WO2024095531A1 - Alignment device for multicore optical fiber, manufacturing device for multicore optical fiber ribbon, manufacturing device for multicore optical fiber unit, alignment method for multicore optical fiber, manufacturing method for multicore optical fiber ribbon, manufacturing method for multicore optical fiber unit, inspection device for multicore optical fiber ribbon, and inspection method for multicore optical fiber ribbon - Google Patents

Alignment device for multicore optical fiber, manufacturing device for multicore optical fiber ribbon, manufacturing device for multicore optical fiber unit, alignment method for multicore optical fiber, manufacturing method for multicore optical fiber ribbon, manufacturing method for multicore optical fiber unit, inspection device for multicore optical fiber ribbon, and inspection method for multicore optical fiber ribbon Download PDF

Info

Publication number
WO2024095531A1
WO2024095531A1 PCT/JP2023/024179 JP2023024179W WO2024095531A1 WO 2024095531 A1 WO2024095531 A1 WO 2024095531A1 JP 2023024179 W JP2023024179 W JP 2023024179W WO 2024095531 A1 WO2024095531 A1 WO 2024095531A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core optical
unit
core
cores
Prior art date
Application number
PCT/JP2023/024179
Other languages
French (fr)
Japanese (ja)
Inventor
格 石田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2024095531A1 publication Critical patent/WO2024095531A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to a multi-core optical fiber alignment device, a multi-core optical fiber ribbon manufacturing device, a multi-core optical fiber unit manufacturing device, a multi-core optical fiber alignment method, a multi-core optical fiber ribbon manufacturing method, a multi-core optical fiber unit manufacturing method, a multi-core optical fiber ribbon inspection device, and a multi-core optical fiber ribbon inspection method.
  • a multi-core optical fiber in which the outer circumference of multiple cores is surrounded by a single cladding, can be used to transmit multiple signals by light propagating through each core.
  • the multi-core optical fiber is bent while light is propagated to a specific core, and the amount of light leaking from the core is detected.
  • the multi-core optical fiber is then rotated around its axis so that the amount of light remains approximately constant, thereby aligning the rotational direction of the multi-core optical fiber.
  • the present invention aims to provide a multi-core optical fiber alignment device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy, a multi-core optical fiber ribbon manufacturing device, a multi-core optical fiber unit manufacturing device, a multi-core optical fiber alignment method, a multi-core optical fiber ribbon manufacturing method, a multi-core optical fiber unit manufacturing method, and a multi-core optical fiber ribbon inspection device and multi-core optical fiber ribbon inspection method capable of detecting misalignment in the rotational direction of the multi-core optical fiber with high accuracy.
  • Aspect 1 of the present invention is an alignment device for a multi-core optical fiber, characterized by comprising: a fiber rotation unit that changes the rotation angle of the axis of the multi-core optical fiber; a fiber bending unit that bends the multi-core optical fiber in a predetermined direction after the rotation angle has been changed; a skew measurement unit that measures the skew value of light propagating through a pair of cores of the multi-core optical fiber; and a control unit that controls the fiber rotation unit to adjust the rotation angle of the multi-core optical fiber so that the skew value becomes a predetermined value.
  • the alignment direction of the pair of cores with respect to the bending direction changes, and the skew value of the light propagating through the pair of cores changes. Therefore, by adjusting the rotation angle so that the skew value becomes a predetermined value, the alignment direction of the pair of cores with respect to the bending direction can be set to a predetermined direction. Since the change in the skew value with respect to the rotation angle can be measured more precisely than the change in the leaked light, the alignment in the rotation direction can be performed with higher accuracy than the alignment of the multi-core optical fiber described in Patent Document 1.
  • Aspect 2 of the present invention is the alignment device for a multi-core optical fiber of aspect 1, characterized in that the control unit adjusts the rotation angle so that the skew value becomes a maximum or minimum value.
  • the resolution can be increased and alignment can be performed with higher precision than when adjusting to a skew value that is not the maximum or minimum. Note that when the alignment direction of the pair of cores is along the bending direction, the skew value is maximum or minimum.
  • the pair of cores is preferably the core pair that is farthest from each other among the multiple cores in the multi-core optical fiber.
  • Aspect 3 of the present invention is a multi-core optical fiber ribbon manufacturing device comprising: a sending section that sends out one or more multi-core optical fibers; an aligning device for multi-core optical fibers according to aspect 1 or 2 that aligns the orientation in the rotational direction of at least one of the multi-core optical fibers sent out from the sending section; and a ribbonizing section that ribbonizes a plurality of optical fibers including the multi-core optical fibers aligned by the aligning device.
  • This multi-core optical fiber ribbon manufacturing device can produce multi-core optical fiber ribbons in which the rotation direction of the multi-core optical fibers is aligned with high precision.
  • Aspect 4 of the present invention is a manufacturing device for a multi-core optical fiber unit, characterized by comprising an alignment device according to aspect 1 or 2, and a connection part for connecting the multi-core optical fiber aligned by the alignment device to another optical component.
  • the rotation direction of the multi-core optical fiber is aligned with high precision, so the multi-core optical fiber can be connected to other optical components with the rotation direction properly aligned. Therefore, it is possible to manufacture a multi-core optical fiber unit in which a multi-core optical fiber with a rotation direction properly aligned is connected to other optical components.
  • Aspect 5 of the present invention is a method for aligning a multi-core optical fiber, comprising a fiber rotation step of changing the rotation angle of the axial center of the multi-core optical fiber, a fiber bending step of bending the multi-core optical fiber with the changed rotation angle in a predetermined direction, a skew measurement step of measuring the skew value of light propagating through a pair of cores of the multi-core optical fiber, and in the fiber rotation step, adjusting the rotation angle of the multi-core optical fiber so that the skew value becomes a predetermined value.
  • the rotational alignment of the multi-core optical fiber can be performed with high precision.
  • Aspect 6 of the present invention is the method for aligning a multi-core optical fiber according to aspect 5, characterized in that in the fiber rotation step, the rotation angle is adjusted so that the skew value becomes a maximum or minimum value.
  • alignment can be achieved with higher precision, similar to embodiment 2.
  • Aspect 7 of the present invention is the method for aligning a multi-core optical fiber according to aspect 5 or 6, characterized in that the pair of cores is the most distant core pair among the multiple cores in the multi-core optical fiber.
  • the skew value of the light propagating through the most distant core pair will be the largest, and the change in the skew value will be large if the rotation angle of the multi-core optical fiber is shifted. Therefore, according to this embodiment, the skew value can be measured with higher accuracy, and the rotational direction alignment of the multi-core optical fiber can be performed with higher accuracy.
  • Aspect 8 of the present invention is a method for manufacturing a multi-core optical fiber ribbon, comprising: a sending step of sending out one or more multi-core optical fibers; an aligning step of aligning the orientation in the rotational direction of at least one of the multi-core optical fibers sent out in the sending step by using the aligning method for a multi-core optical fiber according to any one of aspects 5 to 7; and a ribbonizing step of ribbonizing the multiple multi-core optical fibers aligned in the aligning step.
  • Aspect 9 of the present invention is a method for manufacturing a multi-core optical fiber unit, comprising an alignment step for aligning the orientation of the multi-core optical fiber in the rotational direction by the alignment method for a multi-core optical fiber according to any one of aspects 5 to 7, and a connection step for connecting the multi-core optical fiber aligned in the alignment step to another optical component.
  • a multi-core optical fiber unit can be manufactured in which a multi-core optical fiber with a properly aligned rotational direction is connected to other optical components.
  • Aspect 10 of the present invention is an inspection device for a multi-core optical fiber ribbon, characterized by comprising: a fiber bending unit that bends a multi-core optical fiber ribbon having one or more multi-core optical fibers by bending the multi-core optical fiber; a skew measurement unit that measures the skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers; and a determination unit that determines whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range.
  • misalignment of the multi-core optical fiber can be detected with high accuracy by detecting that the skew value is outside a predetermined range in the portion bent by the fiber bending section.
  • the section can be detected with high accuracy by sequentially sending the multi-core optical fiber ribbon to the fiber bending section.
  • the pair of cores is aligned perpendicular to the alignment direction of the multiple multi-core optical fibers.
  • Aspect 11 of the present invention is a method for inspecting a multi-core optical fiber ribbon, comprising: a fiber bending step for bending a multi-core optical fiber ribbon having one or more multi-core optical fibers, a skew measurement step for measuring a skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers, and a determination step for determining whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range.
  • misalignment of the multi-core optical fiber can be detected with high accuracy.
  • Aspect 12 of the present invention is a method for inspecting a multi-core optical fiber ribbon according to aspect 11, characterized in that the multi-core optical fiber ribbon comprises a plurality of optical fibers arranged in parallel, including the multi-core optical fiber, and the pair of cores are arranged perpendicular to the arrangement direction of the optical fibers.
  • Multi-core optical fiber ribbons are usually bent in a direction perpendicular to the arrangement of the optical fibers. Furthermore, when the arrangement direction of a pair of cores is along the bending direction, the skew value is maximum or minimum. Therefore, according to this embodiment, since the absolute value of the skew value is large, the resolution of the skew value can be increased, and misalignment can be detected with higher accuracy.
  • an aligning device for a multi-core optical fiber capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a manufacturing device for a multi-core optical fiber ribbon capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a manufacturing device for a multi-core optical fiber ribbon capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a manufacturing device for a multi-core optical fiber unit capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • an aligning method for a multi-core optical fiber capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • FIG. 1 is a diagram showing an example of a cross-sectional view of a multi-core optical fiber.
  • 2 is a diagram showing the multi-core optical fiber of FIG. 1 being bent;
  • FIG. 3 is a diagram showing the relationship between the bending radius and the skew value per unit length of light propagating through a pair of cores in the multi-core optical fiber of FIGS. 11 is a diagram showing the relationship between the angle between the arrangement direction of a pair of cores and the bending direction of a multi-core optical fiber, and the skew value per unit length.
  • FIG. 1 is a diagram showing an example of a multi-core optical fiber ribbon according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a manufacturing apparatus for a multi-core optical fiber ribbon.
  • FIG. 1 is a diagram showing an example of a multi-core optical fiber ribbon according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a manufacturing apparatus for a multi-core optical fiber ribbon.
  • FIG. 2 is a diagram showing the state of a fiber rotating unit.
  • 1 is a flowchart showing a method for manufacturing a multi-core optical fiber ribbon.
  • 5A and 5B are diagrams illustrating an example of a multi-core optical fiber unit according to a second embodiment of the present invention.
  • 10 is a diagram showing a manufacturing apparatus for the multi-core optical fiber unit of FIG. 9.
  • 1 is a flowchart showing a method for manufacturing a multi-core optical fiber unit.
  • 13 is a diagram showing an inspection device for a multi-core optical fiber ribbon according to a third embodiment of the present invention.
  • FIG. 4 is a flowchart showing a method for inspecting a multi-core optical fiber ribbon.
  • multi-core optical fiber aligning device multi-core optical fiber ribbon manufacturing device, multi-core optical fiber unit manufacturing device, multi-core optical fiber aligning method, multi-core optical fiber ribbon manufacturing method, multi-core optical fiber unit manufacturing method, multi-core optical fiber ribbon inspection device, and multi-core optical fiber ribbon inspection method according to the present invention will be described in detail with reference to the drawings.
  • the embodiments exemplified below are intended to facilitate understanding of the present invention, and are not intended to limit the interpretation of the present invention.
  • the present invention can be modified and improved from the embodiments without departing from the spirit of the invention.
  • the scales shown in the respective figures may differ from the scales described below.
  • Fig. 1 is a diagram showing an example of a cross-sectional view of a multi-core optical fiber.
  • a multi-core optical fiber 1 in this description includes a plurality of cores 10 to 16, a cladding 18 surrounding the outer circumferential surfaces of each of the cores 10 to 16 without any gaps, and a protective layer 19 covering the outer circumferential surface of the cladding 18.
  • the refractive index of each of the cores 10 to 16 is higher than that of the cladding 18.
  • Each of the cores 10 to 16 and the cladding 18 are made of glass to which a dopant is added as necessary.
  • the protective layer 19 is made of resin, and may be composed of a plurality of layers having different hardnesses from each other.
  • the total number of cores is seven, with one core 10 arranged along the central axis of the cladding 18, and multiple cores 11 to 16 arranged at equal intervals around this single core 10.
  • no twist is applied to the multi-core optical fiber 1, and the multiple cores 10 to 16 are linear when the cladding 18 is linear.
  • FIG. 2 is a diagram showing how the multi-core optical fiber 1 in FIG. 1 is bent.
  • the protective layer 19 is omitted.
  • a predetermined radial direction from the center of the cladding 18 is defined as the x-axis
  • a radial direction perpendicular to the x-axis is defined as the y-axis
  • the angle between the direction in which the multi-core optical fiber 1 is bent and the x-axis is defined as ⁇ .
  • the straight line passing through the cores 10, 11, and 14 is the x-axis, with the core 11 on the outside of the bend and the core 14 on the inside of the bend. If the x-axis, y-axis, and angle ⁇ are defined in this way, when the multi-core optical fiber 1 is bent as shown in FIG. 2, the angle ⁇ is 180°.
  • a skew value S which is a group delay difference between light propagating through core m and light propagating through core n, is expressed by the following formula, where i is m or n, as shown in detail in Patent Document 2.
  • L is the length of the optical fiber
  • c is the speed of light in a vacuum
  • N 1m is the group refractive index of core m
  • N 1n is the group refractive index of core n
  • Rb is the bending radius of the multi-core optical fiber
  • B 1 is the photoelastic coefficient for the ordinary ray in each core
  • B 2 is the photoelastic coefficient for the extraordinary ray in each core
  • x m , y m are coordinate positions based on the center of the cladding 18 of core m
  • x n , yn are coordinate positions based on the center of the cladding 18 of core n
  • E is the Young's modulus of the core
  • is the Poisson's ratio of the core.
  • Fig. 3 is a diagram showing the relationship between the bending radius and the skew value S per unit length of light propagating through a pair of cores in the multi-core optical fiber 1 of Figs. 1 and 2.
  • Fig. 3 shows the skew value S between the cores 11 and 14 of the multi-core optical fiber 1, the skew value S between the cores 11 and 13, and the skew value S between the cores 11 and 12.
  • the group refractive indices N 1m and N 1n of the pair of cores were set to the same value.
  • the skew value S was set to zero when the multi-core optical fiber 1 was in a straight state.
  • the skew value S increases as the bending radius decreases, and the skew value S increases rapidly in an area where the bending radius is small.
  • FIG. 4 is a diagram showing the relationship between the angle ⁇ between the arrangement direction of a pair of cores and the bending direction of the multi-core optical fiber 1, and the skew value S per unit length.
  • FIG. 4 shows the skew value S of light propagating through two of the cores 10, 11, and 14 when the multi-core optical fiber 1 is bent at a predetermined bending radius Rb . Note that in FIG. 4, the group refractive indexes of the respective cores are set to the same value. From FIG.
  • the absolute value of the skew value S is larger when the inter-core distance of the pair of cores is larger.
  • the difference in the curvature radius between the core located on the inner side of the bend and the core located on the outer side becomes larger than when they are not arranged, and the transmission path length difference and the effective group index difference between the pair of cores due to bending become larger.
  • FIG. 5 is a diagram showing an example of a multi-core optical fiber ribbon according to this embodiment.
  • the multi-core optical fiber ribbon 2 according to this embodiment includes a plurality of multi-core optical fibers 1 and a ribbon coating 21.
  • the multi-core optical fiber ribbon 2 includes four multi-core optical fibers 1.
  • the multi-core optical fibers 1 are arranged in parallel to each other.
  • the multi-core optical fiber 1 has four cores 11 to 14, and the cores 11 to 14 are arranged at the vertices of a square centered on the center of the cladding 18.
  • the pair of cores 11, 13 are arranged along a direction perpendicular to the arrangement direction of the multiple multi-core optical fibers 1.
  • the pair of cores 11, 13, together with the cores 12, 14, are the furthest core pair among the core pairs in the multi-core optical fiber 1.
  • the pair of cores 12, 14 are arranged along the arrangement direction of the multiple multi-core optical fibers 1.
  • the ribbon coating 21 covers the outer peripheral surface of the multi-core optical fiber 1, integrating each multi-core optical fiber 1.
  • the ribbon coating 21 has a flat shape with its main surface aligned along the arrangement direction of the multiple multi-core optical fibers 1. Therefore, the multi-core optical fiber ribbon 2 has a flat string-like shape. In this example, the cross-sectional shape perpendicular to the longitudinal direction is roughly an oval track shape.
  • the ribbon coating 21 is made of resin.
  • the resin of the ribbon coating 21 may be the same type of resin as the protective layer 19, or a different type of resin.
  • FIG. 6 is a diagram showing a manufacturing apparatus for a multi-core optical fiber ribbon 2.
  • the manufacturing apparatus 3 for a multi-core optical fiber ribbon 2 of this embodiment mainly comprises a sending section 31, a winding section 32, an alignment device 4, and a ribbonizing section 33.
  • the sending unit 31 is, for example, made of a reel around which one end of the multiple multi-core optical fibers 1 is wound in parallel.
  • the sending unit 31 can send out multiple multi-core optical fibers 1 by rotating.
  • the sending unit 31 is, for example, made of multiple reels arranged in parallel.
  • One end of each multi-core optical fiber 1 is optically individually connected to the same number of multi-core optical fibers 31F as the multi-core optical fibers 1 by an optical rotary joint incorporated in the sending unit 31.
  • the optical rotary joint is a joint component between optical fibers that can maintain the optical connection between the multi-core optical fibers 1 and the multi-core optical fibers 31F even when the sending unit 31 rotates.
  • the sending unit 31 may be made of multiple reels arranged in parallel.
  • the alignment device 4 is a device that aligns the direction of rotation of the axial center of the multi-core optical fiber 1 sent out from the sending section 31. Details of the alignment device 4 will be described later.
  • the ribbonizing section 33 ribbonizes the multiple multi-core optical fibers 1 aligned by the alignment device 4.
  • the ribbonizing section 33 is composed of, for example, a die that applies uncured resin to the outer peripheral surface of each multi-core optical fiber 1 to become the ribbon coating 21, and a curing section that cures the resin applied to the multi-core optical fiber 1 that has passed through the die.
  • the resins applied to the multi-core optical fibers 1 are integrated when they are sent out from the die, and the multiple multi-core optical fibers 1 are ribbonized into the multi-core optical fiber ribbon 2 shown in FIG. 5.
  • Examples of the resin that becomes the ribbon coating 21 include an ultraviolet-curable resin, a thermosetting resin, and a thermoplastic resin.
  • the winding unit 32 is made of, for example, a reel, and can wind up the multi-core optical fiber ribbon 2 by rotating.
  • the other end of each multi-core optical fiber 1 in the multi-core optical fiber ribbon 2 is optically connected individually to the same number of multi-core optical fibers 32F as the multi-core optical fibers 1 by an optical rotary joint incorporated in the winding unit 32. Therefore, even if the winding unit 32 rotates, the optical connection between the multi-core optical fibers 1 and the multi-core optical fibers 32F can be maintained.
  • the alignment device 4 mainly comprises a fiber rotation unit 41, a fiber bending unit 42, a skew measurement unit 40, and a control unit 49.
  • the skew measurement unit 40 in this example mainly comprises a network analyzer 43, channel selectors 44 and 47, a fan-in device 45, a fan-out device 46, and a calculation unit 48.
  • the fiber rotation unit 41 changes the rotation angle of the axis of the multi-core optical fiber 1.
  • FIG. 7 is a diagram showing an example of the fiber rotation unit 41.
  • the fiber rotation unit 41 mainly includes a pulley 41P, a pulley shaft 41A, and a drive unit 41D.
  • the pulley 41P is a disk-shaped member with a V-groove on the side.
  • the multi-core optical fiber 1 sent out from the sending unit 31 is sandwiched in the V-groove.
  • a through hole is formed in the center of the pulley 41P along the thickness direction, and the pulley shaft 41A is inserted into the through hole. Therefore, the pulley 41P can rotate around the pulley shaft 41A.
  • the drive unit 41D includes, for example, a stepping motor, and can change the longitudinal angle of the pulley shaft 41A as shown by the dashed line in FIG. 7. This change in the angle of the pulley shaft 41A causes the angle of the pulley 41P to change as shown by the dashed line, and the rotation angle of the axis of the multi-core optical fiber 1 that is sandwiched in the groove of the pulley 41P changes as shown by the dotted line.
  • FIG. 7 shows a configuration for changing the rotation angle of one multi-core optical fiber 1, but the fiber rotation unit 41 has the same number of configurations as in FIG. 7 as the number of multi-core optical fibers 1, and can change the rotation angles of multiple multi-core optical fibers 1 individually.
  • the groove of the pulley 41P is not limited to a V-groove.
  • the bottom of the groove is formed in a curved shape and that the radius of curvature of the bottom is a U-groove that is approximately the same as the radius of the multi-core optical fiber 1, from the viewpoint of increasing the contact area between the multi-core optical fiber 1 and the pulley 41P and making it easier to rotate the multi-core optical fiber 1 around its axis.
  • the fiber bending unit 42 bends the multi-core optical fiber 1 whose rotation angle has been changed in a predetermined direction.
  • the fiber bending unit 42 in this embodiment is composed of a pair of pulleys 42a and 42b.
  • the pulleys 42a and 42b are, for example, configured by stacking pulleys similar to the pulley 41P in the same number as the number of multi-core optical fibers 1. Therefore, the fiber bending unit 42 can bend each multi-core optical fiber 1 under the same conditions.
  • the diameters of the pulleys 42a and 42b may be different from each other.
  • the bending radius of the multi-core optical fiber 1 is preferably 5 mm or more and 30 mm or less.
  • the multiple multi-core optical fibers 1 sent out from the fiber rotating unit 41 are bent 360° by the pulleys 42a and 42b in the fiber bending unit 42.
  • Each multi-core optical fiber 1 may be wound around the pulleys 42a and 42b multiple times and bent 360° or more.
  • the radii of the pulleys 42a and 42b may be different from each other, and the multi-core optical fiber 1 may be bent with different curvature radii.
  • the multi-core optical fiber 1 is wound around the pulleys 42a and 42b so that the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 in FIG. 5 is approximately along the radial direction of the pulleys 42a and 42b at the fiber bending portion 42. That is, in this embodiment, the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 in FIG. 5 is approximately along the x direction in FIG. 1, and the bending direction of the multi-core optical fiber 1 shown in FIG. 2 is along the x direction.
  • the configuration for winding the multi-core optical fiber 1 around the pulleys 42a and 42b in this manner will be described later.
  • the same number of optical fibers 43a and 43b as the number of multi-core optical fibers 1 to be aligned are connected to the network analyzer 43.
  • One optical fiber 43a and one optical fiber 43b correspond to one multi-core optical fiber 1.
  • the network analyzer 43 outputs light of a predetermined wavelength to each optical fiber 43a, and measures the group delay of each light when the light enters the optical fiber 43b corresponding to each optical fiber 43a via a predetermined path.
  • the network analyzer 43 outputs a signal indicating the measured group delay.
  • the light output from the network analyzer 43 to each optical fiber 43a propagates to either the core 11 or 13 in each multi-core optical fiber 1.
  • the network analyzer 43 may be configured using single-channel network analyzers to which one optical fiber 43a and one optical fiber 43b are connected, the same number as the multi-core optical fibers 1.
