WO2024095512A1 - Moving-body positioning device and moving-body positioning method - Google Patents

Moving-body positioning device and moving-body positioning method Download PDF

Info

Publication number
WO2024095512A1
WO2024095512A1 PCT/JP2023/018395 JP2023018395W WO2024095512A1 WO 2024095512 A1 WO2024095512 A1 WO 2024095512A1 JP 2023018395 W JP2023018395 W JP 2023018395W WO 2024095512 A1 WO2024095512 A1 WO 2024095512A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite signal
satellite
information
correction signal
signal
Prior art date
Application number
PCT/JP2023/018395
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 佐藤
誠 谷川原
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2024095512A1 publication Critical patent/WO2024095512A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity

Definitions

  • the present invention relates to a mobile object positioning device and a mobile object positioning method.
  • GNSS Global Navigation Satellite System
  • Patent Document 1 discloses a technology for integrating the detection positions of GNSS and an inertial sensor that detects the momentum and attitude changes of a moving body, as shown below.
  • the maximum likelihood position at a first time point is calculated using the error variance values of the GNSS output position and the dead reckoning (DR) position, the relative position calculated by the DR device from the first time point to the second time point is added to the maximum likelihood position to calculate an assumed DR position, the relative position is added to the GNSS output position at the first time point to calculate an adaptive DR position, the difference between the GNSS output position and the adaptive DR position is obtained as an adaptive DR error, and the vehicle state at that time is also determined.
  • DR dead reckoning
  • the adaptive DR error according to the vehicle state is stored, and the average value and variance value of the adaptive DR error are updated by taking into account the newly calculated adaptive DR error, and if the GNSS output position is within a possible existence range obtained by adding an error ellipse centered on a position obtained by shifting the assumed DR position by the average value of the adaptive DR error to the error ellipse based on the assumed DR position, the maximum likelihood error ellipse is calculated based on that, or if not, based on the assumed DR position.”
  • the vehicle position detected by the GNSS is corrected based on the vehicle position and attitude obtained by integrating the vehicle momentum and attitude change calculated from the measurement values obtained by the inertial sensor.
  • the inertial sensor can be calibrated with high precision when the vehicle is stationary, allowing the error components to be clearly estimated.
  • Patent Document 2 discloses the following technology.
  • a mobile object acceleration/distance estimation circuit comprising an acceleration estimation unit that inputs a moving object's acceleration signal in the traveling direction, determines whether the moving object is at rest based on a plurality of signals that detect the stationary state of the moving object, measures a bias value included in the moving object acceleration signal when the stationary state is determined, corrects the moving object acceleration signal using the measured bias value, and calculates and outputs an estimated acceleration and distance estimate of the moving object using the corrected moving object acceleration signal and the moving object speed estimate output by the scale factor/speed estimation unit.” Furthermore, Patent Document 3 discloses a technique in which "when an output signal input from a motion detector is within a threshold range, it is determined that a moving object is stationary.”
  • Patent Document 2 uses multiple sensors to determine whether the vehicle is stationary.
  • the stationary state is determined based on the amount of momentum and the magnitude of posture change detected by the inertial sensor.
  • the object of the present invention is to realize a mobile object positioning device and a mobile object positioning method that are simple in configuration and can determine the stationary state of a mobile station (a mobile object equipped with a GNSS antenna) without relying on the detection accuracy of an inertial sensor.
  • the present invention is configured as follows:
  • the mobile positioning device includes a satellite signal prediction unit that calculates satellite signal prediction information including a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station, a satellite signal continuity determination unit that calculates satellite signal continuity information, which is information regarding the continuity of the satellite signal, based on the satellite signal and the satellite signal prediction information, and a calculation control unit that determines the stationary state of the mobile station based on the satellite signal continuity information, and when the calculation control unit detects the continuity of the satellite signal based on the satellite signal continuity information, it determines that the mobile station is stationary.
  • satellite signal prediction unit that calculates satellite signal prediction information including a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station
  • satellite signal continuity determination unit that calculates satellite signal continuity information, which is information regarding the continuity of the satellite signal
  • satellite signal prediction information is calculated that includes a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station, satellite signal continuity information, which is information regarding the continuity of the satellite signal, is calculated based on the satellite signal and the satellite signal prediction information, and if continuity of the satellite signal is detected based on the satellite signal continuity information, it is determined that the mobile station is stationary.
  • the present invention provides a mobile positioning device and a mobile positioning method that are simple in configuration and can determine the stationary state of a mobile station without relying on the detection accuracy of an inertial sensor.
  • FIG. 1 is a diagram illustrating a hardware configuration of a stationary state determination system having a mobile object positioning device according to a first embodiment.
  • FIG. 13 is a diagram showing a correction signal recorded in a correction signal DB.
  • 11A and 11B are diagrams for explaining a pseudorange and a carrier phase calculated by a correction signal prediction unit as correction signal prediction information.
  • 11 is a diagram showing parameters of a mathematical model calculated as correction signal prediction information by a correction signal prediction unit based on a correction signal DB.
  • FIG. 2 is a diagram showing a correction signal prediction error, which is a difference between a correction signal received from the arithmetic control unit in FIG. 1 and a predicted value predicted from correction signal prediction information.
  • FIG. 2 is a diagram showing a correction signal prediction error distribution calculated by the correction signal prediction result DB in FIG. 1 from the correction signal prediction error.
  • 11 is a diagram showing a mathematical model relating to a pseudorange and a carrier phase calculated by a satellite signal prediction unit as satellite signal prediction information.
  • FIG. 13 is a diagram showing parameters of a mathematical model calculated as satellite signal prediction information by a satellite signal prediction unit based on a corrected signal prediction result DB.
  • FIG. 10 is a flowchart showing the process of a satellite signal continuity determination unit. 2 is a diagram showing the data configuration of position information and stationary state information output by the calculation control unit in FIG. 1 .
  • a stationary state determination system 1 having a mobile object positioning device 2 according to the present invention is a system used for determining the stationary state of mobile objects such as automobiles, trains, agricultural machines, and construction machines.
  • FIG. 1 is a diagram showing the hardware configuration of a stationary state determination system 1 having a mobile object positioning device 2 according to the first embodiment.
  • the stationary state determination system 1 includes a mobile positioning device 2, a positioning satellite 3, a base station 4, and a distribution server 5.
  • the positioning satellites 3 are composed of multiple artificial satellites positioned in satellite orbits above the earth, and form a global navigation satellite system (GNSS) by transmitting satellite signals 10 toward the ground. In the GNSS, some of the satellite signals 10 from the multiple positioning satellites 3 are received, and the multiple received satellite signals 10 are used to enable the GNSS antenna 29 to obtain its own position on the earth.
  • the satellite signals 10 include at least the position information and satellite clock error of the positioning satellites 3.
  • the positioning satellites 3 transmit satellite signals 10 in multiple frequency bands, thereby achieving redundancy of the GNSS.
  • the positioning system 1 according to the first embodiment is described as using satellite signals 10 in a single frequency band, but the present invention can be similarly applied to a positioning system that uses satellite signals 10 in multiple frequency bands.
  • Base station 4 A plurality of base stations 4 are installed at different points on the earth, and receive satellite signals 10 transmitted by each of the positioning satellites 3.
  • the base stations 4 transmit the satellite signals 10 received from the plurality of positioning satellites 3 to a distribution server 5 (details of which will be described later).
  • the positions of all base stations 4 on the earth are measured in advance with high accuracy, and the position information is stored in the distribution server 5.
  • the distribution server 5 generates a correction signal 11 by receiving the satellite signal 10 from the base station 4.
  • the distribution server 5 generates the correction signal 11 by the RRS method.
  • the RRS method generates the correction signal 11 from the satellite signal 10 received by the base station 4 located near the position based on generated position information 30 (described later) acquired from the positioning device 2 (described later).
  • the distribution server 5 may also generate the correction signal 11 using the VRS method.
  • the VRS method generates a virtual reference station at an arbitrary position, and calculates the satellite signal 10 that would be received at the virtual reference station from the satellite signal 10 received at a base station 4 installed near the virtual reference station.
  • the distribution server 5 generates the base station 4 as a virtual reference station near the position based on the generated position information 30 acquired from the positioning device 2, calculates the correction signal 11, and transmits the correction signal 11 to the positioning device 2.
  • the stationary state determination system 1 according to the first embodiment is described as using the RRS method as the distribution server 5, but the present invention can also be applied to a stationary state determination system 1 that uses the VRS method as the distribution server 5.
  • the distribution server 5 can use a paid service provided by a company other than the manufacturer of the mobile positioning device 2, such as a communications carrier.
  • the distribution server 5 and the positioning device 2 can communicate bidirectionally over a network that uses wireless communication lines or other well-known wireless communication lines.
  • the distribution server 5 may transmit a new correction signal 11 to the mobile positioning device 2 according to the generated location information 30 acquired from the mobile positioning device 2.
  • the distribution server 5 selects the base station 4 generated closest to the generated location information 30 acquired from the mobile positioning device 2, generates a correction signal 11 from the satellite signal 10 received from that base station 4, and transmits the correction signal 11 to the mobile positioning device 2.
  • the base stations 4 are assigned base station IDs 102 (see FIG. 2) that are used to identify each base station.
  • the distribution server 5 generates a correction signal 11 that includes the base station IDs 102.
  • the distribution server 5 changes the base station ID 102 included in the correction signal 11 every time it changes the base station 4 selected according to the generated position information 30 acquired from the mobile positioning device 2.
  • the mobile positioning device 2 can detect the switching of the base station 4 based on whether the base station ID 102 (see FIG. 2) written in the correction signal 11 received from the distribution server 5 has changed.
  • the distribution server 5 calculates the pseudo-distance 7 (see FIG. 2) and carrier phase 8 (see FIG. 2) for each positioning satellite 3 based on the satellite signal 10 received from the base station 4, and calculates a correction signal 11 including the pseudo-distance 7 and carrier phase 8.
  • the pseudo-distance 7 is the distance from the positioning satellite 3 to the GNSS antenna 29, calculated by measuring the time it takes for the satellite signal 10 transmitted from the positioning satellite 3 to be received by the GNSS antenna 29.
  • the pseudo-distance 7 includes receiver clock error, satellite clock error, ionospheric delay, tropospheric delay, and other noise.
  • the carrier phase 8 is the phase difference between the satellite signal 10 transmitted by the positioning satellite 3 at the same time and the satellite signal 10 received by the GNSS antenna 29.
  • the carrier phase 8 includes integer bias, receiver clock error, satellite clock error, ionospheric delay, tropospheric delay, and other noise.
  • the carrier phase 8 may be described as a distance component by multiplying it by the wavelength of the satellite signal 10 transmitted by the positioning satellite 3.
  • the processing of the mobile positioning device 2 is performed by multiplying the carrier phase 8 by the inverse of the wavelength of the satellite signal 10.
  • the correction signal 11 includes at least the pseudo-distance 7 of each positioning satellite 3 at the base station 4, the carrier phase 8, the position of the base station 4 on the Earth, and the base station ID 102.
  • the mobile positioning device 2 calculates stationary state information 15 indicating the stationary state of the GNSS antenna 29 based on the satellite signal 10 received using the GNSS antenna 29 and the correction signal 11 acquired from the distribution server 5. In addition, the mobile positioning device 2 calculates position information 12 indicating the position of the GNSS antenna 29 based on the satellite signal 10 received using the GNSS antenna 29 and the correction signal 11 acquired from the distribution server 5.
  • the mobile positioning device 2 includes a positioning calculation unit 20, a communication unit 21, a correction signal DB (correction signal database) 22, a correction signal prediction unit 23, and a correction signal prediction result DB (correction signal prediction result database) 24.
  • the mobile positioning device 2 further includes a satellite signal prediction unit 26, a satellite signal prediction result DB (satellite signal prediction result database) 25, a satellite signal continuity determination unit 27, a calculation control unit 28, and a GNSS antenna 29.
  • a satellite signal prediction unit 26 a satellite signal prediction result database (satellite signal prediction result database) 25
  • a satellite signal continuity determination unit a satellite signal continuity determination unit 27
  • a calculation control unit 28 a GNSS antenna 29.
  • the positioning calculation unit 20, the communication unit 21, the correction signal DB 22 (correction signal recording unit), the correction signal prediction unit 23, the correction signal prediction result DB 24, the satellite signal prediction unit 26, the satellite signal prediction result DB 25, and the satellite signal continuity determination unit 27 execute the processing determined in response to the operation command of the calculation control unit 28.
  • the calculation control unit 28 outputs the position information 12 and the stationary state information 15 according to the operating cycle of the positioning calculation unit 20.
  • Each element of the mobile positioning device 2 may be configured so that its function is realized by hardware, or by software by executing a computer program.
  • each element of the mobile positioning device 2 does not necessarily have to be configured within a single piece of hardware, but may be configured as separate independent devices, such as external devices or external servers. In that case, each element of the mobile positioning device 2 should be configured so that it can communicate with each other.
  • the GNSS antenna 29 receives satellite signals 10 from a plurality of positioning satellites 3 positioned above the Earth, and transmits the received satellite signals 10 to the calculation control unit 28.
  • the satellite signals 10 are analog signals
  • the GNSS antenna 29 is configured to A/D convert the received satellite signals 10 and transmit the satellite signals 10 as digital signals to the positioning calculation unit 29.
  • the GNSS antenna 29 is installed at a location on the object to be positioned where it is desired to obtain the position.
  • the GNSS antenna 29 may be installed on the body of the vehicle, which is the target mobile object.
  • the positioning calculation unit 20 calculates the position of the GNSS antenna 29 on the earth based on the satellite signal 10 and the correction signal 11 from the positioning satellite 3 received from the calculation control unit 28, and calculates one or more of approximate position data 13 and precise position data 14.
  • the positioning calculation unit 20 outputs one of the calculated approximate position data 13 and precise position data 14 to the calculation control unit 28 as position information 12.
  • the approximate position data 13 is the approximate position of the GNSS antenna 29 calculated by the positioning calculation unit 20 using single point positioning.
  • the precise position data 14 is the precise position of the GNSS antenna 29 calculated by the positioning calculation unit 20 using interferometric positioning.
  • the precise position data 14 is a highly accurate positioning result that is closer to the actual position of the GNSS antenna 29 than the approximate position data 13.
  • the positioning calculation unit 20 calculates the pseudo-range 7 and carrier phase 8 for each positioning satellite 3 based on the satellite signal 10 received by the GNSS antenna 29, thereby calculating one or more of the approximate position data 13 and the precise position data 14.
  • the positioning calculation unit 20 calculates approximate position data 13 based on multiple satellite signals 10 received by the GNSS antenna 29.
  • the approximate position data 13 is calculated using the principle of triangulation from the pseudo distances 7 between at least four or more positioning satellites 3 and the GNSS antenna 29.
  • the pseudo distances 7 include errors due to the orbit of each positioning satellite 3, the accuracy of the clocks used in the mobile positioning device 2 and the positioning satellites 3, and delays in the carrier wave that occur when passing through the ionosphere and troposphere.
  • the positioning calculation unit 20 calculates precise position data 14 based on both the satellite signal 10 received by the GNSS antenna 29 and the correction signal 11 received from the calculation control unit 28.
  • the precise position data 14 is calculated from the pseudo distances 7 and carrier phases 8 between the GNSS antenna 29 and at least five or more positioning satellites 3 contained in the satellite signal 10 received by the GNSS antenna 29, and the pseudo distances 7 and carrier phases 8 between the base station 4 and at least five or more positioning satellites 3 contained in the correction signal 11.
  • a carrier phase difference is calculated, which is the difference between the carrier phase 8 between the positioning satellite 3 and the GNSS antenna 29 and the carrier phase 8 between the positioning satellite 3 and the base station 4.
  • the decimal part of the wave number indicating which part of the continuous wave it is in the carrier phase 8 of the satellite signal 10 is known, but the integer part of the wave number excluding the decimal part of the wave number is unknown.
  • the baseline length between the base station 4 and the GNSS antenna 29 can be accurately determined.
  • the position of the base station 4 on Earth is recorded in the correction signal 11, so the position of the GNSS antenna 29 can be predicted from the baseline length between the position of the base station 4 and the GNSS antenna 29.
  • the positioning calculation unit 20 therefore calculates precise position data 14 by correcting the approximate position data 13, which is the result of independent positioning, using the position of the GNSS antenna 29 predicted from the baseline length between the position of the base station 4 and the GNSS antenna 29. At this time, the positioning calculation unit 20 assumes that the wave number integer part included in the carrier phase difference at the past time and the wave number integer part at the current time are continuous, and calculates the precise position data 14 by using a Kalman filter or the like.
  • the positioning calculation unit 20 When the positioning calculation unit 20 receives a calculation initialization command from the calculation control unit 28, it discards the assumption that the wave number integer part up to that point was continuous, and starts calculating the wave number integer part and baseline length again. Immediately after receiving the calculation initialization command, the positioning calculation unit 20 can only estimate the wave number decimal part of the continuous wave at the carrier phase 8 of the satellite signal 10, so the positioning accuracy temporarily decreases until the wave number integer part of the continuous wave is determined. If the positioning calculation unit 20 cannot determine the wave number decimal part and wave number integer part of the carrier phase difference, it determines that the interferometric positioning calculation has failed.
  • the positioning calculation unit 20 If the positioning calculation unit 20 is able to calculate precise position data 14, it outputs the precise position data 14 as position information 12, and only if it is unable to calculate precise position data 14, it outputs approximate position data 13 as position information 12.
  • the positioning calculation unit 20 outputs the position information 12 to the calculation control unit 28.
  • the communication unit 21 transmits the generated position information region received from the calculation control unit 28 to the distribution server 5.
  • the distribution server 5 generates a correction signal 11 according to the generated position information 30 received from the communication unit 21, and outputs it to the communication unit 21.
  • the correction signal 11 received by the communication unit 21 from the distribution server 5 includes at least a satellite identification number 100 (see FIG. 2 ), which is an identification number of the positioning satellite 3, a correction signal generation time 101 (see FIG. 2 ), which is the time when the correction signal 11 was generated, a base station ID 102, a pseudo distance 7, and a carrier phase 8.
  • the communication unit 21 outputs the correction signal 11 received from the distribution server 5 to the calculation control unit 28. For example, when there is a radio wave interference or a failure occurs in either the communication unit 21 or the distribution server 5, the communication unit 21 may fail to receive the correction signal 11.
  • the correction signal DB 22 records the correction signal 11 in accordance with an instruction from the calculation control unit 28.
  • the correction signal DB 22 records at least the satellite identification number 100, the correction signal generation time 101, the base station ID 102, the pseudo distance 7, and the carrier phase 8 as the correction signal 11 previously received from the calculation control unit 28.
  • the correction signal DB 22 acquires the correction signal 11 received by the calculation control unit 28 from the distribution server 5 via the communication unit 21 from the calculation control unit 28, and stores the correction signal 11.
  • FIG. 2 is a data table showing details of the correction signal 11 recorded by the correction signal DB 22.
  • the correction signal DB 22 stores the correction signals 11 in chronological order of the correction signal generation time 101, and at the same time, stores the correction signals 11 at least in order of the satellite identification number 100. If a correction signal 11 has already been recorded for the same time and from the same positioning satellite 3 as the correction signal 11 received from the calculation control unit 28, the correction signal DB 22 updates the pseudo distance 7, carrier phase 8, and base station ID 102 of the recorded correction signal 11.
  • the correction signal DB 22 determines that the data group with the most recent recorded correction signal generation time 101 is the latest correction signal 11.
  • FIG. 2 shows an example in which correction signals 11 with correction signal generation times 101 from 07:00:00 to 07:30:00 are stored, and the data group with a correction signal generation time 101 of "07:30:00" corresponds to the latest correction signal 11.
  • the correction signal DB 22 is configured in a state where the correction signal 11 can always be referenced by the correction signal prediction unit 23 and the calculation control unit 28. If the correction signal DB 22 is unable to secure sufficient storage space, it may, for example, record the correction signal 11 for only a predetermined fixed period of time, and when the recording time exceeds the fixed period, execute a process of deleting the oldest record. Furthermore, when the correction signal DB 22 receives an initialization command from the calculation control unit 28, it deletes all records of the recorded correction signal 11.
  • correction signal prediction unit 23 Based on the correction signal 11 recorded in the correction signal DB 22 and the correction signal 11 from the calculation control unit 28, the correction signal prediction unit 23 calculates correction signal prediction information 18 from the correction signal 11 recorded in the correction signal DB 22 and the correction signal 11 received from the calculation control unit 28. In other words, the correction signal prediction unit 23 calculates correction signal prediction information 18 including a prediction model of the correction signal 11 to be distributed by the base station 4 at the current time or in the future, from the correction signal 11 received in the past.
  • the correction signal prediction unit 23 constructs a mathematical model for predicting the pseudo distance 7 and carrier phase 8 described in the correction signal 11 received from the calculation control unit 28 based on the correction signal 11 (past correction signal 11) recorded in the correction signal DB 22, and calculates it as correction signal prediction information 18.
  • t the time described in the correction signal 11 received by the correction signal prediction unit 23 from the calculation control unit 28 will be referred to as "t".
  • FIG. 3 is a diagram showing a mathematical model for the pseudo-distance 7 and carrier phase 8 calculated by the correction signal prediction unit 23 as the correction signal prediction information 18.
  • FIG. 3 is a graph of the mathematical model.
  • the correction signal prediction information 18 is expressed as a mathematical model calculated using the values of the pseudo-distance 7 and carrier phase 8 at a preset number of times, for example, the past five times recorded in the correction signal DB 22.
  • the correction signal prediction unit 23 constructs a mathematical model for all positioning satellites 3 listed in the correction signal 11 received from the calculation control unit 28 at time t based on the correction signal DB 22 and the calculation control unit 28, and calculates the correction signal prediction information 18.
  • FIG. 4 shows the parameters of the mathematical model that the correction signal prediction unit 23 calculates as the correction signal prediction information 18 based on the correction signal DB 22.
  • the correction signal prediction unit 23 calculates the parameters of a mathematical model that predicts the pseudo-distance 7 and carrier phase 8 of each positioning satellite 3 at time t as correction signal prediction information 18. For example, when the pseudo-distance 7 and carrier phase 8 of a specific positioning satellite 3 are recorded in the correction signal DB 22 at five or more times in the past, the correction signal prediction unit 23 calculates the correction signal prediction information 18 corresponding to the positioning satellite 3.
  • correction signal prediction unit 23 If the correction signal prediction unit 23 has not recorded the pseudorange 7 and carrier phase 8 of a specific positioning satellite 3 for the past five or more times, it does not calculate correction signal prediction information 18 for the positioning satellite 3.
  • the correction signal prediction unit 23 calculates the difference between the correction signal 11 received from the calculation control unit 28 and the predicted value predicted from the correction signal prediction information 18 as the correction signal prediction error 36.
  • the correction signal prediction unit 23 may calculate the correction signal prediction information 18 and the correction signal prediction error 36 only when it receives a correction signal 11 from the calculation control unit 28, or may set a control period of 5 seconds or 10 seconds and calculate the correction signal prediction information 18 and the correction signal prediction error 36 for the correction signal 11 received from the calculation control unit 28 most recently in the control period.
  • the correction signal prediction unit 23 outputs the correction signal prediction information 18 and the correction signal prediction error 36 to the correction signal prediction result DB 24.
  • the correction signal prediction result DB 24 records the correction signal prediction information 18 and the correction signal prediction error distribution 37 (see FIG. 6 ) of the positioning satellite 3 based on the output of the correction signal prediction unit 23.
  • the correction signal prediction result DB 24 records the correction signal prediction information 18 in the format shown in FIG. 4.
  • the correction signal prediction result DB 24 receives and records the correction signal prediction error 36 from the correction signal prediction unit 22, and calculates the correction signal prediction error distribution 37, which is the probability distribution of the correction signal prediction error 36.
  • the correction signal prediction result DB24 calculates and records the correction signal prediction error distribution 37 for all positioning satellites 3 for which the correction signal prediction information 18 was calculated.
  • the correction signal prediction result DB24 is configured to allow the satellite signal prediction unit 26 and the satellite signal continuity determination unit 27 to refer to the correction signal prediction information 18 and the correction signal prediction error distribution 37.
  • the correction signal prediction result DB 24 may execute a process of deleting the correction signal prediction information 18 and correction signal prediction error distribution 37 linked to the positioning satellite 3 recorded in the correction signal prediction result DB 24.
  • correction signal prediction result DB 24 when the correction signal prediction result DB 24 receives an initialization command from the calculation control unit 28, it deletes the correction signal prediction information 18 and correction signal prediction error distribution 37 of all recorded positioning satellites 3.
  • the satellite signal prediction unit 26 calculates satellite signal prediction information 19 including a prediction model of the satellite signal 10 to be distributed at the current time or in the future based on the satellite signal 10 received by the mobile station 29 and a correction signal 11 based on the satellite signal 10 distributed from the base station 4.
  • the satellite signal prediction unit 26 operates only when it receives a satellite signal 10 from the calculation control unit 28. Based on the correction signal prediction result DB 24 and the calculation control unit 28, the satellite signal prediction unit 26 calculates satellite signal prediction information 19 from the correction signal prediction information 18 recorded in the correction signal prediction result DB 24 and the satellite signal 10 received from the calculation control unit 28.
