性状情報に温度補正が必要であると判定する。 For example, the property temperature correction determination unit 132 compares the temperature information acquired by the temperature acquisition unit 121 with a preset temperature range in which temperature correction of the property information is not required. If the temperature information acquired by the temperature acquisition unit 121 is included in this range, the property temperature correction determination unit 132 determines that temperature correction is not required for the property information. Also, if the temperature information acquired by the temperature acquisition unit 121 is not included in this range, the property temperature correction determination unit 132 determines that temperature correction is required for the property information.
 性状温度補正判定部132は、性状情報に温度補正は不要であると判定した場合、性状情報を性状比較部134及び記憶部200に出力する。性状温度補正判定部132は、性状情報に温度補正が必要であると判定した場合、性状情報の温度補正の要否の判定結果を性状温度補正部133及び記憶部200に出力する。 If the property temperature correction determination unit 132 determines that the property information does not require temperature correction, it outputs the property information to the property comparison unit 134 and the storage unit 200. If the property temperature correction determination unit 132 determines that the property information requires temperature correction, it outputs the determination result of whether or not the property information requires temperature correction to the property temperature correction unit 133 and the storage unit 200.
 性状温度補正部133は、性状温度補正判定部132が性状情報に温度補正が必要であると判定した場合、性状情報の温度補正を行う。例えば、性状温度補正部133は、予め判定対象の潤滑油の種類の温度情報及び粘度情報をデータベースとして蓄積して、当該データベースに基づいて補正式を算出する。性状温度補正部133は、算出した補正式を参照して、性状の温度補正を行う。性状は温度による影響を受けるため、性状温度補正部133が温度補正を行うことにより、異常状態判定部150がより精度高く潤滑油の異常状態を判定できる。 When the property temperature correction determination unit 132 determines that temperature correction is necessary for the property information, the property temperature correction unit 133 performs temperature correction of the property information. For example, the property temperature correction unit 133 accumulates temperature information and viscosity information of the type of lubricant to be determined in advance as a database, and calculates a correction formula based on the database. The property temperature correction unit 133 performs temperature correction of the properties by referring to the calculated correction formula. Since the properties are affected by temperature, the property temperature correction unit 133 performs temperature correction, allowing the abnormality determination unit 150 to more accurately determine an abnormal state of the lubricant.
 性状温度補正部133は、温度補正後の性状情報を性状比較部134及び記憶部200に出力する。 The property temperature correction unit 133 outputs the property information after temperature correction to the property comparison unit 134 and the memory unit 200.
 性状比較部134は、性状の現在値と過去値とを比較する。性状の現在値は、性状取得部131が取得した値であってもよく、性状温度補正部133によって補正された値であってもよく、後述する移動平均値算出部140が算出した性状情報の移動平均値であってもよい。また、性状比較部134は、記憶部200から性状の過去値を取得する。一例として、性状比較部134は、性状の現在値と過去値との差分を算出して、算出した差分と予め設定された差分の閾値とを比較する。性状比較部134は、算出した差分が予め設定された差分の閾値以上であるか否かを判定する。他の例として、性状比較部134は、性状の現在値から過去値を減算して、算出した値が正であるか否かを判定する。 The property comparison unit 134 compares the current property value with the past property value. The current property value may be a value acquired by the property acquisition unit 131, may be a value corrected by the property temperature correction unit 133, or may be a moving average value of the property information calculated by the moving average calculation unit 140 described later. The property comparison unit 134 also acquires past property values from the storage unit 200. As one example, the property comparison unit 134 calculates the difference between the current property value and the past property value, and compares the calculated difference with a preset difference threshold. The property comparison unit 134 determines whether the calculated difference is equal to or greater than the preset difference threshold. As another example, the property comparison unit 134 subtracts the past property value from the current property value, and determines whether the calculated value is positive.
 性状比較部134は、性状情報の比較結果を、異常状態判定部150及び記憶部200に出力する。 The property comparison unit 134 outputs the comparison results of the property information to the abnormal state determination unit 150 and the memory unit 200.
 (移動平均値算出部140)
 移動平均値算出部140は、電気特性比較部115、異常状態判定部150、及び性状比較部134において、移動平均値を現在値として用いる場合、電気特性情報、温度情報、及び性状情報の、単位時間当たりの複数の値に基づいて、移動平均値を算出する。
(Moving average value calculation unit 140)
When the moving average value is used as the current value in the electrical characteristic comparison unit 115, the abnormal state determination unit 150, and the property comparison unit 134, the moving average value calculation unit 140 calculates the moving average value based on multiple values per unit time of the electrical characteristic information, temperature information, and property information.
 移動平均値算出部140は、算出した移動平均値を、電気特性比較部115、異常状態判定部150、性状比較部134、及び記憶部200に出力する。 The moving average value calculation unit 140 outputs the calculated moving average value to the electrical characteristic comparison unit 115, the abnormal state determination unit 150, the property comparison unit 134, and the memory unit 200.
 (異常状態判定部150)
 異常状態判定部150は、電気特性取得部111が取得した電気特性情報と極小値判定部114による極小値の判定結果とに基づいて潤滑油の異常状態を判定する。具体的には、異常状態判定部150は、極小値判定部114が判定した極小値の判定結果と、電気特性比較部115の比較結果とに基づいて潤滑油の異常状態を判定する。極小値の判定結果を利用して、異常状態判定部150は、異常状態を判定することにより、判定対象の潤滑油が金属系清浄剤を含む場合に、金属系清浄剤の消耗に由来する極端な極性の変化の要因を除外できるため、精度高く異常状態を判定することができる。
(Abnormal state determination unit 150)
The abnormal state determination unit 150 determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit 111 and the determination result of the minimum value by the minimum value determination unit 114. Specifically, the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the determination result of the minimum value determined by the minimum value determination unit 114 and the comparison result by the electrical characteristic comparison unit 115. By using the determination result of the minimum value, the abnormal state determination unit 150 can determine an abnormal state when the lubricant to be determined contains a metal-based detergent, thereby eliminating the cause of an extreme polarity change resulting from consumption of the metal-based detergent, and thus can determine an abnormal state with high accuracy.
 例えば、異常状態判定部150は、電気特性比較部115が実行した電気特性情報と予め設定された電気特性異常値との比較を用いることにより、潤滑油の異常状態を判定することができる。また、例えば、異常状態判定部150は、電気特性比較部115において極小値の判定結果に応じて補正された電気特性の現在値が用いられていることによって、電気特性上昇をより正確に検出することができるため、より正確に異常状態を判定することができる。 For example, the abnormal state determination unit 150 can determine an abnormal state of the lubricant by comparing the electrical characteristic information obtained by the electrical characteristic comparison unit 115 with a preset electrical characteristic abnormal value. Also, for example, the abnormal state determination unit 150 can more accurately detect an increase in the electrical characteristics by using the current value of the electrical characteristics corrected according to the result of the determination of the minimum value by the electrical characteristic comparison unit 115, and therefore can more accurately determine an abnormal state.
 また、異常状態判定部150は、温度取得部121が取得した温度情報、及び、性状取得部131が取得した性状情報にさらに基づいて異常状態を判定してもよい。具体的には、異常状態判定部150は、極小値判定部114が判定した極小値の判定結果、電気特性比較部115の比較結果、温度取得部121が取得した温度情報、及び性状比較部134の比較結果に基づいて潤滑油の異常状態を判定する。温度情報及び性状情報をさらに参照して異常状態を判定することにより、より精度高く異常状態を判定することができる。 The abnormal state determination unit 150 may also determine an abnormal state based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131. Specifically, the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the minimum value determination result determined by the minimum value determination unit 114, the comparison result of the electrical property comparison unit 115, the temperature information acquired by the temperature acquisition unit 121, and the comparison result of the property comparison unit 134. By determining an abnormal state by further referring to the temperature information and property information, it is possible to determine an abnormal state with greater accuracy.
