WO2024095444A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2024095444A1
WO2024095444A1 PCT/JP2022/041151 JP2022041151W WO2024095444A1 WO 2024095444 A1 WO2024095444 A1 WO 2024095444A1 JP 2022041151 W JP2022041151 W JP 2022041151W WO 2024095444 A1 WO2024095444 A1 WO 2024095444A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
ventilation
control device
suction temperature
Prior art date
Application number
PCT/JP2022/041151
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 堀江
芸青 范
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041151 priority Critical patent/WO2024095444A1/en
Publication of WO2024095444A1 publication Critical patent/WO2024095444A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone

Definitions

  • This disclosure relates to an air conditioning system having a ventilation device and an air conditioner.
  • an air conditioning system that has an air conditioner and a ventilation device installed in the same space to be air-conditioned (see, for example, Patent Document 1).
  • the ventilation device ventilates the room by exchanging the air in the room, which is the space to be air-conditioned, with outside air, and the air conditioner adjusts the temperature in the room.
  • the air conditioner will directly suck in the air blown out from the ventilation device.
  • the air conditioner will suck in air that flows out from the ventilation device and has a temperature that is the same as the outdoor air temperature.
  • This phenomenon can occur, for example, when the concentration of carbon dioxide in the room is high and the ventilation device increases the ventilation air volume.
  • energy is wasted by performing air conditioning operation based on the temperature of the air sucked in by the air conditioner. For example, in the summer, when the ventilation device supplies high-temperature outdoor air to the room during cooling operation, the air conditioner may suck in high-temperature air from the ventilation device. Then, even if the air in the room is cooled by cooling operation, the air conditioner cools the room more than necessary because it performs air conditioning so that the high-temperature air from the ventilation device approaches the set temperature. As a result, energy is wasted.
  • the present disclosure has been made to solve the above problems, and aims to provide an air conditioning system that reduces unnecessary energy consumption by the air conditioner, which can occur when air that has flowed out from the ventilation device is sucked in.
  • the air conditioning system includes a first air conditioner that conditions a first area in a space to be air-conditioned, a first ventilation device that ventilates the first area, a first intake temperature sensor that acquires a first intake temperature, which is the temperature of the air that the first air conditioner draws in from the first area, a return air temperature sensor that acquires a return air temperature, which is the temperature of the air that the first ventilation device draws in from the first area, and a control device that controls the first ventilation device and the first air conditioner, and the control device corrects the first intake temperature based on the return air temperature and controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
  • the control device corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature.
  • the corrected first intake temperature is closer to the temperature of the first area than the first intake temperature before correction, and the first air conditioner is able to perform air conditioning based on the more accurate first intake temperature as the temperature of the first area. Therefore, in cooling operation, the temperature of the first area does not drop too much below the set temperature, and in heating operation, the temperature of the first area does not rise too much above the set temperature, suppressing wasteful energy consumption.
  • FIG. 1 is a schematic diagram illustrating an air conditioning system according to a first embodiment
  • FIG. 2 is a diagram illustrating a first installation example of a plurality of air conditioners and one or more ventilators in the first embodiment.
  • FIG. 10 is a diagram illustrating a second installation example of a plurality of air conditioners and one or more ventilators in the first embodiment.
  • 10 is a diagram for explaining a method of determining a first correction coefficient based on a ventilation air volume in the first embodiment.
  • FIG. 10 is a diagram for explaining a method of determining a first correction coefficient based on an outside air set temperature difference in the first embodiment.
  • FIG. 2 is a block diagram illustrating a hardware configuration of a control device according to the first embodiment.
  • FIG. 4 is a flowchart illustrating a flow of an air conditioning process by the air conditioning system according to the first embodiment.
  • 10 is a flowchart illustrating a flow of an air conditioning process by an air conditioning system according to a second embodiment.
  • Embodiment 1. 1 is a schematic diagram illustrating an air conditioning system 100 according to embodiment 1.
  • the air conditioning system 100 performs air conditioning and ventilation in a room, which is a space to be air-conditioned.
  • the air conditioning system 100 includes one or more air conditioners 1, one or more carbon dioxide sensors 2, one or more ventilators 3, one or more outdoor air temperature sensors 4, and a control device 5.
  • the one or more air conditioners 1, the one or more carbon dioxide sensors 2, and the one or more ventilators 3 are installed in the space to be air-conditioned.
  • the one or more air conditioners 1 have a heat exchanger (not shown).
  • the one or more air conditioners 1 are also provided with one or more heat source units (not shown).
  • the one or more heat source units draw in outside air, exchange heat between the outside air and a refrigerant, and supply the refrigerant after heat exchange to the one or more air conditioners 1.
  • the one or more air conditioners 1 then draw in indoor air, exchange heat with the refrigerant from the one or more heat source units in the heat exchanger, and send the air after heat exchange into the room, thereby performing air conditioning.
  • the one or more heat source units may exchange heat between the refrigerant that has exchanged heat with outside air or the like and a heat medium, and supply the heat medium after heat exchange to the one or more air conditioners 1.
  • the one or more air conditioners 1 exchange heat with the heat medium in the heat exchanger with the drawn-in air, and send the air after heat exchange into the room.
  • the air conditioner 1 is provided with an air conditioning intake temperature sensor 10 upstream of the heat exchanger to acquire the temperature of the air drawn in from inside the room. That is, the air conditioning intake temperature sensor 10 acquires the temperature of the air drawn into the air conditioner 1 and before heat exchange in the heat exchanger. Note that when the air conditioning system 100 includes multiple air conditioners 1, each air conditioner 1 is provided with an air conditioning intake temperature sensor 10. The temperature of the air drawn into the air conditioner 1 and acquired by the air conditioning intake temperature sensor 10 may hereinafter be referred to as the intake temperature.
  • the one or more carbon dioxide sensors 2 acquire the concentration of carbon dioxide in the room.
  • the concentration of carbon dioxide in the room may be referred to as the carbon dioxide concentration.
  • the one or more carbon dioxide sensors 2 may be fixed in the room or may be portable by a person.
  • the one or more ventilation devices 3 ventilate the room based on the carbon dioxide concentration acquired by the one or more carbon dioxide sensors 2.
  • the one or more ventilation devices 3 ventilate the room by replacing the air outside with the air inside.
  • the ventilation device 3 is provided with an exhaust air duct 3A for circulating the sucked air inside the room to the outside, and an air supply duct 3B for circulating the sucked air inside the room.
  • the exhaust air duct 3A is indicated by a dashed arrow
  • the air supply duct 3B is indicated by a solid arrow. Note that when the air conditioning system 100 is provided with multiple ventilation devices 3, each ventilation device 3 is provided with an exhaust air duct 3A and an air supply duct 3B.
  • the ventilation device 3 is provided with a return air temperature sensor 30 that acquires the temperature of the air sucked in from inside the room.
  • the return air temperature sensor 30 is installed on the exhaust air duct 3A. If the air conditioning system 100 is equipped with multiple ventilators 3, the return air temperature sensor 30 is installed on the exhaust air duct 3A of each ventilator 3. The temperature of the air sucked into the ventilation device 3 and acquired by the return air temperature sensor 30 may be referred to as the return air temperature below.
  • FIG. 1 shows an example of a ventilation device 3 having a total heat exchanger 31 that exchanges heat between air sent from inside the room to outside the room and air sent from outside the room to inside the room, but the ventilation device 3 does not have to have a total heat exchanger 31. If the ventilation device 3 has a total heat exchanger 31, the return air temperature sensor 30 is installed upstream of the total heat exchanger 31 in the exhaust air duct 3A.
  • the one or more outdoor air temperature sensors 4 acquire the outdoor air temperature, which is the temperature of the air outside.
  • the one or more outdoor air temperature sensors 4 may be provided in one or more ventilation devices 3 or one or more air conditioners 1. If the air conditioning system 100 includes multiple ventilation devices 3, the outdoor air temperature sensor 4 may be provided on the supply air duct 3B of at least one ventilation device 3, or at the inlet of the supply air duct 3B. If the air conditioning system 100 includes one ventilation device 3, the outdoor air temperature sensor 4 may be provided on the supply air duct 3B of the one ventilation device 3 and/or at the air inlet to the supply air duct 3B. Note that when one or more outdoor air temperature sensors 4 are provided in one or more ventilation devices 3, and when the one or more ventilation devices 3 have a total heat exchanger 31, the one or more outdoor air temperature sensors 4 are provided upstream of the total heat exchanger 31.
  • the one or more outdoor air temperature sensors 4 may be provided in one or more heat source units. In this case, if the air conditioning system 100 includes one heat source unit, the outdoor air temperature sensor 4 is provided in the intake port of the one heat source unit through which the heat source unit draws in outdoor air. Alternatively, if the air conditioning system 100 includes multiple heat source units, the outdoor air temperature sensor 4 is provided in the intake port of at least one heat source unit.
  • the one or more outdoor air temperature sensors 4 may be installed outdoors, outside one or more ventilators 3, and outside one or more heat source units.
  • the control device 5 controls one or more air conditioners 1 and one or more ventilation devices 3. More specifically, the control device 5 acquires the suction temperature from one or more air conditioning suction temperature sensors 10, and controls the temperature of air blown into the room from one or more air conditioners 1 based on the suction temperature. The control device 5 controls the temperature of air blown into the room from one or more air conditioners 1 by controlling the operating frequency of a compressor (not shown) and the opening degree of an expansion valve (not shown) provided in one or more air conditioners 1. The control device 5 acquires the carbon dioxide concentration from one or more carbon dioxide sensors 2, and controls one or more ventilation devices 3 based on the carbon dioxide concentration.
  • control device 5 is provided separately from the air conditioner 1 and the ventilation device 3, but the control device 5 may be provided integrally with one or more air conditioners 1 or one or more ventilation devices 3.
  • a part of the control device 5 may be provided in one or more air conditioners 1, and another part may be provided in one or more ventilation devices 3.
  • all or a part of the control device 5 may be provided in the housing of one air conditioner 1, or, if the air conditioning system 100 includes multiple air conditioners 1, it may be provided separately in each housing of two or more air conditioners 1.
  • all or a part of the control device 5 may be provided in the housing of one ventilation device 3, or, if the air conditioning system 100 includes multiple ventilation devices 3, it may be provided separately in each housing of two or more ventilation devices 3. If the control device 5 is provided in a separate state, each part of the control device 5 exchanges information with each other by wired communication or wireless communication.
  • FIG. 1 is a diagram that shows a schematic diagram of a first installation example of multiple air conditioners 1 and one or more ventilation devices 3 in embodiment 1.
  • Figure 3 is a diagram that shows a schematic diagram of a second installation example of multiple air conditioners 1 and one or more ventilation devices 3 in embodiment 1.
  • each region is shown by a rectangle drawn with dashed lines.
  • the space to be air-conditioned is divided into four regions.
  • an air conditioner 1 is installed in each region.
  • each of the four ventilation devices 3 is installed to ventilate each of the four regions.
  • two ventilation devices 3 are installed so that each of them ventilates two of the four areas. That is, one of the two ventilation devices 3 ventilates two of the four areas, and the other ventilates two areas other than the two areas ventilated by the other.
  • Two ducts 32 are connected to each ventilation device 3.
  • One of the two ducts 32 communicates with the exhaust air duct 3A of the ventilation device 3, and the other communicates with the supply air duct 3B.
  • the duct 32 communicating with the exhaust air duct 3A may be referred to as the exhaust duct 32A
  • the duct 32 communicating with the supply air duct 3B may be referred to as the supply air duct 32B.
  • the return air temperature sensor 30 may be provided in the exhaust duct 32A instead of the exhaust air duct 3A in the ventilation device 3.
  • Each of the exhaust duct 32A and the supply air duct 32B is formed in a fork shape.
  • each of the exhaust duct 32A and the supply air duct 32B is formed in a bifurcated shape. Note that in FIG. 3, the exhaust duct 32A is shown by a bifurcated dashed line with one end connected to the ventilation device 3, and the supply air duct 32B is shown by a bifurcated solid line with one end connected to the ventilation device 3.
  • Each of the multiple ends of the exhaust duct 32A opposite the end connected to the ventilation device 3 is provided with an exhaust port that draws in air from inside the room.
  • the multiple exhaust ports of the exhaust duct 32A are arranged in each of the multiple areas.
  • each of the multiple exhaust ports of the exhaust duct 32A is arranged in each of the multiple areas ventilated by the ventilation device 3 to which the exhaust duct 32A is connected.
  • Each of the multiple ends of the air supply duct 32B opposite the end connected to the ventilation device 3 is provided with an air supply port that blows air into the room.
  • the multiple air supply ports of the air supply duct 32B are arranged in each of the multiple areas.
  • each of the multiple air supply ports of the air supply duct 32B is arranged in each of the multiple areas ventilated by the ventilation device 3 to which the air supply duct 32B is connected.
  • the air conditioner 1 shown in Figures 2 and 3 is a four-way ceiling cassette type air conditioner 1 that has air outlets on all four sides and is embedded in the ceiling, but the air conditioner 1 may be of other types such as a wall-mounted type.
  • the air conditioning system 100 may include a carbon dioxide sensor 2 installed in each of the multiple areas, or may include a carbon dioxide sensor 2 in some of the multiple areas. When a carbon dioxide sensor 2 is installed in each area, each carbon dioxide sensor 2 acquires the carbon dioxide concentration in each area.
  • an air conditioner 1 installed in each area conditions the area.
  • four ventilation devices 3 each ventilate one of the four areas.
  • two ventilation devices 3 each ventilate two areas where two exhaust ports in exhaust duct 32A and two intake ports in intake duct 32B are located.
  • the ventilation device 3 ventilating each area ventilates each area based on the concentration acquired by the carbon dioxide sensor 2 installed in each area.
  • the ventilation device 3 ventilating each area ventilates each area based on the concentration acquired by the carbon dioxide sensor 2 in that one area.
  • the ventilation device 3 ventilating the area in which the carbon dioxide sensor 2 is installed ventilates that area based on the concentration acquired by that carbon dioxide sensor 2.
  • the ventilation device 3 ventilating an area in which no carbon dioxide sensor 2 is installed ventilates that area based on, for example, the concentration acquired by the carbon dioxide sensor 2 placed closest to that area.
  • one or more carbon dioxide sensors 2 are installed in two or more areas to be ventilated by each ventilation device 3.
  • one carbon dioxide sensor 2 is installed in the room.
  • each ventilation device 3 ventilates the two or more areas based on the concentration acquired by the one or more carbon dioxide sensors 2 installed in the two or more areas to be ventilated.
  • each ventilation device 3 may ventilate the two or more areas based on the average concentration acquired by the carbon dioxide sensors 2 installed in each of the two or more areas to be ventilated.
  • each ventilation device 3 ventilates the two or more areas to be ventilated based on the concentration acquired by the one carbon dioxide sensor 2.
  • air conditioning and ventilation can be realized in each area.
  • the distance between the air conditioner 1 and the ventilation device 3 may not be sufficiently secured in the same area.
  • the air intake of the duct 32 connected to the ventilation device 3 and the air conditioner 1 are arranged for each area, the distance between the air intake of the duct 32 and the air conditioner 1 may not be sufficiently secured in the same area.
  • the air conditioner 1 is more likely to directly suck in the air blown out from the ventilation device 3. That is, the air conditioner 1 is more likely to suck in air at a temperature that is the same as the outside air temperature that flows out from the ventilation device 3.
  • the air conditioning intake temperature sensor 10 acquires a temperature that does not reflect the air conditioning process. Therefore, even if the temperature in the room is the same as the set temperature or close to the set temperature, the air conditioner 1 can maintain or increase the air conditioning capacity based on the intake temperature acquired by the air conditioning intake temperature sensor 10. As a result, the indoor temperature is lowered or raised beyond the set temperature. That is, in cooling operation, the indoor temperature continues to drop beyond the set temperature, and in heating operation, the indoor temperature continues to rise beyond the set temperature. This reduces the comfort of the user and wastes energy. To prevent such a situation, the air conditioning system 100 according to the first embodiment has the following configuration and functions.
  • the control device 5 in the first embodiment corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 with the return air temperature acquired by the return air temperature sensor 30. Specifically, the control device 5 corrects the suction temperature according to the following formula (1).
  • T AA T AB ⁇ ⁇ + T V (1- ⁇ ) ...
  • T AA is the corrected intake temperature
  • T AB is the uncorrected intake temperature
  • T V is the return air temperature.
  • is a coefficient determined based on both or one of the ventilation air volume and the outdoor air set temperature difference, and is a number between 0 and 1.
  • the outdoor air set temperature difference is the difference between the outdoor air temperature and the set temperature.
  • may be referred to as the first correction coefficient.
  • a method for determining the first correction coefficient ⁇ by the control device 5 will be described with reference to FIG. 4 and FIG. 5.
  • FIG. 4 is a diagram for explaining a method of determining a first correction coefficient based on the ventilation air volume in the first embodiment.
  • FIG. 5 is a diagram for explaining a method of determining a first correction coefficient based on the outdoor air set temperature difference in the first embodiment.
  • the horizontal axis indicates the ventilation air volume
  • the vertical axis indicates the air temperature. Note that FIG. 4 and FIG. 5 show a case where the air conditioner 1 performs cooling operation.