  • the satellite signal prediction unit 26 constructs a mathematical model (a prediction model of the satellite signal 10 to be distributed at the current time or in the future) for predicting the satellite signal 10 to be next received by the GNSS antenna 29, assuming that the GNSS antenna 29 is stationary, from the predicted value of the correction signal 11 calculated using the correction signal prediction information 18 recorded in the correction signal prediction result DB 24 and the satellite signal 10, and calculates it as satellite signal prediction information 19.
  • a mathematical model a prediction model of the satellite signal 10 to be distributed at the current time or in the future
  • T the time indicated in the satellite signal 10 received by the satellite signal prediction unit 26 from the calculation control unit 28.
  • FIG. 7 shows a mathematical model for the pseudorange 7 and carrier phase 8 that the satellite signal prediction unit 26 calculates as satellite signal prediction information 19.
  • FIG. 7 shows a graph of the mathematical model.
  • the satellite signal prediction information 19 calculates the difference d between the pseudo-distance 7 or carrier phase 8 described in the predicted value of the correction signal 11 calculated from the satellite signal 10 at time T and the correction signal prediction information 18 using the following equation (4).
  • the satellite signal prediction unit 26 corrects the mathematical model of the corrected signal prediction information 18 using the difference d calculated by the above formula (4), and calculates the satellite signal prediction information 19 using the following formula (5) that can calculate the pseudorange 7 and carrier phase 8 of the satellite signal 10 received by the GNSS antenna 29, assuming that the GNSS antenna 29 is stationary at an arbitrary time "T1".
  • the satellite signal prediction unit 26 calculates satellite signal prediction information 19 based on the satellite signal 10 and the corrected signal prediction information 18 by correcting the corrected signal prediction information 18 with the satellite signal 10.
  • the satellite signal prediction unit 26 outputs the calculated satellite signal prediction information 19 to the satellite signal prediction result DB 25.
  • the satellite signal prediction result DB 25 records satellite signal prediction information 19 of the positioning satellites 3 based on the outputs of the satellite signal prediction unit 26 and the calculation control unit 28.
  • the satellite signal prediction result DB 25 records the satellite signal prediction information 19 in the format shown in Fig. 8.
  • the satellite signal prediction result DB 25 is configured to allow the satellite signal continuity determination unit 27 to refer to the satellite signal prediction information 19.
  • the satellite signal prediction result DB 25 may execute a process of deleting the satellite signal prediction information 19 linked to the positioning satellite 3 recorded in the satellite signal prediction result DB 25.
  • the satellite signal prediction result DB 25 receives an initialization command from the calculation control unit 28, it deletes the satellite signal prediction information 19 of all recorded positioning satellites 3.
  • the satellite signal continuity determination unit 27 operates only when it receives a satellite signal 10 from the calculation control unit 28.
  • the satellite signal continuity determination unit 27 detects the continuity of the pseudorange 7 and carrier phase 8 described in the satellite signal 10 received by the GNSS antenna 29, based on information from the correction signal prediction result DB 24, the satellite signal prediction result DB 25, and the calculation control unit 28, using the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB 24, the satellite signal prediction information 19 recorded in the satellite signal prediction result DB 25, and the satellite signal 10 received from the calculation control unit 28.
  • the satellite signal continuity determination unit 27 notifies the calculation control unit 28 of the continuity of the pseudo-distance 7 and carrier phase 8 described in the satellite signal 10 received from the calculation control unit 28 as satellite signal continuity information 16.
  • the calculation control unit 28 can estimate the operating state of the GNSS antenna 29 according to the continuity of the pseudo-distance 7 and carrier phase 8 described in the satellite signal 10 received from the satellite signal continuity determination unit 27.
  • the satellite signal continuity determination unit 27 detects only the continuity of the carrier phase 8, but the present invention can also be similarly applied when the pseudo-distance 7 is used.
  • FIG. 9 is a flowchart showing the processing of the satellite signal continuity determination unit 27.
  • the flowchart shown in FIG. 9 shows the processing performed by the satellite signal continuity determination unit 27 after the satellite signal continuity determination unit 27 receives the satellite signal 10 from the calculation control unit 28.
  • step S301 it is confirmed whether satellite signal prediction information 19 is recorded in satellite signal prediction result DB 25. If satellite signal prediction information 19 is recorded in satellite signal prediction result DB 25, the process proceeds to step S302, and if not, the process proceeds to step S310.
  • step S302 S_SUM, which is the total number of positioning satellites 3 listed in the satellite signal 10 received from the calculation control unit 28, is calculated.
  • step S303 it is confirmed whether S_SUM is 5 or more and whether interferometric positioning is possible. If there are 5 or more, the first positioning satellite 3 listed in the satellite signal 10 is selected as S (step S303a), N is set to 0 (step S303b), and the process proceeds to step S304.
  • step S303 If S_SUM is less than 5 in step S303, proceed to step S310.
  • step S304 the above-mentioned mathematical model of the satellite signal prediction information 19 is used to predict the carrier phase 8 of the satellite signal 10 related to the positioning satellite S at the time t when the GNSS antenna 29 receives the satellite signal 10, which is included in the satellite signal 10 received from the calculation control unit 28.
  • step S305 a carrier phase prediction error ⁇ 1 is calculated, which is the difference between the predicted value of carrier phase 8 calculated in step 304 and the actual measured value of carrier phase 8 contained in satellite signal 10 received from calculation control unit 28.
  • a carrier phase prediction error threshold ⁇ 1_MAX is calculated, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted.
  • the carrier phase prediction error threshold ⁇ 1_MAX may be, for example, a threshold value of the 1 ⁇ , 2 ⁇ , or 3 ⁇ interval of the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB24, and when the carrier phase prediction error ⁇ 1 calculated in step S305 exceeds the threshold value, it may be determined that the carrier phase 8 for the positioning satellite S has not been accurately predicted.
  • step S307 it is determined whether the carrier phase prediction error ⁇ 1 is equal to or greater than the carrier phase prediction error threshold ⁇ 1_MAX. If the carrier phase prediction error ⁇ 1 is equal to or greater than ⁇ 1_MAX in step S307, the number of satellites for which the continuity of the carrier phase 8 has been lost is counted as N (step S307a), and the process proceeds to step S308. If the carrier phase prediction error ⁇ 1 is less than the carrier phase prediction error threshold ⁇ 1_MAX in step S307, no specific processing is performed and the process proceeds to step S308.
  • step S308 it is determined whether or not all of the positioning satellites 3 described in the satellite signal 10 received from the calculation control unit 28 have been selected as positioning satellites S. If all of the positioning satellites 3 have been selected, the process proceeds to step S309.
  • step S308a If all positioning satellites 3 have not been selected in step S308, the next positioning satellite 3 is selected as S (step S308a), and the process returns to step S304.
  • step S309 it is determined whether the number N of satellites for which continuity of the carrier phase 8 has been lost is equal to or greater than the positioning satellite number threshold N_MAX. If the number N of satellites for which continuity has been lost is less than the positioning satellite number threshold N_MAX, proceed to step S312. If the number N of satellites for which continuity has been lost is equal to or greater than the positioning satellite number threshold N_MAX, proceed to step S311.
  • the method for determining the threshold number of positioning satellites N_MAX may be, for example, set based on whether the continuity of the carrier phase 8 has been lost for ⁇ % or more of the positioning satellites 3 described in the satellite signal 10 received from the calculation control unit 28.
  • the calculation formula for the threshold number of positioning satellites N_MAX is given by the following formula (6) with S_SUM as a variable. Note that ⁇ in the following formula (6) is a predetermined percentage.
  • step S310 shown above the satellite signal continuity determination unit 27 does not output the satellite signal continuity information 16 of the satellite signal 10 received from the calculation control unit 28 to the calculation control unit 28.
  • step S311 the satellite signal continuity determination unit 27 outputs the satellite signal continuity information 16 to the calculation control unit 28, indicating that there is no continuity in the satellite signal 10 received from the calculation control unit 28.
  • step S312 the satellite signal continuity determination unit 27 outputs satellite signal continuity information 16 to the calculation control unit 28, indicating that there is continuity in the satellite signal 10 received from the calculation control unit 28.
  • the calculation control unit 28 obtains location information 12 from the positioning calculation unit 20 and obtains satellite signal continuity information 16 from the satellite signal continuity determination unit 27 by issuing operational commands to the positioning calculation unit 20, the communication unit 21, the correction signal prediction unit 23, the satellite signal prediction unit 26 and the satellite signal continuity determination unit 27.
  • the calculation control unit 28 calculates stationary state information 15, which is the stationary state of the GNSS antenna 29, according to the satellite signal continuity information 16 acquired from the satellite signal continuity determination unit 27.
  • the calculation control unit 28 then transmits the acquired position information 12 and the calculated stationary state information 15 to an external terminal (not shown) (when it is determined that the mobile station 29 is stationary, it calculates stationary state information 15 indicating the stationary state and transmits it to the external terminal).
  • the external terminal is not limited to this embodiment, and for example, when the present invention is used in a mobile body position/attitude estimation system, a vehicle control module or an inertial sensor calibration module that requires the mobile body position information 12 and stationary state information 15 corresponds to the external terminal.
  • the calculation control unit 28 refers to and edits the data recorded in the correction signal DB 22, the correction signal prediction result DB 24, and the satellite signal prediction result DB 25.
  • the order in which the calculation control unit 28 issues operation commands to the positioning calculation unit 20, the communication unit 21, the correction signal prediction unit 23, the satellite signal prediction unit 26, and the satellite signal continuity determination unit 27, and the method of determination thereof, will be described later.
  • the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the positioning calculation unit 20, thereby instructing the positioning calculation unit 20 to calculate the position information 12.
  • the calculation control unit 28 has acquired the correction signal 11 from the distribution server 5 via the communication unit 21, it transmits the satellite signal 10 and the correction signal 11 to the positioning calculation unit 20, thereby instructing the positioning calculation unit 20 to calculate the position information 12.
  • the calculation control unit 28 receives the correction signal 11 corresponding to the base station 4 from the distribution server 5 by transmitting the generated position information 30 to the distribution server 5 via the communication unit 21.
  • the generated position information 30 is position information that the distribution server 5 uses to select the base station 4 that generates the correction signal 11, and is recorded in the calculation control unit 28.
  • the distribution server 5 selects the base station 4 that generates the correction signal 11 according to the position information 12 received from the calculation control unit 28.
  • the calculation control unit 28 determines that the distribution server 5 has changed the base station 4 that generates the correction signal 11.
  • the calculation control unit 28 initializes the calculation of the positioning calculation unit 20.
  • the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 to the correction signal prediction unit 23, thereby instructing the correction signal prediction unit 23 to calculate the correction signal prediction information 18.
  • the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the satellite signal prediction unit 26, thereby instructing the satellite signal prediction unit 26 to calculate the satellite signal prediction information 19.
  • the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the satellite signal continuity determination unit 27, thereby instructing the satellite signal continuity determination unit 27 to calculate the satellite signal continuity information 16.
  • the calculation control unit 28 outputs the position information 12 and stationary state information 15 in the format shown in FIG. 10.
  • the calculation control unit 28 links the output time 103, which is the time when the satellite signal 10 used by the positioning calculation unit 20 to calculate the position information 12 was received by the GNSS antenna 29, with the position information 12 and stationary state information 15 calculated using the satellite signal 10, and transmits them to an external terminal (not shown).
  • FIG. 10 shows the output time 103, position information 12, and stationary state information 15 in table format, but the calculation control unit 28 does not transmit the position information 12 and stationary state information 15 at multiple output times all at once. Rather, it links the position information 12 received from the positioning calculation unit 20 and the stationary state information 15 calculated by the calculation control unit 28 to the output time and transmits them each time to an external terminal (not shown).
  • the calculation control unit 28 receives satellite signal continuity information 16 from the satellite signal continuity determination unit 27 and calculates stationary state information 15. If the calculation control unit 28 receives the satellite signal continuity information 16 indicating that there is continuity, it outputs the stationary state information 15 to the external terminal as stationary, as shown in FIG. 10.
  • the calculation control unit 28 When the calculation control unit 28 receives the satellite signal continuity information 16 indicating no continuity, it outputs the stationary state information 15 to the external terminal as an operation, as shown in FIG. 10.
  • calculation control unit 28 If the calculation control unit 28 does not receive satellite signal continuity information 16, it outputs the stationary state information 15 as NULL to the external terminal, as shown in FIG. 10.
  • the process shown below is executed each time the GNSS antenna 29 receives a satellite signal 10 from a positioning satellite 3.
  • FIG. 11 is a flowchart showing steps S201 to S207 of the processing of the mobile positioning device 2.
  • FIG. 12 is a flowchart showing steps S208 to S217 of the processing of the mobile positioning device 2.
  • FIG. 13 is a flowchart showing steps S218 to S232 of the processing of the mobile positioning device 2.
  • step S201 the GNSS antenna 29 transmits the satellite signal 10 received from the positioning satellite 3 to the calculation control unit 28.
  • step S202 the calculation control unit 28 transmits the satellite signal 10 acquired from the GNSS antenna 29 to the satellite signal continuity determination unit 27 and commands the satellite signal continuity determination unit 27 to perform calculations.
  • the satellite signal continuity determination unit 27 executes the processes from step S301 to step S312 shown in FIG. 9.
  • step S203 the calculation control unit 28 checks whether it has received satellite signal continuity information 16 from the satellite signal continuity determination unit 27. If it has received satellite signal continuity information 16, it proceeds to step S204. If it has not received satellite signal continuity information 16 in step S203, it proceeds to step S207.
  • step S204 the calculation control unit 28 checks whether the satellite signal continuity information 16 received from the satellite signal continuity determination unit 27 states “continuity exists.” If the satellite signal continuity information 16 states “continuity exists,” the process proceeds to step S205. If the satellite signal continuity information 16 does not state "continuity exists,” the process proceeds to step S206.
  • step S205 the calculation control unit 28 calculates the stationary state information 15 as "stationary.”
  • step S206 the calculation control unit 28 calculates the stationary state information 15 as "motion.”
  • step S207 the calculation control unit 28 calculates the stationary state information 15 as "NULL.”
  • step S208 of FIG. 12 it is confirmed whether the calculation control unit 28 has recorded the generation position information 30. If the calculation control unit 28 has recorded the generation position information 30, the process proceeds to step S209. If the calculation control unit 28 has not recorded the generation position information 30 in step S208, the process proceeds to step S227 (shown in FIG. 13).
  • step S209 the calculation control unit 28 transmits the generated position information 30 to the communication unit 21.
  • step S210 the communication unit 21 receives the generated position information 30 from the calculation control unit 28 and transmits it to the distribution server 5, thereby receiving the correction signal 11 from the distribution server 5.
  • the communication unit 21 transmits the correction signal 11 received from the distribution server 5 to the calculation control unit 28.
  • step S211 the calculation control unit 28 checks whether or not the correction signal 11 has been received from the distribution server 5 via the communication unit 21. If the calculation control unit 28 has received the correction signal 11, the process proceeds to step S212. If the calculation control unit 28 has not received the correction signal 11, the process proceeds to step S223 (shown in FIG. 13).
  • step S212 the calculation control unit 28 checks whether or not the correction signal 11 is recorded in the correction signal DB 22. If the correction signal 11 is recorded in the correction signal DB 22, the process proceeds to step S213. If the correction signal 11 is not recorded in the correction signal DB 22, the process proceeds to step S218 (shown in FIG. 13).
  • step S213 the calculation control unit 28 checks whether the base station ID 102 of the correction signal 11 received from the communication unit 21 in step S210 is the same as the base station ID 102 of the correction signal 11 recorded in the correction signal DB 22. If the base station ID 102 of the received correction signal 11 is the same as the base station ID 102 of the recorded correction signal 11, the process proceeds to step S218 (shown in FIG. 13), and if they are not the same, the process proceeds to step S214.
  • step S214 the calculation control unit 28 initializes the correction signal DB22 by deleting the correction signal 11 recorded in the correction signal DB22.
  • step S215 the calculation control unit 28 initializes the correction signal prediction result DB 24 by deleting the correction signal prediction information 18 recorded in the correction signal prediction result DB 24.
  • step S216 the calculation control unit 28 initializes the satellite signal prediction result DB 25 by deleting the satellite signal prediction information 19 recorded in the satellite signal prediction result DB 25.
  • step S217 the calculation control unit 28 sends an initialization command to the positioning calculation unit 20, thereby initializing the positioning calculation of the positioning calculation unit 20.
  • step S218 the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 in step S210 to the correction signal prediction unit 23, and commands the correction signal prediction unit 23 to process it.
  • the correction signal prediction unit 23 transmits the correction signal prediction information 18 and the correction signal prediction error 36 to the correction signal prediction result DB 24, and the correction signal prediction result DB 24 records the correction signal prediction information 18 and the correction signal prediction error distribution 37.
  • step S219 the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the satellite signal prediction unit 26, and commands the satellite signal prediction unit 26 to process it.
  • the satellite signal prediction unit 26 transmits the satellite signal prediction information 19 to the satellite signal prediction result DB 25, and the satellite signal prediction result DB 25 records the satellite signal prediction information 19.
  • step S220 the calculation control unit 28 records the correction signal 11 received from the communication unit 21 in step S210 in the correction signal DB 22.
  • step S221 the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the positioning calculation unit 20.
  • step S222 the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 in step S210 to the positioning calculation unit 20.
  • step S223 the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the positioning calculation unit 20.
  • step S224 the calculation control unit 28 checks whether or not the correction signal 11 is recorded in the correction signal DB 22. If the correction signal 11 is recorded in the correction signal DB 22, the process proceeds to step S225. If the correction signal 11 is not recorded in the correction signal DB 22, the process proceeds to step S227.
  • step S225 the calculation control unit 28 transmits the correction signal 11 recorded in the correction signal DB 22 to the positioning calculation unit 20.
  • step S226 the calculation control unit 28 commands the positioning calculation unit 20 to perform interferometric positioning.
  • step S227 the calculation control unit 28 commands the positioning calculation unit 20 to perform independent positioning.
  • step S228 the calculation control unit 28 judges whether the positioning calculation unit 20 has succeeded in the interferometric positioning.
  • the calculation control unit 28 judges that the interferometric positioning has been successful when the positioning calculation unit 20 has determined either the wave number decimal part or the wave number integer part of the carrier phase difference. If the interferometric positioning is successful, the process proceeds to step S229. If the interferometric positioning is unsuccessful, the process proceeds to step S230.
  • step S229 the positioning calculation unit 20 calculates precise position data 14 by correcting the independent positioning result with the interferometric positioning result, and outputs the precise position data 14 to the calculation control unit 28 as position information 12.
  • step S230 the positioning calculation unit 20 calculates the approximate position data 13, which is the result of independent positioning, and outputs it to the calculation control unit 28 as the position information 12.
  • step S231 the calculation control unit 28 outputs the position information 12 and stationary state information 15 to the external terminal.
  • step S232 the calculation control unit 28 records the location information 12 acquired from the positioning calculation unit 20 as generated location information 30, and then ends the process.
  • the satellite signal 10 received by the GNSS antenna 29 from the positioning satellite 3 and the correction signal 11 received by the communication unit 21 from the distribution server 5 are used to predict the satellite signal 10 that the GNSS antenna 29 will receive from the positioning satellite 3, and the continuity of the satellite signal 10 received by the GNSS antenna 29 is detected from the deviation between the predicted value and the actual measured value.
  • the mobile positioning device 2 If the mobile positioning device 2 detects continuity in the received satellite signal 10, it determines that the GNSS antenna 29 is stationary.
  • the stationary state determination system can determine the continuity of the satellite signal 10 obtained from the positioning satellite 3 and the correction signal obtained from the base station 4. If the acquired satellite signal 10 is continuous, the stationary state determination system can determine that the vehicle is stationary, making it possible to simplify the configuration and determine the stationary state without relying on an inertial sensor.
  • the first embodiment of the present invention it is possible to realize a mobile positioning device and a mobile positioning method that have a simple configuration and that can determine the stationary state of a mobile station without relying on the detection accuracy of an inertial sensor.
  • the mobile positioning device 2 of this embodiment 2 has the same configuration as that of embodiment 1, but differs from embodiment 1 in the processing of the satellite signal prediction unit 26, the satellite signal prediction result DB 25, the satellite signal continuity determination unit 27, and the calculation control unit 28. Therefore, the overall configuration of embodiment 2 is the same as that of FIG. 1, and is therefore not shown in the figure.
  • Example 1 Example 1
  • Example 2 The difference between Example 2 and Example 1 is that when the calculation control unit 28 calculates the stationary state information 15 as "stationary”, the calculation control unit 28 instructs the satellite signal prediction result DB 25 to calculate the satellite signal prediction error distribution 39, and the satellite signal continuity determination unit 27 determines the continuity of the satellite signal 10 based on the satellite signal prediction error distribution 39 calculated by the satellite signal prediction result DB 25, and calculates the satellite signal continuity information 16.
  • the satellite signal prediction result DB 25 calculates the difference between the satellite signal 10 received from the calculation control unit 28 and the predicted value predicted from the satellite signal prediction information 19 as the satellite signal prediction error 38.
  • the satellite signal prediction result DB 25 receives and records the calculated satellite signal prediction error 38, and calculates a satellite signal prediction error distribution 39, which is a probability distribution of the satellite signal prediction error 38.
  • the satellite signal prediction result DB 25 calculates the satellite signal prediction error distribution 39 only when instructed by the calculation control unit 28 to calculate the satellite signal prediction error distribution 39.
  • Satellite signal continuity determination unit 27 When a satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25, the satellite signal continuity determination unit 27 detects the continuity of the pseudorange 7 and carrier phase 8 described in the satellite signal 10 received by the GNSS antenna 29 based on the satellite signal prediction error distribution 39, and determines the continuity of the satellite signal.
  • FIG. 14 shows a process that is inserted between steps S305 and S307 in the flowchart of FIG. 9 as an alternative to S306, and can be realized by a processor included in the satellite signal continuity determination unit 27 executing a computer program.
  • step S313 the satellite signal continuity determination unit 27 checks whether or not the satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25. If the satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25, the process proceeds to step S314. If the satellite signal prediction error distribution 39 is not recorded in the satellite signal prediction result DB 25, the process proceeds to step S315.
  • the satellite signal continuity determination unit 27 calculates a carrier phase prediction error threshold ⁇ 1_MAX, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted, based on the satellite signal prediction error distribution 39 recorded in the satellite signal prediction result DB 25.
  • the carrier phase prediction error threshold ⁇ 1_MAX may be set to, for example, a value in the 1 ⁇ , 2 ⁇ , or 3 ⁇ interval of the satellite signal prediction error distribution 39, and when the carrier phase prediction error ⁇ 1 calculated in step S305 exceeds the threshold, it may be determined that the carrier phase 8 for the positioning satellite S has not been accurately predicted.
  • step S315 the satellite signal continuity determination unit 27 calculates the carrier phase prediction error threshold ⁇ 1_MAX, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted, based on the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB 24.
  • ⁇ 1_MAX a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted, based on the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB 24.
  • the calculation control unit 28 calculates stationary state information 15 of the GNSS antenna 29 according to the satellite signal continuity information 16 acquired from the satellite signal continuity determination unit 27. Then, when the calculation control unit 28 calculates the stationary state information 15 as "stationary", it transmits satellite signals 10 to the satellite signal prediction result DB 25, thereby instructing the satellite signal prediction error distribution 39 to be calculated. The operation of the calculation control unit 28 instructing the satellite signal prediction result DB 25 to perform a calculation is executed immediately after step 205 shown in FIG.
  • the mobile positioning device 2 can calculate the prediction accuracy of the satellite signal prediction information 19 when the GNSS antenna 29 is stationary, and can calculate an appropriate prediction error threshold based on the prediction error distribution.
  • the mobile positioning device 2 can determine the continuity of the satellite signal 10 with high accuracy, improving the accuracy of stationary determination.
  • the second embodiment of the present invention it is possible to realize a mobile positioning device and a mobile positioning method that have a simple configuration, improve the accuracy of determining stationary state without relying on the detection accuracy of an inertial sensor, and determine the stationary state of a mobile station.
  • the satellite signal prediction unit 26 can calculate the difference between the satellite signal 10 received from the calculation control unit 28 and a prediction value (prediction model) predicted from the satellite signal prediction information 19, and calculate a satellite signal prediction error distribution 39, which is a probability distribution of the satellite signal prediction error 38, from the calculated difference.
  • the satellite signal prediction unit 26 can then calculate the satellite signal prediction accuracy from the satellite signal prediction error distribution 39.
  • the satellite signal prediction unit 26 calculates the satellite signal prediction accuracy based on the stationary state information 15.
  • the satellite signal continuity determination unit 27 determines the continuity of the satellite signal based on the satellite signal prediction accuracy.
  • a mobile station is a moving object (e.g., an automobile, a train, an agricultural machine, or a construction machine) equipped with a GNSS antenna 29.
  • the GNSS antenna 29 shown in FIG. 1 also includes a moving object equipped with a GNSS antenna 29, that is, a mobile station.
  • 1 Stationary state determination system
  • 2 Mobile positioning device
  • 3 Positioning satellite
  • 4 Base station
  • 5 Distribution server
  • 7 Pseudo distance
  • 8 Carrier wave phase
  • 10 Satellite signal
  • 11 Correction signal
  • 12 Position information
  • 13 Approximate position data
  • 15 Stationary state information
  • 16 Satellite signal continuity information
  • 18 Correction signal prediction information
  • 19 Satellite signal prediction information
  • 21 Communication unit
  • 23 Correction signal prediction unit
  • 24 Correction signal prediction result DB
  • 25 Satellite signal prediction result DB
  • 26 Satellite signal prediction unit
  • 27 Satellite signal continuity determination unit
  • 28 Calculation control unit
  • 29 GNSS antenna (mobile station)