 異常状態判定部150は、異常状態の判定が電気特性の影響を受け得る場合、極小値の判定結果を参照したうえで、当該異常状態を判定することが好ましい。この場合、例えば、異常状態判定部150は、電気特性が極小値に到達した時点以降に、当該異常状態を判定する。換言すれば、電気特性の影響を受け得る異常状態の判定において、極小値の判定結果は、異常状態判定部150が当該異常状態の判定を開始する契機として用いられる。このように極小値の判定結果を参照することにより、電気特性に影響を与え得る異常状態の判定をより精度高く判定することができる。なお、異常状態判定部150は、電気特性の影響を受け得る異常状態でない異常状態を判定する場合は、極小値の判定結果に関係なく、当該異常状態を判定し続けてよい。つまり、この場合は、電気特性が極小値に到達する前であっても、当該異常状態を判定してよい。 When the abnormal state determination unit 150 determines whether an abnormal state is being affected by the electrical characteristics, it is preferable that the abnormal state determination unit 150 determines the abnormal state by referring to the determination result of the minimum value. In this case, for example, the abnormal state determination unit 150 determines the abnormal state after the electrical characteristics reach a minimum value. In other words, in determining an abnormal state that may be affected by the electrical characteristics, the determination result of the minimum value is used as a trigger for the abnormal state determination unit 150 to start determining the abnormal state. By referring to the determination result of the minimum value in this way, it is possible to more accurately determine an abnormal state that may affect the electrical characteristics. Note that, when determining an abnormal state that is not an abnormal state that may be affected by the electrical characteristics, the abnormal state determination unit 150 may continue to determine the abnormal state regardless of the determination result of the minimum value. In other words, in this case, the abnormal state may be determined even before the electrical characteristics reach a minimum value.
 異常状態は、例えば、劣化、燃料混入、すす混入、金属混入、及び水分混入から選択される少なくとも一つである。劣化は、例えば、酸化及び熱のうち少なくとも一方による劣化である。劣化の場合、静電容量は大きくなり、粘度は大きくなり、密度は大きくなる傾向がある。燃料混入の場合、静電容量は大きくなり、粘度は小さくなり、密度は小さくなる傾向がある。すす混入の場合、静電容量は小さくなり、粘度は大きくなり、密度は大きくなる傾向がある。金属(摩耗粉)混入の場合、静電容量は大きくなり、粘度は変化せず、密度は変化しない傾向がある。水分混入の場合、静電容量が顕著に大きくなり、粘度は変化せず、密度は変化しない傾向がある。異常状態判定部150は、これらの傾向を参照して、各種の異常状態を判定する。 The abnormal state is, for example, at least one selected from deterioration, fuel contamination, soot contamination, metal contamination, and water contamination. Deterioration is, for example, deterioration due to at least one of oxidation and heat. In the case of deterioration, the capacitance tends to increase, the viscosity tends to increase, and the density tends to increase. In the case of fuel contamination, the capacitance tends to increase, the viscosity tends to decrease, and the density tends to decrease. In the case of soot contamination, the capacitance tends to decrease, the viscosity tends to increase, and the density tends to increase. In the case of metal (wear powder) contamination, the capacitance tends to increase, the viscosity tends not to change, and the density tends not to change. In the case of water contamination, the capacitance tends to increase significantly, the viscosity tends not to change, and the density tends not to change. The abnormal state determination unit 150 refers to these tendencies to determine various abnormal states.
 前述した、電気特性の影響を受け得る異常状態としては、例えば、劣化及びすす混入等が挙げられる。異常状態判定部150は、劣化及びすす混入を判定する場合、電気特性が極小値に到達した時点以降に、当該時点以降の、電気特性情報、温度情報、及び性状情報を参照して、劣化及びすす混入を判定する。つまり、異常状態判定部150は、劣化及びすす混入の異常状態を判定する場合、電気特性が極小値に到達するまでは、劣化及びすす混入を判定しない。換言すれば、劣化及びすす混入の判定において、極小値の判定結果は、異常状態判定部150が劣化及びすす混入の判定を開始する契機として用いられる。なお、異常状態判定部150は、金属混入及び水分混入等を判定する場合、電気特性が極小値に到達する前であっても、金属混入及び水分混入等を判定する。なお、前述のように、結果として極小値が2回以上測定される場合であっても、1回目の極小値の到達を前記契機としてもよく、1回目の極小値以降に2回目の極小値があること、又は、その可能性が高いと判定されている場合は、1回目の極小値の到達を前記契機とせず、2回目以降の極小値の到達を前記契機としてもよい。 Examples of abnormal states that may be affected by the electrical characteristics as described above include deterioration and soot contamination. When determining deterioration and soot contamination, the abnormal state determination unit 150 determines deterioration and soot contamination after the point in time when the electrical characteristics reach a minimum value by referring to the electrical characteristic information, temperature information, and property information from that point onward. In other words, when determining an abnormal state of deterioration and soot contamination, the abnormal state determination unit 150 does not determine deterioration and soot contamination until the electrical characteristics reach a minimum value. In other words, in determining deterioration and soot contamination, the determination result of the minimum value is used as a trigger for the abnormal state determination unit 150 to start determining deterioration and soot contamination. Note that when determining metal contamination, moisture contamination, etc., the abnormal state determination unit 150 determines metal contamination, moisture contamination, etc. even before the electrical characteristics reach a minimum value. As mentioned above, even if the minimum value is measured two or more times as a result, the arrival of the first minimum value may be the trigger. If it is determined that there is a second minimum value after the first minimum value, or that there is a high possibility of this occurring, the trigger may not be the arrival of the first minimum value, but rather the arrival of the second or subsequent minimum values.
 異常状態判定部150は、異常状態の判定結果を表示制御部160に出力する。また、異常状態判定部150は、通信インターフェースを介して異常状態の判定結果を外部のサーバに出力してもよい。 The abnormal state determination unit 150 outputs the abnormal state determination result to the display control unit 160. The abnormal state determination unit 150 may also output the abnormal state determination result to an external server via a communication interface.
 (表示制御部160)
 表示制御部160は、表示部300を制御し、表示部300に異常状態の判定結果を表示させる。表示制御部160は、異常状態判定部150が判定した異常状態の判定結果を、表示部300に出力する。表示制御部160は、異常状態判定部150が劣化及びすす混入を判定する場合、電気特性が極小値に到達する前には電気特性の現在値と、極小値には未達である旨を表示部300に表示させてもよいし、電気特性が極小値に到達するまでは電気特性に関する情報を表示しなくてもよい。
(Display Control Unit 160)
The display control unit 160 controls the display unit 300 to display the abnormal state determination result on the display unit 300. The display control unit 160 outputs the abnormal state determination result determined by the abnormal state determination unit 150 to the display unit 300. When the abnormal state determination unit 150 determines deterioration and soot contamination, the display control unit 160 may cause the display unit 300 to display the current value of the electrical characteristic and a message indicating that the minimum value has not been reached before the electrical characteristic reaches the minimum value, or may not display information regarding the electrical characteristic until the electrical characteristic reaches the minimum value.
 (記憶部200)
 記憶部200は、制御ユニット100が実行するプログラム、及び、制御ユニット100が使用する各種のデータを記憶する。記憶部200は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)、又はこれらの組み合わせによって構成される。なお、メモリの一部又は全部は、潤滑油異常検知装置10に内蔵されることに限らず、USB(Universal Serial Bus)等の入出力インターフェース(図示せず)を介して外付けされていてもよい。また、記憶部200の一部又は全部は、潤滑油異常検知装置10とは独立した装置として、ネットワークを介して潤滑油異常検知装置10に接続されていてもよい。
(Memory unit 200)
The storage unit 200 stores the program executed by the control unit 100 and various data used by the control unit 100. The storage unit 200 is configured, for example, by a hard disk drive (HDD), a solid state drive (SSD), an electrically erasable programmable read-only memory (EEPROM (registered trademark)), a read only memory (ROM), a random access memory (RAM), or a combination of these. Note that a part or all of the memory is not limited to being built into the lubricant oil abnormality detection device 10, and may be externally attached via an input/output interface (not shown) such as a universal serial bus (USB). In addition, a part or all of the storage unit 200 may be connected to the lubricant oil abnormality detection device 10 via a network as a device independent of the lubricant oil abnormality detection device 10.