  • the channel selector 44 is connected to a plurality of the optical fibers 43a and a plurality of optical fibers 44a and 44b for emission.
  • the optical fibers 44a and the optical fibers 44b are the same in number as the number of the multi-core optical fibers 1, and one optical fiber 44a and one optical fiber 44b are paired, and one pair corresponds to one multi-core optical fiber 1 and one optical fiber 43a.
  • the optical fibers 44a and the optical fibers 44b have the same characteristics and are the same length.
  • Light incident from one optical fiber 43a is incident on either the optical fiber 44a or 44b in one pair.
  • the channel selector 44 switches whether the light incident from the optical fiber 43a is output to either the optical fiber 44a or 44b in each pair.
  • a fan-in device 45 is connected between each of the optical fibers 44a and 44b and the multi-core optical fiber 31F of the optical rotary joint of the sending unit 31.
  • the fan-in device 45 has, for example, a plurality of waveguides and a plurality of optical fibers individually connected to each waveguide.
  • each optical fiber 44a is individually optically connected to the core 11 of each multi-core optical fiber 1 via the fan-in device 45 and the multi-core optical fiber 31F
  • each optical fiber 44b is optically connected to the core 13 of each multi-core optical fiber 1 via the fan-in device 45 and the multi-core optical fiber 31F.
  • the light entering each optical fiber 43a from the network analyzer 43 passes through the channel selector 44, the fan-in device 45, and the multi-core optical fiber 31F and enters either one of the cores 11 or 13 of each multi-core optical fiber 1 individually.
  • the channel selector 47 has the same configuration as the channel selector 44. However, instead of the multiple optical fibers 43a, the same number of output optical fibers 43b are connected to the channel selector 47, and instead of the multiple pairs of optical fibers 44a, 44b, the same number of pairs of input optical fibers 47a, 47b are connected.
  • the optical fibers 47a and 47b have the same characteristics and are the same length. Light incident from either the optical fibers 47a or 47b in one pair is incident on one optical fiber 43b.
  • the channel selector 47 switches whether the light to be output to the optical fiber 43b is incident from either the optical fiber 47a or 47b in each pair.
  • a fan-out device 46 is connected between the multiple multi-core optical fibers 32F of the optical rotary joint of the winding section 32 and each of the optical fibers 47a, 47b.
  • the fan-out device 46 has a configuration similar to that of the fan-in device 45, for example.
  • each optical fiber 47a is individually optically connected to the core 11 of the multi-core optical fiber 1 via the multi-core optical fiber 32F and the fan-out device 46
  • each optical fiber 47b is individually optically connected to the multi-core optical fiber 32F and the core 13 via the fan-out device 46.
  • each multi-core optical fiber 1 is individually incident on the network analyzer 43 via the multi-core optical fiber 32F, the fan-out device 46, and the channel selector 47.
  • the network analyzer 43 is electrically connected to the calculation unit 48, and the signal indicating the group delay output by the network analyzer 43 is input to the calculation unit 48.
  • the calculation unit 48 is composed of a calculation device having a differential circuit.
  • the calculation unit 48 calculates the skew value S from the signal indicating the group delay of each light input from the network analyzer 43.
  • the skew value S is calculated for each multi-core optical fiber 1.
  • the signal indicating the skew value S calculated by the calculation unit 48 is output to the control unit 49.
  • the skew value S of the light propagating through the pair of cores 11, 13 of the multi-core optical fiber 1 is measured by the skew measurement unit 40 configured as described above.
  • the control unit 49 is composed of an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), or an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device. When an NC device is used, the control unit 49 may or may not use a machine learning device.
  • the control unit 49 controls the fiber rotation unit 41 based on a signal indicating the skew value S output from the calculation unit 48. Specifically, the control unit 49 controls the fiber rotation unit 41 to adjust the rotation angle of the axis center of the multi-core optical fiber 1 so that the skew value S becomes a predetermined value. In this embodiment, the control unit 49 adjusts the rotation angle of the multi-core optical fiber 1 so that the skew value S becomes a maximum value.
  • FIG. 8 is a flowchart showing a method for manufacturing a multi-core optical fiber ribbon 2.
  • the method for manufacturing a multi-core optical fiber ribbon 2 in this embodiment includes a sending step S1, an aligning step S2, and a ribbonizing step S3.
  • the aligning step S2 also includes a fiber rotation step S21, a fiber bending step S22, and a skew measurement step S23.
  • the aligning step S2 constitutes an aligning method for aligning the rotational direction of the multi-core optical fiber 1.
  • This step is a step of feeding out a plurality of multi-core optical fibers 1.
  • the winding unit 32 is rotated by a driving unit (not shown) to wind up the multi-core optical fiber ribbon 2, thereby pulling each multi-core optical fiber 1, and feeding out the plurality of multi-core optical fibers 1 wound around the feeding unit 31.
  • a ribbon take-up machine may be provided in front of the winding unit 32, and the multi-core optical fiber ribbon 2 may be pulled by the ribbon take-up machine.
  • This step is a step of changing the rotation angle around the axis of the multi-core optical fiber 1.
  • the multiple multi-core optical fibers 1 sent out from the sending unit 31 are sent into the fiber rotating unit 41.
  • the rotation angle around the axis of the multi-core optical fiber 1 changes by the amount of the change in the inclination.
  • the inclination of the pulley 41P is appropriately changed by an instruction from the control unit 49. Therefore, the rotation angle of the multi-core optical fiber 1 is also appropriately changed by an instruction from the control unit 49.
  • the multiple multi-core optical fibers 1 whose rotation angles have been changed are sent out from the fiber rotating unit 41 while roughly maintaining the rotation angle.
  • This step is a step of bending the multi-core optical fiber 1 whose rotation angle has been changed in a predetermined direction.
  • the multi-core optical fiber 1 sent out from the fiber rotation unit 41 is sent to the fiber bending unit 42.
  • the multi-core optical fiber 1 is bent by the pulleys 42a and 42b as described above. Therefore, a skew occurs in the light propagating through the pair of cores 11 and 13 of the multi-core optical fiber 1.
  • the skew value S varies depending on the relationship between the arrangement direction of the pair of cores 11 and 13 and the bending direction of the multi-core optical fiber 1.
  • the multi-core optical fiber 1 is bent by the pulleys 42a and 42b so that the bending direction of the multi-core optical fiber 1 coincides with the arrangement direction of the cores 11 and 13. That is, the fiber rotation unit 41 changes the rotation angle of the multi-core optical fiber 1 so that the multi-core optical fiber 1 is bent by the pulleys 42a and 42b in this manner. In this case, the angle ⁇ between the bending direction and the arrangement direction of the cores 11 and 13 in FIG. 4 becomes approximately 0°, and the skew value S becomes approximately maximum. It is preferable that each multi-core optical fiber 1 is wound around the pulleys 42a, 42b multiple times as described above, since this increases the skew value S. Each multi-core optical fiber 1 is bent by the fiber bending unit 42 and then sent out from the fiber bending unit 42.
  • This step is a step of inputting light to a pair of cores 11 and 13 of the multi-core optical fiber 1 and receiving each of the lights output from the pair of cores 11 and 13 to measure the skew value S of each light.
  • the network analyzer 43 inputs light of a predetermined wavelength to each optical fiber 43a.
  • a channel is first set so that the light from the optical fiber 43a propagates to the optical fiber 44a. For this reason, the light output from the network analyzer 43 is input to the cores 11 of each multi-core optical fiber 1 via the channel selector 44 and the fan-in device 45, etc.
  • a group delay occurs in the light propagating through the core 11.
  • the light output from the cores 11 of each multi-core optical fiber 1 is input to the network analyzer 43 via the fan-out device 46 and the channel selector 47.
  • the group delay of each light is measured, and a signal including the group delay of each light is output to the calculation unit 48.
  • the channel selector 44 sets a channel so that the light from the optical fiber 43a propagates to each optical fiber 44b. Therefore, each light is incident on the core 13 of each multi-core optical fiber 1.
  • a group delay occurs in the light propagating through the core 13, and the group delay of each light incident on the network analyzer 43 is measured, and a signal including the group delay of each light is output to the calculation unit 48.
  • the group delay changes depending on the curvature radius of the core through which the light propagates.
  • the group delay of the light propagating through the core 11 differs from that of the light propagating through the core 13 due to the curvature radius of the cores 11 and 13 determined by the pulleys 42a and 42b.
  • the calculation unit 48 calculates the skew value S based on the two group delays propagating through the cores 11 and 13. In this way, the skew value S of each multi-core optical fiber 1 is measured for each multi-core optical fiber 1.
  • a signal including the calculated skew value S is output to the control unit 49.
  • the control unit 49 controls the fiber rotation unit 41 based on a signal including the skew value S input from the calculation unit 48 so that the skew value S becomes a predetermined value. That is, in the fiber rotation step S21, the rotation angle of the multi-core optical fiber 1 is adjusted so that the skew value S becomes a predetermined value. In this embodiment, the fiber rotation unit 41 is controlled so that the skew value S becomes a maximum. When the skew value S becomes small, the control unit 49 controls the drive unit 41D of the fiber rotation unit 41 to change the rotation angle of the multi-core optical fiber 1, for example, so that the arrangement direction of the cores 11 and 13 moves to the + ⁇ side.
  • the multi-core optical fiber 1 is bent by the pulleys 42a and 42b so that the bending direction of the multi-core optical fiber 1 is aligned with the arrangement direction of the cores 11 and 13 as described above. In this way, the rotation direction of the axial center of each multi-core optical fiber 1 is aligned.
  • This step is a step of ribbonizing the multiple multi-core optical fibers 1 aligned in the aligning step S2.
  • the rotational direction of each multi-core optical fiber 1 is aligned in the aligning step S2, and the multi-core optical fibers 1 are fed from the fiber bending unit 42 to the ribbonizing unit 33.
  • the outer circumferential surface of each multi-core optical fiber 1 is coated with uncured resin that becomes the ribbon coating 21, and the resin is cured to ribbonize the multiple multi-core optical fibers 1. In this manner, the multi-core optical fiber ribbon 2 shown in FIG. 5 is manufactured.
  • the multi-core optical fiber ribbon 2 is wound around the winding section 32.
  • the rotation angle of the axis center of the multi-core optical fiber 1 is changed, the multi-core optical fiber 1 with the changed rotation angle is bent in a predetermined direction, the skew value S of the light propagating through the pair of cores 11, 13 of the multi-core optical fiber 1 is measured, and when rotating the multi-core optical fiber 1, the rotation angle of the multi-core optical fiber 1 is adjusted so that the skew value S becomes a predetermined value.
  • the arrangement direction of the pair of cores can be set to a predetermined direction with respect to the bending direction.
  • the aligning device 4 for the multi-core optical fiber 1 and the aligning method for the multi-core optical fiber 1 of this embodiment can perform alignment in the rotation direction with high precision.
  • the rotation angle is adjusted so that the skew value S becomes the maximum value.
  • the rotation angle may be adjusted so that the skew value S becomes the minimum value.
  • the absolute value of the skew value S is larger than when the rotation angle is adjusted so that the skew value S becomes a predetermined value between the maximum value and the minimum value, and the resolution of the skew value S can be increased, and alignment can be performed with higher accuracy.
  • the skew value S becomes maximum or minimum.
  • the arrangement direction of the pair of cores 11, 13 is along the bending direction, making it easy to grasp the arrangement direction of the pair of cores 11, 13, and the aligned multi-core optical fiber 1 can be easily handled.
  • the rotation angle may be adjusted so that the skew value S becomes a predetermined value that is not maximum.
  • the arrangement direction of the cores 11, 13 is along a direction other than a direction perpendicular to the arrangement direction of the multi-core optical fiber 1 in the multi-core optical fiber ribbon 2.
  • the rotation angle may be adjusted so that the skew value S is zero.
  • the arrangement direction of the cores 11, 13 is along the arrangement direction of the multi-core optical fiber 1.
  • the rotation angle may be adjusted so that the arrangement direction of the cores 11, 13 has a skew value S that is, for example, 45° with respect to the arrangement direction of the multi-core optical fiber 1.
  • the pair of cores 11, 13 for which the skew value S is measured is the most distant core pair among the multiple cores 11 to 14 in the multi-core optical fiber 1. Therefore, when the rotation angle of the multi-core optical fiber 1 is shifted, the change in the skew value S becomes large. Therefore, the skew value S can be measured with higher accuracy, and alignment can be performed with higher accuracy.
  • the core pair for which the skew value S is measured does not have to be the most distant core pair. For example, the skew value S of the light propagating through the cores 11, 12 may be measured.
  • the cores 11, 12 are aligned along a direction perpendicular to the alignment direction of the multi-core optical fiber 1, and the cores 11, 13 are aligned in a direction that forms an angle of 45° with respect to the direction perpendicular to the alignment direction of the multi-core optical fiber 1.
  • the manufacturing apparatus 3 for the multi-core optical fiber ribbon 2 and the manufacturing method for the multi-core optical fiber ribbon 2 of this embodiment send out a plurality of multi-core optical fibers 1, align the orientation in the rotation direction of the sent-out multi-core optical fibers 1 by the above-mentioned alignment, and ribbonize the aligned multi-core optical fibers 1.
  • the manufacturing apparatus 3 and manufacturing method for the multi-core optical fiber ribbon 2 it is possible to manufacture a multi-core optical fiber ribbon 2 in which the rotation direction of each multi-core optical fiber 1 is aligned with high accuracy.
  • the rotational alignment of the multiple multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is performed.
  • the rotational alignment of some of the multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is performed, and the alignment of the other multi-core optical fibers 1 is not performed.
  • only the multi-core optical fibers 1 to be aligned are sent from the sending unit 31 to the ribbonizing unit 33 via the alignment device 4, and the other multi-core optical fibers 1 not to be aligned are sent from the sending unit 31 to the ribbonizing unit 33 without going through the alignment device 4.
  • the fiber rotation unit 41, the fiber bending unit 42, and the skew measurement unit 40 only need to have a configuration capable of aligning the multi-core optical fiber 1 to be aligned.
  • FIG. 9 is a diagram showing a multi-core optical fiber unit 100 according to this embodiment.
  • the multi-core optical fiber unit 100 includes a multi-core optical fiber 1 and a multi-core optical fiber 101, which is another optical component, and the multi-core optical fiber 1 and the multi-core optical fiber 101 are connected.
  • the cores 11 to 14 of the multi-core optical fiber 1 are individually connected to the cores 111 to 114 of the multi-core optical fiber 101. Note that in FIG. 9, the arrangement of the individual cores is shown diagrammatically, and the protective layer 19 is omitted.
  • FIG. 10 is a diagram showing a manufacturing apparatus for a multi-core optical fiber unit 100 according to this embodiment.
  • the manufacturing apparatus 5 for a multi-core optical fiber unit 100 according to this embodiment mainly comprises a sending section 31, a winding section 32, an alignment device 4, and a connection section 50.
  • the manufacturing apparatus 5 of this embodiment manufactures a multi-core optical fiber unit 100 by individually connecting the cores 11 to 14 of one multi-core optical fiber 1 to the cores 111 to 114 of another multi-core optical fiber 101. Therefore, one multi-core optical fiber 1 is wound around the sending section 31, and the winding section 32 winds up one multi-core optical fiber 1. Therefore, the alignment device 4 aligns one multi-core optical fiber 1 in the rotational direction.
  • the connection unit 50 connects the multi-core optical fiber 1 aligned by the alignment device 4 to another multi-core optical fiber 101.
  • the connection unit 50 of this embodiment has a pulley 51, a fiber rotation/fixation/movement unit 52, a fiber cutting unit 53, and a welding unit 54.
  • the pulley 51 has, for example, the same configuration as the pulley 41P.
  • the fiber cutting unit 53 has, for example, an optical fiber cutter and can cut the multi-core optical fiber 1.
  • the fiber rotation/fixation/movement unit 52 has, for example, a configuration that can clamp the outer circumferential surface of the multi-core optical fiber 1 from three directions and can switch between fixing and not fixing the rotation of the axial center of the multi-core optical fiber 1.
  • the fiber rotation/fixation/movement unit 52 can move the end of the multi-core optical fiber 1 formed by the cut to the welding unit 54 as shown by the dashed line.
  • the end of the multi-core optical fiber 101 is set in the welded portion 54.
  • the cores 111 to 114 of the multi-core optical fiber 101 are arranged symmetrically with the cores 11 to 14, and can face the cores 11 to 14 individually.
  • the welding portion 54 for example, has a pair of discharge electrodes facing each other across the end of the multi-core optical fiber 1 and the end of the multi-core optical fiber 101, and welds the end of the multi-core optical fiber 1 and the end of the multi-core optical fiber 101 by heating caused by discharge from these discharge electrodes. Note that welding of the welding portion 54 may be performed by other methods.
  • FIG. 11 is a flowchart showing a method for manufacturing the multi-core optical fiber unit 100 according to this embodiment.
  • the method for manufacturing the multi-core optical fiber unit 100 according to this embodiment includes an alignment step S2 and a connection step S4.
  • the alignment step S2 also constitutes an alignment method for aligning the rotational direction of the multi-core optical fiber 1, and includes a fiber rotation step S21, a fiber bending step S22, and a skew measurement step S23.
  • the connection step S4 is a step for connecting the cores 11 to 14 of the multi-core optical fiber 1 aligned in the alignment step S2 to another waveguide.
  • the connection step S4 in this embodiment includes a fiber cutting step S41, a fiber moving step S42, and a welding step S43.
  • Alignment step S2 First, similarly to the aligning step S2 in the first embodiment, alignment in the rotational direction of the multi-core optical fiber 1 is performed. However, in this embodiment, alignment of only one multi-core optical fiber 1 is performed.
  • This step is a step of cutting the multi-core optical fiber 1.
  • the winding unit 32 stops winding the multi-core optical fiber 1, and accordingly the delivery unit 31 stops delivering the multi-core optical fiber 1.
  • the fiber rotation/fixing/moving unit 52 fixes the rotation of the multi-core optical fiber 1 so that the multi-core optical fiber 1 does not rotate.
  • the fiber cutting unit 53 cuts the multi-core optical fiber 1. The end of the multi-core optical fiber 1 formed by this cutting is in a state in which the rotation direction is aligned.
  • Fiber moving step S42 This step is a step of moving the end of the multi-core optical fiber 1 to the welded part 54.
  • the fiber rotation, fixation, and movement unit 52 moves the end of the multi-core optical fiber 1 while fixing the rotation of the multi-core optical fiber 1 so that the end is located at the welded part 54.
  • the fiber rotation, fixation, and movement unit 52 rotates, for example, by approximately 90° so as to suppress a change in tension applied to the multi-core optical fiber 1.
  • This step is a step of fusing the multi-core optical fiber 1 and the multi-core optical fiber 101.
  • the cores 11 to 14 of the moved multi-core optical fiber 1 and the cores 111 to 114 of the multi-core optical fiber 101 face each other.
  • alignment step S2 alignment is performed so that the cores 11 to 14 and the cores 111 to 114 face each other individually after the fiber moving step S42.
  • this step for example, an end of the multi-core optical fiber 1 and an end of the multi-core optical fiber 101 are melted by discharge or the like, and the respective ends are brought into contact with each other, thereby fusing the multi-core optical fiber 1 and the multi-core optical fiber 101.
  • the cores 11 to 14 and the cores 111 to 114 face each other individually, so that the cores 11 to 14 and the cores 111 to 114 are fused to each other.
  • the multi-core optical fiber 1 and the multi-core optical fiber 101 are connected, and the multi-core optical fiber unit 100 shown in FIG. 9 is manufactured.
  • the cores 11 to 14 of the multi-core optical fiber 1 aligned by the alignment apparatus 4 or the above-mentioned alignment method are connected to another optical element. Therefore, since the multi-core optical fiber 1 is connected in a state where the rotational direction of the multi-core optical fiber 1 is aligned with high accuracy, it is possible to manufacture a multi-core optical fiber unit 100 in which the multi-core optical fiber 1 with the rotational direction appropriately aligned is connected to the multi-core optical fiber 101, which is another optical component. Therefore, in the multi-core optical fiber unit 100 of this example, the cores 11 to 14 can be appropriately opposed to the cores 111 to 114, and light leakage at the connection part can be suppressed.
  • connection unit 50 has the pulley 51, the fiber rotation/fixation/movement unit 52, the fiber cutting unit 53, and the welding unit 54, but these are not essential as long as the cores 11 to 14 of the multi-core optical fiber 1 aligned by the alignment device 4 can be connected to other optical components.
  • connection unit 50 has a crimping unit instead of the welding unit 54, and the connection step S4 has a crimping step instead of the welding step S43.
  • the crimping step is performed, and in the crimping step, the crimping unit crimps the end of the multi-core optical fiber 1 to the end of the multi-core optical fiber 101.
  • the multi-core optical fiber 101 has been described as an example of an optical component.
  • the optical component does not have to be the multi-core optical fiber 101 as long as it is connected to the multi-core optical fiber 1.
  • the optical component may be, for example, a waveguide substrate, a fan-in-fan-out device, or a multi-core optical connector.
  • the optical component may be optically connected to only some of the cores 11 to 14 of the multi-core optical fiber 1.
  • the optical component may be, such as a ferrule, not optically coupled with the cores 11 to 14, so long as it is connected to the multi-core optical fiber 1.
  • the connection section 50 has an insertion section instead of the welding section 54
  • the connection step S4 has an insertion step instead of the welding step S43. Then, after the end of the multi-core optical fiber 1 is moved in the fiber moving step S42 as in the above embodiment, the insertion step is performed, and in the insertion step, the insertion section moves the multi-core optical fiber 1 and the ferrule relatively so that the end of the multi-core optical fiber 1 is inserted into the ferrule, and the multi-core optical fiber 1 and the ferrule are connected.
  • a multi-core optical fiber unit in which the multi-core optical fiber 1 and the ferrule are connected is manufactured in a state in which the alignment of the rotational direction of the multi-core optical fiber 1 is aligned with high accuracy.
  • the optical fiber connector becomes a multi-core optical fiber unit.
  • multiple multi-core optical fibers 1 may be aligned in the rotational direction and connected to an optical component.
  • the alignment of multiple multi-core optical fibers 1 may be performed, for example, by the alignment device 4 in the first embodiment.
  • FIG. 12 is a diagram showing an inspection device 6 for a multi-core optical fiber ribbon 2 according to this embodiment.
  • the inspection device 6 for a multi-core optical fiber ribbon 2 according to this embodiment mainly comprises a sending section 31, a fiber bending section 42, a winding section 32, a network analyzer 43, channel selectors 44 and 47, a fan-in device 45, a fan-out device 46, a calculation section 48, and a judgment section 60.
  • the multi-core optical fiber ribbon 2 is wound around the sending section 31 of this embodiment.
  • One end of each multi-core optical fiber 1 of the multi-core optical fiber ribbon 2 is optically individually connected to the same number of multi-core optical fibers 31F as the multi-core optical fibers 1, in the same manner as in the first embodiment.
  • the pulleys 42a and 42b in the fiber bending section 42 of this embodiment have a groove width larger than the width of the multi-core optical fibers 1 of the multi-core optical fiber ribbon 2 in the arrangement direction, and the bottom of the groove is formed flat. Therefore, the multi-core optical fiber ribbon 2 can be bent in a direction perpendicular to the arrangement direction of the multi-core optical fibers 1.
  • the calculation unit 48 of this embodiment outputs the calculated skew value S to the determination unit 60.