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

There is realized a moving-body positioning device that has a simple configuration, the moving-body positioning device assessing whether a mobile station is in a stationary state without relying on the detection accuracy of an inertia sensor. This moving-body positioning device 2 comprises: a satellite signal prediction unit 26 that calculates satellite signal prediction information 19, which includes a satellite signal 10 received by a mobile station 29 and a satellite-signal 10 prediction model that is to be distributed at a current time or in the future on the basis of a correction signal 11 based on the satellite signal 10 distributed from a base station 4; a satellite signal continuity assessment unit 27 that calculates satellite signal continuity information 16, which relates to the continuity of the satellite signal 10, on the basis of the satellite signal 10 and the satellite signal prediction information 19; and a computation control unit 28 that assesses whether the mobile station 29 is in a stationary state on the basis of the satellite signal continuity information 16. In cases in which continuity of the satellite signal 10 is detected on the basis of the satellite signal continuity information 16, the computation control unit 28 determines that the mobile station 29 is in a stationary state.

Description

移動体測位装置及び移動体測位方法Mobile object positioning device and mobile object positioning method
 本発明は、移動体測位装置及び移動体測位方法に関する。 The present invention relates to a mobile object positioning device and a mobile object positioning method.
 従来においては、地球上空に位置する人工衛星から地球上に送信された衛星信号を受信することで測位を行うGNSS(Global Navigation Satellite System)が検出した車両位置の誤差を補正する技術が知られている。 Conventionally, there is known technology for correcting errors in vehicle position detected by the Global Navigation Satellite System (GNSS), which performs positioning by receiving satellite signals transmitted to Earth from artificial satellites positioned above the Earth.
 特許文献1には、以下のようなGNSSと移動体の運動量及び姿勢変化を検出する慣性センサそれぞれの検出位置を統合する技術が開示されている。 Patent Document 1 discloses a technology for integrating the detection positions of GNSS and an inertial sensor that detects the momentum and attitude changes of a moving body, as shown below.
 「GNSS出力位置及びデッドレコニング(DR)位置の各誤差分散値を用いて第1時点における最尤位置を計算し、第1時点から第2時点までにDR装置が算出した相対位置を最尤位置に足し合わせて仮定DR位置を算出し、上記相対位置を第1時点におけるGNSS出力位置に足し合わせて適応DR位置を算出し、GNSS出力位置と適応DR位置との差を適応DR誤差として求めるとともにその時の車両状態も決定する。車両状態に応じた適応DR誤差を記憶しておき、新たに算出した適応DR誤差を加味して、適応DR誤差の平均値と分散値を更新し、仮定DR位置に基づく誤差楕円に仮定DR位置を適応DR誤差の平均値分ずらした位置を中心とする誤差楕円を加えた存在可能性範囲内にGNSS出力位置があればそれを基に、なければ仮定DR位置を基に最尤誤差楕円を求める。」
 上述した車両の位置補正手法では、慣性センサによる計測値から算出される、車両の運動量と姿勢変化を積分し求めた車両の位置・姿勢に基づいてGNSSが検出した車両の位置を補正する。
"The maximum likelihood position at a first time point is calculated using the error variance values of the GNSS output position and the dead reckoning (DR) position, the relative position calculated by the DR device from the first time point to the second time point is added to the maximum likelihood position to calculate an assumed DR position, the relative position is added to the GNSS output position at the first time point to calculate an adaptive DR position, the difference between the GNSS output position and the adaptive DR position is obtained as an adaptive DR error, and the vehicle state at that time is also determined. The adaptive DR error according to the vehicle state is stored, and the average value and variance value of the adaptive DR error are updated by taking into account the newly calculated adaptive DR error, and if the GNSS output position is within a possible existence range obtained by adding an error ellipse centered on a position obtained by shifting the assumed DR position by the average value of the adaptive DR error to the error ellipse based on the assumed DR position, the maximum likelihood error ellipse is calculated based on that, or if not, based on the assumed DR position."
In the above-described vehicle position correction method, the vehicle position detected by the GNSS is corrected based on the vehicle position and attitude obtained by integrating the vehicle momentum and attitude change calculated from the measurement values obtained by the inertial sensor.
 この手法では、慣性センサの誤差が徐々に車両位置の推定誤差として蓄積されるため、慣性センサの計測精度が非常に重要となり、これら慣性センサの校正が必要である。 In this method, errors in the inertial sensors gradually accumulate as estimated errors in the vehicle position, so the measurement accuracy of the inertial sensors is extremely important and these inertial sensors need to be calibrated.
 また、慣性センサの校正は、誤差成分を明確に推定可能となる車両が静止状態の際に、高精度に実施することが可能である。 In addition, the inertial sensor can be calibrated with high precision when the vehicle is stationary, allowing the error components to be clearly estimated.
 したがって、慣性センサの校正には車両の静止状態判定が重要であり、特許文献2には以下の技術が開示されている。 Therefore, determining whether the vehicle is stationary is important for calibrating the inertial sensor, and Patent Document 2 discloses the following technology.
 「移動体の進行方向加速度信号を入力すると共に、移動体の静止を検出する複数の信号により移動体の静止を判定して、該静止判定時に上記進行方向加速度信号に含まれるバイアス値を測定して、該測定したバイアス値を用いて上記進行方向加速度信号を補正し、かつ該補正後の進行方向加速度信号と上記スケールファクタ・速度推定部が出力する上記移動体速度推定値とを用いて、移動体の推定加速度と距離推定値とを演算して出力する加速度推定部、とを備えたことを特徴とする移動体加速度・距離推定回路。」
 また、特許文献3には、「変動検出器から入力される出力信号が閾値範囲内のときは動体が静止していると判定する」といった技術が開示されている。
"A mobile object acceleration/distance estimation circuit comprising an acceleration estimation unit that inputs a moving object's acceleration signal in the traveling direction, determines whether the moving object is at rest based on a plurality of signals that detect the stationary state of the moving object, measures a bias value included in the moving object acceleration signal when the stationary state is determined, corrects the moving object acceleration signal using the measured bias value, and calculates and outputs an estimated acceleration and distance estimate of the moving object using the corrected moving object acceleration signal and the moving object speed estimate output by the scale factor/speed estimation unit."
Furthermore, Patent Document 3 discloses a technique in which "when an output signal input from a motion detector is within a threshold range, it is determined that a moving object is stationary."
 これらの技術を用いることで車両の静止状態を判定することができる。 These technologies can be used to determine when a vehicle is stationary.
特許6900341号公報Patent Publication No. 6900341 特開2005-195395号公報JP 2005-195395 A 特開2001-242192号公報JP 2001-242192 A
 特許文献2に記載の技術によれば、複数センサを用いて車両の静止状態を判断している。 The technology described in Patent Document 2 uses multiple sensors to determine whether the vehicle is stationary.
 しかし、複数センサを用いる場合、車両搭載機器の構成の複雑化が課題となる。 However, when using multiple sensors, the complexity of the vehicle's onboard equipment configuration becomes an issue.
 また、特許文献3に記載の技術によれば、慣性センサの検出した運動量及び姿勢変化の大小から静止状態を判断している。 In addition, according to the technology described in Patent Document 3, the stationary state is determined based on the amount of momentum and the magnitude of posture change detected by the inertial sensor.
 しかし、検出精度が低い慣性センサを用いる場合、静止状態の判定精度も低くなるという課題がある。 However, when using an inertial sensor with low detection accuracy, there is an issue that the accuracy of determining the stationary state is also low.
 本発明の目的は、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局(GNSSアンテナが備えられた移動体)の静止状態を判定する移動体測位装置及び移動体測位方法を実現することである。 The object of the present invention is to realize a mobile object positioning device and a mobile object positioning method that are simple in configuration and can determine the stationary state of a mobile station (a mobile object equipped with a GNSS antenna) without relying on the detection accuracy of an inertial sensor.
 上記目的を達成するため、本発明は次のように構成される。 To achieve the above objective, the present invention is configured as follows:
 移動体測位装置において、移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出する衛星信号予測部と、前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出する衛星信号連続性判定部と、前記衛星信号連続性情報に基づいて前記移動局の静止状態を判定する演算制御部と、を備え、前記演算制御部は、前記衛星信号連続性情報に基づいて前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断する。 The mobile positioning device includes a satellite signal prediction unit that calculates satellite signal prediction information including a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station, a satellite signal continuity determination unit that calculates satellite signal continuity information, which is information regarding the continuity of the satellite signal, based on the satellite signal and the satellite signal prediction information, and a calculation control unit that determines the stationary state of the mobile station based on the satellite signal continuity information, and when the calculation control unit detects the continuity of the satellite signal based on the satellite signal continuity information, it determines that the mobile station is stationary.
 また、移動体測位方法において、移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出し、前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出し、前記衛星信号連続性情報に基づいて、前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断する。 In addition, in a mobile positioning method, satellite signal prediction information is calculated that includes a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station, satellite signal continuity information, which is information regarding the continuity of the satellite signal, is calculated based on the satellite signal and the satellite signal prediction information, and if continuity of the satellite signal is detected based on the satellite signal continuity information, it is determined that the mobile station is stationary.
 本発明によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。 The present invention provides a mobile positioning device and a mobile positioning method that are simple in configuration and can determine the stationary state of a mobile station without relying on the detection accuracy of an inertial sensor.
実施例1に係る移動体測位装置を有する静止状態判定システムのハードウェア構成を示す図である。1 is a diagram illustrating a hardware configuration of a stationary state determination system having a mobile object positioning device according to a first embodiment. 補正信号DBが記録する補正信号を示す図である。FIG. 13 is a diagram showing a correction signal recorded in a correction signal DB. 補正信号予測部が補正信号予測情報として算出する擬似距離及び搬送波位相を説明する図である。11A and 11B are diagrams for explaining a pseudorange and a carrier phase calculated by a correction signal prediction unit as correction signal prediction information. 補正信号予測部が補正信号DBに基づいて、補正信号予測情報として算出する数式モデルのパラメータを示す図である。11 is a diagram showing parameters of a mathematical model calculated as correction signal prediction information by a correction signal prediction unit based on a correction signal DB. FIG. 図1の演算制御部から受信した補正信号と補正信号予測情報から予測した予測値との差分である補正信号予測誤差を示す図である。2 is a diagram showing a correction signal prediction error, which is a difference between a correction signal received from the arithmetic control unit in FIG. 1 and a predicted value predicted from correction signal prediction information. 図1の補正信号予測結果DBが補正信号予測誤差から算出した補正信号予測誤差分布を示す図である。2 is a diagram showing a correction signal prediction error distribution calculated by the correction signal prediction result DB in FIG. 1 from the correction signal prediction error. 衛星信号予測部が衛星信号予測情報として算出する擬似距離及び搬送波位相に関する数式モデルを示す図である。11 is a diagram showing a mathematical model relating to a pseudorange and a carrier phase calculated by a satellite signal prediction unit as satellite signal prediction information. FIG. 衛星信号予測部が補正信号予測結果DBに基づいて、衛星信号予測情報として算出する数式モデルのパラメータを示す図である。13 is a diagram showing parameters of a mathematical model calculated as satellite signal prediction information by a satellite signal prediction unit based on a corrected signal prediction result DB. FIG. 衛星信号連続性判定部の処理を示すフローチャートである。10 is a flowchart showing the process of a satellite signal continuity determination unit. 図1の演算制御部が出力する位置情報及び静止状態情報のデータ構成を示す図である。2 is a diagram showing the data configuration of position information and stationary state information output by the calculation control unit in FIG. 1 . 移動体測位装置の処理を示すフローチャートである。4 is a flowchart showing a process of the mobile positioning device. 移動体測位装置の処理を示すフローチャートである。4 is a flowchart showing a process of the mobile positioning device. 移動体測位装置の処理を示すフローチャートである。4 is a flowchart showing a process of the mobile positioning device. 実施例2における衛星信号連続性判定部が衛星信号の連続性を検出する処理手順を示すフローチャートである。10 is a flowchart showing a processing procedure performed by a satellite signal continuity determination unit in the second embodiment to detect the continuity of a satellite signal.
 以下、図面を参照して本発明に係る移動局における静止状態判定システム及び静止状態判定システムにおける判定方法の実施形態について説明する。図面の説明において同一の要素には同一符号を付し、重複する説明は省略する。 Below, an embodiment of a stationary state determination system for a mobile station and a determination method in the stationary state determination system according to the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are given the same reference numerals, and duplicate descriptions will be omitted.
 また、本発明はこれらの図面に限定されず、一部の構成要素を用いない場合もあり、以下で説明する各実施例の構成要素は適宜組み合わせることができる。 Furthermore, the present invention is not limited to these drawings, and some components may not be used, and the components of each embodiment described below can be combined as appropriate.
 (実施例1)
 本発明に係る移動体測位装置2を有する静止状態判定システム1は、例えば自動車や鉄道、農業機械や建設機械といった移動体の静止状態判定に用いられるシステムである。
Example 1
A stationary state determination system 1 having a mobile object positioning device 2 according to the present invention is a system used for determining the stationary state of mobile objects such as automobiles, trains, agricultural machines, and construction machines.
 図1は、実施例1に係る移動体測位装置2を有する静止状態判定システム1のハードウェア構成を示す図である。 FIG. 1 is a diagram showing the hardware configuration of a stationary state determination system 1 having a mobile object positioning device 2 according to the first embodiment.
 図1において、静止状態判定システム1は、移動体測位装置2と、測位衛星3と、基地局4と、配信サーバ5と、を備える。 In FIG. 1, the stationary state determination system 1 includes a mobile positioning device 2, a positioning satellite 3, a base station 4, and a distribution server 5.
 [測位衛星3]
 測位衛星3は、地球上空の衛星軌道に位置する複数の人工衛星で構成され、地面に向けて衛星信号10を送信することで、全地球航法衛星システム(GNSS)を構築する。GNSSにおいては、複数の測位衛星3からの衛星信号10のうち、いくつかを受信し、受信した複数の衛星信号10を用いることによって、GNSSアンテナ29の地球上の自己位置の取得を可能とする。衛星信号10には、少なくとも測位衛星3の位置情報及び衛星時計誤差が含まれている。測位衛星3は、複数の周波数帯における衛星信号10を送信することで、GNSSの冗長化を図っている。
[Positioning satellite 3]
The positioning satellites 3 are composed of multiple artificial satellites positioned in satellite orbits above the earth, and form a global navigation satellite system (GNSS) by transmitting satellite signals 10 toward the ground. In the GNSS, some of the satellite signals 10 from the multiple positioning satellites 3 are received, and the multiple received satellite signals 10 are used to enable the GNSS antenna 29 to obtain its own position on the earth. The satellite signals 10 include at least the position information and satellite clock error of the positioning satellites 3. The positioning satellites 3 transmit satellite signals 10 in multiple frequency bands, thereby achieving redundancy of the GNSS.
 本実施例1に係る測位システム1は、単一周波数帯における衛星信号10の利用であるとして記載しているが、本発明を複数周波数帯における衛星信号10を用いた測位システムにも同様に適用できる。 The positioning system 1 according to the first embodiment is described as using satellite signals 10 in a single frequency band, but the present invention can be similarly applied to a positioning system that uses satellite signals 10 in multiple frequency bands.
 [基地局4]
 基地局4は、地球上の異なる地点に複数設置されており、それぞれの測位衛星3が送信する衛星信号10を受信する。基地局4は、複数の測位衛星3から受信した衛星信号10を、配信サーバ5(詳細は後述する)に送信する。全ての基地局4は、あらかじめ地球上における位置が高精度に測位されており、その位置情報は配信サーバ5に記憶されている。
[Base station 4]
A plurality of base stations 4 are installed at different points on the earth, and receive satellite signals 10 transmitted by each of the positioning satellites 3. The base stations 4 transmit the satellite signals 10 received from the plurality of positioning satellites 3 to a distribution server 5 (details of which will be described later). The positions of all base stations 4 on the earth are measured in advance with high accuracy, and the position information is stored in the distribution server 5.
 [配信サーバ5]
 配信サーバ5は、基地局4から衛星信号10を受信することで、補正信号11を生成する。配信サーバ5は、RRS方式で補正信号11を生成する。RRS方式は、測位装置2(後述する)から取得した生成位置情報30(後述する)に基づいてその位置近傍に存在する基地局4で受信した衛星信号10から補正信号11を生成する。
[Distribution Server 5]
The distribution server 5 generates a correction signal 11 by receiving the satellite signal 10 from the base station 4. The distribution server 5 generates the correction signal 11 by the RRS method. The RRS method generates the correction signal 11 from the satellite signal 10 received by the base station 4 located near the position based on generated position information 30 (described later) acquired from the positioning device 2 (described later).
 また、配信サーバ5はVRS方式で補正信号11を生成してもよい。VRS方式は、仮想基準局を任意の位置に生成し、仮想基準局の付近に設置されている基地局4で受信した衛星信号10から仮想基準局で受信されるのであろう衛星信号10を算出する。配信サーバ5は、測位装置2から取得した生成位置情報30に基づいてその位置近傍に基地局4を仮想基準局として生成しその補正信号11を演算することで、測位装置2に補正信号11を送信する。 The distribution server 5 may also generate the correction signal 11 using the VRS method. The VRS method generates a virtual reference station at an arbitrary position, and calculates the satellite signal 10 that would be received at the virtual reference station from the satellite signal 10 received at a base station 4 installed near the virtual reference station. The distribution server 5 generates the base station 4 as a virtual reference station near the position based on the generated position information 30 acquired from the positioning device 2, calculates the correction signal 11, and transmits the correction signal 11 to the positioning device 2.
 本実施例1に係る静止状態判定システム1は、配信サーバ5としてRRS方式の利用であるとして記載しているが、本発明を配信サーバ5としてVRS方式を用いた静止状態判定システム1にも同様に適用できる。 The stationary state determination system 1 according to the first embodiment is described as using the RRS method as the distribution server 5, but the present invention can also be applied to a stationary state determination system 1 that uses the VRS method as the distribution server 5.
 配信サーバ5としては、移動体測位装置2の製造会社とは異なる会社、例えば通信キャリアによって提供される有償のサービスを利用することができる。配信サーバ5と測位装置2は、無線通信回線やその他の公知の無線通信回線を用いたネットワーク網によって双方向に通信可能である。 The distribution server 5 can use a paid service provided by a company other than the manufacturer of the mobile positioning device 2, such as a communications carrier. The distribution server 5 and the positioning device 2 can communicate bidirectionally over a network that uses wireless communication lines or other well-known wireless communication lines.
 配信サーバ5は、移動体測位装置2から取得した生成位置情報30に応じて、移動体測位装置2に新たな補正信号11を送信するようにしてもよい。その場合、配信サーバ5は移動体測位装置2から取得した生成位置情報30に、一番近くに生成された基地局4を選択し、その基地局4から受信した衛星信号10により補正信号11を生成し、補正信号11を移動体測位装置2に送信する。 The distribution server 5 may transmit a new correction signal 11 to the mobile positioning device 2 according to the generated location information 30 acquired from the mobile positioning device 2. In this case, the distribution server 5 selects the base station 4 generated closest to the generated location information 30 acquired from the mobile positioning device 2, generates a correction signal 11 from the satellite signal 10 received from that base station 4, and transmits the correction signal 11 to the mobile positioning device 2.
 基地局4には、それぞれを識別するための情報である基地局ID102(図2参照)が定められている。配信サーバ5は、基地局ID102を含む補正信号11を生成する。配信サーバ5は、移動体測位装置2から取得した生成位置情報30に応じて選択した基地局4を変更するたびに、補正信号11に含む基地局ID102を変更する。よって、移動体測位装置2は配信サーバ5から受信した補正信号11に記載されている基地局ID102(図2参照)が変更されたか否かによって基地局4の切替を検知できる。 The base stations 4 are assigned base station IDs 102 (see FIG. 2) that are used to identify each base station. The distribution server 5 generates a correction signal 11 that includes the base station IDs 102. The distribution server 5 changes the base station ID 102 included in the correction signal 11 every time it changes the base station 4 selected according to the generated position information 30 acquired from the mobile positioning device 2. Thus, the mobile positioning device 2 can detect the switching of the base station 4 based on whether the base station ID 102 (see FIG. 2) written in the correction signal 11 received from the distribution server 5 has changed.
 配信サーバ5は、基地局4から受信した衛星信号10に基づいて、各測位衛星3に対し擬似距離7(図2参照)と搬送波位相8(図2参照)を算出し、擬似距離7と搬送波位相8を含む補正信号11を算出する。擬似距離7は、測位衛星3から送信された衛星信号10がGNSSアンテナ29で受信されるまでの時間を計測することで算出される測位衛星3とGNSSアンテナ29までの距離である。擬似距離7は、受信機時計誤差、衛星時計誤差、電離圏遅延、対流圏遅延、その他雑音が含まれている。 The distribution server 5 calculates the pseudo-distance 7 (see FIG. 2) and carrier phase 8 (see FIG. 2) for each positioning satellite 3 based on the satellite signal 10 received from the base station 4, and calculates a correction signal 11 including the pseudo-distance 7 and carrier phase 8. The pseudo-distance 7 is the distance from the positioning satellite 3 to the GNSS antenna 29, calculated by measuring the time it takes for the satellite signal 10 transmitted from the positioning satellite 3 to be received by the GNSS antenna 29. The pseudo-distance 7 includes receiver clock error, satellite clock error, ionospheric delay, tropospheric delay, and other noise.
 搬送波位相8は、同時刻における測位衛星3が送信する衛星信号10の位相とGNSSアンテナ29が受信した衛星信号10の位相差である。搬送波位相8は、整数値バイアス、受信機時計誤差、衛星時計誤差、電離圏遅延、対流圏遅延、その他雑音が含まれている。 The carrier phase 8 is the phase difference between the satellite signal 10 transmitted by the positioning satellite 3 at the same time and the satellite signal 10 received by the GNSS antenna 29. The carrier phase 8 includes integer bias, receiver clock error, satellite clock error, ionospheric delay, tropospheric delay, and other noise.
 搬送波位相8は、測位衛星3が送信する衛星信号10の波長を掛け合わせることで、距離成分として記載してもよい。その場合、移動体測位装置2の処理は搬送波位相8に衛星信号10の波長の逆数を乗じて実行される。補正信号11には、少なくとも基地局4における各測位衛星3の擬似距離7、搬送波位相8、基地局4の地球上における位置、基地局ID102が含まれている。 The carrier phase 8 may be described as a distance component by multiplying it by the wavelength of the satellite signal 10 transmitted by the positioning satellite 3. In this case, the processing of the mobile positioning device 2 is performed by multiplying the carrier phase 8 by the inverse of the wavelength of the satellite signal 10. The correction signal 11 includes at least the pseudo-distance 7 of each positioning satellite 3 at the base station 4, the carrier phase 8, the position of the base station 4 on the Earth, and the base station ID 102.
 [移動体測位装置2]
 移動体測位装置2は、GNSSアンテナ29を用いて受信した衛星信号10と配信サーバ5から取得した補正信号11に基づいてGNSSアンテナ29の静止状態を表す静止状態情報15を算出する。また、移動体測位装置2は、GNSSアンテナ29を用いて受信した衛星信号10と配信サーバ5から取得した補正信号11に基づいてGNSSアンテナ29の位置を示す位置情報12を算出する。
[Mobile positioning device 2]
The mobile positioning device 2 calculates stationary state information 15 indicating the stationary state of the GNSS antenna 29 based on the satellite signal 10 received using the GNSS antenna 29 and the correction signal 11 acquired from the distribution server 5. In addition, the mobile positioning device 2 calculates position information 12 indicating the position of the GNSS antenna 29 based on the satellite signal 10 received using the GNSS antenna 29 and the correction signal 11 acquired from the distribution server 5.
 移動体測位装置2は、図1に示すように、測位演算部20と、通信部21と、補正信号DB(補正信号データベース)22と、補正信号予測部23と、補正信号予測結果DB(補正信号予測結果データベース)24と、を備える。 As shown in FIG. 1, the mobile positioning device 2 includes a positioning calculation unit 20, a communication unit 21, a correction signal DB (correction signal database) 22, a correction signal prediction unit 23, and a correction signal prediction result DB (correction signal prediction result database) 24.
 移動体測位装置2は、さらに、衛星信号予測部26と、衛星信号予測結果DB(衛星信号予測結果データベース)25と、衛星信号連続性判定部27と、演算制御部28と、GNSSアンテナ29と、を備えている。 The mobile positioning device 2 further includes a satellite signal prediction unit 26, a satellite signal prediction result DB (satellite signal prediction result database) 25, a satellite signal continuity determination unit 27, a calculation control unit 28, and a GNSS antenna 29.
 測位演算部20、通信部21、補正信号DB22(補正信号記録部)、補正信号予測部23、補正信号予測結果DB24、衛星信号予測部26、衛星信号予測結果DB25、及び衛星信号連続性判定部27は、演算制御部28の動作指令に応じて定められた処理を実行する。 The positioning calculation unit 20, the communication unit 21, the correction signal DB 22 (correction signal recording unit), the correction signal prediction unit 23, the correction signal prediction result DB 24, the satellite signal prediction unit 26, the satellite signal prediction result DB 25, and the satellite signal continuity determination unit 27 execute the processing determined in response to the operation command of the calculation control unit 28.