 記憶部200は、各種情報を記憶する。例えば、記憶部200は、電気特性取得部111が取得した電気特性情報、温度取得部121が取得した温度情報、性状取得部131が取得した性状情報、電気特性温度補正部113が温度補正した温度補正後の電気特性情報、性状温度補正部133が温度補正した温度補正後の性状情報、極小値判定部114が判定した極小値の判定結果、電気特性比較部115による比較結果、性状比較部134による比較結果、移動平均値算出部140が算出した移動平均値、異常状態判定部150が判定した異常状態の判定結果、予め設定された各閾値等の情報を記憶する。 The storage unit 200 stores various information. For example, the storage unit 200 stores information such as electrical characteristic information acquired by the electrical characteristic acquisition unit 111, temperature information acquired by the temperature acquisition unit 121, property information acquired by the property acquisition unit 131, electrical characteristic information after temperature correction by the electrical characteristic temperature correction unit 113, property information after temperature correction by the property temperature correction unit 133, the minimum value judgment result judged by the minimum value judgment unit 114, the comparison result by the electrical characteristic comparison unit 115, the comparison result by the property comparison unit 134, the moving average value calculated by the moving average value calculation unit 140, the abnormal state judgment result judged by the abnormal state judgment unit 150, and each preset threshold value.
 (表示部300)
 表示部300は、表示制御部160により制御されている。表示部300は、表示制御部160から出力された異常状態判定部150による異常状態の判定結果を表示する。
(Display unit 300)
The display unit 300 is controlled by the display control unit 160. The display unit 300 displays the abnormal state determination result by the abnormal state determination unit 150 that is output from the display control unit 160.
 ユーザは異常状態の判定結果を知ることにより、潤滑油を用いている機械に適した油の提案、及び当該機械の部品の異常等の予測等ができるようになる。 By knowing the results of abnormality detection, users will be able to suggest suitable oils for machines that use lubricants, and predict abnormalities in the machine's parts.
 (電気特性センサ20)
 電気特性センサ20は、潤滑油の電気特性を測定するためセンサである。例えば、静電容量を測定する場合、電気特性センサ20は、櫛形電極を備えていることが好ましい。櫛形電極は、櫛状の電極を噛み合せた構造を有している。櫛形電極は、このような構造を有していることにより、電極間の距離を短くすることができる。当該距離は、例えば、20μmであり得る。電極の材質は、例えば、白金であることが好ましい。電極の櫛形電極を用いることによって、オイルの電気特性の感度を高くすることができる。そのため、電気特性をリアルタイムで検知することができる。電気特性センサ20は、潤滑油の電気特性を測定した結果に基づいて、当該結果を示す情報である電気特性情報を生成し、潤滑油異常検知装置10に送信する。なお、本実施形態では電気特性センサ20が櫛型電極を備えている形態について説明するが、本発明における電気特性センサ20は、このような形態に限定されず、測定対象の電気特性に応じて、従来公知の様々なセンサを採用し得る。
(Electrical property sensor 20)
The electrical property sensor 20 is a sensor for measuring the electrical properties of the lubricant. For example, when measuring the electrostatic capacitance, the electrical property sensor 20 is preferably provided with a comb-shaped electrode. The comb-shaped electrode has a structure in which comb-shaped electrodes are interdigitated. The comb-shaped electrode has such a structure, and thus the distance between the electrodes can be shortened. The distance can be, for example, 20 μm. The material of the electrode is preferably, for example, platinum. By using the comb-shaped electrode of the electrode, the sensitivity of the electrical properties of the oil can be increased. Therefore, the electrical properties can be detected in real time. The electrical property sensor 20 generates electrical property information, which is information indicating the results of measuring the electrical properties of the lubricant, based on the results, and transmits the electrical property information to the lubricant abnormality detection device 10. In this embodiment, the electrical property sensor 20 is described as having a comb-shaped electrode, but the electrical property sensor 20 in the present invention is not limited to such a form, and various conventionally known sensors can be adopted depending on the electrical properties of the object to be measured.
 (温度センサ30)
 温度センサ30は、潤滑油の温度を測定するためのセンサである。温度センサ30は、潤滑油の所望の範囲の温度を適切に測定することができるセンサであれば特に限定されない。温度センサ30は、潤滑油の温度を測定した結果に基づいて、当該結果を示す情報である温度情報を生成し、潤滑油異常検知装置10に送信する。
(Temperature sensor 30)
The temperature sensor 30 is a sensor for measuring the temperature of the lubricant. The temperature sensor 30 is not particularly limited as long as it is a sensor that can appropriately measure the temperature of the lubricant in a desired range. The temperature sensor 30 generates temperature information that is information indicating the result of measuring the temperature of the lubricant based on the result, and transmits the temperature information to the lubricant abnormality detection device 10.
 (性状センサ40)
 性状センサ40は、潤滑油の性状を測定するためのセンサである。性状センサ40は、潤滑油の所望の範囲の性状を適切に測定することができるセンサであれば特に限定されない。性状センサ40は、潤滑油の性状を測定した結果に基づいて、当該結果を示す情報である性状情報を生成し、潤滑油異常検知装置10に送信する。
(Property sensor 40)
The property sensor 40 is a sensor for measuring the properties of the lubricant. The property sensor 40 is not particularly limited as long as it is a sensor that can appropriately measure the properties of the lubricant in a desired range. The property sensor 40 generates property information that is information indicating the results of measuring the properties of the lubricant based on the results, and transmits the property information to the lubricant abnormality detection device 10.
 (潤滑油の種類)
 本実施形態に係る潤滑油異常検知システム1が異常状態を判定する潤滑油の種類は特に限定されず、例えば、内燃機油、駆動系油、設備油等が挙げられる。潤滑油の具体的な例としては、ガスエンジン油、ガソリンエンジン油、ディーゼルエンジン油等が挙げられる。潤滑油は、金属系清浄剤を含んでいても含んでいなくてもよいが、本実施形態に係る潤滑油異常検知システム1は特に金属系清浄剤を含む潤滑油の異常状態の判定に有効に活用することができる。本実施形態に係る潤滑油異常検知システム1は、金属系清浄剤を含む潤滑油であっても、電気特性の極小値を考慮して潤滑油の異常状態を判定するため、精度高く判定可能であるためである。金属系清浄剤は、内燃機油に限らず、各種駆動系油、各種設備油に使用されるため、本実施形態に係る潤滑油異常検知システム1は、各種の潤滑油の異常状態の判定に活用することができる。
(Type of lubricant)
The type of lubricant for which the lubricant abnormality detection system 1 according to the present embodiment judges an abnormal state is not particularly limited, and examples thereof include internal combustion engine oil, drive system oil, and equipment oil. Specific examples of lubricants include gas engine oil, gasoline engine oil, and diesel engine oil. The lubricant may or may not contain a metal-based detergent, but the lubricant abnormality detection system 1 according to the present embodiment can be effectively used to judge the abnormal state of a lubricant containing a metal-based detergent. The lubricant abnormality detection system 1 according to the present embodiment judges the abnormal state of the lubricant by taking into account the minimum value of the electrical characteristics, even if the lubricant contains a metal-based detergent, so that it can be judged with high accuracy. Metal-based detergents are used not only in internal combustion engine oils but also in various drive system oils and various equipment oils, so the lubricant abnormality detection system 1 according to the present embodiment can be used to judge the abnormal state of various lubricants.
 金属系清浄剤としては、例えば、カルシウム清浄剤、マグネシウム清浄剤、ナトリウム清浄剤等が挙げられる。 Examples of metal-based detergents include calcium detergents, magnesium detergents, and sodium detergents.
 <潤滑油異常検知方法の流れ>
 潤滑油異常検知システム1は、潤滑油異常検知方法を実行する。図2は、潤滑油異常検知方法の流れを示すフロー図である。図2に示すように、潤滑油異常検知方法は、ステップS101~S110を含む。
<Flow of lubricant oil abnormality detection method>
The lubricant abnormality detection system 1 executes a lubricant abnormality detection method. Fig. 2 is a flow chart showing the flow of the lubricant abnormality detection method. As shown in Fig. 2, the lubricant abnormality detection method includes steps S101 to S110.