  • the determination unit 60 has a configuration similar to that of the control unit 49, for example, and determines whether the skew value S is outside the predetermined range.
  • the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 is perpendicular to the arrangement direction of the multi-core optical fibers 1 in the multi-core optical fiber ribbon 2 as shown in FIG. 5, and the skew value of the light propagating through the cores 11 and 13 of each multi-core optical fiber 1 is measured in the same manner as in the first embodiment.
  • the above-mentioned predetermined range is, for example, from the maximum value of the skew value S to a value 1% lower than the maximum value.
  • the determination unit 60 outputs at which longitudinal position of which multi-core optical fiber 1 the skew value S is outside the predetermined range.
  • FIG. 13 is a flowchart showing the method for inspecting the multi-core optical fiber ribbon 2 according to this embodiment.
  • the method for inspecting the multi-core optical fiber ribbon 2 according to this embodiment includes a sending step S1, a fiber bending step S22, a skew measurement step S23, and a judgment step S5.
  • sending step S1 the multi-core optical fiber ribbon 2 including a plurality of multi-core optical fibers 1 is sent out from the sending section 31 .
  • each multi-core optical fiber 1 is bent by bending the multi-core optical fiber ribbon 2.
  • the multi-core optical fiber ribbon 2 sent out from the sending unit 31 is sent to the fiber bending unit 42 and bent in a predetermined direction by each of the pulleys 42a, 42b.
  • the fiber bending unit 42 bends the multi-core optical fiber ribbon 2 in its thickness direction. This direction is perpendicular to the arrangement direction of the multi-core optical fibers 1, and is the arrangement direction of the cores 11, 13.
  • This step is a step of making light incident on a pair of cores 11, 13 in each multi-core optical fiber 1, and receiving each of the lights outputted from the pair of cores 11, 13 in each multi-core optical fiber 1, and measuring the skew value S of each light for each multi-core optical fiber 1.
  • the skew value S is measured in the same manner as in the first embodiment.
  • This step is a step of determining whether the skew value S in at least one multi-core optical fiber 1 is outside a predetermined range.
  • the determination unit 60 determines whether the skew value S is outside the predetermined range or not, and when the skew value S is within the predetermined range, for example, outputs no particular signal, and when the skew value S is outside the predetermined range, outputs a signal indicating the multi-core optical fiber 1 whose skew value S is outside the predetermined range and a signal indicating the longitudinal position of the multi-core optical fiber 1 where the skew value S is outside the predetermined range.
  • the misalignment of the multi-core optical fiber 1 is detected by using the fact that the skew value S is outside a predetermined range in the part bent at the fiber bending section 42, so that the misalignment of the multi-core optical fiber 1 can be detected with high accuracy.
  • the multi-core optical fiber ribbon 2 is sequentially sent to the fiber bending section 42, misalignment of the multi-core optical fiber 1 can be detected along the longitudinal direction. Therefore, the section in which the alignment of the multi-core optical fiber 1 in the rotational direction is misaligned can be detected with high accuracy. Note that sending the multi-core optical fiber ribbon 2 to the fiber bending section 42 is not an essential configuration.
  • the multi-core optical fiber 1 in the multi-core optical fiber ribbon 2 is bent in the fiber bending section 42 and the skew value S is measured, so that the multi-core optical fiber 1 in which misalignment in the rotational direction occurs can be identified.
  • the above-mentioned predetermined range may be from the minimum value of the skew value S to a value 1% higher than the minimum value.
  • the pair of cores for measuring the skew value S does not have to be aligned in the thickness direction of the multi-core optical fiber ribbon 2.
  • misalignment of multiple multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is detected.
  • only the multi-core optical fibers 1 for which misalignment detection is performed need only be connected to the skew measurement unit 40.
  • the skew measurement unit 40 only needs to have a configuration capable of measuring the skew value of the multi-core optical fiber 1 for which misalignment detection is performed.
  • the number and arrangement of the cores of the multi-core optical fiber 1 may be different from those in the above embodiment.
  • the cores of the multi-core optical fiber 1 may be arranged in a linear, annular, or lattice pattern.
  • the configuration of the multi-core optical fiber ribbon 2 may be different from that shown in FIG. 5.
  • the number of multi-core optical fibers 1 constituting the multi-core optical fiber ribbon 2 can be changed as appropriate.
  • all of the optical fibers constituting the multi-core optical fiber ribbon 2 do not need to be multi-core optical fibers 1, and the multi-core optical fiber ribbon 2 only needs to include at least one multi-core optical fiber 1. Therefore, for example, the multi-core optical fiber ribbon 2 may have one or more multi-core optical fibers 1 and one or more single-core optical fibers.
  • the alignment device 4 aligns at least one multi-core optical fiber 1 in the rotational direction.
  • FIG. 14 is a diagram showing a modified example of the multi-core optical fiber ribbon 2.
  • a multi-core optical fiber ribbon 2 may be formed by fixing a plurality of adjacent multi-core optical fibers 1 to each other with a fixing resin 22.
  • FIG. 14 shows a case where there are two multi-core optical fibers 1, there may be three or more multi-core optical fibers 1.
  • the fixing resin 22 may be provided piecemeal along the longitudinal direction of the multi-core optical fiber 1.
  • the multi-core optical fiber 1 is more likely to be displaced in the rotational direction than the multi-core optical fiber ribbon 2 shown in FIG. 5. Therefore, in the third embodiment, it is preferable to increase the tension when inspecting the multi-core optical fiber ribbon 2.
  • the multi-core optical fiber ribbon 2 may also include one or more multi-core optical fibers 1 and one or more single-core optical fibers.
  • the multiple optical fibers 43a and 43b are each connected to the network analyzer 43, but the network analyzer 43 may be connected to one optical fiber each of the optical fibers 43a and 43b.
  • the channel selector 44 switches the optical path so that the light propagates in turn to the multiple multi-core optical fibers 1
  • the channel selector 47 switches the optical path so that the light incident from one of the multiple optical fibers 47a and 47b is output to the optical fiber 43b.
  • the alignment device 4 may also include a memory having a table showing the relationship between the angle ⁇ between the direction in which the pair of cores are aligned and the bending direction, and the skew value S.
  • the control unit 49 may refer to the memory and calculate the skew value S from the measured skew value S and the table to adjust the rotation angle of the multi-core optical fiber 1 in the fiber rotation unit 41.
  • the sending section and the winding section do not need to use reels.
  • the multi-core optical fiber 1 may be pulled out from a folded or twisted state within a range that is not damaged, and may be taken up in a similar state instead of being wound.
  • the skew measurement unit 40 may also have other configurations as long as it is capable of measuring the skew value S of the light propagating through a pair of cores of the multi-core optical fiber 1.
  • a multi-core optical fiber alignment device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon manufacturing device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon manufacturing device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon manufacturing device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon manufacturing device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon manufacturing device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy
  • a multi-core optical fiber ribbon inspection device capable of detecting misalignment in the rotational direction of the multi-core optical fiber with high accuracy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

An alignment device (4) for a multicore optical fiber (1) comprises: a fiber rotation unit (41) that changes the rotation angle about the axis of the multicore optical fiber (1); a fiber bending unit (42) that bends, in a predetermined direction, the multicore optical fiber (1) the rotation angle of which has been changed; a skew measurement unit (40) that causes light to be incident on a pair of cores (11), (13) of the multicore optical fiber (1), receives light emitted from each of the pair of cores (11), (13), and measures the skew value (S) of each light; and a control unit (49) that controls the fiber rotation unit (41) to adjust the rotation angle of the multicore optical fiber (1) such that the skew value (S) becomes a predetermined value.

Description

マルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、マルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法Multi-core optical fiber aligning device, multi-core optical fiber ribbon manufacturing device, multi-core optical fiber unit manufacturing device, multi-core optical fiber aligning method, multi-core optical fiber ribbon manufacturing method, multi-core optical fiber unit manufacturing method, multi-core optical fiber ribbon inspection device, and multi-core optical fiber ribbon inspection method
 本発明は、マルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、マルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法に関する。 The present invention relates to a multi-core optical fiber alignment device, a multi-core optical fiber ribbon manufacturing device, a multi-core optical fiber unit manufacturing device, a multi-core optical fiber alignment method, a multi-core optical fiber ribbon manufacturing method, a multi-core optical fiber unit manufacturing method, a multi-core optical fiber ribbon inspection device, and a multi-core optical fiber ribbon inspection method.
 複数のコアの外周が1つのクラッドにより囲まれたマルチコア光ファイバを用いて、それぞれのコアを伝搬する光により、複数の信号を伝送させることが知られている。マルチコア光ファイバ同士を接続する場合、接続されるマルチコア光ファイバの軸中心の回転方向の調心を行い、それぞれのマルチコア光ファイバのそれぞれのコア同士を互いに対向させる必要がある。 It is known that a multi-core optical fiber, in which the outer circumference of multiple cores is surrounded by a single cladding, can be used to transmit multiple signals by light propagating through each core. When connecting multi-core optical fibers, it is necessary to align the axial center of the multi-core optical fibers to be connected in the rotational direction and align each core of each multi-core optical fiber to face each other.
 特許文献1では、所定のコアに光を伝搬させつつ、マルチコア光ファイバを曲げることにより、当該コアから漏洩する光の量を検知して、その光の量が略一定となるようにマルチコア光ファイバを軸中心に回転させることでマルチコア光ファイバの回転方向の調心を行っている。 In Patent Document 1, the multi-core optical fiber is bent while light is propagated to a specific core, and the amount of light leaking from the core is detected. The multi-core optical fiber is then rotated around its axis so that the amount of light remains approximately constant, thereby aligning the rotational direction of the multi-core optical fiber.
特許第6046311号公報Japanese Patent No. 6046311 特許第6226905号公報Patent No. 6226905
 しかし、特許文献1が述べる調心方法では、マルチコア光ファイバを軸中心に回転させても、漏洩する光の量の変化が小さい。このため、マルチコア光ファイバの軸中心の回転方向の調心ずれの検知が困難であり、調心を高い精度で行うことが困難である。 However, in the alignment method described in Patent Document 1, even if the multi-core optical fiber is rotated around its axis, the change in the amount of leaking light is small. For this reason, it is difficult to detect misalignment in the rotational direction around the axis of the multi-core optical fiber, and it is difficult to perform alignment with high accuracy.
 そこで、本発明は、マルチコア光ファイバの回転方向の調心を高い精度で行い得るマルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、及び、マルチコア光ファイバの回転方向の調心ずれを高い精度で検出し得るマルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法を提供することを目的とする。 The present invention aims to provide a multi-core optical fiber alignment device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy, a multi-core optical fiber ribbon manufacturing device, a multi-core optical fiber unit manufacturing device, a multi-core optical fiber alignment method, a multi-core optical fiber ribbon manufacturing method, a multi-core optical fiber unit manufacturing method, and a multi-core optical fiber ribbon inspection device and multi-core optical fiber ribbon inspection method capable of detecting misalignment in the rotational direction of the multi-core optical fiber with high accuracy.
 本発明の態様1は、マルチコア光ファイバの軸中心の回転角を変化させるファイバ回転部と、前記回転角が変化された前記マルチコア光ファイバを所定の方向に曲げるファイバ曲げ部と、前記マルチコア光ファイバの一対のコアを伝搬する光のスキュー値を測定するスキュー測定部と、前記ファイバ回転部を制御して、前記スキュー値が所定の値になるように前記マルチコア光ファイバの前記回転角を調節する制御部と、を備えることを特徴とするマルチコア光ファイバの調心装置である。 Aspect 1 of the present invention is an alignment device for a multi-core optical fiber, characterized by comprising: a fiber rotation unit that changes the rotation angle of the axis of the multi-core optical fiber; a fiber bending unit that bends the multi-core optical fiber in a predetermined direction after the rotation angle has been changed; a skew measurement unit that measures the skew value of light propagating through a pair of cores of the multi-core optical fiber; and a control unit that controls the fiber rotation unit to adjust the rotation angle of the multi-core optical fiber so that the skew value becomes a predetermined value.
 マルチコア光ファイバを所定の方向に曲げた状態で、マルチコア光ファイバを軸中心に回転させる場合、曲げ方向に対する一対のコアの並び方向が変化し、一対のコアを伝搬する光のスキュー値が変化する。従って、スキュー値が所定の値となるように回転角が調節されることで、曲げ方向に対して一対のコアの並び方向を所定の方向にすることができる。回転角度に対するスキュー値の変化は、漏洩光の変化よりも精密に測定することができるため、特許文献1に記載のマルチコア光ファイバの調心と比べて、高い精度で回転方向の調心を行うことができる。 When the multi-core optical fiber is rotated around its axis while being bent in a predetermined direction, the alignment direction of the pair of cores with respect to the bending direction changes, and the skew value of the light propagating through the pair of cores changes. Therefore, by adjusting the rotation angle so that the skew value becomes a predetermined value, the alignment direction of the pair of cores with respect to the bending direction can be set to a predetermined direction. Since the change in the skew value with respect to the rotation angle can be measured more precisely than the change in the leaked light, the alignment in the rotation direction can be performed with higher accuracy than the alignment of the multi-core optical fiber described in Patent Document 1.
 本発明の態様2は、前記制御部は、前記スキュー値が最大値または最小値になるように前記回転角を調節することを特徴とする態様1のマルチコア光ファイバの調心装置である。 Aspect 2 of the present invention is the alignment device for a multi-core optical fiber of aspect 1, characterized in that the control unit adjusts the rotation angle so that the skew value becomes a maximum or minimum value.
 この場合、スキュー値の絶対値が大きいため、最大または最小ではないスキュー値になる様に調整する場合よりも、分解能を高くし得、より高い精度で調心することができる。なお、一対のコアの並び方向が曲げ方向に沿う場合、スキュー値は最大または最小となる。 In this case, since the absolute value of the skew value is large, the resolution can be increased and alignment can be performed with higher precision than when adjusting to a skew value that is not the maximum or minimum. Note that when the alignment direction of the pair of cores is along the bending direction, the skew value is maximum or minimum.
 態様1または2において、前記一対のコアは、前記マルチコア光ファイバにおける複数のコアのうち互いに最も離れているコア対であることが好ましい。 In aspect 1 or 2, the pair of cores is preferably the core pair that is farthest from each other among the multiple cores in the multi-core optical fiber.
 本発明の態様3は、1以上のマルチコア光ファイバを送り出す送出部と、前記送出部から送り出される少なくとも1つの前記マルチコア光ファイバの回転方向における向きの調心を行う態様1または2のマルチコア光ファイバの調心装置と、前記調心装置で調心された前記マルチコア光ファイバを含む複数の光ファイバをリボン化するリボン化部と、を備えることを特徴とするマルチコア光ファイバリボンの製造装置である。 Aspect 3 of the present invention is a multi-core optical fiber ribbon manufacturing device comprising: a sending section that sends out one or more multi-core optical fibers; an aligning device for multi-core optical fibers according to aspect 1 or 2 that aligns the orientation in the rotational direction of at least one of the multi-core optical fibers sent out from the sending section; and a ribbonizing section that ribbonizes a plurality of optical fibers including the multi-core optical fibers aligned by the aligning device.
 このマルチコア光ファイバリボンの製造装置によれば、マルチコア光ファイバの回転方向が高い精度で調心されたマルチコア光ファイバリボンを製造し得る。 This multi-core optical fiber ribbon manufacturing device can produce multi-core optical fiber ribbons in which the rotation direction of the multi-core optical fibers is aligned with high precision.
 本発明の態様4は、態様1または2の調心装置と、前記調心装置で調心された前記マルチコア光ファイバを他の光学部品に接続する接続部と、を備えることを特徴とするマルチコア光ファイバユニットの製造装置である。 Aspect 4 of the present invention is a manufacturing device for a multi-core optical fiber unit, characterized by comprising an alignment device according to aspect 1 or 2, and a connection part for connecting the multi-core optical fiber aligned by the alignment device to another optical component.
 このマルチコア光ファイバユニットの製造装置によれば、マルチコア光ファイバの回転方向が高い精度で調心されるため、回転方向が適切に調心された状態で、マルチコア光ファイバを他の光学部品に接続し得る。従って、回転方向が適切に調心されたマルチコア光ファイバが他の光学部品に接続されたマルチコア光ファイバユニットを製造し得る。 With this multi-core optical fiber unit manufacturing device, the rotation direction of the multi-core optical fiber is aligned with high precision, so the multi-core optical fiber can be connected to other optical components with the rotation direction properly aligned. Therefore, it is possible to manufacture a multi-core optical fiber unit in which a multi-core optical fiber with a rotation direction properly aligned is connected to other optical components.
 本発明の態様5は、マルチコア光ファイバの軸中心の回転角を変化させるファイバ回転ステップと、前記回転角が変化された前記マルチコア光ファイバを所定の方向に曲げるファイバ曲げステップと、前記マルチコア光ファイバの一対のコアを伝搬する光のスキュー値を測定するスキュー測定ステップと、前記ファイバ回転ステップでは、前記スキュー値が所定の値になるように前記マルチコア光ファイバの前記回転角を調節することを特徴とするマルチコア光ファイバの調心方法である。 Aspect 5 of the present invention is a method for aligning a multi-core optical fiber, comprising a fiber rotation step of changing the rotation angle of the axial center of the multi-core optical fiber, a fiber bending step of bending the multi-core optical fiber with the changed rotation angle in a predetermined direction, a skew measurement step of measuring the skew value of light propagating through a pair of cores of the multi-core optical fiber, and in the fiber rotation step, adjusting the rotation angle of the multi-core optical fiber so that the skew value becomes a predetermined value.
 この態様によれば、態様1と同様にして、高い精度でマルチコア光ファイバの回転方向の調心を行うことができる。 According to this embodiment, similar to embodiment 1, the rotational alignment of the multi-core optical fiber can be performed with high precision.
 本発明の態様6は、前記ファイバ回転ステップでは、前記スキュー値が最大値または最小値になるように前記回転角を調節することを特徴とする態様5のマルチコア光ファイバの調心方法である。 Aspect 6 of the present invention is the method for aligning a multi-core optical fiber according to aspect 5, characterized in that in the fiber rotation step, the rotation angle is adjusted so that the skew value becomes a maximum or minimum value.
 この態様によれば、態様2と同様にして、より高い精度で調心することができる。 According to this embodiment, alignment can be achieved with higher precision, similar to embodiment 2.
 本発明の態様7は、前記一対のコアは、前記マルチコア光ファイバにおける複数のコアのうち互いに最も離れているコア対であることを特徴とする態様5または6のマルチコア光ファイバの調心方法である。 Aspect 7 of the present invention is the method for aligning a multi-core optical fiber according to aspect 5 or 6, characterized in that the pair of cores is the most distant core pair among the multiple cores in the multi-core optical fiber.
 マルチコア光ファイバの曲げ方向に対する一対のコアの並び方向が一定であれば、最も離れているコア対を伝搬する光のスキュー値が最も大きくなり、マルチコア光ファイバの回転角がずれるとスキュー値の変化が大きくなる。従って、この態様によれば、より高い精度でスキュー値を測定でき、より高い精度でマルチコア光ファイバの回転方向の調心を行うことができる。 If the arrangement direction of a pair of cores relative to the bending direction of the multi-core optical fiber is constant, the skew value of the light propagating through the most distant core pair will be the largest, and the change in the skew value will be large if the rotation angle of the multi-core optical fiber is shifted. Therefore, according to this embodiment, the skew value can be measured with higher accuracy, and the rotational direction alignment of the multi-core optical fiber can be performed with higher accuracy.
 本発明の態様8は、1以上のマルチコア光ファイバを送り出す送出ステップと、前記送出ステップで送り出される少なくとも1つの前記マルチコア光ファイバの回転方向における向きの調心を態様5から7のいずれかのマルチコア光ファイバの調心方法により行う調心ステップと、前記調心ステップで調心された複数の前記マルチコア光ファイバをリボン化するリボン化ステップと、を備えることを特徴とするマルチコア光ファイバリボンの製造方法である。 Aspect 8 of the present invention is a method for manufacturing a multi-core optical fiber ribbon, comprising: a sending step of sending out one or more multi-core optical fibers; an aligning step of aligning the orientation in the rotational direction of at least one of the multi-core optical fibers sent out in the sending step by using the aligning method for a multi-core optical fiber according to any one of aspects 5 to 7; and a ribbonizing step of ribbonizing the multiple multi-core optical fibers aligned in the aligning step.
 この態様によれば、態様3と同様にして、マルチコア光ファイバの回転方向が高い精度で調心されたマルチコア光ファイバリボンを製造し得る。 According to this aspect, as in aspect 3, it is possible to manufacture a multi-core optical fiber ribbon in which the rotation direction of the multi-core optical fiber is aligned with high precision.
 本発明の態様9は、態様5から7のいずれかのマルチコア光ファイバの調心方法により前記マルチコア光ファイバの回転方向における向きの調心を行う調心ステップと、前記調心ステップで調心された前記マルチコア光ファイバを他の光学部品に接続する接続ステップと、を備えることを特徴とするマルチコア光ファイバユニットの製造方法である。 Aspect 9 of the present invention is a method for manufacturing a multi-core optical fiber unit, comprising an alignment step for aligning the orientation of the multi-core optical fiber in the rotational direction by the alignment method for a multi-core optical fiber according to any one of aspects 5 to 7, and a connection step for connecting the multi-core optical fiber aligned in the alignment step to another optical component.
 この態様によれば、態様4と同様にして、回転方向が適切に調心されたマルチコア光ファイバが他の光学部品に接続されたマルチコア光ファイバユニットを製造し得る。 According to this aspect, as in aspect 4, a multi-core optical fiber unit can be manufactured in which a multi-core optical fiber with a properly aligned rotational direction is connected to other optical components.
 本発明の態様10は、1以上のマルチコア光ファイバを有するマルチコア光ファイバリボンを曲げることで、前記マルチコア光ファイバを曲げるファイバ曲げ部と、少なくとも1つの前記マルチコア光ファイバにおける一対のコアを伝搬する光のスキュー値を測定するスキュー測定部と、少なくとも1つの前記マルチコア光ファイバにおける前記スキュー値が所定の範囲以外となることを判定する判定部と、を備えることを特徴とするマルチコア光ファイバリボンの検査装置である。 Aspect 10 of the present invention is an inspection device for a multi-core optical fiber ribbon, characterized by comprising: a fiber bending unit that bends a multi-core optical fiber ribbon having one or more multi-core optical fibers by bending the multi-core optical fiber; a skew measurement unit that measures the skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers; and a determination unit that determines whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range.
 この態様によれば、ファイバ曲げ部で曲げられた部分において、スキュー値が所定の範囲以外となることを検出することで、マルチコア光ファイバの調心ずれを高い精度で検知することができる。また、マルチコア光ファイバの回転方向の調心がずれている区間を検知する場合には、ファイバ曲げ部にマルチコア光ファイバリボンを順次送り出すことで、当該区間を高い精度で検知することができる。 According to this aspect, misalignment of the multi-core optical fiber can be detected with high accuracy by detecting that the skew value is outside a predetermined range in the portion bent by the fiber bending section. In addition, when detecting a section where the alignment of the multi-core optical fiber in the rotation direction is misaligned, the section can be detected with high accuracy by sequentially sending the multi-core optical fiber ribbon to the fiber bending section.
