WO2024095355A1 - Electric power steering device - Google Patents

Electric power steering device Download PDF

Info

Publication number
WO2024095355A1
WO2024095355A1 PCT/JP2022/040847 JP2022040847W WO2024095355A1 WO 2024095355 A1 WO2024095355 A1 WO 2024095355A1 JP 2022040847 W JP2022040847 W JP 2022040847W WO 2024095355 A1 WO2024095355 A1 WO 2024095355A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
relay
flowing
electric power
steering device
Prior art date
Application number
PCT/JP2022/040847
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 西村
大輔 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/040847 priority Critical patent/WO2024095355A1/en
Publication of WO2024095355A1 publication Critical patent/WO2024095355A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • This disclosure relates to an electric power steering device.
  • a semiconductor relay (hereinafter referred to as the "motor relay") provided between the motor drive circuit (e.g., an H-bridge circuit) that drives the motor and the motor calculates the motor back electromotive voltage and the energy of the regenerative current based on the rotation speed of the motor, and is configured to turn off when the energy of the regenerative current is reduced to the safe operating range of the FET that constitutes the motor relay (see, for example, Patent Document 1).
  • the motor relay is provided to turn off and electrically isolate the motor drive circuit and the motor when any abnormality occurs in the electric power steering device.
  • the motor relay is turned off when no regenerative current is flowing through the motor in order to protect the FET that constitutes the motor relay.
  • the abnormality occurring in the electric power steering device is due to a failure in a part involved in detecting regenerative current, it may not be possible to determine that regenerative current is flowing, and the motor relay may be turned OFF while regenerative current is flowing. Alternatively, it may not be possible to determine that regenerative current is not flowing, and the motor relay may continue to be ON while no regenerative current is flowing. Thus, with conventional electric power steering devices, it may not be possible to electrically disconnect the motor drive circuit and the motor at the appropriate time.
  • This disclosure was made in consideration of the above circumstances, and one of its objectives is to provide an electric power steering device that electrically disconnects the motor drive circuit and the motor at the appropriate timing.
  • the electric power steering device includes a motor drive circuit that drives a motor, a relay circuit that can cut off the electrical connection between the motor drive circuit and the motor, and a control unit that uses two or more independent means to determine whether or not a regenerative current is flowing through the motor and controls the relay circuit based on the determination result.
  • the electric power steering device disclosed herein can electrically disconnect the motor drive circuit and the motor at the appropriate timing.
  • FIG. 1 is a block diagram showing an example of the configuration of an electric power steering device according to a first embodiment
  • FIG. 2 is a block diagram showing an example of an H-bridge circuit and its peripheral circuits according to the first embodiment.
  • FIG. 4 is a diagram showing an operation of the motor according to the first embodiment when it generates a regenerative current.
  • 3 is a timing chart of the electric power steering device according to the first embodiment.
  • 6 is a flowchart showing an example of a relay driving process according to the first embodiment.
  • 10 is a flowchart showing an example of a relay driving process according to a second embodiment.
  • 13 is a flowchart showing an example of a relay driving process according to the third embodiment.
  • 10 is a timing chart of an electric power steering device according to a third embodiment.
  • FIG. 13 is a block diagram showing a partial configuration of a vehicle equipped with an electric power steering device according to a fourth embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of an electric power steering device according to the first embodiment.
  • the electric power steering device 100 shown in FIG. 1 includes a controller 1, a torque sensor 2, a vehicle speed sensor 3, a steering angle sensor 4, and a motor 5.
  • the controller 1 is a control unit that controls the electric power steering device 100.
  • the torque sensor 2 is a sensor that measures the steering force of the driver.
  • the vehicle speed sensor 3 is a sensor that measures the traveling speed of the vehicle.
  • the steering angle sensor 4 is a sensor that measures the steering angle of the steering wheel.
  • the motor 5 generates power for the electric power steering device 100.
  • the controller 1 controls the output of the motor 5 based on signals input from the torque sensor 2, the vehicle speed sensor 3, and the steering angle sensor 4.
  • the controller 1 includes a microcontroller 11 that inputs and outputs signals and performs calculations, an H-bridge circuit 12, a motor relay 13 that is provided between the H-bridge circuit 12 and the motor 5, and a current detection circuit 14 that is located on the GND side of the H-bridge circuit 12.
  • the H-bridge circuit 12 is an example of a motor drive circuit that drives the motor 5.
  • the H-bridge circuit 12 drives the motor 5 by driving the built-in FETs according to the drive signals SD1 to SD4 input from the microcomputer 11.
  • the motor relay 13 is an example of a relay circuit provided between the H-bridge circuit 12 and the motor 5.
  • the motor relay 13 is a semiconductor relay that can cut off (disconnect) the electrical connection between the H-bridge circuit 12 and the motor 5 according to the drive signal SRY input from the microcontroller 11.
