WO2024095565A1 - Inductor component - Google Patents

Inductor component Download PDF

Info

Publication number
WO2024095565A1
WO2024095565A1 PCT/JP2023/030124 JP2023030124W WO2024095565A1 WO 2024095565 A1 WO2024095565 A1 WO 2024095565A1 JP 2023030124 W JP2023030124 W JP 2023030124W WO 2024095565 A1 WO2024095565 A1 WO 2024095565A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
coil
external electrode
axis
inductor component
Prior art date
Application number
PCT/JP2023/030124
Other languages
French (fr)
Japanese (ja)
Inventor
由雅 吉岡
剛 高松
秀基 加茂
浩司 山内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024095565A1 publication Critical patent/WO2024095565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances

Definitions

  • This disclosure relates to inductor components.
  • the inductor component has an element body, a coil provided within the element body and wound along the axial direction, and a first external electrode and a second external electrode provided on the element body and electrically connected to the coil.
  • the coil has multiple coil patterns stacked along the axis. Adjacent coil patterns in the axial direction are connected via conductive vias.
  • the coil pattern has a wiring portion extending in a direction perpendicular to the axis, and a pad portion provided at the end of the wiring portion and connecting to the conductive via. The width of the pad portion is wider than the width of the wiring portion to improve the connectivity between the pad portion and the conductive via.
  • the width of the pad portion is wider than the width of the wiring portion, so part of the pad portion is located radially inside the coil relative to the wiring portion. This makes the inner diameter of the coil smaller, and the efficiency of obtaining inductance is not necessarily high.
  • the present disclosure therefore aims to provide an inductor component that can increase the efficiency of obtaining inductance.
  • an inductor component comprises: an element body including a first main surface and a second main surface opposed to each other; a coil provided on the element body and wound helically along an axis; a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
  • the axis of the coil is disposed parallel to the first major surface;
  • the coil is a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface; a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface; a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis; a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the coil
  • the "axis” refers to the intersection of a first plane passing through the center between the first coil wiring and the second coil wiring and a second plane passing through the center between the first through wiring and the second through wiring.
  • the “outermost turn on the first external electrode side” refers to the turn closest to the first external electrode, and is composed of one each of the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring.
  • the “length of the reference coil wiring” is the length along the center line of the width of the reference coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the first external electrodes or through wirings connected to both ends of the reference coil wiring.
  • the “length of the adjacent coil wiring” is the length along the center line of the width of the adjacent coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the through wirings connected to both ends of the adjacent coil wiring.
  • the external electrodes are provided on the element body specifically means that the external electrodes are provided on the outer surface side of the element body, including cases where the external electrodes are provided directly on the outer surface of the element body, cases where the external electrodes are provided on the outside of the element body via a separate member on the element body, and cases where the external electrodes are provided on the outer surface of the element body with part of them embedded in the element body.
  • the coil includes a first coil wiring, a first through wiring, a second coil wiring, and a second through wiring, and the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil can be increased and the efficiency of obtaining inductance can be increased. Also, by increasing the efficiency of obtaining inductance, the Q value can be increased. Furthermore, since the length of the reference coil wiring is shorter than the length of the adjacent coil wiring, the wiring length of the outermost turn can be adjusted, making it easy to adjust the inductance required for impedance matching, for example.
  • an inductor component comprises: an element body including a first main surface and a second main surface opposed to each other; a coil provided on the element body and wound helically along an axis; a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
  • the axis of the coil is disposed parallel to the first major surface;
  • the coil is a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface; a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface; a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis; a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the coil
  • the "length of the central coil wiring” refers to the length along the center line of the width of the central coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the through-wires that are connected to both ends of the central coil wiring.
  • the coil includes a first coil wiring, a first through wiring, a second coil wiring, and a second through wiring, and the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil can be increased and the efficiency of obtaining inductance can be increased. Also, by increasing the efficiency of obtaining inductance, the Q value can be increased. Furthermore, since the length of the reference coil wiring is shorter than the length of the central coil wiring, the wiring length of the outermost turn can be adjusted, making it easy to adjust the inductance required for impedance matching, for example.
  • the body comprises SiO2 .
  • all of the first coil wiring is arranged in parallel.
  • all of the second coil wiring is arranged in parallel.
  • the first external electrode is disposed above the reference coil wiring, and the first external electrode is connected to the reference coil wiring.
  • the first external electrode is connected to the first through-hole wiring.
  • the coil can be connected to the first external electrode over the shortest distance, reducing DC resistance.
  • the first through-hole wiring and the second through-hole wiring are not parallel when viewed in a direction parallel to the axis.
  • the distance between the first through-hole wiring and the second through-hole wiring can be increased, the inner diameter of the coil can be increased, and the Q value can be improved.
  • the element body includes SiO2
  • the first through wire includes SiO2 .
  • the linear expansion coefficient of the first through-hole wiring can be matched to the linear expansion coefficient of the element body, thereby suppressing cracks between the first through-hole wiring and the element body.
  • the first through wiring preferably includes a void portion or a resin portion.
  • the stress caused by the difference in linear expansion coefficient between the first through wiring and the element body can be absorbed by the void portion or the resin portion, thereby alleviating the stress.
  • the first through-hole wiring has a conductive layer located on the outer periphery when viewed from the direction in which the first through-hole wiring extends, and a non-conductive layer located inside the conductive layer.
  • the current when used in the high frequency band, the current mainly flows through the surface of the first through-hole wiring due to the skin effect, so by providing a conductive layer on the outer periphery, the Q value is not lowered.
  • the Q value when provided on the outer periphery, the Q value is not lowered.
  • by providing a non-conductive layer on the inside stress can be alleviated, and manufacturing costs can be reduced by not using a conductor.
  • the axial length of the coil is shorter than the inner diameter of the coil.
  • the coil length is short and the coil inner diameter is large, which improves the Q value.
  • the inductor component further comprises an organic insulator provided on the first main surface, and the base body is an inorganic insulator.
  • the organic insulator since the organic insulator is included, the organic insulator is easily given fluidity, and when the first coil wiring is covered with the organic insulator, the organic insulator can be easily filled between adjacent first coil wirings, improving insulation.
  • the outer surface of the first external electrode has a recessed portion.
  • the solder penetrates into the recessed portion of the first external electrode, improving the connection strength between the first external electrode and the solder.
  • the first through-hole wiring extends in a direction perpendicular to the first main surface, and the cross-sectional area of at least one of the two ends of the first through-hole wiring in the extension direction is larger than the cross-sectional area of the center of the first through-hole wiring in the extension direction.
  • the cross-sectional area of the end of the first through wiring can be increased, improving the connectivity between the first through wiring and at least one of the first coil wiring and the second coil wiring.
  • the cross-sectional area of the end of the first through wiring is large and the cross-sectional area of the center of the first through wiring is small, it is easy to form the first through wiring.
  • the thickness of the inductor component is 200 ⁇ m or less.
  • the inductor components can be made thinner.
  • the first external electrode and the second external electrode are preferably located inside the outer peripheral surface of the element body when viewed in a direction perpendicular to the first main surface.
  • the first external electrode and the second external electrode are not in contact with the outer peripheral surface of the element body, so that when the inductor components are singulated, the load on the first external electrode and the second external electrode can be reduced, and deformation and peeling of the first external electrode and the second external electrode can be suppressed. Therefore, even if the inductor component is made small, deformation and peeling of the first external electrode and the second external electrode can be prevented.
  • the inductor component according to one aspect of the present disclosure can improve the efficiency of obtaining inductance.
  • FIG. 1 is a schematic perspective view of an inductor component according to a first embodiment, as viewed from the bottom side.
  • FIG. This is a cross-sectional view of FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1 is a schematic bottom view of the bottom wiring as viewed from the bottom side.
  • FIG. 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • FIG. 11 is a cross-sectional view showing a first modified example of an inductor component.
  • FIG. 11 is a cross-sectional view showing a second modified example of the inductor component.
  • FIG. 11 is a cross-sectional view showing a third modified example of the inductor component.
  • FIG. 11 is a cross-sectional view showing a fourth modified example of the inductor component.
  • FIG. 11 is a schematic perspective view of an inductor component according to a second embodiment, as viewed from the bottom side.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG. 7.
  • 1 is a schematic bottom view of bottom wiring as viewed from the bottom side.
  • FIG. 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • FIG. 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • 5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component.
  • FIG. 11 is a cross-sectional view showing a first modified example of an inductor component.
  • FIG. 11 is a cross-sectional view showing a second modified example of the inductor component.
  • 13 is a schematic bottom view showing a third embodiment of an inductor component as viewed from the bottom side.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 12.
  • 1 is a schematic bottom view of the top surface wiring as viewed from the bottom surface side.
  • Fig. 1 is a schematic bottom view of the inductor component 1 as viewed from the bottom side.
  • Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1.
  • Fig. 3 is a cross-sectional view taken along line III-III in Fig. 1.
  • external electrodes are depicted by two-dot chain lines in Fig. 1.
  • the element body 10 is depicted as transparent so that the structure can be easily understood, but it may be semi-transparent or opaque.
  • the inductor component 1 is a surface mount type inductor component used, for example, in a high frequency signal transmission circuit. As shown in Figures 1, 2 and 3, the inductor component 1 includes an element body 10, a coil 110 provided on the element body 10 and wound in a spiral shape along an axis AX, and a first external electrode 121 and a second external electrode 122 provided on the element body 10 and electrically connected to the coil 110.
  • the element body 10 has a length, width, and height.
  • the element body 10 has a first end face 100e1 and a second end face 100e2 at both ends in the length direction, a first side face 100s1 and a second side face 100s2 at both ends in the width direction, and a bottom face 100b and a top face 100t at both ends in the height direction.
  • the outer surface 100 of the element body 10 includes the first end face 100e1 and the second end face 100e2, the first side face 100s1 and the second side face 100s2, the bottom face 100b, and the top face 100t.
  • the bottom face 100b corresponds to an example of a "first main face” as described in the claims
  • the top face 100t corresponds to an example of a "second main face” as described in the claims.
  • the length direction (longitudinal direction) of the element body 10, which is the direction from the first end face 100e1 to the second end face 100e2, is referred to as the X direction.
  • the width direction of the element body 10, which is the direction from the first side face 100s1 to the second side face 100s2, is referred to as the Y direction.
  • the height direction of the element body 10, which is the direction from the bottom face 100b to the top face 100t, is referred to as the Z direction.
  • the X direction, Y direction, and Z direction are mutually perpendicular, and when arranged in the order X, Y, Z, they form a right-handed system.
  • the "outer surface 100 of the element body” including the first end surface 100e1, the second end surface 100e2, the first side surface 100s1, the second side surface 100s2, the bottom surface 100b, and the top surface 100t of the element body 10 does not simply mean a surface facing the outer periphery of the element body 10, but a surface that is the boundary between the outside and the inside of the element body 10. Furthermore, “above the outer surface 100 of the element body 10” does not mean an absolute direction such as vertically upward as defined by the direction of gravity, but refers to a direction toward the outside of the outside and the inside with the outer surface 100 as a boundary, based on the outer surface 100. Therefore, "above the outer surface 100” is a relative direction determined by the orientation of the outer surface 100. Furthermore, "above” with respect to a certain element includes not only an upper side away from the element, that is, an upper position through another object on the element or an upper position with a space therebetween, but also a position directly above the element (on).
  • the axis AX of the coil 110 is arranged parallel to the bottom surface 100b.
  • the coil 110 includes a plurality of bottom surface wirings 11b arranged on the bottom surface 100b side with respect to the axis AX and arranged along the axis AX on a plane parallel to the bottom surface 100b, a plurality of top surface wirings 11t arranged on the top surface 100t side with respect to the axis AX and arranged along the axis AX on a plane parallel to the top surface 100t, a plurality of first through wirings 13 extending from the bottom surface wiring 11b side toward the top surface wiring 11t side and arranged along the axis AX, and a plurality of second through wirings 14 extending from the bottom surface wiring 11b side toward the top surface wiring 11t side, arranged on the opposite side of the first through wirings 13 with respect to the axis AX and arranged along the axis AX.
  • the bottom wiring 11b corresponds to an example of the "first coil wiring” described in the claims
  • the top wiring 11t corresponds to an example of the "second coil wiring” described in the claims.
  • the axis AX is the intersection of a first plane passing through the center between the bottom wiring 11b and the top wiring 11t, and a second plane passing through the center between the first through wiring 13 and the second through wiring 14.
  • the axis AX is a straight line passing through the center of the inner diameter portion of the coil 110.
  • the axis AX of the coil 110 has no dimension in a direction perpendicular to the axis AX.
  • the coil 110 includes the bottom wiring 11b, the first through wiring 13, the top wiring 11t, and the second through wiring 14.
  • the bottom wiring 11b, the first through wiring 13, the top wiring 11t, and the second through wiring 14 are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil 110 can be increased and the efficiency of obtaining inductance can be increased. Furthermore, by increasing the efficiency of obtaining inductance, the Q value can be increased.
  • the pad portion of a conventional inductor component and the bottom wiring 11b and top wiring 11t of this embodiment are "receiving portions" for the wiring that penetrates the element body (the conductive vias of a conventional inductor component and the first through wiring 13 and second through wiring 14 of this embodiment), and therefore have a shape that extends perpendicularly in the direction that penetrates the element body.
  • the pad portion extends in a direction perpendicular to the axis of the coil, and is likely to have a structure that blocks magnetic flux generated in the axial direction of the coil.
  • the first through wiring 13 and the second through wiring 14 extend in a direction perpendicular to the axis AX of the coil 110, so the bottom wiring 11b and the top wiring 11t extend in a direction parallel to the axis AX of the coil 110. Therefore, the bottom wiring 11b and the top wiring 11t are unlikely to have a structure that blocks magnetic flux generated in the direction of the axis AX. In other words, with this embodiment, a structure that is unlikely to block magnetic flux can be achieved, improving the inductance acquisition efficiency and Q value.
  • FIG. 4 is a schematic bottom view of bottom wiring 11b as viewed from the bottom side.
  • the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines, and further, the connection surface 13y of the first through wiring 13 with the bottom wiring 11b, the connection surface 14y of the second through wiring 14 with the bottom wiring 11b, the connection surface 121y of the first external electrode 121 with the bottom wiring 11b, and the connection surface 122y of the second external electrode 122 with the bottom wiring 11b are depicted with two-dot chain lines.
  • the bottom wiring 11b is the first reference coil wiring 111b that is located electrically closer to the first external electrode 121.
  • One of the multiple bottom wirings 11b is the first adjacent coil wiring 113b that is located on the same plane as the first reference coil wiring 111b and is adjacent to the first reference coil wiring 111b in the axial AX direction.
  • the length of the first reference coil wiring 111b (hereinafter referred to as the first length L1) is shorter than the length of the first adjacent coil wiring 113b (hereinafter referred to as the second length L2).
  • the first length L1 is the length along the center line of the width of the first reference coil wiring 111b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first reference coil wiring 111b and the center of the connection surface 121y of the first external electrode 121 connected to the second end of the first reference coil wiring 111b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the second length L2 is the length along the center line of the width of the first adjacent coil wiring 113b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first adjacent coil wiring 113b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the first adjacent coil wiring 113b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example.
  • the wiring length of the outermost turn can be made shorter than the wiring length of the turn formed by the first adjacent coil wiring 113b.
  • the first external electrode 121 is connected to the first reference coil wiring 111b while being disposed on the first reference coil wiring 111b. This eliminates the need to provide a wiring path that spans the inner diameter of the coil 110 when connecting the coil 110 and the first external electrode 121, and improves the Q value.
  • the first external electrode 121 is connected to the first through wiring 13 connected to the top wiring 11t, rather than the first reference coil wiring 111b, shortening the length of the top wiring 11t will result in the first through wiring 13 being disposed so as to span the inner diameter of the coil 110. In this case, the first through wiring 13 may impede the flow of magnetic flux in the coil 110, and the Q value may not be improved.
  • the top wiring 11t may be a reference coil wiring that is located electrically closer to the first external electrode 121.
  • one of the multiple top wirings 11t is an adjacent coil wiring that is located on the same plane as the reference coil wiring and is adjacent to the reference coil wiring in the axial AX direction.
  • the length of the reference coil wiring is shorter than the length of the adjacent coil wiring. This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
  • one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the first reference coil wiring 111b and is located in the center of the axis AX direction of the coil 110.
  • the length of the first reference coil wiring 111b (first length L1) is shorter than the length of the central coil wiring 115b (hereinafter referred to as third length L3).
  • the third length L3 is the length along the center line of the width of the central coil wiring 115b, as viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the central coil wiring 115b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the central coil wiring 115b.
  • the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example.
  • the wiring length of the outermost turn can be made shorter than the wiring length of the central turn in the axial AX direction of the coil 110.
  • the top wiring 11t may be a reference coil wiring that is located electrically closer to the first external electrode 121.
  • one of the multiple top wirings 11t is a central coil wiring that is located on the same plane as the reference coil wiring and is located in the center of the coil 110 in the axial AX direction.
  • the length of the reference coil wiring is shorter than the length of the central coil wiring. This makes it possible to adjust the wiring length of the outermost turn, making it easy to adjust the inductance.
  • the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
  • the bottom wiring 11b is the second reference coil wiring 112b located electrically closer to the second external electrode 122.
  • One of the multiple bottom wirings 11b is the second adjacent coil wiring 114b located on the same plane as the second reference coil wiring 112b and adjacent to the second reference coil wiring 112b in the axial AX direction.
  • the length of the second reference coil wiring 112b (hereinafter referred to as the fourth length L4) is shorter than the length of the second adjacent coil wiring 114b (hereinafter referred to as the fifth length L5). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and to easily adjust the inductance.
  • the fourth length L4 is the length along the center line of the width of the second reference coil wiring 112b between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the second reference coil wiring 112b and the center of the connection surface 122y of the second external electrode 122 connected to the second end of the second reference coil wiring 112b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the fifth length L5 is the length along the center line of the width of the second adjacent coil wiring 114b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second adjacent coil wiring 114b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the second adjacent coil wiring 114b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the second external electrode 122 is connected to the second reference coil wiring 112b while being disposed on the second external electrode 122. This eliminates the need to provide a wiring path that crosses the inner diameter of the coil 110 when connecting the coil 110 and the second external electrode 122, thereby improving the Q value.
  • one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the second reference coil wiring 112b and is located in the center of the coil 110 in the axial AX direction.
  • the length of the second reference coil wiring 112b (fourth length L4) is shorter than the length of the central coil wiring 115b (referred to as third length L3). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and thus makes it easy to adjust the inductance.
  • the top surface wiring 11t constituting the outermost turn of the coil 110 on the second external electrode 122 side may be the reference coil wiring.
  • one of the multiple top surface wirings 11t is the adjacent coil wiring, or one of the multiple top surface wirings 11t is the central coil wiring.
  • the volume of the inductor component 1 is 0.08 mm3 or less, and the size of the long side of the inductor component 1 is 0.65 mm or less.
  • the size of the long side of the inductor component 1 refers to the largest value among the length, width, and height of the inductor component 1, and in this embodiment, refers to the length in the X direction. According to the above configuration, the volume of the inductor component 1 is small and the long side of the inductor component 1 is short, so that the weight of the inductor component 1 is light. Therefore, even if the external electrodes 121 and 122 are small, the necessary mounting strength can be obtained.
  • the thickness of the inductor component 1 is preferably 200 ⁇ m or less. This allows the inductor component 1 to be made thin.
  • the size of the inductor component 1 (length (X direction) x width (Y direction) x height (Z direction)) is 0.6 mm x 0.3 mm x 0.3 mm, 0.4 mm x 0.2 mm x 0.2 mm, 0.25 mm x 0.125 mm x 0.120 mm, etc. Furthermore, the width and height do not have to be equal, and may be, for example, 0.4 mm x 0.2 mm x 0.3 mm.
  • the element body 10 contains SiO2 , which can provide insulation and rigidity to the element body 10.
  • the element body 10 is made of, for example, a sintered glass body.
  • the sintered glass body may contain alumina, which can further increase the strength of the element body.
  • the glass sintered body is formed, for example, by stacking multiple insulating layers containing glass.
  • the stacking direction of the multiple insulating layers is the Z direction.
  • the insulating layers are in a layered form having main surfaces extending in the XY plane. Note that, due to firing or the like, the interfaces between the multiple insulating layers of the element body 10 may not be clear.
  • the element body 10 may be made of, for example, a glass substrate.
  • the glass substrate may be a single-layer glass substrate, and since the majority of the element body is made of glass, losses such as eddy current losses at high frequencies can be suppressed.
  • the coil 110 includes a plurality of bottom wirings 11b, a plurality of top wirings 11t, a plurality of first through wirings 13, and a plurality of second through wirings 14.
  • the bottom wirings 11b, the first through wirings 13, the top wirings 11t, and the second through wirings 14 are connected in sequence to form at least a portion of the coil 110 wound in the axial direction AX.
  • the coil 110 is a so-called helical-shaped coil 110, so that in a cross section perpendicular to the axis AX, the area in which the bottom wiring 11b, the top wiring 11t, the first through wiring 13, and the second through wiring 14 run parallel to the winding direction of the coil 110 can be reduced, thereby reducing the stray capacitance in the coil 110.
  • a helical shape refers to a shape in which the number of turns in the entire coil is greater than one turn, and the number of turns in the coil in a cross section perpendicular to the axis is less than one turn.
  • One turn or more refers to a state in which, in a cross section perpendicular to the axis, the coil wiring has parts that are adjacent in the radial direction when viewed from the axial direction and run parallel to the winding direction
  • “less than one turn” refers to a state in which, in a cross section perpendicular to the axis, the coil wiring does not have parts that are adjacent in the radial direction when viewed from the axial direction and run parallel to the winding direction.
  • the bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the Y direction at a slight incline toward the X direction. All the bottom wiring 11b are arranged parallel to the X direction.
  • modified illumination such as annular illumination or dipole illumination
  • the pattern resolution in a specific direction can be improved to form a finer pattern.
  • the bottom wiring 11b extends in only one direction and all the bottom wirings 11b are arranged in parallel, so that fine bottom wiring 11b can be formed by using modified illumination in the photolithography process, for example, and the inductor component 1 can be made smaller.
  • the top surface wiring 11t extends in only one direction. Specifically, the top surface wiring 11t extends in the Y direction. All the top surface wiring 11t are arranged in parallel along the X direction. With the above configuration, the top surface wiring 11t extends in only one direction and is arranged in parallel. Therefore, by using, for example, modified illumination in the photolithography process, fine top surface wiring 11t can be formed, and the inductor component 1 can be made smaller.
  • the bottom wiring 11b and the top wiring 11t are made of a good conductor material such as copper, silver, gold, or an alloy of these.
  • the bottom wiring 11b and the top wiring 11t may be a metal film formed by plating, vapor deposition, sputtering, or the like, or may be a metal sintered body formed by applying and sintering a conductive paste.
  • the bottom wiring 11b and the top wiring 11t may also be a multi-layer structure in which multiple metal layers are stacked.
  • the thickness of the bottom wiring 11b and the top wiring 11t is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the first through wiring 13 is disposed on the first side surface 100s1 side of the axis AX within the through hole V of the element body 10, and the second through wiring 14 is disposed on the second side surface 100s2 side of the axis AX within the through hole V of the element body 10.
  • the first through wiring 13 and the second through wiring 14 each extend in a direction perpendicular to the bottom surface 100b and the top surface 100t. This allows the lengths of the first through wiring 13 and the second through wiring 14 to be shortened, thereby suppressing the DC resistance (Rdc). All of the first through wirings 13 and all of the second through wirings 14 are disposed in parallel along the X direction.
  • the first through wiring 13 contains SiO 2. According to this, when the element body 10 contains SiO 2 , the linear expansion coefficient of the first through wiring 13 can be matched to the linear expansion coefficient of the element body 10, and cracks between the first through wiring 13 and the element body 10 can be suppressed.
  • a conductive paste is used for the first through wiring 13.
  • the conductive material is Ag, Cu, or the like.
  • the second through wiring 14 similarly contains SiO 2 .
  • the first end of the bottom wiring 11b and the first end of the top wiring 11t overlap when viewed from a direction perpendicular to the bottom surface 100b, and the angle ⁇ between the bottom wiring 11b and the top wiring 11t is an acute angle.
  • the angle ⁇ is the angle between the center line of the width of the bottom wiring 11b (the dashed line in FIG. 2) and the center line of the width of the top wiring 11t (the dashed line in FIG. 2) when viewed from a direction perpendicular to the bottom surface 100b.
  • the angle ⁇ between the bottom wiring 11b and the top wiring 11t connected to the same first through wiring 13 is 5° or more and 45° or less when viewed from a direction perpendicular to the bottom surface 100b.
  • the angle ⁇ is the angle between the center line of the width of the bottom wiring 11b (the dashed line in FIG. 2) and the center line of the width of the top wiring 11t (the dashed line in FIG. 2) when viewed from a direction perpendicular to the bottom surface 100b.
  • the coil 110 is wound tightly, so that the inductance can be improved. Since the angle ⁇ is 45° or less, the coil length is shortened, the leakage magnetic flux is reduced, and the Q value is increased.
  • the coil length refers to the distance between the two ends located at the outermost positions in the axis AX direction among the bottom wiring 11b, the top wiring 11t, the first through wiring 13, and the second through wiring 14. Since the angle ⁇ is 5° or more, the possibility of contact between two adjacent first through wirings 13 in the axis AX direction is reduced, and the possibility of contact between two adjacent second through wirings 14 in the axis AX direction is reduced. Note that the angle ⁇ may be 5° or more and 45° or less in at least one pair of bottom wiring 11b and top wiring 11t among all the bottom wirings 11b and top wiring 11t.
  • the angle ⁇ between the bottom surface wiring 11b and the top surface wiring 11t connected to the same second through wiring 14 is 5° or more and 45° or less. This allows the coil 110 to be wound tightly, improving the inductance.
  • At least one of the bottom wiring 11b, top wiring 11t, first through wiring 13, and second through wiring 14 includes a void portion or a resin portion.
  • a void portion or a resin portion This allows the stress caused by the difference in linear expansion coefficient between the wiring and the element body 10 to be absorbed by the void portion or resin portion, and the stress can be alleviated.
  • a method for forming the void portion for example, a material that is burned away by sintering is used as the wiring material, and the void portion can be formed by sintering the wiring.
  • a method for forming the resin portion for example, a conductive paste can be used as the wiring material to form the resin portion.
  • At least one of the bottom surface wiring 11b and the top surface wiring 11t contains SiO 2.
  • the linear expansion coefficient of the wiring can be matched to the linear expansion coefficient of the element body 10, and cracks between the wiring and the element body 10 can be suppressed.
  • the first external electrode 121 is connected to a first end of the coil 110, and the second external electrode 122 is connected to a second end of the coil 110.
  • the first external electrode 121 is provided on the first end face 100e1 side with respect to the center in the X direction of the element body 10 so as to be exposed from the outer surface 100 of the element body 10.
  • the second external electrode 122 is provided on the second end face 100e2 side with respect to the center in the X direction of the element body 10 so as to be exposed from the outer surface 100 of the element body 10.
  • the first external electrode 121 and the second external electrode 122 are located inside the outer surface 100 of the element body 10.
  • the first external electrode 121 and the second external electrode 122 are located inside the first end surface 100e1, the second end surface 100e2, the first side surface 100s1, and the second side surface 100s2 of the element body 10.
  • the first external electrode 121 and the second external electrode 122 are not in contact with the outer surface 100 of the element body 10, so when the inductor components are singulated, the load on the first external electrode 121 and the second external electrode 122 can be reduced, and deformation and peeling of the first external electrode 121 and the second external electrode 122 can be suppressed. Therefore, even if the inductor component is made small, deformation and peeling of the first external electrode 121 and the second external electrode 122 can be prevented.
  • the first external electrode 121 may be provided continuously on the bottom surface 100b and the first end surface 100e1. In this way, since the first external electrode 121 is a so-called L-shaped electrode, a solder fillet can be formed on the first external electrode 121 when the inductor component 1 is mounted on a mounting board. Similarly, the second external electrode 122 may be provided continuously on the bottom surface 100b and the second end surface 100e2.
  • the first external electrode 121 has a bottom surface portion 121b provided on the bottom surface 100b and a via portion 121v embedded in the bottom surface 100b.
  • the via portion 121v is connected to the bottom surface portion 121b.
  • the via portion 121v is connected to an end of the bottom surface wiring 11b located on the first end surface 100e1 side in the axis AX direction.
  • the second external electrode 122 has a bottom surface portion 122b provided on the bottom surface 100b and a via portion 122v embedded in the bottom surface 100b.
  • the via portion 122v is connected to the bottom surface portion 122b.
  • the via portion 122v is connected to the end of the bottom surface wiring 11b located on the second end surface 100e2 side in the axis AX direction.
  • the first external electrode 121 has an underlayer 121e1 and a plating layer 121e2 that covers the underlayer 121e1.
  • the underlayer 121e1 includes a conductive material such as Ag or Cu.
  • the plating layer 121e2 includes a conductive material such as Ni or Sn.
  • a part of the bottom portion 121b and the via portion 121v are composed of the underlayer 121e1.
  • Another part of the bottom portion 121b is composed of the plating layer 121e2.
  • the second external electrode 122 has an underlayer and a plating layer that covers the underlayer.
  • the first external electrode 121 and the second external electrode 122 may be composed of a single layer of conductive material.
  • Figures 5A to 5M are views corresponding to the cross section II-II of Figure 1.
  • Figures 5I, 5J, and 5M are views corresponding to the cross section III-III of Figure 1.
  • a first insulating layer 1011 is provided on a base substrate 1000 by printing.
  • the material of the base substrate 1000 is, for example, a glass substrate, a silicon substrate, an alumina substrate, etc.
  • the material of the first insulating layer 1011 is, for example, a resin such as epoxy or polyimide, or an inorganic insulating film such as SiO or SiN.
  • the second insulating layer 1012 is provided on the first insulating layer 1011 by printing.
  • a groove 1012a is provided in the second insulating layer 1012.
  • the groove 1012a is formed, for example, by a photolithography process. Note that the groove may be formed from the beginning as a printing pattern.
  • a top conductor layer 1011t is provided in the groove 1012a by printing.
  • the material of the top conductor layer 1011t is, for example, Ag, Cu, Au, Al, an alloy containing at least one of these elements, solder paste, etc.
  • the top conductor layer 1011t is formed as a printing pattern so that it remains only in the groove 1012a. Note that after the top conductor layer 1011t is printed on the second insulating layer 1012, a photolithography process may be used to make the top conductor layer 1011t remain only in the groove 1012a.