 態様10において、前記一対のコアは、複数の前記マルチコア光ファイバの並び方向に垂直に並んでいることが好ましい。 In aspect 10, it is preferable that the pair of cores is aligned perpendicular to the alignment direction of the multiple multi-core optical fibers.
 本発明の態様11は、1以上の複数のマルチコア光ファイバを有するマルチコア光ファイバリボンを曲げることで、前記マルチコア光ファイバを曲げるファイバ曲げステップと、少なくとも1つの前記マルチコア光ファイバにおける一対のコアを伝搬する光のスキュー値を測定するスキュー測定ステップと、少なくとも1つの前記マルチコア光ファイバにおける前記スキュー値が所定の範囲以外となることを判定する判定ステップと、を備えることを特徴とするマルチコア光ファイバリボンの検査方法である。 Aspect 11 of the present invention is a method for inspecting a multi-core optical fiber ribbon, comprising: a fiber bending step for bending a multi-core optical fiber ribbon having one or more multi-core optical fibers, a skew measurement step for measuring a skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers, and a determination step for determining whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range.
 この態様によれば、態様10と同様にして、マルチコア光ファイバの調心ずれを高い精度で検知することができる。 According to this aspect, similar to aspect 10, misalignment of the multi-core optical fiber can be detected with high accuracy.
 本発明の態様12は、前記マルチコア光ファイバリボンは、前記マルチコア光ファイバを含む並列される複数の光ファイバを備え、前記一対のコアは、前記光ファイバの並び方向に垂直に並んでいることを特徴とする態様11のマルチコア光ファイバリボンの検査方法である。 Aspect 12 of the present invention is a method for inspecting a multi-core optical fiber ribbon according to aspect 11, characterized in that the multi-core optical fiber ribbon comprises a plurality of optical fibers arranged in parallel, including the multi-core optical fiber, and the pair of cores are arranged perpendicular to the arrangement direction of the optical fibers.
 マルチコア光ファイバリボンは、通常、光ファイバの並び方向に垂直な方向に曲げられる。また、一対のコアの並び方向が曲げ方向に沿う場合、スキュー値は最大または最小となる。従って、この態様によれば、スキュー値の絶対値が大きいため、スキュー値の分解能を高くし得、より高い精度で調心ずれを検知することができる。 Multi-core optical fiber ribbons are usually bent in a direction perpendicular to the arrangement of the optical fibers. Furthermore, when the arrangement direction of a pair of cores is along the bending direction, the skew value is maximum or minimum. Therefore, according to this embodiment, since the absolute value of the skew value is large, the resolution of the skew value can be increased, and misalignment can be detected with higher accuracy.
 以上のように、本発明によれば、マルチコア光ファイバの回転方向の調心を高い精度で行い得るマルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、及び、マルチコア光ファイバの回転方向の調心ずれを高い精度で検出し得るマルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法が提供される。 As described above, according to the present invention, there are provided an aligning device for a multi-core optical fiber capable of aligning the multi-core optical fiber in the rotational direction with high accuracy, a manufacturing device for a multi-core optical fiber ribbon, a manufacturing device for a multi-core optical fiber unit, an aligning method for a multi-core optical fiber, a manufacturing method for a multi-core optical fiber ribbon, a manufacturing method for a multi-core optical fiber unit, and an inspection device for a multi-core optical fiber ribbon and an inspection method for a multi-core optical fiber ribbon capable of detecting misalignment in the rotational direction of a multi-core optical fiber with high accuracy.
マルチコア光ファイバの断面図の一例を示す図である。FIG. 1 is a diagram showing an example of a cross-sectional view of a multi-core optical fiber. 図1のマルチコア光ファイバが曲がっている様子を示す図である。2 is a diagram showing the multi-core optical fiber of FIG. 1 being bent; 図1、図2のマルチコア光ファイバにおける曲げ半径と一対のコアを伝搬する光の単位長さ当たりのスキュー値との関係を示す図である。FIG. 3 is a diagram showing the relationship between the bending radius and the skew value per unit length of light propagating through a pair of cores in the multi-core optical fiber of FIGS. 一対のコアの並び方向とマルチコア光ファイバを曲げ方向との角度と、単位長さ当たりのスキュー値との関係を示す図である。11 is a diagram showing the relationship between the angle between the arrangement direction of a pair of cores and the bending direction of a multi-core optical fiber, and the skew value per unit length. FIG. 本発明の第1実施形態に係るマルチコア光ファイバリボンの一例の様子を示す図である。1 is a diagram showing an example of a multi-core optical fiber ribbon according to a first embodiment of the present invention; マルチコア光ファイバリボンの製造装置を示す図である。FIG. 2 is a diagram showing a manufacturing apparatus for a multi-core optical fiber ribbon. ファイバ回転部の様子を示す図である。FIG. 2 is a diagram showing the state of a fiber rotating unit. マルチコア光ファイバリボンの製造方法を示すフローチャートである。1 is a flowchart showing a method for manufacturing a multi-core optical fiber ribbon. 本発明の第2実施形態に係るマルチコア光ファイバユニットの一例を示す図である。5A and 5B are diagrams illustrating an example of a multi-core optical fiber unit according to a second embodiment of the present invention. 図9のマルチコア光ファイバユニットの製造装置を示す図である。10 is a diagram showing a manufacturing apparatus for the multi-core optical fiber unit of FIG. 9. マルチコア光ファイバユニットの製造方法を示すフローチャートである。1 is a flowchart showing a method for manufacturing a multi-core optical fiber unit. 本発明の第3実施形態に係るマルチコア光ファイバリボンの検査装置を示す図である。13 is a diagram showing an inspection device for a multi-core optical fiber ribbon according to a third embodiment of the present invention. FIG. マルチコア光ファイバリボンの検査方法を示すフローチャートである。4 is a flowchart showing a method for inspecting a multi-core optical fiber ribbon. マルチコア光ファイバリボンの変形例を示す図である。A diagram showing a modified example of a multi-core optical fiber ribbon.
 以下、本発明に係るマルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバユニットの製造装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、マルチコア光ファイバユニットの製造方法、マルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、実施形態から変更、改良することができる。なお、理解の容易のため、それぞれの図に記載のスケールと、以下の説明に記載のスケールとが異なる場合がある。 Below, preferred embodiments of the multi-core optical fiber aligning device, multi-core optical fiber ribbon manufacturing device, multi-core optical fiber unit manufacturing device, multi-core optical fiber aligning method, multi-core optical fiber ribbon manufacturing method, multi-core optical fiber unit manufacturing method, multi-core optical fiber ribbon inspection device, and multi-core optical fiber ribbon inspection method according to the present invention will be described in detail with reference to the drawings. The embodiments exemplified below are intended to facilitate understanding of the present invention, and are not intended to limit the interpretation of the present invention. The present invention can be modified and improved from the embodiments without departing from the spirit of the invention. For ease of understanding, the scales shown in the respective figures may differ from the scales described below.
 (第1実施形態)
 まず、マルチコア光ファイバのスキューについて説明する。図1は、マルチコア光ファイバの断面図の一例を示す図である。図1に示すように、本説明におけるマルチコア光ファイバ1は、複数のコア10~16と、それぞれのコア10~16の外周面を隙間なく囲むクラッド18と、クラッド18の外周面を被覆する保護層19と、を備える。それぞれのコア10~16の屈折率は、クラッド18の屈折率よりも高い。それぞれのコア10~16及びクラッド18は、必要に応じてドーパントが添加されたガラスから成る。保護層19は、樹脂から成り、互いに硬度の異なる複数の層から構成されてもよい。
First Embodiment
First, the skew of a multi-core optical fiber will be described. Fig. 1 is a diagram showing an example of a cross-sectional view of a multi-core optical fiber. As shown in Fig. 1, a multi-core optical fiber 1 in this description includes a plurality of cores 10 to 16, a cladding 18 surrounding the outer circumferential surfaces of each of the cores 10 to 16 without any gaps, and a protective layer 19 covering the outer circumferential surface of the cladding 18. The refractive index of each of the cores 10 to 16 is higher than that of the cladding 18. Each of the cores 10 to 16 and the cladding 18 are made of glass to which a dopant is added as necessary. The protective layer 19 is made of resin, and may be composed of a plurality of layers having different hardnesses from each other.
 本説明においては、コアの数が全体で7つとされ、クラッド18の中心軸に沿って1つのコア10が配置されると共に、この1つのコア10の周りに複数のコア11~16が等間隔で配置されている。また、マルチコア光ファイバ1には捻れが加えられておらず、複数のコア10~16はクラッド18が直線状とされる場合に直線状となる。 In this description, the total number of cores is seven, with one core 10 arranged along the central axis of the cladding 18, and multiple cores 11 to 16 arranged at equal intervals around this single core 10. In addition, no twist is applied to the multi-core optical fiber 1, and the multiple cores 10 to 16 are linear when the cladding 18 is linear.
 図2は、図1のマルチコア光ファイバ1が曲がっている様子を示す図である。図2では保護層19が省略されている。ここで、クラッド18の中心から所定の径方向をx軸とし、x軸と直交する径方向をy軸とし、マルチコア光ファイバ1が曲げられる方向とx軸とがなす角度をθとする。図1、図2の例では、コア10、コア11、コア14を通る直線がx軸であり、コア11が曲げの外側、コア14が曲げの内側である。この様にx軸、y軸及び角度θを定義すると、図2のようにマルチコア光ファイバ1が曲げられる場合、角度θは180°となる。 FIG. 2 is a diagram showing how the multi-core optical fiber 1 in FIG. 1 is bent. In FIG. 2, the protective layer 19 is omitted. Here, a predetermined radial direction from the center of the cladding 18 is defined as the x-axis, a radial direction perpendicular to the x-axis is defined as the y-axis, and the angle between the direction in which the multi-core optical fiber 1 is bent and the x-axis is defined as θ. In the examples of FIG. 1 and FIG. 2, the straight line passing through the cores 10, 11, and 14 is the x-axis, with the core 11 on the outside of the bend and the core 14 on the inside of the bend. If the x-axis, y-axis, and angle θ are defined in this way, when the multi-core optical fiber 1 is bent as shown in FIG. 2, the angle θ is 180°.
 マルチコア光ファイバ1のコア10~16のうち、一対のコアをコアmとコアnとする場合、コアmを伝搬する光とコアnを伝搬する光との群遅延差であるスキュー値Sは、特許文献2に詳細に示されるように、iをm又はnとして、下記式で示される。
Figure JPOXMLDOC01-appb-I000001
ただし、Lは光ファイバの長さであり、cは真空中の光速であり、N1mはコアmの群屈折率であり、N1nはコアnの群屈折率であり、Rはマルチコア光ファイバの曲げ半径であり、Bはそれぞれのコアにおける常光線に対する光弾性係数であり、Bはそれぞれのコアにおける異常光線に対する光弾性係数であり、x,yはコアmのクラッド18の中心を基準とする座標位置であり、x,yはコアnのクラッド18の中心を基準とする座標位置であり、Eはコアのヤング率であり、νはコアのポアソン比である。
When a pair of cores among the cores 10 to 16 of the multi-core optical fiber 1 is designated as core m and core n, a skew value S, which is a group delay difference between light propagating through core m and light propagating through core n, is expressed by the following formula, where i is m or n, as shown in detail in Patent Document 2.
Figure JPOXMLDOC01-appb-I000001
where L is the length of the optical fiber, c is the speed of light in a vacuum, N 1m is the group refractive index of core m, N 1n is the group refractive index of core n, Rb is the bending radius of the multi-core optical fiber, B 1 is the photoelastic coefficient for the ordinary ray in each core, B 2 is the photoelastic coefficient for the extraordinary ray in each core, x m , y m are coordinate positions based on the center of the cladding 18 of core m, x n , yn are coordinate positions based on the center of the cladding 18 of core n, E is the Young's modulus of the core, and ν is the Poisson's ratio of the core.
 このスキュー値Sは、マルチコア光ファイバ1のコア10~16における一対のコアの全ての組み合わせにおいて求めることができる。図3は、図1、図2のマルチコア光ファイバ1における曲げ半径と一対のコアを伝搬する光の単位長さ当たりのスキュー値Sとの関係を示す図である。図3では、マルチコア光ファイバ1のコア11とコア14とのスキュー値S、コア11とコア13とのスキュー値S、コア11とコア12とのスキュー値Sについて示している。なお、図3を作成するにあたり、曲げ方向はx軸方向、すなわちθ=180°とした。また、一対のコアの群屈折率N1m、N1nを同じ値とした。つまり、マルチコア光ファイバ1が直線状態の場合にスキュー値Sがゼロとなるようにした。図3から分かる通り、曲げ半径が小さくなるほどスキュー値Sが大きく、曲げ半径が小さい領域ではスキュー値Sが急激に大きくなることが分かる。 This skew value S can be obtained for all combinations of pairs of cores in the cores 10 to 16 of the multi-core optical fiber 1. Fig. 3 is a diagram showing the relationship between the bending radius and the skew value S per unit length of light propagating through a pair of cores in the multi-core optical fiber 1 of Figs. 1 and 2. Fig. 3 shows the skew value S between the cores 11 and 14 of the multi-core optical fiber 1, the skew value S between the cores 11 and 13, and the skew value S between the cores 11 and 12. In creating Fig. 3, the bending direction was set to the x-axis direction, i.e., θ=180°. Furthermore, the group refractive indices N 1m and N 1n of the pair of cores were set to the same value. In other words, the skew value S was set to zero when the multi-core optical fiber 1 was in a straight state. As can be seen from Fig. 3, the skew value S increases as the bending radius decreases, and the skew value S increases rapidly in an area where the bending radius is small.
 図4は、一対のコアの並び方向とマルチコア光ファイバ1を曲げ方向との角度θと、単位長さ当たりのスキュー値Sとの関係を示す図である。図4では、マルチコア光ファイバ1を所定の曲げ半径Rで曲げて、コア10,11,14のうち2つのコアを伝搬する光のスキュー値Sを示している。なお、図4では、それぞれのコアの群屈折率を互いに同じ値としている。図4より、θ=90°,270°の場合、すなわちy軸の方向に曲げる場合にスキュー値Sが0となり、θ=0°,180°の場合、すなわちx軸の方向に曲げる場合にスキュー値Sが最大または最小になる。つまり、一対のコアが曲げ方向に沿って並んでいる場合のスキュー値Sの絶対値は、一対のコアが曲げ方向に沿わずに並んでいる場合のスキュー値Sよりも大きい。また、コア11-コア14のスキュー値Sの絶対値は、コア11-コア10のスキュー値Sの絶対値や、コア14-コア10のスキュー値Sの絶対値よりも大きい。つまり、曲げ方向に対する一対のコアの並び方向が一定の場合、一対のコアのコア間距離が大きい方がスキュー値Sの絶対値は大きい。これは、マルチコア光ファイバを曲げる場合に、一対のコアが曲げ方向に沿って並んでいる場合や、一対のコアのコア間距離が大きい場合の方が、そうでない場合と比べて、曲げの内周側に位置するコアと外周側に位置するコアとで、曲率半径の差が大きくなり、曲げによる一対のコア間の伝送路長差、実効群屈折率差が大きくなるためである。なお、例えば、図2のようにマルチコア光ファイバ1が曲げられる場合、コア12-コア15のスキュー値Sは、コア11-コア14のθ=-60°(θ=300°)のスキュー値Sとなる。 4 is a diagram showing the relationship between the angle θ between the arrangement direction of a pair of cores and the bending direction of the multi-core optical fiber 1, and the skew value S per unit length. FIG. 4 shows the skew value S of light propagating through two of the cores 10, 11, and 14 when the multi-core optical fiber 1 is bent at a predetermined bending radius Rb . Note that in FIG. 4, the group refractive indexes of the respective cores are set to the same value. From FIG. 4, the skew value S is 0 when θ=90° or 270°, i.e., when bending in the y-axis direction, and the skew value S is maximum or minimum when θ=0° or 180°, i.e., when bending in the x-axis direction. That is, the absolute value of the skew value S when the pair of cores are arranged along the bending direction is larger than the skew value S when the pair of cores are arranged not along the bending direction. Also, the absolute value of the skew value S of the core 11-core 14 is larger than the absolute value of the skew value S of the core 11-core 10 and the absolute value of the skew value S of the core 14-core 10. That is, when the arrangement direction of the pair of cores with respect to the bending direction is constant, the absolute value of the skew value S is larger when the inter-core distance of the pair of cores is larger. This is because, when bending a multi-core optical fiber, when the pair of cores are arranged along the bending direction or when the inter-core distance of the pair of cores is large, the difference in the curvature radius between the core located on the inner side of the bend and the core located on the outer side becomes larger than when they are not arranged, and the transmission path length difference and the effective group index difference between the pair of cores due to bending become larger. For example, when the multi-core optical fiber 1 is bent as shown in FIG. 2, the skew value S of the core 12-core 15 becomes the skew value S of the core 11-core 14 at θ=-60° (θ=300°).
 次に、マルチコア光ファイバリボンについて説明する。 Next, we will explain multi-core optical fiber ribbons.
 図5は、本実施形態に係るマルチコア光ファイバリボンの一例の様子を示す図である。図5の例では、本実施形態のマルチコア光ファイバリボン2は、複数のマルチコア光ファイバ1と、リボンコーティング21と、を備える。本例では、マルチコア光ファイバリボン2は、4つのマルチコア光ファイバ1を含む。 FIG. 5 is a diagram showing an example of a multi-core optical fiber ribbon according to this embodiment. In the example of FIG. 5, the multi-core optical fiber ribbon 2 according to this embodiment includes a plurality of multi-core optical fibers 1 and a ribbon coating 21. In this example, the multi-core optical fiber ribbon 2 includes four multi-core optical fibers 1.
 それぞれのマルチコア光ファイバ1は、互いに並列に配置されている。また、図5の例では、マルチコア光ファイバ1は、図1のマルチコア光ファイバ1と異なり、4つのコア11~14を有し、コア11~14はクラッド18の中心を中心とする正方形の頂点の位置に配置されている。また、本例では、一対のコア11,13が、複数のマルチコア光ファイバ1の並び方向に垂直な方向に沿って並んでいる。一対のコア11,13は、マルチコア光ファイバ1におけるコアのコア対のうち、コア12,14と共に、最も離れているコア対である。一対のコア12,14は、複数のマルチコア光ファイバ1の並び方向に沿って並んでいる。 The multi-core optical fibers 1 are arranged in parallel to each other. In the example of FIG. 5, unlike the multi-core optical fiber 1 of FIG. 1, the multi-core optical fiber 1 has four cores 11 to 14, and the cores 11 to 14 are arranged at the vertices of a square centered on the center of the cladding 18. In this example, the pair of cores 11, 13 are arranged along a direction perpendicular to the arrangement direction of the multiple multi-core optical fibers 1. The pair of cores 11, 13, together with the cores 12, 14, are the furthest core pair among the core pairs in the multi-core optical fiber 1. The pair of cores 12, 14 are arranged along the arrangement direction of the multiple multi-core optical fibers 1.
 リボンコーティング21は、マルチコア光ファイバ1の外周面を被覆して、それぞれのマルチコア光ファイバ1を一体としている。リボンコーティング21は、主面が複数のマルチコア光ファイバ1の並び方向に沿った平たい形状である。従って、マルチコア光ファイバリボン2は、平たいひも状の形状である。本例では、長手方向に垂直な断面の形状が概ねオーバルトラック形状である。リボンコーティング21は、樹脂から成る。リボンコーティング21の樹脂は、保護層19と同じ種類の樹脂であっても、異なる種類の樹脂であってもよい。 The ribbon coating 21 covers the outer peripheral surface of the multi-core optical fiber 1, integrating each multi-core optical fiber 1. The ribbon coating 21 has a flat shape with its main surface aligned along the arrangement direction of the multiple multi-core optical fibers 1. Therefore, the multi-core optical fiber ribbon 2 has a flat string-like shape. In this example, the cross-sectional shape perpendicular to the longitudinal direction is roughly an oval track shape. The ribbon coating 21 is made of resin. The resin of the ribbon coating 21 may be the same type of resin as the protective layer 19, or a different type of resin.
 次に、マルチコア光ファイバリボン2の製造について説明する。 Next, we will explain how to manufacture the multi-core optical fiber ribbon 2.
 図6は、マルチコア光ファイバリボン2の製造装置を示す図である。図6に示すように、本実施形態のマルチコア光ファイバリボン2の製造装置3は、送出部31と、巻取部32と、調心装置4と、リボン化部33と、を主な構成として備える。 FIG. 6 is a diagram showing a manufacturing apparatus for a multi-core optical fiber ribbon 2. As shown in FIG. 6, the manufacturing apparatus 3 for a multi-core optical fiber ribbon 2 of this embodiment mainly comprises a sending section 31, a winding section 32, an alignment device 4, and a ribbonizing section 33.
 送出部31は、例えば、リールから成り、複数のマルチコア光ファイバ1の一端側が並列に巻回されている。送出部31は、回転することで複数のマルチコア光ファイバ1を送り出すことができる。送出部31は、例えば、複数のリールが並列された構成である。それぞれのマルチコア光ファイバ1の一端は、送出部31に組み込まれる光ロータリジョイントにより、マルチコア光ファイバ1と同数のマルチコア光ファイバ31Fに光学的に個別に接続されている。光ロータリジョイントは、送出部31が回転しても、マルチコア光ファイバ1とマルチコア光ファイバ31Fとの光学的な接続を保つことができる光ファイバ同士のジョイント部品である。送出部31は、互いに並列された複数のリールから成ってもよい。 The sending unit 31 is, for example, made of a reel around which one end of the multiple multi-core optical fibers 1 is wound in parallel. The sending unit 31 can send out multiple multi-core optical fibers 1 by rotating. The sending unit 31 is, for example, made of multiple reels arranged in parallel. One end of each multi-core optical fiber 1 is optically individually connected to the same number of multi-core optical fibers 31F as the multi-core optical fibers 1 by an optical rotary joint incorporated in the sending unit 31. The optical rotary joint is a joint component between optical fibers that can maintain the optical connection between the multi-core optical fibers 1 and the multi-core optical fibers 31F even when the sending unit 31 rotates. The sending unit 31 may be made of multiple reels arranged in parallel.
 調心装置4は、送出部31から送り出されるマルチコア光ファイバ1の軸中心の回転方向における向きを調心する装置である。調心装置4の詳細は後述される。 The alignment device 4 is a device that aligns the direction of rotation of the axial center of the multi-core optical fiber 1 sent out from the sending section 31. Details of the alignment device 4 will be described later.
 リボン化部33は、調心装置4で調心された複数のマルチコア光ファイバ1をリボン化する。リボン化部33は、例えば、リボンコーティング21となる未硬化の樹脂をそれぞれのマルチコア光ファイバ1の外周面上に塗布するダイスと、ダイスを通過したマルチコア光ファイバ1に塗布された当該樹脂を硬化させる硬化部とから成る。ダイスから送り出される際にそれぞれのマルチコア光ファイバ1に塗布される樹脂が一体とされることで、複数のマルチコア光ファイバ1は、リボン化され、図5に示すマルチコア光ファイバリボン2とされる。なお、リボンコーティング21となる樹脂として、紫外線硬化性樹脂、熱硬化性樹脂、及び熱可塑性樹脂等を挙げることができる。 The ribbonizing section 33 ribbonizes the multiple multi-core optical fibers 1 aligned by the alignment device 4. The ribbonizing section 33 is composed of, for example, a die that applies uncured resin to the outer peripheral surface of each multi-core optical fiber 1 to become the ribbon coating 21, and a curing section that cures the resin applied to the multi-core optical fiber 1 that has passed through the die. The resins applied to the multi-core optical fibers 1 are integrated when they are sent out from the die, and the multiple multi-core optical fibers 1 are ribbonized into the multi-core optical fiber ribbon 2 shown in FIG. 5. Examples of the resin that becomes the ribbon coating 21 include an ultraviolet-curable resin, a thermosetting resin, and a thermoplastic resin.