  • the motor relay 13 is turned ON, the H-bridge circuit 12 and the motor 5 are electrically connected, and when the motor relay 13 is turned OFF, the H-bridge circuit 12 and the motor 5 are electrically cut off.
  • the current detection circuit 14 detects the current flowing through the H-bridge circuit 12. For example, the current detection circuit 14 outputs a positive current value as the current detection value SCU to the microcontroller 11 when a current flows from the H-bridge circuit 12 to the GND side, and outputs a negative current value when a current flows from the GND side to the H-bridge circuit 12 side.
  • the microcomputer 11 includes a target current calculation processing section 11a, a drive duty calculation processing section 11b, and a relay drive processing section 11c, and is an example of a control section that controls the electric power steering device 100.
  • the target current calculation processing section 11a calculates the target current value TCU of the motor 5 based on a signal input from the outside.
  • the drive duty calculation processing unit 11b compares the target current value TCU with the current detection value SCU input from the current detection circuit 14, calculates the voltage to be applied to the motor 5 based on the difference, converts it to a drive duty, and outputs it as the FET drive signals SD1 to SD4.
  • the relay drive processing unit 11c determines whether to turn the motor relay 13 ON (connected) or OFF (disconnected) based on the operating state SST of the electric power steering device 100, the current detection value SCU input from the current detection circuit 14, the power supply voltage SPS applied to the H-bridge circuit 12, and the terminal voltages SM1 and SM2 of the motor 5, and outputs the determination result as a relay drive signal SRY.
  • the operating state SST indicates a motor drive permitted state in which the motor 5 can be driven, and a motor drive stopped state in which the motor 5 cannot be driven.
  • the operating state SST is calculated inside the microcomputer 11 based on the driver's ignition key operation (not shown) or the operation of a fail-safe (not shown), etc.
  • FIG. 2 is a block diagram showing an example of the H-bridge circuit 12 and its peripheral circuits.
  • the FET drive signals SD1 and SD2 input from the microcomputer 11 are input to the FETs 12a and 12b arranged on the upper side of the H-bridge circuit 12, respectively.
  • the FET drive signals SD3 and SD4 input from the microcomputer 11 are input to the FETs 12c and 12d arranged on the lower side of the H-bridge circuit 12, respectively.
  • the H-bridge circuit 12 drives the upper and lower FETs arranged diagonally on the H-bridge circuit 12.
  • the microcontroller 11 PWM drives the FET drive signals SD1 and SD4 to control FETs 12a and 12d to be ON.
  • FIG. 3 is a diagram showing the operation of the block diagram shown in FIG. 2 when the motor 5 is generating a regenerative current.
  • the FET drive signals SD1 to SD4 control the FETs 12a to 12d to be OFF.
  • a back electromotive force proportional to the rotation speed of the motor 5 is generated between the terminal voltages SM1 and SM2, resulting in a potential difference.
  • Which of the terminal voltages SM1 and SM2 is higher depends on the direction of rotation of the motor, but FIG. 3 shows the case where the terminal voltage SM2 is higher.
  • a regenerative current is generated through the following path: GND of the H-bridge circuit 12 ⁇ FET 12c ⁇ motor 5 ⁇ motor relay 13 ⁇ FET 12b ⁇ power supply of the H-bridge circuit 12.
  • the current detection value SCU output by the current detection circuit 14 becomes a negative value, and the terminal voltage of the terminal voltages SM1, SM2 of the motor 5 from which current flows out of the motor 5 becomes higher than the power supply voltage SPS of the H-bridge circuit 12.
  • the relay drive processing unit 11c can determine whether or not a regenerative current is flowing based on these states.
  • FIG. 4 is a timing chart of the electric power steering device according to this embodiment.
  • the horizontal axis represents time
  • the time axis represents the presence or absence of abnormality detection by the microcomputer 11, the operating state SST, the FET drive signals SD1 to SD4, the motor current of the motor 5 (motor current from terminal voltage SM1 to terminal voltage SM2), and the relay drive signal SRY.
  • detection of an abnormality by the microcomputer 11 refers to detection of some kind of abnormality in the electric power steering device 100, such as detection of an abnormality due to a failure of the torque sensor 2 or the current detection circuit 14.
  • the operating state SST is the motor drive permitted state, and the FET drive signal SD1 and the FET drive signal SD4 are PWM driven to drive the motor 5 (the FET drive signal SD1 and the FET drive signal SD4 are OFF).
  • the relay drive signal SRY is ON, and the motor relay 13 is ON.
  • the fail-safe is activated, the operating state SST becomes a motor drive stop state, and the FET drive signal SD1 and the FET drive signal SD4 turn OFF to stop the drive of the motor 5. After that, when the regenerative current stops flowing, the relay drive signal SRY turns OFF and the motor relay 13 is turned OFF.
  • FIG. 5 is a flowchart showing an example of a relay driving process according to the present embodiment.