 ステップS101において、電気特性取得部111は、電気特性センサ20から電気特性情報を取得する。また、ステップS101において、温度取得部121は、温度センサ30から温度情報を取得する。さらに、ステップS101において、性状取得部131は、性状センサ40から潤滑油の性状を示す性状情報を取得する。電気特性取得部111は、取得した電気特性情報を電気特性温度補正判定部112及び記憶部200に出力し、ステップS102に進む。温度取得部121は、取得した温度情報を、移動平均値算出部140、異常状態判定部150、及び記憶部200に出力し、ステップS109に進む。性状取得部131は、取得した性状情報を性状温度補正判定部132及び記憶部200に出力し、ステップS106に進む。 In step S101, the electrical characteristic acquisition unit 111 acquires electrical characteristic information from the electrical characteristic sensor 20. Also in step S101, the temperature acquisition unit 121 acquires temperature information from the temperature sensor 30. Also in step S101, the property acquisition unit 131 acquires property information indicating the properties of the lubricating oil from the property sensor 40. The electrical characteristic acquisition unit 111 outputs the acquired electrical characteristic information to the electrical characteristic temperature correction determination unit 112 and the storage unit 200, and proceeds to step S102. The temperature acquisition unit 121 outputs the acquired temperature information to the moving average calculation unit 140, the abnormal state determination unit 150, and the storage unit 200, and proceeds to step S109. The property acquisition unit 131 outputs the acquired property information to the property temperature correction determination unit 132 and the storage unit 200, and proceeds to step S106.
 ステップS102において、電気特性温度補正判定部112は、温度取得部121が取得した温度情報と、電気特性取得部111が取得した電気特性情報とに基づいて、電気特性情報に温度補正が必要であるか否かを判定する。電気特性温度補正判定部112が電気特性情報に温度補正が必要であると判定した場合(ステップS102のYES)、制御ユニット100は、S103の処理に進む。電気特性温度補正判定部112が電気特性情報に温度補正が不要であると判定した場合(ステップS102のNO)、制御ユニット100は、ステップS104及びステップS105の処理に進む。 In step S102, the electrical characteristic temperature correction determination unit 112 determines whether or not the electrical characteristic information requires temperature correction based on the temperature information acquired by the temperature acquisition unit 121 and the electrical characteristic information acquired by the electrical characteristic acquisition unit 111. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information requires temperature correction (YES in step S102), the control unit 100 proceeds to processing of S103. If the electrical characteristic temperature correction determination unit 112 determines that the electrical characteristic information does not require temperature correction (NO in step S102), the control unit 100 proceeds to processing of steps S104 and S105.
 ステップS103において、電気特性温度補正部113は、電気特性温度補正判定部112が電気特性情報に温度補正が必要であると判定した場合、電気特性情報の温度補正を行う。電気特性温度補正部113は、温度補正した電気特性情報を、極小値判定部114、電気特性比較部115、及び記憶部200に出力し、ステップS104及びステップS105に進む。 In step S103, if the electrical characteristic temperature correction determination unit 112 determines that temperature correction is required for the electrical characteristic information, the electrical characteristic temperature correction unit 113 performs temperature correction on the electrical characteristic information. The electrical characteristic temperature correction unit 113 outputs the temperature-corrected electrical characteristic information to the minimum value determination unit 114, the electrical characteristic comparison unit 115, and the storage unit 200, and proceeds to steps S104 and S105.
 ステップS104において、極小値判定部114は、潤滑油の極小値を判定する。極小値判定部114は、判定した極小値の判定結果を、異常状態判定部150及び記憶部200に出力する。例えば、ステップS104において、極小値判定部114は、電気特性が極小値に到達したか否かを判定し、判定結果を異常状態判定部150及び記憶部200に出力する。 In step S104, the minimum value determination unit 114 determines the minimum value of the lubricant. The minimum value determination unit 114 outputs the determination result of the determined minimum value to the abnormal state determination unit 150 and the memory unit 200. For example, in step S104, the minimum value determination unit 114 determines whether or not the electrical characteristic has reached a minimum value, and outputs the determination result to the abnormal state determination unit 150 and the memory unit 200.
 ステップS105において、電気特性比較部115は、電気特性の現在値と過去値とを比較する。具体的には、電気特性比較部115は、ステップS101で取得した電気特性情報、温度補正が行われている場合はステップS103で温度補正された電気特性情報を現在値として用いる。また、電気特性比較部115は、比較対象とする過去値を記憶部200から取得する。その後、電気特性比較部115は現在値と過去値とを比較する。電気特性比較部115は、電気特性情報の比較結果を異常状態判定部150及び記憶部200に出力し、ステップS110に進む。なお、ステップS105においては、電気特性の現在値及び過去値として、移動平均値算出部140が算出した移動平均値を用いてもよい。この場合、ステップS105の前に、移動平均値算出部140による電気特性情報の移動平均値が算出される。なお、本実施形態の変形例として、例えば、ステップS104の結果に応じてステップS105を省略してもよい。つまり、ステップS109のために実行される電気特性の現在値と過去値との比較は、ステップS104において、電気特性が極小値に到達したと判定した後であれば行ない、到達していないとの判定であれば行なわない構成でもよい。 In step S105, the electrical characteristic comparison unit 115 compares the current value and the past value of the electrical characteristic. Specifically, the electrical characteristic comparison unit 115 uses the electrical characteristic information acquired in step S101, or the electrical characteristic information temperature-corrected in step S103 if temperature correction has been performed, as the current value. The electrical characteristic comparison unit 115 also acquires past values to be compared from the storage unit 200. Then, the electrical characteristic comparison unit 115 compares the current value and the past value. The electrical characteristic comparison unit 115 outputs the comparison result of the electrical characteristic information to the abnormal state determination unit 150 and the storage unit 200, and proceeds to step S110. Note that in step S105, the moving average value calculated by the moving average calculation unit 140 may be used as the current value and the past value of the electrical characteristic. In this case, the moving average value of the electrical characteristic information is calculated by the moving average calculation unit 140 before step S105. Note that, as a modified example of this embodiment, for example, step S105 may be omitted depending on the result of step S104. In other words, the comparison between the current value and the past value of the electrical characteristic performed in step S109 may be performed after it is determined in step S104 that the electrical characteristic has reached a minimum value, but may not be performed if it is determined that the electrical characteristic has not reached a minimum value.
 ステップS106において、性状温度補正判定部132は、温度取得部121が取得した温度情報と、性状取得部131が取得した性状情報とに基づいて、性状情報に温度補正が必要であるか否かを判定する。性状温度補正判定部132が性状情報に温度補正が必要であると判定した場合(ステップS106のYES)、制御ユニット100は、S107の処理に進む。性状温度補正判定部132が性状情報に温度補正が不要であると判定した場合(ステップS106のNO)、制御ユニット100は、ステップS108の処理に進む。 In step S106, the property temperature correction determination unit 132 determines whether or not the property information requires temperature correction based on the temperature information acquired by the temperature acquisition unit 121 and the property information acquired by the property acquisition unit 131. If the property temperature correction determination unit 132 determines that the property information requires temperature correction (YES in step S106), the control unit 100 proceeds to processing of S107. If the property temperature correction determination unit 132 determines that the property information does not require temperature correction (NO in step S106), the control unit 100 proceeds to processing of step S108.
 ステップS107において、性状温度補正部133は、性状温度補正判定部132が性状情報に温度補正が必要であると判定した場合、性状情報の温度補正を行う。性状温度補正部133は、温度補正した性状情報を性状比較部134及び記憶部200に出力し、ステップS108に進む。 In step S107, if the property temperature correction determination unit 132 determines that the property information requires temperature correction, the property temperature correction unit 133 performs temperature correction on the property information. The property temperature correction unit 133 outputs the temperature-corrected property information to the property comparison unit 134 and the storage unit 200, and proceeds to step S108.