 巻取部32は、例えば、リールから成り、回転することでマルチコア光ファイバリボン2を巻き取ることができる。マルチコア光ファイバリボン2におけるそれぞれのマルチコア光ファイバ1の他端は、巻取部32に組み込まれる光ロータリジョイントにより、マルチコア光ファイバ1と同数のマルチコア光ファイバ32Fに光学的に個別に接続されている。従って、巻取部32が回転しても、マルチコア光ファイバ1とマルチコア光ファイバ32Fとの光学的な接続を保つことができる。 The winding unit 32 is made of, for example, a reel, and can wind up the multi-core optical fiber ribbon 2 by rotating. The other end of each multi-core optical fiber 1 in the multi-core optical fiber ribbon 2 is optically connected individually to the same number of multi-core optical fibers 32F as the multi-core optical fibers 1 by an optical rotary joint incorporated in the winding unit 32. Therefore, even if the winding unit 32 rotates, the optical connection between the multi-core optical fibers 1 and the multi-core optical fibers 32F can be maintained.
 調心装置4は、ファイバ回転部41と、ファイバ曲げ部42と、スキュー測定部40と、制御部49と、を主な構成として備える。本例のスキュー測定部40は、ネットワークアナライザ43と、チャンネルセレクタ44,47と、ファン・インデバイス45と、ファン・アウトデバイス46と、演算部48と、を主な構成として備える。 The alignment device 4 mainly comprises a fiber rotation unit 41, a fiber bending unit 42, a skew measurement unit 40, and a control unit 49. The skew measurement unit 40 in this example mainly comprises a network analyzer 43, channel selectors 44 and 47, a fan-in device 45, a fan-out device 46, and a calculation unit 48.
 ファイバ回転部41は、マルチコア光ファイバ1の軸中心の回転角を変化させる。図7は、ファイバ回転部41の一例を示す図である。図7に示すように、ファイバ回転部41は、プーリ41Pと、プーリ軸41Aと、駆動部41Dと、を主な構成として備える。プーリ41Pは、側面にV溝が設けられた円盤状の部材である。送出部31から送り出されるマルチコア光ファイバ1は、V溝に挟まれる。プーリ41Pの中心には、厚み方向に沿って、貫通孔が形成されており、当該貫通孔にプーリ軸41Aが挿入されている。従って、プーリ41Pは、プーリ軸41A周りに回転することができる。プーリ軸41Aの一端は、駆動部41Dに接続されている。駆動部41Dは、例えば、ステッピングモータ等を含んで構成され、プーリ軸41Aの長手方向の角度を図7にて破線で示すように変化させることができる。このプーリ軸41Aの角度変化により、プーリ41Pの角度が破線で示すように変化し、プーリ41Pの溝に挟まれるマルチコア光ファイバ1の軸中心の回転角が点線で示すように変化する。 The fiber rotation unit 41 changes the rotation angle of the axis of the multi-core optical fiber 1. FIG. 7 is a diagram showing an example of the fiber rotation unit 41. As shown in FIG. 7, the fiber rotation unit 41 mainly includes a pulley 41P, a pulley shaft 41A, and a drive unit 41D. The pulley 41P is a disk-shaped member with a V-groove on the side. The multi-core optical fiber 1 sent out from the sending unit 31 is sandwiched in the V-groove. A through hole is formed in the center of the pulley 41P along the thickness direction, and the pulley shaft 41A is inserted into the through hole. Therefore, the pulley 41P can rotate around the pulley shaft 41A. One end of the pulley shaft 41A is connected to the drive unit 41D. The drive unit 41D includes, for example, a stepping motor, and can change the longitudinal angle of the pulley shaft 41A as shown by the dashed line in FIG. 7. This change in the angle of the pulley shaft 41A causes the angle of the pulley 41P to change as shown by the dashed line, and the rotation angle of the axis of the multi-core optical fiber 1 that is sandwiched in the groove of the pulley 41P changes as shown by the dotted line.
 図7では、1つのマルチコア光ファイバ1の回転角を変化させる構成が示されているが、ファイバ回転部41は、図7の構成をマルチコア光ファイバ1の数と同数有しており、複数のマルチコア光ファイバ1の回転角を個別に変化させることができる。なお、プーリ41Pの溝は、V溝に限らない。例えば、溝の底部が曲面状に形成され、底部の曲率半径が概ねマルチコア光ファイバ1の半径と同様のU溝であることが、マルチコア光ファイバ1とプーリ41Pとの接触面積を増やし、マルチコア光ファイバ1を軸中心に回転させやすい観点から好ましい。 FIG. 7 shows a configuration for changing the rotation angle of one multi-core optical fiber 1, but the fiber rotation unit 41 has the same number of configurations as in FIG. 7 as the number of multi-core optical fibers 1, and can change the rotation angles of multiple multi-core optical fibers 1 individually. The groove of the pulley 41P is not limited to a V-groove. For example, it is preferable that the bottom of the groove is formed in a curved shape and that the radius of curvature of the bottom is a U-groove that is approximately the same as the radius of the multi-core optical fiber 1, from the viewpoint of increasing the contact area between the multi-core optical fiber 1 and the pulley 41P and making it easier to rotate the multi-core optical fiber 1 around its axis.
 ファイバ曲げ部42は、回転角が変化されたマルチコア光ファイバ1を所定の方向に曲げる。本実施形態のファイバ曲げ部42は、一対のプーリ42a,42bから構成される。プーリ42a,42bは、例えば、プーリ41Pと同様のプーリがマルチコア光ファイバ1の数と同数重ねられた構成である。従って、ファイバ曲げ部42は、それぞれのマルチコア光ファイバ1を同じ条件で曲げることができる。プーリ42a,42bの直径は互いに異なってもよい。マルチコア光ファイバ1の曲げ半径は、5mm以上30mm以下であることが好ましい。ファイバ回転部41から送り出される複数のマルチコア光ファイバ1は、ファイバ曲げ部42において、プーリ42a,42bにより360°曲げられる。なお、それぞれのマルチコア光ファイバ1がプーリ42a,42bに複数回巻かれて、360°以上曲げられてもよい。また、プーリ42a,42bの半径が互いに異なり、マルチコア光ファイバ1が異なる曲率半径で曲げられてもよい。 The fiber bending unit 42 bends the multi-core optical fiber 1 whose rotation angle has been changed in a predetermined direction. The fiber bending unit 42 in this embodiment is composed of a pair of pulleys 42a and 42b. The pulleys 42a and 42b are, for example, configured by stacking pulleys similar to the pulley 41P in the same number as the number of multi-core optical fibers 1. Therefore, the fiber bending unit 42 can bend each multi-core optical fiber 1 under the same conditions. The diameters of the pulleys 42a and 42b may be different from each other. The bending radius of the multi-core optical fiber 1 is preferably 5 mm or more and 30 mm or less. The multiple multi-core optical fibers 1 sent out from the fiber rotating unit 41 are bent 360° by the pulleys 42a and 42b in the fiber bending unit 42. Each multi-core optical fiber 1 may be wound around the pulleys 42a and 42b multiple times and bent 360° or more. The radii of the pulleys 42a and 42b may be different from each other, and the multi-core optical fiber 1 may be bent with different curvature radii.
 なお、本実施形態では、図5のマルチコア光ファイバ1のコア11,13の並び方向が、ファイバ曲げ部42においてプーリ42a,42bの径方向に概ね沿うように、マルチコア光ファイバ1はプーリ42a,42bに巻かれている。つまり、本実施形態では、図5のマルチコア光ファイバ1のコア11,13の並び方向が、図1のx方向に概ね沿い、図2に示すマルチコア光ファイバ1の曲げ方向が、x方向に沿っている。マルチコア光ファイバ1をこのようにプーリ42a、42bに巻く構成については、後述される。 In this embodiment, the multi-core optical fiber 1 is wound around the pulleys 42a and 42b so that the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 in FIG. 5 is approximately along the radial direction of the pulleys 42a and 42b at the fiber bending portion 42. That is, in this embodiment, the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 in FIG. 5 is approximately along the x direction in FIG. 1, and the bending direction of the multi-core optical fiber 1 shown in FIG. 2 is along the x direction. The configuration for winding the multi-core optical fiber 1 around the pulleys 42a and 42b in this manner will be described later.
 ネットワークアナライザ43には、調心されるマルチコア光ファイバ1の数と同数の光ファイバ43a,43bがそれぞれ接続されている。1つの光ファイバ43aと1つの光ファイバ43bとが、1つのマルチコア光ファイバ1に対応している。ネットワークアナライザ43は、所定波長の光をそれぞれの光ファイバ43aに出射し、当該光が所定の経路を介してそれぞれの光ファイバ43aに対応する光ファイバ43bから入射する場合に、それぞれの光の群遅延を計測する。ネットワークアナライザ43は計測した群遅延を示す信号を出力する。本実施形態では、ネットワークアナライザ43からそれぞれの光ファイバ43aに出射する光は、それぞれのマルチコア光ファイバ1におけるコア11,13のいずれかに伝搬する。なお、ネットワークアナライザ43は、1つの光ファイバ43aと1つの光ファイバ43bとが接続されるシングルチャンネルのネットワークアナライザが、マルチコア光ファイバ1と同数用いられて構成されてもよい。 The same number of optical fibers 43a and 43b as the number of multi-core optical fibers 1 to be aligned are connected to the network analyzer 43. One optical fiber 43a and one optical fiber 43b correspond to one multi-core optical fiber 1. The network analyzer 43 outputs light of a predetermined wavelength to each optical fiber 43a, and measures the group delay of each light when the light enters the optical fiber 43b corresponding to each optical fiber 43a via a predetermined path. The network analyzer 43 outputs a signal indicating the measured group delay. In this embodiment, the light output from the network analyzer 43 to each optical fiber 43a propagates to either the core 11 or 13 in each multi-core optical fiber 1. The network analyzer 43 may be configured using single-channel network analyzers to which one optical fiber 43a and one optical fiber 43b are connected, the same number as the multi-core optical fibers 1.
 チャンネルセレクタ44には、複数の上記光ファイバ43a及び複数の出射用の光ファイバ44a,44bが接続されている。光ファイバ44a及び光ファイバ44bは、それぞれマルチコア光ファイバ1の数と同数であり、1つの光ファイバ44aと1つの光ファイバ44bとで対とされ、1つの対が1つのマルチコア光ファイバ1及び1つの光ファイバ43aに対応している。また、光ファイバ44aと光ファイバ44bとは、互いに同じ特性の光ファイバであり、互いに同じ長さである。1つの光ファイバ43aから入射する光は1つの対における光ファイバ44a,44bのいずれかに入射する。チャンネルセレクタ44は、それぞれの対において、光ファイバ43aから入射する光が光ファイバ44a,44bのどちらに出射するかを切り替える。それぞれの光ファイバ44a,44bと送出部31の光ロータリジョイントのマルチコア光ファイバ31Fとの間には、ファン・インデバイス45が接続されている。ファン・インデバイス45は、例えば、複数の導波路及びそれぞれの導波路に個別に接続される複数の光ファイバを有している。本実施形態では、それぞれの光ファイバ44aがそれぞれのマルチコア光ファイバ1のコア11にファン・インデバイス45及びマルチコア光ファイバ31Fを介して個別に光学的に接続され、それぞれの光ファイバ44bがそれぞれのマルチコア光ファイバ1のコア13にファン・インデバイス45及びマルチコア光ファイバ31Fを介して光学的に接続されている。 The channel selector 44 is connected to a plurality of the optical fibers 43a and a plurality of optical fibers 44a and 44b for emission. The optical fibers 44a and the optical fibers 44b are the same in number as the number of the multi-core optical fibers 1, and one optical fiber 44a and one optical fiber 44b are paired, and one pair corresponds to one multi-core optical fiber 1 and one optical fiber 43a. The optical fibers 44a and the optical fibers 44b have the same characteristics and are the same length. Light incident from one optical fiber 43a is incident on either the optical fiber 44a or 44b in one pair. The channel selector 44 switches whether the light incident from the optical fiber 43a is output to either the optical fiber 44a or 44b in each pair. A fan-in device 45 is connected between each of the optical fibers 44a and 44b and the multi-core optical fiber 31F of the optical rotary joint of the sending unit 31. The fan-in device 45 has, for example, a plurality of waveguides and a plurality of optical fibers individually connected to each waveguide. In this embodiment, each optical fiber 44a is individually optically connected to the core 11 of each multi-core optical fiber 1 via the fan-in device 45 and the multi-core optical fiber 31F, and each optical fiber 44b is optically connected to the core 13 of each multi-core optical fiber 1 via the fan-in device 45 and the multi-core optical fiber 31F.
 上記構成により、ネットワークアナライザ43からそれぞれの光ファイバ43aに入射する光は、チャンネルセレクタ44、ファン・インデバイス45、及びマルチコア光ファイバ31Fを介して、それぞれのマルチコア光ファイバ1のコア11,13のいずれかに個別に入射する。 With the above configuration, the light entering each optical fiber 43a from the network analyzer 43 passes through the channel selector 44, the fan-in device 45, and the multi-core optical fiber 31F and enters either one of the cores 11 or 13 of each multi-core optical fiber 1 individually.
 チャンネルセレクタ47はチャンネルセレクタ44と同様の構成である。ただし、チャンネルセレクタ47には、複数の光ファイバ43aの代わりに同数の出射用の光ファイバ43bが接続され、複数の光ファイバ44a,44bの対の代わりに同数の入射用の光ファイバ47a,47bの対が接続されている。光ファイバ47aと光ファイバ47bとは、互いに同じ特性の光ファイバであり、互いに同じ長さである。1つの対における光ファイバ47a,47bのいずれかから入射する光は1つの光ファイバ43bに入射する。チャンネルセレクタ47は、それぞれの対において、光ファイバ43bに出射する光を光ファイバ47a,47bのどちらから入射する光にするかを切り替える。巻取部32の光ロータリジョイントの複数のマルチコア光ファイバ32Fとそれぞれの光ファイバ47a,47bとの間には、ファン・アウトデバイス46が接続されている。ファン・アウトデバイス46は、例えば、ファン・インデバイス45と同様の構成である。本実施形態では、それぞれの光ファイバ47aがマルチコア光ファイバ1のコア11にマルチコア光ファイバ32F及びファン・アウトデバイス46を介して個別に光学的に接続され、それぞれの光ファイバ47bがマルチコア光ファイバ32F及びコア13にファン・アウトデバイス46を介して個別に光学的に接続されている。 The channel selector 47 has the same configuration as the channel selector 44. However, instead of the multiple optical fibers 43a, the same number of output optical fibers 43b are connected to the channel selector 47, and instead of the multiple pairs of optical fibers 44a, 44b, the same number of pairs of input optical fibers 47a, 47b are connected. The optical fibers 47a and 47b have the same characteristics and are the same length. Light incident from either the optical fibers 47a or 47b in one pair is incident on one optical fiber 43b. The channel selector 47 switches whether the light to be output to the optical fiber 43b is incident from either the optical fiber 47a or 47b in each pair. A fan-out device 46 is connected between the multiple multi-core optical fibers 32F of the optical rotary joint of the winding section 32 and each of the optical fibers 47a, 47b. The fan-out device 46 has a configuration similar to that of the fan-in device 45, for example. In this embodiment, each optical fiber 47a is individually optically connected to the core 11 of the multi-core optical fiber 1 via the multi-core optical fiber 32F and the fan-out device 46, and each optical fiber 47b is individually optically connected to the multi-core optical fiber 32F and the core 13 via the fan-out device 46.
 上記構成により、それぞれのマルチコア光ファイバ1のコア11,13のいずれかから出射する光は、マルチコア光ファイバ32F、ファン・アウトデバイス46、及びチャンネルセレクタ47を介して、ネットワークアナライザ43に個別に入射する。 With the above configuration, the light emitted from either the core 11 or 13 of each multi-core optical fiber 1 is individually incident on the network analyzer 43 via the multi-core optical fiber 32F, the fan-out device 46, and the channel selector 47.
 ネットワークアナライザ43は、演算部48に電気的に接続されており、ネットワークアナライザ43が出力する群遅延を示す信号は、演算部48に入力する。演算部48は、差分回路を有する演算装置から成る。演算部48は、ネットワークアナライザ43から入力するそれぞれの光の群遅延を示す信号からスキュー値Sを算出する。スキュー値Sは、それぞれのマルチコア光ファイバ1毎に算出される。演算部48で算出されたスキュー値Sを示す信号は、制御部49に出力される。 The network analyzer 43 is electrically connected to the calculation unit 48, and the signal indicating the group delay output by the network analyzer 43 is input to the calculation unit 48. The calculation unit 48 is composed of a calculation device having a differential circuit. The calculation unit 48 calculates the skew value S from the signal indicating the group delay of each light input from the network analyzer 43. The skew value S is calculated for each multi-core optical fiber 1. The signal indicating the skew value S calculated by the calculation unit 48 is output to the control unit 49.
 以上の構成のスキュー測定部40により、マルチコア光ファイバ1の一対のコア11,13を伝搬する光のスキュー値Sが測定される。 The skew value S of the light propagating through the pair of cores 11, 13 of the multi-core optical fiber 1 is measured by the skew measurement unit 40 configured as described above.
 制御部49は、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置から成る。また、制御部49は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。制御部49は、演算部48から出力されるスキュー値Sを示す信号に基づいて、ファイバ回転部41を制御する。具体的には、制御部49は、ファイバ回転部41を制御して、スキュー値Sが所定の値になるようにマルチコア光ファイバ1の軸中心の回転角を調節する。本実施形態では、制御部49は、スキュー値Sが最大値になるようにマルチコア光ファイバ1の回転角を調節する。 The control unit 49 is composed of an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), or an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device. When an NC device is used, the control unit 49 may or may not use a machine learning device. The control unit 49 controls the fiber rotation unit 41 based on a signal indicating the skew value S output from the calculation unit 48. Specifically, the control unit 49 controls the fiber rotation unit 41 to adjust the rotation angle of the axis center of the multi-core optical fiber 1 so that the skew value S becomes a predetermined value. In this embodiment, the control unit 49 adjusts the rotation angle of the multi-core optical fiber 1 so that the skew value S becomes a maximum value.
 次に、マルチコア光ファイバリボン2の製造方法について説明する。 Next, we will explain the manufacturing method of the multi-core optical fiber ribbon 2.
 図8は、マルチコア光ファイバリボン2の製造方法を示すフローチャートである。図8に示すように、本実施形態のマルチコア光ファイバリボン2の製造方法は、送出ステップS1と、調心ステップS2と、リボン化ステップS3と、を備える。また、調心ステップS2は、ファイバ回転ステップS21と、ファイバ曲げステップS22と、スキュー測定ステップS23と、を備える。調心ステップS2によりマルチコア光ファイバ1の回転方向の向きを調心する調心方法が構成される。 FIG. 8 is a flowchart showing a method for manufacturing a multi-core optical fiber ribbon 2. As shown in FIG. 8, the method for manufacturing a multi-core optical fiber ribbon 2 in this embodiment includes a sending step S1, an aligning step S2, and a ribbonizing step S3. The aligning step S2 also includes a fiber rotation step S21, a fiber bending step S22, and a skew measurement step S23. The aligning step S2 constitutes an aligning method for aligning the rotational direction of the multi-core optical fiber 1.
 (送出ステップS1)
 本ステップは、複数のマルチコア光ファイバ1を送り出すステップである。具体的には、巻取部32が不図示の駆動部により回転して、マルチコア光ファイバリボン2を巻き取ることで、それぞれのマルチコア光ファイバ1が引っ張られ、送出部31に巻回される複数のマルチコア光ファイバ1が送り出される。なお、巻取部32の前にリボン引取機が設けられ、リボン引取機によりマルチコア光ファイバリボン2が引っ張られてもよい。
(Sending step S1)
This step is a step of feeding out a plurality of multi-core optical fibers 1. Specifically, the winding unit 32 is rotated by a driving unit (not shown) to wind up the multi-core optical fiber ribbon 2, thereby pulling each multi-core optical fiber 1, and feeding out the plurality of multi-core optical fibers 1 wound around the feeding unit 31. Note that a ribbon take-up machine may be provided in front of the winding unit 32, and the multi-core optical fiber ribbon 2 may be pulled by the ribbon take-up machine.
 (ファイバ回転ステップS21)
 本ステップは、マルチコア光ファイバ1の軸中心の回転角を変化させるステップである。送出部31から送り出される複数のマルチコア光ファイバ1は、ファイバ回転部41に送り込まれる。ファイバ回転部41では、図7を用いて説明したように、プーリ41Pの溝にマルチコア光ファイバ1が入り込み、プーリ41Pの傾きが変化すると、この傾きの変化分だけマルチコア光ファイバ1の軸中心の回転角が変化する。プーリ41Pの傾きは、制御部49からの指示により適宜変化される。従って、マルチコア光ファイバ1の回転角も、制御部49からの指示により適宜変化される。回転角が変化された複数のマルチコア光ファイバ1は、当該回転角を概ね保ったままファイバ回転部41から送り出される。
(Fiber rotation step S21)
This step is a step of changing the rotation angle around the axis of the multi-core optical fiber 1. The multiple multi-core optical fibers 1 sent out from the sending unit 31 are sent into the fiber rotating unit 41. In the fiber rotating unit 41, as described with reference to Fig. 7 , when the multi-core optical fiber 1 enters the groove of the pulley 41P and the inclination of the pulley 41P changes, the rotation angle around the axis of the multi-core optical fiber 1 changes by the amount of the change in the inclination. The inclination of the pulley 41P is appropriately changed by an instruction from the control unit 49. Therefore, the rotation angle of the multi-core optical fiber 1 is also appropriately changed by an instruction from the control unit 49. The multiple multi-core optical fibers 1 whose rotation angles have been changed are sent out from the fiber rotating unit 41 while roughly maintaining the rotation angle.