  • the line L1 AB indicates the relationship between the suction temperature before correction and the ventilation air volume
  • the line L1 V indicates the relationship between the return air temperature and the ventilation air volume.
  • the suction temperature acquired by the air conditioning suction temperature sensor 10 increases with an increase in the ventilation air volume. Then, when the ventilation air volume is the limit air volume V LIM , the suction temperature acquired by the air conditioning suction temperature sensor 10 is equal to the outdoor air temperature T O. On the other hand, as shown by the line L1 V , the return air temperature acquired by the return air temperature sensor 30 decreases with an increase in the ventilation air volume. The reason is that the higher the flow rate of the air on the exhaust air duct 3A, the lower the temperature of the air.
  • the change in the return air temperature with respect to an increase in the ventilation air volume is slower than the change in the suction temperature with respect to an increase in the ventilation air volume. Therefore, even when the ventilation air volume increases, the return air temperature is closer to the indoor temperature T I than the suction temperature.
  • the horizontal axis in Fig. 5 indicates the outdoor air temperature setting difference
  • the vertical axis indicates the air temperature.
  • Line L2 AB in Fig. 5 indicates the relationship between the intake temperature before correction and the outdoor air temperature setting difference when the ventilation air volume is the first comparative air volume V1 in Fig. 4.
  • Line L3 AB in Fig. 5 indicates the relationship between the intake temperature before correction and the outdoor air temperature setting difference when the ventilation air volume is the second comparative air volume V2 in Fig. 4. Note that the second comparative air volume V2 is larger than the first comparative air volume V1 .
  • the intake temperature acquired by the air conditioning intake temperature sensor 10 becomes higher as the outdoor air temperature setting difference increases.
  • the intake temperature acquired by the air conditioning intake temperature sensor 10 is more affected by the outdoor air temperature as the outdoor air temperature setting difference increases. Therefore, the error of the intake temperature acquired by the air conditioning intake temperature sensor 10 from the indoor temperature may increase as the outdoor air temperature setting difference increases.
  • the suction temperature indicated by line L3AB is higher than the suction temperature indicated by line L2AB . Therefore, in Fig. 5 as in Fig. 4, the suction temperature acquired by air conditioning suction temperature sensor 10 rises with an increase in the ventilation air volume. And, as shown in Fig. 5, the increase in the suction temperature acquired by air conditioning suction temperature sensor 10 for a fixed increase in the outdoor air set temperature difference is larger the greater the ventilation air volume.
  • the control device 5 of the first embodiment determines the first correction coefficient ⁇ based on both or either one of the ventilation air volume and the outdoor air set temperature difference. More specifically, the control device 5 reduces the first correction coefficient ⁇ the greater the ventilation air volume. Also, the control device 5 reduces the first correction coefficient ⁇ the greater the outdoor air set temperature difference. In other words, the greater the ventilation air volume, the more the control device 5 corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 to be closer to the return air temperature. Also, the greater the outdoor air set temperature difference, the more the control device 5 corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 to be closer to the return air temperature.
  • Line L1 AA in FIG. 4 shows the relationship between the corrected intake temperature and ventilation air volume.
  • the indoor temperature is prevented from continuing to be lower than the set temperature
  • the indoor temperature is prevented from continuing to be higher than the set temperature.
  • FIG. 6 is a block diagram illustrating an example of the hardware configuration of the control device 5 according to the first embodiment.
  • the control device 5 can be configured, for example, by a processor 51 and a memory 52 connected to each other by a bus 50, and an input/output interface circuit 53.
  • the processor 51 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the memory 52 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the input/output interface circuit 53 is a circuit that enables the control device 5 to transmit and receive various signals between other devices via wired or wireless communication.
  • the control device 5 can achieve the function of acquiring the concentration from one or more carbon dioxide sensors 2 and the function of acquiring the outside air temperature from one or more outside air temperature sensors 4 by the input/output interface circuit 53.
  • the control device 5 can also achieve the function of acquiring the suction temperature from one or more air conditioning suction temperature sensors 10 and the function of acquiring the return air temperature from one or more return air temperature sensors 30 by the input/output interface circuit 53.
  • the control device 5 can also achieve the function of controlling one or more air conditioners 1 and one or more ventilators 3 by the input/output interface circuit 53.
  • the control device 5 can achieve the function of determining the first correction coefficient and the function of correcting the suction temperature acquired from one or more air conditioning suction temperature sensors 10 by the processor 51 reading and executing various programs and data stored in the memory 52.
  • control device 5 when the control device 5 is installed separately in multiple devices among one or more air conditioners 1 and one or more ventilators 3, the control device 5 has multiple processors 51, multiple memories 52, multiple input/output interface circuits 53, and multiple communication interface circuits (not shown). Each of the multiple processors 51, each of the multiple memories 52, each of the multiple input/output interface circuits 53, and each of the multiple communication interface circuits are connected by each of the multiple buses 50. The parts of the control device 5 located in the different devices can communicate with each other via the communication interface circuits.
  • control device 5 may be obtained by cooperation between software and hardware as described above, or may be obtained by dedicated hardware.
  • all or part of the control device 5 may be configured by hardware such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
  • FIG. 7 is a flow chart illustrating the flow of the air conditioning process by the air conditioning system 100 according to the first embodiment. Note that the process flow from step S1 to step S6 in FIG. 7 is the process flow for each area when the air conditioning system 100 includes multiple air conditioners 1 and the like and the space to be air conditioned is divided into multiple areas. In this case, the processes from step S1 to step S6 for each area are executed in parallel.
  • step S1 the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2.
  • step S2 the control device 5 determines whether the concentration acquired in step S1 is equal to or greater than a reference concentration.
  • the reference concentration is predetermined. If the concentration is less than the reference concentration (step S2: NO), the air conditioning system 100 returns the air conditioning process to step S1. If the concentration is equal to or greater than the reference concentration (step S2: YES), in step S3, the ventilation device 3 increases the ventilation air volume based on an instruction from the control device 5.
  • the ventilation device 3 may increase the ventilation air volume by a predetermined amount regardless of the difference in concentration from the reference concentration, or may increase the ventilation air volume by a larger amount the higher the concentration is from the reference concentration.
  • step S4 the control device 5 determines the first correction coefficient ⁇ based on either or both of the increased ventilation air volume in step S3 and the outdoor air set temperature difference.
  • step S5 the control device 5 corrects the suction temperature based on formula (1) using the first correction coefficient ⁇ determined in step S4. That is, the control device 5 substitutes the value of the first correction coefficient ⁇ determined in step S4, the suction temperature acquired by the air conditioning suction temperature sensor 10, and the return air temperature acquired by the return air temperature sensor 30 into formula (1) to obtain the corrected suction temperature. Note that after the processing of step S1 and before the processing of step S5, the control device 5 acquires the suction temperature from the air conditioning suction temperature sensor 10 and the return air temperature from the return air temperature sensor 30.
  • step S6 the control device 5 controls the air conditioner 1 based on the corrected intake temperature. After processing in step S6, the air conditioning system 100 returns the air conditioning process to step S1.
  • step S2 the control device 5 determines whether the carbon dioxide concentration is equal to or higher than a reference concentration, and if the concentration is equal to or higher than the reference concentration, the ventilation device 3 increases the ventilation air volume in step S3.
  • the air conditioning system 100 may perform the following process. That is, the control device 5 may determine the ventilation air volume according to the concentration obtained in step S1, and the ventilation device 3 may perform ventilation at the ventilation air volume determined by the control device 5.
  • Embodiment 2 an air conditioning system 100 according to the second embodiment will be described.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the same configurations as those in the first embodiment and the same functions as those in the first embodiment will not be described unless there are special circumstances.
  • the configuration of the air conditioning system 100 according to the second embodiment is illustrated in FIG. 1, as in the first embodiment.
  • the hardware configuration of the air conditioning system 100 according to the second embodiment is illustrated in FIG. 6, as in the first embodiment.
  • the air conditioning system 100 according to the second embodiment includes multiple air conditioners 1.
  • An example of the installation of the multiple air conditioners 1 and one or more ventilators 3 in the second embodiment is shown in FIG. 2 and FIG. 3.
  • the control device 5 controls air conditioning by any one of the multiple air conditioners 1.
  • the suction temperature that is the subject of correction by the control device 5 may be referred to as the first suction temperature
  • the air conditioning suction temperature sensor 10 that acquires the first suction temperature may be referred to as the first suction temperature sensor.
  • An air conditioner 1 that is provided with a first suction temperature sensor and performs air conditioning based on the first suction temperature corrected by the control device 5 may be referred to as the first air conditioner.
  • the area that is the subject of air conditioning by the first air conditioner may be referred to as the first area.
  • the ventilation device 3 that ventilates the first area may be referred to as the first ventilation device, and the ventilation air volume by the first ventilation device may be referred to as the first ventilation air volume.
  • the control device 5 in the second embodiment corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature and the second intake temperature.
  • the return air temperature is a temperature acquired by the return air temperature sensor 30 provided in the first ventilation device.
  • the second intake temperature is a temperature acquired by the air conditioning intake temperature sensor 10 in the air conditioner 1 installed in an area adjacent to the first area. In the following, the area adjacent to the first area may be referred to as the second area.
  • the air conditioner 1 installed in the second area may be referred to as the second air conditioner.
  • the ventilation device 3 that ventilates the second area may be referred to as the second ventilation device, and the ventilation air volume by the second ventilation device may be referred to as the second ventilation air volume.
  • the air conditioning intake temperature sensor 10 provided in the second air conditioner may be referred to as the second intake temperature sensor.
  • the control device 5 in the second embodiment corrects the first suction temperature based on the following equation (2).
  • T AA T AB ⁇ ⁇ + T V ⁇ ⁇ + ⁇ ( T i ⁇ ⁇ i ) ...
  • T AA , T AB , and T V are the corrected first suction temperature, the uncorrected first suction temperature, and the return air temperature, respectively, as in formula (1).
  • T i is the second suction temperature acquired by the second suction temperature sensor.
  • i is a virtual number assigned to the second region for ease of understanding.
  • i is a natural number from 1 to n.
  • n is the total number of second regions, and is a number from 2 to 4.
  • n is 2.
  • ⁇ (T i ⁇ i ) is the sum of each of (T i ⁇ i ) where i ranges from 1 to n.
  • is a first correction coefficient, the value of which changes depending on both or either of the first ventilation airflow rate and the first outdoor air set temperature difference.
  • the first outdoor air set temperature difference is the outdoor air set temperature difference in the first region, and is the difference between the set temperature, which is the temperature set in the first air conditioner, and the outdoor air temperature.
  • is a coefficient whose value changes depending on both or either of the first ventilation airflow rate and the first outdoor air set temperature difference.
  • may also be referred to as a second correction coefficient.
  • ⁇ i is determined based on the distance between the second air conditioner installed in the i-th second region and the first region.
  • the distance between the second air conditioner and the first region may be referred to as the adjacent distance.
  • ⁇ i may be referred to as the third correction coefficient.
  • the third correction coefficient ⁇ i may be determined based on the second ventilation airflow rate by the second ventilation device that ventilates the i-th second region, instead of or together with the adjacent distance.
  • the sum of the third correction coefficients ⁇ i from 1 to n, the sum of the first correction coefficient ⁇ , and the second correction coefficient ⁇ is equal to 1.
  • the first correction coefficient ⁇ becomes smaller as the first ventilation airflow rate is larger, and the first outdoor air set temperature difference becomes larger.
  • the second correction coefficient ⁇ becomes larger as the first ventilation airflow rate is larger, and the first outdoor air set temperature difference becomes larger.
  • the third correction coefficient ⁇ i becomes larger as the adjacent distance between the first air conditioner in the i-th second region and the first region is shorter within a range equal to or greater than a predetermined lower limit distance.
  • the third correction coefficient ⁇ i becomes smaller as the adjacent distance becomes shorter. That is, when the adjacent distance between the second air conditioner in the i-th region and the first region is equal to or greater than the lower limit distance, the control device 5 brings the first suction temperature closer to the second suction temperature measured by the second suction temperature sensor in the i-th region as the adjacent distance becomes shorter. On the other hand, when the adjacent distance is less than the lower limit distance, the control device 5 brings the first suction temperature closer to the second suction temperature measured by the second suction temperature sensor in the i-th region as the adjacent distance becomes longer.
  • the third correction coefficient ⁇ i may be smaller as the second ventilation airflow rate in the i-th second region becomes larger.
  • the third correction coefficient ⁇ i may be 0 when the second ventilation airflow rate in the i-th second region exceeds a predetermined threshold adjacent airflow rate.
  • the first correction coefficient ⁇ , the second correction coefficient ⁇ , and the third correction coefficient ⁇ i are determined as follows.
  • the sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ is determined in advance as, for example, 0.6 or 0.7.
  • the sum of the third correction coefficients ⁇ i for i from 1 to n is the difference from 1 of the sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ , and is determined to be 0.3 if the sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ is determined to be 0.7.
  • the predetermined sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ may be referred to as the first sum.
  • the predetermined sum of the third correction coefficients ⁇ i may be referred to as the second sum.
  • the control device 5 reduces the first correction coefficient ⁇ and increases the second correction coefficient ⁇ as the first ventilation airflow rate increases, so that the sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ becomes the first sum.
  • the control device 5 decreases the first correction coefficient ⁇ and increases the second correction coefficient ⁇ as the first outdoor air set temperature difference increases, so that the sum of the first correction coefficient ⁇ and the second correction coefficient ⁇ becomes the first sum.
  • the control device 5 increases the third correction coefficient ⁇ i as the adjacent distance becomes smaller, and when the adjacent distance is less than the lower limit distance, the control device 5 decreases the third correction coefficient ⁇ i as the adjacent distance becomes smaller.
  • the control device 5 may decrease the third correction coefficient ⁇ i as the second ventilation air volume in the i-th second region increases.
  • the control device 5 determines each third correction coefficient ⁇ i such that the sum of the respective third correction coefficients ⁇ i from 1 to n becomes the second sum.
  • the first sum and the second sum may be determined according to the number of second regions or the total sum of the second ventilation airflows in all second regions, or may be constants. For example, the greater the number of second regions, the smaller the first sum is set and the larger the second sum is set. Also, the greater the total sum of the second ventilation airflows in all second regions, the larger the first sum is set and the smaller the second sum is set.
  • FIG. 8 is a flow chart illustrating the flow of air conditioning processing by the air conditioning system 100 according to the second embodiment.
  • the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2. If the carbon dioxide sensor 2 is installed in the first region, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2 installed in the first region in step S11. On the other hand, if the carbon dioxide sensor 2 is not installed in the first region and two or more carbon dioxide sensors 2 are installed in one or more other regions, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2 closest to the first region in step S11. If one carbon dioxide sensor 2 is installed in the space to be air conditioned, the control device 5 acquires the carbon dioxide concentration from that one carbon dioxide sensor 2 in step S11.
  • the processing in step S12 is the same as the processing in step S2 in the first embodiment.
  • step S13 the first ventilation device increases the first ventilation air volume based on an instruction from the control device 5.
  • step S14 the control device 5 determines a first correction coefficient ⁇ , a second correction coefficient ⁇ , and a third correction coefficient ⁇ i .
  • step S15 the control device 5 corrects the first suction temperature based on formula (2) using the first correction coefficient ⁇ , the second correction coefficient ⁇ , and the third correction coefficient ⁇ i determined in step S14.
  • the control device 5 substitutes each value of the first correction coefficient ⁇ , the second correction coefficient ⁇ , and the third correction coefficient ⁇ i determined in step S14, the first suction temperature acquired by the first suction temperature sensor, the return air temperature acquired by the return air temperature sensor 30 in the first ventilation device, and the second suction temperature acquired by the second suction temperature sensor into formula (2) to obtain the corrected first suction temperature.
  • the control device 5 acquires the first suction temperature from the first suction temperature sensor, acquires the second suction temperature from the second suction temperature sensor, and acquires the return air temperature from the return air temperature sensor 30 in the first ventilation device.
  • step S16 the control device 5 controls the first air conditioner based on the corrected first suction temperature. After processing in step S16, the air conditioning system 100 returns the air conditioning process to step S11.
  • the air conditioning system 100 may perform the following process. That is, the control device 5 may determine a first ventilation air volume according to the concentration obtained in step S11, and the first ventilation device may perform ventilation at the first ventilation air volume determined by the control device 5.
  • the air conditioning system 100 includes a first air conditioner, a first ventilation device, a first intake temperature sensor, a return air temperature sensor 30, and a control device 5.
  • the first air conditioner conditions a first region in the space to be air-conditioned.
  • the first ventilation device ventilates the first region.
  • the first intake temperature sensor acquires a first intake temperature, which is the temperature of the air sucked in by the air conditioner 1 from the space to be air-conditioned.
  • the return air temperature sensor 30 acquires a return air temperature, which is the temperature of the air sucked in by the first ventilation device from the first region.
  • the control device 5 controls the first ventilation device and the first air conditioner.
  • the control device 5 corrects the first intake temperature based on the return air temperature.
  • the control device 5 then controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
  • the control device 5 corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature.
  • the first air conditioner can perform further air conditioning processing based on the more accurate first intake temperature as the temperature of the first area reflecting the air conditioning processing. Therefore, in the case of cooling operation, the temperature of the first area does not drop too much below the set temperature of the first air conditioner, and in the case of heating operation, the temperature of the first area does not rise too much above the set temperature, reducing unnecessary energy consumption and ensuring user comfort.