  • a third insulating layer 1013 is provided on the second insulating layer 1012 by printing.
  • a first groove 1013a and a second groove 1013b are provided in the third insulating layer 1013.
  • the first groove 1013a and the second groove 1013b are formed in the same manner as in FIG. 5B.
  • the first through conductor layer 1131 of the first layer is provided by printing in the first groove 1013a
  • the second through conductor layer 1141 of the first layer is provided by printing in the second groove 1013b.
  • the first through conductor layer 1131 of the first layer and the second through conductor layer 1141 of the first layer are formed in the same manner as in FIG. 5C.
  • a fourth insulating layer 1014 is provided on the third insulating layer 1013, and a second-layer first penetrating conductor layer 1132 and a second-layer second penetrating conductor layer 1142 are provided in each of the two grooves provided in the fourth insulating layer 1014. Furthermore, a fifth insulating layer 1015 is provided on the fourth insulating layer 1014, and a third-layer first penetrating conductor layer 1133 and a third-layer second penetrating conductor layer 1143 are provided in each of the two grooves provided in the fifth insulating layer 1015.
  • a sixth insulating layer 1016 is provided on the fifth insulating layer 1015, and a bottom conductor layer 1011b is provided in a groove provided in the sixth insulating layer 1016.
  • the material of the bottom conductor layer 1011b is the same as the material of the top conductor layer 1011t.
  • a seventh insulating layer 1017 is provided on the sixth insulating layer 1016.
  • a groove 1017a is provided in the seventh insulating layer 1017 so that a portion of the bottom conductor layer 1011b is exposed.
  • an underlying conductor layer 1121e1 is provided on the seventh insulating layer 1017 and in the groove 1017a.
  • the material of the underlying conductor layer 1121e1 is, for example, a resin paste such as Ag or Cu.
  • the entire laminate is sintered in a high-temperature (e.g., 500°C or higher) furnace.
  • the first to seventh insulating layers 1011-1017 are sintered to form the base body 10
  • the top conductor layer 1011t is sintered to form the top wiring 11t
  • the bottom conductor layer 1011b is sintered to form the bottom wiring 11b
  • the first through conductor layers 1131-1133 of the first to third layers are sintered to form the first through wiring 13
  • the second through conductor layers 1141-1143 of the first to third layers are sintered to form the second through wiring 14
  • the base conductor layer 1121e1 is sintered to form the base layer 121e1.
  • the strength can be improved by sintering the insulating layers, and the conductor layers are sintered to volatilize unnecessary resin components contained in the conductor layers and fuse the conductor material contained in the conductor layers to achieve high conductivity.
  • the base substrate 1000 may be peeled off by decomposing the surface during sintering, or may be mechanically removed by grinding or the like before or after sintering, or may be chemically removed by etching or the like before or after sintering.
  • the chip is cut into individual pieces along cut lines C.
  • a plating layer 121e2 is formed by barrel plating so as to cover the base layer 121e1, forming a first external electrode 121. In this way, the inductor component 1 is manufactured as shown in FIG. 2.
  • Fig. 6A is a view showing a first modified example of an inductor component corresponding to the II-II cross section of Fig. 1.
  • the first through wire 13 and the second through wire 14 are not parallel when viewed from a direction parallel to the axis AX of the coil 110. This makes it possible to increase the distance between the first through wire 13 and the second through wire 14, thereby making it possible to increase the inner diameter of the coil 110 and improve the Q value.
  • the first through wiring 13 and the second through wiring 14 are bent at the center so that the distance between them becomes wider toward the center in the Z direction.
  • the first through wiring 13 and the second through wiring 14 each have a shape that spreads outward in the radial direction of the coil 110 toward the center in the Z direction.
  • the first through wiring 13 and the second through wiring 14 each have a stepped shape along the Z direction. According to the above configuration, when the first through wiring 13 and the second through wiring 14 are each formed by stacking multiple conductor layers, the first through wiring 13 and the second through wiring 14 can be easily formed in a stepped shape by stacking the conductor layers of each layer in a shifted manner.
  • FIG. 6B is a view showing a second modified example of the inductor component, corresponding to the cross section taken along line II-II in Fig. 1.
  • the first through wire 13 and the second through wire 14 are not parallel when viewed from a direction parallel to the axis AX of the coil 110. This makes it possible to increase the distance between the first through wire 13 and the second through wire 14, thereby making it possible to increase the inner diameter of the coil 110 and improve the Q value.
  • the first through wiring 13 and the second through wiring 14 are inclined so that the distance between them becomes wider toward the top wiring 11t in the Z direction.
  • the first through wiring 13 and the second through wiring 14 each have a shape that spreads outward in the radial direction of the coil 110 as far as the top wiring 11t in the Z direction.
  • the coil 110 has a trapezoidal shape when viewed from the axis AX direction.
  • FIG. 6C is a view showing a third modified example of an inductor component corresponding to the cross section taken along line II-II in Fig. 1.
  • an inductor component 1C of the third modified example includes a first coil 110A and a second coil 110B, as compared with the inductor component 1A of the first modified example shown in Fig. 6A.
  • the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110A to be increased, and the Q value to be improved.
  • the first through wiring 13 has the same configuration as the first through wiring 13 of the inductor component 1A of the first modified example.
  • the second through wiring 14 has a linear shape parallel to the Z direction. In other words, the first through wiring 13 is bent at the center so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider toward the center in the Z direction.
  • the first through wiring 13 has a stepped shape along the Z direction. According to the above configuration, when the first through wiring 13 is formed by stacking multiple conductor layers, the conductor layers of each layer are stacked with a shift, so that the first through wiring 13 can be easily formed in a stepped shape.
  • the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110B to be increased, and the Q value to be improved.
  • the second through wiring 14 has the same configuration as the second through wiring 14 of the inductor component 1A of the first modified example.
  • the first through wiring 13 has a linear shape parallel to the Z direction.
  • the second through wiring 14 is bent at the center so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider toward the center in the Z direction.
  • the second through wiring 14 has a stepped shape along the Z direction. According to the above configuration, when the second through wiring 14 is formed by stacking multiple conductor layers, the second through wiring 14 can be easily formed in a stepped shape by stacking the conductor layers of each layer in a shifted manner.
  • FIG. 6D is a view showing a fourth modified example of an inductor component corresponding to the cross section taken along line II-II in Fig. 1.
  • an inductor component 1D of the fourth modified example includes a first coil 110A and a second coil 110B, as compared with the inductor component 1B of the second modified example shown in Fig. 6B.
  • the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110A to be increased, and the Q value to be improved.
  • the first through wiring 13 has the same configuration as the first through wiring 13 of the inductor component 1B of the second modified example.
  • the second through wiring 14 has a linear shape parallel to the Z direction. In other words, the first through wiring 13 is inclined so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider in the Z direction toward the top surface wiring 11t side.
  • the first through wiring 13 and the second through wiring 14 can be formed in a linear shape and shortened, thereby reducing the DC resistance of the first through wiring 13 and the second through wiring 14.
  • the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110B to be increased, and the Q value to be improved.
  • the second through wiring 14 has the same configuration as the second through wiring 14 of the inductor component 1B of the second modified example.
  • the first through wiring 13 has a linear shape parallel to the Z direction.
  • the second through wiring 14 is inclined so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider in the Z direction toward the top surface wiring 11t.
  • Fig. 7 is a schematic bottom view showing the second embodiment of the inductor component as viewed from the bottom side.
  • Fig. 8 is a cross-sectional view taken along line VIII-VIII of Fig. 7.
  • the insulating layer is omitted, and the external electrodes are drawn with two-dot chain lines.
  • the element body 10 is drawn transparently so that the structure can be easily understood.
  • the second embodiment differs from the first embodiment mainly in the position of the coil axis, the material of the element body, and the provision of an insulating layer, and these differences in configuration will be mainly described below.
  • the other configurations are the same as those of the first embodiment, and description thereof will be omitted.
  • the axis AX of the coil 110 is perpendicular to the X direction. Specifically, the axis AX is parallel to the Y direction and passes through the center of the element body 10 in the X direction. This can reduce the interference with the magnetic flux of the coil 110 by the first external electrode 121 and the second external electrode 122, improving the efficiency of obtaining inductance.
  • the length of coil 110 in the axial AX direction is shorter than the inner diameter of coil 110.
  • the length of coil 110 in the axial AX direction is also called the coil length. This allows the Q value to be improved because the coil length is short and the coil inner diameter is large.
  • the inner diameter of the coil refers to the equivalent diameter of a circle based on the minimum area of the region surrounded by coil 110 when viewed through the axial AX direction.
  • the element body 10 is an inorganic insulator.
  • the material of the element body 10 is preferably glass, which has high insulating properties and can suppress eddy currents and increase the Q value.
  • the element body 10 preferably contains silicon, which provides high thermal stability of the element body 10 and therefore can suppress fluctuations in dimensions of the element body 10 due to heat and reduce variations in electrical characteristics.
  • the element body 10 is preferably a single-layer glass plate. This ensures the strength of the element body 10. Furthermore, in the case of a single-layer glass plate, the dielectric loss is small, so the Q value at high frequencies can be increased. Furthermore, since there is no sintering process as in the case of sintered bodies, deformation of the element body 10 during sintering can be suppressed, which suppresses pattern misalignment, making it possible to provide an inductor component with a small inductance tolerance.
  • the material of the single-layer glass plate is preferably a photosensitive glass plate such as Foturan II (registered trademark of Schott AG).
  • the single-layer glass plate preferably contains cerium oxide (ceria: CeO 2 ), in which case the cerium oxide acts as a sensitizer, making processing by photolithography easier.
  • the single-layer glass plate can be processed by mechanical processing such as drilling and sandblasting, dry/wet etching using a photoresist/metal mask, laser processing, etc., it may be a glass plate that does not have photosensitivity.
  • the single-layer glass plate may be made by sintering a glass paste, or may be formed by a known method such as the float method.
  • the inductor component 1E has an insulator 22.
  • the insulator 22 covers both the bottom surface 100b and the top surface 100t of the element body 10. Note that the insulator 22 may be provided only on the bottom surface 100b out of the bottom surface 100b and the top surface 1100t.
  • the insulator 22 is a member that covers the wiring (bottom wiring 11b, top wiring 11t) to protect the wiring from external forces, prevent damage to the wiring, and improve the insulation of the wiring.
  • the insulator 22 is preferably an organic insulator.
  • the insulator 22 may be a resin film such as epoxy or polyimide, which is easy to form.
  • the insulator 22 is preferably made of a material with a low dielectric constant, which can reduce the stray capacitance formed between the coil 110 and the external electrodes 121 and 122 when the insulator 22 is present between the coil 110 and the external electrodes 121 and 122.
  • the insulator 22 can be formed, for example, by laminating a resin film such as ABF GX-92 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), or by applying a paste-like resin and thermally curing it.
  • the insulator 22 may be an inorganic film such as an oxide, nitride, or oxynitride of silicon or hafnium, which has excellent insulation properties and can be made into a thin film.
  • the organic insulator is located inside the outer surface 100 of the inorganic insulator when viewed from a direction perpendicular to the bottom surface 100b.
  • the organic insulator is easily given fluidity, and when the wiring (bottom surface wiring 11b, top surface wiring 11t) is covered with the organic insulator, the organic insulator can be easily filled between adjacent wirings, improving insulation.
  • the organic insulator since the organic insulator is not in contact with the outer surface of the mechanical insulator, the load on the organic insulator can be reduced when singulating into individual inductor components, and deformation and peeling of the organic insulator can be suppressed.
  • the bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the X direction. All the bottom wirings 11b are arranged in parallel along the Y direction.
  • the top wiring 11t extends in only one direction. Specifically, the top wiring 11t extends in the X direction at a slight incline toward the Y direction. All the top wirings 11t are arranged in parallel along the Y direction.
  • the first through wiring 13 is disposed on the first end face 100e1 side with respect to the axis AX within the through hole V of the element body 10
  • the second through wiring 14 is disposed on the second end face 100e2 side with respect to the axis AX within the through hole V of the element body 10.
  • the first through wiring 13 and the second through wiring 14 each extend in a direction perpendicular to the bottom surface 100b and the top surface 100t.
  • the multiple first through wirings 13 and the multiple second through wirings 14 are each disposed in parallel along the Y direction.
  • FIG. 9 is a schematic bottom view of the bottom wiring 11b as viewed from the bottom side.
  • the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines
  • the connection surface 13y of the first through wiring 13 with the bottom wiring 11b, the connection surface 14y of the second through wiring 14 with the bottom wiring 11b, the connection surface 121y of the first external electrode 121 with the bottom wiring 11b, and the connection surface 122y of the second external electrode 122 with the bottom wiring 11b are depicted with two-dot chain lines.
  • the bottom wiring 11b is the first reference coil wiring 111b that is located electrically closer to the first external electrode 121.
  • One of the multiple bottom wirings 11b is the adjacent coil wiring 116b that is located on the same plane as the first reference coil wiring 111b and is adjacent to the first reference coil wiring 111b in the axial AX direction.
  • the length of the first reference coil wiring 111b (hereinafter referred to as the sixth length L6) is shorter than the length of the adjacent coil wiring 116b (hereinafter referred to as the seventh length L7).
  • the sixth length L6 is the length along the center line of the width of the first reference coil wiring 111b between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the first reference coil wiring 111b and the center of the connection surface 121y of the first external electrode 121 connected to the second end of the first reference coil wiring 111b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the seventh length L7 is the length along the center line of the width of the adjacent coil wiring 116b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the adjacent coil wiring 116b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the adjacent coil wiring 116b, when viewed from a direction perpendicular to the bottom surface 100b.
  • the sixth length L6 is shorter than the seventh length L7, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example.
  • the wiring length of the outermost turn can be made shorter than the wiring length of the turn formed by the adjacent coil wiring 116b.
  • one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the first reference coil wiring 111b and is located in the center of the coil 110 in the axial AX direction.
  • the length of the first reference coil wiring 111b (sixth length L6) is shorter than the length of the central coil wiring 115b (hereinafter referred to as eighth length L8).
  • eighth length L8 is the same as the seventh length L7.
  • the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example.
  • the wiring length of the outermost turn can be made shorter than the wiring length of the central turn in the axial AX direction of the coil 110.
  • the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
  • the bottom wiring 11b is the second reference coil wiring 112b located electrically closer to the second external electrode 122.
  • One of the multiple bottom wirings 11b is the adjacent coil wiring 116b located on the same plane as the second reference coil wiring 112b and adjacent to the second reference coil wiring 112b in the axial AX direction.
  • the length of the second reference coil wiring 112b (hereinafter referred to as the ninth length L9) is shorter than the length of the adjacent coil wiring 116b (seventh length L7). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and to easily adjust the inductance.
  • the ninth length L9 is the length along the center line of the width of the second reference coil wiring 112b when viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second reference coil wiring 112b and the center of the connection surface 122y of the second external electrode 122 connected to the second end of the second reference coil wiring 112b.
  • one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the second reference coil wiring 112b and is located in the center of the coil 110 in the axial AX direction.
  • the length of the second reference coil wiring 112b (ninth length L9) is shorter than the length of the central coil wiring 115b (eighth length L8). This allows the wiring length of the outermost turn on the second external electrode 122 side to be adjusted, making it easy to adjust the inductance.
  • the outer surface of the first external electrode 121 has a recess 121a.
  • the recess 121a is provided at a position that overlaps with the via portion 121v on the upper surface of the first external electrode 121.
  • the outer surface of the second external electrode 122 may have a recessed portion. With this, when the inductor component 1E is mounted on a substrate, solder will enter the recessed portion of the second external electrode 122, improving the connection strength between the second external electrode 122 and the solder.
  • the top surfaces of the first external electrode 121 and the second external electrode 122 may be formed to be flat.
  • copper foil 2001 is provided by printing on a base substrate 2000.
  • the material of the base substrate 2000 is the same as that of the base substrate 1000 in the first embodiment.
  • a glass substrate 2010 that will become the element body 10 is provided on a base substrate 2000.
  • the base substrate 2000 and the glass substrate 2010 are attached to each other using a jig such as conductive tape, pins, or a frame.
  • the glass substrate 2010 has a through hole V.
  • the glass substrate 2010 is, for example, a TGV (Through Glass Via) substrate.
  • a TGV substrate is a substrate in which a through hole has been formed in advance by a laser, photolithography, or the like.
  • the glass substrate 2010 may be, for example, a TSV (Through Silicon Via) substrate, or may be something else.
  • Ti/Cu or other necessary conductive materials may be deposited in advance as a seed on the surface of the glass substrate 2010 by sputtering or the like.
  • a first through conductor layer 2013 that will become the first through wiring 13 is formed in the through hole V of the glass substrate 2010.
  • a second through conductor layer that will become the second through wiring 14 is similarly formed in the through hole V.
  • electrolytic plating is performed in the through hole V of the glass substrate 2010 to form the first through conductor layer 2013.
  • a seed layer may be formed on the surface of the glass substrate 2010 or the inner surface of the through hole V by sputtering or the like, and a through conductor layer may be formed by known methods such as filled plating, conformal plating, or a printing and filling method of a conductive paste. If there is unnecessary plating growth on the surface of the glass substrate 2010, the unnecessary portions are removed by polishing, CMP, wet etching (etch-back), or dry etching.
  • the base substrate 2000 is peeled off from the glass substrate 2010.
  • the base substrate 2000 may be removed mechanically by grinding or the like, or may be removed chemically by etching or the like.
  • a bottom conductor layer 2011b that will become the bottom wiring 11b and a top conductor layer 2011t that will become the top wiring 11t are formed on a glass substrate 2010.
  • a seed layer (not shown) is provided on the entire surface of the glass substrate 2010, and a patterned photoresist is formed on the seed layer.
  • a copper layer is formed by electrolytic plating on the seed layer in the openings of the photoresist.
  • the photoresist and seed layer are removed by wet etching or dry etching. This forms the bottom conductor layer 2011b and the top conductor layer 2011t that are patterned into an arbitrary shape.
  • the bottom conductor layer 2011b and the top conductor layer 2011t may be formed one at a time, or both may be formed simultaneously.
  • insulating layers 2022 that become insulators 22 are provided on the top and bottom surfaces of glass substrate 2010 so as to cover the conductor layers.
  • bottom-side insulating layer 2022 and top-side insulating layer 2022 may be formed one at a time, or both may be formed simultaneously.
  • holes 2022a are provided on bottom conductor layer 2011b of bottom-side insulating layer 2022 using photolithography or laser processing.
  • a first external electrode conductor layer 2121 that will become the first external electrode 121 is provided on the bottom insulating layer 2022.
  • the first external electrode conductor layer 2121 is connected to the bottom conductor layer 2011b through the hole 2022a.
  • a Pd catalyst (not shown) is provided on the bottom insulating layer 2022, and a Ni, Au plating layer is formed by electroless plating.
  • a patterned photoresist is formed on the plating layer. The plating layer in the opening of the photoresist is removed by wet etching or dry etching. This forms the first external electrode conductor layer 2121 patterned into an arbitrary shape.
  • a seed layer (not shown) is provided on the bottom insulating layer 2022, and a patterned photoresist is formed on the seed layer.
  • the seed layer in the opening of the photoresist is removed by wet etching or dry etching.
  • a Ni, Au plating layer may be formed on the remaining seed layer by electroless plating.
  • a second external electrode conductor layer that will become the second external electrode 122 is similarly provided on the bottom insulating layer 2022.
  • the first external electrode conductor layer 2121 is formed to conform to the shape of the upper surface of the insulating layer 2022 on the bottom side, so that the upper surface of the first external electrode conductor layer 2121 has a recessed portion in the area that overlaps with the hole 2022a.
  • the chip is cut into individual pieces along cut lines C. This produces inductor component 1E as shown in FIG. 8.
  • Fig. 11A is a view showing a first modified example of an inductor component, corresponding to the VIII-VIII cross section of Fig. 7.
  • the first through wiring 13 extends in a direction perpendicular to the bottom wiring 11b, and the cross-sectional area of each of both end portions 13e in the extending direction of the first through wiring 13 is larger than the cross-sectional area of a central portion 13m in the extending direction of the first through wiring 13. That is, in a cross section along the extending direction of the first through wiring 13, the width in the direction perpendicular to the extending direction of the first through wiring 13 increases continuously from the central portion 13m toward both end portions 13e.
  • the cross-sectional area of one end 13e of the first through-hole wiring 13 may be larger than the cross-sectional area of the central portion 13m of the first through-hole wiring 13.
  • the cross-sectional area of at least one end of the second through-hole wiring 14 may be larger than the cross-sectional area of the central portion 13m of the first through-hole wiring 13.
  • FIG. 11B is a diagram showing a second modified inductor component corresponding to the VIII-VIII cross section of FIG. 7.
  • the first through wiring 13 has a conductive layer 13s located on the outer periphery side as viewed from the extending direction of the first through wiring 13, and a non-conductive layer 13u located inside the conductive layer 13s.
  • current mainly flows through the surface of the first through wiring 13 due to the skin effect, so that the Q value is not lowered by providing the conductive layer 13s on the outer periphery side.
  • the non-conductive layer 13u on the inner side stress can be alleviated, and the manufacturing cost can be reduced by not using a conductor.
  • a seed layer is provided on the inner surface of the through hole V of the element body 10 by sputtering or electroless plating. Then, a plating layer is formed on the seed layer by electrolytic plating. In this way, multiple conductive layers 13s such as Ti/Cu/electrolytic Cu or Pd/electroless Cu/electrolytic Cu can be formed on the outer periphery of the first through wiring 13. After that, the inside of the conductive layer 13s is sealed with resin by printing or heat pressing to form a non-conductive layer 13u made of resin. In this way, stress can be relieved by the non-conductive layer 13u inside the first through wiring 13 while current flows through the surface (conductive layer 13s) of the first through wiring 13.
  • the second through wiring 14 may have a conductive layer located on the outer periphery when viewed from the direction in which the second through wiring 14 extends, and a non-conductive layer located inside the conductive layer. Note that the cross-sectional area of each of the two ends in the extension direction of the first through wiring 13 is larger than the cross-sectional area of the center part in the extension direction of the first through wiring 13, but the cross-sectional area of each of the two ends in the extension direction of the first through wiring 13 may be the same as the cross-sectional area of the center part in the extension direction of the first through wiring 13.
  • FIG. 12 is a schematic bottom view showing the third embodiment of the inductor component as viewed from the bottom side.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12.
  • the insulating layer is omitted, and the external electrodes are drawn by two-dot chain lines.
  • the element body 10 is drawn transparently so that the structure can be easily understood.
  • the third embodiment differs from the second embodiment in the shapes of the bottom wiring and the top wiring, and in the connections between the first external electrode and the second external electrode and the coil, and these different configurations will be described below. The other configurations are the same as those of the first embodiment, and their description will be omitted.
  • the top wiring 11t extends in only one direction. Specifically, the top wiring 11t is shaped to extend in the X direction. All the top wirings 11t are arranged in parallel along the Y direction.
  • the bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the X direction at a slight incline toward the Y direction. All the bottom wirings 11b are arranged in parallel along the Y direction.
  • the first external electrode 121 is connected to the first through-hole wiring 13, not the bottom wiring 11b.
  • the first end of the first through-hole wiring 13 is connected to the first external electrode 121
  • the second end of the first through-hole wiring 13 is connected to the top wiring 11t.
  • the second external electrode 122 is connected to the second through-hole wiring 14 at the top in FIG. 12, not to the bottom wiring 11b.
  • the first end of the second through-hole wiring 14 is connected to the second external electrode 122, and the second end of the second through-hole wiring 14 is connected to the top wiring 11t at the top in FIG. 12.
  • FIG. 14 is a schematic bottom view of the top wiring 11t as viewed from the bottom side.
  • the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines
  • the connection surface 13y of the first through wiring 13 with the top wiring 11t and the connection surface 14y of the second through wiring 14 with the top wiring 11t are depicted with two-dot chain lines.
  • the top wiring 11t is the first reference coil wiring 111t that is electrically closer to the first external electrode 121.
  • One of the multiple top wirings 11t is an adjacent coil wiring 116t that is located on the same plane as the first reference coil wiring 111t and is adjacent to the first reference coil wiring 111t in the axial AX direction.
  • the length of the first reference coil wiring 111t (hereinafter referred to as the tenth length L10) is shorter than the length of the adjacent coil wiring 116t (hereinafter referred to as the eleventh length L11).
  • the tenth length L10 is the length along the center line of the width of the first reference coil wiring 111t between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the first reference coil wiring 111t and the center of the connection surface 13y of the first through wiring 13 connected to the second end of the first reference coil wiring 111t, when viewed from a direction perpendicular to the bottom surface 100b.
  • the eleventh length L11 is the length along the center line of the width of the adjacent coil wiring 116t between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the adjacent coil wiring 116t and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the adjacent coil wiring 116t, when viewed from a direction perpendicular to the bottom surface 100b.
  • the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and for example, the inductance required for impedance matching can be easily adjusted.
  • one of the multiple top surface wirings 11t is a central coil wiring 115t that is located on the same plane as the first reference coil wiring 111t and is located in the center of the coil 110 in the axial AX direction.
  • the length of the first reference coil wiring 111t (tenth length L10) is shorter than the length of the central coil wiring 115t (hereinafter referred to as twelfth length L12).
  • the central coil wiring 115t is the same as the adjacent coil wiring 116t
  • the twelfth length L12 is the same as the eleventh length L11.
  • the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and for example, the inductance required for impedance matching can be easily adjusted.
  • the tenth length L10 is shorter than the eleventh length L11
  • the second characteristic that "the tenth length L10 is shorter than the twelfth length L12." This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
  • the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
  • the top wiring 11t is the second reference coil wiring 112t located electrically closer to the second external electrode 122.
  • One of the multiple top wirings 11t is an adjacent coil wiring 116t located on the same plane as the second reference coil wiring 112t and adjacent to the second reference coil wiring 112t in the axial AX direction.
  • the length of the second reference coil wiring 112t (hereinafter referred to as the thirteenth length L13) is shorter than the length of the adjacent coil wiring 116t (the eleventh length L11). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, making it easy to adjust the inductance.
  • the thirteenth length L13 is the length along the center line of the width of the second reference coil wiring 112t when viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second reference coil wiring 112t and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the second reference coil wiring 112t.
  • one of the multiple top surface wirings 11t is a central coil wiring 115t that is located on the same plane as the second reference coil wiring 112t and is located in the center of the coil 110 in the axial AX direction.
  • the length of the second reference coil wiring 112t (thirteenth length L13) is shorter than the length of the central coil wiring 115t (twelfth length L12). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and thus makes it easy to adjust the inductance.
  • one end of the first reference coil wiring 111b is connected to the first external electrode 121, but it may be connected to the first external electrode 121 via other wiring (columnar wiring).
  • the first length L1 is the length along the center line of the width of the first reference coil wiring 111b, as viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first reference coil wiring 111b and the center of the connection surface of the other wiring connected to the second end of the first reference coil wiring 111b.
  • the same may also be true for the connection between the second reference coil wiring 112b and the second external electrode 122.
  • the present disclosure includes the following aspects. ⁇ 1> an element body including a first main surface and a second main surface opposed to each other; a coil provided on the element body and wound helically along an axis; a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
  • the axis of the coil is disposed parallel to the first major surface;
  • the coil is a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface; a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface; a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis; a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through
  • an element body including a first main surface and a second main surface opposed to each other; a coil provided on the element body and wound helically along an axis; a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
  • the axis of the coil is disposed parallel to the first major surface;
  • the coil is a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface; a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface; a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis; a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
  • ⁇ 3> The inductor component according to ⁇ 1> or ⁇ 2>, wherein the element body contains SiO 2 .
  • ⁇ 4> The inductor component according to any one of ⁇ 1> to ⁇ 3>, wherein all of the first coil wirings are arranged in parallel.
  • ⁇ 5> The inductor component according to any one of ⁇ 1> to ⁇ 4>, wherein all of the second coil wirings are arranged in parallel.
  • ⁇ 6> The inductor component according to any one of ⁇ 1> to ⁇ 5>, wherein the first external electrode is disposed above the reference coil wiring, and the first external electrode is connected to the reference coil wiring.
  • ⁇ 7> The inductor component according to any one of ⁇ 1> to ⁇ 5>, wherein the first external electrode is connected to the first through wiring.
  • ⁇ 8> The inductor component according to any one of ⁇ 1> to ⁇ 7>, wherein the first through wiring and the second through wiring are not parallel to each other when viewed in a direction parallel to the axis.
  • the element body includes SiO2 , The inductor component according to any one of ⁇ 1> to ⁇ 8>, wherein the first through wiring contains SiO 2 .
  • ⁇ 10> The inductor component according to any one of ⁇ 1> to ⁇ 9>, wherein the first through wiring includes a void portion or a resin portion.
  • an organic insulator is provided on the first main surface, The inductor component according to any one of ⁇ 1> to ⁇ 12>, wherein the element body is an inorganic insulator.
  • ⁇ 14> The inductor component according to any one of ⁇ 1> to ⁇ 13>, wherein an outer surface of the first external electrode has a recess.
  • the first through-hole wiring extends in a direction perpendicular to the first main surface,
  • ⁇ 16> The inductor component according to any one of ⁇ 1> to ⁇ 15>, wherein the inductor component has a thickness of 200 ⁇ m or less.
  • ⁇ 17> An inductor component described in any one of ⁇ 1> to ⁇ 16>, wherein, when viewed in a direction perpendicular to the first main surface, the first external electrode and the second external electrode are located inside the outer peripheral surface of the element body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Provided is an inductor component enabling higher efficiency of inductance acquisition. This inductor component comprises: an element including a first principal surface and second principal surface that face one another; a coil that is provided to the element and is wound helically along an axis; and a first external electrode and a second external electrode that are provided to the element and are electrically connected to the coil. The axis of the coil is arranged in parallel to the first principal surface. The coil includes: a plurality of first coil wirings that are provided to a first principal surface side with respect to the axis and are arrayed along the axis on a plane parallel to the first principal surface; a plurality of second coil wirings that are provided to a second principal surface side with respect to the axis and are arrayed along the axis on a plane parallel to the second principal surface; a plurality of first through wirings that extend from the first coil wiring side toward the second coil wiring side and are arrayed along the axis; and a plurality of second through wirings that extend from the first coil wiring side toward the second coil wiring side, are provided to the opposite side from the first through wirings with respect to the axis, and are arrayed along the axis. The first coil wirings, the first through wirings, the second coil wirings, and the second through wirings are connected in the stated order and thereby constitute at least part of the helical shape. A reference coil wiring, which is the one of the first coil wirings and the second coil wirings constituting an outermost turn of the first external electrode-side coils that is located electrically closer to the first external electrode, has a shorter length than the length of an adjacent coil wiring that is located on the same plane as that of the reference coil wiring and adjoins the reference coil wiring in the axial direction.