 (ファイバ曲げステップS22)
 本ステップは、回転角が変化されたマルチコア光ファイバ1を所定の方向に曲げるステップである。ファイバ回転部41から送り出されるマルチコア光ファイバ1は、ファイバ曲げ部42に送り込まれる。ファイバ曲げ部42では、上記のようにプーリ42a,42bにより、マルチコア光ファイバ1が曲げられる。従って、マルチコア光ファイバ1の一対のコア11,13を伝搬する光にはスキューが生じる。スキュー値Sは、図4を用いて説明したように、一対のコア11,13の並び方向と、マルチコア光ファイバ1の曲げ方向との関係により変化する。本実施形態では、マルチコア光ファイバ1の曲げ方向がコア11,13の並び方向と一致するように、マルチコア光ファイバ1はプーリ42a,42bにより曲げられる。つまり、マルチコア光ファイバ1がこのようにプーリ42a,42bにより曲げられるように、ファイバ回転部41は、マルチコア光ファイバ1の回転角を変化させる。この場合、図4における曲げ方向とコア11,13の並び方向との角度θは概ね0°となり、スキュー値Sは概ね最大となる。なお、上記のようにそれぞれのマルチコア光ファイバ1がプーリ42a,42bに複数回巻かれれば、スキュー値Sが大きくなるため好ましい。それぞれのマルチコア光ファイバ1は、ファイバ曲げ部42で曲げられた後、ファイバ曲げ部42から送り出される。
(Fiber bending step S22)
This step is a step of bending the multi-core optical fiber 1 whose rotation angle has been changed in a predetermined direction. The multi-core optical fiber 1 sent out from the fiber rotation unit 41 is sent to the fiber bending unit 42. In the fiber bending unit 42, the multi-core optical fiber 1 is bent by the pulleys 42a and 42b as described above. Therefore, a skew occurs in the light propagating through the pair of cores 11 and 13 of the multi-core optical fiber 1. As described with reference to FIG. 4, the skew value S varies depending on the relationship between the arrangement direction of the pair of cores 11 and 13 and the bending direction of the multi-core optical fiber 1. In this embodiment, the multi-core optical fiber 1 is bent by the pulleys 42a and 42b so that the bending direction of the multi-core optical fiber 1 coincides with the arrangement direction of the cores 11 and 13. That is, the fiber rotation unit 41 changes the rotation angle of the multi-core optical fiber 1 so that the multi-core optical fiber 1 is bent by the pulleys 42a and 42b in this manner. In this case, the angle θ between the bending direction and the arrangement direction of the cores 11 and 13 in FIG. 4 becomes approximately 0°, and the skew value S becomes approximately maximum. It is preferable that each multi-core optical fiber 1 is wound around the pulleys 42a, 42b multiple times as described above, since this increases the skew value S. Each multi-core optical fiber 1 is bent by the fiber bending unit 42 and then sent out from the fiber bending unit 42.
 (スキュー測定ステップS23)
 本ステップは、マルチコア光ファイバ1の一対のコア11,13に光を入射させると共に、一対のコア11,13から出射するそれぞれの光を受光して、それぞれの光のスキュー値Sを測定するステップである。ネットワークアナライザ43は、それぞれの光ファイバ43aに所定波長の光を入射する。チャンネルセレクタ44では、例えば、まず光ファイバ44aに光ファイバ43aからの光が伝搬するようにチャンネルを設定する。このため、ネットワークアナライザ43から出射する光は、チャンネルセレクタ44及びファン・インデバイス45等を介して、それぞれのマルチコア光ファイバ1のコア11に入射する。コア11を伝搬する光には、群遅延が生じる。それぞれのマルチコア光ファイバ1のコア11から出射する光は、ファン・アウトデバイス46及びチャンネルセレクタ47を介して、ネットワークアナライザ43に入射する。ネットワークアナライザ43では、それぞれの光の群遅延が計測され、それぞれの光の群遅延を含む信号が演算部48に出力される。次に、チャンネルセレクタ44は、それぞれの光ファイバ44bに光ファイバ43aからの光が伝搬するようにチャンネルを設定する。このため、それぞれの光は、それぞれのマルチコア光ファイバ1のコア13に入射する。コア13を伝搬する光には、群遅延が生じ、ネットワークアナライザ43に入射するそれぞれの光の群遅延が計測され、それぞれの光の群遅延を含む信号が演算部48に出力される。群遅延は、伝搬するコアの曲率半径により変化する。従って、ファイバ曲げ部42において、プーリ42a,42bにより定められるコア11,13の曲率半径により、コア11を伝搬する光とコア13を伝搬する光とで群遅延が異なる。演算部48は、コア11,13を伝搬する2つの群遅延に基づいて、スキュー値Sを算出する。こうして、それぞれのマルチコア光ファイバ1のスキュー値Sが、マルチコア光ファイバ1毎に測定される。算出されたスキュー値Sを含む信号は、制御部49に出力される。
(Skew measurement step S23)
This step is a step of inputting light to a pair of cores 11 and 13 of the multi-core optical fiber 1 and receiving each of the lights output from the pair of cores 11 and 13 to measure the skew value S of each light. The network analyzer 43 inputs light of a predetermined wavelength to each optical fiber 43a. In the channel selector 44, for example, a channel is first set so that the light from the optical fiber 43a propagates to the optical fiber 44a. For this reason, the light output from the network analyzer 43 is input to the cores 11 of each multi-core optical fiber 1 via the channel selector 44 and the fan-in device 45, etc. A group delay occurs in the light propagating through the core 11. The light output from the cores 11 of each multi-core optical fiber 1 is input to the network analyzer 43 via the fan-out device 46 and the channel selector 47. In the network analyzer 43, the group delay of each light is measured, and a signal including the group delay of each light is output to the calculation unit 48. Next, the channel selector 44 sets a channel so that the light from the optical fiber 43a propagates to each optical fiber 44b. Therefore, each light is incident on the core 13 of each multi-core optical fiber 1. A group delay occurs in the light propagating through the core 13, and the group delay of each light incident on the network analyzer 43 is measured, and a signal including the group delay of each light is output to the calculation unit 48. The group delay changes depending on the curvature radius of the core through which the light propagates. Therefore, in the fiber bending unit 42, the group delay of the light propagating through the core 11 differs from that of the light propagating through the core 13 due to the curvature radius of the cores 11 and 13 determined by the pulleys 42a and 42b. The calculation unit 48 calculates the skew value S based on the two group delays propagating through the cores 11 and 13. In this way, the skew value S of each multi-core optical fiber 1 is measured for each multi-core optical fiber 1. A signal including the calculated skew value S is output to the control unit 49.
 制御部49は、演算部48から入力するスキュー値Sを含む信号に基づいて、スキュー値Sが所定の値になるように、ファイバ回転部41を制御する。つまり、ファイバ回転ステップS21では、スキュー値Sが所定の値になるようにマルチコア光ファイバ1の回転角を調節する。本実施形態では、スキュー値Sが最大となるように、ファイバ回転部41を制御する。制御部49は、スキュー値Sが小さくなる場合、ファイバ回転部41の駆動部41Dを制御して、例えば、コア11,13の並び方向が+θ側に移動するよう、マルチコア光ファイバ1の回転角を変化させる。このとき、更にスキュー値Sが小さくなる場合には、コア11,13の並び方向が-θ側に移動するよう、マルチコア光ファイバ1の回転角を変化させる。このため、本実施形態では、上記のようにマルチコア光ファイバ1の曲げ方向がコア11,13の並び方向に沿うように、マルチコア光ファイバ1はプーリ42a,42bにより曲げられる。こうして、それぞれのマルチコア光ファイバ1の軸中心の回転方向の向きが調心される。 The control unit 49 controls the fiber rotation unit 41 based on a signal including the skew value S input from the calculation unit 48 so that the skew value S becomes a predetermined value. That is, in the fiber rotation step S21, the rotation angle of the multi-core optical fiber 1 is adjusted so that the skew value S becomes a predetermined value. In this embodiment, the fiber rotation unit 41 is controlled so that the skew value S becomes a maximum. When the skew value S becomes small, the control unit 49 controls the drive unit 41D of the fiber rotation unit 41 to change the rotation angle of the multi-core optical fiber 1, for example, so that the arrangement direction of the cores 11 and 13 moves to the +θ side. At this time, when the skew value S becomes further small, the rotation angle of the multi-core optical fiber 1 is changed so that the arrangement direction of the cores 11 and 13 moves to the -θ side. Therefore, in this embodiment, the multi-core optical fiber 1 is bent by the pulleys 42a and 42b so that the bending direction of the multi-core optical fiber 1 is aligned with the arrangement direction of the cores 11 and 13 as described above. In this way, the rotation direction of the axial center of each multi-core optical fiber 1 is aligned.
 (リボン化ステップS3)
 本ステップは、調心ステップS2で調心された複数のマルチコア光ファイバ1をリボン化するステップである。調心ステップS2により、それぞれのマルチコア光ファイバ1の回転方向の向きが調心されて、マルチコア光ファイバ1は、ファイバ曲げ部42からリボン化部33に送り込まれる。リボン化部33では、リボンコーティング21となる未硬化の樹脂でそれぞれのマルチコア光ファイバ1の外周面を被覆すると共に、当該樹脂を硬化させることで、複数のマルチコア光ファイバ1をリボン化する。こうして、図5に示すマルチコア光ファイバリボン2が製造される。
(Ribbonization step S3)
This step is a step of ribbonizing the multiple multi-core optical fibers 1 aligned in the aligning step S2. The rotational direction of each multi-core optical fiber 1 is aligned in the aligning step S2, and the multi-core optical fibers 1 are fed from the fiber bending unit 42 to the ribbonizing unit 33. In the ribbonizing unit 33, the outer circumferential surface of each multi-core optical fiber 1 is coated with uncured resin that becomes the ribbon coating 21, and the resin is cured to ribbonize the multiple multi-core optical fibers 1. In this manner, the multi-core optical fiber ribbon 2 shown in FIG. 5 is manufactured.
 マルチコア光ファイバリボン2は、巻取部32に巻き取られる。 The multi-core optical fiber ribbon 2 is wound around the winding section 32.
 以上説明したように、本実施形態のマルチコア光ファイバ1の調心装置4及びマルチコア光ファイバ1の調心方法では、マルチコア光ファイバ1の軸中心の回転角を変化させ、回転角が変化されたマルチコア光ファイバ1を所定の方向に曲げ、マルチコア光ファイバ1の一対のコア11,13を伝搬する光のスキュー値Sを測定し、マルチコア光ファイバ1を回転させる際、スキュー値Sが所定の値になるようにマルチコア光ファイバ1の回転角を調節する。スキュー値Sが所定の値となるように回転角が調節されることで、曲げ方向に対して一対のコアの並び方向を所定の方向にすることができる。回転角度に対するスキュー値Sの変化は、漏洩光の変化よりも精密に測定することができるため、本実施形態のマルチコア光ファイバ1の調心装置4及びマルチコア光ファイバ1の調心方法によれば、高い精度で回転方向の調心を行うことができる。 As described above, in the aligning device 4 for the multi-core optical fiber 1 and the aligning method for the multi-core optical fiber 1 of this embodiment, the rotation angle of the axis center of the multi-core optical fiber 1 is changed, the multi-core optical fiber 1 with the changed rotation angle is bent in a predetermined direction, the skew value S of the light propagating through the pair of cores 11, 13 of the multi-core optical fiber 1 is measured, and when rotating the multi-core optical fiber 1, the rotation angle of the multi-core optical fiber 1 is adjusted so that the skew value S becomes a predetermined value. By adjusting the rotation angle so that the skew value S becomes a predetermined value, the arrangement direction of the pair of cores can be set to a predetermined direction with respect to the bending direction. Since the change in the skew value S with respect to the rotation angle can be measured more precisely than the change in the leaked light, the aligning device 4 for the multi-core optical fiber 1 and the aligning method for the multi-core optical fiber 1 of this embodiment can perform alignment in the rotation direction with high precision.
 また、本実施形態のマルチコア光ファイバ1の調心装置4及びマルチコア光ファイバ1の調心方法では、スキュー値Sが最大値になるように回転角を調節する。なお、スキュー値Sが最小値になるように回転角が調節されてもよい。これらの場合、スキュー値Sが当該最大値と最小値との間の所定の値となるように回転角を調節するよりも、スキュー値Sの絶対値が大きく、スキュー値Sの分解能を高くし得、より高い精度で調心することができる。また、一対のコア11,13の並び方向が曲げ方向に沿う場合、スキュー値Sは最大または最小となる。このため、一対のコア11,13の並び方向が曲げ方向に沿い、一対のコア11,13の並び方向を把握し易く、調心されたマルチコア光ファイバ1を扱い易くすることができる。なお、本実施形態と異なり、マルチコア光ファイバ1の調心装置4及びマルチコア光ファイバ1の調心方法では、スキュー値Sが最大ではない所定の値となるように回転角が調節されてもよい。この場合、コア11,13の並び方向が、マルチコア光ファイバリボン2におけるマルチコア光ファイバ1の並び方向に垂直な方向以外の方向に沿う。例えば、スキュー値Sがゼロとなるように回転角が調節されてもよい。この場合、コア11,13の並び方向が、マルチコア光ファイバ1の並び方向に沿う。或いは、コア11,13の並び方向が、マルチコア光ファイバ1の並び方向に対して例えば45°をなすようなスキュー値Sとなるように回転角が調節されてもよい。 In addition, in the aligning device 4 of the multi-core optical fiber 1 and the aligning method of the multi-core optical fiber 1 of this embodiment, the rotation angle is adjusted so that the skew value S becomes the maximum value. The rotation angle may be adjusted so that the skew value S becomes the minimum value. In these cases, the absolute value of the skew value S is larger than when the rotation angle is adjusted so that the skew value S becomes a predetermined value between the maximum value and the minimum value, and the resolution of the skew value S can be increased, and alignment can be performed with higher accuracy. In addition, when the arrangement direction of the pair of cores 11, 13 is along the bending direction, the skew value S becomes maximum or minimum. Therefore, the arrangement direction of the pair of cores 11, 13 is along the bending direction, making it easy to grasp the arrangement direction of the pair of cores 11, 13, and the aligned multi-core optical fiber 1 can be easily handled. Unlike this embodiment, in the aligning device 4 of the multi-core optical fiber 1 and the aligning method of the multi-core optical fiber 1, the rotation angle may be adjusted so that the skew value S becomes a predetermined value that is not maximum. In this case, the arrangement direction of the cores 11, 13 is along a direction other than a direction perpendicular to the arrangement direction of the multi-core optical fiber 1 in the multi-core optical fiber ribbon 2. For example, the rotation angle may be adjusted so that the skew value S is zero. In this case, the arrangement direction of the cores 11, 13 is along the arrangement direction of the multi-core optical fiber 1. Alternatively, the rotation angle may be adjusted so that the arrangement direction of the cores 11, 13 has a skew value S that is, for example, 45° with respect to the arrangement direction of the multi-core optical fiber 1.
 また、本実施形態のマルチコア光ファイバ1の調心装置4及びマルチコア光ファイバ1の調心方法では、スキュー値Sが測定される一対のコア11,13は、マルチコア光ファイバ1における複数のコア11~14のうち互いに最も離れているコア対である。従って、マルチコア光ファイバ1の回転角がずれるとスキュー値Sの変化が大きくなる。このため、より高い精度でスキュー値Sを測定でき、より高い精度で調心することができる。なお、スキュー値Sが測定されるコア対が、互いに最も離れているコア対でなくてもよい。例えば、コア11,12を伝搬する光のスキュー値Sが測定されてもよい。この場合に、スキュー値Sが最大値になるように回転角が調節されれば、コア11,12がマルチコア光ファイバ1の並び方向に垂直な方向に沿って並び、コア11,13は、マルチコア光ファイバ1の並び方向に垂直な方向に対して45°をなす方向に並ぶ。 In the aligning device 4 for the multi-core optical fiber 1 and the aligning method for the multi-core optical fiber 1 of this embodiment, the pair of cores 11, 13 for which the skew value S is measured is the most distant core pair among the multiple cores 11 to 14 in the multi-core optical fiber 1. Therefore, when the rotation angle of the multi-core optical fiber 1 is shifted, the change in the skew value S becomes large. Therefore, the skew value S can be measured with higher accuracy, and alignment can be performed with higher accuracy. The core pair for which the skew value S is measured does not have to be the most distant core pair. For example, the skew value S of the light propagating through the cores 11, 12 may be measured. In this case, if the rotation angle is adjusted so that the skew value S is maximized, the cores 11, 12 are aligned along a direction perpendicular to the alignment direction of the multi-core optical fiber 1, and the cores 11, 13 are aligned in a direction that forms an angle of 45° with respect to the direction perpendicular to the alignment direction of the multi-core optical fiber 1.
 また、本実施形態のマルチコア光ファイバリボン2の製造装置3及びマルチコア光ファイバリボン2の製造方法は、複数のマルチコア光ファイバ1を送り出し、送り出されるマルチコア光ファイバ1の回転方向における向きの調心を上記の調心により行い、調心された複数のマルチコア光ファイバ1をリボン化する。このようなマルチコア光ファイバリボン2の製造装置3及び製造方法によれば、それぞれのマルチコア光ファイバ1の回転方向が高い精度で調心されたマルチコア光ファイバリボン2を製造し得る。 The manufacturing apparatus 3 for the multi-core optical fiber ribbon 2 and the manufacturing method for the multi-core optical fiber ribbon 2 of this embodiment send out a plurality of multi-core optical fibers 1, align the orientation in the rotation direction of the sent-out multi-core optical fibers 1 by the above-mentioned alignment, and ribbonize the aligned multi-core optical fibers 1. According to the manufacturing apparatus 3 and manufacturing method for the multi-core optical fiber ribbon 2, it is possible to manufacture a multi-core optical fiber ribbon 2 in which the rotation direction of each multi-core optical fiber 1 is aligned with high accuracy.
 なお、本実施形態では、マルチコア光ファイバリボン2に含まれる複数のマルチコア光ファイバ1の回転方向の調心を行った。しかし、マルチコア光ファイバリボン2に含まれる一部のマルチコア光ファイバ1の回転方向の調心が行われ、他の一部のマルチコア光ファイバ1の当該調心が行われなくてもよい。この場合、調心が行われるマルチコア光ファイバ1のみが送出部31から調心装置4を介してリボン化部33に送り込まれ、調心が行われない他の一部のマルチコア光ファイバ1は、送出部31から調心装置4を介さずにリボン化部33に送り込まれる。この場合、ファイバ回転部41、ファイバ曲げ部42、スキュー測定部40は、調心を行うマルチコア光ファイバ1を調心できる構成を有していれば良い。 In this embodiment, the rotational alignment of the multiple multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is performed. However, it is also possible that the rotational alignment of some of the multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is performed, and the alignment of the other multi-core optical fibers 1 is not performed. In this case, only the multi-core optical fibers 1 to be aligned are sent from the sending unit 31 to the ribbonizing unit 33 via the alignment device 4, and the other multi-core optical fibers 1 not to be aligned are sent from the sending unit 31 to the ribbonizing unit 33 without going through the alignment device 4. In this case, the fiber rotation unit 41, the fiber bending unit 42, and the skew measurement unit 40 only need to have a configuration capable of aligning the multi-core optical fiber 1 to be aligned.
 (第2実施形態)
 次に、本発明の第2実施形態について図9から11を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described in detail with reference to Figures 9 to 11. Note that components that are the same as or equivalent to those in the first embodiment are given the same reference numerals and will not be described again unless otherwise specified.
 図9は、本実施形態に係るマルチコア光ファイバユニット100を示す図である。図9の例では、マルチコア光ファイバユニット100は、マルチコア光ファイバ1と、他の光学部品であるマルチコア光ファイバ101とを備え、マルチコア光ファイバ1とマルチコア光ファイバ101とが接続されている。本例では、マルチコア光ファイバ1のコア11~14は、マルチコア光ファイバ101のコア111~114に個別に接続されている。なお、図9では、それぞれのコアの配置が模式的に示され、保護層19が省略されている。 FIG. 9 is a diagram showing a multi-core optical fiber unit 100 according to this embodiment. In the example of FIG. 9, the multi-core optical fiber unit 100 includes a multi-core optical fiber 1 and a multi-core optical fiber 101, which is another optical component, and the multi-core optical fiber 1 and the multi-core optical fiber 101 are connected. In this example, the cores 11 to 14 of the multi-core optical fiber 1 are individually connected to the cores 111 to 114 of the multi-core optical fiber 101. Note that in FIG. 9, the arrangement of the individual cores is shown diagrammatically, and the protective layer 19 is omitted.
 図10は、本実施形態に係るマルチコア光ファイバユニット100の製造装置を示す図である。図10に示すように、本実施形態のマルチコア光ファイバユニット100の製造装置5は、送出部31と、巻取部32と、調心装置4と、接続部50と、を主な構成として備える。 FIG. 10 is a diagram showing a manufacturing apparatus for a multi-core optical fiber unit 100 according to this embodiment. As shown in FIG. 10, the manufacturing apparatus 5 for a multi-core optical fiber unit 100 according to this embodiment mainly comprises a sending section 31, a winding section 32, an alignment device 4, and a connection section 50.
 本実施形態の製造装置5は、1つのマルチコア光ファイバ1のコア11~14を、他のマルチコア光ファイバ101のコア111~114に個別に接続することで、マルチコア光ファイバユニット100を製造する。従って、送出部31には1つのマルチコア光ファイバ1が巻回されており、巻取部32は、1つのマルチコア光ファイバ1を巻き取る。従って、調心装置4では、1つのマルチコア光ファイバ1の回転方向の調心を行う。 The manufacturing apparatus 5 of this embodiment manufactures a multi-core optical fiber unit 100 by individually connecting the cores 11 to 14 of one multi-core optical fiber 1 to the cores 111 to 114 of another multi-core optical fiber 101. Therefore, one multi-core optical fiber 1 is wound around the sending section 31, and the winding section 32 winds up one multi-core optical fiber 1. Therefore, the alignment device 4 aligns one multi-core optical fiber 1 in the rotational direction.
 接続部50は、調心装置4で調心されたマルチコア光ファイバ1を他のマルチコア光ファイバ101に接続する。本実施形態の接続部50は、プーリ51とファイバ回転固定移動部52と、ファイバ切断部53と、溶着部54と、を有する。プーリ51は、例えば、プーリ41Pと同様の構成である。ファイバ切断部53は、例えば光ファイバカッターを有し、マルチコア光ファイバ1を切断することができる。ファイバ回転固定移動部52は、例えば、マルチコア光ファイバ1の外周面を3方向から挟むことができる構成を有し、マルチコア光ファイバ1の軸中心の回転の固定と非固定とを切り替えることができる。ファイバ回転固定移動部52は、マルチコア光ファイバ1の回転が固定された状態で、ファイバ切断部53により切断された後、破線で示すように切断により形成されたマルチコア光ファイバ1の端部を溶着部54まで移動することができる。 The connection unit 50 connects the multi-core optical fiber 1 aligned by the alignment device 4 to another multi-core optical fiber 101. The connection unit 50 of this embodiment has a pulley 51, a fiber rotation/fixation/movement unit 52, a fiber cutting unit 53, and a welding unit 54. The pulley 51 has, for example, the same configuration as the pulley 41P. The fiber cutting unit 53 has, for example, an optical fiber cutter and can cut the multi-core optical fiber 1. The fiber rotation/fixation/movement unit 52 has, for example, a configuration that can clamp the outer circumferential surface of the multi-core optical fiber 1 from three directions and can switch between fixing and not fixing the rotation of the axial center of the multi-core optical fiber 1. After the multi-core optical fiber 1 is cut by the fiber cutting unit 53 with the rotation of the multi-core optical fiber 1 fixed, the fiber rotation/fixation/movement unit 52 can move the end of the multi-core optical fiber 1 formed by the cut to the welding unit 54 as shown by the dashed line.
 溶着部54には、マルチコア光ファイバ101の端部がセットされている。図9で説明したようにマルチコア光ファイバ101のそれぞれのコア111~114は、コア11~14と対称の並びに配置されており、コア11~14と個別に対向することができる。 The end of the multi-core optical fiber 101 is set in the welded portion 54. As described in FIG. 9, the cores 111 to 114 of the multi-core optical fiber 101 are arranged symmetrically with the cores 11 to 14, and can face the cores 11 to 14 individually.