 演算制御部28は、測位演算部20の動作周期に応じて位置情報12及び静止状態情報15を出力する。なお、移動体測位装置2の各要素は、ハードウェアによって、又は、コンピュータプログラムを実行することによってソフトウェアによりその機能が実現されるように構成しても良い。また、移動体測位装置2の各要素は、必ずしも単体のハードウェア内に構成される必要はなく、それぞれ独立した別の機器、例えば外部機器や外部サーバとして構成されてもよい。その場合、移動体測位装置2の各要素は、それぞれが通信可能に構成すると良い。 The calculation control unit 28 outputs the position information 12 and the stationary state information 15 according to the operating cycle of the positioning calculation unit 20. Each element of the mobile positioning device 2 may be configured so that its function is realized by hardware, or by software by executing a computer program. Furthermore, each element of the mobile positioning device 2 does not necessarily have to be configured within a single piece of hardware, but may be configured as separate independent devices, such as external devices or external servers. In that case, each element of the mobile positioning device 2 should be configured so that it can communicate with each other.
 [GNSSアンテナ29]
 GNSSアンテナ29は、地球上空に位置する複数の測位衛星3からの衛星信号10を受信し、受信した衛星信号10を演算制御部28に送信する。ここで、衛星信号10はアナログ信号であり、GNSSアンテナ29は、受信した衛星信号10をA/D変換してデジタル信号による衛星信号10を測位演算部29に送信するように構成する。
[GNSS antenna 29]
The GNSS antenna 29 receives satellite signals 10 from a plurality of positioning satellites 3 positioned above the Earth, and transmits the received satellite signals 10 to the calculation control unit 28. Here, the satellite signals 10 are analog signals, and the GNSS antenna 29 is configured to A/D convert the received satellite signals 10 and transmit the satellite signals 10 as digital signals to the positioning calculation unit 29.
 GNSSアンテナ29は、被測位物体において位置を取得したい個所に設置される。例えば、移動体測位装置2が車両に用いられる場合、GNSSアンテナ29は対象とする移動体である車両の車体に設置すれば良い。 The GNSS antenna 29 is installed at a location on the object to be positioned where it is desired to obtain the position. For example, if the mobile object positioning device 2 is used in a vehicle, the GNSS antenna 29 may be installed on the body of the vehicle, which is the target mobile object.
 [測位演算部20]
 測位演算部20は、演算制御部28から受信した測位衛星3からの衛星信号10と補正信号11に基づき、GNSSアンテナ29の地球上の位置を演算し、概略位置データ13と精密位置データ14のどちらか一つ以上を演算する。測位演算部20は、演算された概略位置データ13及び精密位置データ14のどちらか一つを位置情報12として演算制御部28に出力する。
[Positioning calculation unit 20]
The positioning calculation unit 20 calculates the position of the GNSS antenna 29 on the earth based on the satellite signal 10 and the correction signal 11 from the positioning satellite 3 received from the calculation control unit 28, and calculates one or more of approximate position data 13 and precise position data 14. The positioning calculation unit 20 outputs one of the calculated approximate position data 13 and precise position data 14 to the calculation control unit 28 as position information 12.
 概略位置データ13は、測位演算部20が単独測位を用いて算出したGNSSアンテナ29の概略位置である。精密位置データ14は、測位演算部20が干渉測位を用いて算出したGNSSアンテナ29の精密位置である。精密位置データ14は、概略位置データ13よりもGNSSアンテナ29の実際の位置に近い高精度な測位結果とする。 The approximate position data 13 is the approximate position of the GNSS antenna 29 calculated by the positioning calculation unit 20 using single point positioning. The precise position data 14 is the precise position of the GNSS antenna 29 calculated by the positioning calculation unit 20 using interferometric positioning. The precise position data 14 is a highly accurate positioning result that is closer to the actual position of the GNSS antenna 29 than the approximate position data 13.
 測位演算部20は、GNSSアンテナ29が受信した衛星信号10に基づいて、各測位衛星3に対し擬似距離7と搬送波位相8を算出することで、概略位置データ13と精密位置データ14のどちらか一つ以上を演算する。 The positioning calculation unit 20 calculates the pseudo-range 7 and carrier phase 8 for each positioning satellite 3 based on the satellite signal 10 received by the GNSS antenna 29, thereby calculating one or more of the approximate position data 13 and the precise position data 14.
 単独測位では、測位演算部20は、GNSSアンテナ29で受信した複数の衛星信号10に基づいて、概略位置データ13を算出する。単独測位では、少なくとも4機以上の測位衛星3と、GNSSアンテナ29との間の擬似距離7から、三角測量の原理を用いて、概略位置データ13を算出する。上記の擬似距離7は、各測位衛星3の軌道、移動体測位装置2や測位衛星3に使用されている時計の精度、電離層や対流圏を通過する際に生じる搬送波の遅延、などに起因する誤差を含んでいる。 In standalone positioning, the positioning calculation unit 20 calculates approximate position data 13 based on multiple satellite signals 10 received by the GNSS antenna 29. In standalone positioning, the approximate position data 13 is calculated using the principle of triangulation from the pseudo distances 7 between at least four or more positioning satellites 3 and the GNSS antenna 29. The pseudo distances 7 include errors due to the orbit of each positioning satellite 3, the accuracy of the clocks used in the mobile positioning device 2 and the positioning satellites 3, and delays in the carrier wave that occur when passing through the ionosphere and troposphere.
 干渉測位では、測位演算部20は、GNSSアンテナ29で受信した衛星信号10と、演算制御部28から受信した補正信号11の双方に基づいて、精密位置データ14を算出する。干渉測位では、GNSSアンテナ29で受信した衛星信号10に含まれる少なくとも5機以上の測位衛星3とGNSSアンテナ29との間の擬似距離7及び搬送波位相8、補正信号11に含まれる少なくとも5機以上の測位衛星3と基地局4との間の擬似距離7及び搬送波位相8、から精密位置データ14を算出する。 In interferometric positioning, the positioning calculation unit 20 calculates precise position data 14 based on both the satellite signal 10 received by the GNSS antenna 29 and the correction signal 11 received from the calculation control unit 28. In interferometric positioning, the precise position data 14 is calculated from the pseudo distances 7 and carrier phases 8 between the GNSS antenna 29 and at least five or more positioning satellites 3 contained in the satellite signal 10 received by the GNSS antenna 29, and the pseudo distances 7 and carrier phases 8 between the base station 4 and at least five or more positioning satellites 3 contained in the correction signal 11.
 また、干渉測位では、測位衛星3とGNSSアンテナ29との間の搬送波位相8、測位衛星3と基地局4との間の搬送波位相8の差分である搬送波位相差を算出する。干渉測位では、搬送波位相差を算出する際、GNSSアンテナ29が衛星信号10を受信したとき、衛星信号10の搬送波位相8においてそれが連続波のどの部分であるか波数の小数部は分かるが、波数小数部を除いた波数整数部は不明である。干渉測位では、この波数整数部を確定した際、基地局4とGNSSアンテナ29との間の基線長を正確に求めることができる。 In addition, in interferometric positioning, a carrier phase difference is calculated, which is the difference between the carrier phase 8 between the positioning satellite 3 and the GNSS antenna 29 and the carrier phase 8 between the positioning satellite 3 and the base station 4. In interferometric positioning, when the GNSS antenna 29 receives the satellite signal 10, the decimal part of the wave number indicating which part of the continuous wave it is in the carrier phase 8 of the satellite signal 10 is known, but the integer part of the wave number excluding the decimal part of the wave number is unknown. In interferometric positioning, when this integer part of the wave number is determined, the baseline length between the base station 4 and the GNSS antenna 29 can be accurately determined.
 干渉測位では、基地局4の地球上の位置が補正信号11に記載されているため、基地局4の位置とGNSSアンテナ29との間の基線長から、GNSSアンテナ29の位置を予測できる。 In interferometric positioning, the position of the base station 4 on Earth is recorded in the correction signal 11, so the position of the GNSS antenna 29 can be predicted from the baseline length between the position of the base station 4 and the GNSS antenna 29.
 よって、測位演算部20は、基地局4の位置とGNSSアンテナ29との間の基線長から予測したGNSSアンテナ29の位置を用いて、単独測位結果である概略位置データ13を補正することで精密位置データ14を算出する。この際、測位演算部20は、過去時刻における搬送波位相差に含まれる波数整数部と現在時刻における波数整数部が連続的であることを仮定し、カルマンフィルタ等を用いることで、精密位置データ14を算出する。 The positioning calculation unit 20 therefore calculates precise position data 14 by correcting the approximate position data 13, which is the result of independent positioning, using the position of the GNSS antenna 29 predicted from the baseline length between the position of the base station 4 and the GNSS antenna 29. At this time, the positioning calculation unit 20 assumes that the wave number integer part included in the carrier phase difference at the past time and the wave number integer part at the current time are continuous, and calculates the precise position data 14 by using a Kalman filter or the like.
 測位演算部20は、演算制御部28から演算初期化指令を受信した場合、それまでの波数整数部が連続的であるという仮定を棄却し、再度波数整数部及び基線長の演算を開始する。測位演算部20は、演算初期化指令を受信した直後、衛星信号10の搬送波位相8においてそれが連続波の波数小数部のみ推定可能であるため、連続波の波数整数部を確定するまで一時的に測位精度が低下する。測位演算部20は、搬送波位相差の波数小数部及び波数整数部を確定できなかった場合、干渉測位の演算に失敗したと判断する。 When the positioning calculation unit 20 receives a calculation initialization command from the calculation control unit 28, it discards the assumption that the wave number integer part up to that point was continuous, and starts calculating the wave number integer part and baseline length again. Immediately after receiving the calculation initialization command, the positioning calculation unit 20 can only estimate the wave number decimal part of the continuous wave at the carrier phase 8 of the satellite signal 10, so the positioning accuracy temporarily decreases until the wave number integer part of the continuous wave is determined. If the positioning calculation unit 20 cannot determine the wave number decimal part and wave number integer part of the carrier phase difference, it determines that the interferometric positioning calculation has failed.
 測位演算部20は、精密位置データ14が算出できた場合、精密位置データ14を位置情報12として出力し、精密位置データ14を算出できなかった場合のみ、概略位置データ13を位置情報12として出力する。測位演算部20は、位置情報12を演算制御部28に出力する。 If the positioning calculation unit 20 is able to calculate precise position data 14, it outputs the precise position data 14 as position information 12, and only if it is unable to calculate precise position data 14, it outputs approximate position data 13 as position information 12. The positioning calculation unit 20 outputs the position information 12 to the calculation control unit 28.
 [通信部21]
 通信部21は、演算制御部28から受信した生成位置情報域を配信サーバ5に送信する。配信サーバ5は、通信部21から受信した生成位置情報30に応じて補正信号11を生成し、通信部21に対して出力する。通信部21が配信サーバ5から受信する補正信号11には、少なくとも測位衛星3の識別番号である衛星識別番号100(図2参照)、補正信号11を生成した時刻である補正信号生成時刻101(図2参照)、基地局ID102、擬似距離7、搬送波位相8が含まれている。通信部21は、配信サーバ5から受信した補正信号11を演算制御部28に出力する。通信部21は、例えば電波的な障害や通信部21または配信サーバ5のどちらかに障害が生じている場合、補正信号11の受信に失敗することがある。
[Communication unit 21]
The communication unit 21 transmits the generated position information region received from the calculation control unit 28 to the distribution server 5. The distribution server 5 generates a correction signal 11 according to the generated position information 30 received from the communication unit 21, and outputs it to the communication unit 21. The correction signal 11 received by the communication unit 21 from the distribution server 5 includes at least a satellite identification number 100 (see FIG. 2 ), which is an identification number of the positioning satellite 3, a correction signal generation time 101 (see FIG. 2 ), which is the time when the correction signal 11 was generated, a base station ID 102, a pseudo distance 7, and a carrier phase 8. The communication unit 21 outputs the correction signal 11 received from the distribution server 5 to the calculation control unit 28. For example, when there is a radio wave interference or a failure occurs in either the communication unit 21 or the distribution server 5, the communication unit 21 may fail to receive the correction signal 11.
 [補正信号DB22]
 補正信号DB22は、演算制御部28の指示に従って、補正信号11を記録する。補正信号DB22は、過去に演算制御部28から受信した補正信号11として、少なくとも衛星識別番号100、補正信号生成時刻101、基地局ID102、擬似距離7、及び搬送波位相8が記録されている。補正信号DB22は、演算制御部28が通信部21を介して配信サーバ5から受信した補正信号11を演算制御部28から取得して、補正信号11を記憶する。
[Correction signal DB22]
The correction signal DB 22 records the correction signal 11 in accordance with an instruction from the calculation control unit 28. The correction signal DB 22 records at least the satellite identification number 100, the correction signal generation time 101, the base station ID 102, the pseudo distance 7, and the carrier phase 8 as the correction signal 11 previously received from the calculation control unit 28. The correction signal DB 22 acquires the correction signal 11 received by the calculation control unit 28 from the distribution server 5 via the communication unit 21 from the calculation control unit 28, and stores the correction signal 11.
 図2は、補正信号DB22が記録する補正信号11の詳細を示すデータテーブルを示す図である。 FIG. 2 is a data table showing details of the correction signal 11 recorded by the correction signal DB 22.
 補正信号DB22は、補正信号生成時刻101の時系列順で補正信号11を記憶し、かつ同時刻においては少なくとも衛星識別番号100順に補正信号11を記憶する。演算制御部28から受信した補正信号11と同一時刻及び同一測位衛星3の補正信号11が既に記録されていた場合には、補正信号DB22は、記録されている補正信号11の擬似距離7及び搬送波位相8、基地局ID102を更新する。 The correction signal DB 22 stores the correction signals 11 in chronological order of the correction signal generation time 101, and at the same time, stores the correction signals 11 at least in order of the satellite identification number 100. If a correction signal 11 has already been recorded for the same time and from the same positioning satellite 3 as the correction signal 11 received from the calculation control unit 28, the correction signal DB 22 updates the pseudo distance 7, carrier phase 8, and base station ID 102 of the recorded correction signal 11.
 補正信号DB22は、記録されている補正信号生成時刻101が最も新しいデータ群を最新の補正信号11と判断する。図2は、補正信号生成時刻101の07:00:00~07:30:00までの補正信号11が格納された例を示しており、補正信号生成時刻101が“07:30:00”のデータ群が最新の補正信号11に相当する。 The correction signal DB 22 determines that the data group with the most recent recorded correction signal generation time 101 is the latest correction signal 11. FIG. 2 shows an example in which correction signals 11 with correction signal generation times 101 from 07:00:00 to 07:30:00 are stored, and the data group with a correction signal generation time 101 of "07:30:00" corresponds to the latest correction signal 11.
 補正信号DB22は、補正信号予測部23及び演算制御部28から常に補正信号11を参照可能な状態で構成される。補正信号DB22は、十分な記憶領域を確保できない場合、例えば、あらかじめ定められた一定期間のみの補正信号11を記録し、記録時間が一定期間以上となった際、最も古いレコードを削除する処理を実行してもよい。また、補正信号DB22は、演算制御部28から初期化指令を受信した場合、記録された補正信号11の全てのレコードを削除する。 The correction signal DB 22 is configured in a state where the correction signal 11 can always be referenced by the correction signal prediction unit 23 and the calculation control unit 28. If the correction signal DB 22 is unable to secure sufficient storage space, it may, for example, record the correction signal 11 for only a predetermined fixed period of time, and when the recording time exceeds the fixed period, execute a process of deleting the oldest record. Furthermore, when the correction signal DB 22 receives an initialization command from the calculation control unit 28, it deletes all records of the recorded correction signal 11.
 [補正信号予測部23]
 補正信号予測部23は、補正信号DB22に記録された補正信号11、及び演算制御部28からの補正信号11に基づいて、補正信号DB22に記録された補正信号11と演算制御部28から受信した補正信号11から補正信号予測情報18を算出する。つまり、補正信号予測部23は、過去に受信した補正信号11から現在時刻あるいは未来において基地局4で配信される補正信号11の予測モデルを含む補正信号予測情報18を算出する。
[Correction signal prediction unit 23]
Based on the correction signal 11 recorded in the correction signal DB 22 and the correction signal 11 from the calculation control unit 28, the correction signal prediction unit 23 calculates correction signal prediction information 18 from the correction signal 11 recorded in the correction signal DB 22 and the correction signal 11 received from the calculation control unit 28. In other words, the correction signal prediction unit 23 calculates correction signal prediction information 18 including a prediction model of the correction signal 11 to be distributed by the base station 4 at the current time or in the future, from the correction signal 11 received in the past.
 補正信号予測部23は、補正信号DB22に記録されている補正信号11(過去の補正信号11)に基づいて、演算制御部28から受信した補正信号11に記載された擬似距離7と搬送波位相8を予測するための数式モデルを構築し、補正信号予測情報18として算出する。以降、本明細書では、補正信号予測部23が演算制御部28から受信した補正信号11に記載されている時刻を“t”と称する。 The correction signal prediction unit 23 constructs a mathematical model for predicting the pseudo distance 7 and carrier phase 8 described in the correction signal 11 received from the calculation control unit 28 based on the correction signal 11 (past correction signal 11) recorded in the correction signal DB 22, and calculates it as correction signal prediction information 18. Hereinafter, in this specification, the time described in the correction signal 11 received by the correction signal prediction unit 23 from the calculation control unit 28 will be referred to as "t".
 図3は、補正信号予測部23が補正信号予測情報18として算出する擬似距離7及び搬送波位相8に関する数式モデルを示す図である。図3は、数式モデルをグラフ化したものである。補正信号予測情報18は、図3に示すように、あらかじめ設定された個数の時刻、例えば補正信号DB22に記録された過去の5つの時刻における擬似距離7及び搬送波位相8の値を用いて算出された数式モデルで表現される。 FIG. 3 is a diagram showing a mathematical model for the pseudo-distance 7 and carrier phase 8 calculated by the correction signal prediction unit 23 as the correction signal prediction information 18. FIG. 3 is a graph of the mathematical model. As shown in FIG. 3, the correction signal prediction information 18 is expressed as a mathematical model calculated using the values of the pseudo-distance 7 and carrier phase 8 at a preset number of times, for example, the past five times recorded in the correction signal DB 22.
 補正信号DB22に記録された過去の5つの時刻をそれぞれ、t、t、t、t、t、該時刻に対応する擬似距離7あるいは搬送波位相8を、y、y、y、y、y、とすると、これらは次式(1)、次式(2)で示すことができ、時刻tにおける擬似距離7あるいは搬送波位相8の予測値は、次式(3)で求めることができる。 If the five past times recorded in the correction signal DB22 are t1, t2, t3, t4, and t5, respectively, and the pseudoranges 7 or carrier phases 8 corresponding to these times are y1 , y2 , y3 , y4 , and y5 , respectively, these can be expressed by the following equations (1) and (2), and the predicted value of the pseudorange 7 or carrier phase 8 at time t can be obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、上記式(2)における“T”については、後述する。 The "T" in the above formula (2) will be explained later.
 補正信号予測部23は、補正信号DB22及び演算制御部28に基づいて、演算制御部28から時刻tにおいて受信した補正信号11に記載された全ての測位衛星3に対して数式モデルを構築し、補正信号予測情報18を算出する。 The correction signal prediction unit 23 constructs a mathematical model for all positioning satellites 3 listed in the correction signal 11 received from the calculation control unit 28 at time t based on the correction signal DB 22 and the calculation control unit 28, and calculates the correction signal prediction information 18.
 図4は、補正信号予測部23が補正信号DB22に基づいて、補正信号予測情報18として算出する数式モデルのパラメータを示す図である。 FIG. 4 shows the parameters of the mathematical model that the correction signal prediction unit 23 calculates as the correction signal prediction information 18 based on the correction signal DB 22.
 補正信号予測部23は、時刻tにおける各測位衛星3の擬似距離7と搬送波位相8を予測する数式モデルのパラメータを補正信号予測情報18として算出する。補正信号予測部23は、例えば補正信号DB22に過去5つ以上の時刻で特定の測位衛星3の擬似距離7と搬送波位相8を記録している場合、測位衛星3に対応した補正信号予測情報18を算出する。 The correction signal prediction unit 23 calculates the parameters of a mathematical model that predicts the pseudo-distance 7 and carrier phase 8 of each positioning satellite 3 at time t as correction signal prediction information 18. For example, when the pseudo-distance 7 and carrier phase 8 of a specific positioning satellite 3 are recorded in the correction signal DB 22 at five or more times in the past, the correction signal prediction unit 23 calculates the correction signal prediction information 18 corresponding to the positioning satellite 3.
 補正信号予測部23は、過去5つ以上の時刻で特定の測位衛星3の擬似距離7と搬送波位相8を記録していない場合、測位衛星3に対し補正信号予測情報18を算出しない。 If the correction signal prediction unit 23 has not recorded the pseudorange 7 and carrier phase 8 of a specific positioning satellite 3 for the past five or more times, it does not calculate correction signal prediction information 18 for the positioning satellite 3.
 補正信号予測部23は、図5に示すように、演算制御部28から受信した補正信号11と補正信号予測情報18から予測した予測値との差分を補正信号予測誤差36として算出する。補正信号予測部23は、演算制御部28から補正信号11を受信した場合のみ補正信号予測情報18及び補正信号予測誤差36を算出してもよいし、5秒・10秒といった制御周期を設定し、制御周期において直近で演算制御部28から受信した補正信号11に対し補正信号予測情報18及び補正信号予測誤差36を算出してもよい。補正信号予測部23は、補正信号予測情報18及び補正信号予測誤差36を補正信号予測結果DB24に出力する。 5, the correction signal prediction unit 23 calculates the difference between the correction signal 11 received from the calculation control unit 28 and the predicted value predicted from the correction signal prediction information 18 as the correction signal prediction error 36. The correction signal prediction unit 23 may calculate the correction signal prediction information 18 and the correction signal prediction error 36 only when it receives a correction signal 11 from the calculation control unit 28, or may set a control period of 5 seconds or 10 seconds and calculate the correction signal prediction information 18 and the correction signal prediction error 36 for the correction signal 11 received from the calculation control unit 28 most recently in the control period. The correction signal prediction unit 23 outputs the correction signal prediction information 18 and the correction signal prediction error 36 to the correction signal prediction result DB 24.
 [補正信号予測結果DB24]
 補正信号予測結果DB24は、補正信号予測部23の出力に基づいて、測位衛星3の補正信号予測情報18及び補正信号予測誤差分布37(図6参照)を記録する。補正信号予測結果DB24は、図4に示す形式で補正信号予測情報18を記録する。補正信号予測結果DB24は、補正信号予測部22から補正信号予測誤差36を受信し記録することで、補正信号予測誤差36の確率分布である補正信号予測誤差分布37を算出する。
[Correction signal prediction result DB24]
The correction signal prediction result DB 24 records the correction signal prediction information 18 and the correction signal prediction error distribution 37 (see FIG. 6 ) of the positioning satellite 3 based on the output of the correction signal prediction unit 23. The correction signal prediction result DB 24 records the correction signal prediction information 18 in the format shown in FIG. 4. The correction signal prediction result DB 24 receives and records the correction signal prediction error 36 from the correction signal prediction unit 22, and calculates the correction signal prediction error distribution 37, which is the probability distribution of the correction signal prediction error 36.
 これにより、縦軸が発生確率を示し、横軸が補正信号予測誤差36を示すようにすると、補正信号予測誤差分布37を表す図6に示すようなグラフを生成することができる。 As a result, by setting the vertical axis to indicate the occurrence probability and the horizontal axis to indicate the correction signal prediction error 36, a graph like that shown in Figure 6 can be generated, which represents the correction signal prediction error distribution 37.
 補正信号予測結果DB24は、補正信号予測情報18を算出した全測位衛星3において補正信号予測誤差分布37を算出し、記録する。補正信号予測結果DB24は、衛星信号予測部26及び衛星信号連続性判定部27から補正信号予測情報18及び補正信号予測誤差分布37を参照可能に構成される。 The correction signal prediction result DB24 calculates and records the correction signal prediction error distribution 37 for all positioning satellites 3 for which the correction signal prediction information 18 was calculated. The correction signal prediction result DB24 is configured to allow the satellite signal prediction unit 26 and the satellite signal continuity determination unit 27 to refer to the correction signal prediction information 18 and the correction signal prediction error distribution 37.
 補正信号予測結果DB24は、例えば、あらかじめ定められた一定期間以上補正信号予測情報18が更新されない測位衛星3が存在する場合、補正信号予測結果DB24に記録されている測位衛星3に紐づいた補正信号予測情報18及び補正信号予測誤差分布37を削除する処理を実行してもよい。 For example, if there is a positioning satellite 3 whose correction signal prediction information 18 has not been updated for a predetermined period of time or more, the correction signal prediction result DB 24 may execute a process of deleting the correction signal prediction information 18 and correction signal prediction error distribution 37 linked to the positioning satellite 3 recorded in the correction signal prediction result DB 24.
 また、補正信号予測結果DB24は、演算制御部28から初期化指令を受信した場合、記録された全ての測位衛星3の補正信号予測情報18及び補正信号予測誤差分布37を削除する。 In addition, when the correction signal prediction result DB 24 receives an initialization command from the calculation control unit 28, it deletes the correction signal prediction information 18 and correction signal prediction error distribution 37 of all recorded positioning satellites 3.
 [衛星信号予測部26]
 概略すると、衛星信号予測部26は、移動局29が受信した衛星信号10と、基地局4から配信された衛星信号10に基づく補正信号11に基づいて現在時刻あるいは未来において配信される衛星信号10の予測モデルと、を含む衛星信号予測情報19を算出する。
[Satellite signal prediction unit 26]
In summary, the satellite signal prediction unit 26 calculates satellite signal prediction information 19 including a prediction model of the satellite signal 10 to be distributed at the current time or in the future based on the satellite signal 10 received by the mobile station 29 and a correction signal 11 based on the satellite signal 10 distributed from the base station 4.
 衛星信号予測部26は、演算制御部28から衛星信号10を受信した場合のみ動作する。衛星信号予測部26は、補正信号予測結果DB24、及び演算制御部28に基づいて、補正信号予測結果DB24に記録された補正信号予測情報18と演算制御部28から受信した衛星信号10から衛星信号予測情報19を算出する。 The satellite signal prediction unit 26 operates only when it receives a satellite signal 10 from the calculation control unit 28. Based on the correction signal prediction result DB 24 and the calculation control unit 28, the satellite signal prediction unit 26 calculates satellite signal prediction information 19 from the correction signal prediction information 18 recorded in the correction signal prediction result DB 24 and the satellite signal 10 received from the calculation control unit 28.