Description

インダクタ部品Inductor Components
 本開示は、インダクタ部品に関する。 This disclosure relates to inductor components.
 従来、インダクタ部品としては、特許第6652280号公報(特許文献1)に記載されたものがある。インダクタ部品は、素体と、素体内に設けられ、軸方向に沿って巻き回されたコイルと、素体に設けられ、コイルに電気的に接続された第1外部電極および第2外部電極とを有する。 A conventional inductor component is described in Japanese Patent No. 6652280 (Patent Document 1). The inductor component has an element body, a coil provided within the element body and wound along the axial direction, and a first external electrode and a second external electrode provided on the element body and electrically connected to the coil.
 コイルは、軸に沿って積層された複数のコイルパターンを有する。軸方向に隣り合うコイルパターンは、導電性ビアを介して、接続される。コイルパターンは、軸に直交する方向に延在する配線部と、配線部の端部に設けられ導電性ビアと接続するパッド部とを有する。パッド部の幅は、パッド部と導電性ビアとの接続性を向上させるため、配線部の幅に比べて広い。 The coil has multiple coil patterns stacked along the axis. Adjacent coil patterns in the axial direction are connected via conductive vias. The coil pattern has a wiring portion extending in a direction perpendicular to the axis, and a pad portion provided at the end of the wiring portion and connecting to the conductive via. The width of the pad portion is wider than the width of the wiring portion to improve the connectivity between the pad portion and the conductive via.
特許第6652280号公報Patent No. 6652280
 ところで、前記従来のようなインダクタ部品では、パッド部の幅は、配線部の幅に比べて広いので、パッド部の一部は、配線部よりもコイルの径方向の内側に位置する。このため、コイルの内径が小さくなり、インダクタンスの取得効率が必ずしも高いと言えない。 In the conventional inductor components described above, the width of the pad portion is wider than the width of the wiring portion, so part of the pad portion is located radially inside the coil relative to the wiring portion. This makes the inner diameter of the coil smaller, and the efficiency of obtaining inductance is not necessarily high.
 そこで、本開示は、インダクタンスの取得効率を高くすることができるインダクタ部品を提供することにある。 The present disclosure therefore aims to provide an inductor component that can increase the efficiency of obtaining inductance.
 前記課題を解決するため、本開示の一態様であるインダクタ部品は、
 互いに対向する第1主面および第2主面を含む素体と、
 前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
 前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
を備え、
 前記コイルの前記軸は、前記第1主面に平行に配置され、
 前記コイルは、
 前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
 前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
を含み、
 前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
 前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記基準コイル配線に対して前記軸方向に隣り合う隣接コイル配線の長さよりも短い。
In order to solve the above problems, an inductor component according to one aspect of the present disclosure comprises:
an element body including a first main surface and a second main surface opposed to each other;
a coil provided on the element body and wound helically along an axis;
a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
The axis of the coil is disposed parallel to the first major surface;
The coil is
a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
The length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of an adjacent coil wiring that is located on the same plane as the reference coil wiring and is adjacent to the reference coil wiring in the axial direction.
 この明細書では、「軸」とは、第1コイル配線と第2コイル配線の間の中央を通る第1平面と、第1貫通配線と第2貫通配線の間の中央を通る第2平面との交線をいう。「第1外部電極側の最外ターン」とは、第1外部電極に最も近いターンをいい、それぞれ1つずつの第1コイル配線、第1貫通配線、第2コイル配線および第2貫通配線から構成される。
 「基準コイル配線の長さ」とは、第1主面に直交する方向からみて、基準コイル配線の幅方向の中心線に沿い、基準コイル配線の両端部のそれぞれに接続される第1外部電極または貫通配線の接続面の中心の間の長さである。「隣接コイル配線の長さ」とは、第1主面に直交する方向からみて、隣接コイル配線の幅方向の中心線に沿い、隣接コイル配線の両端部のそれぞれに接続される貫通配線の接続面の中心の間の長さである。
 「外部電極が素体に設けられる」とは、具体的には、外部電極が素体の外面側に設けられることをいう。例えば、外部電極が素体の外面直上に設けられる場合や、外部電極が素体上の別部材を介して素体の外側に設けられる場合や、外部電極の一部が素体に埋め込まれた状態で外部電極の外面上に設けられる場合を含む。
In this specification, the "axis" refers to the intersection of a first plane passing through the center between the first coil wiring and the second coil wiring and a second plane passing through the center between the first through wiring and the second through wiring. The "outermost turn on the first external electrode side" refers to the turn closest to the first external electrode, and is composed of one each of the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring.
The "length of the reference coil wiring" is the length along the center line of the width of the reference coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the first external electrodes or through wirings connected to both ends of the reference coil wiring. The "length of the adjacent coil wiring" is the length along the center line of the width of the adjacent coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the through wirings connected to both ends of the adjacent coil wiring.
"The external electrodes are provided on the element body" specifically means that the external electrodes are provided on the outer surface side of the element body, including cases where the external electrodes are provided directly on the outer surface of the element body, cases where the external electrodes are provided on the outside of the element body via a separate member on the element body, and cases where the external electrodes are provided on the outer surface of the element body with part of them embedded in the element body.
 前記実施形態によれば、コイルは、第1コイル配線と第1貫通配線と第2コイル配線と第2貫通配線とを含み、第1コイル配線と第1貫通配線と第2コイル配線と第2貫通配線とは、この順に接続されることにより、螺旋状の少なくとも一部を構成するので、コイルの内径を大きくでき、インダクタンスの取得効率を高くすることができる。また、インダクタンス取得効率を高くすることで、Q値を大きくすることができる。
 さらに、基準コイル配線の長さは、隣接コイル配線の長さよりも短いので、最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。
According to the embodiment, the coil includes a first coil wiring, a first through wiring, a second coil wiring, and a second through wiring, and the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil can be increased and the efficiency of obtaining inductance can be increased. Also, by increasing the efficiency of obtaining inductance, the Q value can be increased.
Furthermore, since the length of the reference coil wiring is shorter than the length of the adjacent coil wiring, the wiring length of the outermost turn can be adjusted, making it easy to adjust the inductance required for impedance matching, for example.
 前記課題を解決するため、本開示の一態様であるインダクタ部品は、
 互いに対向する第1主面および第2主面を含む素体と、
 前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
 前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
を備え、
 前記コイルの前記軸は、前記第1主面に平行に配置され、
 前記コイルは、
 前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
 前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
を含み、
 前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
 前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記コイルの前記軸方向の中央に位置する中央コイル配線の長さよりも短い。
In order to solve the above problems, an inductor component according to one aspect of the present disclosure comprises:
an element body including a first main surface and a second main surface opposed to each other;
a coil provided on the element body and wound helically along an axis;
a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
The axis of the coil is disposed parallel to the first major surface;
The coil is
a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
The length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of a central coil wiring that is located on the same plane as the reference coil wiring and is located in the center of the axial direction of the coil.
 この明細書では、「中央コイル配線の長さ」とは、第1主面に直交する方向からみて、中央コイル配線の幅方向の中心線に沿い、中央コイル配線の両端部のそれぞれに接続される貫通配線の接続面の中心の間の長さである。 In this specification, the "length of the central coil wiring" refers to the length along the center line of the width of the central coil wiring, viewed from a direction perpendicular to the first main surface, between the centers of the connection surfaces of the through-wires that are connected to both ends of the central coil wiring.
 前記実施形態によれば、コイルは、第1コイル配線と第1貫通配線と第2コイル配線と第2貫通配線とを含み、第1コイル配線と第1貫通配線と第2コイル配線と第2貫通配線とは、この順に接続されることにより、螺旋状の少なくとも一部を構成するので、コイルの内径を大きくでき、インダクタンスの取得効率を高くすることができる。また、インダクタンス取得効率を高くすることで、Q値を大きくすることができる。
 さらに、基準コイル配線の長さは、中央コイル配線の長さよりも短いので、最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。
According to the embodiment, the coil includes a first coil wiring, a first through wiring, a second coil wiring, and a second through wiring, and the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil can be increased and the efficiency of obtaining inductance can be increased. Also, by increasing the efficiency of obtaining inductance, the Q value can be increased.
Furthermore, since the length of the reference coil wiring is shorter than the length of the central coil wiring, the wiring length of the outermost turn can be adjusted, making it easy to adjust the inductance required for impedance matching, for example.
 好ましくは、インダクタ部品の一実施形態では、前記素体は、SiOを含む。 Preferably, in one embodiment of the inductor component, the body comprises SiO2 .
 前記実施形態によれば、素体に絶縁性と剛性を付与することができる。 According to the above embodiment, it is possible to provide the element with insulation and rigidity.
 好ましくは、インダクタ部品の一実施形態では、全ての前記第1コイル配線は、平行に配置されている。 Preferably, in one embodiment of the inductor component, all of the first coil wiring is arranged in parallel.
 前記実施形態によれば、フォトリソグラフィ工程で例えば変形照明を使用することにより、微細な第1コイル配線を形成でき、インダクタ部品を小型化できる。 According to the above embodiment, by using modified illumination in the photolithography process, for example, it is possible to form fine first coil wiring and reduce the size of the inductor component.
 好ましくは、インダクタ部品の一実施形態では、全ての前記第2コイル配線は、平行に配置されている。 Preferably, in one embodiment of the inductor component, all of the second coil wiring is arranged in parallel.
 前記実施形態によれば、フォトリソグラフィ工程で例えば変形照明を使用することにより、微細な第2コイル配線を形成でき、インダクタ部品を小型化できる。 According to the above embodiment, by using modified illumination in the photolithography process, for example, it is possible to form fine second coil wiring and reduce the size of the inductor component.
 好ましくは、インダクタ部品の一実施形態では、前記第1外部電極は、前記基準コイル配線の上方に配置され、前記第1外部電極は、前記基準コイル配線に接続される。 Preferably, in one embodiment of the inductor component, the first external electrode is disposed above the reference coil wiring, and the first external electrode is connected to the reference coil wiring.
 前記実施形態によれば、コイルと第1外部電極との接続において、コイルの内径を跨ぐ配線経路を設ける必要がなく、Q値を向上できる。 According to the above embodiment, there is no need to provide a wiring path that spans the inner diameter of the coil when connecting the coil and the first external electrode, and the Q value can be improved.
 好ましくは、インダクタ部品の一実施形態では、前記第1外部電極は、前記第1貫通配線に接続される。 Preferably, in one embodiment of the inductor component, the first external electrode is connected to the first through-hole wiring.
 前記実施形態によれば、第1外部電極にコイルを最短距離で接続することができ、直流抵抗を低減できる。 According to the above embodiment, the coil can be connected to the first external electrode over the shortest distance, reducing DC resistance.
 好ましくは、インダクタ部品の一実施形態では、前記軸に平行な方向からみて、前記第1貫通配線と前記第2貫通配線は、平行でない。 Preferably, in one embodiment of the inductor component, the first through-hole wiring and the second through-hole wiring are not parallel when viewed in a direction parallel to the axis.
 前記実施形態によれば、第1貫通配線と第2貫通配線の間の距離を広げることができ、コイルの内径を大きくできて、Q値を向上できる。 According to the above embodiment, the distance between the first through-hole wiring and the second through-hole wiring can be increased, the inner diameter of the coil can be increased, and the Q value can be improved.
 好ましくは、インダクタ部品の一実施形態では、前記素体は、SiOを含み、前記第1貫通配線は、SiOを含む。 Preferably, in one embodiment of the inductor component, the element body includes SiO2 , and the first through wire includes SiO2 .
 前記実施形態によれば、第1貫通配線の線膨張係数を素体の線膨張係数と合わせことができ、第1貫通配線と素体と間のクラックを抑制できる。 According to the above embodiment, the linear expansion coefficient of the first through-hole wiring can be matched to the linear expansion coefficient of the element body, thereby suppressing cracks between the first through-hole wiring and the element body.
 好ましくは、インダクタ部品の一実施形態では、前記第1貫通配線は、空隙部または樹脂部を含む。 In one embodiment of the inductor component, the first through wiring preferably includes a void portion or a resin portion.
 前記実施形態によれば、第1貫通配線と素体の線膨張係数差による応力を空隙部または樹脂部により吸収でき、これにより、応力を緩和できる。 According to the above embodiment, the stress caused by the difference in linear expansion coefficient between the first through wiring and the element body can be absorbed by the void portion or the resin portion, thereby alleviating the stress.
 好ましくは、インダクタ部品の一実施形態では、前記第1貫通配線は、前記第1貫通配線の延在する方向から見て外周側に位置する導電層と、前記導電層の内側に位置する非導電層とを有する。 Preferably, in one embodiment of the inductor component, the first through-hole wiring has a conductive layer located on the outer periphery when viewed from the direction in which the first through-hole wiring extends, and a non-conductive layer located inside the conductive layer.
 前記実施形態によれば、高周波帯で使用する場合、表皮効果により第1貫通配線の表面を主に電流が流れるため、外周側に導電層を設けることで、Q値を下げることがない。また、内側に非導電層を設けることで、応力を緩和でき、また、導体を使用しないことによる製造コストを低減できる。 In the above embodiment, when used in the high frequency band, the current mainly flows through the surface of the first through-hole wiring due to the skin effect, so by providing a conductive layer on the outer periphery, the Q value is not lowered. In addition, by providing a non-conductive layer on the inside, stress can be alleviated, and manufacturing costs can be reduced by not using a conductor.
 好ましくは、インダクタ部品の一実施形態では、前記コイルの軸方向の長さは、前記コイルの内径より短い。 Preferably, in one embodiment of the inductor component, the axial length of the coil is shorter than the inner diameter of the coil.
 前記実施形態によれば、コイル長が短く、コイル内径が大きいので、Q値を向上できる。 In the above embodiment, the coil length is short and the coil inner diameter is large, which improves the Q value.
 好ましくは、インダクタ部品の一実施形態では、さらに、前記第1主面に設けられた有機絶縁体を備え、前記素体は、無機絶縁体である。 Preferably, in one embodiment of the inductor component, the inductor component further comprises an organic insulator provided on the first main surface, and the base body is an inorganic insulator.
 前記実施形態によれば、有機絶縁体を有するので、有機絶縁体は流動性を付与しやすく、第1コイル配線を有機絶縁体により覆う場合、隣り合う第1コイル配線の間に有機絶縁体を容易に充填することができ、絶縁性を向上できる。 In the above embodiment, since the organic insulator is included, the organic insulator is easily given fluidity, and when the first coil wiring is covered with the organic insulator, the organic insulator can be easily filled between adjacent first coil wirings, improving insulation.
 好ましくは、インダクタ部品の一実施形態では、前記第1外部電極の外面は、窪み部を有する。 Preferably, in one embodiment of the inductor component, the outer surface of the first external electrode has a recessed portion.
 前記実施形態によれば、インダクタ部品を基板に実装する場合、第1外部電極の窪み部にはんだが入り込み、第1外部電極とはんだとの接続強度が向上する。 According to the above embodiment, when the inductor component is mounted on a substrate, the solder penetrates into the recessed portion of the first external electrode, improving the connection strength between the first external electrode and the solder.
 好ましくは、インダクタ部品の一実施形態では、前記第1貫通配線は、前記第1主面に直交する方向に延在し、前記第1貫通配線の延在方向の両端部の少なくとも一方の断面積は、前記第1貫通配線の延在方向の中央部の断面積よりも大きい。 Preferably, in one embodiment of the inductor component, the first through-hole wiring extends in a direction perpendicular to the first main surface, and the cross-sectional area of at least one of the two ends of the first through-hole wiring in the extension direction is larger than the cross-sectional area of the center of the first through-hole wiring in the extension direction.
 前記実施形態によれば、第1貫通配線の端部の断面積を大きくすることができ、第1貫通配線と第1コイル配線および第2コイル配線の少なくとも一方との接続性を向上することができる。また、素体に穴部を形成し、この穴部に導電材料をフィルドめっきなどにより充填して、素体の穴部に第1貫通配線を形成する際、穴部の開口側に導電材料を充填し易い。そして、第1貫通配線の端部の断面積は大きく、第1貫通配線の中央部の断面積は小さいので、第1貫通配線を形成しやすい。 According to the above embodiment, the cross-sectional area of the end of the first through wiring can be increased, improving the connectivity between the first through wiring and at least one of the first coil wiring and the second coil wiring. In addition, when forming a hole in the element body and filling the hole with a conductive material by filling plating or the like to form the first through wiring in the hole in the element body, it is easy to fill the conductive material on the opening side of the hole. Furthermore, since the cross-sectional area of the end of the first through wiring is large and the cross-sectional area of the center of the first through wiring is small, it is easy to form the first through wiring.
 好ましくは、インダクタ部品の一実施形態では、前記インダクタ部品の厚みは、200μm以下である。 Preferably, in one embodiment of the inductor component, the thickness of the inductor component is 200 μm or less.
 前記実施形態によれば、インダクタ部品を薄くできる。 According to the above embodiment, the inductor components can be made thinner.
 好ましくは、インダクタ部品の一実施形態では、前記第1主面に直交する方向からみて、前記第1外部電極および前記第2外部電極は、前記素体の外周面よりも内側に位置する。 In one embodiment of the inductor component, the first external electrode and the second external electrode are preferably located inside the outer peripheral surface of the element body when viewed in a direction perpendicular to the first main surface.
 前記実施形態によれば、第1外部電極および第2外部電極は、素体の外周面に接触していないので、個々のインダクタ部品に個片化する際、第1外部電極および第2外部電極にかかる負荷を低減でき、第1外部電極および第2外部電極の変形や剥離を抑制できる。このため、インダクタ部品を小型にしても、第1外部電極および第2外部電極の変形や剥離を防止できる。 In the above embodiment, the first external electrode and the second external electrode are not in contact with the outer peripheral surface of the element body, so that when the inductor components are singulated, the load on the first external electrode and the second external electrode can be reduced, and deformation and peeling of the first external electrode and the second external electrode can be suppressed. Therefore, even if the inductor component is made small, deformation and peeling of the first external electrode and the second external electrode can be prevented.
 本開示の一態様であるインダクタ部品によれば、インダクタンスの取得効率を高くすることができる。 The inductor component according to one aspect of the present disclosure can improve the efficiency of obtaining inductance.
第1実施形態のインダクタ部品を底面側から見た模式斜視図である。1 is a schematic perspective view of an inductor component according to a first embodiment, as viewed from the bottom side. FIG. 図1のII-II断面図である。This is a cross-sectional view of FIG. 図1のIII-III断面図である。FIG. 3 is a cross-sectional view taken along line III-III of FIG. 底面配線を底面側から見た模式底面図である。1 is a schematic bottom view of the bottom wiring as viewed from the bottom side. FIG. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の第1変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a first modified example of an inductor component. インダクタ部品の第2変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a second modified example of the inductor component. インダクタ部品の第3変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a third modified example of the inductor component. インダクタ部品の第4変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a fourth modified example of the inductor component. 第2実施形態のインダクタ部品を底面側から見た模式斜視図である。FIG. 11 is a schematic perspective view of an inductor component according to a second embodiment, as viewed from the bottom side. 図7のVIII-VIII断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG. 7. 底面側から見た底面配線の模式底面図である。1 is a schematic bottom view of bottom wiring as viewed from the bottom side. FIG. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の製造方法を説明する模式断面図である。5A to 5C are schematic cross-sectional views illustrating a method for manufacturing an inductor component. インダクタ部品の第1変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a first modified example of an inductor component. インダクタ部品の第2変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a second modified example of the inductor component. インダクタ部品の第3実施形態を示す底面側から見た模式底面図である。13 is a schematic bottom view showing a third embodiment of an inductor component as viewed from the bottom side. FIG. 図12のXIII-XIII断面図である。13 is a cross-sectional view taken along line XIII-XIII of FIG. 12. 底面側から見た天面配線の模式底面図である。1 is a schematic bottom view of the top surface wiring as viewed from the bottom surface side. FIG.
 以下、本開示の一態様であるインダクタ部品を図示の実施の形態により詳細に説明する。なお、図面は一部模式的なものを含み、実際の寸法や比率を反映していない場合がある。 Below, an inductor component, which is one aspect of the present disclosure, will be described in detail with reference to the illustrated embodiment. Note that some of the drawings are schematic and may not reflect actual dimensions or proportions.
 <第1実施形態>
 第1実施形態に係るインダクタ部品1について、以下に説明する。図1は、インダクタ部品1を底面側から見た模式底面図である。図2は、図1のII-II断面図である。図3は、図1のIII-III断面図である。なお、図1では、便宜上、外部電極を二点鎖線で描いている。また、図1では、素体10は、構造を容易に理解できるよう、透明に描かれているが、半透明や不透明であってもよい。
First Embodiment
The inductor component 1 according to the first embodiment will be described below. Fig. 1 is a schematic bottom view of the inductor component 1 as viewed from the bottom side. Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1. Fig. 3 is a cross-sectional view taken along line III-III in Fig. 1. For convenience, external electrodes are depicted by two-dot chain lines in Fig. 1. Also, in Fig. 1, the element body 10 is depicted as transparent so that the structure can be easily understood, but it may be semi-transparent or opaque.
 1.概要構成
 インダクタ部品1の概要構成について説明する。インダクタ部品1は、例えば、高周波信号伝送回路に用いられる表面実装型のインダクタ部品である。図1と図2と図3に示すように、インダクタ部品1は、素体10と、素体10に設けられ、軸AXに沿って螺旋状に巻き回されたコイル110と、素体10に設けられ、コイル110に電気的に接続された第1外部電極121および第2外部電極122とを備える。
1. Overview of Configuration The overview of the inductor component 1 will be described. The inductor component 1 is a surface mount type inductor component used, for example, in a high frequency signal transmission circuit. As shown in Figures 1, 2 and 3, the inductor component 1 includes an element body 10, a coil 110 provided on the element body 10 and wound in a spiral shape along an axis AX, and a first external electrode 121 and a second external electrode 122 provided on the element body 10 and electrically connected to the coil 110.
 素体10は、長さ、幅および高さを有する。素体10は、長さ方向の両端側にある第1端面100e1および第2端面100e2と、幅方向の両端側にある第1側面100s1および第2側面100s2と、高さ方向の両端側にある底面100bおよび天面100tとを有する。つまり、素体10の外面100は、第1端面100e1および第2端面100e2と、第1側面100s1および第2側面100s2と、底面100bおよび天面100tとを含む。底面100bは、特許請求の範囲に記載の「第1主面」の一例に相当し、天面100tは、特許請求の範囲に記載の「第2主面」の一例に相当する。 The element body 10 has a length, width, and height. The element body 10 has a first end face 100e1 and a second end face 100e2 at both ends in the length direction, a first side face 100s1 and a second side face 100s2 at both ends in the width direction, and a bottom face 100b and a top face 100t at both ends in the height direction. In other words, the outer surface 100 of the element body 10 includes the first end face 100e1 and the second end face 100e2, the first side face 100s1 and the second side face 100s2, the bottom face 100b, and the top face 100t. The bottom face 100b corresponds to an example of a "first main face" as described in the claims, and the top face 100t corresponds to an example of a "second main face" as described in the claims.
 なお、図面に示すように、以下では、説明の便宜上、素体10の長さ方向(長手方向)であって、第1端面100e1から第2端面100e2に向かう方向をX方向とする。また、素体10の幅方向であって、第1側面100s1から第2側面100s2に向かう方向をY方向とする。また、素体10の高さ方向であって、底面100bから天面100tに向かう方向をZ向とする。X方向、Y方向及びZ方向は、互いに直交する方向であって、X,Y,Zの順に並べたとき、右手系を構成する。 As shown in the drawings, for ease of explanation, the length direction (longitudinal direction) of the element body 10, which is the direction from the first end face 100e1 to the second end face 100e2, is referred to as the X direction. The width direction of the element body 10, which is the direction from the first side face 100s1 to the second side face 100s2, is referred to as the Y direction. The height direction of the element body 10, which is the direction from the bottom face 100b to the top face 100t, is referred to as the Z direction. The X direction, Y direction, and Z direction are mutually perpendicular, and when arranged in the order X, Y, Z, they form a right-handed system.
 この明細書では、素体10の第1端面100e1、第2端面100e2、第1側面100s1、第2側面100s2、底面100bおよび天面100tを含む「素体の外面100」は、単に素体10の外周側を向く面という意味ではなく、素体10の外側と内側との境界となる面である。また、「素体10の外面100の上方」とは、重力方向に規定される鉛直上方のような絶対的な一方向ではなく、外面100を基準に、当該外面100を境界とする外側と内側とのうち、外側に向かう方向を指す。したがって、「外面100の上方」とは外面100の向きによって定まる相対的な方向である。また、ある要素に対して「上方(above)」には、当該要素とは離れた上方、すなわち当該要素上の他の物体を介した上側の位置や間隔を空けた上側の位置だけではなく、当該要素と接する直上の位置(on)も含む。 In this specification, the "outer surface 100 of the element body" including the first end surface 100e1, the second end surface 100e2, the first side surface 100s1, the second side surface 100s2, the bottom surface 100b, and the top surface 100t of the element body 10 does not simply mean a surface facing the outer periphery of the element body 10, but a surface that is the boundary between the outside and the inside of the element body 10. Furthermore, "above the outer surface 100 of the element body 10" does not mean an absolute direction such as vertically upward as defined by the direction of gravity, but refers to a direction toward the outside of the outside and the inside with the outer surface 100 as a boundary, based on the outer surface 100. Therefore, "above the outer surface 100" is a relative direction determined by the orientation of the outer surface 100. Furthermore, "above" with respect to a certain element includes not only an upper side away from the element, that is, an upper position through another object on the element or an upper position with a space therebetween, but also a position directly above the element (on).
 コイル110の軸AXは、底面100bに平行に配置される。コイル110は、軸AXに対して底面100b側に設けられ、底面100bに平行な平面上に軸AXに沿って配列された複数の底面配線11bと、軸AXに対して天面100t側に設けられ、天面100tに平行な平面上に軸AXに沿って配列された複数の天面配線11tと、底面配線11b側から天面配線11t側に向かって延在し、軸AXに沿って配列された複数の第1貫通配線13と、底面配線11b側から天面配線11t側に向かって延在し、軸AXに対して第1貫通配線13と反対側に設けられ、軸AXに沿って配列された複数の第2貫通配線14とを含む。底面配線11bと、第1貫通配線13と、天面配線11tと、第2貫通配線14とは、この順に接続されることにより、螺旋状の少なくとも一部を構成する。 The axis AX of the coil 110 is arranged parallel to the bottom surface 100b. The coil 110 includes a plurality of bottom surface wirings 11b arranged on the bottom surface 100b side with respect to the axis AX and arranged along the axis AX on a plane parallel to the bottom surface 100b, a plurality of top surface wirings 11t arranged on the top surface 100t side with respect to the axis AX and arranged along the axis AX on a plane parallel to the top surface 100t, a plurality of first through wirings 13 extending from the bottom surface wiring 11b side toward the top surface wiring 11t side and arranged along the axis AX, and a plurality of second through wirings 14 extending from the bottom surface wiring 11b side toward the top surface wiring 11t side, arranged on the opposite side of the first through wirings 13 with respect to the axis AX and arranged along the axis AX. The bottom surface wirings 11b, the first through wirings 13, the top surface wirings 11t, and the second through wirings 14 are connected in this order to form at least a part of a spiral shape.
 底面配線11bは、特許請求の範囲に記載の「第1コイル配線」の一例に相当し、天面配線11tは、特許請求の範囲に記載の「第2コイル配線」の一例に相当する。軸AXは、底面配線11bと天面配線11tの間の中央を通る第1平面と、第1貫通配線13と第2貫通配線14の間の中央を通る第2平面との交線をいう。つまり、軸AXは、コイル110の内径部の中心を通る直線である。コイル110の軸AXは、軸AXに直交する方向の寸法を有さない。 The bottom wiring 11b corresponds to an example of the "first coil wiring" described in the claims, and the top wiring 11t corresponds to an example of the "second coil wiring" described in the claims. The axis AX is the intersection of a first plane passing through the center between the bottom wiring 11b and the top wiring 11t, and a second plane passing through the center between the first through wiring 13 and the second through wiring 14. In other words, the axis AX is a straight line passing through the center of the inner diameter portion of the coil 110. The axis AX of the coil 110 has no dimension in a direction perpendicular to the axis AX.
 上記構成によれば、コイル110は、底面配線11bと第1貫通配線13と天面配線11tと第2貫通配線14とを含み、底面配線11bと第1貫通配線13と天面配線11tと第2貫通配線14とは、この順に接続されることにより、螺旋状の少なくとも一部を構成するので、コイル110の内径を大きくでき、インダクタンスの取得効率を高くすることができる。また、インダクタンス取得効率を高くすることで、Q値を大きくすることができる。 According to the above configuration, the coil 110 includes the bottom wiring 11b, the first through wiring 13, the top wiring 11t, and the second through wiring 14. The bottom wiring 11b, the first through wiring 13, the top wiring 11t, and the second through wiring 14 are connected in this order to form at least a part of a spiral shape, so that the inner diameter of the coil 110 can be increased and the efficiency of obtaining inductance can be increased. Furthermore, by increasing the efficiency of obtaining inductance, the Q value can be increased.
 具体的に述べると、従来のインダクタ部品のパッド部や本実施形態の底面配線11bおよび天面配線11tは、素体を貫通する配線(従来のインダクタ部品の導電性ビアや本実施形態の第1貫通配線13および第2貫通配線14)の「受け部」であるため、素体を貫通する方向に垂直に広がる形状となる。ここで、従来のインダクタ部品の構成では、導電性ビアがコイルの軸に平行な方向に延在するため、パッド部は、コイルの軸に垂直な方向に広がり、コイルの軸方向に発生する磁束を遮る構造となりやすい。 Specifically, the pad portion of a conventional inductor component and the bottom wiring 11b and top wiring 11t of this embodiment are "receiving portions" for the wiring that penetrates the element body (the conductive vias of a conventional inductor component and the first through wiring 13 and second through wiring 14 of this embodiment), and therefore have a shape that extends perpendicularly in the direction that penetrates the element body. Here, in the configuration of a conventional inductor component, since the conductive vias extend in a direction parallel to the axis of the coil, the pad portion extends in a direction perpendicular to the axis of the coil, and is likely to have a structure that blocks magnetic flux generated in the axial direction of the coil.
 これに対して、本実施形態では、第1貫通配線13および第2貫通配線14がコイル110の軸AXに垂直な方向に延在するため、底面配線11bおよび天面配線11tは、コイル110の軸AXに平行な方向に広がる。よって、底面配線11bおよび天面配線11tは、軸AX方向に発生する磁束を遮る構造となりにくい。すなわち、本実施形態であれば、磁束を遮りにくい構造とすることができ、インダクタンス取得効率やQ値を向上できる。 In contrast, in this embodiment, the first through wiring 13 and the second through wiring 14 extend in a direction perpendicular to the axis AX of the coil 110, so the bottom wiring 11b and the top wiring 11t extend in a direction parallel to the axis AX of the coil 110. Therefore, the bottom wiring 11b and the top wiring 11t are unlikely to have a structure that blocks magnetic flux generated in the direction of the axis AX. In other words, with this embodiment, a structure that is unlikely to block magnetic flux can be achieved, improving the inductance acquisition efficiency and Q value.
 図4は、底面配線11bを底面側から見た模式底面図である。図4では、便宜上、第1外部電極121および第2外部電極122を二点鎖線で描き、さらに、第1貫通配線13の底面配線11bとの接続面13y、第2貫通配線14の底面配線11bとの接続面14y、第1外部電極121の底面配線11bとの接続面121y、第2外部電極122の底面配線11bとの接続面122yを二点鎖線で描いている。 FIG. 4 is a schematic bottom view of bottom wiring 11b as viewed from the bottom side. For convenience, in FIG. 4, the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines, and further, the connection surface 13y of the first through wiring 13 with the bottom wiring 11b, the connection surface 14y of the second through wiring 14 with the bottom wiring 11b, the connection surface 121y of the first external electrode 121 with the bottom wiring 11b, and the connection surface 122y of the second external electrode 122 with the bottom wiring 11b are depicted with two-dot chain lines.
 図4に示すように、第1外部電極121側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの底面配線11bは、第1外部電極121に対して電気的により近くに位置する第1基準コイル配線111bである。複数の底面配線11bの一つは、第1基準コイル配線111bと同一平面上に位置し第1基準コイル配線111bに対して軸AX方向に隣り合う第1隣接コイル配線113bである。第1基準コイル配線111bの長さ(以下、第1長さL1という)は、第1隣接コイル配線113bの長さ(以下、第2長さL2という)よりも短い。 As shown in FIG. 4, of the bottom wiring 11b and top wiring 11t that constitute the outermost turn of the coil 110 on the first external electrode 121 side, the bottom wiring 11b is the first reference coil wiring 111b that is located electrically closer to the first external electrode 121. One of the multiple bottom wirings 11b is the first adjacent coil wiring 113b that is located on the same plane as the first reference coil wiring 111b and is adjacent to the first reference coil wiring 111b in the axial AX direction. The length of the first reference coil wiring 111b (hereinafter referred to as the first length L1) is shorter than the length of the first adjacent coil wiring 113b (hereinafter referred to as the second length L2).
 第1長さL1は、底面100bに直交する方向からみて、第1基準コイル配線111bの幅方向の中心線に沿い、第1基準コイル配線111bの第1端部に接続される第1貫通配線13の接続面13yの中心と第1基準コイル配線111bの第2端部に接続される第1外部電極121の接続面121yの中心との間の長さである。第2長さL2は、底面100bに直交する方向からみて、第1隣接コイル配線113bの幅方向の中心線に沿い、第1隣接コイル配線113bの第1端部に接続される第1貫通配線13の接続面13yの中心と第1隣接コイル配線113bの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The first length L1 is the length along the center line of the width of the first reference coil wiring 111b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first reference coil wiring 111b and the center of the connection surface 121y of the first external electrode 121 connected to the second end of the first reference coil wiring 111b, when viewed from a direction perpendicular to the bottom surface 100b. The second length L2 is the length along the center line of the width of the first adjacent coil wiring 113b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first adjacent coil wiring 113b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the first adjacent coil wiring 113b, when viewed from a direction perpendicular to the bottom surface 100b.