  • the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the temperature is closer to the return air temperature as the first ventilation airflow rate by the first ventilation device increases.
  • the larger the first ventilation airflow rate the more likely it is that the first air conditioner will suck in air blown out from the first ventilation device at a temperature the same as the outside air temperature. Therefore, the first suction temperature acquired by the first suction temperature sensor may have low accuracy as the temperature of the first area.
  • the return air temperature acquired by the return air temperature sensor 30 is often more accurate as the temperature of the first area than the first suction temperature acquired by the first suction temperature sensor. Therefore, the larger the first ventilation airflow rate, the more the first suction temperature is corrected to be closer to the return air temperature, thereby improving the accuracy of control of the first air conditioner.
  • the air conditioning system 100 in the first and second embodiments further includes an outdoor air temperature sensor 4.
  • the outdoor air temperature sensor 4 acquires the outdoor air temperature.
  • the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the corrected first suction temperature approaches the return air temperature as the first outdoor air set temperature difference, which is the difference between the set temperature of the first air conditioner and the outdoor air temperature, becomes larger.
  • the larger the first outdoor air set temperature difference the lower the accuracy of the first suction temperature acquired by the first suction temperature sensor as the temperature of the first region.
  • the return air temperature acquired by the return air temperature sensor 30 often has a higher accuracy as the temperature of the first region than the first suction temperature acquired by the first suction temperature sensor. Therefore, the larger the first outdoor air set temperature difference, the more the first suction temperature is corrected to approach the return air temperature, thereby improving the accuracy of control of the first air conditioner.
  • the air conditioning system 100 further includes a carbon dioxide sensor 2.
  • the carbon dioxide sensor 2 acquires the concentration of carbon dioxide in the space to be air-conditioned.
  • the control device 5 determines the first ventilation airflow rate based on the concentration acquired by the carbon dioxide sensor 2. This allows ventilation to be performed according to the concentration of carbon dioxide in the space to be air-conditioned. Therefore, when the concentration of carbon dioxide in the space to be air-conditioned is high, ventilation is performed quickly, and when the concentration of carbon dioxide in the space to be air-conditioned is low, energy conservation is achieved.
  • the air conditioning system 100 further includes a second air conditioner and a second intake temperature sensor.
  • the second air conditioner conditions a second area adjacent to the first area.
  • the second intake temperature sensor acquires a second intake temperature, which is the temperature of the air that the second air conditioner draws in from the second area.
  • the control device 5 corrects the first intake temperature based on the return air temperature and the second intake temperature, and controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
  • the control device 5 corrects the first suction temperature based on not only the return air temperature but also the second suction temperature, which provides the following effects.
  • the control device 5 corrects the first suction temperature based on the second suction temperature as well as the return air temperature, the error of the corrected first suction temperature from the temperature of the first area can be reduced. Therefore, the first air conditioner can perform air conditioning with high accuracy based on the corrected first suction temperature.
  • the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the shorter the adjacent distance, the closer the temperature to the second suction temperature.
  • the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the longer the adjacent distance, the closer the temperature to the second suction temperature. The shorter the adjacent distance, the closer the second suction temperature is to the temperature of the first area.
  • the shorter the distance between the second air conditioner and the first ventilation device the greater the difference between the second suction temperature and the temperature of the first area will be because the second air conditioner sucks in air blown out from the first ventilation device.
  • the adjacent distance is equal to or greater than the lower limit distance, i.e., when the second air conditioner is sufficiently far from the first ventilation device, the shorter the adjacent distance, the closer the control device 5 brings the first suction temperature to the second suction temperature, and the more accurate the first suction temperature can be as the temperature of the first region.
  • the adjacent distance is less than the lower limit distance, i.e., when the second air conditioner is closer to the first ventilation device, the longer the adjacent distance, the closer the control device 5 brings the first suction temperature to the second suction temperature, and the more accurate the first suction temperature can be as the temperature of the first region.
  • the accuracy of control of the first air conditioner is improved.
  • the air conditioning system 100 further includes a second ventilation device that ventilates the second area.
  • the control device 5 corrects the first intake temperature acquired by the first intake temperature sensor so that the smaller the second ventilation airflow rate by the second ventilation device, the closer the temperature to the second intake temperature.
  • the second ventilation airflow rate is large, the second air conditioner is more likely to draw in air at a temperature equivalent to the outdoor air temperature blown out from the second ventilation device.
  • the temperature acquired by the second intake temperature sensor is more likely to be closer to the outdoor air temperature than the room temperature.
  • the control device 5 corrects the first intake temperature so that the smaller the second ventilation airflow rate, the closer the temperature to the second intake temperature, and the air conditioning system 100 can suppress a decrease in the accuracy of the air conditioning process.
  • the control device 5 corrects the first suction temperature based on the second suction temperature together with the return air temperature.
  • the control device 5 may perform a correction based on the return air temperature when the first ventilation air volume is small, and may perform a correction based on the return air temperature and the second suction temperature when the first ventilation air volume is large.
  • the control device 5 corrects the first suction temperature based on the return air temperature based on formula (1) as in the first embodiment when the first ventilation air volume is less than a predetermined threshold air volume. Then, when the first ventilation air volume is equal to or greater than the threshold air volume, the control device 5 corrects the first suction temperature based on the return air temperature and the second suction temperature based on formula (2).
  • the control device 5 corrects the first suction temperature based on the return air temperature, and the air conditioning system 100 can reduce the amount of correction processing while maintaining or improving the accuracy of control of the first air conditioner.
  • the first ventilation airflow rate is large, the first ventilation device is more likely to suck in the air that is blown out.
  • the control device 5 corrects the first suction temperature based on the second suction temperature together with the return air temperature, so that the air conditioning system 100 can maintain or improve the accuracy of control of the first air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning system that provides air conditioning to improve user comfort in a space to be air conditioned, the air conditioning system comprising a first air conditioner, a first ventilation device, a first inlet temperature sensor, a return air temperature sensor, and a control device. The first air conditioner air conditions a first area in the space to be air conditioned. The first ventilation device ventilates the first area. The first inlet temperature sensor obtains a first inlet temperature, which is the temperature of air that the first air conditioner draws in from the first area. The return air temperature sensor obtains a return air temperature, which is the temperature of air that the first ventilation device draws in from the first area. The control device corrects the first inlet temperature on the basis of the return air temperature and controls the first air conditioner to provide air conditioning on the basis of the corrected first inlet temperature.

Description

空調システムAir Conditioning System
 本開示は、換気装置と空気調和機とを有する空調システムに関するものである。 This disclosure relates to an air conditioning system having a ventilation device and an air conditioner.
 従来、同一の空調対象空間に設置された空気調和機と換気装置とを有する空調システムが知られている(例えば、特許文献1参照)。換気装置は、空調対象空間である室内の空気を外気と交換することによって、室内の換気を行い、空気調和機は、室内の温度を調節する。  Conventionally, there has been known an air conditioning system that has an air conditioner and a ventilation device installed in the same space to be air-conditioned (see, for example, Patent Document 1). The ventilation device ventilates the room by exchanging the air in the room, which is the space to be air-conditioned, with outside air, and the air conditioner adjusts the temperature in the room.
国際公開第2018/220803号International Publication No. 2018/220803
 ここで、換気装置と空気調和機とを同じ空調対象空間内に設置することによって、空気調和機が、換気装置から吹き出された空気を直接吸い込む可能性がある。すなわち、空気調和機は、換気装置から流出した、外気温度と変わらない温度の空気を吸い込む可能性がある。このような現象は、例えば、室内の二酸化炭素の濃度が高い場合などにおいて、換気装置が換気風量を上昇させた場合などに起こり得る。この場合、空気調和機が吸い込む空気の温度に基づいて空調運転が実行されることによって、無駄なエネルギーが消費されることになる。例えば、夏場において冷房運転の実行中に換気装置が高温の外気を室内に供給する場合、空気調和機は換気装置からの高温の空気を吸い込み得る。すると、空気調和機は、冷房運転によって室内の空気が冷えていても、換気装置からの高い温度の空気が設定温度に近づくよう空調を行うため、室内を必要以上に冷却する。その結果、無駄にエネルギーが消費される。 Here, by installing the ventilation device and the air conditioner in the same space to be air-conditioned, there is a possibility that the air conditioner will directly suck in the air blown out from the ventilation device. In other words, there is a possibility that the air conditioner will suck in air that flows out from the ventilation device and has a temperature that is the same as the outdoor air temperature. This phenomenon can occur, for example, when the concentration of carbon dioxide in the room is high and the ventilation device increases the ventilation air volume. In this case, energy is wasted by performing air conditioning operation based on the temperature of the air sucked in by the air conditioner. For example, in the summer, when the ventilation device supplies high-temperature outdoor air to the room during cooling operation, the air conditioner may suck in high-temperature air from the ventilation device. Then, even if the air in the room is cooled by cooling operation, the air conditioner cools the room more than necessary because it performs air conditioning so that the high-temperature air from the ventilation device approaches the set temperature. As a result, energy is wasted.
 本開示は、上記課題を解決するためになされたものであり、換気装置から流出した空気を吸い込むことによって起こり得る、空気調和機による無駄なエネルギー消費を抑制する空調システムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an air conditioning system that reduces unnecessary energy consumption by the air conditioner, which can occur when air that has flowed out from the ventilation device is sucked in.
 本開示に係る空調システムは、空調対象空間における第1領域を空調する第1空気調和機と、前記第1領域の換気を行う第1換気装置と、前記第1空気調和機が前記第1領域から吸い込む空気の温度である第1吸込温度を取得する第1吸込温度センサと、前記第1換気装置が前記第1領域から吸い込む空気の温度である還気温度を取得する還気温度センサと、前記第1換気装置および前記第1空気調和機を制御する制御装置と、を備え、前記制御装置は、前記還気温度に基づいて前記第1吸込温度を補正し、補正後の前記第1吸込温度に基づいて空調するよう前記第1空気調和機を制御するものである。 The air conditioning system according to the present disclosure includes a first air conditioner that conditions a first area in a space to be air-conditioned, a first ventilation device that ventilates the first area, a first intake temperature sensor that acquires a first intake temperature, which is the temperature of the air that the first air conditioner draws in from the first area, a return air temperature sensor that acquires a return air temperature, which is the temperature of the air that the first ventilation device draws in from the first area, and a control device that controls the first ventilation device and the first air conditioner, and the control device corrects the first intake temperature based on the return air temperature and controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
 本開示に係る空調システムによれば、第1吸込温度センサが取得した第1吸込温度を、制御装置が還気温度に基づいて補正する。これにより、第1換気装置から吹き出された外気温度と同等の温度の空気が第1空気調和機に吸い込まれても、補正後の第1吸込温度は、補正前の第1吸込温度よりも第1領域の温度に近いため、第1空気調和機は、第1領域の温度としてより精度の高い第1吸込温度に基づく空調が可能になる。従って、冷房運転の場合には、第1領域の温度が設定温度より下がり過ぎず、暖房運転の場合には、第1領域の温度が設定温度より上がり過ぎず、無駄なエネルギーの消費が抑制される。 In the air conditioning system disclosed herein, the control device corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature. As a result, even if air of a temperature equivalent to the outside air temperature blown out from the first ventilation device is sucked into the first air conditioner, the corrected first intake temperature is closer to the temperature of the first area than the first intake temperature before correction, and the first air conditioner is able to perform air conditioning based on the more accurate first intake temperature as the temperature of the first area. Therefore, in cooling operation, the temperature of the first area does not drop too much below the set temperature, and in heating operation, the temperature of the first area does not rise too much above the set temperature, suppressing wasteful energy consumption.
実施の形態1に係る空調システムを例示する模式図である。1 is a schematic diagram illustrating an air conditioning system according to a first embodiment; 実施の形態1における複数の空気調和機と1以上の換気装置の第1の設置例を模式的に示す図である。FIG. 2 is a diagram illustrating a first installation example of a plurality of air conditioners and one or more ventilators in the first embodiment. 実施の形態1における複数の空気調和機と1以上の換気装置の第2の設置例を模式的に示す図である。FIG. 10 is a diagram illustrating a second installation example of a plurality of air conditioners and one or more ventilators in the first embodiment. 実施の形態1における換気風量に基づく第1補正係数の決定方法について説明するための図である。10 is a diagram for explaining a method of determining a first correction coefficient based on a ventilation air volume in the first embodiment. FIG. 実施の形態1における外気設定温度差に基づく第1補正係数の決定方法について説明するための図である。10 is a diagram for explaining a method of determining a first correction coefficient based on an outside air set temperature difference in the first embodiment. FIG. 実施の形態1における制御装置のハードウェア構成を例示するブロック図である。2 is a block diagram illustrating a hardware configuration of a control device according to the first embodiment. FIG. 実施の形態1に係る空調システムによる空調処理の流れを例示するフローチャートである。4 is a flowchart illustrating a flow of an air conditioning process by the air conditioning system according to the first embodiment. 実施の形態2に係る空調システムによる空調処理の流れを例示するフローチャートである。10 is a flowchart illustrating a flow of an air conditioning process by an air conditioning system according to a second embodiment.
 以下、図面を参照し、実施の形態1に係る空調システムについて詳述する。 The air conditioning system according to the first embodiment will be described in detail below with reference to the drawings.
 実施の形態1.
 図1は、実施の形態1に係る空調システム100を例示する模式図である。空調システム100は、空調対象空間である室内の空調と換気とを行う。空調システム100は、1以上の空気調和機1と、1以上の二酸化炭素センサ2と、1以上の換気装置3と、1以上の外気温度センサ4と、制御装置5とを備える。1以上の空気調和機1と、1以上の二酸化炭素センサ2と、1以上の換気装置3とは空調対象空間に設置されている。
Embodiment 1.
1 is a schematic diagram illustrating an air conditioning system 100 according to embodiment 1. The air conditioning system 100 performs air conditioning and ventilation in a room, which is a space to be air-conditioned. The air conditioning system 100 includes one or more air conditioners 1, one or more carbon dioxide sensors 2, one or more ventilators 3, one or more outdoor air temperature sensors 4, and a control device 5. The one or more air conditioners 1, the one or more carbon dioxide sensors 2, and the one or more ventilators 3 are installed in the space to be air-conditioned.
 1以上の空気調和機1は、不図示の熱交換器を有する。また、1以上の空気調和機1には、不図示の1以上の熱源機が設けられている。1以上の熱源機は、外気を吸い込み、外気と冷媒とを熱交換させ、熱交換後の冷媒を1以上の空気調和機1に供給する。そして、1以上の空気調和機1は、室内の空気を吸い込み、吸い込んだ空気を、熱交換器において1以上の熱源機からの冷媒と熱交換させ、熱交換後の空気を室内に送り出すことによって空調を行う。なお、1以上の熱源機は、外気などと熱交換した冷媒と、熱媒体とを熱交換させて、熱交換後の熱媒体を1以上の空気調和機1に供給するものでもよい。この場合には、1以上の空気調和機1は、吸い込んだ空気を熱交換器において熱媒体と熱交換させ、熱交換後の空気を室内に送り出す。 The one or more air conditioners 1 have a heat exchanger (not shown). The one or more air conditioners 1 are also provided with one or more heat source units (not shown). The one or more heat source units draw in outside air, exchange heat between the outside air and a refrigerant, and supply the refrigerant after heat exchange to the one or more air conditioners 1. The one or more air conditioners 1 then draw in indoor air, exchange heat with the refrigerant from the one or more heat source units in the heat exchanger, and send the air after heat exchange into the room, thereby performing air conditioning. Note that the one or more heat source units may exchange heat between the refrigerant that has exchanged heat with outside air or the like and a heat medium, and supply the heat medium after heat exchange to the one or more air conditioners 1. In this case, the one or more air conditioners 1 exchange heat with the heat medium in the heat exchanger with the drawn-in air, and send the air after heat exchange into the room.
 空気調和機1には、室内から吸い込む空気の温度を取得する空調吸込温度センサ10が熱交換器の上流側に設けられている。すなわち、空調吸込温度センサ10は、空気調和機1に吸い込まれ、熱交換器における熱交換前の空気の温度を取得する。なお、空調システム100が複数の空気調和機1を備える場合には、各空気調和機1に空調吸込温度センサ10が設けられている。空気調和機1に吸い込まれる空気の温度であって、空調吸込温度センサ10が取得する温度を以下では吸込温度と記載する場合もある。 The air conditioner 1 is provided with an air conditioning intake temperature sensor 10 upstream of the heat exchanger to acquire the temperature of the air drawn in from inside the room. That is, the air conditioning intake temperature sensor 10 acquires the temperature of the air drawn into the air conditioner 1 and before heat exchange in the heat exchanger. Note that when the air conditioning system 100 includes multiple air conditioners 1, each air conditioner 1 is provided with an air conditioning intake temperature sensor 10. The temperature of the air drawn into the air conditioner 1 and acquired by the air conditioning intake temperature sensor 10 may hereinafter be referred to as the intake temperature.
 1以上の二酸化炭素センサ2は、室内の二酸化炭素の濃度を取得する。以下では、室内の二酸化炭素の濃度を二酸化炭素濃度と記載する場合もある。ここで、1以上の二酸化炭素センサ2は、室内に固定されているものでもよいし、人が持ち運びできるものでもよい。 The one or more carbon dioxide sensors 2 acquire the concentration of carbon dioxide in the room. Hereinafter, the concentration of carbon dioxide in the room may be referred to as the carbon dioxide concentration. Here, the one or more carbon dioxide sensors 2 may be fixed in the room or may be portable by a person.