 衛星信号予測部26は、補正信号予測結果DB24に記録されている補正信号予測情報18を用いて算出した補正信号11の予測値と衛星信号10から、GNSSアンテナ29が静止した状態を仮定した場合、次にGNSSアンテナ29で受信する衛星信号10を予測するための数式モデル(現在時刻あるいは未来において配信される衛星信号10の予測モデル)を構築し、衛星信号予測情報19として算出する。 The satellite signal prediction unit 26 constructs a mathematical model (a prediction model of the satellite signal 10 to be distributed at the current time or in the future) for predicting the satellite signal 10 to be next received by the GNSS antenna 29, assuming that the GNSS antenna 29 is stationary, from the predicted value of the correction signal 11 calculated using the correction signal prediction information 18 recorded in the correction signal prediction result DB 24 and the satellite signal 10, and calculates it as satellite signal prediction information 19.
 以降、本明細書では、衛星信号予測部26が演算制御部28から受信した衛星信号10に記載されている時刻を“T”と称する。 Hereinafter, in this specification, the time indicated in the satellite signal 10 received by the satellite signal prediction unit 26 from the calculation control unit 28 will be referred to as "T."
 図7は、衛星信号予測部26が衛星信号予測情報19として算出する擬似距離7及び搬送波位相8に関する数式モデルを示している。図7は、数式モデルをグラフ化したものである。 FIG. 7 shows a mathematical model for the pseudorange 7 and carrier phase 8 that the satellite signal prediction unit 26 calculates as satellite signal prediction information 19. FIG. 7 shows a graph of the mathematical model.
 衛星信号予測情報19は、図7に示すように、時刻Tにおける衛星信号10と補正信号予測情報18から算出した補正信号11の予測値に記載された擬似距離7あるいは搬送波位相8の差分dを次式(4)から算出する。 As shown in FIG. 7, the satellite signal prediction information 19 calculates the difference d between the pseudo-distance 7 or carrier phase 8 described in the predicted value of the correction signal 11 calculated from the satellite signal 10 at time T and the correction signal prediction information 18 using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、衛星信号予測部26は補正信号予測情報18の数式モデルを上記式(4)で算出した差分dを用いて補正することで、任意時刻“T1”におけるGNSSアンテナ29が静止した状態を仮定した場合、GNSSアンテナ29で受信する衛星信号10の擬似距離7及び搬送波位相8を算出可能な衛星信号予測情報19を、次式(5)を用いて算出する。 Then, the satellite signal prediction unit 26 corrects the mathematical model of the corrected signal prediction information 18 using the difference d calculated by the above formula (4), and calculates the satellite signal prediction information 19 using the following formula (5) that can calculate the pseudorange 7 and carrier phase 8 of the satellite signal 10 received by the GNSS antenna 29, assuming that the GNSS antenna 29 is stationary at an arbitrary time "T1".
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 つまり、衛星信号予測部26は、衛星信号10と補正信号予測情報18に基づいて、補正信号予測情報18を衛星信号10で補正することで衛星信号予測情報19を算出する。 In other words, the satellite signal prediction unit 26 calculates satellite signal prediction information 19 based on the satellite signal 10 and the corrected signal prediction information 18 by correcting the corrected signal prediction information 18 with the satellite signal 10.
 衛星信号予測部26は、算出した衛星信号予測情報19を衛星信号予測結果DB25に出力する。 The satellite signal prediction unit 26 outputs the calculated satellite signal prediction information 19 to the satellite signal prediction result DB 25.
 [衛星信号予測結果DB25]
 衛星信号予測結果DB25は、衛星信号予測部26及び演算制御部28の出力に基づいて、測位衛星3の衛星信号予測情報19を記録する。衛星信号予測結果DB25は、図8に示す形式で衛星信号予測情報19を記録する。衛星信号予測結果DB25は、衛星信号連続性判定部27から衛星信号予測情報19を参照可能に構成される。
[Satellite signal prediction result DB25]
The satellite signal prediction result DB 25 records satellite signal prediction information 19 of the positioning satellites 3 based on the outputs of the satellite signal prediction unit 26 and the calculation control unit 28. The satellite signal prediction result DB 25 records the satellite signal prediction information 19 in the format shown in Fig. 8. The satellite signal prediction result DB 25 is configured to allow the satellite signal continuity determination unit 27 to refer to the satellite signal prediction information 19.
 衛星信号予測結果DB25は、例えば、あらかじめ定められた一定期間以上衛星信号予測情報19が更新されない測位衛星3が存在する場合、衛星信号予測結果DB25に記録されている測位衛星3に紐づいた衛星信号予測情報19を削除する処理を実行してもよい。また、衛星信号予測結果DB25は、演算制御部28から初期化指令を受信した場合、記録された全ての測位衛星3の衛星信号予測情報19を削除する。 For example, if there is a positioning satellite 3 whose satellite signal prediction information 19 has not been updated for a predetermined period of time or more, the satellite signal prediction result DB 25 may execute a process of deleting the satellite signal prediction information 19 linked to the positioning satellite 3 recorded in the satellite signal prediction result DB 25. In addition, if the satellite signal prediction result DB 25 receives an initialization command from the calculation control unit 28, it deletes the satellite signal prediction information 19 of all recorded positioning satellites 3.
 [衛星信号連続性判定部27]
 衛星信号連続性判定部27は、演算制御部28から衛星信号10を受信した場合のみ動作する。衛星信号連続性判定部27は、補正信号予測結果DB24、衛星信号予測結果DB25、及び演算制御部28からの情報に基づいて、補正信号予測結果DB24に記録された補正信号予測誤差分布37、衛星信号予測結果DB25に記録された衛星信号予測情報19、及び演算制御部28から受信した衛星信号10を用いて、GNSSアンテナ29が受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を検出する。
[Satellite signal continuity determination unit 27]
The satellite signal continuity determination unit 27 operates only when it receives a satellite signal 10 from the calculation control unit 28. The satellite signal continuity determination unit 27 detects the continuity of the pseudorange 7 and carrier phase 8 described in the satellite signal 10 received by the GNSS antenna 29, based on information from the correction signal prediction result DB 24, the satellite signal prediction result DB 25, and the calculation control unit 28, using the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB 24, the satellite signal prediction information 19 recorded in the satellite signal prediction result DB 25, and the satellite signal 10 received from the calculation control unit 28.
 衛星信号連続性判定部27は、演算制御部28から受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を衛星信号連続性情報16として演算制御部28に通知する。演算制御部28は、衛星信号連続性判定部27から受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性に応じて、GNSSアンテナ29の動作状態を推定可能である。以降本実施例においては、衛星信号連続性判定部27は、搬送波位相8の連続性のみを検出するが、擬似距離7を用いる場合においても本発明を同様に適用可能である。 The satellite signal continuity determination unit 27 notifies the calculation control unit 28 of the continuity of the pseudo-distance 7 and carrier phase 8 described in the satellite signal 10 received from the calculation control unit 28 as satellite signal continuity information 16. The calculation control unit 28 can estimate the operating state of the GNSS antenna 29 according to the continuity of the pseudo-distance 7 and carrier phase 8 described in the satellite signal 10 received from the satellite signal continuity determination unit 27. In the following embodiment, the satellite signal continuity determination unit 27 detects only the continuity of the carrier phase 8, but the present invention can also be similarly applied when the pseudo-distance 7 is used.
 図9は、衛星信号連続性判定部27の処理を示すフローチャートである。図9に示すフローチャートは、衛星信号連続性判定部27が演算制御部28から衛星信号10を受信した後の衛星信号連続性判定部27が実施する処理を示している。 FIG. 9 is a flowchart showing the processing of the satellite signal continuity determination unit 27. The flowchart shown in FIG. 9 shows the processing performed by the satellite signal continuity determination unit 27 after the satellite signal continuity determination unit 27 receives the satellite signal 10 from the calculation control unit 28.
 ステップS301では、衛星信号予測結果DB25に衛星信号予測情報19が記録されているか確認する。衛星信号予測結果DB25に衛星信号予測情報19が記録されている場合、ステップS302に進み、記録されていない場合、ステップS310に進む。 In step S301, it is confirmed whether satellite signal prediction information 19 is recorded in satellite signal prediction result DB 25. If satellite signal prediction information 19 is recorded in satellite signal prediction result DB 25, the process proceeds to step S302, and if not, the process proceeds to step S310.
 ステップS302では、演算制御部28から受信した衛星信号10に記載されている測位衛星3の総数であるS_SUMを算出する。 In step S302, S_SUM, which is the total number of positioning satellites 3 listed in the satellite signal 10 received from the calculation control unit 28, is calculated.
 ステップS303では、S_SUMが5機以上であり、干渉測位が可能か確認する。5機以上の場合、衛星信号10に記載されている一つ目の測位衛星3をSとして選択し(ステップS303a)、Nを0として(ステップS303b)、ステップS304に進む。 In step S303, it is confirmed whether S_SUM is 5 or more and whether interferometric positioning is possible. If there are 5 or more, the first positioning satellite 3 listed in the satellite signal 10 is selected as S (step S303a), N is set to 0 (step S303b), and the process proceeds to step S304.
 ステップS303において、S_SUMが5機未満の場合、ステップS310に進む。 If S_SUM is less than 5 in step S303, proceed to step S310.
 ステップS304では、衛星信号予測情報19の上述した数式モデルを用いて、演算制御部28から受信した衛星信号10に含まれる、GNSSアンテナ29が衛星信号10を受信した時刻tにおける測位衛星Sに関する衛星信号10の搬送波位相8を予測する。 In step S304, the above-mentioned mathematical model of the satellite signal prediction information 19 is used to predict the carrier phase 8 of the satellite signal 10 related to the positioning satellite S at the time t when the GNSS antenna 29 receives the satellite signal 10, which is included in the satellite signal 10 received from the calculation control unit 28.
 ステップS305では、ステップ304で算出した搬送波位相8の予測値と演算制御部28から受信した衛星信号10に含まれる搬送波位相8の実測値の差分である搬送波位相予測誤差ε1を算出する。 In step S305, a carrier phase prediction error ε1 is calculated, which is the difference between the predicted value of carrier phase 8 calculated in step 304 and the actual measured value of carrier phase 8 contained in satellite signal 10 received from calculation control unit 28.
 ステップS306では、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。 In step S306, a carrier phase prediction error threshold ε1_MAX is calculated, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted.
 搬送波位相予測誤差閾値ε1_MAXは、例えば、補正信号予測結果DB24に記録された補正信号予測誤差分布37の1σ、2σあるいは3σ区間の値を閾値とし、閾値をステップS305で算出した搬送波位相予測誤差ε1が越えた際、測位衛星Sに対する搬送波位相8が正確に予測されていないと判断してもよい。 The carrier phase prediction error threshold ε1_MAX may be, for example, a threshold value of the 1σ, 2σ, or 3σ interval of the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB24, and when the carrier phase prediction error ε1 calculated in step S305 exceeds the threshold value, it may be determined that the carrier phase 8 for the positioning satellite S has not been accurately predicted.
 ステップS307では、搬送波位相予測誤差ε1が搬送波位相予測誤差閾値ε1_MAX以上か判断する。ステップS307において、搬送波位相予測誤差ε1がε1_MAX以上の場合、搬送波位相8の連続性が失われた衛星数Nとしてカウントし(ステップS307a)、ステップS308に進む。ステップS307において、搬送波位相予測誤差ε1が搬送波位相予測誤差閾値ε1_MAX未満の場合、特定の処理は実施せずステップS308に進む。 In step S307, it is determined whether the carrier phase prediction error ε1 is equal to or greater than the carrier phase prediction error threshold ε1_MAX. If the carrier phase prediction error ε1 is equal to or greater than ε1_MAX in step S307, the number of satellites for which the continuity of the carrier phase 8 has been lost is counted as N (step S307a), and the process proceeds to step S308. If the carrier phase prediction error ε1 is less than the carrier phase prediction error threshold ε1_MAX in step S307, no specific processing is performed and the process proceeds to step S308.
 ステップS308では、測位衛星Sとして演算制御部28から受信した衛星信号10に記載されている全ての測位衛星3を選択したか否か判断する。全ての測位衛星3を選択した場合、ステップS309に進む。 In step S308, it is determined whether or not all of the positioning satellites 3 described in the satellite signal 10 received from the calculation control unit 28 have been selected as positioning satellites S. If all of the positioning satellites 3 have been selected, the process proceeds to step S309.
 ステップS308において、全ての測位衛星3を選択してはいない場合、次の測位衛星3をSとして選択し(ステップS308a)、ステップS304に戻る。 If all positioning satellites 3 have not been selected in step S308, the next positioning satellite 3 is selected as S (step S308a), and the process returns to step S304.
 ステップS309では、搬送波位相8の連続性が失われた衛星数Nが測位衛星数閾値N_MAX以上か否かを判断する。連続性が失われた衛星数Nが測位衛星数閾値N_MAX未満の場合、ステップS312に進む。連続性が失われた衛星数Nが測位衛星数閾値N_MAX閾値以上の場合、ステップS311に進む。 In step S309, it is determined whether the number N of satellites for which continuity of the carrier phase 8 has been lost is equal to or greater than the positioning satellite number threshold N_MAX. If the number N of satellites for which continuity has been lost is less than the positioning satellite number threshold N_MAX, proceed to step S312. If the number N of satellites for which continuity has been lost is equal to or greater than the positioning satellite number threshold N_MAX, proceed to step S311.
 測位衛星数閾値N_MAXの決定方法については、例えば、演算制御部28から受信した衛星信号10に記載されている測位衛星3内のα%以上において搬送波位相8の連続性が失われたかを基準として設定してもよい。その場合、測位衛星数閾値N_MAXの算出式は、S_SUMを変数とした次式(6)で与えられる。なお、次式(6)におけるαは予め定められるパーセンテージである。 The method for determining the threshold number of positioning satellites N_MAX may be, for example, set based on whether the continuity of the carrier phase 8 has been lost for α% or more of the positioning satellites 3 described in the satellite signal 10 received from the calculation control unit 28. In this case, the calculation formula for the threshold number of positioning satellites N_MAX is given by the following formula (6) with S_SUM as a variable. Note that α in the following formula (6) is a predetermined percentage.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 先に示したステップS310では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の衛星信号連続性情報16を出力しない。 In step S310 shown above, the satellite signal continuity determination unit 27 does not output the satellite signal continuity information 16 of the satellite signal 10 received from the calculation control unit 28 to the calculation control unit 28.
 ステップS311では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の連続性なしとして、衛星信号連続性情報16を出力する。 In step S311, the satellite signal continuity determination unit 27 outputs the satellite signal continuity information 16 to the calculation control unit 28, indicating that there is no continuity in the satellite signal 10 received from the calculation control unit 28.
 ステップS312では、衛星信号連続性判定部27は、演算制御部28に対して演算制御部28から受信した衛星信号10の連続性ありとして、衛星信号連続性情報16を出力する。 In step S312, the satellite signal continuity determination unit 27 outputs satellite signal continuity information 16 to the calculation control unit 28, indicating that there is continuity in the satellite signal 10 received from the calculation control unit 28.
 [演算制御部28]
 演算制御部28は、測位演算部20、通信部21、補正信号予測部23、衛星信号予測部26及び衛星信号連続性判定部27に対し動作指令を行うことで測位演算部20から位置情報12を取得し、衛星信号連続性判定部27から衛星信号連続性情報16を取得する。
[Calculation control unit 28]
The calculation control unit 28 obtains location information 12 from the positioning calculation unit 20 and obtains satellite signal continuity information 16 from the satellite signal continuity determination unit 27 by issuing operational commands to the positioning calculation unit 20, the communication unit 21, the correction signal prediction unit 23, the satellite signal prediction unit 26 and the satellite signal continuity determination unit 27.
 演算制御部28は、衛星信号連続性判定部27から取得した衛星信号連続性情報16に応じてGNSSアンテナ29の静止状態である静止状態情報15を算出する。そして、演算制御部28は、取得した位置情報12と、算出した静止状態情報15とを外部端末(図示省略)に送信する(移動局29が静止状態であると判断すると、静止状態を示す静止状態情報15を算出し、外部端末に送信する)。外部端末に関しては、本実施例において限定せず、例えば本発明が移動体用位置・姿勢推定システムに用いられる場合、移動体の位置情報12及び静止状態情報15を必要とする車体制御モジュールや慣性センサ校正モジュールなどが外部端末に該当する。 The calculation control unit 28 calculates stationary state information 15, which is the stationary state of the GNSS antenna 29, according to the satellite signal continuity information 16 acquired from the satellite signal continuity determination unit 27. The calculation control unit 28 then transmits the acquired position information 12 and the calculated stationary state information 15 to an external terminal (not shown) (when it is determined that the mobile station 29 is stationary, it calculates stationary state information 15 indicating the stationary state and transmits it to the external terminal). The external terminal is not limited to this embodiment, and for example, when the present invention is used in a mobile body position/attitude estimation system, a vehicle control module or an inertial sensor calibration module that requires the mobile body position information 12 and stationary state information 15 corresponds to the external terminal.
 演算制御部28は、補正信号DB22、補正信号予測結果DB24、及び衛星信号予測結果DB25に記録されたデータの参照及び編集を行う。演算制御部28が、測位演算部20、通信部21、補正信号予測部23、衛星信号予測部26及び衛星信号連続性判定部27に対し動作指令を行う順序やその判断手法に関しては後述する。 The calculation control unit 28 refers to and edits the data recorded in the correction signal DB 22, the correction signal prediction result DB 24, and the satellite signal prediction result DB 25. The order in which the calculation control unit 28 issues operation commands to the positioning calculation unit 20, the communication unit 21, the correction signal prediction unit 23, the satellite signal prediction unit 26, and the satellite signal continuity determination unit 27, and the method of determination thereof, will be described later.
 演算制御部28は、GNSSアンテナ29から受信した衛星信号10を測位演算部20に送信することで、測位演算部20に位置情報12の算出を指示する。演算制御部28は、通信部21を介し配信サーバ5から補正信号11を取得している場合、測位演算部20に衛星信号10と補正信号11を送信することで、測位演算部20に位置情報12の算出を指示する。 The calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the positioning calculation unit 20, thereby instructing the positioning calculation unit 20 to calculate the position information 12. When the calculation control unit 28 has acquired the correction signal 11 from the distribution server 5 via the communication unit 21, it transmits the satellite signal 10 and the correction signal 11 to the positioning calculation unit 20, thereby instructing the positioning calculation unit 20 to calculate the position information 12.
 演算制御部28は、通信部21を介して生成位置情報30を配信サーバ5に送信することで、配信サーバ5から基地局4に対応した補正信号11を受信する。生成位置情報30は、配信サーバ5が補正信号11を生成する基地局4を選択するための位置情報であり演算制御部28内に記録される。配信サーバ5は、演算制御部28から受信した位置情報12に応じて補正信号11を生成する基地局4を選択する。 The calculation control unit 28 receives the correction signal 11 corresponding to the base station 4 from the distribution server 5 by transmitting the generated position information 30 to the distribution server 5 via the communication unit 21. The generated position information 30 is position information that the distribution server 5 uses to select the base station 4 that generates the correction signal 11, and is recorded in the calculation control unit 28. The distribution server 5 selects the base station 4 that generates the correction signal 11 according to the position information 12 received from the calculation control unit 28.
 演算制御部28は、通信部21から受信した補正信号11の基地局ID102が変更された場合、配信サーバ5が補正信号11を生成する基地局4を変更したと判断する。演算制御部28は、補正信号11を生成する基地局4が変更された場合、測位演算部20の演算を初期化する。 When the base station ID 102 of the correction signal 11 received from the communication unit 21 has changed, the calculation control unit 28 determines that the distribution server 5 has changed the base station 4 that generates the correction signal 11. When the base station 4 that generates the correction signal 11 has changed, the calculation control unit 28 initializes the calculation of the positioning calculation unit 20.
 そして、演算制御部28は、通信部21から受信した補正信号11を補正信号予測部23に送信することで、補正信号予測部23に対し、補正信号予測情報18の算出を指示する。演算制御部28は、GNSSアンテナ29から受信した衛星信号10を衛星信号予測部26に送信することで、衛星信号予測部26に対し、衛星信号予測情報19の算出を指示する。 Then, the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 to the correction signal prediction unit 23, thereby instructing the correction signal prediction unit 23 to calculate the correction signal prediction information 18. The calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the satellite signal prediction unit 26, thereby instructing the satellite signal prediction unit 26 to calculate the satellite signal prediction information 19.
 演算制御部28は、GNSSアンテナ29から受信した衛星信号10を衛星信号連続性判定部27に送信することで、衛星信号連続性判定部27に対し、衛星信号連続性情報16の算出を指示する。 The calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 to the satellite signal continuity determination unit 27, thereby instructing the satellite signal continuity determination unit 27 to calculate the satellite signal continuity information 16.
 演算制御部28は、図10に示す形式で位置情報12及び静止状態情報15を出力する。演算制御部28は、測位演算部20が位置情報12を算出する際に使用した衛星信号10をGNSSアンテナ29で受信した時刻である出力時刻103と衛星信号10を用いて算出した位置情報12及び静止状態情報15を紐づけて外部端末(図示省略)に送信する。 The calculation control unit 28 outputs the position information 12 and stationary state information 15 in the format shown in FIG. 10. The calculation control unit 28 links the output time 103, which is the time when the satellite signal 10 used by the positioning calculation unit 20 to calculate the position information 12 was received by the GNSS antenna 29, with the position information 12 and stationary state information 15 calculated using the satellite signal 10, and transmits them to an external terminal (not shown).
 図10は、説明の便宜上テーブル形式で出力時刻103、位置情報12、及び静止状態情報15を記載しているが、演算制御部28は、複数の出力時刻における位置情報12及び静止状態情報15を一斉に送信するわけではなく、測位演算部20から受信した位置情報12及び演算制御部28で算出した静止状態情報15を出力時刻と紐づけて、つど外部端末(図示省略)に送信する。 For ease of explanation, FIG. 10 shows the output time 103, position information 12, and stationary state information 15 in table format, but the calculation control unit 28 does not transmit the position information 12 and stationary state information 15 at multiple output times all at once. Rather, it links the position information 12 received from the positioning calculation unit 20 and the stationary state information 15 calculated by the calculation control unit 28 to the output time and transmits them each time to an external terminal (not shown).
 演算制御部28は、衛星信号連続性判定部27から衛星信号連続性情報16を受信し、静止状態情報15を算出する。演算制御部28は、衛星信号連続性情報16を連続性ありとして受信した場合、図10に示すように静止状態情報15を静止として外部端末に出力する。 The calculation control unit 28 receives satellite signal continuity information 16 from the satellite signal continuity determination unit 27 and calculates stationary state information 15. If the calculation control unit 28 receives the satellite signal continuity information 16 indicating that there is continuity, it outputs the stationary state information 15 to the external terminal as stationary, as shown in FIG. 10.
 演算制御部28は、衛星信号連続性情報16を連続性なしとして受信した場合、図10に示すように、静止状態情報15を動作として外部端末に出力する。 When the calculation control unit 28 receives the satellite signal continuity information 16 indicating no continuity, it outputs the stationary state information 15 to the external terminal as an operation, as shown in FIG. 10.
 演算制御部28は、衛星信号連続性情報16を受信しなかった場合、図10に示すように静止状態情報15をNULLとして外部端末に出力する。 If the calculation control unit 28 does not receive satellite signal continuity information 16, it outputs the stationary state information 15 as NULL to the external terminal, as shown in FIG. 10.
 [移動体測位装置2全体]
 以下、図11、図12及び図13を参照して、演算制御部28が動作指令を行う順序及びその判断方法を説明することで移動体測位装置2の処理を説明する。
[Overall mobile positioning device 2]
Hereinafter, the order in which the arithmetic and control unit 28 issues operational commands and the method of determining the order will be described with reference to FIGS. 11, 12 and 13, thereby explaining the processing of the mobile positioning device 2. FIG.
 以下に示す処理は、GNSSアンテナ29が測位衛星3から衛星信号10を受信するたびに実行される。 The process shown below is executed each time the GNSS antenna 29 receives a satellite signal 10 from a positioning satellite 3.
 図11は、移動体測位装置2の処理のうち、ステップS201からS207までを示すフローチャートである。図12は、移動体測位装置2の処理のうち、ステップS208からステップS217までを示すフローチャートである。図13は、移動体測位装置2の処理のうち、ステップS218からS232までを示すフローチャートである。 FIG. 11 is a flowchart showing steps S201 to S207 of the processing of the mobile positioning device 2. FIG. 12 is a flowchart showing steps S208 to S217 of the processing of the mobile positioning device 2. FIG. 13 is a flowchart showing steps S218 to S232 of the processing of the mobile positioning device 2.
 図11において、ステップS201では、GNSSアンテナ29が測位衛星3から受信した衛星信号10を演算制御部28に送信する。 In FIG. 11, in step S201, the GNSS antenna 29 transmits the satellite signal 10 received from the positioning satellite 3 to the calculation control unit 28.
 ステップS202では、演算制御部28が衛星信号連続性判定部27にGNSSアンテナ29から取得した衛星信号10を送信し、演算を指令する。衛星信号連続性判定部27は、図9に示したステップS301からステップS312までの処理を実行する。 In step S202, the calculation control unit 28 transmits the satellite signal 10 acquired from the GNSS antenna 29 to the satellite signal continuity determination unit 27 and commands the satellite signal continuity determination unit 27 to perform calculations. The satellite signal continuity determination unit 27 executes the processes from step S301 to step S312 shown in FIG. 9.