 上記構成によれば、第1長さL1は、第2長さL2よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。具体的に述べると、最外ターンの配線長さを、第1隣接コイル配線113bにより構成されるターンの配線長さよりも短くすることができる。 With the above configuration, since the first length L1 is shorter than the second length L2, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example. Specifically, the wiring length of the outermost turn can be made shorter than the wiring length of the turn formed by the first adjacent coil wiring 113b.
 好ましくは、第1外部電極121は、第1基準コイル配線111b上に配置された状態で、第1外部電極121は、第1基準コイル配線111bに接続される。これによれば、コイル110と第1外部電極121との接続において、コイル110の内径を跨ぐ配線経路を設ける必要がなく、Q値を向上できる。これに対して、第1外部電極121が、第1基準コイル配線111bでなく、天面配線11tに接続された第1貫通配線13に接続されている場合、当該天面配線11tの長さを短くすると、当該第1貫通配線13がコイル110の内径を跨ぐように配置されることとなる。このとき、当該第1貫通配線13がコイル110の磁束の流れを妨げ、Q値を向上できないおそれがある。 Preferably, the first external electrode 121 is connected to the first reference coil wiring 111b while being disposed on the first reference coil wiring 111b. This eliminates the need to provide a wiring path that spans the inner diameter of the coil 110 when connecting the coil 110 and the first external electrode 121, and improves the Q value. On the other hand, if the first external electrode 121 is connected to the first through wiring 13 connected to the top wiring 11t, rather than the first reference coil wiring 111b, shortening the length of the top wiring 11t will result in the first through wiring 13 being disposed so as to span the inner diameter of the coil 110. In this case, the first through wiring 13 may impede the flow of magnetic flux in the coil 110, and the Q value may not be improved.
 なお、第1外部電極121側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの天面配線11tが、第1外部電極121に対して電気的により近くに位置する基準コイル配線であってもよい。このとき、複数の天面配線11tの一つは、基準コイル配線と同一平面上に位置し基準コイル配線に対して軸AX方向に隣り合う隣接コイル配線である。そして、基準コイル配線の長さは、隣接コイル配線の長さよりも短い。これにより、最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 In addition, of the bottom wiring 11b and top wiring 11t constituting the outermost turn of the coil 110 on the first external electrode 121 side, the top wiring 11t may be a reference coil wiring that is located electrically closer to the first external electrode 121. In this case, one of the multiple top wirings 11t is an adjacent coil wiring that is located on the same plane as the reference coil wiring and is adjacent to the reference coil wiring in the axial AX direction. The length of the reference coil wiring is shorter than the length of the adjacent coil wiring. This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
 図4に示すように、複数の底面配線11bの一つは、第1基準コイル配線111bと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115bである。第1基準コイル配線111bの長さ(第1長さL1)は、中央コイル配線115bの長さ(以下、第3長さL3という)よりも短い。 As shown in FIG. 4, one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the first reference coil wiring 111b and is located in the center of the axis AX direction of the coil 110. The length of the first reference coil wiring 111b (first length L1) is shorter than the length of the central coil wiring 115b (hereinafter referred to as third length L3).
 第3長さL3は、底面100bに直交する方向からみて、中央コイル配線115bの幅方向の中心線に沿い、中央コイル配線115bの第1端部に接続される第1貫通配線13の接続面13yの中心と中央コイル配線115bの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The third length L3 is the length along the center line of the width of the central coil wiring 115b, as viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the central coil wiring 115b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the central coil wiring 115b.
 上記構成によれば、第1長さL1は、第3長さL3よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。具体的に述べると、最外ターンの配線長さを、コイル110の軸AX方向の中央のターンの配線長さよりも短くすることができる。 With the above configuration, since the first length L1 is shorter than the third length L3, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example. Specifically, the wiring length of the outermost turn can be made shorter than the wiring length of the central turn in the axial AX direction of the coil 110.
 なお、第1外部電極121側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの天面配線11tが、第1外部電極121に対して電気的により近くに位置する基準コイル配線であってもよい。このとき、複数の天面配線11tの一つは、基準コイル配線と同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線である。そして、基準コイル配線の長さは、中央コイル配線の長さよりも短い。これにより、最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 In addition, of the bottom wiring 11b and top wiring 11t constituting the outermost turn of the coil 110 on the first external electrode 121 side, the top wiring 11t may be a reference coil wiring that is located electrically closer to the first external electrode 121. In this case, one of the multiple top wirings 11t is a central coil wiring that is located on the same plane as the reference coil wiring and is located in the center of the coil 110 in the axial AX direction. The length of the reference coil wiring is shorter than the length of the central coil wiring. This makes it possible to adjust the wiring length of the outermost turn, making it easy to adjust the inductance.
 本実施形態では、「第1長さL1は第2長さL2よりも短い」という第1の特徴と「第1長さL1は第3長さL3よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。これにより、最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 In this embodiment, it is sufficient to satisfy at least one of the first characteristic that "the first length L1 is shorter than the second length L2" and the second characteristic that "the first length L1 is shorter than the third length L3." This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
 図4に示すように、第2外部電極122側のコイル110の最外ターンの構成が、上述の第1外部電極121側のコイル110の最外ターンの構成と同様であってもよい。 As shown in FIG. 4, the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
 具体的に述べると、第2外部電極122側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの底面配線11bは、第2外部電極122に対して電気的により近くに位置する第2基準コイル配線112bである。複数の底面配線11bの一つは、第2基準コイル配線112bと同一平面上に位置し第2基準コイル配線112bに対して軸AX方向に隣り合う第2隣接コイル配線114bである。第2基準コイル配線112bの長さ(以下、第4長さL4という)は、第2隣接コイル配線114bの長さ(以下、第5長さL5という)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Specifically, of the bottom wiring 11b and top wiring 11t constituting the outermost turn of the coil 110 on the second external electrode 122 side, the bottom wiring 11b is the second reference coil wiring 112b located electrically closer to the second external electrode 122. One of the multiple bottom wirings 11b is the second adjacent coil wiring 114b located on the same plane as the second reference coil wiring 112b and adjacent to the second reference coil wiring 112b in the axial AX direction. The length of the second reference coil wiring 112b (hereinafter referred to as the fourth length L4) is shorter than the length of the second adjacent coil wiring 114b (hereinafter referred to as the fifth length L5). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and to easily adjust the inductance.
 第4長さL4は、底面100bに直交する方向からみて、第2基準コイル配線112bの幅方向の中心線に沿い、第2基準コイル配線112bの第1端部に接続される第2貫通配線14の接続面14yの中心と第2基準コイル配線112bの第2端部に接続される第2外部電極122の接続面122yの中心との間の長さである。第5長さL5は、底面100bに直交する方向からみて、第2隣接コイル配線114bの幅方向の中心線に沿い、第2隣接コイル配線114bの第1端部に接続される第1貫通配線13の接続面13yの中心と第2隣接コイル配線114bの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The fourth length L4 is the length along the center line of the width of the second reference coil wiring 112b between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the second reference coil wiring 112b and the center of the connection surface 122y of the second external electrode 122 connected to the second end of the second reference coil wiring 112b, when viewed from a direction perpendicular to the bottom surface 100b. The fifth length L5 is the length along the center line of the width of the second adjacent coil wiring 114b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second adjacent coil wiring 114b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the second adjacent coil wiring 114b, when viewed from a direction perpendicular to the bottom surface 100b.
 好ましくは、第2外部電極122は、第2基準コイル配線112b上に配置された状態で、第2外部電極122は、第2基準コイル配線112bに接続される。これによれば、コイル110と第2外部電極122との接続において、コイル110の内径を跨ぐ配線経路を設ける必要がなく、Q値を向上できる。 Preferably, the second external electrode 122 is connected to the second reference coil wiring 112b while being disposed on the second external electrode 122. This eliminates the need to provide a wiring path that crosses the inner diameter of the coil 110 when connecting the coil 110 and the second external electrode 122, thereby improving the Q value.
 また、複数の底面配線11bの一つは、第2基準コイル配線112bと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115bである。第2基準コイル配線112bの長さ(第4長さL4)は、中央コイル配線115bの長さ(第3長さL3という)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Furthermore, one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the second reference coil wiring 112b and is located in the center of the coil 110 in the axial AX direction. The length of the second reference coil wiring 112b (fourth length L4) is shorter than the length of the central coil wiring 115b (referred to as third length L3). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and thus makes it easy to adjust the inductance.
 なお、第2外部電極122側のコイル110の最外ターンを構成する天面配線11tが、基準コイル配線であってもよい。このとき、複数の天面配線11tの一つは、隣接コイル配線であり、または、複数の天面配線11tの一つは、中央コイル配線である。また、「第4長さL4は第5長さL5よりも短い」という第1の特徴と「第4長さL4は第3長さL3よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。 The top surface wiring 11t constituting the outermost turn of the coil 110 on the second external electrode 122 side may be the reference coil wiring. In this case, one of the multiple top surface wirings 11t is the adjacent coil wiring, or one of the multiple top surface wirings 11t is the central coil wiring. In addition, it is sufficient to satisfy at least one of the first characteristic that "the fourth length L4 is shorter than the fifth length L5" and the second characteristic that "the fourth length L4 is shorter than the third length L3".
 2.各部構成
 (インダクタ部品1)
 インダクタ部品1の体積は、0.08mm以下であり、かつ、インダクタ部品1の長辺の大きさは、0.65mm以下である。インダクタ部品1の長辺の大きさは、インダクタ部品1の長さ、幅および高さのうちの最も大きい値をいい、この実施形態では、X方向の長さをいう。上記構成によれば、インダクタ部品1の体積が小さく、かつ、インダクタ部品1の長辺も短いので、インダクタ部品1の重量が軽くなる。このため、外部電極121,122が小さくても、必要な実装強度を得ることができる。また、インダクタ部品1の厚みは、好ましくは、200μm以下である。これによれば、インダクタ部品1を薄くできる。
2. Components (Inductor Component 1)
The volume of the inductor component 1 is 0.08 mm3 or less, and the size of the long side of the inductor component 1 is 0.65 mm or less. The size of the long side of the inductor component 1 refers to the largest value among the length, width, and height of the inductor component 1, and in this embodiment, refers to the length in the X direction. According to the above configuration, the volume of the inductor component 1 is small and the long side of the inductor component 1 is short, so that the weight of the inductor component 1 is light. Therefore, even if the external electrodes 121 and 122 are small, the necessary mounting strength can be obtained. In addition, the thickness of the inductor component 1 is preferably 200 μm or less. This allows the inductor component 1 to be made thin.
 具体的に述べると、インダクタ部品1のサイズ(長さ(X方向)×幅(Y方向)×高さ(Z方向))は、0.6mm×0.3mm×0.3mm、0.4mm×0.2mm×0.2mm、0.25mm×0.125mm×0.120mmなどである。また、幅と高さは等しくなくてもよく、例えば、0.4mm×0.2mm×0.3mmなどであってもよい。 Specifically, the size of the inductor component 1 (length (X direction) x width (Y direction) x height (Z direction)) is 0.6 mm x 0.3 mm x 0.3 mm, 0.4 mm x 0.2 mm x 0.2 mm, 0.25 mm x 0.125 mm x 0.120 mm, etc. Furthermore, the width and height do not have to be equal, and may be, for example, 0.4 mm x 0.2 mm x 0.3 mm.
 (素体10)
 素体10は、SiOを含む。これによれば、素体10に絶縁性と剛性を付与することができる。素体10は、例えば、ガラス焼結体から構成される。ガラス焼結体は、アルミナを含んでいてもよく、素体の強度を更に高めることができる。
(Element 10)
The element body 10 contains SiO2 , which can provide insulation and rigidity to the element body 10. The element body 10 is made of, for example, a sintered glass body. The sintered glass body may contain alumina, which can further increase the strength of the element body.
 ガラス焼結体は、例えば、複数のガラスを含む絶縁層を積層して構成される。複数の絶縁層の積層方向は、Z方向である。すなわち、絶縁層は、XY平面に広がった主面を有する層状である。なお、素体10は、焼成などによって、複数の絶縁層同士の界面が明確となっていない場合がある。 The glass sintered body is formed, for example, by stacking multiple insulating layers containing glass. The stacking direction of the multiple insulating layers is the Z direction. In other words, the insulating layers are in a layered form having main surfaces extending in the XY plane. Note that, due to firing or the like, the interfaces between the multiple insulating layers of the element body 10 may not be clear.
 なお、素体10は、例えば、ガラス基板から構成されてもよい。ガラス基板は、単層のガラス基板であってもよく、素体の大部分がガラスとなることから、高周波での渦電流損のような損失を抑制することができる。 The element body 10 may be made of, for example, a glass substrate. The glass substrate may be a single-layer glass substrate, and since the majority of the element body is made of glass, losses such as eddy current losses at high frequencies can be suppressed.
 (コイル110)
 コイル110は、複数の底面配線11bと、複数の天面配線11tと、複数の第1貫通配線13と、複数の第2貫通配線14とを備える。底面配線11b、第1貫通配線13、天面配線11tおよび第2貫通配線14は、順に接続されて軸AX方向に巻き回されたコイル110の少なくとも一部を構成する。
(Coil 110)
The coil 110 includes a plurality of bottom wirings 11b, a plurality of top wirings 11t, a plurality of first through wirings 13, and a plurality of second through wirings 14. The bottom wirings 11b, the first through wirings 13, the top wirings 11t, and the second through wirings 14 are connected in sequence to form at least a portion of the coil 110 wound in the axial direction AX.
 上記構成によれば、コイル110は、いわゆるヘリカル形状のコイル110であるので、軸AXに直交する断面において、底面配線11b、天面配線11t、第1貫通配線13および第2貫通配線14がコイル110の巻き回し方向に沿って並走する領域を低減でき、コイル110における浮遊容量を低減できる。 With the above configuration, the coil 110 is a so-called helical-shaped coil 110, so that in a cross section perpendicular to the axis AX, the area in which the bottom wiring 11b, the top wiring 11t, the first through wiring 13, and the second through wiring 14 run parallel to the winding direction of the coil 110 can be reduced, thereby reducing the stray capacitance in the coil 110.
 ここで、ヘリカル形状とは、コイル全体のターン数は1ターンより大きく、かつ、軸に直交する断面におけるコイルのターン数は1ターン未満である形状をいう。1ターン以上とは、軸に直交する断面において、コイルの配線が、軸方向からみて径方向に隣り合って巻回方向に並走する部分を有する状態をいい、1ターン未満とは、軸に直交する断面において、コイルの配線が、軸方向からみて径方向に隣り合って巻回方向に並走する部分を有さない状態をいう。 Here, a helical shape refers to a shape in which the number of turns in the entire coil is greater than one turn, and the number of turns in the coil in a cross section perpendicular to the axis is less than one turn. "One turn or more" refers to a state in which, in a cross section perpendicular to the axis, the coil wiring has parts that are adjacent in the radial direction when viewed from the axial direction and run parallel to the winding direction, and "less than one turn" refers to a state in which, in a cross section perpendicular to the axis, the coil wiring does not have parts that are adjacent in the radial direction when viewed from the axial direction and run parallel to the winding direction.
 底面配線11bは、一つの方向にのみ延在する。具体的に述べると、底面配線11bは、ややX方向に傾いてY方向に延伸している。全ての底面配線11bは、X方向に沿って平行に配置されている。ここで、フォトリソグラフィ工程において、例えば輪帯照明、ダイポール照明などの変形照明を使用すると、特定方向のパターン解像性を高めて、より微細なパターンを形成することができる。上記構成によれば、底面配線11bが1方向にのみ延在し、全ての底面配線11bは平行に配置されているため、フォトリソグラフィ工程で例えば変形照明を使用することにより、微細な底面配線11bを形成でき、インダクタ部品1を小型化できる。 The bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the Y direction at a slight incline toward the X direction. All the bottom wiring 11b are arranged parallel to the X direction. Here, if modified illumination such as annular illumination or dipole illumination is used in the photolithography process, the pattern resolution in a specific direction can be improved to form a finer pattern. According to the above configuration, the bottom wiring 11b extends in only one direction and all the bottom wirings 11b are arranged in parallel, so that fine bottom wiring 11b can be formed by using modified illumination in the photolithography process, for example, and the inductor component 1 can be made smaller.
 天面配線11tは、一つの方向にのみ延在する。具体的に述べると、天面配線11tは、Y方向に延びる形状である。全ての天面配線11tは、X方向に沿って平行に配置されている。上記構成によれば、天面配線11tが1方向にのみ延在し、全ての天面配線11tは平行に配置されているため、フォトリソグラフィ工程で例えば変形照明を使用することにより、微細な天面配線11tを形成でき、インダクタ部品1を小型化できる。 The top surface wiring 11t extends in only one direction. Specifically, the top surface wiring 11t extends in the Y direction. All the top surface wiring 11t are arranged in parallel along the X direction. With the above configuration, the top surface wiring 11t extends in only one direction and is arranged in parallel. Therefore, by using, for example, modified illumination in the photolithography process, fine top surface wiring 11t can be formed, and the inductor component 1 can be made smaller.
 底面配線11bおよび天面配線11tは、銅、銀,金又はこれらの合金などの良導体材料からなる。底面配線11bおよび天面配線11tは、めっき、蒸着、スパッタリングなどによって形成された金属膜であってもよいし、導体ペーストを塗布、焼結させた金属焼結体であってもよい。また、底面配線11bおよび天面配線11tは、複数の金属層が積層された多層構造であってもよい。底面配線11bおよび天面配線11tの厚みは、5μm以上50μm以下であることが好ましい。 The bottom wiring 11b and the top wiring 11t are made of a good conductor material such as copper, silver, gold, or an alloy of these. The bottom wiring 11b and the top wiring 11t may be a metal film formed by plating, vapor deposition, sputtering, or the like, or may be a metal sintered body formed by applying and sintering a conductive paste. The bottom wiring 11b and the top wiring 11t may also be a multi-layer structure in which multiple metal layers are stacked. The thickness of the bottom wiring 11b and the top wiring 11t is preferably 5 μm or more and 50 μm or less.
 第1貫通配線13は、素体10の貫通孔V内で、軸AXに対して第1側面100s1側に配置され、第2貫通配線14は、素体10の貫通孔V内で、軸AXに対して第2側面100s2側に配置されている。第1貫通配線13および第2貫通配線14は、それぞれ、底面100bおよび天面100tに直交する方向に延伸している。これによれば、第1貫通配線13および第2貫通配線14の長さを短くできるため、直流抵抗(Rdc)を抑制できる。全ての第1貫通配線13および全ての第2貫通配線14は、それぞれ、X方向に沿って平行に配置されている。 The first through wiring 13 is disposed on the first side surface 100s1 side of the axis AX within the through hole V of the element body 10, and the second through wiring 14 is disposed on the second side surface 100s2 side of the axis AX within the through hole V of the element body 10. The first through wiring 13 and the second through wiring 14 each extend in a direction perpendicular to the bottom surface 100b and the top surface 100t. This allows the lengths of the first through wiring 13 and the second through wiring 14 to be shortened, thereby suppressing the DC resistance (Rdc). All of the first through wirings 13 and all of the second through wirings 14 are disposed in parallel along the X direction.
 好ましくは、第1貫通配線13は、SiOを含む。これによれば、素体10がSiOを含む場合、第1貫通配線13の線膨張係数を素体10の線膨張係数と合わせことができ、第1貫通配線13と素体10と間のクラックを抑制できる。第1貫通配線13は、例えば、導電ペーストを用いる。導電材料は、Ag、Cuなどである。好ましくは、同様に、第2貫通配線14は、SiOを含む。 Preferably, the first through wiring 13 contains SiO 2. According to this, when the element body 10 contains SiO 2 , the linear expansion coefficient of the first through wiring 13 can be matched to the linear expansion coefficient of the element body 10, and cracks between the first through wiring 13 and the element body 10 can be suppressed. For example, a conductive paste is used for the first through wiring 13. The conductive material is Ag, Cu, or the like. Preferably, the second through wiring 14 similarly contains SiO 2 .
 好ましくは、図2に示すように、底面100bに直交する方向からみて、底面配線11bの第1の端部と天面配線11tの第1の端部とが重なり、底面配線11bと天面配線11tとのなす角度θは、鋭角である。角度θとは、底面100bに直交する方向からみて、底面配線11bの幅の中心線(図2の一点鎖線)と天面配線11tの幅の中心線(図2の一点鎖線)との間の角度である。 Preferably, as shown in FIG. 2, the first end of the bottom wiring 11b and the first end of the top wiring 11t overlap when viewed from a direction perpendicular to the bottom surface 100b, and the angle θ between the bottom wiring 11b and the top wiring 11t is an acute angle. The angle θ is the angle between the center line of the width of the bottom wiring 11b (the dashed line in FIG. 2) and the center line of the width of the top wiring 11t (the dashed line in FIG. 2) when viewed from a direction perpendicular to the bottom surface 100b.
 好ましくは、図2に示すように、底面100bに直交する方向からみて、同一の第1貫通配線13に接続された底面配線11bと天面配線11tとのなす角度θは、5°以上45°以下である。角度θとは、底面100bに直交する方向からみて、底面配線11bの幅の中心線(図2の一点鎖線)と天面配線11tの幅の中心線(図2の一点鎖線)との間の角度である。 Preferably, as shown in FIG. 2, the angle θ between the bottom wiring 11b and the top wiring 11t connected to the same first through wiring 13 is 5° or more and 45° or less when viewed from a direction perpendicular to the bottom surface 100b. The angle θ is the angle between the center line of the width of the bottom wiring 11b (the dashed line in FIG. 2) and the center line of the width of the top wiring 11t (the dashed line in FIG. 2) when viewed from a direction perpendicular to the bottom surface 100b.
 上記構成によれば、コイル110が密に巻回されるため、インダクタンスを向上させることができる。角度θが45°以下であるので、コイル長が短くなり、漏れ磁束が減り、Q値が高くなる。コイル長とは、底面配線11b、天面配線11t、第1貫通配線13および第2貫通配線14のうち、最も軸AX方向外側に位置する両端部分の間隔をいう。角度θが5°以上であるので、軸AX方向に隣り合う2つの第1貫通配線13が接触する可能性を低減し、また、軸AX方向に隣り合う2つの第2貫通配線14が接触する可能性を低減できる。なお、全ての底面配線11bおよび天面配線11tの少なくとも1組の底面配線11bおよび天面配線11tにおいて、角度θが、5°以上45°以下であればよい。 With the above configuration, the coil 110 is wound tightly, so that the inductance can be improved. Since the angle θ is 45° or less, the coil length is shortened, the leakage magnetic flux is reduced, and the Q value is increased. The coil length refers to the distance between the two ends located at the outermost positions in the axis AX direction among the bottom wiring 11b, the top wiring 11t, the first through wiring 13, and the second through wiring 14. Since the angle θ is 5° or more, the possibility of contact between two adjacent first through wirings 13 in the axis AX direction is reduced, and the possibility of contact between two adjacent second through wirings 14 in the axis AX direction is reduced. Note that the angle θ may be 5° or more and 45° or less in at least one pair of bottom wiring 11b and top wiring 11t among all the bottom wirings 11b and top wiring 11t.
 好ましくは、同様に、底面100bに直交する方向からみて、同一の第2貫通配線14に接続された底面配線11bと天面配線11tとのなす角度θは、5°以上45°以下である。これによれば、コイル110が密に巻回されるため、インダクタンスを向上させることができる。 Preferably, when viewed from a direction perpendicular to the bottom surface 100b, the angle θ between the bottom surface wiring 11b and the top surface wiring 11t connected to the same second through wiring 14 is 5° or more and 45° or less. This allows the coil 110 to be wound tightly, improving the inductance.
 好ましくは、底面配線11b、天面配線11t、第1貫通配線13および第2貫通配線14の少なくとも一つの配線は、空隙部または樹脂部を含む。これによれば、配線と素体10の線膨張係数差による応力を空隙部または樹脂部により吸収でき、応力を緩和できる。空隙部を形成する方法として、例えば、配線の材料に焼結により焼失する部材を用い、配線を焼結することで空隙部を形成することができる。樹脂部を形成する方法として、例えば、配線の材料に導電性ペーストを用いることで樹脂部を形成することができる。 Preferably, at least one of the bottom wiring 11b, top wiring 11t, first through wiring 13, and second through wiring 14 includes a void portion or a resin portion. This allows the stress caused by the difference in linear expansion coefficient between the wiring and the element body 10 to be absorbed by the void portion or resin portion, and the stress can be alleviated. As a method for forming the void portion, for example, a material that is burned away by sintering is used as the wiring material, and the void portion can be formed by sintering the wiring. As a method for forming the resin portion, for example, a conductive paste can be used as the wiring material to form the resin portion.
 好ましくは、底面配線11bおよび天面配線11tの少なくとも一つの配線は、SiOを含む。これによれば、素体10がSiOを含む場合、配線の線膨張係数を素体10の線膨張係数と合わせことができ、配線と素体10と間のクラックを抑制できる。 Preferably, at least one of the bottom surface wiring 11b and the top surface wiring 11t contains SiO 2. According to this, when the element body 10 contains SiO 2 , the linear expansion coefficient of the wiring can be matched to the linear expansion coefficient of the element body 10, and cracks between the wiring and the element body 10 can be suppressed.
 (第1外部電極121および第2外部電極122)
 第1外部電極121は、コイル110の第1端部に接続され、第2外部電極122は、コイル110の第2端部に接続される。第1外部電極121は、素体10の外面100から露出するように、素体10のX方向の中心に対して第1端面100e1側に設けられている。第2外部電極122は、素体10の外面100から露出するように、素体10のX方向の中心に対して第2端面100e2側に設けられている。
(First External Electrode 121 and Second External Electrode 122)
The first external electrode 121 is connected to a first end of the coil 110, and the second external electrode 122 is connected to a second end of the coil 110. The first external electrode 121 is provided on the first end face 100e1 side with respect to the center in the X direction of the element body 10 so as to be exposed from the outer surface 100 of the element body 10. The second external electrode 122 is provided on the second end face 100e2 side with respect to the center in the X direction of the element body 10 so as to be exposed from the outer surface 100 of the element body 10.
 底面100bに直交する方向からみて、第1外部電極121および第2外部電極122は、素体10の外面100よりも内側に位置する。つまり、第1外部電極121および第2外部電極122は、素体10の第1端面100e1、第2端面100e2、第1側面100s1および第2側面100s2よりも内側に位置する。 When viewed from a direction perpendicular to the bottom surface 100b, the first external electrode 121 and the second external electrode 122 are located inside the outer surface 100 of the element body 10. In other words, the first external electrode 121 and the second external electrode 122 are located inside the first end surface 100e1, the second end surface 100e2, the first side surface 100s1, and the second side surface 100s2 of the element body 10.
 上記構成によれば、第1外部電極121および第2外部電極122は、素体10の外面100に接触していないので、個々のインダクタ部品に個片化する際、第1外部電極121および第2外部電極122にかかる負荷を低減でき、第1外部電極121および第2外部電極122の変形や剥離を抑制できる。このため、インダクタ部品を小型にしても、第1外部電極121および第2外部電極122の変形や剥離を防止できる。 With the above configuration, the first external electrode 121 and the second external electrode 122 are not in contact with the outer surface 100 of the element body 10, so when the inductor components are singulated, the load on the first external electrode 121 and the second external electrode 122 can be reduced, and deformation and peeling of the first external electrode 121 and the second external electrode 122 can be suppressed. Therefore, even if the inductor component is made small, deformation and peeling of the first external electrode 121 and the second external electrode 122 can be prevented.
 なお、第1外部電極121は、底面100bおよび第1端面100e1に連続して設けられていてもよい。これによれば、第1外部電極121は、いわゆるL字形状の電極であるので、インダクタ部品1を実装基板に実装する際、第1外部電極121にはんだフィレットを形成することができる。同様に、第2外部電極122は、底面100bおよび第2端面100e2に連続して設けられていてもよい。 The first external electrode 121 may be provided continuously on the bottom surface 100b and the first end surface 100e1. In this way, since the first external electrode 121 is a so-called L-shaped electrode, a solder fillet can be formed on the first external electrode 121 when the inductor component 1 is mounted on a mounting board. Similarly, the second external electrode 122 may be provided continuously on the bottom surface 100b and the second end surface 100e2.
 第1外部電極121は、底面100b上に設けられた底面部分121bと、底面100bに埋め込まれたビア部分121vとを有する。ビア部分121vは、底面部分121bに接続される。ビア部分121vは、軸AX方向の第1端面100e1側に位置する底面配線11bの端部に接続される。 The first external electrode 121 has a bottom surface portion 121b provided on the bottom surface 100b and a via portion 121v embedded in the bottom surface 100b. The via portion 121v is connected to the bottom surface portion 121b. The via portion 121v is connected to an end of the bottom surface wiring 11b located on the first end surface 100e1 side in the axis AX direction.
 第2外部電極122は、底面100b上に設けられた底面部分122bと、底面100bに埋め込まれたビア部分122vとを有する。ビア部分122vは、底面部分122bに接続される。ビア部分122vは、軸AX方向の第2端面100e2側に位置する底面配線11bの端部に接続される。 The second external electrode 122 has a bottom surface portion 122b provided on the bottom surface 100b and a via portion 122v embedded in the bottom surface 100b. The via portion 122v is connected to the bottom surface portion 122b. The via portion 122v is connected to the end of the bottom surface wiring 11b located on the second end surface 100e2 side in the axis AX direction.
 第1外部電極121は、下地層121e1と、下地層121e1を覆うめっき層121e2とを有する。下地層121e1は、例えば、AgやCuなどの導電材料を含む。めっき層121e2は、例えば、NiやSnなどの導電材料を含む。底面部分121bの一部とビア部分121vとは、下地層121e1から構成される。底面部分121bの他の一部は、めっき層121e2から構成される。同様に、第2外部電極122は、下地層と、下地層を覆うめっき層とを有する。なお、第1外部電極121および第2外部電極122は、単層の導電体材料から構成されていてもよい。 The first external electrode 121 has an underlayer 121e1 and a plating layer 121e2 that covers the underlayer 121e1. The underlayer 121e1 includes a conductive material such as Ag or Cu. The plating layer 121e2 includes a conductive material such as Ni or Sn. A part of the bottom portion 121b and the via portion 121v are composed of the underlayer 121e1. Another part of the bottom portion 121b is composed of the plating layer 121e2. Similarly, the second external electrode 122 has an underlayer and a plating layer that covers the underlayer. The first external electrode 121 and the second external electrode 122 may be composed of a single layer of conductive material.
 (インダクタ部品1の製造方法)
 次に、図5Aから図5Mを用いてインダクタ部品1の製造方法を説明する。図5Aから図5H、図5K、図5Lは、図1のII-II断面に対応した図である。図5I、図5J、図5Mは、図1のIII-III断面に対応した図である。
(Method of Manufacturing Inductor Component 1)
Next, a method for manufacturing the inductor component 1 will be described with reference to Figures 5A to 5M. Figures 5A to 5H, 5K, and 5L are views corresponding to the cross section II-II of Figure 1. Figures 5I, 5J, and 5M are views corresponding to the cross section III-III of Figure 1.
 図5Aに示すように、ベース基板1000上に第1絶縁層1011を印刷により設ける。ベース基板1000の材料は、例えば、ガラス基板、シリコン基板、アルミナ基板などであり、第1絶縁層1011の材料は、例えば、エポキシ、ポリイミドなどの樹脂、SiOやSiNなどの無機絶縁膜である。 As shown in FIG. 5A, a first insulating layer 1011 is provided on a base substrate 1000 by printing. The material of the base substrate 1000 is, for example, a glass substrate, a silicon substrate, an alumina substrate, etc., and the material of the first insulating layer 1011 is, for example, a resin such as epoxy or polyimide, or an inorganic insulating film such as SiO or SiN.
 図5Bに示すように、第1絶縁層1011上に第2絶縁層1012を印刷により設ける。第2絶縁層1012に溝1012aを設ける。このとき、例えば、溝1012aをフォトリソグラフィ工程により形成する。なお、印刷パターンとして始めから溝を形成していてもよい。 As shown in FIG. 5B, the second insulating layer 1012 is provided on the first insulating layer 1011 by printing. A groove 1012a is provided in the second insulating layer 1012. At this time, the groove 1012a is formed, for example, by a photolithography process. Note that the groove may be formed from the beginning as a printing pattern.
 図5Cに示すように、溝1012aに天面導体層1011tを印刷により設ける。天面導体層1011tの材料は、例えば、Ag、Cu、Au、Alやそれらの元素を少なくとも一つ以上含む合金、はんだペーストなどである。このとき、例えば、天面導体層1011tを印刷パターンとして溝1012aのみに残るように形成する。なお、天面導体層1011tを第2絶縁層1012上に印刷した後に、フォトリソグラフィ工程により天面導体層1011tを溝1012aのみに残るようにしてもよい。 As shown in FIG. 5C, a top conductor layer 1011t is provided in the groove 1012a by printing. The material of the top conductor layer 1011t is, for example, Ag, Cu, Au, Al, an alloy containing at least one of these elements, solder paste, etc. At this time, for example, the top conductor layer 1011t is formed as a printing pattern so that it remains only in the groove 1012a. Note that after the top conductor layer 1011t is printed on the second insulating layer 1012, a photolithography process may be used to make the top conductor layer 1011t remain only in the groove 1012a.
 図5Dに示すように、第2絶縁層1012上に第3絶縁層1013を印刷により設ける。第3絶縁層1013に第1溝1013aと第2溝1013bを設ける。図5Bと同様の方法で第1溝1013aおよび第2溝1013bを形成する。 As shown in FIG. 5D, a third insulating layer 1013 is provided on the second insulating layer 1012 by printing. A first groove 1013a and a second groove 1013b are provided in the third insulating layer 1013. The first groove 1013a and the second groove 1013b are formed in the same manner as in FIG. 5B.
 図5Eに示すように、第1溝1013aに1層目の第1貫通導体層1131を印刷により設け、第2溝1013bに1層目の第2貫通導体層1141を印刷により設ける。図5Cと同様の方法で1層目の第1貫通導体層1131および1層目の第2貫通導体層1141を形成する。 As shown in FIG. 5E, the first through conductor layer 1131 of the first layer is provided by printing in the first groove 1013a, and the second through conductor layer 1141 of the first layer is provided by printing in the second groove 1013b. The first through conductor layer 1131 of the first layer and the second through conductor layer 1141 of the first layer are formed in the same manner as in FIG. 5C.
 上述の工程を繰り返して、図5Fに示すように、第3絶縁層1013上に第4絶縁層1014を設け、第4絶縁層1014に設けた2つの溝のそれぞれに、2層目の第1貫通導体層1132と2層目の第2貫通導体層1142を設ける。さらに、第4絶縁層1014上に第5絶縁層1015を設け、第5絶縁層1015に設けた2つの溝のそれぞれに、3層目の第1貫通導体層1133と3層目の第2貫通導体層1143を設ける。 By repeating the above steps, as shown in FIG. 5F, a fourth insulating layer 1014 is provided on the third insulating layer 1013, and a second-layer first penetrating conductor layer 1132 and a second-layer second penetrating conductor layer 1142 are provided in each of the two grooves provided in the fourth insulating layer 1014. Furthermore, a fifth insulating layer 1015 is provided on the fourth insulating layer 1014, and a third-layer first penetrating conductor layer 1133 and a third-layer second penetrating conductor layer 1143 are provided in each of the two grooves provided in the fifth insulating layer 1015.