 ステップS108において、性状比較部134は、性状の現在値と過去値とを比較する。具体的には、性状比較部134は、ステップS101で取得した性状情報、温度補正が行われている場合はステップS107で温度補正された性状情報を現在値として用いる。また、性状比較部134は、比較対象とする過去値を記憶部200から取得する。その後、性状比較部134は現在値と過去値とを比較する。性状比較部134は、性状情報の比較結果を異常状態判定部150及び記憶部200に出力し、ステップS109に進む。なお、ステップS108においては、性状の現在値及び過去値として、移動平均値算出部140が算出した移動平均値を用いてもよい。この場合、ステップS108の前に、移動平均値算出部140による性状情報の移動平均値が算出される。 In step S108, the property comparison unit 134 compares the current property value with the past property value. Specifically, the property comparison unit 134 uses the property information acquired in step S101, or, if temperature correction has been performed, the property information temperature-corrected in step S107 as the current property value. The property comparison unit 134 also acquires past values to be compared from the storage unit 200. The property comparison unit 134 then compares the current property value with the past property value. The property comparison unit 134 outputs the comparison result of the property information to the abnormal state determination unit 150 and the storage unit 200, and proceeds to step S109. In step S108, the moving average value calculated by the moving average calculation unit 140 may be used as the current property value and past property value. In this case, the moving average value of the property information is calculated by the moving average calculation unit 140 before step S108.
 ステップS109において、異常状態判定部150は、ステップS104における極小値判定部114による極小値の判定結果、ステップS105における電気特性比較部115による電気特性の比較結果、ステップS101において温度取得部121が取得した温度情報、及びステップS108における性状比較部134による性状の比較結果に基づいて潤滑油の異常状態を判定する。異常状態判定部150は、判定した異常状態の判定結果を表示制御部160及び記憶部200に出力し、ステップS110に進む。なお、ステップS104の結果に応じて、ステップS109のうちの一部は省略される。つまり、ステップS109において実行される異常状態の判定のうち、前述した電気特性の影響を受け得る異常状態(例えば、劣化、すす混入)の判定は、ステップS104において、電気特性が極小値に到達したと判定した後であれば行ない、到達していないとの判定であれば行なわない。 In step S109, the abnormal state determination unit 150 determines an abnormal state of the lubricant based on the result of the minimum value determination by the minimum value determination unit 114 in step S104, the result of the comparison of the electrical properties by the electrical properties comparison unit 115 in step S105, the temperature information acquired by the temperature acquisition unit 121 in step S101, and the result of the comparison of the properties by the property comparison unit 134 in step S108. The abnormal state determination unit 150 outputs the result of the abnormal state determination to the display control unit 160 and the storage unit 200, and proceeds to step S110. Note that, depending on the result of step S104, some of step S109 is omitted. In other words, among the abnormal state determinations performed in step S109, the determination of an abnormal state that may be affected by the electrical properties described above (e.g., deterioration, soot contamination) is performed after it is determined in step S104 that the electrical properties have reached a minimum value, but is not performed if it is determined that the electrical properties have not reached a minimum value.
 ステップS110において、表示制御部160は、異常状態判定部150が判定した異常状態の判定結果を、表示部300に表示させる。ステップS110において、表示部300は、表示制御部160から出力された異常状態判定部150による異常状態の判定結果を表示する。 In step S110, the display control unit 160 causes the display unit 300 to display the abnormal state determination result determined by the abnormal state determination unit 150. In step S110, the display unit 300 displays the abnormal state determination result by the abnormal state determination unit 150 output from the display control unit 160.
 〔ソフトウェアによる実現例〕
 潤滑油異常検知装置10(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に制御ユニット100に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現することができる。
[Software implementation example]
The functions of the lubricant abnormality detection device 10 (hereinafter referred to as the "device") are realized by a program for causing a computer to function as the device, and by a program for causing a computer to function as each control block of the device (particularly each part included in the control unit 100).
 この場合、前記装置は、前記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により前記プログラムを実行することにより、前記各実施形態で説明した各機能が実現される。 In this case, the device includes a computer having at least one control device (e.g., a processor) and at least one storage device (e.g., a memory) as hardware for executing the program. The functions described in each of the above embodiments are realized by executing the program using this control device and storage device.
 前記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1又は複数の記録媒体に記録されていてもよい。この記録媒体は、前記装置が備えていてもよいし、備えていなくてもよい。後者の場合、前記プログラムは、有線又は無線の任意の伝送媒体を介して前記システムに供給されてもよい。 The program may be stored in one or more non-transient computer-readable recording media. The recording media may or may not be included in the device. In the latter case, the program may be provided to the system via any wired or wireless transmission medium.
 また、前記各制御ブロックの機能の一部又は全部は、論理回路により実現することも可能である。例えば、前記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより前記各制御ブロックの機能を実現することも可能である。 Furthermore, some or all of the functions of each of the control blocks can be realized by a logic circuit. For example, an integrated circuit in which a logic circuit that functions as each of the control blocks is formed is also included in the scope of the present invention. In addition, it is also possible to realize the functions of each of the control blocks by, for example, a quantum computer.
 また、前記各実施形態で説明した各処理は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIは前記制御装置で動作するものであってもよいし、他の装置(例えばエッジコンピュータ又はクラウドサーバ等)で動作するものであってもよい。 Furthermore, each process described in each of the above embodiments may be executed by AI (Artificial Intelligence). In this case, the AI may run on the control device, or may run on another device (such as an edge computer or a cloud server).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of the present invention also includes embodiments obtained by appropriately combining the technical means disclosed in the different embodiments.
 [付記]
 以上の記載から本発明は例えば以下のように把握される。なお、本発明の理解を容易にするために添付図面の参照符号を便宜的に括弧書きにて付記するが、それにより本発明が図示の態様に限定されるものではない。
[Additional Notes]
From the above description, the present invention can be understood, for example, as follows: In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are conveniently placed in parentheses, but the present invention is not limited to the illustrated embodiments.
 態様1に係る潤滑油異常検知システム(1)は、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部(111)と、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部(114)と、前記電気特性取得部(111)が取得した前記電気特性情報と前記極小値判定部による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部(150)と、を備える。 The lubricant abnormality detection system (1) according to aspect 1 includes an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit.
 態様2に係る潤滑油異常検知システム(1)は、態様1において、前記潤滑油の温度を示す温度情報を取得する温度取得部(121)、及び、前記潤滑油の性状を示す性状情報を取得する性状取得部(131)のうち少なくとも一方をさらに備え、前記異常状態判定部(150)は、前記温度取得部(121)が取得した前記温度情報、及び、前記性状取得部(131)が取得した前記性状情報にさらに基づいて前記異常状態を判定してもよい。 The lubricant abnormality detection system (1) according to aspect 2 further includes at least one of a temperature acquisition unit (121) that acquires temperature information indicating the temperature of the lubricant and a property acquisition unit (131) that acquires property information indicating the properties of the lubricant in accordance with aspect 1, and the abnormal state determination unit (150) may determine the abnormal state further based on the temperature information acquired by the temperature acquisition unit (121) and the property information acquired by the property acquisition unit (131).
 態様3に係る潤滑油異常検知システム(1)は、態様2において、前記電気特性情報、前記温度情報、前記性状情報から選択される少なくとも一つの、単位時間当たりの複数の値に基づいて、移動平均値を算出する移動平均値算出部(140)をさらに備え、前記異常状態判定部(150)は、前記移動平均値にさらに基づいて、前記異常状態を判定してもよい。 The lubricant abnormality detection system (1) according to aspect 3 may further include a moving average calculation unit (140) that calculates a moving average based on a plurality of values per unit time of at least one selected from the electrical characteristic information, the temperature information, and the property information in aspect 2, and the abnormal state determination unit (150) may determine the abnormal state further based on the moving average value.
 態様4に係る潤滑油異常検知システム(1)は、態様2又は態様3において、前記性状は、粘度及び密度のうち少なくとも一方であってもよい。 The lubricant oil abnormality detection system (1) according to aspect 4 may be the lubricant oil abnormality detection system (1) according to aspect 2 or aspect 3, in which the property is at least one of viscosity and density.
 態様5に係る潤滑油異常検知システム(1)は、態様1から態様4のいずれか1つにおいて、前記異常状態は、劣化、燃料混入、すす混入、金属混入、及び水分混入から選択される少なくとも一つであってもよい。 The lubricant abnormality detection system (1) according to aspect 5 may be any one of aspects 1 to 4, in which the abnormal state is at least one selected from deterioration, fuel contamination, soot contamination, metal contamination, and water contamination.