 ステップS203では、演算制御部28が衛星信号連続性判定部27から衛星信号連続性情報16を受信したかを確認する。衛星信号連続性情報16を受信した場合、ステップS204に進む。ステップS203において、演算制御部28が衛星信号連続性情報16を受信しなかった場合、ステップS207に進む。 In step S203, the calculation control unit 28 checks whether it has received satellite signal continuity information 16 from the satellite signal continuity determination unit 27. If it has received satellite signal continuity information 16, it proceeds to step S204. If it has not received satellite signal continuity information 16 in step S203, it proceeds to step S207.
 ステップS204では、演算制御部28が衛星信号連続性判定部27から受信した衛星信号連続性情報16に「連続性あり」と記載があるか否かを確認する。衛星信号連続性情報16に「連続性あり」と記載されている場合、ステップS205に進む。衛星信号連続性情報16に「連続性あり」と記載されていない場合、ステップS206に進む。 In step S204, the calculation control unit 28 checks whether the satellite signal continuity information 16 received from the satellite signal continuity determination unit 27 states "continuity exists." If the satellite signal continuity information 16 states "continuity exists," the process proceeds to step S205. If the satellite signal continuity information 16 does not state "continuity exists," the process proceeds to step S206.
 ステップS205では、演算制御部28が静止状態情報15を「静止」として算出する。 In step S205, the calculation control unit 28 calculates the stationary state information 15 as "stationary."
 ステップS206では、演算制御部28が静止状態情報15を「動作」として算出する。 In step S206, the calculation control unit 28 calculates the stationary state information 15 as "motion."
 ステップS207では、演算制御部28が静止状態情報15を「NULL」として算出する。 In step S207, the calculation control unit 28 calculates the stationary state information 15 as "NULL."
 次に、図12のステップS208では、演算制御部28が生成位置情報30を記録しているか否かを確認する。演算制御部28が生成位置情報30を記録している場合、ステップS209に進む。ステップS208において、演算制御部28が生成位置情報30を記録していない場合、ステップS227(図13に示す)に進む。 Next, in step S208 of FIG. 12, it is confirmed whether the calculation control unit 28 has recorded the generation position information 30. If the calculation control unit 28 has recorded the generation position information 30, the process proceeds to step S209. If the calculation control unit 28 has not recorded the generation position information 30 in step S208, the process proceeds to step S227 (shown in FIG. 13).
 ステップS209では、演算制御部28が生成位置情報30を通信部21に送信する。 In step S209, the calculation control unit 28 transmits the generated position information 30 to the communication unit 21.
 ステップS210では、通信部21が演算制御部28から受信した生成位置情報30を配信サーバ5に送信することで、配信サーバ5から補正信号11を受信する。通信部21は配信サーバ5から受信した補正信号11を演算制御部28に送信する。 In step S210, the communication unit 21 receives the generated position information 30 from the calculation control unit 28 and transmits it to the distribution server 5, thereby receiving the correction signal 11 from the distribution server 5. The communication unit 21 transmits the correction signal 11 received from the distribution server 5 to the calculation control unit 28.
 ステップS211では、演算制御部28は通信部21を介して配信サーバ5から補正信号11を受信できたか否かを確認する。演算制御部28が補正信号11を受信できた場合、ステップS212に進む。演算制御部28が補正信号11を受信できなかった場合、ステップS223(図13に示す)に進む。 In step S211, the calculation control unit 28 checks whether or not the correction signal 11 has been received from the distribution server 5 via the communication unit 21. If the calculation control unit 28 has received the correction signal 11, the process proceeds to step S212. If the calculation control unit 28 has not received the correction signal 11, the process proceeds to step S223 (shown in FIG. 13).
 ステップS212では、演算制御部28が補正信号DB22に補正信号11が記録されているか否かを確認する。補正信号DB22に補正信号11が記録されている場合、ステップS213に進む。補正信号DB22に補正信号11が記録されていない場合、ステップS218(図13に示す)に進む。 In step S212, the calculation control unit 28 checks whether or not the correction signal 11 is recorded in the correction signal DB 22. If the correction signal 11 is recorded in the correction signal DB 22, the process proceeds to step S213. If the correction signal 11 is not recorded in the correction signal DB 22, the process proceeds to step S218 (shown in FIG. 13).
 ステップS213では、演算制御部28がステップS210で通信部21から受信した補正信号11の基地局ID102が補正信号DB22に記録されている補正信号11の基地局ID102と同一か否かを確認する。受信した補正信号11の基地局ID102と、記録されている補正信号11の基地局ID102とが同一の場合はステップS218(図13に示す)に進み、同一でない場合はステップS214に進む。 In step S213, the calculation control unit 28 checks whether the base station ID 102 of the correction signal 11 received from the communication unit 21 in step S210 is the same as the base station ID 102 of the correction signal 11 recorded in the correction signal DB 22. If the base station ID 102 of the received correction signal 11 is the same as the base station ID 102 of the recorded correction signal 11, the process proceeds to step S218 (shown in FIG. 13), and if they are not the same, the process proceeds to step S214.
 ステップS214では、演算制御部28が補正信号DB22に記録されている補正信号11を削除することで、補正信号DB22を初期化する。 In step S214, the calculation control unit 28 initializes the correction signal DB22 by deleting the correction signal 11 recorded in the correction signal DB22.
 ステップS215では、演算制御部28が補正信号予測結果DB24に記録されている補正信号予測情報18を削除することで、補正信号予測結果DB24を初期化する。 In step S215, the calculation control unit 28 initializes the correction signal prediction result DB 24 by deleting the correction signal prediction information 18 recorded in the correction signal prediction result DB 24.
 ステップS216では、演算制御部28が衛星信号予測結果DB25に記録されている衛星信号予測情報19を削除することで、衛星信号予測結果DB25を初期化する。 In step S216, the calculation control unit 28 initializes the satellite signal prediction result DB 25 by deleting the satellite signal prediction information 19 recorded in the satellite signal prediction result DB 25.
 ステップS217では、演算制御部28が測位演算部20に初期化指令を送信することで、測位演算部20の測位演算を初期化する。 In step S217, the calculation control unit 28 sends an initialization command to the positioning calculation unit 20, thereby initializing the positioning calculation of the positioning calculation unit 20.
 ステップS218(図13に示す)では、演算制御部28がステップS210で通信部21から受信した補正信号11を補正信号予測部23に送信し、補正信号予測部23に対し処理を指令する。その後、補正信号予測部23は補正信号予測情報18及び補正信号予測誤差36を補正信号予測結果DB24に送信し、補正信号予測結果DB24は補正信号予測情報18及び補正信号予測誤差分布37を記録する。 In step S218 (shown in FIG. 13), the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 in step S210 to the correction signal prediction unit 23, and commands the correction signal prediction unit 23 to process it. After that, the correction signal prediction unit 23 transmits the correction signal prediction information 18 and the correction signal prediction error 36 to the correction signal prediction result DB 24, and the correction signal prediction result DB 24 records the correction signal prediction information 18 and the correction signal prediction error distribution 37.
 ステップS219では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を衛星信号予測部26に送信し、衛星信号予測部26に対し処理を指令する。その後、衛星信号予測部26は衛星信号予測情報19を衛星信号予測結果DB25に送信し、衛星信号予測結果DB25は衛星信号予測情報19を記録する。 In step S219, the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the satellite signal prediction unit 26, and commands the satellite signal prediction unit 26 to process it. After that, the satellite signal prediction unit 26 transmits the satellite signal prediction information 19 to the satellite signal prediction result DB 25, and the satellite signal prediction result DB 25 records the satellite signal prediction information 19.
 ステップS220では、演算制御部28がステップS210で通信部21から受信した補正信号11を補正信号DB22に記録する。 In step S220, the calculation control unit 28 records the correction signal 11 received from the communication unit 21 in step S210 in the correction signal DB 22.
 ステップS221では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を測位演算部20に送信する。 In step S221, the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the positioning calculation unit 20.
 ステップS222では、演算制御部28がステップS210で通信部21から受信した補正信号11を測位演算部20に送信する。 In step S222, the calculation control unit 28 transmits the correction signal 11 received from the communication unit 21 in step S210 to the positioning calculation unit 20.
 ステップS223では、演算制御部28がステップS201でGNSSアンテナ29から受信した衛星信号10を測位演算部20に送信する。 In step S223, the calculation control unit 28 transmits the satellite signal 10 received from the GNSS antenna 29 in step S201 to the positioning calculation unit 20.
 ステップS224では、演算制御部28が補正信号DB22に補正信号11が記録されているか否かを確認する。補正信号DB22に補正信号11が記録されている場合、ステップS225に進む。補正信号DB22に補正信号11が記録されていない場合、ステップS227に進む。 In step S224, the calculation control unit 28 checks whether or not the correction signal 11 is recorded in the correction signal DB 22. If the correction signal 11 is recorded in the correction signal DB 22, the process proceeds to step S225. If the correction signal 11 is not recorded in the correction signal DB 22, the process proceeds to step S227.
 ステップS225では、演算制御部28が補正信号DB22に記録されている補正信号11を測位演算部20に送信する。 In step S225, the calculation control unit 28 transmits the correction signal 11 recorded in the correction signal DB 22 to the positioning calculation unit 20.
 ステップS226では、演算制御部28が測位演算部20に干渉測位を指令する。 In step S226, the calculation control unit 28 commands the positioning calculation unit 20 to perform interferometric positioning.
 ステップS227では、演算制御部28が測位演算部20に単独測位を指令する。 In step S227, the calculation control unit 28 commands the positioning calculation unit 20 to perform independent positioning.
 ステップS228では、演算制御部28が、測位演算部20は干渉測位に成功したか否かを判断する。ここで、演算制御部28は、測位演算部20が搬送波位相差の波数小数部及び波数整数部のどちらか一つを確定した場合に、干渉測位に成功したと判断する。干渉測位に成功した場合、ステップS229に進む。干渉測位に失敗した場合、ステップS230に進む。 In step S228, the calculation control unit 28 judges whether the positioning calculation unit 20 has succeeded in the interferometric positioning. Here, the calculation control unit 28 judges that the interferometric positioning has been successful when the positioning calculation unit 20 has determined either the wave number decimal part or the wave number integer part of the carrier phase difference. If the interferometric positioning is successful, the process proceeds to step S229. If the interferometric positioning is unsuccessful, the process proceeds to step S230.
 ステップS229では、測位演算部20が単独測位結果を干渉測位結果で補正することで精密位置データ14を算出し、位置情報12として演算制御部28に出力する。 In step S229, the positioning calculation unit 20 calculates precise position data 14 by correcting the independent positioning result with the interferometric positioning result, and outputs the precise position data 14 to the calculation control unit 28 as position information 12.
 ステップS230では、測位演算部20が単独測位結果である概略位置データ13を算出し、位置情報12として演算制御部28に出力する。 In step S230, the positioning calculation unit 20 calculates the approximate position data 13, which is the result of independent positioning, and outputs it to the calculation control unit 28 as the position information 12.
 ステップS231では、演算制御部28が外部端末に位置情報12及び静止状態情報15を出力する。 In step S231, the calculation control unit 28 outputs the position information 12 and stationary state information 15 to the external terminal.
 ステップS232では、演算制御部28が測位演算部20から取得した位置情報12を、演算制御部28が生成位置情報30として記録した後に処理を終了する。 In step S232, the calculation control unit 28 records the location information 12 acquired from the positioning calculation unit 20 as generated location information 30, and then ends the process.
 本実施例1の移動体測位装置2では、GNSSアンテナ29が測位衛星3から受信した衛星信号10と、通信部21が配信サーバ5から受信した補正信号11と、を用いて、GNSSアンテナ29が測位衛星3から受信する衛星信号10を予測し、予測値と実測値との乖離からGNSSアンテナ29が受信する衛星信号10の連続性を検出する。 In the mobile positioning device 2 of this embodiment 1, the satellite signal 10 received by the GNSS antenna 29 from the positioning satellite 3 and the correction signal 11 received by the communication unit 21 from the distribution server 5 are used to predict the satellite signal 10 that the GNSS antenna 29 will receive from the positioning satellite 3, and the continuity of the satellite signal 10 received by the GNSS antenna 29 is detected from the deviation between the predicted value and the actual measured value.
 そして、移動体測位装置2は、受信した衛星信号10の連続性が検出された場合、GNSSアンテナ29が静止状態にあると判断する。 If the mobile positioning device 2 detects continuity in the received satellite signal 10, it determines that the GNSS antenna 29 is stationary.
 このように構成すれば、姿勢計測装置等を搭載することなくGNSSのみを用いることで移動体の静止状態を判断することが可能となり、構造の簡易化が可能となる。  With this configuration, it becomes possible to determine the stationary state of a moving object using only GNSS without installing an attitude measurement device, etc., and the structure can be simplified.
 本実施例1によれば、静止状態判定システムにおいて、測位衛星3から取得した衛星信号10と、基地局4から取得した補正信号と、から取得した衛星信号10の連続性を判定可能である。静止状態判定システムは、取得した衛星信号10が連続的な場合、車両が静止状態にあると判定可能であり、構成の簡易化及び慣性センサに依存しない静止状態判定が可能となる。 According to the present embodiment 1, the stationary state determination system can determine the continuity of the satellite signal 10 obtained from the positioning satellite 3 and the correction signal obtained from the base station 4. If the acquired satellite signal 10 is continuous, the stationary state determination system can determine that the vehicle is stationary, making it possible to simplify the configuration and determine the stationary state without relying on an inertial sensor.
 つまり、本発明の実施例1によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。 In other words, according to the first embodiment of the present invention, it is possible to realize a mobile positioning device and a mobile positioning method that have a simple configuration and that can determine the stationary state of a mobile station without relying on the detection accuracy of an inertial sensor.
 (実施例2)
 次に、本発明の実施例2について、説明する。
Example 2
Next, a second embodiment of the present invention will be described.
 本実施例2の移動体測位装置2は、その構成は、実施例1と同様であるが、衛星信号予測部26、衛星信号予測結果DB25、衛星信号連続性判定部27及び演算制御部28の処理において実施例1と異なっている。このため、実施例2の全体構成は図1と同様となるので、図示は省略する。 The mobile positioning device 2 of this embodiment 2 has the same configuration as that of embodiment 1, but differs from embodiment 1 in the processing of the satellite signal prediction unit 26, the satellite signal prediction result DB 25, the satellite signal continuity determination unit 27, and the calculation control unit 28. Therefore, the overall configuration of embodiment 2 is the same as that of FIG. 1, and is therefore not shown in the figure.
 以下では、実施例1と実施例2との相違点について説明する。  Below, we will explain the differences between Example 1 and Example 2.
 実施例2と実施例1との異なる部分は、演算制御部28が静止状態情報15を「静止」として算出した場合、演算制御部28が衛星信号予測結果DB25に対し衛星信号予測誤差分布39の演算を指示するとともに、衛星信号連続性判定部27は、衛星信号予測結果DB25が算出した衛星信号予測誤差分布39に基づいて衛星信号10の連続性を判定し、衛星信号連続性情報16を算出する点である。 The difference between Example 2 and Example 1 is that when the calculation control unit 28 calculates the stationary state information 15 as "stationary", the calculation control unit 28 instructs the satellite signal prediction result DB 25 to calculate the satellite signal prediction error distribution 39, and the satellite signal continuity determination unit 27 determines the continuity of the satellite signal 10 based on the satellite signal prediction error distribution 39 calculated by the satellite signal prediction result DB 25, and calculates the satellite signal continuity information 16.
 [衛星信号予測結果DB25]
 衛星信号予測結果DB25は、衛星信号予測部26及び演算制御部28に基づいて、演算制御部28から受信した衛星信号10と衛星信号予測情報19から予測した予測値との差分を衛星信号予測誤差38として算出する。
[Satellite signal prediction result DB25]
Based on the satellite signal prediction unit 26 and the calculation control unit 28, the satellite signal prediction result DB 25 calculates the difference between the satellite signal 10 received from the calculation control unit 28 and the predicted value predicted from the satellite signal prediction information 19 as the satellite signal prediction error 38.
 そして、衛星信号予測結果DB25は、算出した衛星信号予測誤差38を受信し記録することで、衛星信号予測誤差38の確率分布である衛星信号予測誤差分布39を算出する。衛星信号予測結果DB25は、演算制御部28から衛星信号予測誤差分布39の演算を指示された場合のみ、衛星信号予測誤差分布39を算出する。 Then, the satellite signal prediction result DB 25 receives and records the calculated satellite signal prediction error 38, and calculates a satellite signal prediction error distribution 39, which is a probability distribution of the satellite signal prediction error 38. The satellite signal prediction result DB 25 calculates the satellite signal prediction error distribution 39 only when instructed by the calculation control unit 28 to calculate the satellite signal prediction error distribution 39.
 [衛星信号連続性判定部27]
 衛星信号連続性判定部27は、衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されている場合、衛星信号予測誤差分布39に基づいてGNSSアンテナ29が受信した衛星信号10に記載された擬似距離7及び搬送波位相8の連続性を検出し、衛星信号の連続性を判定する。
[Satellite signal continuity determination unit 27]
When a satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25, the satellite signal continuity determination unit 27 detects the continuity of the pseudorange 7 and carrier phase 8 described in the satellite signal 10 received by the GNSS antenna 29 based on the satellite signal prediction error distribution 39, and determines the continuity of the satellite signal.
 以下、図14に示したフローチャートを参照して、衛星信号連続性判定部27が擬似距離7及び搬送波位相8の連続性を検出する処理手順を説明する。 Below, the process steps for the satellite signal continuity determination unit 27 to detect the continuity of the pseudorange 7 and carrier phase 8 will be explained with reference to the flowchart shown in FIG. 14.
 図14は、図9のフローチャートに示したステップS305とS307の間にS306の代替として挿入される処理であり、衛星信号連続性判定部27に含まれるプロセッサがコンピュータプログラムを実行することによって実現できる。 FIG. 14 shows a process that is inserted between steps S305 and S307 in the flowchart of FIG. 9 as an alternative to S306, and can be realized by a processor included in the satellite signal continuity determination unit 27 executing a computer program.
 ステップS313では、衛星信号連続性判定部27が衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されているか否かを確認する。衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されている場合、ステップS314に進む。衛星信号予測結果DB25に衛星信号予測誤差分布39が記録されていない場合、ステップS315に進む。 In step S313, the satellite signal continuity determination unit 27 checks whether or not the satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25. If the satellite signal prediction error distribution 39 is recorded in the satellite signal prediction result DB 25, the process proceeds to step S314. If the satellite signal prediction error distribution 39 is not recorded in the satellite signal prediction result DB 25, the process proceeds to step S315.
 ステップS314では、衛星信号連続性判定部27が衛星信号予測結果DB25に記録された衛星信号予測誤差分布39に基づいて、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。搬送波位相予測誤差閾値ε1_MAXは、例えば、衛星信号予測誤差分布39の1σ、2σあるいは3σ区間の値を閾値とし、閾値をステップS305で算出した搬送波位相予測誤差ε1が越えた際、測位衛星Sに対する搬送波位相8が正確に予測されていないと判断してもよい。 In step S314, the satellite signal continuity determination unit 27 calculates a carrier phase prediction error threshold ε1_MAX, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted, based on the satellite signal prediction error distribution 39 recorded in the satellite signal prediction result DB 25. The carrier phase prediction error threshold ε1_MAX may be set to, for example, a value in the 1σ, 2σ, or 3σ interval of the satellite signal prediction error distribution 39, and when the carrier phase prediction error ε1 calculated in step S305 exceeds the threshold, it may be determined that the carrier phase 8 for the positioning satellite S has not been accurately predicted.
 ステップS315では、衛星信号連続性判定部27が補正信号予測結果DB24に記録された補正信号予測誤差分布37に基づいて、ステップS304において衛星信号10に記載されている測位衛星Sに対する搬送波位相8が正確に予測されているか判断する閾値である搬送波位相予測誤差閾値ε1_MAXを算出する。 In step S315, the satellite signal continuity determination unit 27 calculates the carrier phase prediction error threshold ε1_MAX, which is a threshold for determining whether the carrier phase 8 for the positioning satellite S described in the satellite signal 10 in step S304 has been accurately predicted, based on the correction signal prediction error distribution 37 recorded in the correction signal prediction result DB 24.
 [演算制御部28]
 演算制御部28は、衛星信号連続性判定部27から取得した衛星信号連続性情報16に応じてGNSSアンテナ29の静止状態情報15を算出する。そして、演算制御部28は、静止状態情報15を「静止」と算出した場合、衛星信号予測結果DB25に対し衛星信号10を送信することで、衛星信号予測誤差分布39の算出を指示する。演算制御部28が衛星信号予測結果DB25に対し演算を指示する動作は、図11に示すステップ205の直後に実行される。
[Arithmetic and control unit 28]
The calculation control unit 28 calculates stationary state information 15 of the GNSS antenna 29 according to the satellite signal continuity information 16 acquired from the satellite signal continuity determination unit 27. Then, when the calculation control unit 28 calculates the stationary state information 15 as "stationary", it transmits satellite signals 10 to the satellite signal prediction result DB 25, thereby instructing the satellite signal prediction error distribution 39 to be calculated. The operation of the calculation control unit 28 instructing the satellite signal prediction result DB 25 to perform a calculation is executed immediately after step 205 shown in FIG.
 上述した構成により、実施例2において、移動体測位装置2はGNSSアンテナ29が静止状態である場合の衛星信号予測情報19の予測精度を算出可能となり、予測誤差分布に基づいて、適切な予測誤差閾値を算出することができる。 With the above-described configuration, in Example 2, the mobile positioning device 2 can calculate the prediction accuracy of the satellite signal prediction information 19 when the GNSS antenna 29 is stationary, and can calculate an appropriate prediction error threshold based on the prediction error distribution.
 したがって、移動体測位装置2は、高精度な衛星信号10の連続性判定が可能となり、静止判定精度の向上が可能となる。 As a result, the mobile positioning device 2 can determine the continuity of the satellite signal 10 with high accuracy, improving the accuracy of stationary determination.
 つまり、本発明の実施例2によれば、構成が簡易であり、慣性センサの検出精度に依存することなく、静止判定精度が向上された、移動局の静止状態を判定する移動体測位装置及び移動体測位方法を実現することができる。 In other words, according to the second embodiment of the present invention, it is possible to realize a mobile positioning device and a mobile positioning method that have a simple configuration, improve the accuracy of determining stationary state without relying on the detection accuracy of an inertial sensor, and determine the stationary state of a mobile station.
 なお、衛星信号予測結果DB25に代えて、衛星信号予測部26が、演算制御部28から受信した衛星信号10と衛星信号予測情報19から予測した予測値(予測モデル)との差分を算出し、算出した差分から衛星信号予測誤差38の確率分布である衛星信号予測誤差分布39を算出することもできる。そして、衛星信号予測部26は、衛星信号予測誤差分布39から衛星信号予測精度を算出することができる。衛星信号予測部26は、静止状態情報15に基づいて、移動局が静止状態の場合、衛星信号予測精度を算出する。そして、衛星信号連続性判定部27は、衛星信号予測精度に基づいて、衛星信号の連続性を判定する。 Instead of using the satellite signal prediction result DB 25, the satellite signal prediction unit 26 can calculate the difference between the satellite signal 10 received from the calculation control unit 28 and a prediction value (prediction model) predicted from the satellite signal prediction information 19, and calculate a satellite signal prediction error distribution 39, which is a probability distribution of the satellite signal prediction error 38, from the calculated difference. The satellite signal prediction unit 26 can then calculate the satellite signal prediction accuracy from the satellite signal prediction error distribution 39. When the mobile station is in a stationary state, the satellite signal prediction unit 26 calculates the satellite signal prediction accuracy based on the stationary state information 15. The satellite signal continuity determination unit 27 then determines the continuity of the satellite signal based on the satellite signal prediction accuracy.
 また、本明細書等においては、移動局とは、GNSSアンテナ29が備えられた移動体(例えば自動車や鉄道、農業機械や建設機械)である。また、図1に示したGNSSアンテナ29には、GNSSアンテナ29が備えられた移動体、つまり、移動局も含まれるものとする。 In addition, in this specification, a mobile station is a moving object (e.g., an automobile, a train, an agricultural machine, or a construction machine) equipped with a GNSS antenna 29. The GNSS antenna 29 shown in FIG. 1 also includes a moving object equipped with a GNSS antenna 29, that is, a mobile station.
 1・・・静止状態判定システム、2・・・移動体測位装置、3・・・測位衛星、4・・・基地局、5・・・配信サーバ、7・・・擬似距離、8・・・搬送波位相、10・・・衛星信号、11・・・補正信号、12・・・位置情報、13・・・概略位置データ、15・・・静止状態情報、16・・・衛星信号連続性情報、18・・・補正信号予測情報、19・・・衛星信号予測情報、20・・・測位演算部、21・・・通信部、22・・・補正信号DB(補正信号記録部)、23・・・補正信号予測部、24・・・補正信号予測結果DB、25・・・衛星信号予測結果DB、26・・・衛星信号予測部、27・・・衛星信号連続性判定部、28・・・演算制御部、29・・・GNSSアンテナ(移動局) 1: Stationary state determination system, 2: Mobile positioning device, 3: Positioning satellite, 4: Base station, 5: Distribution server, 7: Pseudo distance, 8: Carrier wave phase, 10: Satellite signal, 11: Correction signal, 12: Position information, 13: Approximate position data, 15: Stationary state information, 16: Satellite signal continuity information, 18: Correction signal prediction information, 19: Satellite signal prediction information, 20: Positioning calculation unit, 21: Communication unit, 22: Correction signal DB (correction signal recording unit), 23: Correction signal prediction unit, 24: Correction signal prediction result DB, 25: Satellite signal prediction result DB, 26: Satellite signal prediction unit, 27: Satellite signal continuity determination unit, 28: Calculation control unit, 29: GNSS antenna (mobile station)