 図5Gに示すように、第5絶縁層1015上に第6絶縁層1016を設け、第6絶縁層1016に設けた溝に底面導体層1011bを設ける。底面導体層1011bの材料は、天面導体層1011tの材料と同じである。図5Hに示すように、第6絶縁層1016上に第7絶縁層1017を設ける。 As shown in FIG. 5G, a sixth insulating layer 1016 is provided on the fifth insulating layer 1015, and a bottom conductor layer 1011b is provided in a groove provided in the sixth insulating layer 1016. The material of the bottom conductor layer 1011b is the same as the material of the top conductor layer 1011t. As shown in FIG. 5H, a seventh insulating layer 1017 is provided on the sixth insulating layer 1016.
 図5Iに示すように、底面導体層1011bの一部が露出するように第7絶縁層1017に溝1017aを設ける。図5Jに示すように、第7絶縁層1017上および溝1017a内に、下地導体層1121e1を設ける。下地導体層1121e1の材料は、例えば、AgやCuなどの樹脂ペーストである。 As shown in FIG. 5I, a groove 1017a is provided in the seventh insulating layer 1017 so that a portion of the bottom conductor layer 1011b is exposed. As shown in FIG. 5J, an underlying conductor layer 1121e1 is provided on the seventh insulating layer 1017 and in the groove 1017a. The material of the underlying conductor layer 1121e1 is, for example, a resin paste such as Ag or Cu.
 図5Kに示すように、積層体の全体を高温(例えば500℃以上)の炉で焼結する。第1から第7絶縁層1011~1017を焼結して素体10を形成し、天面導体層1011tを焼結して天面配線11tを形成し、底面導体層1011bを焼結して底面配線11bを形成し、1層目から3層目の第1貫通導体層1131~1133を焼結して第1貫通配線13を形成し、1層目から3層目の第2貫通導体層1141~1143を焼結して第2貫通配線14を形成し、下地導体層1121e1を焼結して下地層121e1を形成する。したがって、絶縁層を焼結することで強度を向上でき、また、導体層を焼結することで、導体層に含まれる不要な樹脂成分を揮発するとともに、導体層に含まれる導体材料が融着し高い導電率を実現できる。ベース基板1000は、焼結の際に表面を分解させることで剥離させてもよく、または、焼結前後に研削などで機械的に除去してもよく、または、焼結前後にエッチングなどで化学的に除去してもよい。 As shown in FIG. 5K, the entire laminate is sintered in a high-temperature (e.g., 500°C or higher) furnace. The first to seventh insulating layers 1011-1017 are sintered to form the base body 10, the top conductor layer 1011t is sintered to form the top wiring 11t, the bottom conductor layer 1011b is sintered to form the bottom wiring 11b, the first through conductor layers 1131-1133 of the first to third layers are sintered to form the first through wiring 13, the second through conductor layers 1141-1143 of the first to third layers are sintered to form the second through wiring 14, and the base conductor layer 1121e1 is sintered to form the base layer 121e1. Therefore, the strength can be improved by sintering the insulating layers, and the conductor layers are sintered to volatilize unnecessary resin components contained in the conductor layers and fuse the conductor material contained in the conductor layers to achieve high conductivity. The base substrate 1000 may be peeled off by decomposing the surface during sintering, or may be mechanically removed by grinding or the like before or after sintering, or may be chemically removed by etching or the like before or after sintering.
 図5Lに示すように、カット線Cにて個片化する。図5Mに示すように、下地層121e1を覆うようにバレルめっきにてめっき層121e2を形成し、第1外部電極121を形成する。これにより、図2に示すように、インダクタ部品1を製造する。 As shown in FIG. 5L, the chip is cut into individual pieces along cut lines C. As shown in FIG. 5M, a plating layer 121e2 is formed by barrel plating so as to cover the base layer 121e1, forming a first external electrode 121. In this way, the inductor component 1 is manufactured as shown in FIG. 2.
 3.変形例
 (第1変形例)
 図6Aは、インダクタ部品の第1変形例を示す図1のII-II断面に対応した図である。図6Aに示すように、第1変形例のインダクタ部品1Aでは、コイル110の軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110の内径を大きくできて、Q値を向上できる。
3. Modification (First Modification)
Fig. 6A is a view showing a first modified example of an inductor component corresponding to the II-II cross section of Fig. 1. As shown in Fig. 6A, in the inductor component 1A of the first modified example, the first through wire 13 and the second through wire 14 are not parallel when viewed from a direction parallel to the axis AX of the coil 110. This makes it possible to increase the distance between the first through wire 13 and the second through wire 14, thereby making it possible to increase the inner diameter of the coil 110 and improve the Q value.
 具体的に述べると、第1貫通配線13および第2貫通配線14は、互いの間隔がZ方向の中心ほど広くなるように、中心で屈曲している。つまり、第1貫通配線13および第2貫通配線14は、それぞれ、Z方向の中心ほどコイル110の径方向の外側に広がるような形状を有する。また、第1貫通配線13および第2貫通配線14は、それぞれ、Z方向に沿って階段状の形状を有する。上記構成によれば、第1貫通配線13および第2貫通配線14をそれぞれ複数の導体層を積層して形成する場合、各層の導体層をずらして積層することで、第1貫通配線13および第2貫通配線14を容易に階段状に形成することができる。 Specifically, the first through wiring 13 and the second through wiring 14 are bent at the center so that the distance between them becomes wider toward the center in the Z direction. In other words, the first through wiring 13 and the second through wiring 14 each have a shape that spreads outward in the radial direction of the coil 110 toward the center in the Z direction. Furthermore, the first through wiring 13 and the second through wiring 14 each have a stepped shape along the Z direction. According to the above configuration, when the first through wiring 13 and the second through wiring 14 are each formed by stacking multiple conductor layers, the first through wiring 13 and the second through wiring 14 can be easily formed in a stepped shape by stacking the conductor layers of each layer in a shifted manner.
 (第2変形例)
 図6Bは、インダクタ部品の第2変形例を示す図1のII-II断面に対応した図である。図6Bに示すように、第2変形例のインダクタ部品1Bでは、コイル110の軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110の内径を大きくできて、Q値を向上できる。
(Second Modification)
Fig. 6B is a view showing a second modified example of the inductor component, corresponding to the cross section taken along line II-II in Fig. 1. As shown in Fig. 6B, in the inductor component 1B of the second modified example, the first through wire 13 and the second through wire 14 are not parallel when viewed from a direction parallel to the axis AX of the coil 110. This makes it possible to increase the distance between the first through wire 13 and the second through wire 14, thereby making it possible to increase the inner diameter of the coil 110 and improve the Q value.
 具体的に述べると、第1貫通配線13および第2貫通配線14は、互いの間隔がZ方向の天面配線11t側ほど広くなるように傾斜している。つまり、第1貫通配線13および第2貫通配線14は、それぞれ、Z方向の天面配線11tほどコイル110の径方向の外側に広がるような形状を有する。このように、コイル110は、軸AX方向からみて、台形形状を有する。上記構成によれば、第1貫通配線13および第2貫通配線14を直線状に形成して短くすることができ、第1貫通配線13および第2貫通配線14の直流抵抗を低減できる。 Specifically, the first through wiring 13 and the second through wiring 14 are inclined so that the distance between them becomes wider toward the top wiring 11t in the Z direction. In other words, the first through wiring 13 and the second through wiring 14 each have a shape that spreads outward in the radial direction of the coil 110 as far as the top wiring 11t in the Z direction. In this way, the coil 110 has a trapezoidal shape when viewed from the axis AX direction. With the above configuration, the first through wiring 13 and the second through wiring 14 can be formed in a straight line and shortened, thereby reducing the DC resistance of the first through wiring 13 and the second through wiring 14.
 (第3変形例)
 図6Cは、インダクタ部品の第3変形例を示す図1のII-II断面に対応した図である。図6Cに示すように、第3変形例のインダクタ部品1Cでは、図6Aに示す第1変形例のインダクタ部品1Aと比較して、第1コイル110Aおよび第2コイル110Bを含む。
(Third Modification)
Fig. 6C is a view showing a third modified example of an inductor component corresponding to the cross section taken along line II-II in Fig. 1. As shown in Fig. 6C, an inductor component 1C of the third modified example includes a first coil 110A and a second coil 110B, as compared with the inductor component 1A of the first modified example shown in Fig. 6A.
 第1コイル110Aにおいて、軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110Aの内径を大きくできて、Q値を向上できる。 In the first coil 110A, the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110A to be increased, and the Q value to be improved.
 具体的に述べると、第1貫通配線13は、第1変形例のインダクタ部品1Aの第1貫通配線13と同様の構成である。一方、第2貫通配線14は、Z方向に平行な直線形状を有する。つまり、第1貫通配線13は、第1貫通配線13と第2貫通配線14の間隔がZ方向の中心ほど広くなるように、中心で屈曲している。第1貫通配線13は、Z方向に沿って階段状の形状を有する。上記構成によれば、第1貫通配線13を複数の導体層を積層して形成する場合、各層の導体層をずらして積層することで、第1貫通配線13を容易に階段状に形成することができる。 Specifically, the first through wiring 13 has the same configuration as the first through wiring 13 of the inductor component 1A of the first modified example. On the other hand, the second through wiring 14 has a linear shape parallel to the Z direction. In other words, the first through wiring 13 is bent at the center so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider toward the center in the Z direction. The first through wiring 13 has a stepped shape along the Z direction. According to the above configuration, when the first through wiring 13 is formed by stacking multiple conductor layers, the conductor layers of each layer are stacked with a shift, so that the first through wiring 13 can be easily formed in a stepped shape.
 第2コイル110Bにおいて、軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110Bの内径を大きくできて、Q値を向上できる。 In the second coil 110B, the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110B to be increased, and the Q value to be improved.
 具体的に述べると、第2貫通配線14は、第1変形例のインダクタ部品1Aの第2貫通配線14と同様の構成である。一方、第1貫通配線13は、Z方向に平行な直線形状を有する。つまり、第2貫通配線14は、第1貫通配線13と第2貫通配線14の間隔がZ方向の中心ほど広くなるように、中心で屈曲している。第2貫通配線14は、Z方向に沿って階段状の形状を有する。上記構成によれば、第2貫通配線14を複数の導体層を積層して形成する場合、各層の導体層をずらして積層することで、第2貫通配線14を容易に階段状に形成することができる。 Specifically, the second through wiring 14 has the same configuration as the second through wiring 14 of the inductor component 1A of the first modified example. On the other hand, the first through wiring 13 has a linear shape parallel to the Z direction. In other words, the second through wiring 14 is bent at the center so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider toward the center in the Z direction. The second through wiring 14 has a stepped shape along the Z direction. According to the above configuration, when the second through wiring 14 is formed by stacking multiple conductor layers, the second through wiring 14 can be easily formed in a stepped shape by stacking the conductor layers of each layer in a shifted manner.
 (第4変形例)
 図6Dは、インダクタ部品の第4変形例を示す図1のII-II断面に対応した図である。図6Dに示すように、第4変形例のインダクタ部品1Dでは、図6Bに示す第2変形例のインダクタ部品1Bと比較して、第1コイル110Aおよび第2コイル110Bを含む。
(Fourth Modification)
Fig. 6D is a view showing a fourth modified example of an inductor component corresponding to the cross section taken along line II-II in Fig. 1. As shown in Fig. 6D, an inductor component 1D of the fourth modified example includes a first coil 110A and a second coil 110B, as compared with the inductor component 1B of the second modified example shown in Fig. 6B.
 第1コイル110Aにおいて、軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110Aの内径を大きくできて、Q値を向上できる。 In the first coil 110A, the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110A to be increased, and the Q value to be improved.
 具体的に述べると、第1貫通配線13は、第2変形例のインダクタ部品1Bの第1貫通配線13と同様の構成である。一方、第2貫通配線14は、Z方向に平行な直線形状を有する。つまり、第1貫通配線13は、第1貫通配線13と第2貫通配線14の間隔がZ方向の天面配線11t側ほど広くなるように傾斜している。上記構成によれば、第1貫通配線13および第2貫通配線14を直線状に形成して短くすることができ、第1貫通配線13および第2貫通配線14の直流抵抗を低減できる。 Specifically, the first through wiring 13 has the same configuration as the first through wiring 13 of the inductor component 1B of the second modified example. On the other hand, the second through wiring 14 has a linear shape parallel to the Z direction. In other words, the first through wiring 13 is inclined so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider in the Z direction toward the top surface wiring 11t side. With the above configuration, the first through wiring 13 and the second through wiring 14 can be formed in a linear shape and shortened, thereby reducing the DC resistance of the first through wiring 13 and the second through wiring 14.
 第2コイル110Bにおいて、軸AXに平行な方向からみて、第1貫通配線13と第2貫通配線14は、平行でない。これによれば、第1貫通配線13と第2貫通配線14の間の距離を広げることができ、コイル110Bの内径を大きくできて、Q値を向上できる。 In the second coil 110B, the first through-wire 13 and the second through-wire 14 are not parallel when viewed from a direction parallel to the axis AX. This allows the distance between the first through-wire 13 and the second through-wire 14 to be increased, the inner diameter of the coil 110B to be increased, and the Q value to be improved.
 具体的に述べると、第2貫通配線14は、第2変形例のインダクタ部品1Bの第2貫通配線14と同様の構成である。一方、第1貫通配線13は、Z方向に平行な直線形状を有する。つまり、第2貫通配線14は、第1貫通配線13と第2貫通配線14の間隔がZ方向の天面配線11t側ほど広くなるように傾斜している。上記構成によれば、第1貫通配線13および第2貫通配線14を直線状に形成することができ、第1貫通配線13および第2貫通配線14の電気抵抗を低減できる。 Specifically, the second through wiring 14 has the same configuration as the second through wiring 14 of the inductor component 1B of the second modified example. On the other hand, the first through wiring 13 has a linear shape parallel to the Z direction. In other words, the second through wiring 14 is inclined so that the distance between the first through wiring 13 and the second through wiring 14 becomes wider in the Z direction toward the top surface wiring 11t. With the above configuration, the first through wiring 13 and the second through wiring 14 can be formed in a linear shape, and the electrical resistance of the first through wiring 13 and the second through wiring 14 can be reduced.
 <第2実施形態>
 図7は、インダクタ部品の第2実施形態を示す底面側から見た模式底面図である。図8は、図7のVIII-VIII断面図である。図7では、便宜上、絶縁層を省略して描き、外部電極を二点鎖線で描いている。また、図7では、素体10は、構造を容易に理解できるよう、透明に描かれている。第2実施形態は、第1実施形態とは、主に、コイルの軸の位置と、素体の材料と、絶縁層を設けている点が相違し、主に、これらの相違する構成を以下に説明する。その他の構成は、第1実施形態と同じ構成であり、その説明を省略する。
Second Embodiment
Fig. 7 is a schematic bottom view showing the second embodiment of the inductor component as viewed from the bottom side. Fig. 8 is a cross-sectional view taken along line VIII-VIII of Fig. 7. In Fig. 7, for convenience, the insulating layer is omitted, and the external electrodes are drawn with two-dot chain lines. In Fig. 7, the element body 10 is drawn transparently so that the structure can be easily understood. The second embodiment differs from the first embodiment mainly in the position of the coil axis, the material of the element body, and the provision of an insulating layer, and these differences in configuration will be mainly described below. The other configurations are the same as those of the first embodiment, and description thereof will be omitted.
 1.各部構成
 (インダクタ部品1E)
 図7に示すように、インダクタ部品1Eでは、コイル110の軸AXは、X方向に対して垂直である。具体的に述べると、軸AXは、Y方向に対して平行であり、素体10のX方向の中心を通過する。これによれば、第1外部電極121および第2外部電極122によるコイル110の磁束の妨げを少なくでき、インダクタンスの取得効率を向上できる。
1. Configuration of each part (inductor component 1E)
7, in the inductor component 1E, the axis AX of the coil 110 is perpendicular to the X direction. Specifically, the axis AX is parallel to the Y direction and passes through the center of the element body 10 in the X direction. This can reduce the interference with the magnetic flux of the coil 110 by the first external electrode 121 and the second external electrode 122, improving the efficiency of obtaining inductance.
 コイル110の軸AX方向の長さは、コイル110の内径より短い。コイル110の軸AX方向の長さは、コイル長ともいう。これによれば、コイル長が短く、コイル内径が大きいので、Q値を向上できる。コイルの内径とは、軸AX方向から透過して見た際に、コイル110に囲まれた領域の最小面積を基準にした円相当径をいう。 The length of coil 110 in the axial AX direction is shorter than the inner diameter of coil 110. The length of coil 110 in the axial AX direction is also called the coil length. This allows the Q value to be improved because the coil length is short and the coil inner diameter is large. The inner diameter of the coil refers to the equivalent diameter of a circle based on the minimum area of the region surrounded by coil 110 when viewed through the axial AX direction.
 (素体10)
 素体10は、無機絶縁体である。素体10の材料は、好ましくは、ガラスであり、これによれば、ガラスは絶縁性が高いため、渦電流を抑制でき、Q値を高くできる。素体10には、好ましくは、Si元素が含有され、これによれば、素体10の熱的安定性が高く、このため、熱による素体10寸法などの変動を抑制し、電気特性バラツキを小さくすることができる。
(Element 10)
The element body 10 is an inorganic insulator. The material of the element body 10 is preferably glass, which has high insulating properties and can suppress eddy currents and increase the Q value. The element body 10 preferably contains silicon, which provides high thermal stability of the element body 10 and therefore can suppress fluctuations in dimensions of the element body 10 due to heat and reduce variations in electrical characteristics.
 素体10は、好ましくは、単層ガラス板である。これによれば、素体10の強度を確保することができる。また、単層ガラス板の場合、誘電損が小さいことから高周波でのQ値を高くすることができる。また、焼結体のような焼結工程がないので焼結時の素体10の変形が抑制できることからパターンズレを抑制でき、インダクタンス公差の小さいインダクタ部品を提供できる。 The element body 10 is preferably a single-layer glass plate. This ensures the strength of the element body 10. Furthermore, in the case of a single-layer glass plate, the dielectric loss is small, so the Q value at high frequencies can be increased. Furthermore, since there is no sintering process as in the case of sintered bodies, deformation of the element body 10 during sintering can be suppressed, which suppresses pattern misalignment, making it possible to provide an inductor component with a small inductance tolerance.
 単層ガラス板の材料としては、製造方法の観点からは、FoturanII(SchottAG社登録商標)に代表される感光性を有するガラス板が好ましい。特に、単層ガラス板は、セリウム酸化物(セリア:CeO)を含有していることが好ましく、この場合、セリウム酸化物が増感剤となって、フォトリソグラフィによる加工がより容易となる。 From the viewpoint of the manufacturing method, the material of the single-layer glass plate is preferably a photosensitive glass plate such as Foturan II (registered trademark of Schott AG). In particular, the single-layer glass plate preferably contains cerium oxide (ceria: CeO 2 ), in which case the cerium oxide acts as a sensitizer, making processing by photolithography easier.
 ただし、単層ガラス板は、ドリル、サンドブラストなどの機械加工、フォトレジスト・メタルマスクなどを用いたドライ/ウェットエッチング加工、レーザ加工などによって加工できることから、感光性を有さないガラス板であってもよい。また、単層ガラス板は、ガラスペーストを焼結させたものであってもよいし、フロート法などの公知の方法よって形成されていてもよい。 However, since the single-layer glass plate can be processed by mechanical processing such as drilling and sandblasting, dry/wet etching using a photoresist/metal mask, laser processing, etc., it may be a glass plate that does not have photosensitivity. In addition, the single-layer glass plate may be made by sintering a glass paste, or may be formed by a known method such as the float method.
 (絶縁体22)
 図8に示すように、インダクタ部品1Eは、絶縁体22を有する。絶縁体22は、素体10の底面100bおよび天面100tのそれぞれを覆う。なお、絶縁体22は、底面100bおよび天面1100tのうちの底面100bのみに設けられていてもよい。
(Insulator 22)
8, the inductor component 1E has an insulator 22. The insulator 22 covers both the bottom surface 100b and the top surface 100t of the element body 10. Note that the insulator 22 may be provided only on the bottom surface 100b out of the bottom surface 100b and the top surface 1100t.
 絶縁体22は、配線(底面配線11b、天面配線11t)を覆うことで、配線を外力から保護し、配線の損傷を防止する役割や、配線の絶縁性を向上する役割を有する部材である。絶縁体22は、好ましくは、有機絶縁体である。例えば、絶縁体22は、形成が容易なエポキシ、ポリイミドなどの樹脂膜であってもよい。特に、絶縁体22は、低誘電率の材料で構成されることが好ましく、これにより、コイル110と外部電極121,122との間に絶縁体22が存在する場合、コイル110と外部電極121,122との間に形成される浮遊容量を低減することができる。絶縁体22は、例えば、ABF GX-92(味の素ファインテクノ株式会社社製)などの樹脂フィルムをラミネートするか、ペースト状の樹脂を塗布、熱硬化するなどによって形成できる。なお、絶縁体22は、例えば絶縁性及び薄膜化に優れた珪素やハフニウムなどの酸化物、窒化物、酸窒化物などの無機膜であってもよい。 The insulator 22 is a member that covers the wiring (bottom wiring 11b, top wiring 11t) to protect the wiring from external forces, prevent damage to the wiring, and improve the insulation of the wiring. The insulator 22 is preferably an organic insulator. For example, the insulator 22 may be a resin film such as epoxy or polyimide, which is easy to form. In particular, the insulator 22 is preferably made of a material with a low dielectric constant, which can reduce the stray capacitance formed between the coil 110 and the external electrodes 121 and 122 when the insulator 22 is present between the coil 110 and the external electrodes 121 and 122. The insulator 22 can be formed, for example, by laminating a resin film such as ABF GX-92 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), or by applying a paste-like resin and thermally curing it. The insulator 22 may be an inorganic film such as an oxide, nitride, or oxynitride of silicon or hafnium, which has excellent insulation properties and can be made into a thin film.
 好ましくは、素体10が無機絶縁体であり、絶縁体22が有機絶縁体であるとき、有機絶縁体は、底面100bに直交する方向からみて、無機絶縁体の外面100よりも内側に位置する。これによれば、有機絶縁体を有するので、有機絶縁体は流動性を付与しやすく、配線(底面配線11b、天面配線11t)を有機絶縁体により覆う場合、隣り合う配線の間に有機絶縁体を容易に充填することができ、絶縁性を向上できる。また、有機絶縁体は、機絶縁体の外面に接触していないので、個々のインダクタ部品に個片化する際、有機絶縁体にかかる負荷を低減でき、有機絶縁体の変形や剥離を抑制できる。 Preferably, when the base body 10 is an inorganic insulator and the insulator 22 is an organic insulator, the organic insulator is located inside the outer surface 100 of the inorganic insulator when viewed from a direction perpendicular to the bottom surface 100b. With this, since the organic insulator is included, the organic insulator is easily given fluidity, and when the wiring (bottom surface wiring 11b, top surface wiring 11t) is covered with the organic insulator, the organic insulator can be easily filled between adjacent wirings, improving insulation. In addition, since the organic insulator is not in contact with the outer surface of the mechanical insulator, the load on the organic insulator can be reduced when singulating into individual inductor components, and deformation and peeling of the organic insulator can be suppressed.
 (コイル110)
 図7に示すように、底面配線11bは、一つの方向にのみ延在する。具体的に述べると、底面配線11bは、X方向に延びる形状である。全ての底面配線11bは、Y方向に沿って平行に配置されている。天面配線11tは、一つの方向にのみ延在する。具体的に述べると、天面配線11tは、ややY方向に傾いてX方向に延伸している。全ての天面配線11tは、Y方向に沿って平行に配置されている。
(Coil 110)
As shown in Fig. 7, the bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the X direction. All the bottom wirings 11b are arranged in parallel along the Y direction. The top wiring 11t extends in only one direction. Specifically, the top wiring 11t extends in the X direction at a slight incline toward the Y direction. All the top wirings 11t are arranged in parallel along the Y direction.
 第1貫通配線13は、素体10の貫通孔V内で、軸AXに対して第1端面100e1側に配置され、第2貫通配線14は、素体10の貫通孔V内で、軸AXに対して第2端面100e2側に配置されている。第1貫通配線13および第2貫通配線14は、それぞれ、底面100bおよび天面100tに直交する方向に延伸している。複数の第1貫通配線13および複数の第2貫通配線14は、それぞれ、Y方向に沿って平行に配置されている。 The first through wiring 13 is disposed on the first end face 100e1 side with respect to the axis AX within the through hole V of the element body 10, and the second through wiring 14 is disposed on the second end face 100e2 side with respect to the axis AX within the through hole V of the element body 10. The first through wiring 13 and the second through wiring 14 each extend in a direction perpendicular to the bottom surface 100b and the top surface 100t. The multiple first through wirings 13 and the multiple second through wirings 14 are each disposed in parallel along the Y direction.
 図9は、底面配線11bを底面側から見た模式底面図である。図9では、便宜上、第1外部電極121および第2外部電極122を二点鎖線で描き、さらに、第1貫通配線13の底面配線11bとの接続面13y、第2貫通配線14の底面配線11bとの接続面14y、第1外部電極121の底面配線11bとの接続面121y、第2外部電極122の底面配線11bとの接続面122yを二点鎖線で描いている。 FIG. 9 is a schematic bottom view of the bottom wiring 11b as viewed from the bottom side. For convenience, in FIG. 9, the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines, and further, the connection surface 13y of the first through wiring 13 with the bottom wiring 11b, the connection surface 14y of the second through wiring 14 with the bottom wiring 11b, the connection surface 121y of the first external electrode 121 with the bottom wiring 11b, and the connection surface 122y of the second external electrode 122 with the bottom wiring 11b are depicted with two-dot chain lines.
 図9に示すように、第1外部電極121側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの底面配線11bは、第1外部電極121に対して電気的により近くに位置する第1基準コイル配線111bである。複数の底面配線11bの一つは、第1基準コイル配線111bと同一平面上に位置し第1基準コイル配線111bに対して軸AX方向に隣り合う隣接コイル配線116bである。第1基準コイル配線111bの長さ(以下、第6長さL6という)は、隣接コイル配線116bの長さ(以下、第7長さL7という)よりも短い。 As shown in FIG. 9, of the bottom wiring 11b and top wiring 11t that constitute the outermost turn of the coil 110 on the first external electrode 121 side, the bottom wiring 11b is the first reference coil wiring 111b that is located electrically closer to the first external electrode 121. One of the multiple bottom wirings 11b is the adjacent coil wiring 116b that is located on the same plane as the first reference coil wiring 111b and is adjacent to the first reference coil wiring 111b in the axial AX direction. The length of the first reference coil wiring 111b (hereinafter referred to as the sixth length L6) is shorter than the length of the adjacent coil wiring 116b (hereinafter referred to as the seventh length L7).
 第6長さL6は、底面100bに直交する方向からみて、第1基準コイル配線111bの幅方向の中心線に沿い、第1基準コイル配線111bの第1端部に接続される第2貫通配線14の接続面14yの中心と第1基準コイル配線111bの第2端部に接続される第1外部電極121の接続面121yの中心との間の長さである。第7長さL7は、底面100bに直交する方向からみて、隣接コイル配線116bの幅方向の中心線に沿い、隣接コイル配線116bの第1端部に接続される第1貫通配線13の接続面13yの中心と隣接コイル配線116bの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The sixth length L6 is the length along the center line of the width of the first reference coil wiring 111b between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the first reference coil wiring 111b and the center of the connection surface 121y of the first external electrode 121 connected to the second end of the first reference coil wiring 111b, when viewed from a direction perpendicular to the bottom surface 100b. The seventh length L7 is the length along the center line of the width of the adjacent coil wiring 116b between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the adjacent coil wiring 116b and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the adjacent coil wiring 116b, when viewed from a direction perpendicular to the bottom surface 100b.
 上記構成によれば、第6長さL6は、第7長さL7よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。具体的に述べると、最外ターンの配線長さを、隣接コイル配線116bにより構成されるターンの配線長さよりも短くすることができる。 With the above configuration, since the sixth length L6 is shorter than the seventh length L7, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example. Specifically, the wiring length of the outermost turn can be made shorter than the wiring length of the turn formed by the adjacent coil wiring 116b.
 図9に示すように、複数の底面配線11bの一つは、第1基準コイル配線111bと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115bである。第1基準コイル配線111bの長さ(第6長さL6)は、中央コイル配線115bの長さ(以下、第8長さL8という)よりも短い。本実施形態では、中央コイル配線115bは、隣接コイル配線116bと同一であるため、第8長さL8は、第7長さL7と同じである。 As shown in FIG. 9, one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the first reference coil wiring 111b and is located in the center of the coil 110 in the axial AX direction. The length of the first reference coil wiring 111b (sixth length L6) is shorter than the length of the central coil wiring 115b (hereinafter referred to as eighth length L8). In this embodiment, since the central coil wiring 115b is the same as the adjacent coil wiring 116b, the eighth length L8 is the same as the seventh length L7.
 上記構成によれば、第6長さL6は、第8長さL8よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。具体的に述べると、最外ターンの配線長さを、コイル110の軸AX方向の中央のターンの配線長さよりも短くすることができる。 With the above configuration, since the sixth length L6 is shorter than the eighth length L8, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and it is easy to adjust the inductance required for impedance matching, for example. Specifically, the wiring length of the outermost turn can be made shorter than the wiring length of the central turn in the axial AX direction of the coil 110.
 本実施形態では、「第6長さL6は第7長さL7よりも短い」という第1の特徴と「第6長さL6は第8長さL8よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。これにより、最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 In this embodiment, it is sufficient to satisfy at least one of the first characteristic that "the sixth length L6 is shorter than the seventh length L7" and the second characteristic that "the sixth length L6 is shorter than the eighth length L8." This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
 図9に示すように、第2外部電極122側のコイル110の最外ターンの構成が、上述の第1外部電極121側のコイル110の最外ターンの構成と同様であってもよい。 As shown in FIG. 9, the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
 具体的に述べると、第2外部電極122側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの底面配線11bは、第2外部電極122に対して電気的により近くに位置する第2基準コイル配線112bである。複数の底面配線11bの一つは、第2基準コイル配線112bと同一平面上に位置し第2基準コイル配線112bに対して軸AX方向に隣り合う隣接コイル配線116bである。第2基準コイル配線112bの長さ(以下、第9長さL9という)は、隣接コイル配線116bの長さ(第7長さL7)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Specifically, of the bottom wiring 11b and top wiring 11t constituting the outermost turn of the coil 110 on the second external electrode 122 side, the bottom wiring 11b is the second reference coil wiring 112b located electrically closer to the second external electrode 122. One of the multiple bottom wirings 11b is the adjacent coil wiring 116b located on the same plane as the second reference coil wiring 112b and adjacent to the second reference coil wiring 112b in the axial AX direction. The length of the second reference coil wiring 112b (hereinafter referred to as the ninth length L9) is shorter than the length of the adjacent coil wiring 116b (seventh length L7). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and to easily adjust the inductance.
 第9長さL9は、底面100bに直交する方向からみて、第2基準コイル配線112bの幅方向の中心線に沿い、第2基準コイル配線112bの第1端部に接続される第1貫通配線13の接続面13yの中心と第2基準コイル配線112bの第2端部に接続される第2外部電極122の接続面122yの中心との間の長さである。 The ninth length L9 is the length along the center line of the width of the second reference coil wiring 112b when viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second reference coil wiring 112b and the center of the connection surface 122y of the second external electrode 122 connected to the second end of the second reference coil wiring 112b.
 また、複数の底面配線11bの一つは、第2基準コイル配線112bと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115bである。第2基準コイル配線112bの長さ(第9長さL9)は、中央コイル配線115bの長さ(第8長さL8)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Furthermore, one of the multiple bottom wirings 11b is a central coil wiring 115b that is located on the same plane as the second reference coil wiring 112b and is located in the center of the coil 110 in the axial AX direction. The length of the second reference coil wiring 112b (ninth length L9) is shorter than the length of the central coil wiring 115b (eighth length L8). This allows the wiring length of the outermost turn on the second external electrode 122 side to be adjusted, making it easy to adjust the inductance.
 なお、「第9長さL9は第7長さL7よりも短い」という第1の特徴と「第9長さL9は第8長さL8よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。 It is sufficient that at least one of the first characteristic that "the ninth length L9 is shorter than the seventh length L7" and the second characteristic that "the ninth length L9 is shorter than the eighth length L8" is satisfied.
 (第1外部電極121および第2外部電極122)
 図8に示すように、第1外部電極121の外面は、窪み部121aを有する。窪み部121aは、底面100bに直交する方向からみて、第1外部電極121の上面でビア部分121vに重なる位置に設けられている。これによれば、インダクタ部品1Eを基板に実装する場合、第1外部電極121の窪み部121aにはんだが入り込み、第1外部電極121とはんだとの接続強度が向上する。
(First External Electrode 121 and Second External Electrode 122)
8, the outer surface of the first external electrode 121 has a recess 121a. When viewed from a direction perpendicular to the bottom surface 100b, the recess 121a is provided at a position that overlaps with the via portion 121v on the upper surface of the first external electrode 121. With this, when the inductor component 1E is mounted on a substrate, solder fills the recess 121a of the first external electrode 121, improving the connection strength between the first external electrode 121 and the solder.
 同様に、第2外部電極122の外面は、窪み部を有していてもよい。これによれば、インダクタ部品1Eを基板に実装する場合、第2外部電極122の窪み部にはんだが入り込み、第2外部電極122とはんだとの接続強度が向上する。なお、第1外部電極121および第2外部電極122の上面が平坦となるように形成してもよい。 Similarly, the outer surface of the second external electrode 122 may have a recessed portion. With this, when the inductor component 1E is mounted on a substrate, solder will enter the recessed portion of the second external electrode 122, improving the connection strength between the second external electrode 122 and the solder. The top surfaces of the first external electrode 121 and the second external electrode 122 may be formed to be flat.
 (インダクタ部品1Eの製造方法)
 次に、図10Aから図10Hを用いてインダクタ部品1Eの製造方法を説明する。図10Aから図10Hは、図7のVIII-VIII断面に対応した図である。
(Method of Manufacturing Inductor Component 1E)
A method for manufacturing the inductor element 1E will now be described with reference to Figures 10A to 10H, which are cross-sectional views taken along the line VIII-VIII in Figure 7.
 図10Aに示すように、ベース基板2000上に銅箔2001を印刷により設ける。ベース基板2000の材料は、第1実施形態のベース基板1000と同じである。 As shown in FIG. 10A, copper foil 2001 is provided by printing on a base substrate 2000. The material of the base substrate 2000 is the same as that of the base substrate 1000 in the first embodiment.