 溶着部54は、例えば、マルチコア光ファイバ1の端部とマルチコア光ファイバ101の端部とを挟んで対向する一対の放電電極を備えており、この放電電極からの放電による加熱によりマルチコア光ファイバ1の端部と、マルチコア光ファイバ101の端部とを溶着する。なお、溶着部54は、他の方法により溶着を行ってもよい。 The welding portion 54, for example, has a pair of discharge electrodes facing each other across the end of the multi-core optical fiber 1 and the end of the multi-core optical fiber 101, and welds the end of the multi-core optical fiber 1 and the end of the multi-core optical fiber 101 by heating caused by discharge from these discharge electrodes. Note that welding of the welding portion 54 may be performed by other methods.
 次に、マルチコア光ファイバユニット100の製造方法について説明する。 Next, we will explain the manufacturing method of the multi-core optical fiber unit 100.
 図11は、本実施形態に係るマルチコア光ファイバユニット100の製造方法を示すフローチャートである。図11に示すように、本実施形態に係るマルチコア光ファイバユニット100の製造方法は、調心ステップS2と、接続ステップS4と、を備える。本実施形態においても、調心ステップS2は、マルチコア光ファイバ1の回転方向の向きを調心する調心方法を構成し、ファイバ回転ステップS21と、ファイバ曲げステップS22と、スキュー測定ステップS23と、を備える。接続ステップS4は、調心ステップS2で調心されたマルチコア光ファイバ1のコア11~14を他の導波路に接続するステップである。本実施形態の接続ステップS4は、ファイバ切断ステップS41と、ファイバ移動ステップS42と、溶着ステップS43と、を備える。 FIG. 11 is a flowchart showing a method for manufacturing the multi-core optical fiber unit 100 according to this embodiment. As shown in FIG. 11, the method for manufacturing the multi-core optical fiber unit 100 according to this embodiment includes an alignment step S2 and a connection step S4. In this embodiment, the alignment step S2 also constitutes an alignment method for aligning the rotational direction of the multi-core optical fiber 1, and includes a fiber rotation step S21, a fiber bending step S22, and a skew measurement step S23. The connection step S4 is a step for connecting the cores 11 to 14 of the multi-core optical fiber 1 aligned in the alignment step S2 to another waveguide. The connection step S4 in this embodiment includes a fiber cutting step S41, a fiber moving step S42, and a welding step S43.
 (調心ステップS2)
 まず、第1実施形態の調心ステップS2と同様にして、マルチコア光ファイバ1の回転方向の調心を行う。ただし、本実施形態では、1つのマルチコア光ファイバ1の調心のみを行う。
(Alignment step S2)
First, similarly to the aligning step S2 in the first embodiment, alignment in the rotational direction of the multi-core optical fiber 1 is performed. However, in this embodiment, alignment of only one multi-core optical fiber 1 is performed.
 (ファイバ切断ステップS41)
 本ステップは、マルチコア光ファイバ1を切断するステップである。調心ステップS2によりマルチコア光ファイバ1の回転方向が調心された部位が、プーリ51を介してファイバ切断部53まで移動すると、巻取部32はマルチコア光ファイバ1の巻き取りを停止し、これに伴い送出部31は、マルチコア光ファイバ1の送り出しを停止する。マルチコア光ファイバ1の移動が停止した状態で、ファイバ回転固定移動部52は、マルチコア光ファイバ1の回転しないようにマルチコア光ファイバ1の回転を固定する。その後、ファイバ切断部53は、マルチコア光ファイバ1を切断する。この切断で形成されたマルチコア光ファイバ1の端部は、回転方向が調心された状態となる。
(Fiber cutting step S41)
This step is a step of cutting the multi-core optical fiber 1. When the portion of the multi-core optical fiber 1 whose rotation direction has been aligned in the alignment step S2 moves to the fiber cutting unit 53 via the pulley 51, the winding unit 32 stops winding the multi-core optical fiber 1, and accordingly the delivery unit 31 stops delivering the multi-core optical fiber 1. In a state in which the movement of the multi-core optical fiber 1 has stopped, the fiber rotation/fixing/moving unit 52 fixes the rotation of the multi-core optical fiber 1 so that the multi-core optical fiber 1 does not rotate. Thereafter, the fiber cutting unit 53 cuts the multi-core optical fiber 1. The end of the multi-core optical fiber 1 formed by this cutting is in a state in which the rotation direction is aligned.
 (ファイバ移動ステップS42)
 本ステップは、マルチコア光ファイバ1の端部を溶着部54まで移動するステップである。ファイバ回転固定移動部52は、マルチコア光ファイバ1の回転を固定したまま、端部が溶着部54に位置するよう、マルチコア光ファイバ1の端部を移動させる。このとき、ファイバ回転固定移動部52は、例えば、マルチコア光ファイバ1に加わる張力の変化を抑制するように概ね90°回動する。
(Fiber moving step S42)
This step is a step of moving the end of the multi-core optical fiber 1 to the welded part 54. The fiber rotation, fixation, and movement unit 52 moves the end of the multi-core optical fiber 1 while fixing the rotation of the multi-core optical fiber 1 so that the end is located at the welded part 54. At this time, the fiber rotation, fixation, and movement unit 52 rotates, for example, by approximately 90° so as to suppress a change in tension applied to the multi-core optical fiber 1.
 (溶着ステップS43)
 本ステップは、マルチコア光ファイバ1とマルチコア光ファイバ101とを溶着するステップである。移動されたマルチコア光ファイバ1の各コア11~14と、マルチコア光ファイバ101のコア111~114とは、互いに対向している。なお、調心ステップS2では、ファイバ移動ステップS42の後にコア11~14とコア111~114とが個別に対向するように、調心を行う。本ステップでは、例えば、放電等により、マルチコア光ファイバ1の端部と、マルチコア光ファイバ101の端部とを溶融し、それぞれの端部を接触させることで、溶着を行う。このとき、コア11~14とコア111~114とが個別に対向していることで、コア11~14とコア111~114とが、互いに融着される。こうして、マルチコア光ファイバ1とマルチコア光ファイバ101とが接続され、図9に示すマルチコア光ファイバユニット100が製造される。
(Welding step S43)
This step is a step of fusing the multi-core optical fiber 1 and the multi-core optical fiber 101. The cores 11 to 14 of the moved multi-core optical fiber 1 and the cores 111 to 114 of the multi-core optical fiber 101 face each other. In the alignment step S2, alignment is performed so that the cores 11 to 14 and the cores 111 to 114 face each other individually after the fiber moving step S42. In this step, for example, an end of the multi-core optical fiber 1 and an end of the multi-core optical fiber 101 are melted by discharge or the like, and the respective ends are brought into contact with each other, thereby fusing the multi-core optical fiber 1 and the multi-core optical fiber 101. At this time, the cores 11 to 14 and the cores 111 to 114 face each other individually, so that the cores 11 to 14 and the cores 111 to 114 are fused to each other. In this way, the multi-core optical fiber 1 and the multi-core optical fiber 101 are connected, and the multi-core optical fiber unit 100 shown in FIG. 9 is manufactured.
 本実施形態のマルチコア光ファイバユニット100の製造装置5、及びマルチコア光ファイバユニット100に接続方法では、調心装置4や上記調心方法で調心されたマルチコア光ファイバ1のコア11~14を他の光学素子に接続する。従って、マルチコア光ファイバ1の回転方向が高い精度で調心された状態で接続されるため、回転方向が適切に調心されたマルチコア光ファイバ1が他の光学部品であるマルチコア光ファイバ101に接続されたマルチコア光ファイバユニット100を製造し得る。このため、本例のマルチコア光ファイバユニット100では、コア11~14をコア111~114に適切に対向させ得、接続部における光の漏洩を抑制し得る。 In the manufacturing apparatus 5 for the multi-core optical fiber unit 100 and the method for connecting the multi-core optical fiber unit 100 of this embodiment, the cores 11 to 14 of the multi-core optical fiber 1 aligned by the alignment apparatus 4 or the above-mentioned alignment method are connected to another optical element. Therefore, since the multi-core optical fiber 1 is connected in a state where the rotational direction of the multi-core optical fiber 1 is aligned with high accuracy, it is possible to manufacture a multi-core optical fiber unit 100 in which the multi-core optical fiber 1 with the rotational direction appropriately aligned is connected to the multi-core optical fiber 101, which is another optical component. Therefore, in the multi-core optical fiber unit 100 of this example, the cores 11 to 14 can be appropriately opposed to the cores 111 to 114, and light leakage at the connection part can be suppressed.
 また、本実施形態では、接続部50は、プーリ51、ファイバ回転固定移動部52、ファイバ切断部53、及び溶着部54を有したが、これらは、調心装置4で調心されたマルチコア光ファイバ1のコア11~14を他の光学部品に接続できる限りにおいて、必須ではない。例えば、本実施形態では、溶着による接続の例を示したが、圧着による接続であってもよい。この場合、接続部50は、溶着部54の代わりに圧着部を有し、接続ステップS4は溶着ステップS43の代わりに圧着ステップを有する。そして、上記実施形態のようにマルチコア光ファイバ1の端部がファイバ移動ステップS42で移動された後に、圧着ステップが行われ、圧着ステップでは、圧着部はマルチコア光ファイバ1の端部をマルチコア光ファイバ101の端部に圧着する。 In addition, in this embodiment, the connection unit 50 has the pulley 51, the fiber rotation/fixation/movement unit 52, the fiber cutting unit 53, and the welding unit 54, but these are not essential as long as the cores 11 to 14 of the multi-core optical fiber 1 aligned by the alignment device 4 can be connected to other optical components. For example, in this embodiment, an example of connection by welding is shown, but connection by crimping may also be used. In this case, the connection unit 50 has a crimping unit instead of the welding unit 54, and the connection step S4 has a crimping step instead of the welding step S43. Then, after the end of the multi-core optical fiber 1 is moved in the fiber moving step S42 as in the above embodiment, the crimping step is performed, and in the crimping step, the crimping unit crimps the end of the multi-core optical fiber 1 to the end of the multi-core optical fiber 101.
 また、本実施形態では、光学部品としてマルチコア光ファイバ101を例に説明した。しかし、光学部品は、マルチコア光ファイバ1に接続されるものであれば、マルチコア光ファイバ101でなくてもよい。光学部品としては、例えば、導波路基板や、ファン・イン-ファン・アウトデバイスであってもよく、多芯光コネクタ等であってもよい。また、光学部品は、マルチコア光ファイバ1のコア11~14のうち一部のコアのみと光学的に接続されるものであってもよい。 In addition, in this embodiment, the multi-core optical fiber 101 has been described as an example of an optical component. However, the optical component does not have to be the multi-core optical fiber 101 as long as it is connected to the multi-core optical fiber 1. The optical component may be, for example, a waveguide substrate, a fan-in-fan-out device, or a multi-core optical connector. In addition, the optical component may be optically connected to only some of the cores 11 to 14 of the multi-core optical fiber 1.
 また、光学部品は、フェルール等のように、マルチコア光ファイバ1に接続されるものであれば、コア11~14と光学的に結合しないものであってもよい。例えば、光学部品がフェルールである場合、接続部50は溶着部54の代わりに挿入部を有し、接続ステップS4は、溶着ステップS43の代わりに挿入ステップを有する。そして、上記実施形態のようにマルチコア光ファイバ1の端部がファイバ移動ステップS42で移動された後に、挿入ステップが行われ、挿入ステップでは、挿入部がマルチコア光ファイバ1の端部がフェルールに挿入されるようにマルチコア光ファイバ1とフェルールとを相対的に移動させ、マルチコア光ファイバ1とフェルールとを接続する。このため、マルチコア光ファイバ1の回転方向の調心が高い精度で調心された状態で、マルチコア光ファイバ1とフェルールとが接続されたマルチコア光ファイバユニットが製造される。このフェルールが光ファイバコネクタの筐体内に収容されている場合には、光ファイバコネクタがマルチコア光ファイバユニットとなる。 Also, the optical component may be, such as a ferrule, not optically coupled with the cores 11 to 14, so long as it is connected to the multi-core optical fiber 1. For example, when the optical component is a ferrule, the connection section 50 has an insertion section instead of the welding section 54, and the connection step S4 has an insertion step instead of the welding step S43. Then, after the end of the multi-core optical fiber 1 is moved in the fiber moving step S42 as in the above embodiment, the insertion step is performed, and in the insertion step, the insertion section moves the multi-core optical fiber 1 and the ferrule relatively so that the end of the multi-core optical fiber 1 is inserted into the ferrule, and the multi-core optical fiber 1 and the ferrule are connected. Therefore, a multi-core optical fiber unit in which the multi-core optical fiber 1 and the ferrule are connected is manufactured in a state in which the alignment of the rotational direction of the multi-core optical fiber 1 is aligned with high accuracy. When this ferrule is accommodated in the housing of the optical fiber connector, the optical fiber connector becomes a multi-core optical fiber unit.
 また、本実施形態では、1つのマルチコア光ファイバ1が光学部品に接続される例で説明をした。しかし、複数のマルチコア光ファイバ1の回転方向の調心が行われ、複数のマルチコア光ファイバ1が光学部品に接続されてもよい。複数のマルチコア光ファイバ1の調心は、例えば、第1実施形態での調心装置4により行うことができる。 In addition, in this embodiment, an example in which one multi-core optical fiber 1 is connected to an optical component has been described. However, multiple multi-core optical fibers 1 may be aligned in the rotational direction and connected to an optical component. The alignment of multiple multi-core optical fibers 1 may be performed, for example, by the alignment device 4 in the first embodiment.
 (第3実施形態)
 次に、本発明の第3実施形態について図12,13を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
Third Embodiment
Next, a third embodiment of the present invention will be described in detail with reference to Figures 12 and 13. Note that components that are the same as or equivalent to those in the first embodiment are given the same reference numerals and will not be described again unless otherwise specified.
 図12は、本実施形態に係るマルチコア光ファイバリボン2の検査装置を示す図である。図12に示すように、本実施形態のマルチコア光ファイバリボン2の検査装置6は、送出部31と、ファイバ曲げ部42と、巻取部32と、ネットワークアナライザ43と、チャンネルセレクタ44,47と、ファン・インデバイス45と、ファン・アウトデバイス46と、演算部48と、判定部60と、を主な構成として備える。 FIG. 12 is a diagram showing an inspection device 6 for a multi-core optical fiber ribbon 2 according to this embodiment. As shown in FIG. 12, the inspection device 6 for a multi-core optical fiber ribbon 2 according to this embodiment mainly comprises a sending section 31, a fiber bending section 42, a winding section 32, a network analyzer 43, channel selectors 44 and 47, a fan-in device 45, a fan-out device 46, a calculation section 48, and a judgment section 60.
 本実施形態の送出部31には、マルチコア光ファイバリボン2が巻回されている。マルチコア光ファイバリボン2のそれぞれのマルチコア光ファイバ1の一端は、第1実施形態と同様にして、マルチコア光ファイバ1と同数のマルチコア光ファイバ31Fに光学的に個別に接続されている。本実施形態のファイバ曲げ部42におけるプーリ42a,42bは、溝の幅がマルチコア光ファイバリボン2のマルチコア光ファイバ1の並び方向における幅よりも大きく、溝の底部が平坦状に形成されている。このため、マルチコア光ファイバリボン2をマルチコア光ファイバ1の並び方向と垂直な方向に曲げることができる。 The multi-core optical fiber ribbon 2 is wound around the sending section 31 of this embodiment. One end of each multi-core optical fiber 1 of the multi-core optical fiber ribbon 2 is optically individually connected to the same number of multi-core optical fibers 31F as the multi-core optical fibers 1, in the same manner as in the first embodiment. The pulleys 42a and 42b in the fiber bending section 42 of this embodiment have a groove width larger than the width of the multi-core optical fibers 1 of the multi-core optical fiber ribbon 2 in the arrangement direction, and the bottom of the groove is formed flat. Therefore, the multi-core optical fiber ribbon 2 can be bent in a direction perpendicular to the arrangement direction of the multi-core optical fibers 1.
 本実施形態の演算部48は、算出したスキュー値Sを判定部60に出力する。判定部60は、例えば制御部49と同様の構成であり、スキュー値Sが所定の範囲以外となることを判定する。本実施形態では、例えば、マルチコア光ファイバ1のコア11,13の並び方向が、図5に示すように、マルチコア光ファイバリボン2におけるマルチコア光ファイバ1の並び方向と垂直な方向であり、第1実施形態と同様にして、それぞれのマルチコア光ファイバ1のコア11,13を伝搬する光のスキュー値が測定される。この場合、上記所定の範囲は、例えば、スキュー値Sの最大値から当該最大値の1%低い値までである。判定部60は、いずれかのマルチコア光ファイバ1のスキュー値Sが所定の範囲以外となる場合に、どのマルチコア光ファイバ1の長手方向のどの位置で所定の範囲以外となったかを出力する。 The calculation unit 48 of this embodiment outputs the calculated skew value S to the determination unit 60. The determination unit 60 has a configuration similar to that of the control unit 49, for example, and determines whether the skew value S is outside the predetermined range. In this embodiment, for example, the arrangement direction of the cores 11 and 13 of the multi-core optical fiber 1 is perpendicular to the arrangement direction of the multi-core optical fibers 1 in the multi-core optical fiber ribbon 2 as shown in FIG. 5, and the skew value of the light propagating through the cores 11 and 13 of each multi-core optical fiber 1 is measured in the same manner as in the first embodiment. In this case, the above-mentioned predetermined range is, for example, from the maximum value of the skew value S to a value 1% lower than the maximum value. When the skew value S of any of the multi-core optical fibers 1 is outside the predetermined range, the determination unit 60 outputs at which longitudinal position of which multi-core optical fiber 1 the skew value S is outside the predetermined range.
 次に、マルチコア光ファイバリボン2の検査方法について説明する。 Next, we will explain the inspection method for the multi-core optical fiber ribbon 2.
 図13は、本実施形態に係るマルチコア光ファイバリボン2の検査方法を示すフローチャートである。図13に示すように、本実施形態に係るマルチコア光ファイバリボン2の検査方法は、送出ステップS1と、ファイバ曲げステップS22と、スキュー測定ステップS23と、判定ステップS5と、を備える。 FIG. 13 is a flowchart showing the method for inspecting the multi-core optical fiber ribbon 2 according to this embodiment. As shown in FIG. 13, the method for inspecting the multi-core optical fiber ribbon 2 according to this embodiment includes a sending step S1, a fiber bending step S22, a skew measurement step S23, and a judgment step S5.
 (送出ステップS1)
 本ステップでは、複数のマルチコア光ファイバ1を含むマルチコア光ファイバリボン2を送出部31から送り出す。
(Sending step S1)
In this step, the multi-core optical fiber ribbon 2 including a plurality of multi-core optical fibers 1 is sent out from the sending section 31 .
 (ファイバ曲げステップS22)
 本ステップは、マルチコア光ファイバリボン2を曲げることで、それぞれのマルチコア光ファイバ1を曲げる。送出部31から送り出されるマルチコア光ファイバリボン2は、ファイバ曲げ部42に送り込まれ、それぞれのプーリ42a、42bにより所定の方向に曲げられる。このとき、本実施形態では、ファイバ曲げ部42は、マルチコア光ファイバリボン2をその厚み方向に曲げる。この方向は、マルチコア光ファイバ1の並び方向と垂直な方向であり、コア11、13の並び方向である。
(Fiber bending step S22)
In this step, each multi-core optical fiber 1 is bent by bending the multi-core optical fiber ribbon 2. The multi-core optical fiber ribbon 2 sent out from the sending unit 31 is sent to the fiber bending unit 42 and bent in a predetermined direction by each of the pulleys 42a, 42b. At this time, in this embodiment, the fiber bending unit 42 bends the multi-core optical fiber ribbon 2 in its thickness direction. This direction is perpendicular to the arrangement direction of the multi-core optical fibers 1, and is the arrangement direction of the cores 11, 13.
 (スキュー測定ステップS23)
 本ステップは、それぞれのマルチコア光ファイバ1における一対のコア11,13に光を入射させると共に、それぞれのマルチコア光ファイバ1における一対のコア11,13から出射するそれぞれの光を受光して、マルチコア光ファイバ1毎にそれぞれの光のスキュー値Sを測定するステップである。本実施形態では、第1実施形態と同様にして、スキュー値Sを測定する。
(Skew measurement step S23)
This step is a step of making light incident on a pair of cores 11, 13 in each multi-core optical fiber 1, and receiving each of the lights outputted from the pair of cores 11, 13 in each multi-core optical fiber 1, and measuring the skew value S of each light for each multi-core optical fiber 1. In this embodiment, the skew value S is measured in the same manner as in the first embodiment.
 (判定ステップS5)
 本ステップは、少なくとも1つのマルチコア光ファイバ1におけるスキュー値Sが所定の範囲以外となることを判定するステップである。判定部60は、演算部48からスキュー値Sが入力すると、スキュー値Sが所定の範囲以外となるか否かを判定し、スキュー値Sが所定の範囲内の場合には、例えば、特に信号を出力せず、スキュー値Sが所定の範囲以外の場合には、スキュー値Sが所定の範囲以外であるマルチコア光ファイバ1を示す信号、及びスキュー値Sが所定の範囲以外となる当該マルチコア光ファイバ1の長手方向の位置を示す信号を出力する。
(Determination step S5)
This step is a step of determining whether the skew value S in at least one multi-core optical fiber 1 is outside a predetermined range. When the skew value S is input from the calculation unit 48, the determination unit 60 determines whether the skew value S is outside the predetermined range or not, and when the skew value S is within the predetermined range, for example, outputs no particular signal, and when the skew value S is outside the predetermined range, outputs a signal indicating the multi-core optical fiber 1 whose skew value S is outside the predetermined range and a signal indicating the longitudinal position of the multi-core optical fiber 1 where the skew value S is outside the predetermined range.
 本実施形態のマルチコア光ファイバリボン2の検査装置6、及びマルチコア光ファイバリボン2の検査方法では、ファイバ曲げ部42で曲げられた部分において、スキュー値Sが所定の範囲以外となること用いて、マルチコア光ファイバ1の調心ずれを検知するため、マルチコア光ファイバ1の調心ずれを高い精度で検知することができる。 In the inspection device 6 for the multi-core optical fiber ribbon 2 and the inspection method for the multi-core optical fiber ribbon 2 of this embodiment, the misalignment of the multi-core optical fiber 1 is detected by using the fact that the skew value S is outside a predetermined range in the part bent at the fiber bending section 42, so that the misalignment of the multi-core optical fiber 1 can be detected with high accuracy.
 また、本実施形態では、ファイバ曲げ部42にマルチコア光ファイバリボン2を順次送り出すため、マルチコア光ファイバ1の調心ずれを長手方向に沿って検知することができる。従って、マルチコア光ファイバ1の回転方向の調心がずれている区間を高い精度で検知することができる。なお、ファイバ曲げ部42へのマルチコア光ファイバリボン2の送り出しは必須の構成ではない。例えば、マルチコア光ファイバ1の回転方向が長手方向でほとんど変化しないマルチコア光ファイバリボン2であれば、ファイバ曲げ部42でマルチコア光ファイバリボン2内のマルチコア光ファイバ1が曲げられて、スキュー値Sが測定されることで、回転方向の調心ずれが生じているマルチコア光ファイバ1を特定することができる。 In addition, in this embodiment, since the multi-core optical fiber ribbon 2 is sequentially sent to the fiber bending section 42, misalignment of the multi-core optical fiber 1 can be detected along the longitudinal direction. Therefore, the section in which the alignment of the multi-core optical fiber 1 in the rotational direction is misaligned can be detected with high accuracy. Note that sending the multi-core optical fiber ribbon 2 to the fiber bending section 42 is not an essential configuration. For example, in the case of a multi-core optical fiber ribbon 2 in which the rotational direction of the multi-core optical fiber 1 hardly changes in the longitudinal direction, the multi-core optical fiber 1 in the multi-core optical fiber ribbon 2 is bent in the fiber bending section 42 and the skew value S is measured, so that the multi-core optical fiber 1 in which misalignment in the rotational direction occurs can be identified.