 1以上の換気装置3は、1以上の二酸化炭素センサ2が取得した二酸化炭素濃度に基づいて室内の換気を行う。ここで、1以上の換気装置3は、室外の空気と室内の空気とを入れ換えることによって換気を行う。そのため、換気装置3には、吸い込んだ室内の空気を室外へ流通させるための排気風路3Aと、吸い込んだ外気を室内に流通させるための給気風路3Bとが設けられている。図1では、排気風路3Aを破線の矢印によって示し、給気風路3Bを実線の矢印によって示す。なお、空調システム100が複数の換気装置3を備える場合には、各換気装置3に排気風路3Aと給気風路3Bとが設けられる。 The one or more ventilation devices 3 ventilate the room based on the carbon dioxide concentration acquired by the one or more carbon dioxide sensors 2. Here, the one or more ventilation devices 3 ventilate the room by replacing the air outside with the air inside. For this reason, the ventilation device 3 is provided with an exhaust air duct 3A for circulating the sucked air inside the room to the outside, and an air supply duct 3B for circulating the sucked air inside the room. In FIG. 1, the exhaust air duct 3A is indicated by a dashed arrow, and the air supply duct 3B is indicated by a solid arrow. Note that when the air conditioning system 100 is provided with multiple ventilation devices 3, each ventilation device 3 is provided with an exhaust air duct 3A and an air supply duct 3B.
 換気装置3には、室内から吸い込んだ空気の温度を取得する還気温度センサ30が設けられている。還気温度センサ30は、排気風路3A上に設置されている。空調システム100が複数の換気装置3を備える場合には、各換気装置3の排気風路3A上に還気温度センサ30が設けられる。換気装置3に吸い込まれた空気の温度であって、還気温度センサ30によって取得される温度を、以下では還気温度と記載する場合もある。 The ventilation device 3 is provided with a return air temperature sensor 30 that acquires the temperature of the air sucked in from inside the room. The return air temperature sensor 30 is installed on the exhaust air duct 3A. If the air conditioning system 100 is equipped with multiple ventilators 3, the return air temperature sensor 30 is installed on the exhaust air duct 3A of each ventilator 3. The temperature of the air sucked into the ventilation device 3 and acquired by the return air temperature sensor 30 may be referred to as the return air temperature below.
 図1には、室内から室外に送り出す空気と、室外から室内へ送り込む空気とを熱交換させる全熱交換器31を有する換気装置3を例示するが、換気装置3は全熱交換器31を有さないものでもよい。換気装置3が全熱交換器31を有する場合には、還気温度センサ30は、排気風路3Aにおいて全熱交換器31の上流側に設置される。 FIG. 1 shows an example of a ventilation device 3 having a total heat exchanger 31 that exchanges heat between air sent from inside the room to outside the room and air sent from outside the room to inside the room, but the ventilation device 3 does not have to have a total heat exchanger 31. If the ventilation device 3 has a total heat exchanger 31, the return air temperature sensor 30 is installed upstream of the total heat exchanger 31 in the exhaust air duct 3A.
 1以上の外気温度センサ4は、室外の空気の温度である外気温度を取得する。1以上の外気温度センサ4は、1以上の換気装置3、または、1以上の空気調和機1に設けられてもよい。空調システム100が複数の換気装置3を備える場合には、少なくとも1つの換気装置3の給気風路3B上、または、当該給気風路3Bの入口等に外気温度センサ4が設けられてもよい。空調システム100が1つの換気装置3を備える場合には、当該1つの換気装置3の給気風路3B上、および、当該給気風路3Bへの空気の入口のうちの両方または一方に外気温度センサ4が設けられてもよい。なお、1以上の外気温度センサ4が1以上の換気装置3に設けられる場合であって、1以上の換気装置3が全熱交換器31を有する場合には、1以上の外気温度センサ4は、全熱交換器31の上流側に設けられる。 The one or more outdoor air temperature sensors 4 acquire the outdoor air temperature, which is the temperature of the air outside. The one or more outdoor air temperature sensors 4 may be provided in one or more ventilation devices 3 or one or more air conditioners 1. If the air conditioning system 100 includes multiple ventilation devices 3, the outdoor air temperature sensor 4 may be provided on the supply air duct 3B of at least one ventilation device 3, or at the inlet of the supply air duct 3B. If the air conditioning system 100 includes one ventilation device 3, the outdoor air temperature sensor 4 may be provided on the supply air duct 3B of the one ventilation device 3 and/or at the air inlet to the supply air duct 3B. Note that when one or more outdoor air temperature sensors 4 are provided in one or more ventilation devices 3, and when the one or more ventilation devices 3 have a total heat exchanger 31, the one or more outdoor air temperature sensors 4 are provided upstream of the total heat exchanger 31.
 1以上の外気温度センサ4は、1以上の熱源機に設けられてもよい。この場合において、空調システム100が1つの熱源機を備える場合には、当該1つの熱源機が外気を吸い込むための吸い込み口に外気温度センサ4が設けられる。あるいは、空調システム100が複数の熱源機を備える場合には、少なくとも1つの熱源機の吸い込み口に外気温度センサ4が設けられる。1以上の外気温度センサ4は、室外であって、1以上の換気装置3の外部、且つ、1以上の熱源機の外部に設置されてもよい。 The one or more outdoor air temperature sensors 4 may be provided in one or more heat source units. In this case, if the air conditioning system 100 includes one heat source unit, the outdoor air temperature sensor 4 is provided in the intake port of the one heat source unit through which the heat source unit draws in outdoor air. Alternatively, if the air conditioning system 100 includes multiple heat source units, the outdoor air temperature sensor 4 is provided in the intake port of at least one heat source unit. The one or more outdoor air temperature sensors 4 may be installed outdoors, outside one or more ventilators 3, and outside one or more heat source units.
 制御装置5は、1以上の空気調和機1と1以上の換気装置3とを制御する。より詳細には、制御装置5は、1以上の空調吸込温度センサ10から吸込温度を取得し、吸込温度に基づいて、1以上の空気調和機1から室内に吹き出される空気の温度を制御する。なお、制御装置5は、1以上の空気調和機1に設けられた、不図示の圧縮機の運転周波数、および、不図示の膨張弁の開度などを制御することによって、1以上の空気調和機1から室内に吹き出される空気の温度を制御する。制御装置5は、1以上の二酸化炭素センサ2から二酸化炭素の濃度を取得し、二酸化炭素の濃度に基づいて、1以上の換気装置3を制御する。 The control device 5 controls one or more air conditioners 1 and one or more ventilation devices 3. More specifically, the control device 5 acquires the suction temperature from one or more air conditioning suction temperature sensors 10, and controls the temperature of air blown into the room from one or more air conditioners 1 based on the suction temperature. The control device 5 controls the temperature of air blown into the room from one or more air conditioners 1 by controlling the operating frequency of a compressor (not shown) and the opening degree of an expansion valve (not shown) provided in one or more air conditioners 1. The control device 5 acquires the carbon dioxide concentration from one or more carbon dioxide sensors 2, and controls one or more ventilation devices 3 based on the carbon dioxide concentration.
 図1では、制御装置5が空気調和機1および換気装置3と別個に設けられた例を示すが、制御装置5は、1以上の空気調和機1または1以上の換気装置3のいずれかの機器と一体的に設けられてもよい。あるいは、制御装置5は、一部分が1以上の空気調和機1に設けられ、他の部分が1以上の換気装置3に設けられてもよい。より具体的には、制御装置5の全部または一部は、1つの空気調和機1の筐体内に設けられてもよいし、空調システム100に複数の空気調和機1が含まれる場合に、2以上の空気調和機1の各筐体内に分けられて設けられてもよい。また、制御装置5の全部または一部は、1つの換気装置3の筐体内に設けられてもよいし、空調システム100に複数の換気装置3が含まれる場合には、2以上の換気装置3の各筐体内に分けられて設けられてもよい。制御装置5が分けられた状態で設けられる場合には、制御装置5の各部分は有線通信または無線通信によって互いに情報の授受を行う。 1 shows an example in which the control device 5 is provided separately from the air conditioner 1 and the ventilation device 3, but the control device 5 may be provided integrally with one or more air conditioners 1 or one or more ventilation devices 3. Alternatively, a part of the control device 5 may be provided in one or more air conditioners 1, and another part may be provided in one or more ventilation devices 3. More specifically, all or a part of the control device 5 may be provided in the housing of one air conditioner 1, or, if the air conditioning system 100 includes multiple air conditioners 1, it may be provided separately in each housing of two or more air conditioners 1. Also, all or a part of the control device 5 may be provided in the housing of one ventilation device 3, or, if the air conditioning system 100 includes multiple ventilation devices 3, it may be provided separately in each housing of two or more ventilation devices 3. If the control device 5 is provided in a separate state, each part of the control device 5 exchanges information with each other by wired communication or wireless communication.
 空調システム100が複数の空気調和機1を備える場合、室内は複数の領域に分けられ、各空気調和機1は各領域を空調する。以下、図2および図3を参照し、実施の形態1における複数の空気調和機1の設置例について説明する。図2は、実施の形態1における複数の空気調和機1と1以上の換気装置3の第1の設置例を模式的に示す図である。図3は、実施の形態1における複数の空気調和機1と1以上の換気装置3の第2の設置例を模式的に示す図である。図2および図3では、各領域を破線による四角形によって示す。図2および図3では、空調対象空間は4つの領域に分けられている。図2および図3では、各領域に空気調和機1が設置されている。図2では、4つの換気装置3の各々が、4つの領域の各々を換気するよう設置されている。 When the air conditioning system 100 is equipped with multiple air conditioners 1, the room is divided into multiple regions, and each air conditioner 1 conditions each region. Below, with reference to Figures 2 and 3, an installation example of multiple air conditioners 1 in embodiment 1 will be described. Figure 2 is a diagram that shows a schematic diagram of a first installation example of multiple air conditioners 1 and one or more ventilation devices 3 in embodiment 1. Figure 3 is a diagram that shows a schematic diagram of a second installation example of multiple air conditioners 1 and one or more ventilation devices 3 in embodiment 1. In Figures 2 and 3, each region is shown by a rectangle drawn with dashed lines. In Figures 2 and 3, the space to be air-conditioned is divided into four regions. In Figures 2 and 3, an air conditioner 1 is installed in each region. In Figure 2, each of the four ventilation devices 3 is installed to ventilate each of the four regions.
 一方、図3では、2つの換気装置3の各々が、4つの領域のうちの2つずつを換気するよう設置されている。すなわち、2つの換気装置3のうちの一方は、4つの領域のうちの2つの領域を換気し、他方は、一方が換気する2つの領域以外の2つの領域を換気する。各換気装置3には、2本のダクト32が接続されている。2本のダクト32のうちの一方は、換気装置3の排気風路3Aと連通し、他方は給気風路3Bと連通している。以下、排気風路3Aと連通するダクト32を排気ダクト32Aと記載し、給気風路3Bと連通するダクト32を給気ダクト32Bと記載する場合もある。還気温度センサ30は、換気装置3内の排気風路3Aに代え、排気ダクト32A内に設けられてもよい。 On the other hand, in FIG. 3, two ventilation devices 3 are installed so that each of them ventilates two of the four areas. That is, one of the two ventilation devices 3 ventilates two of the four areas, and the other ventilates two areas other than the two areas ventilated by the other. Two ducts 32 are connected to each ventilation device 3. One of the two ducts 32 communicates with the exhaust air duct 3A of the ventilation device 3, and the other communicates with the supply air duct 3B. Hereinafter, the duct 32 communicating with the exhaust air duct 3A may be referred to as the exhaust duct 32A, and the duct 32 communicating with the supply air duct 3B may be referred to as the supply air duct 32B. The return air temperature sensor 30 may be provided in the exhaust duct 32A instead of the exhaust air duct 3A in the ventilation device 3.
 排気ダクト32Aと給気ダクト32Bの各々は、叉状に形成されている。図3に示す例では、排気ダクト32Aと給気ダクト32Bの各々は、二叉状に形成されている。なお、図3では、排気ダクト32Aを、一端が換気装置3と接続されている二叉状の破線によって示し、給気ダクト32Bを、一端が換気装置3と接続されている二叉状の実線によって示す。 Each of the exhaust duct 32A and the supply air duct 32B is formed in a fork shape. In the example shown in FIG. 3, each of the exhaust duct 32A and the supply air duct 32B is formed in a bifurcated shape. Note that in FIG. 3, the exhaust duct 32A is shown by a bifurcated dashed line with one end connected to the ventilation device 3, and the supply air duct 32B is shown by a bifurcated solid line with one end connected to the ventilation device 3.
 排気ダクト32Aのうち、換気装置3と接続された端部とは反対側の複数の端部の各々には、室内からの空気を吸い込む排気口が設けられている。排気ダクト32Aの複数の排気口は、複数の領域の各々に配置されている。詳細には、排気ダクト32Aの複数の排気口の各々は、当該排気ダクト32Aが接続された換気装置3が換気する複数の領域の各々に配置されている。 Each of the multiple ends of the exhaust duct 32A opposite the end connected to the ventilation device 3 is provided with an exhaust port that draws in air from inside the room. The multiple exhaust ports of the exhaust duct 32A are arranged in each of the multiple areas. In detail, each of the multiple exhaust ports of the exhaust duct 32A is arranged in each of the multiple areas ventilated by the ventilation device 3 to which the exhaust duct 32A is connected.
 給気ダクト32Bのうち、換気装置3と接続された端部とは反対側の複数の端部の各々には、室内に空気を吹き出す給気口が設けられている。給気ダクト32Bの複数の給気口は、複数の領域の各々に配置されている。詳細には、給気ダクト32Bの複数の給気口の各々は、当該給気ダクト32Bが接続された換気装置3が換気する複数の領域の各々に配置されている。 Each of the multiple ends of the air supply duct 32B opposite the end connected to the ventilation device 3 is provided with an air supply port that blows air into the room. The multiple air supply ports of the air supply duct 32B are arranged in each of the multiple areas. In detail, each of the multiple air supply ports of the air supply duct 32B is arranged in each of the multiple areas ventilated by the ventilation device 3 to which the air supply duct 32B is connected.
 図2および図3に示す空気調和機1は、四方向に吹き出し口が形成され、且つ、天井に埋め込むタイプの四方向天井カセット型の空気調和機1であるが、空気調和機1は壁掛け型など他のタイプでもよい。図2および図3では省略しているが、空調システム100は、複数の領域の各々に設置された二酸化炭素センサ2を備えてもよいし、複数の領域のうちの一部の領域に二酸化炭素センサ2を備えてもよい。各領域に二酸化炭素センサ2が設けられる場合には、各二酸化炭素センサ2は各領域における二酸化炭素の濃度を取得する。 The air conditioner 1 shown in Figures 2 and 3 is a four-way ceiling cassette type air conditioner 1 that has air outlets on all four sides and is embedded in the ceiling, but the air conditioner 1 may be of other types such as a wall-mounted type. Although omitted in Figures 2 and 3, the air conditioning system 100 may include a carbon dioxide sensor 2 installed in each of the multiple areas, or may include a carbon dioxide sensor 2 in some of the multiple areas. When a carbon dioxide sensor 2 is installed in each area, each carbon dioxide sensor 2 acquires the carbon dioxide concentration in each area.
 図2および図3では、各領域に設置された空気調和機1が各領域の空調を行う。図2では、4つの換気装置3の各々が4つの領域の各々の換気を行う。図3では、2つの換気装置3の各々が、排気ダクト32Aにおける2つの排気口と、給気ダクト32Bにおける2つの給気口とが配置された2つの領域の換気を行う。 In Figures 2 and 3, an air conditioner 1 installed in each area conditions the area. In Figure 2, four ventilation devices 3 each ventilate one of the four areas. In Figure 3, two ventilation devices 3 each ventilate two areas where two exhaust ports in exhaust duct 32A and two intake ports in intake duct 32B are located.
 図2に例示される場合であって、各領域に二酸化炭素センサ2が設置されている場合には、各領域を換気する換気装置3は、各領域に設置された二酸化炭素センサ2が取得した濃度に基づいて、各領域の換気を行う。図2に例示される場合であって、全ての領域のうちの1つの領域に二酸化炭素センサ2が設置されている場合には、各領域を換気する換気装置3は、当該1つの領域における二酸化炭素センサ2が取得した濃度に基づいて、各領域の換気を行う。図2に例示される場合であって、全ての領域のうちの2以上の領域に二酸化炭素センサ2が設置されている場合には、二酸化炭素センサ2が設置された領域を換気する換気装置3は、当該二酸化炭素センサ2が取得した濃度に基づいて当該領域の換気を行う。一方、二酸化炭素センサ2が設置されていない領域を換気する換気装置3は、例えば、当該領域に最も近い位置に配置された二酸化炭素センサ2が取得した濃度に基づいて当該領域の換気を行う。 In the case illustrated in FIG. 2, when a carbon dioxide sensor 2 is installed in each area, the ventilation device 3 ventilating each area ventilates each area based on the concentration acquired by the carbon dioxide sensor 2 installed in each area. In the case illustrated in FIG. 2, when a carbon dioxide sensor 2 is installed in one area out of all areas, the ventilation device 3 ventilating each area ventilates each area based on the concentration acquired by the carbon dioxide sensor 2 in that one area. In the case illustrated in FIG. 2, when a carbon dioxide sensor 2 is installed in two or more areas out of all areas, the ventilation device 3 ventilating the area in which the carbon dioxide sensor 2 is installed ventilates that area based on the concentration acquired by that carbon dioxide sensor 2. On the other hand, the ventilation device 3 ventilating an area in which no carbon dioxide sensor 2 is installed ventilates that area based on, for example, the concentration acquired by the carbon dioxide sensor 2 placed closest to that area.