 図10Bに示すように、ベース基板2000上に素体10となるガラス基板2010を設ける。例えば、導電性テープやピンや枠などの治具を用いてベース基板2000とガラス基板2010を密着させる。ガラス基板2010は、貫通孔Vを有する。ガラス基板2010は、例えば、TGV(Through Glass Via)基板である。TGV基板は、予めレーザやフォトリソなどによって貫通孔を形成した基板である。ガラス基板2010は、例えば、TSV(Through Silicon Via)基板であってもよく、または、それ以外であってもよい。また、ガラス基板2010の表面に、スパッタなどで予めシードとしてTi/Cuやその他必要な導電材料を蒸着していてもよい。 As shown in FIG. 10B, a glass substrate 2010 that will become the element body 10 is provided on a base substrate 2000. For example, the base substrate 2000 and the glass substrate 2010 are attached to each other using a jig such as conductive tape, pins, or a frame. The glass substrate 2010 has a through hole V. The glass substrate 2010 is, for example, a TGV (Through Glass Via) substrate. A TGV substrate is a substrate in which a through hole has been formed in advance by a laser, photolithography, or the like. The glass substrate 2010 may be, for example, a TSV (Through Silicon Via) substrate, or may be something else. In addition, Ti/Cu or other necessary conductive materials may be deposited in advance as a seed on the surface of the glass substrate 2010 by sputtering or the like.
 図10Cに示すように、ガラス基板2010の貫通孔V内に第1貫通配線13となる第1貫通導体層2013を形成する。図示しないが、貫通孔V内に第2貫通配線14となる第2貫通導体層を同様に形成する。具体的に述べると、ベース基板2000上の銅箔2001から給電することによって、ガラス基板2010の貫通孔Vに電解めっきをして第1貫通導体層2013を形成する。その他、ガラス基板2010の表面や貫通孔Vの内面にスパッタなどでシード層を形成し、既知の方法によるフィルドめっきやコンフォーマルめっき、導電性ペーストの印刷充填法などを用いて、貫通導体層を形成してもよい。ガラス基板2010の表面に不要なめっき成長がある場合、研磨、CMPやウェットエッチ(エッチバック)やドライエッチで不要部分を除去する。 As shown in FIG. 10C, a first through conductor layer 2013 that will become the first through wiring 13 is formed in the through hole V of the glass substrate 2010. Although not shown, a second through conductor layer that will become the second through wiring 14 is similarly formed in the through hole V. Specifically, by supplying power from the copper foil 2001 on the base substrate 2000, electrolytic plating is performed in the through hole V of the glass substrate 2010 to form the first through conductor layer 2013. Alternatively, a seed layer may be formed on the surface of the glass substrate 2010 or the inner surface of the through hole V by sputtering or the like, and a through conductor layer may be formed by known methods such as filled plating, conformal plating, or a printing and filling method of a conductive paste. If there is unnecessary plating growth on the surface of the glass substrate 2010, the unnecessary portions are removed by polishing, CMP, wet etching (etch-back), or dry etching.
 図10Dに示すように、ベース基板2000をガラス基板2010から剥離する。このとき、ベース基板2000を研削などで機械的に除去してもよく、または、エッチングなどで化学的に除去してもよい。 As shown in FIG. 10D, the base substrate 2000 is peeled off from the glass substrate 2010. At this time, the base substrate 2000 may be removed mechanically by grinding or the like, or may be removed chemically by etching or the like.
 図10Eに示すように、底面配線11bとなる底面導体層2011bおよび天面配線11tとなる天面導体層2011tをガラス基板2010上に形成する。具体的に述べると、ガラス基板2010の全面に図示しないシード層を設け、シード層上にパターニングされたフォトレジストを形成する。フォトレジストの開口部におけるシード層上に電解めっきで銅の層を形成する。フォトレジスト及びシード層をウェットエッチング又はドライエッチングで除去する。これにより、任意の形状にパターニングされた底面導体層2011bおよび天面導体層2011tを形成する。このとき、底面導体層2011bおよび天面導体層2011tを一方ずつ形成してもよく、または、両方同時に形成してもよい。 As shown in FIG. 10E, a bottom conductor layer 2011b that will become the bottom wiring 11b and a top conductor layer 2011t that will become the top wiring 11t are formed on a glass substrate 2010. Specifically, a seed layer (not shown) is provided on the entire surface of the glass substrate 2010, and a patterned photoresist is formed on the seed layer. A copper layer is formed by electrolytic plating on the seed layer in the openings of the photoresist. The photoresist and seed layer are removed by wet etching or dry etching. This forms the bottom conductor layer 2011b and the top conductor layer 2011t that are patterned into an arbitrary shape. At this time, the bottom conductor layer 2011b and the top conductor layer 2011t may be formed one at a time, or both may be formed simultaneously.
 図10Fに示すように、ガラス基板2010の天面および底面に導体層を覆うように、絶縁体22となる絶縁層2022を設ける。このとき、底面側の絶縁層2022および天面側の絶縁層2022を一方ずつ形成してもよく、または、両方同時に形成してもよい。その後、底面側の絶縁層2022の底面導体層2011b上にフォトリソやレーザ加工を用いて孔2022aを設ける。 As shown in FIG. 10F, insulating layers 2022 that become insulators 22 are provided on the top and bottom surfaces of glass substrate 2010 so as to cover the conductor layers. At this time, bottom-side insulating layer 2022 and top-side insulating layer 2022 may be formed one at a time, or both may be formed simultaneously. After that, holes 2022a are provided on bottom conductor layer 2011b of bottom-side insulating layer 2022 using photolithography or laser processing.
 図10Gに示すように、底面側の絶縁層2022上に第1外部電極121となる第1外部電極導体層2121を設ける。このとき、第1外部電極導体層2121は、孔2022aを介して、底面導体層2011bに接続される。具体的に述べると、底面側の絶縁層2022上に図示しないPd触媒を設け、無電解めっきにてNi、Auめっき層を形成する。めっき層上にパターニングされたフォトレジストを形成する。フォトレジストの開口部におけるめっき層をウェットエッチング又はドライエッチングで除去する。これにより、任意の形状にパターニングされた第1外部電極導体層2121を形成する。または、底面側の絶縁層2022上に図示しないシード層を設け、シード層上にパターニングされたフォトレジストを形成する。次に、フォトレジストの開口部におけるシード層をウェットエッチング又はドライエッチングで除去する。残留したシード層上に無電解めっきにてNi、Auめっき層を形成してもよい。図示しないが、底面側の絶縁層2022上に第2外部電極122となる第2外部電極導体層を同様に設ける。 As shown in FIG. 10G, a first external electrode conductor layer 2121 that will become the first external electrode 121 is provided on the bottom insulating layer 2022. At this time, the first external electrode conductor layer 2121 is connected to the bottom conductor layer 2011b through the hole 2022a. Specifically, a Pd catalyst (not shown) is provided on the bottom insulating layer 2022, and a Ni, Au plating layer is formed by electroless plating. A patterned photoresist is formed on the plating layer. The plating layer in the opening of the photoresist is removed by wet etching or dry etching. This forms the first external electrode conductor layer 2121 patterned into an arbitrary shape. Alternatively, a seed layer (not shown) is provided on the bottom insulating layer 2022, and a patterned photoresist is formed on the seed layer. Next, the seed layer in the opening of the photoresist is removed by wet etching or dry etching. A Ni, Au plating layer may be formed on the remaining seed layer by electroless plating. Although not shown, a second external electrode conductor layer that will become the second external electrode 122 is similarly provided on the bottom insulating layer 2022.
 ここで、第1外部電極導体層2121は、底面側の絶縁層2022の上面の形状に追従して形成されるため、第1外部電極導体層2121の上面は、孔2022aに重なる領域において、窪み部を有している。 Here, the first external electrode conductor layer 2121 is formed to conform to the shape of the upper surface of the insulating layer 2022 on the bottom side, so that the upper surface of the first external electrode conductor layer 2121 has a recessed portion in the area that overlaps with the hole 2022a.
 図10Hに示すように、カット線Cにて個片化する。これにより、図8に示すように、インダクタ部品1Eを製造する。 As shown in FIG. 10H, the chip is cut into individual pieces along cut lines C. This produces inductor component 1E as shown in FIG. 8.
 2.変形例
 (第1変形例)
 図11Aは、インダクタ部品の第1変形例を示す図7のVIII-VIII断面に対応した図である。図11Aに示すように、第1変形例のインダクタ部品1Fでは、第1貫通配線13は、底面配線11bに直交する方向に延在し、第1貫通配線13の延在方向の両端部13eのそれぞれの断面積は、第1貫通配線13の延在方向の中央部13mの断面積よりも大きい。つまり、第1貫通配線13の延在方向に沿った断面において、第1貫通配線13の延在方向に直交する方向の幅は、中央部13mから両端部13eに向かって連続的に大きくなっている。
2. Modification (First Modification)
Fig. 11A is a view showing a first modified example of an inductor component, corresponding to the VIII-VIII cross section of Fig. 7. As shown in Fig. 11A, in an inductor component 1F of the first modified example, the first through wiring 13 extends in a direction perpendicular to the bottom wiring 11b, and the cross-sectional area of each of both end portions 13e in the extending direction of the first through wiring 13 is larger than the cross-sectional area of a central portion 13m in the extending direction of the first through wiring 13. That is, in a cross section along the extending direction of the first through wiring 13, the width in the direction perpendicular to the extending direction of the first through wiring 13 increases continuously from the central portion 13m toward both end portions 13e.
 これによれば、第1貫通配線13の端部13eの断面積を大きくすることができ、第1貫通配線13と底面配線11bおよび天面配線11tの少なくとも一方との接続性を向上することができる。また、素体10に穴部としての貫通孔Vを形成し、この貫通孔Vに導電材料をフィルドめっきなどにより充填して、貫通孔Vに第1貫通配線13を形成する際、貫通孔Vの開口側に導電材料を充填し易い。そして、第1貫通配線13の端部13eの断面積は大きく、第1貫通配線13の中央部13mの断面積は小さいので、第1貫通配線13を形成しやすい。 This allows the cross-sectional area of the end 13e of the first through wiring 13 to be increased, improving the connectivity between the first through wiring 13 and at least one of the bottom wiring 11b and the top wiring 11t. Furthermore, when forming a through hole V as a hole in the base body 10 and filling this through hole V with a conductive material by filling plating or the like to form the first through wiring 13 in the through hole V, it is easy to fill the opening side of the through hole V with the conductive material. Furthermore, since the cross-sectional area of the end 13e of the first through wiring 13 is large and the cross-sectional area of the central portion 13m of the first through wiring 13 is small, it is easy to form the first through wiring 13.
 なお、第1貫通配線13の一方の端部13eの断面積が、第1貫通配線13の中央部13mの断面積よりも大きければよい。また、同様に、第2貫通配線14の少なくとも一方の端部の断面積が、第1貫通配線13の中央部13mの断面積よりも大きくてもよい。 Note that the cross-sectional area of one end 13e of the first through-hole wiring 13 may be larger than the cross-sectional area of the central portion 13m of the first through-hole wiring 13. Similarly, the cross-sectional area of at least one end of the second through-hole wiring 14 may be larger than the cross-sectional area of the central portion 13m of the first through-hole wiring 13.
 (第2変形例)
 図11Bは、インダクタ部品の第2変形例を示す図7のVIII-VIII断面に対応した図である。図11Bに示すように、第2変形例のインダクタ部品1Gでは、第1貫通配線13は、第1貫通配線13の延在する方向から見て外周側に位置する導電層13sと、導電層13sの内側に位置する非導電層13uとを有する。これによれば、高周波帯で使用する場合、表皮効果により第1貫通配線13の表面を主に電流が流れるため、外周側に導電層13sを設けることで、Q値を下げることがない。また、内側に非導電層13uを設けることで、応力を緩和でき、また、導体を使用しないことによる製造コストを低減できる。
(Second Modification)
11B is a diagram showing a second modified inductor component corresponding to the VIII-VIII cross section of FIG. 7. As shown in FIG. 11B, in the inductor component 1G of the second modified example, the first through wiring 13 has a conductive layer 13s located on the outer periphery side as viewed from the extending direction of the first through wiring 13, and a non-conductive layer 13u located inside the conductive layer 13s. According to this, when used in a high frequency band, current mainly flows through the surface of the first through wiring 13 due to the skin effect, so that the Q value is not lowered by providing the conductive layer 13s on the outer periphery side. In addition, by providing the non-conductive layer 13u on the inner side, stress can be alleviated, and the manufacturing cost can be reduced by not using a conductor.
 導電層13sおよび非導電層13uを形成する方法の一例を説明する。素体10の貫通孔Vの内面に、スパッタリングや無電めっきによりシード層を設ける。そして、電解めっきによりシード層上にめっき層を形成する。こうすることで、例えば、Ti/Cu/電解CuやPd/無電解Cu/電解Cuなどの複数の導電層13sを第1貫通配線13の外周側に形成することができる。その後、印刷や熱プレスなどで、導電層13sの内側を樹脂で封止して、樹脂からなる非導電層13uを形成する。こうすることで、第1貫通配線13の表面(導電層13s)に電流を流しつつ、第1貫通配線13の内部の非導電層13uにより応力を緩和することができる。 An example of a method for forming the conductive layer 13s and the non-conductive layer 13u will be described. A seed layer is provided on the inner surface of the through hole V of the element body 10 by sputtering or electroless plating. Then, a plating layer is formed on the seed layer by electrolytic plating. In this way, multiple conductive layers 13s such as Ti/Cu/electrolytic Cu or Pd/electroless Cu/electrolytic Cu can be formed on the outer periphery of the first through wiring 13. After that, the inside of the conductive layer 13s is sealed with resin by printing or heat pressing to form a non-conductive layer 13u made of resin. In this way, stress can be relieved by the non-conductive layer 13u inside the first through wiring 13 while current flows through the surface (conductive layer 13s) of the first through wiring 13.
 同様に、第2貫通配線14は、第2貫通配線14の延在する方向から見て外周側に位置する導電層と、導電層の内側に位置する非導電層とを有していてもよい。なお、第1貫通配線13の延在方向の両端部のそれぞれの断面積は、第1貫通配線13の延在方向の中央部の断面積よりも大きいが、第1貫通配線13の延在方向の両端部のそれぞれの断面積は、第1貫通配線13の延在方向の中央部の断面積と同じであってもよい。 Similarly, the second through wiring 14 may have a conductive layer located on the outer periphery when viewed from the direction in which the second through wiring 14 extends, and a non-conductive layer located inside the conductive layer. Note that the cross-sectional area of each of the two ends in the extension direction of the first through wiring 13 is larger than the cross-sectional area of the center part in the extension direction of the first through wiring 13, but the cross-sectional area of each of the two ends in the extension direction of the first through wiring 13 may be the same as the cross-sectional area of the center part in the extension direction of the first through wiring 13.
 <第3実施形態>
 図12は、インダクタ部品の第3実施形態を示す底面側から見た模式底面図である。図13は、図12のXIII-XIII断面図である。図12では、便宜上、絶縁層を省略して描き、外部電極を二点鎖線で描いている。また、図12では、素体10は、構造を容易に理解できるよう、透明に描かれている。第3実施形態は、第2実施形態とは、底面配線および天面配線の形状と、第1外部電極および第2外部電極とコイルとの接続が相違し、これらの相違する構成を以下に説明する。その他の構成は、第1実施形態と同じ構成であり、その説明を省略する。
Third Embodiment
FIG. 12 is a schematic bottom view showing the third embodiment of the inductor component as viewed from the bottom side. FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12. In FIG. 12, for convenience, the insulating layer is omitted, and the external electrodes are drawn by two-dot chain lines. In FIG. 12, the element body 10 is drawn transparently so that the structure can be easily understood. The third embodiment differs from the second embodiment in the shapes of the bottom wiring and the top wiring, and in the connections between the first external electrode and the second external electrode and the coil, and these different configurations will be described below. The other configurations are the same as those of the first embodiment, and their description will be omitted.
 図12に示すように、第3実施形態のインダクタ部品1Hでは、天面配線11tは、一つの方向にのみ延在する。具体的に述べると、天面配線11tは、X方向に延びる形状である。全ての天面配線11tは、Y方向に沿って平行に配置されている。底面配線11bは、一つの方向にのみ延在する。具体的に述べると、底面配線11bは、ややY方向に傾いてX方向に延伸している。全ての底面配線11bは、Y方向に沿って平行に配置されている。 As shown in FIG. 12, in the inductor component 1H of the third embodiment, the top wiring 11t extends in only one direction. Specifically, the top wiring 11t is shaped to extend in the X direction. All the top wirings 11t are arranged in parallel along the Y direction. The bottom wiring 11b extends in only one direction. Specifically, the bottom wiring 11b extends in the X direction at a slight incline toward the Y direction. All the bottom wirings 11b are arranged in parallel along the Y direction.
 図12と図13に示すように、第1外部電極121は、底面配線11bでなく、第1貫通配線13に接続される。つまり、当該第1貫通配線13の第1端部は、第1外部電極121に接続され、当該第1貫通配線13の第2端部は、天面配線11tに接続される。これによれば、コイル110のターン数を変更しても、コイル110を第1外部電極121に容易に接続することができる。 As shown in Figures 12 and 13, the first external electrode 121 is connected to the first through-hole wiring 13, not the bottom wiring 11b. In other words, the first end of the first through-hole wiring 13 is connected to the first external electrode 121, and the second end of the first through-hole wiring 13 is connected to the top wiring 11t. This makes it possible to easily connect the coil 110 to the first external electrode 121 even if the number of turns of the coil 110 is changed.
 同様に、第2外部電極122は、底面配線11bでなく、図12中の最も上側の第2貫通配線14に接続される。つまり、当該第2貫通配線14の第1端部は、第2外部電極122に接続され、当該第2貫通配線14の第2端部は、図12中の最も上側の天面配線11tに接続される。 Similarly, the second external electrode 122 is connected to the second through-hole wiring 14 at the top in FIG. 12, not to the bottom wiring 11b. In other words, the first end of the second through-hole wiring 14 is connected to the second external electrode 122, and the second end of the second through-hole wiring 14 is connected to the top wiring 11t at the top in FIG. 12.
 図14は、天面配線11tを底面側から見た模式底面図である。図14では、便宜上、第1外部電極121および第2外部電極122を二点鎖線で描き、さらに、第1貫通配線13の天面配線11tとの接続面13y、第2貫通配線14の天面配線11tとの接続面14yを二点鎖線で描いている。 FIG. 14 is a schematic bottom view of the top wiring 11t as viewed from the bottom side. For convenience, in FIG. 14, the first external electrode 121 and the second external electrode 122 are depicted with two-dot chain lines, and further, the connection surface 13y of the first through wiring 13 with the top wiring 11t and the connection surface 14y of the second through wiring 14 with the top wiring 11t are depicted with two-dot chain lines.
 図14に示すように、第1外部電極121側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの天面配線11tは、第1外部電極121に対して電気的により近くに位置する第1基準コイル配線111tである。複数の天面配線11tの一つは、第1基準コイル配線111tと同一平面上に位置し第1基準コイル配線111tに対して軸AX方向に隣り合う隣接コイル配線116tである。第1基準コイル配線111tの長さ(以下、第10長さL10という)は、隣接コイル配線116tの長さ(以下、第11長さL11という)よりも短い。 As shown in FIG. 14, of the bottom wiring 11b and top wiring 11t that constitute the outermost turn of the coil 110 on the first external electrode 121 side, the top wiring 11t is the first reference coil wiring 111t that is electrically closer to the first external electrode 121. One of the multiple top wirings 11t is an adjacent coil wiring 116t that is located on the same plane as the first reference coil wiring 111t and is adjacent to the first reference coil wiring 111t in the axial AX direction. The length of the first reference coil wiring 111t (hereinafter referred to as the tenth length L10) is shorter than the length of the adjacent coil wiring 116t (hereinafter referred to as the eleventh length L11).
 第10長さL10は、底面100bに直交する方向からみて、第1基準コイル配線111tの幅方向の中心線に沿い、第1基準コイル配線111tの第1端部に接続される第2貫通配線14の接続面14yの中心と第1基準コイル配線111tの第2端部に接続される第1貫通配線13の接続面13yの中心との間の長さである。第11長さL11は、底面100bに直交する方向からみて、隣接コイル配線116tの幅方向の中心線に沿い、隣接コイル配線116tの第1端部に接続される第1貫通配線13の接続面13yの中心と隣接コイル配線116tの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The tenth length L10 is the length along the center line of the width of the first reference coil wiring 111t between the center of the connection surface 14y of the second through wiring 14 connected to the first end of the first reference coil wiring 111t and the center of the connection surface 13y of the first through wiring 13 connected to the second end of the first reference coil wiring 111t, when viewed from a direction perpendicular to the bottom surface 100b. The eleventh length L11 is the length along the center line of the width of the adjacent coil wiring 116t between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the adjacent coil wiring 116t and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the adjacent coil wiring 116t, when viewed from a direction perpendicular to the bottom surface 100b.
 上記構成によれば、第10長さL10は、第11長さL11よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。 With the above configuration, since the tenth length L10 is shorter than the eleventh length L11, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and for example, the inductance required for impedance matching can be easily adjusted.
 図14に示すように、複数の天面配線11tの一つは、第1基準コイル配線111tと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115tである。第1基準コイル配線111tの長さ(第10長さL10)は、中央コイル配線115tの長さ(以下、第12長さL12という)よりも短い。本実施形態では、中央コイル配線115tは、隣接コイル配線116tと同一であるため、第12長さL12は、第11長さL11と同じである。 As shown in FIG. 14, one of the multiple top surface wirings 11t is a central coil wiring 115t that is located on the same plane as the first reference coil wiring 111t and is located in the center of the coil 110 in the axial AX direction. The length of the first reference coil wiring 111t (tenth length L10) is shorter than the length of the central coil wiring 115t (hereinafter referred to as twelfth length L12). In this embodiment, since the central coil wiring 115t is the same as the adjacent coil wiring 116t, the twelfth length L12 is the same as the eleventh length L11.
 上記構成によれば、第10長さL10は、第12長さL12よりも短いので、第1外部電極121側の最外ターンの配線長さを調整することができ、例えばインピーダンスマッチングに必要なインダクタンスの調整を容易に行うことができる。 With the above configuration, since the tenth length L10 is shorter than the twelfth length L12, the wiring length of the outermost turn on the first external electrode 121 side can be adjusted, and for example, the inductance required for impedance matching can be easily adjusted.
 本実施形態では、「第10長さL10は第11長さL11よりも短い」という第1の特徴と「第10長さL10は第12長さL12よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。これにより、最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 In this embodiment, it is sufficient to satisfy at least one of the first characteristic that "the tenth length L10 is shorter than the eleventh length L11" and the second characteristic that "the tenth length L10 is shorter than the twelfth length L12." This allows the wiring length of the outermost turn to be adjusted, making it easy to adjust the inductance.
 図14に示すように、第2外部電極122側のコイル110の最外ターンの構成が、上述の第1外部電極121側のコイル110の最外ターンの構成と同様であってもよい。 As shown in FIG. 14, the configuration of the outermost turn of the coil 110 on the second external electrode 122 side may be the same as the configuration of the outermost turn of the coil 110 on the first external electrode 121 side described above.
 具体的に述べると、第2外部電極122側のコイル110の最外ターンを構成する底面配線11bおよび天面配線11tのうちの天面配線11tは、第2外部電極122に対して電気的により近くに位置する第2基準コイル配線112tである。複数の天面配線11tの一つは、第2基準コイル配線112tと同一平面上に位置し第2基準コイル配線112tに対して軸AX方向に隣り合う隣接コイル配線116tである。第2基準コイル配線112tの長さ(以下、第13長さL13という)は、隣接コイル配線116tの長さ(第11長さL11)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Specifically, of the bottom wiring 11b and top wiring 11t constituting the outermost turn of the coil 110 on the second external electrode 122 side, the top wiring 11t is the second reference coil wiring 112t located electrically closer to the second external electrode 122. One of the multiple top wirings 11t is an adjacent coil wiring 116t located on the same plane as the second reference coil wiring 112t and adjacent to the second reference coil wiring 112t in the axial AX direction. The length of the second reference coil wiring 112t (hereinafter referred to as the thirteenth length L13) is shorter than the length of the adjacent coil wiring 116t (the eleventh length L11). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, making it easy to adjust the inductance.
 第13長さL13は、底面100bに直交する方向からみて、第2基準コイル配線112tの幅方向の中心線に沿い、第2基準コイル配線112tの第1端部に接続される第1貫通配線13の接続面13yの中心と第2基準コイル配線112tの第2端部に接続される第2貫通配線14の接続面14yの中心との間の長さである。 The thirteenth length L13 is the length along the center line of the width of the second reference coil wiring 112t when viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the second reference coil wiring 112t and the center of the connection surface 14y of the second through wiring 14 connected to the second end of the second reference coil wiring 112t.
 また、複数の天面配線11tの一つは、第2基準コイル配線112tと同一平面上に位置しコイル110の軸AX方向の中央に位置する中央コイル配線115tである。第2基準コイル配線112tの長さ(第13長さL13)は、中央コイル配線115tの長さ(第12長さL12)よりも短い。これにより、第2外部電極122側の最外ターンの配線長さを調整することができ、インダクタンスの調整を容易に行うことができる。 Furthermore, one of the multiple top surface wirings 11t is a central coil wiring 115t that is located on the same plane as the second reference coil wiring 112t and is located in the center of the coil 110 in the axial AX direction. The length of the second reference coil wiring 112t (thirteenth length L13) is shorter than the length of the central coil wiring 115t (twelfth length L12). This makes it possible to adjust the wiring length of the outermost turn on the second external electrode 122 side, and thus makes it easy to adjust the inductance.
 なお、「第13長さL13は第11長さL11よりも短い」という第1の特徴と「第13長さL13は第12長さL12よりも短い」という第2の特徴との少なくとも一方を満たしていればよい。 It is sufficient that at least one of the first characteristic that "the thirteenth length L13 is shorter than the eleventh length L11" and the second characteristic that "the thirteenth length L13 is shorter than the twelfth length L12" is satisfied.
 なお、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第3実施形態のそれぞれの特徴点を様々に組み合わせてもよい。 Note that this disclosure is not limited to the above-described embodiments, and design modifications are possible without departing from the gist of this disclosure. For example, the respective characteristic points of the first to third embodiments may be combined in various ways.
 前記第1実施形態において、第1基準コイル配線111bの一端は、第1外部電極121に接続されているが、他の配線(柱状配線)を介して第1外部電極121に接続されていてもよい。このとき、第1長さL1は、底面100bに直交する方向からみて、第1基準コイル配線111bの幅方向の中心線に沿い、第1基準コイル配線111bの第1端部に接続される第1貫通配線13の接続面13yの中心と第1基準コイル配線111bの第2端部に接続される他の配線の接続面の中心との間の長さである。また、第2基準コイル配線112bと第2外部電極122との接続についても、同様であってもよい。 In the first embodiment, one end of the first reference coil wiring 111b is connected to the first external electrode 121, but it may be connected to the first external electrode 121 via other wiring (columnar wiring). In this case, the first length L1 is the length along the center line of the width of the first reference coil wiring 111b, as viewed from a direction perpendicular to the bottom surface 100b, between the center of the connection surface 13y of the first through wiring 13 connected to the first end of the first reference coil wiring 111b and the center of the connection surface of the other wiring connected to the second end of the first reference coil wiring 111b. The same may also be true for the connection between the second reference coil wiring 112b and the second external electrode 122.
 本開示は以下の態様を含む。
<1>
 互いに対向する第1主面および第2主面を含む素体と、
 前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
 前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
を備え、
 前記コイルの前記軸は、前記第1主面に平行に配置され、
 前記コイルは、
 前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
 前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
を含み、
 前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
 前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記基準コイル配線に対して前記軸方向に隣り合う隣接コイル配線の長さよりも短い、インダクタ部品。
<2>
 互いに対向する第1主面および第2主面を含む素体と、
 前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
 前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
を備え、
 前記コイルの前記軸は、前記第1主面に平行に配置され、
 前記コイルは、
 前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
 前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
 前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
を含み、
 前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
 前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記コイルの前記軸方向の中央に位置する中央コイル配線の長さよりも短い、インダクタ部品。
<3>
 前記素体は、SiOを含む、<1>または<2>に記載のインダクタ部品。
<4>
 全ての前記第1コイル配線は、平行に配置されている、<1>から<3>の何れか一つに記載のインダクタ部品。
<5>
 全ての前記第2コイル配線は、平行に配置されている、<1>から<4>の何れか一つに記載のインダクタ部品。
<6>
 前記第1外部電極は、前記基準コイル配線の上方に配置され、前記第1外部電極は、前記基準コイル配線に接続される、<1>から<5>の何れか一つに記載のインダクタ部品。
<7>
 前記第1外部電極は、前記第1貫通配線に接続される、<1>から<5>の何れか一つに記載のインダクタ部品。
<8>
 前記軸に平行な方向からみて、前記第1貫通配線と前記第2貫通配線は、平行でない、<1>から<7>の何れか一つに記載のインダクタ部品。
<9>
 前記素体は、SiOを含み、
 前記第1貫通配線は、SiOを含む、<1>から<8>の何れか一つに記載のインダクタ部品。
<10>
 前記第1貫通配線は、空隙部または樹脂部を含む、<1>から<9>の何れか一つに記載のインダクタ部品。
<11>
 前記第1貫通配線は、前記第1貫通配線の延在する方向から見て外周側に位置する導電層と、前記導電層の内側に位置する非導電層とを有する、<1>から<10>の何れか一つに記載のインダクタ部品。
<12>
 前記コイルの軸方向の長さは、前記コイルの内径より短い、<1>から<11>の何れか一つに記載のインダクタ部品。
<13>
 さらに、前記第1主面に設けられた有機絶縁体を備え、
 前記素体は、無機絶縁体である、<1>から<12>の何れか一つに記載のインダクタ部品。
<14>
 前記第1外部電極の外面は、窪み部を有する、<1>から<13>の何れか一つに記載のインダクタ部品。
<15>
 前記第1貫通配線は、前記第1主面に直交する方向に延在し、
 前記第1貫通配線の延在方向の両端部の少なくとも一方の断面積は、前記第1貫通配線の延在方向の中央部の断面積よりも大きい、<1>から<14>の何れか一つに記載のインダクタ部品。
<16>
 前記インダクタ部品の厚みは、200μm以下である、<1>から<15>の何れか一つに記載のインダクタ部品。
<17>
 前記第1主面に直交する方向からみて、前記第1外部電極および前記第2外部電極は、前記素体の外周面よりも内側に位置する、<1>から<16>の何れか一つに記載のインダクタ部品。
The present disclosure includes the following aspects.
<1>
an element body including a first main surface and a second main surface opposed to each other;
a coil provided on the element body and wound helically along an axis;
a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
The axis of the coil is disposed parallel to the first major surface;
The coil is
a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
An inductor component, wherein the length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of an adjacent coil wiring that is located on the same plane as the reference coil wiring and is adjacent to the reference coil wiring in the axial direction.
<2>
an element body including a first main surface and a second main surface opposed to each other;
a coil provided on the element body and wound helically along an axis;
a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
The axis of the coil is disposed parallel to the first major surface;
The coil is
a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
An inductor component, wherein the length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of a central coil wiring that is located on the same plane as the reference coil wiring and is located in the center of the axial direction of the coil.
<3>
The inductor component according to <1> or <2>, wherein the element body contains SiO 2 .
<4>
The inductor component according to any one of <1> to <3>, wherein all of the first coil wirings are arranged in parallel.
<5>
The inductor component according to any one of <1> to <4>, wherein all of the second coil wirings are arranged in parallel.
<6>
The inductor component according to any one of <1> to <5>, wherein the first external electrode is disposed above the reference coil wiring, and the first external electrode is connected to the reference coil wiring.
<7>
The inductor component according to any one of <1> to <5>, wherein the first external electrode is connected to the first through wiring.
<8>
The inductor component according to any one of <1> to <7>, wherein the first through wiring and the second through wiring are not parallel to each other when viewed in a direction parallel to the axis.
<9>
The element body includes SiO2 ,
The inductor component according to any one of <1> to <8>, wherein the first through wiring contains SiO 2 .
<10>
The inductor component according to any one of <1> to <9>, wherein the first through wiring includes a void portion or a resin portion.
<11>
An inductor component described in any one of <1> to <10>, wherein the first through wiring has a conductive layer located on the outer periphery when viewed from the direction in which the first through wiring extends, and a non-conductive layer located inside the conductive layer.
<12>
The inductor component according to any one of <1> to <11>, wherein an axial length of the coil is shorter than an inner diameter of the coil.
<13>
Further, an organic insulator is provided on the first main surface,
The inductor component according to any one of <1> to <12>, wherein the element body is an inorganic insulator.
<14>
The inductor component according to any one of <1> to <13>, wherein an outer surface of the first external electrode has a recess.
<15>
the first through-hole wiring extends in a direction perpendicular to the first main surface,
An inductor component according to any one of <1> to <14>, wherein a cross-sectional area of at least one of both ends in the extension direction of the first through wiring is larger than a cross-sectional area of a central portion in the extension direction of the first through wiring.
<16>
The inductor component according to any one of <1> to <15>, wherein the inductor component has a thickness of 200 μm or less.
<17>
An inductor component described in any one of <1> to <16>, wherein, when viewed in a direction perpendicular to the first main surface, the first external electrode and the second external electrode are located inside the outer peripheral surface of the element body.
 1,1A-1H インダクタ部品
 10 素体
 11b 底面配線(第1コイル配線)
 11t 天面配線(第2コイル配線)
 13 第1貫通配線
 13e 端部
 13m 中央部
 13s 導電層
 13u 非導電層
 13y 接続面
 14 第2貫通配線
 14y 接続面
 22 絶縁体
 100b 底面(第1主面)
 100t 天面(第2主面)
 110,110A,110B コイル
 111b,111t 第1基準コイル配線
 112b,112t 第2基準コイル配線
 113b 第1隣接コイル配線
 114b 第2隣接コイル配線
 115b,115t 中央コイル配線
 116b,116t 隣接コイル配線
 121 第1外部電極
 121a 窪み部
 121b 底面部分
 121v ビア部分
 121e1 下地層
 121e2 めっき層
 121y 接続面
 122 第2外部電極
 122b 底面部分
 122v ビア部分
 122y 接続面
 AX 軸
 L1-L13 第1から第13長さ
 V 貫通孔
 θ 底面配線と天面配線のなす角度
1, 1A-1H Inductor component 10 Body 11b Bottom wiring (first coil wiring)
11t Top wiring (second coil wiring)
13 First through-hole wiring 13e End portion 13m Central portion 13s Conductive layer 13u Non-conductive layer 13y Connection surface 14 Second through-hole wiring 14y Connection surface 22 Insulator 100b Bottom surface (first main surface)
100t Top surface (second main surface)
DESCRIPTION OF THE PREFERRED EMBODIMENTS 110, 110A, 110B Coil 111b, 111t First reference coil wiring 112b, 112t Second reference coil wiring 113b First adjacent coil wiring 114b Second adjacent coil wiring 115b, 115t Central coil wiring 116b, 116t Adjacent coil wiring 121 First external electrode 121a Recessed portion 121b Bottom portion 121v Via portion 121e1 Base layer 121e2 Plating layer 121y Connection surface 122 Second external electrode 122b Bottom portion 122v Via portion 122y Connection surface AX Axis L1-L13 First to thirteenth lengths V Through hole θ Angle between bottom wiring and top wiring