  • the relay drive processing unit 11c judges whether the operation state SST is a motor drive permitted state. If the relay drive processing unit 11c judges that the operation state SST is a motor drive permitted state (step S1: YES), the process proceeds to step S7 and turns on the relay drive signal SRY. On the other hand, if the relay drive processing unit 11c judges that the operation state SST is a motor drive stopped state (step S1: NO), the process proceeds to step S2.
  • step S2 the relay drive processing unit 11c takes in the current detection value SCU, the power supply voltage SPS, and the terminal voltages SM1 and SM2 of the motor 5. Then, the process proceeds to step S3.
  • step S3 the relay drive processing unit 11c determines whether the current detection value SCU is smaller than a predetermined value Ith (whether a large current is flowing in the negative direction).
  • the predetermined value Ith is preset as a threshold value (e.g., -2A) that can detect the flow of regenerative current. If the relay drive processing unit 11c determines that the current detection value SCU is smaller than the predetermined value Ith (a large current is flowing in the negative direction) (step S3: YES), it determines that a regenerative current is flowing and proceeds to step S7, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the current detection value SCU is equal to or greater than the predetermined value Ith (step S3: NO), it proceeds to step S4.
  • step S4 the relay drive processing unit 11c determines whether the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS (step S4: YES), it determines that a regenerative current is flowing and proceeds to step S7, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is equal to or lower than the power supply voltage SPS (step S4: NO), it proceeds to step S5.
  • step S5 the relay drive processing unit 11c determines whether the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS (step S5: YES), it determines that a regenerative current is flowing and proceeds to step S7, where it keeps the relay drive signal SRY ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is equal to or lower than the power supply voltage SPS (step S5: NO), it determines that a regenerative current is not flowing and proceeds to step S6, where it turns off the relay drive signal SRY.
  • step S3, step S4, or step S5 are independent, so even if there is an abnormality in the signal used in step S3 and an accurate judgment cannot be made, a correct judgment can be made by step S4 or step S5.
  • a correct determination is made by comparing the terminal voltage SM1 of the motor 5 with the power supply voltage SPS in step S4, or by comparing the terminal voltage SM2 of the motor 5 with the power supply voltage SPS in step S5.
  • step S3 Even if there is an abnormality in the signal used in step S4 or step S5 and an accurate judgment cannot be made, a correct judgment will be made in step S3.
  • the electric power steering device 100 includes an H-bridge circuit 12 (an example of a motor drive circuit) that drives the motor 5, a motor relay 13 (an example of a relay circuit) that can cut off the electrical connection between the H-bridge circuit 12 and the motor 5, and a microcomputer 11 (an example of a control unit) that uses two independent means to determine whether or not a regenerative current is flowing through the motor 5 and controls the motor relay 13 based on the determination result.
  • H-bridge circuit 12 an example of a motor drive circuit
  • a motor relay 13 an example of a relay circuit
  • a microcomputer 11 an example of a control unit
  • the electric power steering device 100 uses two independent means to determine whether or not a regenerative current is flowing through the motor 5, so even if one means makes an erroneous determination, the other means can make a correct determination, and the H-bridge circuit 12 and the motor 5 can be electrically disconnected at the appropriate timing. Therefore, for example, the electric power steering device 100 can prevent damage to the semiconductor elements that make up the motor relay 13.
  • the microcontroller 11 determines by two independent means that no regenerative current is flowing through the motor 5, it controls (turns off) the motor relay 13 to electrically disconnect the H-bridge circuit 12 from the motor 5.
  • the electric power steering device 100 uses two independent means to determine that no regenerative current is flowing through the motor 5. Even if one of the means erroneously determines that no regenerative current is flowing when in fact there is, the motor relay 13 will not be turned off while regenerative current is flowing. Instead, the motor relay 13 can be turned off at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5.
  • the two independent means also include, for example, a means for determining whether or not a regenerative current is flowing through the motor 5 based on the value of the current flowing through the H-bridge circuit 12.
  • the electric power steering device 100 can determine whether or not a regenerative current is flowing through the motor 5 based on the value of the current flowing through the H-bridge circuit 12.
  • the two independent means also include, for example, a means for determining whether or not a regenerative current is flowing through the motor 5 based on a comparison between the power supply voltage (e.g., power supply voltage SPS) applied to the H-bridge circuit 12 and the terminal voltage of the motor 5 (e.g., terminal voltage SM1 or terminal voltage SM2).
  • the power supply voltage e.g., power supply voltage SPS
  • the terminal voltage of the motor 5 e.g., terminal voltage SM1 or terminal voltage SM2
  • the electric power steering device 100 can determine whether or not a regenerative current is flowing based on the power supply voltage of the H-bridge circuit 12 and the terminal voltage of the motor 5.
  • FIG. 6 is a flowchart showing an example of a relay driving process according to the present embodiment.
  • step S11 the relay drive processing unit 11c judges whether the operation state SST is a motor drive permitted state. If the relay drive processing unit 11c judges that the operation state SST is a motor drive permitted state (step S11: YES), the process proceeds to step S17 and turns on the relay drive signal SRY. On the other hand, if the relay drive processing unit 11c judges that the operation state SST is a motor drive stopped state (step S11: NO), the process proceeds to step S12.