 態様6に係る潤滑油異常検知システム(1)は、態様2において、前記温度取得部(121)が取得した前記温度情報と、前記電気特性取得部(111)が取得した前記電気特性情報とに基づいて、前記電気特性情報に温度補正が必要であるか否かを判定する電気特性温度補正判定部(112)と、前記電気特性温度補正判定部(112)が前記電気特性情報に温度補正が必要であると判定した場合に前記電気特性情報の温度補正を行う電気特性温度補正部(113)と、をさらに備えていてもよい。 The lubricant abnormality detection system (1) according to aspect 6 may further include, in aspect 2, an electrical characteristic temperature correction determination unit (112) that determines whether or not the electrical characteristic information requires temperature correction based on the temperature information acquired by the temperature acquisition unit (121) and the electrical characteristic information acquired by the electrical characteristic acquisition unit (111), and an electrical characteristic temperature correction unit (113) that performs temperature correction on the electrical characteristic information when the electrical characteristic temperature correction determination unit (112) determines that the electrical characteristic information requires temperature correction.
 態様7に係る潤滑油異常検知システム(1)は、態様2において、前記温度取得部(121)が取得した前記温度情報と、前記性状取得部(131)が取得した前記性状情報とに基づいて、前記性状情報に温度補正が必要であるか否かを判定する性状温度補正判定部(132)と、前記性状温度補正判定部(132)が前記性状情報に温度補正が必要であると判定した場合に前記性状情報の温度補正を行う性状温度補正部(133)と、をさらに備えていてもよい。 The lubricant abnormality detection system (1) according to aspect 7 may further include, in aspect 2, a property temperature correction determination unit (132) that determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit (121) and the property information acquired by the property acquisition unit (131), and a property temperature correction unit (133) that performs temperature correction of the property information when the property temperature correction determination unit (132) determines that temperature correction is required for the property information.
 態様8に係る潤滑油異常検知システム(1)は、態様1から態様7のいずれか1つにおいて、前記電気特性を測定して前記電気特性情報を得る電気特性センサ(20)をさらに備え、前記電気特性取得部(111)は、前記電気特性センサ(20)から前記電気特性情報を取得してもよい。 The lubricant abnormality detection system (1) according to aspect 8 may further include an electrical characteristic sensor (20) that measures the electrical characteristics to obtain the electrical characteristic information in any one of aspects 1 to 7, and the electrical characteristic acquisition unit (111) may acquire the electrical characteristic information from the electrical characteristic sensor (20).
 態様9に係る潤滑油異常検知システム(1)は、態様1から態様8のいずれか1つにおいて、前記異常状態判定部(150)による前記異常状態の判定結果を表示する表示部(300)をさらに備えていてもよい。 The lubricant abnormality detection system (1) according to aspect 9 may further include a display unit (300) that displays the abnormal state determination result by the abnormal state determination unit (150) in any one of aspects 1 to 8.
 態様10に係る潤滑油異常検知装置(10)は、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部(111)と、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部(114)と、前記電気特性取得部(111)が取得した前記電気特性情報と前記極小値判定部(114)による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部(150)と、を備える。 The lubricant abnormality detection device (10) according to aspect 10 includes an electrical characteristic acquisition unit (111) that acquires electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination unit (114) that determines a minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination unit (150) that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit (111) and the result of the determination of the minimum value by the minimum value determination unit (114).
 態様11に係る潤滑油異常検知方法は、1又は複数のコンピュータが実行する潤滑油異常検知方法であって、潤滑油の電気特性を示す電気特性情報を取得する電気特性取得ステップ(S101)と、前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定ステップ(S104)と、前記電気特性取得ステップで取得した前記電気特性情報と前記極小値判定ステップにおける前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定ステップ(S109)と、を含む。 The lubricant abnormality detection method according to aspect 11 is a lubricant abnormality detection method executed by one or more computers, and includes an electrical characteristic acquisition step (S101) for acquiring electrical characteristic information indicating the electrical characteristics of the lubricant, a minimum value determination step (S104) for determining a minimum value that is the minimum value when the electrical characteristic of the lubricant decreases with use and then begins to increase, and an abnormal state determination step (S109) for determining an abnormal state of the lubricant based on the electrical characteristic information acquired in the electrical characteristic acquisition step and the determination result of the minimum value in the minimum value determination step.
 態様12に係る潤滑油異常検知プログラムは、態様10に係る潤滑油異常検知装置(10)としてコンピュータを機能させるための潤滑油異常検知プログラムであって、前記電気特性取得部(111)、前記極小値判定部(114)、及び前記異常状態判定部(150)としてコンピュータを機能させるための潤滑油異常検知プログラムである。 The lubricant abnormality detection program according to aspect 12 is a lubricant abnormality detection program for causing a computer to function as the lubricant abnormality detection device (10) according to aspect 10, and is a lubricant abnormality detection program for causing a computer to function as the electrical characteristic acquisition unit (111), the minimum value determination unit (114), and the abnormal state determination unit (150).
 態様13に係る記録媒体は、態様12に係る潤滑油異常検知プログラムを記録したコンピュータ読み取り可能な記録媒体である。 The recording medium according to aspect 13 is a computer-readable recording medium on which the lubricant oil abnormality detection program according to aspect 12 is recorded.
 〔参考例〕
 本発明の一参考例について以下に説明する。
[Reference Example]
A reference example of the present invention will be described below.
 (参考例1)
 0.29wt%のカルシウム分を含む、カルシウム清浄剤(金属系清浄剤)を含むガスエンジン油Aを用いて、165.5℃、触媒無しの条件下で、JIS K2514-1:2013に準拠するISOT(Indiana Stirring Oxidation Test)を行なった。試験開始から0時間後、72時間後、96時間後、及び120時間後に、ガスエンジン油Aの一部を採取して30℃まで冷却し、30℃における静電容量を、電極の間隔が20μm、材質がPtの櫛形電極(BAS会社製)を用いて測定した。また、空気中の静電容量をブランクとして同様に測定した。ガスエンジン油Aの静電容量/ブランクの静電容量を静電容量比として算出した。図3に、ガスエンジン油AのISOT試験劣化時間に対する30℃における静電容量比を示すグラフを示す。
(Reference Example 1)
Using gas engine oil A containing a calcium detergent (metallic detergent) containing 0.29 wt% calcium, an ISOT (Indiana Stirring Oxidation Test) was performed in accordance with JIS K2514-1:2013 under conditions of 165.5 ° C. and no catalyst. After 0 hours, 72 hours, 96 hours, and 120 hours from the start of the test, a part of the gas engine oil A was collected and cooled to 30 ° C., and the capacitance at 30 ° C. was measured using a comb electrode (manufactured by BAS Co.) with an electrode spacing of 20 μm and made of Pt. The capacitance in air was also measured in the same manner as the blank. The capacitance of the gas engine oil A/the capacitance of the blank was calculated as the capacitance ratio. FIG. 3 shows a graph showing the capacitance ratio at 30 ° C. versus the ISOT test deterioration time of gas engine oil A.
 (参考例2)
 カルシウム清浄剤のカルシウム分が0.10wt%である以外はガスエンジン油Aと同様の組成のガスエンジン油Bを用いた。それ以外は参考例1と同様にして、ISOT試験を行なった。試験開始から0時間後、24時間後、48時間後、及び72時間後の静電容量を測定した。図4に、ガスエンジン油BのISOT試験劣化時間に対する30℃における静電容量比を示すグラフを示す。
(Reference Example 2)
Gas engine oil B was used, which had the same composition as gas engine oil A, except that the calcium content of the calcium detergent was 0.10 wt %. Otherwise, the ISOT test was carried out in the same manner as in Reference Example 1. The capacitance was measured 0 hours, 24 hours, 48 hours, and 72 hours after the start of the test. Figure 4 is a graph showing the capacitance ratio at 30°C versus the ISOT test deterioration time for gas engine oil B.