 図3に例示される場合には、各換気装置3による換気の対象となる2以上の領域に1以上の二酸化炭素センサ2が設置される。あるいは、室内に1つの二酸化炭素センサ2が設置される。各換気装置3による換気の対象となる2以上の領域に1以上の二酸化炭素センサ2が設置される場合には、各換気装置3は、換気の対象となる2以上の領域に設置された1以上の二酸化炭素センサ2が取得した濃度に基づいて、当該2以上の領域の換気を行う。例えば、各換気装置3による換気の対象となる2以上の領域の各々に二酸化炭素センサ2が設置された場合には、各換気装置3は、換気の対象となる2以上の領域の各々に設置された二酸化炭素センサ2が取得した濃度の平均に基づいて、当該2以上の領域の換気を行ってもよい。室内に1つの二酸化炭素センサ2が設置される場合には、各換気装置3は、当該1つの二酸化炭素センサ2が取得した濃度に基づいて、換気の対象となる2以上の領域の換気を行う。 In the case illustrated in FIG. 3, one or more carbon dioxide sensors 2 are installed in two or more areas to be ventilated by each ventilation device 3. Alternatively, one carbon dioxide sensor 2 is installed in the room. When one or more carbon dioxide sensors 2 are installed in two or more areas to be ventilated by each ventilation device 3, each ventilation device 3 ventilates the two or more areas based on the concentration acquired by the one or more carbon dioxide sensors 2 installed in the two or more areas to be ventilated. For example, when a carbon dioxide sensor 2 is installed in each of two or more areas to be ventilated by each ventilation device 3, each ventilation device 3 may ventilate the two or more areas based on the average concentration acquired by the carbon dioxide sensors 2 installed in each of the two or more areas to be ventilated. When one carbon dioxide sensor 2 is installed in the room, each ventilation device 3 ventilates the two or more areas to be ventilated based on the concentration acquired by the one carbon dioxide sensor 2.
 図2および図3の各々に例示されるように、実施の形態1では、各領域において空調と換気とを実現できる。しかし、領域毎に換気装置3と空気調和機1とを配置する場合には、同一領域内で空気調和機1と換気装置3との間の距離が十分に確保できない場合がある。また、換気装置3に接続されたダクト32の給気口と空気調和機1とを領域毎に配置する場合には、同一領域内で、ダクト32の給気口と空気調和機1との間の距離が十分に確保できない場合がある。これらの場合において空気調和機1は換気装置3から吹き出された空気を直接吸い込む可能性が高くなる。すなわち、空気調和機1は、換気装置3から流出した外気温度と変わらない温度の空気を吸い込む可能性が高くなる。このような現象は、特に換気風量の増大に伴って生じやすくなる。従って、空調吸込温度センサ10は、空調処理が反映されていない温度を取得することになる。そのため、室内の温度が、設定温度と同一の温度、または、設定温度に近い温度であっても、空気調和機1は、空調吸込温度センサ10が取得した吸込温度に基づいて空調能力を維持または上昇させ得る。その結果、室内の温度は設定温度を超えて低下または上昇させられる。すなわち、冷房運転では、室内の温度が設定温度を超えて低下し続け、暖房運転では室内の温度が設定温度を超えて上昇し続けることになる。よって、ユーザの快適性が損なわれると共に、エネルギーが無駄に消費される。このような事態の防止のため、実施の形態1に係る空調システム100は以下の構成および機能を有する。 2 and 3, in the first embodiment, air conditioning and ventilation can be realized in each area. However, when the ventilation device 3 and the air conditioner 1 are arranged for each area, the distance between the air conditioner 1 and the ventilation device 3 may not be sufficiently secured in the same area. Also, when the air intake of the duct 32 connected to the ventilation device 3 and the air conditioner 1 are arranged for each area, the distance between the air intake of the duct 32 and the air conditioner 1 may not be sufficiently secured in the same area. In these cases, the air conditioner 1 is more likely to directly suck in the air blown out from the ventilation device 3. That is, the air conditioner 1 is more likely to suck in air at a temperature that is the same as the outside air temperature that flows out from the ventilation device 3. This phenomenon is particularly likely to occur with an increase in the ventilation air volume. Therefore, the air conditioning intake temperature sensor 10 acquires a temperature that does not reflect the air conditioning process. Therefore, even if the temperature in the room is the same as the set temperature or close to the set temperature, the air conditioner 1 can maintain or increase the air conditioning capacity based on the intake temperature acquired by the air conditioning intake temperature sensor 10. As a result, the indoor temperature is lowered or raised beyond the set temperature. That is, in cooling operation, the indoor temperature continues to drop beyond the set temperature, and in heating operation, the indoor temperature continues to rise beyond the set temperature. This reduces the comfort of the user and wastes energy. To prevent such a situation, the air conditioning system 100 according to the first embodiment has the following configuration and functions.
 実施の形態1における制御装置5は、空調吸込温度センサ10が取得した吸込温度を、還気温度センサ30が取得した還気温度によって補正する。具体的には、制御装置5は以下の式(1)のように吸込温度を補正する。
AA=TAB×α+T(1-α)   ・・・(1)
The control device 5 in the first embodiment corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 with the return air temperature acquired by the return air temperature sensor 30. Specifically, the control device 5 corrects the suction temperature according to the following formula (1).
T AA = T AB × α + T V (1-α) ... (1)
 式(1)において、TAAは補正後の吸込温度であり、TABは補正前の吸込温度であり、Tは還気温度である。αは、換気風量および外気設定温度差の両方または一方に基づいて定められる係数であって、0以上1以下の数である。なお、外気設定温度差とは、外気温度と設定温度との差分である。以下では、αを第1補正係数と記載する場合もある。以下、制御装置5による第1補正係数αの決定方法について図4および図5を参照して説明する。 In formula (1), T AA is the corrected intake temperature, T AB is the uncorrected intake temperature, and T V is the return air temperature. α is a coefficient determined based on both or one of the ventilation air volume and the outdoor air set temperature difference, and is a number between 0 and 1. The outdoor air set temperature difference is the difference between the outdoor air temperature and the set temperature. Hereinafter, α may be referred to as the first correction coefficient. Hereinafter, a method for determining the first correction coefficient α by the control device 5 will be described with reference to FIG. 4 and FIG. 5.
 図4は、実施の形態1における換気風量に基づく第1補正係数の決定方法について説明するための図である。図5は、実施の形態1における外気設定温度差に基づく第1補正係数の決定方法について説明するための図である。図4における横軸は換気風量を示し、縦軸は空気の温度を示す。なお、図4および図5では、空気調和機1が冷房運転を行う場合を示す。図4における線L1ABは補正前の吸込温度と換気風量との関係を示し、線L1は還気温度と換気風量との関係を示す。線L1ABが示すように、空調吸込温度センサ10が取得する吸込温度は、換気風量の増大に伴って高くなる。そして、換気風量が限界風量VLIMである場合に、空調吸込温度センサ10によって取得される吸込温度は、外気温度Tと等しい。一方、線L1が示すように、還気温度センサ30が取得する還気温度は、換気風量の増加によって低下する。その理由は、排気風路3A上の空気の流速が大きくなるほど、当該空気の温度が下がるからである。なお、線LABと線L1とが示すように、換気風量の増加に対する還気温度の温度変化は、換気風量の増加に対する吸込温度の温度変化よりも緩やかである。そのため、換気風量が増大した場合でも、還気温度は吸込温度より室内温度Tに近い。 FIG. 4 is a diagram for explaining a method of determining a first correction coefficient based on the ventilation air volume in the first embodiment. FIG. 5 is a diagram for explaining a method of determining a first correction coefficient based on the outdoor air set temperature difference in the first embodiment. In FIG. 4, the horizontal axis indicates the ventilation air volume, and the vertical axis indicates the air temperature. Note that FIG. 4 and FIG. 5 show a case where the air conditioner 1 performs cooling operation. In FIG. 4, the line L1 AB indicates the relationship between the suction temperature before correction and the ventilation air volume, and the line L1 V indicates the relationship between the return air temperature and the ventilation air volume. As shown by the line L1 AB , the suction temperature acquired by the air conditioning suction temperature sensor 10 increases with an increase in the ventilation air volume. Then, when the ventilation air volume is the limit air volume V LIM , the suction temperature acquired by the air conditioning suction temperature sensor 10 is equal to the outdoor air temperature T O. On the other hand, as shown by the line L1 V , the return air temperature acquired by the return air temperature sensor 30 decreases with an increase in the ventilation air volume. The reason is that the higher the flow rate of the air on the exhaust air duct 3A, the lower the temperature of the air. As shown by the lines LAB and L1V , the change in the return air temperature with respect to an increase in the ventilation air volume is slower than the change in the suction temperature with respect to an increase in the ventilation air volume. Therefore, even when the ventilation air volume increases, the return air temperature is closer to the indoor temperature T I than the suction temperature.
 図5における横軸は外気設定温度差を示し、縦軸は空気の温度を示す。図5における線L2ABは、図4において換気風量を第1比較用風量Vとした場合における、補正前の吸込温度と外気設定温度差との関係を示す。図5における線L3ABは、図4において換気風量を第2比較用風量Vとした場合における、補正前の吸込温度と外気設定温度差との関係を示す。なお、第2比較用風量Vは第1比較用風量Vより大きい。線L2ABおよび線L3ABが示すように、外気設定温度差が大きいほど、空調吸込温度センサ10によって取得される吸込温度は高くなる。すなわち、外気設定温度差が大きいほど、空調吸込温度センサ10が取得する吸込温度は、外気温度の影響をより受ける。従って、空調吸込温度センサ10が取得する吸込温度の室内温度からの誤差は、外気設定温度差が大きいほど大きくなり得る。 The horizontal axis in Fig. 5 indicates the outdoor air temperature setting difference, and the vertical axis indicates the air temperature. Line L2 AB in Fig. 5 indicates the relationship between the intake temperature before correction and the outdoor air temperature setting difference when the ventilation air volume is the first comparative air volume V1 in Fig. 4. Line L3 AB in Fig. 5 indicates the relationship between the intake temperature before correction and the outdoor air temperature setting difference when the ventilation air volume is the second comparative air volume V2 in Fig. 4. Note that the second comparative air volume V2 is larger than the first comparative air volume V1 . As shown by lines L2 AB and L3 AB , the intake temperature acquired by the air conditioning intake temperature sensor 10 becomes higher as the outdoor air temperature setting difference increases. In other words, the intake temperature acquired by the air conditioning intake temperature sensor 10 is more affected by the outdoor air temperature as the outdoor air temperature setting difference increases. Therefore, the error of the intake temperature acquired by the air conditioning intake temperature sensor 10 from the indoor temperature may increase as the outdoor air temperature setting difference increases.
 次に、外気設定温度差が比較用温度差ΔTである場合における線L2ABおよび線L3ABの各々が示す吸込温度を比較すると、線L3ABが示す吸込温度は、線L2ABが示す吸込温度より高い。そのため、図5においても図4同様に、空調吸込温度センサ10によって取得された吸込温度は、換気風量の増加に伴って上昇している。そして、図5に示すように、外気設定温度差の一定の増加分に対する、空調吸込温度センサ10によって取得された吸込温度の増加分は、換気風量が大きいほど大きい。 Next, comparing the suction temperatures indicated by lines L2AB and L3AB when the outdoor air set temperature difference is the comparative temperature difference ΔT C , the suction temperature indicated by line L3AB is higher than the suction temperature indicated by line L2AB . Therefore, in Fig. 5 as in Fig. 4, the suction temperature acquired by air conditioning suction temperature sensor 10 rises with an increase in the ventilation air volume. And, as shown in Fig. 5, the increase in the suction temperature acquired by air conditioning suction temperature sensor 10 for a fixed increase in the outdoor air set temperature difference is larger the greater the ventilation air volume.
 実施の形態1の制御装置5は、換気風量と外気設定温度差の両方または一方に基づいて第1補正係数αを決定する。より詳細には、制御装置5は、換気風量が大きいほど第1補正係数αを小さくする。また、制御装置5は、外気設定温度差が大きいほど第1補正係数αを小さくする。すなわち、制御装置5は、換気風量が大きいほど、空調吸込温度センサ10が取得した吸込温度が還気温度に近い温度になるよう補正する。また、制御装置5は、外気設定温度差が大きいほど、空調吸込温度センサ10が取得した吸込温度を、還気温度に近い温度になるよう補正する。 The control device 5 of the first embodiment determines the first correction coefficient α based on both or either one of the ventilation air volume and the outdoor air set temperature difference. More specifically, the control device 5 reduces the first correction coefficient α the greater the ventilation air volume. Also, the control device 5 reduces the first correction coefficient α the greater the outdoor air set temperature difference. In other words, the greater the ventilation air volume, the more the control device 5 corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 to be closer to the return air temperature. Also, the greater the outdoor air set temperature difference, the more the control device 5 corrects the suction temperature acquired by the air conditioning suction temperature sensor 10 to be closer to the return air temperature.
 図4における線L1AAは、補正後の吸込温度と換気風量との関係を示す。このように、換気風量が大きいほど第1補正係数αを小さくし、且つ、外気設定温度差が大きいほど第1補正係数αを小さくした式(1)に基づく補正によって、吸込温度は、補正前に比べて室内温度に近づく。これにより、制御装置5は、室内温度としてより精度が高い吸込温度に基づいて空気調和機1の制御を行うことができる。よって、空気調和機1は、室内温度が設定温度に近づいた場合、および、室内温度が設定温度になった場合において空調能力を減少させることができるため、無駄なエネルギーの消費を抑えることができる。また、冷房運転の場合には、室内温度が設定温度よりも低くなり続けることが抑制され、暖房運転の場合には、室内温度が設定温度より高くなり続けることが抑制される。 Line L1 AA in FIG. 4 shows the relationship between the corrected intake temperature and ventilation air volume. In this way, the larger the ventilation air volume, the smaller the first correction coefficient α, and the larger the outdoor air set temperature difference, the larger the correction based on formula (1) in which the first correction coefficient α is made smaller, and the larger the outdoor air set temperature difference, the closer the intake temperature is to the indoor temperature than before the correction. This allows the control device 5 to control the air conditioner 1 based on the intake temperature, which is a more accurate indoor temperature. Therefore, the air conditioner 1 can reduce the air conditioning capacity when the indoor temperature approaches the set temperature and when the indoor temperature reaches the set temperature, thereby reducing wasteful energy consumption. In addition, in the case of cooling operation, the indoor temperature is prevented from continuing to be lower than the set temperature, and in the case of heating operation, the indoor temperature is prevented from continuing to be higher than the set temperature.
 以下、実施の形態1に係る制御装置5のハードウェア構成について図6を参照して説明する。図6は、実施の形態1における制御装置5のハードウェア構成を例示するブロック図である。制御装置5は、例えば、バス50によって互いに接続されたプロセッサ51とメモリ52と、入出力インターフェース回路53とによって構成可能である。プロセッサ51は、例えば、CPU(Central Processing Unit)またはMPU(Micro Processing Unit)である。メモリ52は、例えば、ROM(Read Only Memory)またはRAM(Random Access Memory)である。入出力インターフェース回路53は、制御装置5が、他の機器との間で、有線通信または無線通信によって各種信号の授受を行うための回路である。 The hardware configuration of the control device 5 according to the first embodiment will be described below with reference to FIG. 6. FIG. 6 is a block diagram illustrating an example of the hardware configuration of the control device 5 according to the first embodiment. The control device 5 can be configured, for example, by a processor 51 and a memory 52 connected to each other by a bus 50, and an input/output interface circuit 53. The processor 51 is, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). The memory 52 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). The input/output interface circuit 53 is a circuit that enables the control device 5 to transmit and receive various signals between other devices via wired or wireless communication.
 制御装置5が、1以上の二酸化炭素センサ2から濃度を取得する機能と、1以上の外気温度センサ4から外気温度を取得する機能とは、入出力インターフェース回路53によって実現可能である。また、制御装置5が、1以上の空調吸込温度センサ10から吸込温度を取得する機能と、1以上の還気温度センサ30から還気温度を取得する機能とは、入出力インターフェース回路53によって実現可能である。更に、制御装置5が、1以上の空気調和機1と、1以上の換気装置3とを制御する機能は、入出力インターフェース回路53によって実現可能である。制御装置5が、第1補正係数を決定する機能と、1以上の空調吸込温度センサ10から取得した吸込温度を補正する機能とは、プロセッサ51が、メモリ52に記憶されている各種プログラムおよびデータ等を読み出して実行することにより実現可能である。 The control device 5 can achieve the function of acquiring the concentration from one or more carbon dioxide sensors 2 and the function of acquiring the outside air temperature from one or more outside air temperature sensors 4 by the input/output interface circuit 53. The control device 5 can also achieve the function of acquiring the suction temperature from one or more air conditioning suction temperature sensors 10 and the function of acquiring the return air temperature from one or more return air temperature sensors 30 by the input/output interface circuit 53. The control device 5 can also achieve the function of controlling one or more air conditioners 1 and one or more ventilators 3 by the input/output interface circuit 53. The control device 5 can achieve the function of determining the first correction coefficient and the function of correcting the suction temperature acquired from one or more air conditioning suction temperature sensors 10 by the processor 51 reading and executing various programs and data stored in the memory 52.