  • step S12 the relay drive processing unit 11c takes in the current detection value SCU, the power supply voltage SPS, the terminal voltage SM1 of the motor 5, and the terminal voltage SM2 of the motor 5. Then, the process proceeds to step S13.
  • step S13 the relay drive processing unit 11c determines whether the current detection value SCU is smaller than a predetermined value Ith (whether a large current is flowing in the negative direction).
  • the predetermined value Ith is preset as a threshold value (e.g., -2A) that can detect that a regenerative current is flowing. If the relay drive processing unit 11c determines that the current detection value SCU is smaller than the predetermined value Ith (a large current is flowing in the negative direction) (step S13: YES), it determines that a regenerative current is flowing and proceeds to step S14.
  • a threshold value e.g., -2A
  • step S13 determines that the relay drive processing unit 11c determines that the current detection value SCU is equal to or greater than the predetermined value Ith (step S13: NO), it determines that a regenerative current is not flowing and proceeds to step S16, where it turns off the relay drive signal SRY.
  • step S14 the relay drive processing unit 11c determines whether the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS (step S14: YES), it determines that a regenerative current is flowing and proceeds to step S17, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is equal to or lower than the power supply voltage SPS (step S14: NO), it proceeds to step S15.
  • step S15 the relay drive processing unit 11c determines whether the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS (step S15: YES), it determines that a regenerative current is flowing and proceeds to step S17, where it keeps the relay drive signal SRY ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is equal to or lower than the power supply voltage SPS (step S15: NO), it determines that a regenerative current is not flowing and proceeds to step S16, where it turns off the relay drive signal SRY.
  • the microcomputer 11 determines that regenerative current is flowing through the motor 5 by two independent means, it keeps the H-bridge circuit 12 and the motor 5 electrically connected.
  • the electric power steering device 100 uses two independent means to determine that a regenerative current is flowing through the motor 5 and turns on the motor relay 13. Therefore, even if one of the means erroneously determines that a regenerative current is flowing when in fact no regenerative current is flowing, the motor relay 13 can be turned off at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5.
  • the motor relay 13 is kept ON as long as the judgment condition is satisfied.
  • a timer process may be provided to turn the motor relay 13 OFF if the judgment condition is satisfied for a predetermined time.
  • the relay drive process unit 11c includes a timer for counting the predetermined time.
  • the count value of the timer is referred to as a timer TMR.
  • FIG. 7 is a flowchart showing an example of a relay driving process according to the present embodiment.
  • Step S21 is a processing portion in the relay drive processing according to this embodiment that does not perform the timer processing at the previous stage, and corresponds to the relay drive processing shown in FIG. 5 of the first embodiment or the relay drive processing shown in FIG. 6 of the second embodiment.
  • step S22 the relay drive processing unit 11c determines whether the operating state SST is a motor drive permitted state. If the relay drive processing unit 11c determines that the operating state SST is a motor drive permitted state (step S22: YES), it ends the process. On the other hand, if the relay drive processing unit 11c determines that the operating state SST is a motor drive stopped state (step S22: NO), it proceeds to step S23, increments the timer TMR, and proceeds to step S24.
  • step S24 the relay drive processing unit 11c compares the timer TMR with a predetermined value Tth and determines whether the timer TMR is smaller than the predetermined value Tth.
  • the predetermined value Tth is set in advance as a threshold value for detecting that the above-mentioned predetermined time has elapsed. If the relay drive processing unit 11c determines that the timer TMR is smaller than the predetermined value Tth (step S24: YES), it ends the processing. On the other hand, if the relay drive processing unit 11c determines that the timer TMR is equal to or greater than the predetermined value Tth (step S24: YES), it proceeds to step S25 and turns off the relay drive signal SRY.
  • FIG. 8 is a timing chart of the electric power steering device according to this embodiment.
  • the horizontal axis represents time
  • the relay drive signal SRY before timer processing
  • the operating state SST the timer TMR
  • the relay drive signal SRY after timer processing
  • the relay drive signal SRY (before timer processing) is the output of step S21 in FIG. 7, which is the previous stage of the relay drive processing, and remains ON even after the operating state SST becomes a motor drive stopped state.
  • the timer TMR is incremented after the operating state SST becomes a motor drive stopped state.
  • the relay drive signal SRY (after timer processing) is turned OFF.
  • the microcomputer 11 determines that a regenerative current is flowing through the motor 5, it controls (turns off) the motor relay 13 after a predetermined time has elapsed to electrically disconnect the H-bridge circuit 12 from the motor 5.
  • the current detection value SCU, the terminal voltages SM1 and SM2 of the motor 5 and the power supply voltage SPS of the H-bridge circuit 12 are used to determine whether a regenerative current is flowing, but the rotation speed of the motor 5 may also be used.