Claims (15)

  1.  移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出する衛星信号予測部と、
     前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出する衛星信号連続性判定部と、
     前記衛星信号連続性情報に基づいて前記移動局の静止状態を判定する演算制御部と、
     を備え、
     前記演算制御部は、前記衛星信号連続性情報に基づいて前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断することを特徴とする移動体測位装置。
    a satellite signal prediction unit that calculates satellite signal prediction information including a satellite signal received by a mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from a base station;
    a satellite signal continuity determination unit that calculates satellite signal continuity information, which is information regarding the continuity of the satellite signal, based on the satellite signal and the satellite signal prediction information;
    an arithmetic and control unit that determines a stationary state of the mobile station based on the satellite signal continuity information;
    Equipped with
    The mobile positioning device, wherein the arithmetic and control unit determines that the mobile station is stationary when the continuity of the satellite signal is detected based on the satellite signal continuity information.
  2.  請求項1に記載の移動体測位装置において、
     前記演算制御部は、前記移動局の静止状態を示す静止状態情報を算出することを特徴とする移動体測位装置。
    2. The mobile positioning device according to claim 1,
    The mobile positioning device, wherein the arithmetic and control unit calculates stationary state information indicating a stationary state of the mobile station.
  3.  請求項1に記載の移動体測位装置において、
     補正信号予測部をさらに備え、
     前記補正信号予測部は、過去に受信した前記補正信号から現在時刻あるいは未来において前記基地局で配信される前記補正信号の予測モデルを含む補正信号予測情報を算出し、
    前記衛星信号予測部は、前記衛星信号と前記補正信号予測情報に基づいて、前記補正信号予測情報を前記衛星信号で補正することで前記衛星信号予測情報を算出することを特徴とする移動体測位装置。
    2. The mobile positioning device according to claim 1,
    A correction signal prediction unit is further provided,
    the correction signal prediction unit calculates correction signal prediction information including a prediction model of the correction signal to be distributed by the base station at the current time or in the future from the correction signal received in the past;
    The mobile positioning device, wherein the satellite signal prediction unit calculates the satellite signal prediction information by correcting the corrected signal prediction information with the satellite signal based on the satellite signal and the corrected signal prediction information.
  4.  請求項2に記載の移動体測位装置において、
     前記衛星信号予測部は、前記衛星信号予測情報の予測モデルの出力値と、前記衛星信号との差分から、衛星信号予測誤差分布を算出し、衛星信号予測精度を算出することを特徴とする移動体測位装置。
    3. The mobile positioning device according to claim 2,
    The mobile positioning device, characterized in that the satellite signal prediction unit calculates a satellite signal prediction error distribution from the difference between the output value of the prediction model of the satellite signal prediction information and the satellite signal, and calculates the satellite signal prediction accuracy.
  5.  請求項4に記載の移動体測位装置において、
     前記衛星信号予測部は、前記静止状態情報に基づいて、前記移動局が静止状態の場合、前記衛星信号予測精度を算出することを特徴とする移動体測位装置。
    5. The mobile positioning device according to claim 4,
    The mobile positioning device according to claim 1, wherein the satellite signal prediction unit calculates the satellite signal prediction accuracy based on the stationary state information when the mobile station is in a stationary state.
  6.  請求項5に記載の移動体測位装置において、
     前記衛星信号連続性判定部は、前記衛星信号予測精度に基づいて前記衛星信号の連続性を判定することを特徴とする移動体測位装置。
    6. The mobile positioning device according to claim 5,
    The mobile positioning device, wherein the satellite signal continuity determination unit determines the continuity of the satellite signals based on the satellite signal prediction accuracy.
  7.  請求項1に記載の移動体測位装置において、
     前記衛星信号及び前記補正信号は、少なくとも搬送波位相を含むことを特徴とする移動体測位装置。
    2. The mobile positioning device according to claim 1,
    A mobile positioning device, wherein the satellite signal and the correction signal include at least a carrier phase.
  8.  請求項1に記載の移動体測位装置において、
     前記演算制御部の指示に従って、前記補正信号を記録する補正信号記録部を、さらに備えることを特徴とする移動体測位装置。
    2. The mobile positioning device according to claim 1,
    A mobile object positioning device further comprising a correction signal recording unit which records the correction signal in accordance with an instruction from the arithmetic control unit.
  9.  移動局が受信した衛星信号と、基地局から配信された衛星信号に基づく補正信号に基づいて現在時刻あるいは未来において配信される前記衛星信号の予測モデルと、を含む衛星信号予測情報を算出し、
     前記衛星信号及び前記衛星信号予測情報に基づいて前記衛星信号の連続性に関する情報である衛星信号連続性情報を算出し、
     前記衛星信号連続性情報に基づいて、前記衛星信号の連続性を検出した場合、前記移動局が静止状態であると判断することを特徴とする移動体測位方法。
    Calculating satellite signal prediction information including a satellite signal received by the mobile station and a prediction model of the satellite signal to be distributed at the current time or in the future based on a correction signal based on the satellite signal distributed from the base station;
    calculating satellite signal continuity information, which is information regarding the continuity of the satellite signal, based on the satellite signal and the satellite signal prediction information;
    A mobile positioning method, comprising: determining that the mobile station is stationary when continuity of the satellite signals is detected based on the satellite signal continuity information.
  10.  請求項9に記載の移動体測位方法において、
     前記移動局が静止状態であると判断すると、静止状態を示す静止状態情報を算出し、外部端末に送信することを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 9,
    A mobile positioning method, comprising the steps of: when it is determined that the mobile station is in a stationary state, calculating stationary state information indicative of the stationary state, and transmitting the information to an external terminal.
  11.  請求項9に記載の移動体測位方法において、
     過去に受信した前記補正信号から現在時刻あるいは未来において前記基地局で配信される前記補正信号の予測モデルを含む補正信号予測情報を算出し、
     前記衛星信号と前記補正信号予測情報に基づいて、前記補正信号予測情報を前記衛星信号で補正することで前記衛星信号予測情報を算出することを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 9,
    Calculating correction signal prediction information including a prediction model of the correction signal to be distributed by the base station at the current time or in the future from the correction signal received in the past;
    A mobile positioning method, comprising: calculating the satellite signal prediction information based on the satellite signal and the corrected signal prediction information, by correcting the corrected signal prediction information with the satellite signal.
  12.  請求項10に記載の移動体測位方法において、
     前記衛星信号予測情報の予測モデルの出力値と、前記衛星信号との差分から、衛星信号予測誤差分布を算出し、衛星信号予測精度を算出することを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 10,
    A mobile positioning method, comprising: calculating a satellite signal prediction error distribution from a difference between an output value of a prediction model of the satellite signal prediction information and the satellite signal; and calculating satellite signal prediction accuracy.
  13.  請求項12に記載の移動体測位方法において、
     前記静止状態情報に基づいて、前記移動局が静止状態の場合、前記衛星信号予測精度を算出することを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 12,
    A mobile positioning method, comprising: calculating, based on the stationary state information, the satellite signal prediction accuracy when the mobile station is in a stationary state.
  14.  請求項13に記載の移動体測位方法において、
     前記衛星信号予測精度に基づいて前記衛星信号の連続性を判定することを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 13,
    A mobile positioning method, comprising: determining continuity of the satellite signals based on the satellite signal prediction accuracy.
  15.  請求項9に記載の移動体測位方法において、
     前記衛星信号及び前記補正信号は、少なくとも搬送波位相を含むことを特徴とする移動体測位方法。
    The mobile object positioning method according to claim 9,
    A mobile positioning method, wherein the satellite signal and the correction signal include at least a carrier phase.
PCT/JP2023/018395 2022-11-01 2023-05-17 Moving-body positioning device and moving-body positioning method WO2024095512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-175841 2022-11-01
JP2022175841A JP2024066324A (en) 2022-11-01 2022-11-01 Mobile object positioning device and mobile object positioning method