 (参考例3)
 金属系清浄剤を含まないエンジン油を用いた。参考例1と同様にして、ISOT試験を行なった。試験開始から0時間後、48時間後、72時間後、及び96時間後の静電容量を測定した。図5に、金属系清浄剤無配合エンジン油のISOT試験劣化時間に対する30℃における静電容量比を示すグラフを示す。
(Reference Example 3)
An engine oil containing no metallic detergent was used. The ISOT test was carried out in the same manner as in Reference Example 1. The capacitance was measured 0 hours, 48 hours, 72 hours, and 96 hours after the start of the test. Figure 5 shows a graph showing the capacitance ratio at 30°C versus the ISOT test deterioration time for engine oil containing no metallic detergent.
 (結果)
 参考例1において、ガスエンジン油Aは72時間後の時点で静電容量比の極小値を有することが分かった。また、参考例2において、ガスエンジン油Bは24時間後の時点で静電容量比の極小値を有することが分かった。さらに、参考例3において、金属系清浄剤無配合エンジン油は極小点を有していないことが分かった。参考例1~3の結果から、潤滑油は、金属系清浄剤を含む場合には静電容量比の極小値を有し、金属系清浄剤を含まない場合には静電容量比の極小値を有さないことが明らかになった。
(result)
In Reference Example 1, it was found that gas engine oil A had a minimum value of the capacitance ratio after 72 hours. In Reference Example 2, it was found that gas engine oil B had a minimum value of the capacitance ratio after 24 hours. Furthermore, in Reference Example 3, it was found that the engine oil without a metal-based detergent had no minimum point. From the results of Reference Examples 1 to 3, it was revealed that the lubricating oil had a minimum value of the capacitance ratio when it contained a metal-based detergent, and did not have a minimum value of the capacitance ratio when it did not contain a metal-based detergent.
 電気特性は、極性物質の種類及び量に依存し、極性物質の量が減少すると静電容量が小さくなり、極性物質の量が増加すると電気特性が大きくなる。金属系清浄剤は極性物質であるため、金属系清浄剤が消耗されて量が減少すると静電容量が小さくなると考えられる。そのため、金属系清浄剤を含むガスエンジン油A及びガスエンジン油Bの場合は、金属系清浄剤の消耗(劣化)に起因して、静電容量比が下がったものと考えられる。そして、主成分の油及び金属系清浄剤以外の添加剤の劣化物質の多くは、極性物質であり、主成分の油及び金属系清浄剤以外の添加剤が劣化して当該劣化物質の量が増加することにより、電気特性が大きくなると考えられる。そのため、金属系清浄剤を含むガスエンジン油A及びガスエンジン油Bの極小点を超えた後の増加は、主成分の油及び金属系清浄剤以外の添加剤が劣化に起因しているものと考えられる。また、金属系清浄剤無配合エンジン油の静電容量の初期値からの増加は、主成分の油及び添加剤が劣化に起因しているものと考えられる。 Electrical properties depend on the type and amount of polar substances, and as the amount of polar substances decreases, the capacitance decreases, and as the amount of polar substances increases, the electrical properties increase. Metallic detergents are polar substances, so it is thought that the capacitance decreases when the metallic detergent is consumed and the amount decreases. Therefore, in the case of gas engine oil A and gas engine oil B, which contain metallic detergents, it is thought that the capacitance ratio decreased due to the consumption (deterioration) of the metallic detergent. Furthermore, many of the deteriorated substances of the main component oil and additives other than the metallic detergent are polar substances, and it is thought that the electrical properties increase due to the deterioration of the main component oil and additives other than the metallic detergent and the increase in the amount of the deteriorated substances. Therefore, the increase after exceeding the minimum point of gas engine oil A and gas engine oil B containing metallic detergents is thought to be due to the deterioration of the main component oil and additives other than the metallic detergent. Furthermore, the increase in the capacitance of engine oil without metallic detergent from the initial value is thought to be due to the deterioration of the main component oil and additives.
 1 潤滑油異常検知システム
 10 潤滑油異常検知装置
 20 電気特性センサ
 30 温度センサ
 40 性状センサ
 100 制御ユニット
 110 電気特性ユニット
 111 電気特性取得部
 112 電気特性温度補正判定部
 113 電気特性温度補正部
 114 極小値判定部
 115 電気特性比較部
 120 温度ユニット
 121 温度取得部
 130 性状ユニット
 131 性状取得部
 132 性状温度補正判定部
 133 性状温度補正部
 134 性状比較部
 140 移動平均値算出部
 150 異常状態判定部
 160 表示制御部
 200 記憶部
 300 表示部
REFERENCE SIGNS LIST 1 Lubricant abnormality detection system 10 Lubricant abnormality detection device 20 Electrical property sensor 30 Temperature sensor 40 Property sensor 100 Control unit 110 Electrical property unit 111 Electrical property acquisition section 112 Electrical property temperature correction judgment section 113 Electrical property temperature correction section 114 Minimum value judgment section 115 Electrical property comparison section 120 Temperature unit 121 Temperature acquisition section 130 Property unit 131 Property acquisition section 132 Property temperature correction judgment section 133 Property temperature correction section 134 Property comparison section 140 Moving average value calculation section 150 Abnormal state judgment section 160 Display control section 200 Memory section 300 Display section

Claims (13)

  1.  潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部と、
     前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部と、
     前記電気特性取得部が取得した前記電気特性情報と前記極小値判定部による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部と、を備える、潤滑油異常検知システム。
    an electrical characteristic acquisition unit that acquires electrical characteristic information indicating electrical characteristics of the lubricant;
    a minimum value determination unit that determines a minimum value when the electrical characteristic of the lubricating oil decreases with use and then starts to increase;
    a lubricant abnormality detection system comprising: an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the minimum value determination by the minimum value determination unit.
  2.  前記潤滑油の温度を示す温度情報を取得する温度取得部、及び、前記潤滑油の性状を示す性状情報を取得する性状取得部のうち少なくとも一方をさらに備え、
     前記異常状態判定部は、前記温度取得部が取得した前記温度情報、及び、前記性状取得部が取得した前記性状情報にさらに基づいて前記異常状態を判定する、請求項1に記載の潤滑油異常検知システム。
    The lubricant is further provided with at least one of a temperature acquisition unit that acquires temperature information indicating a temperature of the lubricant and a property acquisition unit that acquires property information indicating a property of the lubricant,
    The lubricant abnormality detection system according to claim 1 , wherein the abnormal state determination unit determines the abnormal state further based on the temperature information acquired by the temperature acquisition unit and the property information acquired by the property acquisition unit.
  3.  前記電気特性情報、前記温度情報、前記性状情報から選択される少なくとも一つの、単位時間当たりの複数の値に基づいて、移動平均値を算出する移動平均値算出部をさらに備え、
     前記異常状態判定部は、前記移動平均値にさらに基づいて、前記異常状態を判定する、請求項2に記載の潤滑油異常検知システム。
    a moving average value calculation unit that calculates a moving average value based on a plurality of values per unit time of at least one selected from the electrical characteristic information, the temperature information, and the property information,
    The lubricant abnormality detection system according to claim 2 , wherein the abnormality determination unit determines the abnormality further based on the moving average value.
  4.  前記性状は、粘度及び密度のうち少なくとも一方である、請求項2に記載の潤滑油異常検知システム。 The lubricant abnormality detection system according to claim 2, wherein the property is at least one of viscosity and density.
  5.  前記異常状態は、劣化、燃料混入、すす混入、金属混入、及び水分混入から選択される少なくとも一つである、請求項1に記載の潤滑油異常検知システム。 The lubricant abnormality detection system according to claim 1, wherein the abnormal state is at least one selected from deterioration, fuel contamination, soot contamination, metal contamination, and water contamination.
  6.  前記温度取得部が取得した前記温度情報と、前記電気特性取得部が取得した前記電気特性情報とに基づいて、前記電気特性情報に温度補正が必要であるか否かを判定する電気特性温度補正判定部と、
     前記電気特性温度補正判定部が前記電気特性情報に温度補正が必要であると判定した場合に前記電気特性情報の温度補正を行う電気特性温度補正部と、をさらに備える、請求項2に記載の潤滑油異常検知システム。
    an electrical characteristic temperature correction determination unit that determines whether or not temperature correction is required for the electrical characteristic information based on the temperature information acquired by the temperature acquisition unit and the electrical characteristic information acquired by the electrical characteristic acquisition unit;
    The lubricant abnormality detection system according to claim 2 , further comprising an electrical characteristic temperature correction unit that performs temperature correction of the electrical characteristic information when the electrical characteristic temperature correction determination unit determines that temperature correction is required for the electrical characteristic information.