  • the rotation speed of the motor 5 can be obtained based on the rotation angle of the motor 5 or the steering angle obtained from the steering angle sensor 4.
  • a method of obtaining the rotation speed based on the steering angle will be described.
  • FIG. 9 is a block diagram showing a partial configuration of a vehicle equipped with an electric power steering device according to this embodiment.
  • the vehicle 200 is equipped with a steering wheel 6 operated by the driver when steering, a steering shaft 7 that transmits the rotational force of the steering wheel 6, and a reduction gear 8 that connects the steering shaft 7 to the motor 5.
  • the steering angle sensor 4 measures the rotation angle of the steering shaft 7 and outputs it to the microcomputer 11.
  • the rotation angle of motor 5 is the rotation angle of steering angle sensor 4 multiplied by the gear ratio of reduction gear 8, so if the change in steering angle per unit time is "d ⁇ " and the gear ratio of reduction gear 8 is "n", the change in rotation angle of motor 5 can be calculated as "d ⁇ x n". If the change in rotation angle of motor 5 is the motor angular velocity ⁇ of motor 5 and the back electromotive force constant of the motor is Ke, the back electromotive force Ve generated by the motor is expressed by the following formula.
  • the microcontroller 11 calculates the counter electromotive force Ve and determines that a regenerative current is flowing if it is higher than a predetermined value (e.g., 14 V) set based on the rated voltage of the battery.
  • a predetermined value e.g. 14 V
  • the two independent means described above may include a means for determining whether or not a regenerative current is flowing through the motor 5 based on the rotation speed of the motor 5.
  • the electric power steering device 100 can increase the variety of combinations of means used to determine whether or not a regenerative current is flowing by using a means that uses the rotational speed of the motor 5 independent of the means that use the current detection value SCU, the terminal voltage SM1 or SM2 of the motor 5, or the power supply voltage SPS, etc., described in the first embodiment.
  • the electric power steering device 100 may replace either of the two means, the means using the current detection value SCU and the means using a comparison between the power supply voltage SPS and the terminal voltage SM1 or terminal voltage SM2 of the motor 5, with a means using the rotation speed of the motor 5, or may add a means using the rotation speed of the motor 5 to the two means to provide three means.
  • the microcomputer 11 may use two or more independent means to determine whether or not a regenerative current is flowing through the motor 5, and control the motor relay 13 based on the determination result.
  • the electric power steering device 100 detects the regenerative current using multiple independent means, and by combining and determining the results, can turn off the motor relay at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5. This allows the electric power steering device 100 to prevent damage to the semiconductor elements that make up the motor relay 13, for example.
  • an electric power steering device 100 using a brushed DC motor that is a two-phase H-bridge is described as an example, but it may also be applied to an electric power steering device that uses a brushless DC motor that is a three-phase H-bridge.
  • an H-bridge circuit 12 that controls the drive current to the motor 5 is used as the motor drive circuit that drives the motor 5.
  • the H-bridge circuit 12 may be configured as a package with some or all of the components of the microcontroller 11, or a motor drive circuit other than an H-bridge may be used.
  • a program for implementing the functions of the microcomputer 11 may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to perform processing of the microcomputer 11.
  • the term "computer system” here includes hardware such as the OS and peripheral devices.
  • Computer-readable recording media refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, as well as storage devices such as hard disks built into computer systems.
  • Computer-readable recording media also refers to media that dynamically hold a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, and media that hold a program for a certain period of time, such as volatile memory inside a computer system that serves as a server or client in such cases.
  • the above program may be one that realizes part of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system.
  • the above program may also be stored in a specified server, and distributed (downloaded, etc.) via a communication line in response to a request from another device.
  • some or all of the functions of the microcontroller 11 may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each function may be individually processed, or some or all of the functions may be integrated into a processor.
  • the integrated circuit method is not limited to LSI, and may be realized using a dedicated circuit or a general-purpose processor. Furthermore, if an integrated circuit technology that can replace LSI appears due to advances in semiconductor technology, an integrated circuit based on that technology may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

This electric power steering device comprises: a motor driving circuit that drives a motor; a relay circuit that is capable of disconnecting electrical connection between the motor driving circuit and the motor; and a control unit that determines, by using two or more independent means, whether a regenerative current is flowing through the motor or not, and controls the relay circuit on the basis of a result of the determination.

Description

電動パワーステアリング装置Electric power steering device
 本開示は、電動パワーステアリング装置に関する。 This disclosure relates to an electric power steering device.
 従来の電動パワーステアリング装置において、モータを駆動するモータ駆動回路(例えば、Hブリッジ回路)とモータとの間に設けられた半導体リレー(以下、「モータリレー」と称する)は、モータの回転速度に基づいてモータ逆起電圧および回生電流のエネルギーを演算し、回生電流のエネルギーがモータリレーを構成するFETの安全動作領域まで低減しているときにOFFする構成になっている(例えば、特許文献1参照)。 In conventional electric power steering devices, a semiconductor relay (hereinafter referred to as the "motor relay") provided between the motor drive circuit (e.g., an H-bridge circuit) that drives the motor and the motor calculates the motor back electromotive voltage and the energy of the regenerative current based on the rotation speed of the motor, and is configured to turn off when the energy of the regenerative current is reduced to the safe operating range of the FET that constitutes the motor relay (see, for example, Patent Document 1).