Claims (17)

  1.  互いに対向する第1主面および第2主面を含む素体と、
     前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
     前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
    を備え、
     前記コイルの前記軸は、前記第1主面に平行に配置され、
     前記コイルは、
     前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
     前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
     前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
     前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
    を含み、
     前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
     前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記基準コイル配線に対して前記軸方向に隣り合う隣接コイル配線の長さよりも短い、インダクタ部品。
    an element body including a first main surface and a second main surface opposed to each other;
    a coil provided on the element body and wound helically along an axis;
    a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
    The axis of the coil is disposed parallel to the first major surface;
    The coil is
    a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
    a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
    a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
    a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
    the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
    An inductor component, wherein the length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of an adjacent coil wiring that is located on the same plane as the reference coil wiring and is adjacent to the reference coil wiring in the axial direction.
  2.  互いに対向する第1主面および第2主面を含む素体と、
     前記素体に設けられ、軸に沿って螺旋状に巻き回されたコイルと、
     前記素体に設けられ、前記コイルに電気的に接続された第1外部電極および第2外部電極と
    を備え、
     前記コイルの前記軸は、前記第1主面に平行に配置され、
     前記コイルは、
     前記軸に対して前記第1主面側に設けられ、前記第1主面に平行な平面上に前記軸に沿って配列された複数の第1コイル配線と、
     前記軸に対して前記第2主面側に設けられ、前記第2主面に平行な平面上に前記軸に沿って配列された複数の第2コイル配線と、
     前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に沿って配列された複数の第1貫通配線と、
     前記第1コイル配線側から前記第2コイル配線側に向かって延在し、前記軸に対して前記第1貫通配線と反対側に設けられ、前記軸に沿って配列された複数の第2貫通配線と
    を含み、
     前記第1コイル配線と、前記第1貫通配線と、前記第2コイル配線と、前記第2貫通配線とは、この順に接続されることにより、前記螺旋状の少なくとも一部を構成し、
     前記第1外部電極側の前記コイルの最外ターンを構成する前記第1コイル配線および前記第2コイル配線のうち前記第1外部電極に対して電気的により近くに位置する方である基準コイル配線の長さは、前記基準コイル配線と同一平面上に位置し前記コイルの前記軸方向の中央に位置する中央コイル配線の長さよりも短い、インダクタ部品。
    an element body including a first main surface and a second main surface opposed to each other;
    a coil provided on the element body and wound helically along an axis;
    a first external electrode and a second external electrode provided on the element body and electrically connected to the coil;
    The axis of the coil is disposed parallel to the first major surface;
    The coil is
    a plurality of first coil wirings provided on the first main surface side with respect to the axis and arranged along the axis on a plane parallel to the first main surface;
    a plurality of second coil wirings provided on the second main surface side with respect to the axis and arranged along the axis on a plane parallel to the second main surface;
    a plurality of first through wires extending from the first coil wiring side toward the second coil wiring side and arranged along the axis;
    a plurality of second through wirings extending from the first coil wiring side toward the second coil wiring side, provided on an opposite side of the axis from the first through wirings, and arranged along the axis;
    the first coil wiring, the first through wiring, the second coil wiring, and the second through wiring are connected in this order to form at least a part of the spiral shape;
    An inductor component, wherein the length of a reference coil wiring, which is one of the first coil wiring and the second coil wiring that constitute the outermost turn of the coil on the first external electrode side and is located electrically closer to the first external electrode, is shorter than the length of a central coil wiring that is located on the same plane as the reference coil wiring and is located in the center of the axial direction of the coil.
  3.  前記素体は、SiOを含む、請求項1または2に記載のインダクタ部品。 The inductor component according to claim 1 , wherein the element body contains SiO 2 .
  4.  全ての前記第1コイル配線は、平行に配置されている、請求項1から3のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 3, wherein all of the first coil wiring is arranged in parallel.
  5.  全ての前記第2コイル配線は、平行に配置されている、請求項1から4のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 4, wherein all of the second coil wirings are arranged in parallel.
  6.  前記第1外部電極は、前記基準コイル配線の上方に配置され、前記第1外部電極は、前記基準コイル配線に接続される、請求項1から5のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 5, wherein the first external electrode is disposed above the reference coil wiring, and the first external electrode is connected to the reference coil wiring.
  7.  前記第1外部電極は、前記第1貫通配線に接続される、請求項1から5のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 5, wherein the first external electrode is connected to the first through-hole wiring.
  8.  前記軸に平行な方向からみて、前記第1貫通配線と前記第2貫通配線は、平行でない、請求項1から7のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 7, in which the first through-hole wiring and the second through-hole wiring are not parallel when viewed in a direction parallel to the axis.
  9.  前記素体は、SiOを含み、
     前記第1貫通配線は、SiOを含む、請求項1から8のいずれか1つに記載のインダクタ部品。
    The body includes SiO2 ,
    The inductor component according to claim 1 , wherein the first through via comprises SiO 2 .
  10.  前記第1貫通配線は、空隙部または樹脂部を含む、請求項1から9のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 9, wherein the first through-hole wiring includes a void portion or a resin portion.
  11.  前記第1貫通配線は、前記第1貫通配線の延在する方向から見て外周側に位置する導電層と、前記導電層の内側に位置する非導電層とを有する、請求項1から10のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 10, wherein the first through-hole wiring has a conductive layer located on the outer periphery when viewed from the direction in which the first through-hole wiring extends, and a non-conductive layer located inside the conductive layer.
  12.  前記コイルの軸方向の長さは、前記コイルの内径より短い、請求項1から11のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 11, wherein the axial length of the coil is shorter than the inner diameter of the coil.
  13.  さらに、前記第1主面に設けられた有機絶縁体を備え、
     前記素体は、無機絶縁体である、請求項1から12のいずれか1つに記載のインダクタ部品。
    Further, an organic insulator is provided on the first main surface,
    The inductor component according to claim 1 , wherein the element body is an inorganic insulator.
  14.  前記第1外部電極の外面は、窪み部を有する、請求項1から13のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 13, wherein the outer surface of the first external electrode has a recessed portion.
  15.  前記第1貫通配線は、前記第1主面に直交する方向に延在し、
     前記第1貫通配線の延在方向の両端部の少なくとも一方の断面積は、前記第1貫通配線の延在方向の中央部の断面積よりも大きい、請求項1から14のいずれか1つに記載のインダクタ部品。
    the first through-hole wiring extends in a direction perpendicular to the first main surface,
    The inductor component according to claim 1 , wherein a cross-sectional area of at least one of both end portions in the extension direction of the first through wiring is larger than a cross-sectional area of a central portion of the first through wiring in the extension direction.
  16.  前記インダクタ部品の厚みは、200μm以下である、請求項1から15のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 15, wherein the thickness of the inductor component is 200 μm or less.
  17.  前記第1主面に直交する方向からみて、前記第1外部電極および前記第2外部電極は、前記素体の外周面よりも内側に位置する、請求項1から16のいずれか1つに記載のインダクタ部品。 An inductor component according to any one of claims 1 to 16, wherein the first external electrode and the second external electrode are located inside the outer peripheral surface of the element body when viewed from a direction perpendicular to the first main surface.
PCT/JP2023/030124 2022-11-02 2023-08-22 Inductor component WO2024095565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022176444 2022-11-02
JP2022-176444 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095565A1 true WO2024095565A1 (en) 2024-05-10