  7.  前記温度取得部が取得した前記温度情報と、前記性状取得部が取得した前記性状情報とに基づいて、前記性状情報に温度補正が必要であるか否かを判定する性状温度補正判定部と、
     前記性状温度補正判定部が前記性状情報に温度補正が必要であると判定した場合に前記性状情報の温度補正を行う性状温度補正部と、をさらに備える、請求項2に記載の潤滑油異常検知システム。
    a property temperature correction determination unit that determines whether or not temperature correction is required for the property information based on the temperature information acquired by the temperature acquisition unit and the property information acquired by the property acquisition unit;
    The lubricant abnormality detection system according to claim 2 , further comprising a property temperature correction unit that performs temperature correction of the property information when the property temperature correction determination unit determines that temperature correction is required for the property information.
  8.  前記電気特性を測定して前記電気特性情報を得る電気特性センサをさらに備え、
     前記電気特性取得部は、前記電気特性センサから前記電気特性情報を取得する、請求項1に記載の潤滑油異常検知システム。
    an electrical characteristic sensor for measuring the electrical characteristic to obtain the electrical characteristic information;
    The lubricant abnormality detection system according to claim 1 , wherein the electrical characteristic acquisition unit acquires the electrical characteristic information from the electrical characteristic sensor.
  9.  前記異常状態判定部による前記異常状態の判定結果を表示する表示部をさらに備える、請求項1~8の何れか一項に記載の潤滑油異常検知システム。 The lubricant abnormality detection system according to any one of claims 1 to 8, further comprising a display unit that displays the abnormality determination result by the abnormality determination unit.
  10.  潤滑油の電気特性を示す電気特性情報を取得する電気特性取得部と、
     前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定部と、
     前記電気特性取得部が取得した前記電気特性情報と前記極小値判定部による前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定部と、を備える、潤滑油異常検知装置。
    an electrical characteristic acquisition unit that acquires electrical characteristic information indicating electrical characteristics of the lubricant;
    a minimum value determination unit that determines a minimum value when the electrical characteristic of the lubricating oil decreases with use and then starts to increase;
    a lubricant abnormality detection device comprising: an abnormality determination unit that determines an abnormal state of the lubricant based on the electrical characteristic information acquired by the electrical characteristic acquisition unit and the result of the minimum value determination by the minimum value determination unit.
  11.  1又は複数のコンピュータが実行する潤滑油異常検知方法であって、
     潤滑油の電気特性を示す電気特性情報を取得する電気特性取得ステップと、
     前記潤滑油の、使用に伴い前記電気特性が減少しその後上昇に転じる際の最小値である極小値を判定する極小値判定ステップと、
     前記電気特性取得ステップで取得した前記電気特性情報と前記極小値判定ステップにおける前記極小値の判定結果とに基づいて前記潤滑油の異常状態を判定する異常状態判定ステップと、を含む、潤滑油異常検知方法。
    A lubricant abnormality detection method executed by one or more computers, comprising:
    An electrical characteristic acquisition step of acquiring electrical characteristic information indicating electrical characteristics of the lubricant;
    a minimum value determination step of determining a minimum value at which the electrical property of the lubricating oil decreases with use and then starts to increase;
    A lubricant abnormality detection method comprising: an abnormality determination step of determining an abnormal state of the lubricant based on the electrical characteristic information acquired in the electrical characteristic acquisition step and the result of the minimum value determination step.
  12.  請求項10に記載の潤滑油異常検知装置としてコンピュータを機能させるための潤滑油異常検知プログラムであって、前記電気特性取得部、前記極小値判定部、及び前記異常状態判定部としてコンピュータを機能させるための潤滑油異常検知プログラム。 A lubricant abnormality detection program for causing a computer to function as the lubricant abnormality detection device described in claim 10, the lubricant abnormality detection program causing a computer to function as the electrical characteristic acquisition unit, the minimum value determination unit, and the abnormal state determination unit.
  13.  請求項12に記載の潤滑油異常検知プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium having recorded thereon the lubricant abnormality detection program according to claim 12.
PCT/JP2023/031107 2022-11-04 2023-08-29 Lubricating oil abnormality detection system, lubricating oil abnormality detection device, lubricating oil abnormality detection method, lubricating oil abnormality detection program and recording medium WO2024095582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177537 2022-11-04
JP2022177537 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024095582A1 true WO2024095582A1 (en) 2024-05-10

Family

ID=90930170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031107 WO2024095582A1 (en) 2022-11-04 2023-08-29 Lubricating oil abnormality detection system, lubricating oil abnormality detection device, lubricating oil abnormality detection method, lubricating oil abnormality detection program and recording medium

Country Status (1)

Country Link
WO (1) WO2024095582A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120848A (en) * 1984-07-09 1986-01-29 Horiba Ltd Deciding device for degree of deterioration of lubricating oil
JP2002287818A (en) * 2001-03-26 2002-10-04 Osaka Gas Co Ltd Power generation system and monitoring facility
JP2020012690A (en) * 2018-07-17 2020-01-23 株式会社日立製作所 Wind power generator diagnostic system and method
JP2021167791A (en) * 2020-04-13 2021-10-21 Kyb株式会社 Failure prediction system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120848A (en) * 1984-07-09 1986-01-29 Horiba Ltd Deciding device for degree of deterioration of lubricating oil
JP2002287818A (en) * 2001-03-26 2002-10-04 Osaka Gas Co Ltd Power generation system and monitoring facility
JP2020012690A (en) * 2018-07-17 2020-01-23 株式会社日立製作所 Wind power generator diagnostic system and method
JP2021167791A (en) * 2020-04-13 2021-10-21 Kyb株式会社 Failure prediction system

Similar Documents

Publication Publication Date Title
EP2505999B1 (en) Measurement method of degradation/alteration degree of lubricant oil and measurement device thereof
US20090145211A1 (en) Virtual engine oil quality sensor
CN107401438B (en) The method for reminding user to replace engine motor oil
JP4723568B2 (en) Online monitoring of non-aqueous fluid status
US8082776B2 (en) On-vehicle evaluation of oil formulation
CN110988311B (en) Vehicle oil life diagnosis method and device, vehicle and storage medium
KR20090026098A (en) Procedure for the regulation of ingredients of liquids, in particular of engine oil
US11988117B2 (en) Engine lubrication oil consumption and condition monitoring
KR20090041443A (en) Method for monitoring the state of an engine oil in an internal combustion engine
US9347903B2 (en) Method for detecting the type of lambda probes
US11802863B2 (en) Oil condition determination system, oil condition determination method, and oil condition determination program
WO2024095582A1 (en) Lubricating oil abnormality detection system, lubricating oil abnormality detection device, lubricating oil abnormality detection method, lubricating oil abnormality detection program and recording medium
Yang et al. An investigation of factors influencing the response of screen printed thick film electrochemical sensors in the monitoring of lubrication oil ageing
JP4748129B2 (en) Engine oil degradation judgment method and degradation judgment apparatus therefor
WO2023238690A1 (en) System for predicting physical properties of compressor oil
JP4504451B2 (en) Method for quantitatively detecting the aging effect on engine oil
CN110470699B (en) Method and analysis system for determining the quality of oil
US20240085364A1 (en) Sensing unit with functionalized electrodes
CN114673589B (en) Online detection method, device and system for abnormal oil consumption
JP7375784B2 (en) Oxygen concentration meter, oxygen concentration detection system, and resistance detection method for zirconia sensor
US20160139103A1 (en) Oil identification system
Agoston et al. Online Application of sensors monitoring lubricating oil properties in biogas engines
CN117577031A (en) OLED display life analysis method and device, electronic equipment and storage medium
JP4766970B2 (en) Battery state management device
CN118335208A (en) Method for quantitatively evaluating viscosity of thick oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885351

Country of ref document: EP

Kind code of ref document: A1