特許第6406406号公報Patent No. 6406406
 モータリレーは、電動パワーステアリング装置に何らかの異常が発生したときにOFFにしてモータ駆動回路とモータとを電気的に遮断するために設けられている。モータリレーのOFFは、モータリレーを構成するFETを保護するために、モータに回生電流が流れていないときに行う。 The motor relay is provided to turn off and electrically isolate the motor drive circuit and the motor when any abnormality occurs in the electric power steering device. The motor relay is turned off when no regenerative current is flowing through the motor in order to protect the FET that constitutes the motor relay.
 しかしながら、電動パワーステアリング装置に発生した異常が回生電流の検出に関わる部位の故障によるものであった場合、回生電流が流れていることを判定できずに回生電流が流れている状態でモータリレーをOFFしてしまう可能性がある。もしくは、回生電流が流れていないことを判定できずに回生電流が流れていない状態でモータリレーをONし続けてしまう可能性がある。このように、従来の電動パワーステアリング装置では、適切なタイミングでモータ駆動回路とモータとを電気的に遮断できない可能性があった。 However, if the abnormality occurring in the electric power steering device is due to a failure in a part involved in detecting regenerative current, it may not be possible to determine that regenerative current is flowing, and the motor relay may be turned OFF while regenerative current is flowing. Alternatively, it may not be possible to determine that regenerative current is not flowing, and the motor relay may continue to be ON while no regenerative current is flowing. Thus, with conventional electric power steering devices, it may not be possible to electrically disconnect the motor drive circuit and the motor at the appropriate time.
 本開示は、上記した事情に鑑みてなされたもので、適切なタイミングでモータ駆動回路とモータとを電気的に遮断する電動パワーステアリング装置を提供することを目的の一つとする。 This disclosure was made in consideration of the above circumstances, and one of its objectives is to provide an electric power steering device that electrically disconnects the motor drive circuit and the motor at the appropriate timing.
 本開示に係る電動パワーステアリング装置は、モータを駆動するモータ駆動回路と、前記モータ駆動回路と前記モータとの電気的な接続を遮断可能なリレー回路と、2つ以上の独立した手段を用いて前記モータに回生電流が流れていることもしくは流れていないことを判定し、判定結果に基づいて前記リレー回路を制御する制御部と、を備える。 The electric power steering device according to the present disclosure includes a motor drive circuit that drives a motor, a relay circuit that can cut off the electrical connection between the motor drive circuit and the motor, and a control unit that uses two or more independent means to determine whether or not a regenerative current is flowing through the motor and controls the relay circuit based on the determination result.
 本開示に係る電動パワーステアリング装置は、適切なタイミングでモータ駆動回路とモータとを電気的に遮断することができる。 The electric power steering device disclosed herein can electrically disconnect the motor drive circuit and the motor at the appropriate timing.
第1の実施形態に係る電動パワーステアリング装置の構成例を示すブロック図。1 is a block diagram showing an example of the configuration of an electric power steering device according to a first embodiment; 第1の実施形態に係るHブリッジ回路とその周辺回路の一例を示すブロック図。FIG. 2 is a block diagram showing an example of an H-bridge circuit and its peripheral circuits according to the first embodiment. 第1の実施形態に係るモータが回生電流を発生している際の動作を示す図。FIG. 4 is a diagram showing an operation of the motor according to the first embodiment when it generates a regenerative current. 第1の実施形態に係る電動パワーステアリング装置のタイミングチャート。3 is a timing chart of the electric power steering device according to the first embodiment. 第1の実施形態に係るリレー駆動処理の一例を示すフローチャート。6 is a flowchart showing an example of a relay driving process according to the first embodiment. 第2の実施形態に係るリレー駆動処理の一例を示すフローチャート。10 is a flowchart showing an example of a relay driving process according to a second embodiment. 第3の実施形態に係るリレー駆動処理の一例を示すフローチャート。13 is a flowchart showing an example of a relay driving process according to the third embodiment. 第3の実施形態に係る電動パワーステアリング装置のタイミングチャート。10 is a timing chart of an electric power steering device according to a third embodiment. 第4の実施形態に係る電動パワーステアリング装置を搭載した車両の一部の構成を示すブロック図。FIG. 13 is a block diagram showing a partial configuration of a vehicle equipped with an electric power steering device according to a fourth embodiment.
 以下、図面を参照しながら実施形態について説明する。
<第1の実施形態>
 まず、第1の実施形態について説明する。
Hereinafter, an embodiment will be described with reference to the drawings.