 なお、制御装置5が、1以上の空気調和機1と1以上の換気装置3のうちの複数の機器に分割して設置されている場合には、制御装置5は、複数のプロセッサ51と、複数のメモリ52と、複数の入出力インターフェース回路53と、不図示の複数の通信インターフェース回路とを有する。複数のプロセッサ51の各々と、複数のメモリ52の各々と、複数の入出力インターフェース回路53の各々と、複数の通信インターフェース回路の各々は、複数のバス50の各々によって接続されている。別々の機器に配置された制御装置5の部分同士は、通信インターフェース回路によって通信可能である。 In addition, when the control device 5 is installed separately in multiple devices among one or more air conditioners 1 and one or more ventilators 3, the control device 5 has multiple processors 51, multiple memories 52, multiple input/output interface circuits 53, and multiple communication interface circuits (not shown). Each of the multiple processors 51, each of the multiple memories 52, each of the multiple input/output interface circuits 53, and each of the multiple communication interface circuits are connected by each of the multiple buses 50. The parts of the control device 5 located in the different devices can communicate with each other via the communication interface circuits.
 制御装置5による機能は、上述のように、ソフトウェアとハードウェアとの協働によって得られる以外に、専用のハードウェアによって得られてもよい。例えば、制御装置5の全部または一部は、CPLD(Complex Programmable Logic Device)またはFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよい。 The functions of the control device 5 may be obtained by cooperation between software and hardware as described above, or may be obtained by dedicated hardware. For example, all or part of the control device 5 may be configured by hardware such as a CPLD (Complex Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
 以下、図7を参照し、実施の形態1の空調処理について説明する。図7は、実施の形態1に係る空調システム100による空調処理の流れを例示するフローチャートである。なお、図7におけるステップS1~ステップS6までの処理の流れは、空調システム100に複数の空気調和機1等が含まれ、空調対象空間が複数の領域に分けられている場合には、領域毎の処理の流れとなる。この場合、領域毎のステップS1~ステップS6の処理は、並行して実行される。 The air conditioning process of the first embodiment will be described below with reference to FIG. 7. FIG. 7 is a flow chart illustrating the flow of the air conditioning process by the air conditioning system 100 according to the first embodiment. Note that the process flow from step S1 to step S6 in FIG. 7 is the process flow for each area when the air conditioning system 100 includes multiple air conditioners 1 and the like and the space to be air conditioned is divided into multiple areas. In this case, the processes from step S1 to step S6 for each area are executed in parallel.
 ステップS1において制御装置5は、二酸化炭素センサ2から二酸化炭素の濃度を取得する。ステップS2において制御装置5は、ステップS1で取得した濃度が基準濃度以上か否かを判定する。なお、基準濃度は予め定められている。濃度が基準濃度未満である場合には(ステップS2:NO)、空調システム100は、空調処理をステップS1に戻す。濃度が基準濃度以上である場合には(ステップS2:YES)、ステップS3において換気装置3は、制御装置5からの指示に基づいて換気風量を増加させる。なお、換気装置3は、基準濃度からの濃度の高さに関わらず、予め定められた分だけ換気風量を増加させてもよいし、濃度が基準濃度から高いほど換気風量の増加分を大きくしてもよい。 In step S1, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2. In step S2, the control device 5 determines whether the concentration acquired in step S1 is equal to or greater than a reference concentration. The reference concentration is predetermined. If the concentration is less than the reference concentration (step S2: NO), the air conditioning system 100 returns the air conditioning process to step S1. If the concentration is equal to or greater than the reference concentration (step S2: YES), in step S3, the ventilation device 3 increases the ventilation air volume based on an instruction from the control device 5. The ventilation device 3 may increase the ventilation air volume by a predetermined amount regardless of the difference in concentration from the reference concentration, or may increase the ventilation air volume by a larger amount the higher the concentration is from the reference concentration.
 ステップS4において制御装置5は、ステップS3での増加後の換気風量と、外気設定温度差とのうちの両方または一方に基づいて第1補正係数αを決定する。 In step S4, the control device 5 determines the first correction coefficient α based on either or both of the increased ventilation air volume in step S3 and the outdoor air set temperature difference.
 ステップS5において制御装置5は、ステップS4で決定した第1補正係数αによって、式(1)に基づいて吸込温度を補正する。すなわち、制御装置5は、ステップS4で決定した第1補正係数αの値と、空調吸込温度センサ10が取得した吸込温度と、還気温度センサ30が取得した還気温度とを式(1)に代入し、補正後の吸込温度を得る。なお、制御装置5は、ステップS1の処理以後であってステップS5の処理前に、空調吸込温度センサ10から吸込温度を取得すると共に、還気温度センサ30から還気温度を取得している。 In step S5, the control device 5 corrects the suction temperature based on formula (1) using the first correction coefficient α determined in step S4. That is, the control device 5 substitutes the value of the first correction coefficient α determined in step S4, the suction temperature acquired by the air conditioning suction temperature sensor 10, and the return air temperature acquired by the return air temperature sensor 30 into formula (1) to obtain the corrected suction temperature. Note that after the processing of step S1 and before the processing of step S5, the control device 5 acquires the suction temperature from the air conditioning suction temperature sensor 10 and the return air temperature from the return air temperature sensor 30.
 ステップS6において制御装置5は、補正後の吸込温度に基づき空気調和機1を制御する。ステップS6の処理後、空調システム100は、空調処理をステップS1に戻す。 In step S6, the control device 5 controls the air conditioner 1 based on the corrected intake temperature. After processing in step S6, the air conditioning system 100 returns the air conditioning process to step S1.
 図7の示す空調処理では、ステップS2で制御装置5が二酸化炭素の濃度が基準濃度以上か否かを判定し、当該濃度が基準濃度以上である場合にステップS3で換気装置3が換気風量を増加させた。しかし、空調システム100は、ステップS2とステップS3の処理に代え、以下の処理を行ってもよい。すなわち、制御装置5はステップS1で取得した濃度に応じて換気風量を定め、換気装置3は、制御装置5が定めた換気風量で換気を行ってもよい。 In the air conditioning process shown in FIG. 7, in step S2, the control device 5 determines whether the carbon dioxide concentration is equal to or higher than a reference concentration, and if the concentration is equal to or higher than the reference concentration, the ventilation device 3 increases the ventilation air volume in step S3. However, instead of the processes in steps S2 and S3, the air conditioning system 100 may perform the following process. That is, the control device 5 may determine the ventilation air volume according to the concentration obtained in step S1, and the ventilation device 3 may perform ventilation at the ventilation air volume determined by the control device 5.
 実施の形態2.
 以下、実施の形態2に係る空調システム100について説明する。なお、実施の形態2では、実施の形態1における構成要素と同様の構成要素に対し、同一の符号を付すものとする。また、実施の形態2において、実施の形態1における構成と同様の構成、および、実施の形態1における機能と同様の機能等については、特段の事情がない限り説明を省略する。
Embodiment 2.
Hereinafter, an air conditioning system 100 according to the second embodiment will be described. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, the same configurations as those in the first embodiment and the same functions as those in the first embodiment will not be described unless there are special circumstances.
 実施の形態2に係る空調システム100の構成は、実施の形態1と同様、図1によって模式的に例示される。また、実施の形態2に係る空調システム100のハードウェア構成は、実施の形態1と同様、図6によって例示される。ここで、実施の形態2に係る空調システム100は、複数の空気調和機1を備える。実施の形態2における複数の空気調和機1と1以上の換気装置3の設置例は、図2および図3によって示される。 The configuration of the air conditioning system 100 according to the second embodiment is illustrated in FIG. 1, as in the first embodiment. The hardware configuration of the air conditioning system 100 according to the second embodiment is illustrated in FIG. 6, as in the first embodiment. Here, the air conditioning system 100 according to the second embodiment includes multiple air conditioners 1. An example of the installation of the multiple air conditioners 1 and one or more ventilators 3 in the second embodiment is shown in FIG. 2 and FIG. 3.
 以下、理解容易のため、制御装置5が、複数の空気調和機1のうちの任意の或る空気調和機1による空調を制御する場合について説明する。なお、以下では、制御装置5による補正の対象となる吸込温度を第1吸込温度と記載し、第1吸込温度を取得する空調吸込温度センサ10を第1吸込温度センサと記載する場合もある。そして、第1吸込温度センサを設け、制御装置5による補正後の第1吸込温度に基づく空調を行う空気調和機1を、第1空気調和機と記載する場合もある。また、第1空気調和機による空調対象の領域を第1領域と記載する場合もある。更に、第1領域を換気する換気装置3を第1換気装置と記載し、第1換気装置による換気風量を第1換気風量と記載する場合もある。 For ease of understanding, the following will describe a case where the control device 5 controls air conditioning by any one of the multiple air conditioners 1. Note that, hereinafter, the suction temperature that is the subject of correction by the control device 5 may be referred to as the first suction temperature, and the air conditioning suction temperature sensor 10 that acquires the first suction temperature may be referred to as the first suction temperature sensor. An air conditioner 1 that is provided with a first suction temperature sensor and performs air conditioning based on the first suction temperature corrected by the control device 5 may be referred to as the first air conditioner. The area that is the subject of air conditioning by the first air conditioner may be referred to as the first area. Furthermore, the ventilation device 3 that ventilates the first area may be referred to as the first ventilation device, and the ventilation air volume by the first ventilation device may be referred to as the first ventilation air volume.
 実施の形態2における制御装置5は、第1吸込温度センサが取得した第1吸込温度を、還気温度と第2吸込温度とに基づいて補正する。当該還気温度は、第1換気装置に設けられた還気温度センサ30によって取得される温度である。第2吸込温度は、第1領域と隣接する領域に設置された空気調和機1における空調吸込温度センサ10によって取得される温度である。以下では、第1領域と隣接する領域を第2領域と記載する場合もある。また、第2領域に設置された空気調和機1を第2空気調和機と記載する場合もある。そして、第2領域を換気する換気装置3を第2換気装置と記載する場合もあるとし、第2換気装置による換気風量を第2換気風量と記載する場合もある。更に、第2空気調和機に設けられた空調吸込温度センサ10を第2吸込温度センサと記載する場合もある。 The control device 5 in the second embodiment corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature and the second intake temperature. The return air temperature is a temperature acquired by the return air temperature sensor 30 provided in the first ventilation device. The second intake temperature is a temperature acquired by the air conditioning intake temperature sensor 10 in the air conditioner 1 installed in an area adjacent to the first area. In the following, the area adjacent to the first area may be referred to as the second area. The air conditioner 1 installed in the second area may be referred to as the second air conditioner. The ventilation device 3 that ventilates the second area may be referred to as the second ventilation device, and the ventilation air volume by the second ventilation device may be referred to as the second ventilation air volume. Furthermore, the air conditioning intake temperature sensor 10 provided in the second air conditioner may be referred to as the second intake temperature sensor.
 実施の形態2における制御装置5は、以下に示す式(2)に基づいて第1吸込温度を補正する。
AA=TAB×α+T×β+Σ(T×γ)   ・・・(2)
The control device 5 in the second embodiment corrects the first suction temperature based on the following equation (2).
T AA = T AB × α + T V × β + Σ ( T i × γ i ) ... (2)
 式(2)におけるTAAとTABとTの各々は、式(1)と同様に、補正後の第1吸込温度、補正前の第1吸込温度、還気温度である。Tは第2吸込温度センサが取得した第2吸込温度である。iは、理解容易のため、第2領域に付された仮想的な番号である。iは1からnまでの自然数である。nは第2領域の総数であり、2から4までの数である。図2および図3のように、空調対象空間に4つの領域が含まれる場合には、nは2となる。 In formula (2), T AA , T AB , and T V are the corrected first suction temperature, the uncorrected first suction temperature, and the return air temperature, respectively, as in formula (1). T i is the second suction temperature acquired by the second suction temperature sensor. i is a virtual number assigned to the second region for ease of understanding. i is a natural number from 1 to n. n is the total number of second regions, and is a number from 2 to 4. When the air-conditioned space includes four regions as in Figures 2 and 3, n is 2.
 式(2)におけるΣ(T×γ)は、iが1からnまでの各々の(T×γ)の総和である。式(2)のαは、第1補正係数であり、第1換気風量と第1外気設定温度差との両方または一方によって値が変化する。ここで、第1外気設定温度差とは、第1領域における外気設定温度差であって、第1空気調和機に設定された温度である設定温度と、外気温度との差分である。式(2)におけるβは、第1換気風量と第1外気設定温度差との両方または一方によって値が変化する係数である。以下では、βを第2補正係数と記載する場合もある。 In formula (2), Σ(T i ×γ i ) is the sum of each of (T i ×γ i ) where i ranges from 1 to n. In formula (2), α is a first correction coefficient, the value of which changes depending on both or either of the first ventilation airflow rate and the first outdoor air set temperature difference. Here, the first outdoor air set temperature difference is the outdoor air set temperature difference in the first region, and is the difference between the set temperature, which is the temperature set in the first air conditioner, and the outdoor air temperature. In formula (2), β is a coefficient whose value changes depending on both or either of the first ventilation airflow rate and the first outdoor air set temperature difference. Hereinafter, β may also be referred to as a second correction coefficient.
 式(2)におけるγは、i番目の第2領域に設置された第2空気調和機と、第1領域との間の距離に基づいて定められる。以下では、第2空気調和機と第1領域との間の距離を、隣接距離と記載する場合もある。また、以下では、γを第3補正係数と記載する場合もある。第3補正係数γは、隣接距離に代え、または、隣接距離と共に、i番目の第2領域を換気する第2換気装置による第2換気風量に基づいて定められてもよい。 In formula (2), γ i is determined based on the distance between the second air conditioner installed in the i-th second region and the first region. Hereinafter, the distance between the second air conditioner and the first region may be referred to as the adjacent distance. Hereinafter, γ i may be referred to as the third correction coefficient. The third correction coefficient γ i may be determined based on the second ventilation airflow rate by the second ventilation device that ventilates the i-th second region, instead of or together with the adjacent distance.
 iが1からnまでの各第3補正係数γの総和と、第1補正係数αと、第2補正係数βとの和は1に等しい。第1補正係数αは、第1換気風量が大きいほど小さくなり、第1外気設定温度差が大きいほど小さくなる。第2補正係数βは、第1換気風量が大きいほど大きくなり、第1外気設定温度差が大きいほど大きくなる。第3補正係数γは、i番目の第2領域における第1空気調和機と、第1領域との間の隣接距離が、予め定められた下限距離以上の範囲において、短いほど大きくなる。一方、第3補正係数γは、i番目の第2領域における第1空気調和機と、第1領域との間の隣接距離が、下限距離未満である場合には、当該隣接距離が短いほど小さくなる。すなわち、制御装置5は、i番目の領域の第2空気調和機と第1領域との間の隣接距離が下限距離以上である場合には、当該隣接距離が短いほど、i番目の領域における第2吸込温度センサによる第2吸込温度に第1吸込温度を近づける。一方、制御装置5は、当該隣接距離が下限距離未満である場合には、当該隣接距離が長いほど、i番目の領域における第2吸込温度センサによる第2吸込温度に第1吸込温度を近づける。なお、第3補正係数γは、i番目の第2領域における第2換気風量が大きいほど小さくなるものでもよい。また、第3補正係数γは、i番目の第2領域における第2換気風量が、予め定められた閾値隣接風量を超える場合には0であってもよい。 The sum of the third correction coefficients γ i from 1 to n, the sum of the first correction coefficient α, and the second correction coefficient β is equal to 1. The first correction coefficient α becomes smaller as the first ventilation airflow rate is larger, and the first outdoor air set temperature difference becomes larger. The second correction coefficient β becomes larger as the first ventilation airflow rate is larger, and the first outdoor air set temperature difference becomes larger. The third correction coefficient γ i becomes larger as the adjacent distance between the first air conditioner in the i-th second region and the first region is shorter within a range equal to or greater than a predetermined lower limit distance. On the other hand, when the adjacent distance between the first air conditioner in the i-th second region and the first region is less than the lower limit distance, the third correction coefficient γ i becomes smaller as the adjacent distance becomes shorter. That is, when the adjacent distance between the second air conditioner in the i-th region and the first region is equal to or greater than the lower limit distance, the control device 5 brings the first suction temperature closer to the second suction temperature measured by the second suction temperature sensor in the i-th region as the adjacent distance becomes shorter. On the other hand, when the adjacent distance is less than the lower limit distance, the control device 5 brings the first suction temperature closer to the second suction temperature measured by the second suction temperature sensor in the i-th region as the adjacent distance becomes longer. The third correction coefficient γ i may be smaller as the second ventilation airflow rate in the i-th second region becomes larger. The third correction coefficient γ i may be 0 when the second ventilation airflow rate in the i-th second region exceeds a predetermined threshold adjacent airflow rate.