Family

ID=90930145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030124 WO2024095565A1 (en) 2022-11-02 2023-08-22 Inductor component

Country Status (1)

Country Link
WO (1) WO2024095565A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626216U (en) * 1992-08-31 1994-04-08 京セラ株式会社 Laminated coil parts
JP2002176236A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
WO2005036566A1 (en) * 2003-10-10 2005-04-21 Murata Manufacturing Co., Ltd. Multilayer coil component and its manufacturing method
JP2007027649A (en) * 2005-07-21 2007-02-01 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
JP2018195766A (en) * 2017-05-19 2018-12-06 大日本印刷株式会社 Wiring board and mounting board
JP2020141079A (en) * 2019-02-28 2020-09-03 太陽誘電株式会社 Passive component and electronic device
JP2020174169A (en) * 2019-04-05 2020-10-22 株式会社村田製作所 Electronic component, electronic component packaging substrate and manufacturing method for electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626216U (en) * 1992-08-31 1994-04-08 京セラ株式会社 Laminated coil parts
JP2002176236A (en) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd Composition for via hole conductor and multilayer ceramic substrate and its producing method
WO2005036566A1 (en) * 2003-10-10 2005-04-21 Murata Manufacturing Co., Ltd. Multilayer coil component and its manufacturing method
JP2007027649A (en) * 2005-07-21 2007-02-01 Murata Mfg Co Ltd Laminated coil component and its manufacturing method
JP2018195766A (en) * 2017-05-19 2018-12-06 大日本印刷株式会社 Wiring board and mounting board
JP2020141079A (en) * 2019-02-28 2020-09-03 太陽誘電株式会社 Passive component and electronic device
JP2020174169A (en) * 2019-04-05 2020-10-22 株式会社村田製作所 Electronic component, electronic component packaging substrate and manufacturing method for electronic component

Similar Documents

Publication Publication Date Title
US20220028602A1 (en) Inductor component
JP2024019217A (en) Package substrate and semiconductor composite device including the same
US11728084B2 (en) Inductor
JP7287185B2 (en) Electronic component, electronic component mounting substrate, and method for manufacturing electronic component
CN216311557U (en) Inductance component
KR102029581B1 (en) Inductor and manufacturing method thereof
WO2024095565A1 (en) Inductor component
US20230060320A1 (en) Inductor component and mounting structure of inductor component
WO2024095566A1 (en) Inductor component
WO2024095569A1 (en) Inductor component
WO2024095570A1 (en) Inductor component
CN109903975B (en) Coil component
WO2024095568A1 (en) Inductor component
WO2023089967A1 (en) Inductor component
WO2024095571A1 (en) Inductor component
US20210329773A1 (en) Integrated passive component
CN110349737B (en) Coil assembly and method of manufacturing coil assembly
US20220392699A1 (en) Inductor component
KR101942732B1 (en) Inductor and manufacturing method of the same
JP2022185933A (en) Inductor component
US10818426B2 (en) Inductor
US20230014349A1 (en) Inductor component and mounting structure of inductor component
WO2024122114A1 (en) Electronic component and method for manufacturing same
US20230343685A1 (en) Core substrate and interposer
JP7464029B2 (en) Inductor Components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885335

Country of ref document: EP

Kind code of ref document: A1