First Embodiment
First, the first embodiment will be described.
 図1は、本実施形態1に係る電動パワーステアリング装置の構成例を示すブロック図である。この図1に示す電動パワーステアリング装置100は、コントローラ1と、トルクセンサ2と、車速センサ3と、操舵角センサ4と、モータ5とを備える。 FIG. 1 is a block diagram showing an example of the configuration of an electric power steering device according to the first embodiment. The electric power steering device 100 shown in FIG. 1 includes a controller 1, a torque sensor 2, a vehicle speed sensor 3, a steering angle sensor 4, and a motor 5.
 コントローラ1は、電動パワーステアリング装置100の制御を行う制御部である。トルクセンサ2は、運転者の操舵力を測定するセンサである。車速センサ3は、車両の走行速度を測定するセンサである。操舵角センサ4は、ステアリングの操舵角を測定するセンサである。モータ5は、電動パワーステアリング装置100の動力を発生する。例えば、コントローラ1は、トルクセンサ2、車速センサ3、及び操舵角センサ4から入力される信号に基づいてモータ5の出力を制御する。 The controller 1 is a control unit that controls the electric power steering device 100. The torque sensor 2 is a sensor that measures the steering force of the driver. The vehicle speed sensor 3 is a sensor that measures the traveling speed of the vehicle. The steering angle sensor 4 is a sensor that measures the steering angle of the steering wheel. The motor 5 generates power for the electric power steering device 100. For example, the controller 1 controls the output of the motor 5 based on signals input from the torque sensor 2, the vehicle speed sensor 3, and the steering angle sensor 4.
 例えば、コントローラ1は、信号の入出力と演算を行うマイコン(マイクロコントローラ)11と、Hブリッジ回路12と、Hブリッジ回路12とモータ5との間に設けられたモータリレー13と、Hブリッジ回路12のGND側に配置された電流検出回路14とを備える。 For example, the controller 1 includes a microcontroller 11 that inputs and outputs signals and performs calculations, an H-bridge circuit 12, a motor relay 13 that is provided between the H-bridge circuit 12 and the motor 5, and a current detection circuit 14 that is located on the GND side of the H-bridge circuit 12.
 Hブリッジ回路12は、モータ5を駆動するモータ駆動回路の一例である。Hブリッジ回路12は、内蔵されたFETをマイコン11から入力された駆動信号SD1~SD4に従って駆動することにより、モータ5を駆動する。 The H-bridge circuit 12 is an example of a motor drive circuit that drives the motor 5. The H-bridge circuit 12 drives the motor 5 by driving the built-in FETs according to the drive signals SD1 to SD4 input from the microcomputer 11.
 モータリレー13は、Hブリッジ回路12とモータ5との間に設けられたリレー回路の一例である。例えば、モータリレー13は、マイコン11から入力された駆動信号SRYに従ってHブリッジ回路12とモータ5との電気的な接続を遮断(非接続)可能な半導体リレーである。モータリレー13をONにするとHブリッジ回路12とモータ5とが電気的に接続され、モータリレー13をOFFにするとHブリッジ回路12とモータ5とが電気的に遮断される。 The motor relay 13 is an example of a relay circuit provided between the H-bridge circuit 12 and the motor 5. For example, the motor relay 13 is a semiconductor relay that can cut off (disconnect) the electrical connection between the H-bridge circuit 12 and the motor 5 according to the drive signal SRY input from the microcontroller 11. When the motor relay 13 is turned ON, the H-bridge circuit 12 and the motor 5 are electrically connected, and when the motor relay 13 is turned OFF, the H-bridge circuit 12 and the motor 5 are electrically cut off.
 電流検出回路14は、Hブリッジ回路12に流れる電流を検出する。例えば、電流検出回路14は、Hブリッジ回路12からGND側に電流が流れる場合には正の電流値を、GND側からHブリッジ回路12側に電流が流れる場合には負の電流値を電流検出値SCUとしてマイコン11に出力する。 The current detection circuit 14 detects the current flowing through the H-bridge circuit 12. For example, the current detection circuit 14 outputs a positive current value as the current detection value SCU to the microcontroller 11 when a current flows from the H-bridge circuit 12 to the GND side, and outputs a negative current value when a current flows from the GND side to the H-bridge circuit 12 side.
 マイコン11は、目標電流演算処理部11aと、駆動DUTY演算処理部11bと、リレー駆動処理部11cとを備え、電動パワーステアリング装置100の制御を行う制御部の一例である。目標電流演算処理部11aは、外部から入力された信号に基づいてモータ5の目標電流値TCUを演算する。 The microcomputer 11 includes a target current calculation processing section 11a, a drive duty calculation processing section 11b, and a relay drive processing section 11c, and is an example of a control section that controls the electric power steering device 100. The target current calculation processing section 11a calculates the target current value TCU of the motor 5 based on a signal input from the outside.