 具体的には、第1補正係数αと、第2補正係数βと、第3補正係数γとは、以下のように定められる。第1補正係数αと第2補正係数βとの和を予め例えば0.6または0.7などと定める。このとき、iが1からnまでの各々の第3補正係数γの総和は、第1補正係数αと第2補正係数βとの和の1からの差分であって、第1補正係数αと第2補正係数βとの和が0.7に定められれば、0.3に定められる。以下では、予め定められた、第1補正係数αと第2補正係数βとの和を、第1の和と記載する場合もある。以下では、予め定められた、第3補正係数γの総和を第2の和と記載する場合もある。制御装置5は、第1補正係数αと第2補正係数βとの和が第1の和となるように、第1換気風量が大きいほど、第1補正係数αを小さくし、第2補正係数βを大きくする。制御装置5は、第1補正係数αと第2補正係数βとの和が第1の和となるように、第1外気設定温度差が大きいほど、第1補正係数αを小さくし、第2補正係数βを大きくする。制御装置5は、i番目の第2領域における第2空気調和機と第1領域との間の隣接距離が下限距離以上である場合には、当該隣接距離が小さいほど第3補正係数γを大きくし、当該隣接距離が下限距離未満である場合には、当該隣接距離が小さいほど第3補正係数γを小さくする。制御装置5は、i番目の第2領域における第2換気風量が大きいほど第3補正係数γを小さくしてもよい。なお、制御装置5は、iが1からnまでの各々の第3補正係数γの総和が第2の和となるように各第3補正係数γを決定する。 Specifically, the first correction coefficient α, the second correction coefficient β, and the third correction coefficient γ i are determined as follows. The sum of the first correction coefficient α and the second correction coefficient β is determined in advance as, for example, 0.6 or 0.7. At this time, the sum of the third correction coefficients γ i for i from 1 to n is the difference from 1 of the sum of the first correction coefficient α and the second correction coefficient β, and is determined to be 0.3 if the sum of the first correction coefficient α and the second correction coefficient β is determined to be 0.7. Hereinafter, the predetermined sum of the first correction coefficient α and the second correction coefficient β may be referred to as the first sum. Hereinafter, the predetermined sum of the third correction coefficients γ i may be referred to as the second sum. The control device 5 reduces the first correction coefficient α and increases the second correction coefficient β as the first ventilation airflow rate increases, so that the sum of the first correction coefficient α and the second correction coefficient β becomes the first sum. The control device 5 decreases the first correction coefficient α and increases the second correction coefficient β as the first outdoor air set temperature difference increases, so that the sum of the first correction coefficient α and the second correction coefficient β becomes the first sum. When the adjacent distance between the second air conditioner and the first region in the i-th second region is equal to or greater than the lower limit distance, the control device 5 increases the third correction coefficient γ i as the adjacent distance becomes smaller, and when the adjacent distance is less than the lower limit distance, the control device 5 decreases the third correction coefficient γ i as the adjacent distance becomes smaller. The control device 5 may decrease the third correction coefficient γ i as the second ventilation air volume in the i-th second region increases. The control device 5 determines each third correction coefficient γ i such that the sum of the respective third correction coefficients γ i from 1 to n becomes the second sum.
 第1の和と第2の和は、第2領域の数、または、全ての第2領域における第2換気風量の総和などに応じて定められてもよいし、定数であってもよい。例えば、第2領域の数が多いほど、第1の和は小さく、且つ、第2の和は大きく定められる。また、全ての第2領域における第2換気風量の総和が大きいほど、第1の和は大きく、且つ、第2の和は小さく定められる。 The first sum and the second sum may be determined according to the number of second regions or the total sum of the second ventilation airflows in all second regions, or may be constants. For example, the greater the number of second regions, the smaller the first sum is set and the larger the second sum is set. Also, the greater the total sum of the second ventilation airflows in all second regions, the larger the first sum is set and the smaller the second sum is set.
 図8は、実施の形態2に係る空調システム100による空調処理の流れを例示するフローチャートである。ステップS11において制御装置5は、二酸化炭素センサ2から二酸化炭素の濃度を取得する。なお、第1領域に二酸化炭素センサ2が設置されている場合には、ステップS11において制御装置5は、第1領域に設置された二酸化炭素センサ2から二酸化炭素の濃度を取得する。一方、第1領域に二酸化炭素センサ2が設置されておらず、他の1以上の領域に2以上の二酸化炭素センサ2が設置されている場合には、ステップS11において制御装置5は、第1領域に最も近い二酸化炭素センサ2から二酸化炭素の濃度を取得する。空調対象空間に1つの二酸化炭素センサ2が設置されている場合には、ステップS11において制御装置5は、当該1つの二酸化炭素センサ2から二酸化炭素の濃度を取得する。ステップS12における処理は、実施の形態1におけるステップS2の処理と同様である。 FIG. 8 is a flow chart illustrating the flow of air conditioning processing by the air conditioning system 100 according to the second embodiment. In step S11, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2. If the carbon dioxide sensor 2 is installed in the first region, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2 installed in the first region in step S11. On the other hand, if the carbon dioxide sensor 2 is not installed in the first region and two or more carbon dioxide sensors 2 are installed in one or more other regions, the control device 5 acquires the carbon dioxide concentration from the carbon dioxide sensor 2 closest to the first region in step S11. If one carbon dioxide sensor 2 is installed in the space to be air conditioned, the control device 5 acquires the carbon dioxide concentration from that one carbon dioxide sensor 2 in step S11. The processing in step S12 is the same as the processing in step S2 in the first embodiment.
 ステップS13において第1換気装置は、制御装置5からの指示に基づいて、第1換気風量を増加させる。ステップS14において制御装置5は、第1補正係数αと第2補正係数βと第3補正係数γとを決定する。ステップS15において制御装置5は、ステップS14で決定した第1補正係数αと第2補正係数βと第3補正係数γによって、式(2)に基づいて第1吸込温度を補正する。すなわち、制御装置5は、ステップS14で決定した第1補正係数αと第2補正係数βと第3補正係数γの各値と、第1吸込温度センサが取得した第1吸込温度と、第1換気装置における還気温度センサ30が取得した還気温度と、第2吸込温度センサが取得した第2吸込温度と、を式(2)に代入し、補正後の第1吸込温度を得る。なお、制御装置5は、ステップS11の処理以後であってステップS15の処理前に、第1吸込温度センサから第1吸込温度を取得し、第2吸込温度センサから第2吸込温度を取得し、第1換気装置における還気温度センサ30から還気温度を取得している。 In step S13, the first ventilation device increases the first ventilation air volume based on an instruction from the control device 5. In step S14, the control device 5 determines a first correction coefficient α, a second correction coefficient β, and a third correction coefficient γ i . In step S15, the control device 5 corrects the first suction temperature based on formula (2) using the first correction coefficient α, the second correction coefficient β, and the third correction coefficient γ i determined in step S14. That is, the control device 5 substitutes each value of the first correction coefficient α, the second correction coefficient β, and the third correction coefficient γ i determined in step S14, the first suction temperature acquired by the first suction temperature sensor, the return air temperature acquired by the return air temperature sensor 30 in the first ventilation device, and the second suction temperature acquired by the second suction temperature sensor into formula (2) to obtain the corrected first suction temperature. In addition, after processing of step S11 and before processing of step S15, the control device 5 acquires the first suction temperature from the first suction temperature sensor, acquires the second suction temperature from the second suction temperature sensor, and acquires the return air temperature from the return air temperature sensor 30 in the first ventilation device.
 ステップS16において制御装置5は、補正後の第1吸込温度に基づき第1空気調和機を制御する。ステップS16の処理後、空調システム100は、空調処理をステップS11に戻す。 In step S16, the control device 5 controls the first air conditioner based on the corrected first suction temperature. After processing in step S16, the air conditioning system 100 returns the air conditioning process to step S11.
 空調システム100は、ステップS12とステップS13の処理に代え、以下の処理を行ってもよい。すなわち、制御装置5はステップS11で取得した濃度に応じて第1換気風量を定め、第1換気装置は、制御装置5が定めた第1換気風量で換気を行ってもよい。 Instead of the processes of steps S12 and S13, the air conditioning system 100 may perform the following process. That is, the control device 5 may determine a first ventilation air volume according to the concentration obtained in step S11, and the first ventilation device may perform ventilation at the first ventilation air volume determined by the control device 5.
 以下、実施の形態1および実施の形態2に係る空調システム100による効果について記載する。実施の形態1および実施の形態2に係る空調システム100は、第1空気調和機と第1換気装置と第1吸込温度センサと還気温度センサ30と制御装置5とを備える。第1空気調和機は、空調対象空間における第1領域を空調する。第1換気装置は、第1領域の換気を行う。第1吸込温度センサは、空気調和機1が空調対象空間から吸い込む空気の温度である第1吸込温度を取得する。還気温度センサ30は、第1換気装置が第1領域から吸い込む空気の温度である還気温度を取得する。制御装置5は、第1換気装置および第1空気調和機を制御する。制御装置5は、還気温度に基づいて第1吸込温度を補正する。そして、制御装置5は、補正後の第1吸込温度に基づいて空調するよう第1空気調和機を制御する。 The effects of the air conditioning system 100 according to the first and second embodiments are described below. The air conditioning system 100 according to the first and second embodiments includes a first air conditioner, a first ventilation device, a first intake temperature sensor, a return air temperature sensor 30, and a control device 5. The first air conditioner conditions a first region in the space to be air-conditioned. The first ventilation device ventilates the first region. The first intake temperature sensor acquires a first intake temperature, which is the temperature of the air sucked in by the air conditioner 1 from the space to be air-conditioned. The return air temperature sensor 30 acquires a return air temperature, which is the temperature of the air sucked in by the first ventilation device from the first region. The control device 5 controls the first ventilation device and the first air conditioner. The control device 5 corrects the first intake temperature based on the return air temperature. The control device 5 then controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
 上記構成によれば、第1吸込温度センサが取得した第1吸込温度を、制御装置5が還気温度に基づいて補正する。これにより、第1換気装置から吹き出された、外気温度と同等の温度の空気が空気調和機1に流入しても、第1空気調和機は、空調処理が反映された第1領域の温度として、より精度の高い第1吸込温度に基づいて更なる空調処理を行うことができる。従って、冷房運転の場合には、第1領域の温度が、第1空気調和機の設定温度より下がり過ぎず、暖房運転の場合には、第1領域の温度が設定温度より上がり過ぎず、無駄なエネルギーの消費が抑制される共に、ユーザの快適性が担保される。 With the above configuration, the control device 5 corrects the first intake temperature acquired by the first intake temperature sensor based on the return air temperature. As a result, even if air blown out from the first ventilation device at a temperature equivalent to the outside air temperature flows into the air conditioner 1, the first air conditioner can perform further air conditioning processing based on the more accurate first intake temperature as the temperature of the first area reflecting the air conditioning processing. Therefore, in the case of cooling operation, the temperature of the first area does not drop too much below the set temperature of the first air conditioner, and in the case of heating operation, the temperature of the first area does not rise too much above the set temperature, reducing unnecessary energy consumption and ensuring user comfort.
 実施の形態1および実施の形態2における制御装置5は、第1換気装置による第1換気風量が大きいほど、還気温度に近い温度になるよう、第1吸込温度センサによって取得された第1吸込温度を補正する。第1換気風量が大きいほど、第1空気調和機は、第1換気装置から吹き出された、外気温度と変わらない温度の空気を吸い込む可能性が高くなる。そのため、第1吸込温度センサが取得する第1吸込温度は、第1領域の温度としては精度が低くなり得る。一方、還気温度センサ30が取得する還気温度は第1吸込温度センサが取得する第1吸込温度に比べて、第1領域の温度としては精度が高い場合が多い。そのため、第1換気風量が大きいほど、還気温度に近づくよう第1吸込温度が補正されることによって、第1空気調和機の制御の精度が向上する。 In the first and second embodiments, the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the temperature is closer to the return air temperature as the first ventilation airflow rate by the first ventilation device increases. The larger the first ventilation airflow rate, the more likely it is that the first air conditioner will suck in air blown out from the first ventilation device at a temperature the same as the outside air temperature. Therefore, the first suction temperature acquired by the first suction temperature sensor may have low accuracy as the temperature of the first area. On the other hand, the return air temperature acquired by the return air temperature sensor 30 is often more accurate as the temperature of the first area than the first suction temperature acquired by the first suction temperature sensor. Therefore, the larger the first ventilation airflow rate, the more the first suction temperature is corrected to be closer to the return air temperature, thereby improving the accuracy of control of the first air conditioner.
 実施の形態1および実施の形態2における空調システム100は、外気温度センサ4を更に備える。外気温度センサ4は外気温度を取得する。制御装置5は、第1空気調和機の設定温度と、外気温度との差である第1外気設定温度差が大きいほど、補正後の第1吸込温度が還気温度に近づくよう、第1吸込温度センサが取得した第1吸込温度を補正する。第1外気設定温度差が大きいほど、第1吸込温度センサが取得する第1吸込温度は、第1領域の温度としては精度が低くなる場合が多い。一方、還気温度センサ30が取得する還気温度は、第1吸込温度センサが取得する第1吸込温度に比べて、第1領域の温度としては精度が高い場合が多い。そのため、第1外気設定温度差が大きいほど、還気温度に近づくよう第1吸込温度が補正されることによって、第1空気調和機の制御の精度が向上する。 The air conditioning system 100 in the first and second embodiments further includes an outdoor air temperature sensor 4. The outdoor air temperature sensor 4 acquires the outdoor air temperature. The control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the corrected first suction temperature approaches the return air temperature as the first outdoor air set temperature difference, which is the difference between the set temperature of the first air conditioner and the outdoor air temperature, becomes larger. The larger the first outdoor air set temperature difference, the lower the accuracy of the first suction temperature acquired by the first suction temperature sensor as the temperature of the first region. On the other hand, the return air temperature acquired by the return air temperature sensor 30 often has a higher accuracy as the temperature of the first region than the first suction temperature acquired by the first suction temperature sensor. Therefore, the larger the first outdoor air set temperature difference, the more the first suction temperature is corrected to approach the return air temperature, thereby improving the accuracy of control of the first air conditioner.
 実施の形態1および実施の形態2に係る空調システム100は、更に二酸化炭素センサ2を備える。二酸化炭素センサ2は、空調対象空間内の二酸化炭素の濃度を取得する。制御装置5は、二酸化炭素センサ2によって得られた濃度に基づいて第1換気風量を決定する。これにより、空調対象空間内の二酸化炭素の濃度に応じた換気が行われる。従って、空調対象空間内の二酸化炭素の濃度が高い場合には、迅速に換気が行われ、空調対象空間内の二酸化炭素の濃度が低い場合には、省エネルギー化が図られる。 The air conditioning system 100 according to the first and second embodiments further includes a carbon dioxide sensor 2. The carbon dioxide sensor 2 acquires the concentration of carbon dioxide in the space to be air-conditioned. The control device 5 determines the first ventilation airflow rate based on the concentration acquired by the carbon dioxide sensor 2. This allows ventilation to be performed according to the concentration of carbon dioxide in the space to be air-conditioned. Therefore, when the concentration of carbon dioxide in the space to be air-conditioned is high, ventilation is performed quickly, and when the concentration of carbon dioxide in the space to be air-conditioned is low, energy conservation is achieved.
 実施の形態2に係る空調システム100は、第2空気調和機と第2吸込温度センサとを更に備える。第2空気調和機は、第1領域に隣接する第2領域を空調する。第2吸込温度センサは、第2空気調和機が第2領域から吸い込む空気の温度である第2吸込温度を取得する。制御装置5は、還気温度と第2吸込温度とに基づいて第1吸込温度を補正し、補正後の第1吸込温度に基づいて空調するよう第1空気調和機を制御する。 The air conditioning system 100 according to the second embodiment further includes a second air conditioner and a second intake temperature sensor. The second air conditioner conditions a second area adjacent to the first area. The second intake temperature sensor acquires a second intake temperature, which is the temperature of the air that the second air conditioner draws in from the second area. The control device 5 corrects the first intake temperature based on the return air temperature and the second intake temperature, and controls the first air conditioner to perform air conditioning based on the corrected first intake temperature.
 上記構成によれば、制御装置5が、還気温度のみならず、第2吸込温度に基づいて第1吸込温度を補正することにより以下の効果が得られる。まず、第1換気装置が室内に吹き出した空気を第1換気装置が吸い込む場合がある。このような場合、還気温度は、外気温度に近くなり、第1領域の温度とは誤差が発生している可能性がある。しかし、制御装置5が、還気温度と共に第2吸込温度に基づいて第1吸込温度を補正するため、補正後の第1吸込温度の、第1領域の温度からの誤差が小さくなり得る。よって、第1空気調和機は、補正後の第1吸込温度に基づいて精度良く空調を行うことができる。 With the above configuration, the control device 5 corrects the first suction temperature based on not only the return air temperature but also the second suction temperature, which provides the following effects. First, there are cases where the first ventilation device sucks in air that the first ventilation device has blown into the room. In such cases, the return air temperature becomes close to the outside air temperature, and there is a possibility that an error occurs with the temperature of the first area. However, because the control device 5 corrects the first suction temperature based on the second suction temperature as well as the return air temperature, the error of the corrected first suction temperature from the temperature of the first area can be reduced. Therefore, the first air conditioner can perform air conditioning with high accuracy based on the corrected first suction temperature.