Publications (1)

Publication Number Publication Date
WO2024095512A1 true WO2024095512A1 (en) 2024-05-10

Family

ID=90930284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018395 WO2024095512A1 (en) 2022-11-01 2023-05-17 Moving-body positioning device and moving-body positioning method

Country Status (2)

Country Link
JP (1) JP2024066324A (en)
WO (1) WO2024095512A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903236A (en) * 1996-06-05 1999-05-11 The Board Of Trustees Of The Leland Stanford Junior University Reference carrier phase prediction for kinematic GPS
JP2010500562A (en) * 2006-08-09 2010-01-07 ザ・ボーイング・カンパニー Global positioning system (GPS) user receiver and geometric surface processing for full-field coherent GPS signal pseudo-random noise (PRN) code acquisition and navigation solution determination
US20140327565A1 (en) * 2011-11-28 2014-11-06 Lambda: 4 Entwicklungen Gmbh Process for the determination of a position change or respectively resting and/or speed of an object
US20190120973A1 (en) * 2017-10-23 2019-04-25 Deere & Company RTK Vector Phase Locked Loop Architecture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903236A (en) * 1996-06-05 1999-05-11 The Board Of Trustees Of The Leland Stanford Junior University Reference carrier phase prediction for kinematic GPS
JP2010500562A (en) * 2006-08-09 2010-01-07 ザ・ボーイング・カンパニー Global positioning system (GPS) user receiver and geometric surface processing for full-field coherent GPS signal pseudo-random noise (PRN) code acquisition and navigation solution determination
US20140327565A1 (en) * 2011-11-28 2014-11-06 Lambda: 4 Entwicklungen Gmbh Process for the determination of a position change or respectively resting and/or speed of an object
US20190120973A1 (en) * 2017-10-23 2019-04-25 Deere & Company RTK Vector Phase Locked Loop Architecture

Also Published As

Publication number Publication date
JP2024066324A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
CN111886519B (en) Positioning system, method and medium
KR20210152549A (en) Systems and methods for high-integrity satellite positioning
RU2479855C2 (en) Distance dependant error mitigation in real-time kinematic positioning
US7576690B2 (en) Position determination with reference data outage
US8242954B2 (en) Method and device of satellite navigation system'S integrity control
US20080147686A1 (en) Method and system for a data interface for aiding a satellite positioning system reciever
US8880001B1 (en) Collaborative positioning, navigation and timing
EP2816374B1 (en) Vehicle positioning in high-reflection environments
CA2557984A1 (en) Method for back-up dual-frequency navigation during brief periods when measurement data is unavailable on one of two frequencies
US20130090858A1 (en) System for measuring coseismic movements or vibrations of structures based on global navigation satellite systems-gnss and/or pseudolites
CN108513623B (en) Pseudo-range calculation method and terminal
US11112508B2 (en) Positioning method and positioning terminal
JP2006258461A (en) Positioning device, positioning method and positioning program
KR102270339B1 (en) Method and System for Reduction of Time to First Fix of High Integrity RTK-GNSS
WO2024095512A1 (en) Moving-body positioning device and moving-body positioning method
CN114174870A (en) Method for determining a model describing at least one environment-specific GNSS curve
US11047992B2 (en) Positioning method and positioning terminal
JP2022545327A (en) Increase sensitivity to reflected GNSS signals
JP4322829B2 (en) Cycle slip detection device and cycle slip detection method
JP2020008346A (en) Positioning system, positioning device, and center device
US10816675B2 (en) Coordinate output method and coordinate output device
US11294072B2 (en) Method, device and server for estimation of IFB calibration value
CN114303075A (en) Positioning assistance apparatus, positioning assistance method, and computer-readable recording medium
JP2023180596A (en) Positioning system and positioning method in positioning system
US20240159914A1 (en) Method for taking provided gnss-relevant route information into account in the gnss-based localization of vehicles