 なお、本実施形態では、上記所定の範囲が、スキュー値Sの最小値から当該最小値の1%高い値までであってもよい。また、スキュー値Sを測定する一対のコアが、マルチコア光ファイバリボン2の厚み方向に並んでいなくてもよい。ただし、当該一対のコアがマルチコア光ファイバリボン2の厚み方向に並んでいることが、スキュー値Sの値を大きくして、より高い精度で、マルチコア光ファイバ1の回転方向の調心ずれを検知し得ることから好ましい。 In this embodiment, the above-mentioned predetermined range may be from the minimum value of the skew value S to a value 1% higher than the minimum value. Furthermore, the pair of cores for measuring the skew value S does not have to be aligned in the thickness direction of the multi-core optical fiber ribbon 2. However, it is preferable that the pair of cores are aligned in the thickness direction of the multi-core optical fiber ribbon 2, because this increases the value of the skew value S and makes it possible to detect misalignment in the rotational direction of the multi-core optical fiber 1 with higher accuracy.
 なお、本実施形態では、マルチコア光ファイバリボン2に含まれる複数のマルチコア光ファイバ1の調心ずれの検知を行った。しかし、マルチコア光ファイバリボン2に含まれる一部のマルチコア光ファイバ1の調心ずれの検知が行われ、他の一部のマルチコア光ファイバ1の調心ずれの検知が行われなくてもよい。この場合、調心ずれの検知が行われるマルチコア光ファイバ1のみがスキュー測定部40に接続されればよい。この場合、スキュー測定部40は、調心ずれの検知を行うマルチコア光ファイバ1のスキュー値を測定できる構成を有していれば良い。 In this embodiment, misalignment of multiple multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is detected. However, it is also possible that misalignment of some of the multi-core optical fibers 1 included in the multi-core optical fiber ribbon 2 is detected, and misalignment of other multi-core optical fibers 1 is not detected. In this case, only the multi-core optical fibers 1 for which misalignment detection is performed need only be connected to the skew measurement unit 40. In this case, the skew measurement unit 40 only needs to have a configuration capable of measuring the skew value of the multi-core optical fiber 1 for which misalignment detection is performed.
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。 The present invention has been described above using examples of embodiments, but the present invention is not limited to these.
 例えば、マルチコア光ファイバ1のコアの数や配置は、上記実施形態と異なっていてもよい。マルチコア光ファイバ1のコアが直線状、円環状、或いは格子状に配置されてもよい。 For example, the number and arrangement of the cores of the multi-core optical fiber 1 may be different from those in the above embodiment. The cores of the multi-core optical fiber 1 may be arranged in a linear, annular, or lattice pattern.
 また、マルチコア光ファイバリボン2の構成は、図5に示すものと異なるものであってもよい。例えば、マルチコア光ファイバリボン2を構成するマルチコア光ファイバ1の数は適宜変更可能である。また、マルチコア光ファイバリボン2を構成する光ファイバの全てがマルチコア光ファイバ1である必要はなく、マルチコア光ファイバリボン2は、マルチコア光ファイバ1を少なくとも1つ含んでいればよい。従って、例えば、マルチコア光ファイバリボン2は、1以上のマルチコア光ファイバ1と、1以上のシングルコア光ファイバとを有してもよい。この場合、調心装置4により、少なくとも1つのマルチコア光ファイバ1の回転方向の調心が行われる。 The configuration of the multi-core optical fiber ribbon 2 may be different from that shown in FIG. 5. For example, the number of multi-core optical fibers 1 constituting the multi-core optical fiber ribbon 2 can be changed as appropriate. In addition, all of the optical fibers constituting the multi-core optical fiber ribbon 2 do not need to be multi-core optical fibers 1, and the multi-core optical fiber ribbon 2 only needs to include at least one multi-core optical fiber 1. Therefore, for example, the multi-core optical fiber ribbon 2 may have one or more multi-core optical fibers 1 and one or more single-core optical fibers. In this case, the alignment device 4 aligns at least one multi-core optical fiber 1 in the rotational direction.
 図14は、マルチコア光ファイバリボン2の変形例を示す図である。図14に示すように、互いに隣り合う複数のマルチコア光ファイバ1が固定樹脂22で互いに固定されることで、マルチコア光ファイバリボン2とされてもよい。図14では、マルチコア光ファイバ1が2つの場合が示されているが、マルチコア光ファイバ1は3つ以上でも良い。また、固定樹脂22は、マルチコア光ファイバ1の長手方向に沿って、断片的に設けられてもよい。このような固定樹脂22が用いられる場合、図5に示すマルチコア光ファイバリボン2と比べて、マルチコア光ファイバ1が回転方向にずれ易い。従って、第3実施形態において、マルチコア光ファイバリボン2の検査する場合に、テンションを高くすることが好ましい。また、本変形例でも、マルチコア光ファイバリボン2は、1以上のマルチコア光ファイバ1と、1以上のシングルコア光ファイバを含んでもよい。 14 is a diagram showing a modified example of the multi-core optical fiber ribbon 2. As shown in FIG. 14, a multi-core optical fiber ribbon 2 may be formed by fixing a plurality of adjacent multi-core optical fibers 1 to each other with a fixing resin 22. Although FIG. 14 shows a case where there are two multi-core optical fibers 1, there may be three or more multi-core optical fibers 1. The fixing resin 22 may be provided piecemeal along the longitudinal direction of the multi-core optical fiber 1. When such a fixing resin 22 is used, the multi-core optical fiber 1 is more likely to be displaced in the rotational direction than the multi-core optical fiber ribbon 2 shown in FIG. 5. Therefore, in the third embodiment, it is preferable to increase the tension when inspecting the multi-core optical fiber ribbon 2. In this modified example, the multi-core optical fiber ribbon 2 may also include one or more multi-core optical fibers 1 and one or more single-core optical fibers.
 また、第1、第3実施形態では、ネットワークアナライザ43に複数の光ファイバ43a,43bがそれぞれ接続されたが、ネットワークアナライザ43には、光ファイバ43a,43bが1つずつ接続されてもよい。この場合、チャンネルセレクタ44は、複数のマルチコア光ファイバ1に順繰り光を伝搬するよう、光路の切り替えを行い、チャンネルセレクタ47は、複数の光ファイバ47a,47bのいずれかから入射する光を光ファイバ43bに出射するよう、光路の切り替えを行う。 In the first and third embodiments, the multiple optical fibers 43a and 43b are each connected to the network analyzer 43, but the network analyzer 43 may be connected to one optical fiber each of the optical fibers 43a and 43b. In this case, the channel selector 44 switches the optical path so that the light propagates in turn to the multiple multi-core optical fibers 1, and the channel selector 47 switches the optical path so that the light incident from one of the multiple optical fibers 47a and 47b is output to the optical fiber 43b.
 また、調心装置4は、一対のコアが並ぶ方向と曲げ方向とがなす角度θと、スキュー値Sとの関係を示すテーブルを有するメモリを備えてもよい。この場合、制御部49は、当該メモリを参照して、測定されたスキュー値Sとテーブルとから算出して、ファイバ回転部41におけるマルチコア光ファイバ1の回転角を調節してもよい。 The alignment device 4 may also include a memory having a table showing the relationship between the angle θ between the direction in which the pair of cores are aligned and the bending direction, and the skew value S. In this case, the control unit 49 may refer to the memory and calculate the skew value S from the measured skew value S and the table to adjust the rotation angle of the multi-core optical fiber 1 in the fiber rotation unit 41.
 また、送出部や巻取部がリールを用いなくてもよい。例えば、マルチコア光ファイバ1が損傷しない範囲で折り重ねられた状態や蜷局状に置かれた状態から引き出されて、巻取の代わりに同様の状態で引き取られてもよい。 Furthermore, the sending section and the winding section do not need to use reels. For example, the multi-core optical fiber 1 may be pulled out from a folded or twisted state within a range that is not damaged, and may be taken up in a similar state instead of being wound.
 また、スキュー測定部40は、マルチコア光ファイバ1の一対のコアを伝搬する光のスキュー値Sを測定できる限りにおいて、他の構成であってもよい。 The skew measurement unit 40 may also have other configurations as long as it is capable of measuring the skew value S of the light propagating through a pair of cores of the multi-core optical fiber 1.
 以上説明したように、本発明によれば、マルチコア光ファイバの回転方向の調心を高い精度で行い得るマルチコア光ファイバの調心装置、マルチコア光ファイバリボンの製造装置、マルチコア光ファイバの接続装置、マルチコア光ファイバの調心方法、マルチコア光ファイバリボンの製造方法、及びマルチコア光ファイバの接続方法、及び、マルチコア光ファイバの回転方向の調心ずれを高い精度で検出し得るマルチコア光ファイバリボンの検査装置、及びマルチコア光ファイバリボンの検査方法が提供され、光通信等の分野で利用することができる。 As described above, according to the present invention, there are provided a multi-core optical fiber alignment device capable of aligning the multi-core optical fiber in the rotational direction with high accuracy, a multi-core optical fiber ribbon manufacturing device, a multi-core optical fiber connection device, a multi-core optical fiber alignment method, a multi-core optical fiber ribbon manufacturing method, and a multi-core optical fiber connection method, as well as a multi-core optical fiber ribbon inspection device and a multi-core optical fiber ribbon inspection method capable of detecting misalignment in the rotational direction of the multi-core optical fiber with high accuracy, which can be used in fields such as optical communications.

Claims (12)

  1.  マルチコア光ファイバの軸中心の回転角を変化させるファイバ回転部と、
     前記回転角が変化された前記マルチコア光ファイバを所定の方向に曲げるファイバ曲げ部と、
     前記マルチコア光ファイバの一対のコアを伝搬する光のスキュー値を測定するスキュー測定部と、
     前記ファイバ回転部を制御して、前記スキュー値が所定の値になるように前記マルチコア光ファイバの前記回転角を調節する制御部と、
    を備える
    ことを特徴とするマルチコア光ファイバの調心装置。
    a fiber rotation unit that changes a rotation angle of the multi-core optical fiber about its axis;
    a fiber bending unit that bends the multi-core optical fiber whose rotation angle has been changed in a predetermined direction;
    a skew measurement unit that measures a skew value of light propagating through a pair of cores of the multi-core optical fiber;
    a control unit that controls the fiber rotation unit to adjust the rotation angle of the multi-core optical fiber so that the skew value becomes a predetermined value;
    An aligning device for a multi-core optical fiber comprising:
  2.  前記制御部は、前記スキュー値が最大値または最小値になるように前記回転角を調節する
    ことを特徴とする請求項1に記載のマルチコア光ファイバの調心装置。
    The multi-core optical fiber aligning device according to claim 1 , wherein the control unit adjusts the rotation angle so that the skew value becomes a maximum value or a minimum value.
  3.  1以上のマルチコア光ファイバを送り出す送出部と、
     前記送出部から送り出される少なくとも1つの前記マルチコア光ファイバの回転方向における向きの調心を行う請求項1または2に記載のマルチコア光ファイバの調心装置と、
     前記調心装置で調心された前記マルチコア光ファイバを含む複数の光ファイバをリボン化するリボン化部と、
    を備えることを特徴とするマルチコア光ファイバリボンの製造装置。
    A sending unit that sends out one or more multi-core optical fibers;
    3. The multi-core optical fiber aligning device according to claim 1, which aligns the orientation of at least one of the multi-core optical fibers sent out from the sending unit in a rotation direction;
    a ribbonizing unit that ribbonizes a plurality of optical fibers including the multi-core optical fiber aligned by the alignment device;
    A manufacturing apparatus for a multi-core optical fiber ribbon, comprising:
  4.  請求項1または2に記載の調心装置と、
     前記調心装置で調心された前記マルチコア光ファイバを他の光学部品に接続する接続部と、
    を備える
    ことを特徴とするマルチコア光ファイバユニットの製造装置。
    An aligning device according to claim 1 or 2;
    a connection portion for connecting the multi-core optical fiber aligned by the alignment device to another optical component;
    A manufacturing apparatus for a multi-core optical fiber unit comprising:
  5.  マルチコア光ファイバの軸中心の回転角を変化させるファイバ回転ステップと、
     前記回転角が変化された前記マルチコア光ファイバを所定の方向に曲げるファイバ曲げステップと、
     前記マルチコア光ファイバの一対のコアを伝搬する光のスキュー値を測定するスキュー測定ステップと、
     前記ファイバ回転ステップでは、前記スキュー値が所定の値になるように前記マルチコア光ファイバの前記回転角を調節する
    ことを特徴とするマルチコア光ファイバの調心方法。
    a fiber rotation step of changing a rotation angle of the multi-core optical fiber about its axis;
    a fiber bending step of bending the multi-core optical fiber with the changed rotation angle in a predetermined direction;
    a skew measuring step of measuring a skew value of light propagating through a pair of cores of the multi-core optical fiber;
    a rotation angle of the multi-core optical fiber being adjusted so that the skew value becomes a predetermined value,
  6.  前記ファイバ回転ステップでは、前記スキュー値が最大値または最小値になるように前記回転角を調節する
    ことを特徴とする請求項5に記載のマルチコア光ファイバの調心方法。
    6. The method for aligning a multi-core optical fiber according to claim 5, wherein in the fiber rotating step, the rotation angle is adjusted so that the skew value becomes a maximum value or a minimum value.
  7.  前記一対のコアは、前記マルチコア光ファイバにおける複数のコアのうち互いに最も離れているコア対である
    ことを特徴とする請求項5または6に記載のマルチコア光ファイバの調心方法。
    7. The method for aligning a multi-core optical fiber according to claim 5, wherein the pair of cores is a core pair that is farthest from each other among a plurality of cores in the multi-core optical fiber.
  8.  1以上のマルチコア光ファイバを送り出す送出ステップと、
     前記送出ステップで送り出される少なくとも1つの前記マルチコア光ファイバの回転方向における向きの調心を請求項5から7のいずれかに記載のマルチコア光ファイバの調心方法により行う調心ステップと、
     前記調心ステップで調心された複数の前記マルチコア光ファイバをリボン化するリボン化ステップと、
    を備える
    ことを特徴とするマルチコア光ファイバリボンの製造方法。
    A launching step of one or more multi-core optical fibers;
    an aligning step of aligning the orientation of at least one of the multi-core optical fibers in a rotation direction, the at least one multi-core optical fiber being fed out in the feeding step, by the aligning method for a multi-core optical fiber according to any one of claims 5 to 7;
    a ribbonizing step of ribbonizing the plurality of multi-core optical fibers aligned in the alignment step;
    A method for manufacturing a multi-core optical fiber ribbon, comprising:
  9.  請求項5から7のいずれかに記載のマルチコア光ファイバの調心方法により前記マルチコア光ファイバの回転方向における向きの調心を行う調心ステップと、
     前記調心ステップで調心された前記マルチコア光ファイバを他の光学部品に接続する接続ステップと、
    を備える
    ことを特徴とするマルチコア光ファイバユニットの製造方法。
    an aligning step of aligning the direction of the multi-core optical fiber in a rotation direction by the aligning method of a multi-core optical fiber according to any one of claims 5 to 7;
    a connecting step of connecting the multi-core optical fiber aligned in the aligning step to another optical component;
    A method for manufacturing a multi-core optical fiber unit comprising:
  10.  1以上のマルチコア光ファイバを有するマルチコア光ファイバリボンを曲げることで、前記マルチコア光ファイバを曲げるファイバ曲げ部と、
     少なくとも1つの前記マルチコア光ファイバにおける一対のコアを伝搬する光のスキュー値を測定するスキュー測定部と、
     少なくとも1つの前記マルチコア光ファイバにおける前記スキュー値が所定の範囲以外となることを判定する判定部と、
    を備える
    ことを特徴とするマルチコア光ファイバリボンの検査装置。
    a fiber bending unit for bending a multi-core optical fiber ribbon having one or more multi-core optical fibers, the multi-core optical fiber being bent;
    A skew measurement unit that measures a skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers;
    a determination unit that determines whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range;
    An inspection device for a multi-core optical fiber ribbon comprising:
  11.  1以上のマルチコア光ファイバを有するマルチコア光ファイバリボンを曲げることで、前記マルチコア光ファイバを曲げるファイバ曲げステップと、
     少なくとも1つの前記マルチコア光ファイバにおける一対のコアを伝搬する光のスキュー値を測定するスキュー測定ステップと、
     少なくとも1つの前記マルチコア光ファイバにおける前記スキュー値が所定の範囲以外となることを判定する判定ステップと、
    を備える
    ことを特徴とするマルチコア光ファイバリボンの検査方法。
    a fiber bending step of bending a multi-core optical fiber ribbon having one or more multi-core optical fibers by bending the multi-core optical fiber;
    a skew measuring step of measuring a skew value of light propagating through a pair of cores in at least one of the multi-core optical fibers;
    a determining step of determining whether the skew value in at least one of the multi-core optical fibers is outside a predetermined range;
    A method for inspecting a multi-core optical fiber ribbon, comprising:
  12.  前記マルチコア光ファイバリボンは、前記マルチコア光ファイバを含む並列される複数の光ファイバを備え、
     前記一対のコアは、前記光ファイバの並び方向に垂直に並んでいる
    ことを特徴とする請求項11に記載のマルチコア光ファイバリボンの検査方法。
    The multi-core optical fiber ribbon includes a plurality of optical fibers arranged in parallel, the optical fibers including the multi-core optical fiber,
    12. The method for inspecting a multi-core optical fiber ribbon according to claim 11, wherein the pair of cores are arranged perpendicular to the arrangement direction of the optical fibers.
PCT/JP2023/024179 2022-10-31 2023-06-29 Alignment device for multicore optical fiber, manufacturing device for multicore optical fiber ribbon, manufacturing device for multicore optical fiber unit, alignment method for multicore optical fiber, manufacturing method for multicore optical fiber ribbon, manufacturing method for multicore optical fiber unit, inspection device for multicore optical fiber ribbon, and inspection method for multicore optical fiber ribbon WO2024095531A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174787 2022-10-31
JP2022-174787 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095531A1 true WO2024095531A1 (en) 2024-05-10

Family

ID=90930114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024179 WO2024095531A1 (en) 2022-10-31 2023-06-29 Alignment device for multicore optical fiber, manufacturing device for multicore optical fiber ribbon, manufacturing device for multicore optical fiber unit, alignment method for multicore optical fiber, manufacturing method for multicore optical fiber ribbon, manufacturing method for multicore optical fiber unit, inspection device for multicore optical fiber ribbon, and inspection method for multicore optical fiber ribbon

Country Status (1)

Country Link
WO (1) WO2024095531A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295528A (en) * 1995-03-01 1996-11-12 Sumitomo Electric Ind Ltd Optical fiber and production of optical fiber
JP2001208923A (en) * 2000-01-25 2001-08-03 Communications Research Laboratory Mphpt Image fiber and method for reducing its skew
US20120069347A1 (en) * 2010-09-17 2012-03-22 Luna Innovations Incorporated Compensating for non-ideal multi-core optical fiber structure
WO2016047658A1 (en) * 2014-09-24 2016-03-31 古河電気工業株式会社 Optical fibre ribbon, and optical-fibre-ribbon production method
JP2016191730A (en) * 2015-03-30 2016-11-10 株式会社フジクラ Multicore optical fiber and manufacturing method for multicore optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295528A (en) * 1995-03-01 1996-11-12 Sumitomo Electric Ind Ltd Optical fiber and production of optical fiber
JP2001208923A (en) * 2000-01-25 2001-08-03 Communications Research Laboratory Mphpt Image fiber and method for reducing its skew
US20120069347A1 (en) * 2010-09-17 2012-03-22 Luna Innovations Incorporated Compensating for non-ideal multi-core optical fiber structure
WO2016047658A1 (en) * 2014-09-24 2016-03-31 古河電気工業株式会社 Optical fibre ribbon, and optical-fibre-ribbon production method
JP2016191730A (en) * 2015-03-30 2016-11-10 株式会社フジクラ Multicore optical fiber and manufacturing method for multicore optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福本良平, 他, 製法の異なる4コアファイバのスキュー特性, 2021年電子情報通信学会総合大会講演論文集, 09 March 2021, Communication 2, page 162, entire text, all drawings, (FUKUMOTO, Ryohei et al. Skew Characteristics of Four-core Fibers with Different Fabrication Methods. Proceedings of the 2021 IEICE General Conference.) *

Similar Documents

Publication Publication Date Title
US11644632B2 (en) Method for manufacturing optical device
US9541707B2 (en) Method for connecting multi-core fiber, multi-core fiber, and method for manufacturing multi-core fiber
JP5782502B2 (en) Multi-core fiber and multi-core fiber connection method using the same
US9958604B2 (en) Optical fiber, and optical-fiber production method
US9057815B2 (en) Angular alignment of optical fibers for fiber optic ribbon cables, and related methods
JP6287179B2 (en) Multi-core optical fiber and method for manufacturing multi-core optical fiber connector
JP6226905B2 (en) Multi-core optical fiber and method for manufacturing multi-core optical fiber
US20070116417A1 (en) Polarization-maintaining optical fiber and optical fiber gyro
US9958626B2 (en) Optical fiber ribbon, and optical-fiber-ribbon production method
US9482814B2 (en) Multicore optical fiber and optical module
WO2012008995A1 (en) Single-lens, multi-fiber optical connection method and apparatus
CN102103228B (en) Double waveguide parallel polarization maintaining fiber and manufacturing method thereof
US9453979B2 (en) Multi-core optical fiber tape
CN114008503A (en) Intermittent connection type optical fiber ribbon and method for manufacturing intermittent connection type optical fiber ribbon
WO2024095531A1 (en) Alignment device for multicore optical fiber, manufacturing device for multicore optical fiber ribbon, manufacturing device for multicore optical fiber unit, alignment method for multicore optical fiber, manufacturing method for multicore optical fiber ribbon, manufacturing method for multicore optical fiber unit, inspection device for multicore optical fiber ribbon, and inspection method for multicore optical fiber ribbon
JP2017021190A (en) Connecting method of multi-core optical fiber
JP2009156640A (en) Waveguide twist tester and waveguide twist test method
WO2019156217A1 (en) Multicore fiber and manufacturing device therefor
JPS61141406A (en) Multicore optical fiber
JP2021076633A (en) Method of manufacturing optical fiber ribbon, method of manufacturing multi-core fiber, apparatus of manufacturing optical fiber ribbon, optical fiber ribbon, multi-core fiber, and method of fixing optical fiber ribbon
US20240012209A1 (en) Optical-fiber bundle structure, optical connection structure, and method of manufacturing optical-fiber bundle structure
WO2023058566A1 (en) Optical fiber ribbon
US20200308042A1 (en) Method of manufacturing multicore optical fiber
JP2010032273A (en) Hot line detection device
WO2024095488A1 (en) Bundled fiber, polarized light sensor, optical encoder, optical scattering detection sensor, and method for manufacturing bundled fiber