 実施の形態2における制御装置5は、第2空気調和機と第1領域との間の距離である隣接距離が、予め定められた下限距離以上である場合には、隣接距離が短いほど、第2吸込温度に近い温度になるよう、第1吸込温度センサによって取得された第1吸込温度を補正する。制御装置5は、隣接距離が下限距離未満である場合には、隣接距離が長いほど、第2吸込温度に近い温度になるよう、第1吸込温度センサによって取得された第1吸込温度を補正する。第2吸込温度は、隣接距離が短いほど第1領域の温度に近づく。一方、第2空気調和機は、第1換気装置との間の距離が短いほど、第1換気装置から吹き出される空気を吸い込むため、第2吸込温度の第1領域の温度からの差が大きくなる。隣接距離が下限距離以上の場合、すなわち、第2空気調和機が第1換気装置から十分離れている場合には、隣接距離が短いほど、制御装置5が第1吸込温度を第2吸込温度に近づけることによって、第1吸込温度は第1領域の温度として精度が高くなり得る。一方、隣接距離が下限距離未満の場合、すなわち、第2空気調和機が第1換気装置に近い場合には、隣接距離が長いほど、制御装置5が第1吸込温度を第2吸込温度に近づけることによって、第1吸込温度は第1領域の温度として精度が高くなり得る。従って、第1空気調和機の制御の精度が向上する。 In embodiment 2, when the adjacent distance, which is the distance between the second air conditioner and the first area, is equal to or greater than a predetermined lower limit distance, the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the shorter the adjacent distance, the closer the temperature to the second suction temperature. When the adjacent distance is less than the lower limit distance, the control device 5 corrects the first suction temperature acquired by the first suction temperature sensor so that the longer the adjacent distance, the closer the temperature to the second suction temperature. The shorter the adjacent distance, the closer the second suction temperature is to the temperature of the first area. On the other hand, the shorter the distance between the second air conditioner and the first ventilation device, the greater the difference between the second suction temperature and the temperature of the first area will be because the second air conditioner sucks in air blown out from the first ventilation device. When the adjacent distance is equal to or greater than the lower limit distance, i.e., when the second air conditioner is sufficiently far from the first ventilation device, the shorter the adjacent distance, the closer the control device 5 brings the first suction temperature to the second suction temperature, and the more accurate the first suction temperature can be as the temperature of the first region. On the other hand, when the adjacent distance is less than the lower limit distance, i.e., when the second air conditioner is closer to the first ventilation device, the longer the adjacent distance, the closer the control device 5 brings the first suction temperature to the second suction temperature, and the more accurate the first suction temperature can be as the temperature of the first region. Thus, the accuracy of control of the first air conditioner is improved.
 実施の形態2に係る空調システム100は、第2領域を換気する第2換気装置を更に備える。制御装置5は、第2換気装置による第2換気風量が小さいほど、第2吸込温度に近い温度になるよう、第1吸込温度センサによって取得された第1吸込温度を補正する。第2換気風量が大きい場合には、第2空気調和機は、第2換気装置から吹き出した外気温度と同等の温度の空気を吸い込む可能性が高くなる。これにより、第2吸込温度センサが取得する温度は、室内温度よりも外気温度に近くなる可能性がある。一方、第2換気風量が小さい場合には、第2空気調和機は、第2換気装置からの空気を吸い込む可能性が低くなり、第2吸込温度は室内温度に近づく。従って、制御装置5が、第2換気風量が小さいほど、第2吸込温度に近い温度になるよう第1吸込温度を補正することによって、空調システム100は、空調処理の精度の低下を抑制することができる。 The air conditioning system 100 according to the second embodiment further includes a second ventilation device that ventilates the second area. The control device 5 corrects the first intake temperature acquired by the first intake temperature sensor so that the smaller the second ventilation airflow rate by the second ventilation device, the closer the temperature to the second intake temperature. When the second ventilation airflow rate is large, the second air conditioner is more likely to draw in air at a temperature equivalent to the outdoor air temperature blown out from the second ventilation device. As a result, the temperature acquired by the second intake temperature sensor is more likely to be closer to the outdoor air temperature than the room temperature. On the other hand, when the second ventilation airflow rate is small, the second air conditioner is less likely to draw in air from the second ventilation device, and the second intake temperature approaches the room temperature. Therefore, the control device 5 corrects the first intake temperature so that the smaller the second ventilation airflow rate, the closer the temperature to the second intake temperature, and the air conditioning system 100 can suppress a decrease in the accuracy of the air conditioning process.
 実施の形態2では、制御装置5が、還気温度と共に第2吸込温度に基づいて第1吸込温度を補正する例を示した。しかし、制御装置5は、第1換気風量が小さい場合に、還気温度に基づく補正を行い、第1換気風量が大きい場合に、還気温度および第2吸込温度に基づく補正を行ってもよい。詳細には、制御装置5は、第1換気風量が予め定められた閾値風量未満の場合には、実施の形態1と同様、式(1)に基づき、還気温度によって第1吸込温度を補正する。そして、第1換気風量が閾値風量以上である場合には、式(2)に基づいて、還気温度と第2吸込温度とによって第1吸込温度を補正する。第1換気風量が小さい場合には、第1換気装置は、吹き出した空気を吸い込む可能性が低くなる。そのため、第1換気風量が閾値風量未満の場合に、制御装置5が還気温度に基づいて第1吸込温度を補正することにより、空調システム100は、第1空気調和機の制御の精度の維持または向上を図りつつ、補正の処理量の低減を図ることができる。一方、第1換気風量が大きい場合には、第1換気装置は、吹き出した空気を吸い込む可能性が高くなる。そのため、第1換気風量が閾値風量以上の場合に、制御装置5が還気温度と共に第2吸込温度に基づいて第1吸込温度を補正することにより、空調システム100は、第1空気調和機の制御の精度の維持または向上を図ることができる。 In the second embodiment, an example was shown in which the control device 5 corrects the first suction temperature based on the second suction temperature together with the return air temperature. However, the control device 5 may perform a correction based on the return air temperature when the first ventilation air volume is small, and may perform a correction based on the return air temperature and the second suction temperature when the first ventilation air volume is large. In detail, the control device 5 corrects the first suction temperature based on the return air temperature based on formula (1) as in the first embodiment when the first ventilation air volume is less than a predetermined threshold air volume. Then, when the first ventilation air volume is equal to or greater than the threshold air volume, the control device 5 corrects the first suction temperature based on the return air temperature and the second suction temperature based on formula (2). When the first ventilation air volume is small, the first ventilation device is less likely to suck in the air that has been blown out. Therefore, when the first ventilation air volume is less than the threshold air volume, the control device 5 corrects the first suction temperature based on the return air temperature, and the air conditioning system 100 can reduce the amount of correction processing while maintaining or improving the accuracy of control of the first air conditioner. On the other hand, when the first ventilation airflow rate is large, the first ventilation device is more likely to suck in the air that is blown out. Therefore, when the first ventilation airflow rate is equal to or greater than the threshold airflow rate, the control device 5 corrects the first suction temperature based on the second suction temperature together with the return air temperature, so that the air conditioning system 100 can maintain or improve the accuracy of control of the first air conditioner.
 以上、実施の形態について説明したが、本開示の内容は、実施の形態に限定されるものではなく、想定しうる均等の範囲を含む。また、実施の形態1~実施の形態2で説明した構成およびその変形例は、機能及び動作を阻害しない範囲で、互いに組み合わせることができる。 Although the embodiments have been described above, the contents of this disclosure are not limited to the embodiments and include the scope of conceivable equivalents. Furthermore, the configurations and variations thereof described in the first and second embodiments can be combined with each other to the extent that the functions and operations are not impaired.
 1 空気調和機、2 二酸化炭素センサ、3 換気装置、3A 排気風路、3B 給気風路、4 外気温度センサ、5 制御装置、10 空調吸込温度センサ、30 還気温度センサ、31 全熱交換器、32 ダクト、32A 排気ダクト、32B 給気ダクト、50 バス、51 プロセッサ、52 メモリ、53 入出力インターフェース回路、100 空調システム。 1 air conditioner, 2 carbon dioxide sensor, 3 ventilation device, 3A exhaust air duct, 3B supply air duct, 4 outside air temperature sensor, 5 control device, 10 air conditioner intake temperature sensor, 30 return air temperature sensor, 31 total heat exchanger, 32 duct, 32A exhaust duct, 32B supply air duct, 50 bus, 51 processor, 52 memory, 53 input/output interface circuit, 100 air conditioning system.

Claims (7)

  1.  空調対象空間における第1領域を空調する第1空気調和機と、
     前記第1領域の換気を行う第1換気装置と、
     前記第1空気調和機が前記第1領域から吸い込む空気の温度である第1吸込温度を取得する第1吸込温度センサと、
     前記第1換気装置が前記第1領域から吸い込む空気の温度である還気温度を取得する還気温度センサと、
     前記第1換気装置および前記第1空気調和機を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記還気温度に基づいて前記第1吸込温度を補正し、補正後の前記第1吸込温度に基づいて空調するよう前記第1空気調和機を制御する、空調システム。
    A first air conditioner that conditions a first area in a space to be air conditioned;
    A first ventilation device that ventilates the first area;
    a first intake temperature sensor that acquires a first intake temperature, which is the temperature of air that the first air conditioner draws in from the first area;
    A return air temperature sensor that acquires a return air temperature, which is the temperature of air sucked in from the first area by the first ventilation device;
    A control device that controls the first ventilation device and the first air conditioner;
    Equipped with
    The control device includes:
    An air conditioning system that corrects the first suction temperature based on the return air temperature, and controls the first air conditioner to perform air conditioning based on the corrected first suction temperature.
  2.  前記制御装置は、
     前記第1換気装置による換気風量が大きいほど、前記還気温度に近い温度になるよう、前記第1吸込温度センサによって取得された前記第1吸込温度を補正する、請求項1に記載の空調システム。
    The control device includes:
    The air conditioning system according to claim 1 , wherein the first suction temperature acquired by the first suction temperature sensor is corrected so that the first suction temperature is closer to the return air temperature as the ventilation air volume by the first ventilation device is larger.
  3.  前記空調対象空間の外の空気の温度である外気温度を取得する外気温度センサを更に備え、
     前記制御装置は、
     前記第1空気調和機に設定された温度である設定温度と、前記外気温度との差である第1外気設定温度差が大きいほど、補正後の前記第1吸込温度が前記還気温度に近づくよう、前記第1吸込温度センサが取得した前記第1吸込温度を補正する、請求項1または請求項2に記載の空調システム。
    Further comprising an outside air temperature sensor for acquiring an outside air temperature which is the temperature of air outside the air conditioned space,
    The control device includes:
    The air conditioning system of claim 1 or claim 2, wherein the first suction temperature acquired by the first suction temperature sensor is corrected so that the corrected first suction temperature approaches the return air temperature the larger the first outdoor air set temperature difference, which is the difference between the set temperature set in the first air conditioner and the outdoor air temperature.
  4.  前記空調対象空間における前記第1領域に隣接する第2領域を空調する第2空気調和機と、
     前記第2空気調和機が、前記第2領域から吸い込む空気の温度である第2吸込温度を取得する第2吸込温度センサと、
     を更に備え、
     前記制御装置は、
     前記還気温度と前記第2吸込温度とに基づいて前記第1吸込温度を補正し、補正後の前記第1吸込温度に基づいて空調するよう前記第1空気調和機を制御する、請求項1~請求項3のいずれか一項に記載の空調システム。
    A second air conditioner that conditions a second area adjacent to the first area in the air conditioned space;
    a second suction temperature sensor that acquires a second suction temperature, which is the temperature of air sucked in from the second area by the second air conditioner;
    Further comprising:
    The control device includes:
    An air conditioning system as described in any one of claims 1 to 3, wherein the first suction temperature is corrected based on the return air temperature and the second suction temperature, and the first air conditioner is controlled to perform air conditioning based on the corrected first suction temperature.
  5.  前記制御装置は、
     前記第2空気調和機と前記第1領域との間の距離である隣接距離が、予め定められた下限距離以上である場合には、前記隣接距離が短いほど、前記第2吸込温度に近い温度になるよう、前記第1吸込温度センサによって取得された前記第1吸込温度を補正し、
     前記隣接距離が前記下限距離未満である場合には、前記隣接距離が長いほど、前記第2吸込温度に近い温度になるよう、前記第1吸込温度センサによって取得された前記第1吸込温度を補正する、請求項4に記載の空調システム。
    The control device includes:
    When an adjacent distance between the second air conditioner and the first area is equal to or greater than a predetermined lower limit distance, the first suction temperature acquired by the first suction temperature sensor is corrected so that the shorter the adjacent distance is, the closer the first suction temperature becomes to the second suction temperature;
    The air conditioning system of claim 4, wherein when the adjacent distance is less than the lower limit distance, the first suction temperature acquired by the first suction temperature sensor is corrected so that the longer the adjacent distance is, the closer the temperature is to the second suction temperature.
  6.  前記第2領域を換気する第2換気装置を更に備え、
     前記制御装置は、
     前記第2換気装置による換気風量が小さいほど、前記第2吸込温度に近い温度になるよう、前記第1吸込温度センサによって取得された前記第1吸込温度を補正する、請求項4または請求項5に記載の空調システム。
    Further comprising a second ventilation device for ventilating the second area,
    The control device includes:
    The air conditioning system according to claim 4 or claim 5, wherein the first suction temperature acquired by the first suction temperature sensor is corrected so that the smaller the ventilation air volume by the second ventilation device is, the closer the temperature is to the second suction temperature.
  7.  前記空調対象空間内の二酸化炭素の濃度を取得する二酸化炭素センサを更に備え、
     前記制御装置は、
     前記濃度に基づいて、前記第1換気装置による換気風量を決定する、請求項1~請求項6のいずれか一項に記載の空調システム。
    Further comprising a carbon dioxide sensor for acquiring a concentration of carbon dioxide in the air-conditioned space,
    The control device includes:
    The air conditioning system according to any one of claims 1 to 6, further comprising: determining a ventilation air volume to be provided by the first ventilation device based on the concentration.
PCT/JP2022/041151 2022-11-04 2022-11-04 Air conditioning system WO2024095444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041151 WO2024095444A1 (en) 2022-11-04 2022-11-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041151 WO2024095444A1 (en) 2022-11-04 2022-11-04 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2024095444A1 true WO2024095444A1 (en) 2024-05-10

Family

ID=90930069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041151 WO2024095444A1 (en) 2022-11-04 2022-11-04 Air conditioning system

Country Status (1)

Country Link
WO (1) WO2024095444A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070827A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Controller for ventilation device
WO2018220803A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Air conditioning system
JP2019132530A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Air-conditioning equipment selection system
JP2020085280A (en) * 2018-11-19 2020-06-04 ダイキン工業株式会社 Refrigerant cycle device, refrigerant amount determination system and refrigerant amount determination method
JP2022086037A (en) * 2020-11-30 2022-06-09 パナソニックIpマネジメント株式会社 Ventilation control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070827A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Controller for ventilation device
WO2018220803A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Air conditioning system
JP2019132530A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Air-conditioning equipment selection system
JP2020085280A (en) * 2018-11-19 2020-06-04 ダイキン工業株式会社 Refrigerant cycle device, refrigerant amount determination system and refrigerant amount determination method
JP2022086037A (en) * 2020-11-30 2022-06-09 パナソニックIpマネジメント株式会社 Ventilation control system

Similar Documents

Publication Publication Date Title
US8249751B2 (en) Power saving air-conditioning system
US11034210B2 (en) Peak demand response operation of HVAC systems
US11879658B2 (en) Air-conditioning ventilation system
US11976839B2 (en) Ventilation system, air-conditioning system, and method of installing air-conditioning system
JP6006593B2 (en) Air conditioning control system and air conditioning control method
JP2838941B2 (en) Duct air conditioner
JP7097962B2 (en) Air conditioning control system
WO2024095444A1 (en) Air conditioning system
JP5730689B2 (en) Air conditioning operation control system
US11703248B2 (en) Proactive system control using humidity prediction
KR100386703B1 (en) Control method of thermal comfort and carbon dioxide density for fresh air conditioning system
US20240003580A1 (en) Air-conditioning system, controller for air-conditioning apparatus, and control method for air-conditioning apparatus
JP3990143B2 (en) Outside air cooling system
US20230296277A1 (en) Hvac system with improved operation of a variable speed compressor during a peak demand response
US11802703B2 (en) Automatic staging of multiple HVAC systems during a peak demand response
US20230082958A1 (en) Air-conditioning system and air-conditioning system controller
JP7484958B2 (en) Heat pump equipment
WO2023007666A1 (en) Air-conditioning and ventilation system
US20230288092A1 (en) Hvac system with improved operation of a single-stage compressor during a peak demand response
JP4346295B2 (en) Air volume control device for air conditioner
JP7042628B2 (en) Air conditioning system, control device, air conditioning control method and program
JP2024072949A (en) Air Conditioning System
JPH08219491A (en) Heat exchanging ventilation air conditioner
WO2021084568A1 (en) Control device, air conditioning system, and control method for air conditioning system
JP2024062034A (en) Air Conditioning System