 駆動DUTY演算処理部11bは、目標電流値TCUと電流検出回路14から入力される電流検出値SCUとを比較し、その差分に基づいてモータ5に印加する電圧を演算し、駆動DUTYに換算してFET駆動信号SD1~SD4として出力する。 The drive duty calculation processing unit 11b compares the target current value TCU with the current detection value SCU input from the current detection circuit 14, calculates the voltage to be applied to the motor 5 based on the difference, converts it to a drive duty, and outputs it as the FET drive signals SD1 to SD4.
 リレー駆動処理部11cは、電動パワーステアリング装置100の動作状態SSTと、電流検出回路14から入力された電流検出値SCUと、Hブリッジ回路12に印加されている電源電圧SPSと、モータ5の端子電圧SM1及び端子電圧SM2とに基づいて、モータリレー13をON(接続)するか、もしくはOFF(遮断)するかを判定し、判定結果をリレー駆動信号SRYとして出力する。 The relay drive processing unit 11c determines whether to turn the motor relay 13 ON (connected) or OFF (disconnected) based on the operating state SST of the electric power steering device 100, the current detection value SCU input from the current detection circuit 14, the power supply voltage SPS applied to the H-bridge circuit 12, and the terminal voltages SM1 and SM2 of the motor 5, and outputs the determination result as a relay drive signal SRY.
 なお、動作状態SSTは、モータ5を駆動することができるモータ駆動許可状態と、モータ5を駆動することができないモータ駆動停止状態を示すものである。例えば、動作状態SSTは、運転者のイグニッションキーの操作(図示せず)またはフェールセーフの動作(図示せず)などに基づいてマイコン11の内部で演算される。 The operating state SST indicates a motor drive permitted state in which the motor 5 can be driven, and a motor drive stopped state in which the motor 5 cannot be driven. For example, the operating state SST is calculated inside the microcomputer 11 based on the driver's ignition key operation (not shown) or the operation of a fail-safe (not shown), etc.
 図2は、Hブリッジ回路12とその周辺回路の一例を示すブロック図である。
 マイコン11から入力されたFET駆動信号SD1とFET駆動信号SD2とは、それぞれHブリッジ回路12の上側に配置されたFET12aとFET12bとに入力される。マイコン11から入力されたFET駆動信号SD3とFET駆動信号SD4とは、それぞれHブリッジ回路12の下側に配置されたFET12cとFET12dとに入力される。
FIG. 2 is a block diagram showing an example of the H-bridge circuit 12 and its peripheral circuits.
The FET drive signals SD1 and SD2 input from the microcomputer 11 are input to the FETs 12a and 12b arranged on the upper side of the H-bridge circuit 12, respectively. The FET drive signals SD3 and SD4 input from the microcomputer 11 are input to the FETs 12c and 12d arranged on the lower side of the H-bridge circuit 12, respectively.
 Hブリッジ回路12は、モータ5を駆動する際には、Hブリッジ回路12上で対角に配置された上側FETと下側FETを駆動する。例えば、モータ5を端子電圧SM1側から端子電圧SM2側に電流を流して駆動する場合、マイコン11は、FET駆動信号SD1とFET駆動信号SD4とをPWM駆動することにより、FET12aとFET12dとをONに制御する。 When driving the motor 5, the H-bridge circuit 12 drives the upper and lower FETs arranged diagonally on the H-bridge circuit 12. For example, when driving the motor 5 by passing a current from the terminal voltage SM1 side to the terminal voltage SM2 side, the microcontroller 11 PWM drives the FET drive signals SD1 and SD4 to control FETs 12a and 12d to be ON.
 図3は、図2に示すブロック図においてモータ5が回生電流を発生している際の動作を示す図である。FET駆動信号SD1~SD4は、FET12a~12dをOFFに制御しているものとする。モータ5が外部の力によって回転された場合、端子電圧SM1と端子電圧SM2との間にモータ5の回転速度に比例した逆起電力が発生し電位差が生じる。端子電圧SM1と端子電圧SM2とのどちらが高くなるかはモータの回転方向によるが、図3では端子電圧SM2が高くなる場合を示している。 FIG. 3 is a diagram showing the operation of the block diagram shown in FIG. 2 when the motor 5 is generating a regenerative current. The FET drive signals SD1 to SD4 control the FETs 12a to 12d to be OFF. When the motor 5 is rotated by an external force, a back electromotive force proportional to the rotation speed of the motor 5 is generated between the terminal voltages SM1 and SM2, resulting in a potential difference. Which of the terminal voltages SM1 and SM2 is higher depends on the direction of rotation of the motor, but FIG. 3 shows the case where the terminal voltage SM2 is higher.
 モータ5の回転速度が速くなり、端子電圧SM2が電源電圧SPSよりも十分に高くなるとHブリッジ回路12のGND→FET12c→モータ5→モータリレー13→FET12b→Hブリッジ回路12の電源という経路で回生電流が発生する。回生電流が流れている際は、電流検出回路14が出力する電流検出値SCUは負の値になり、モータ5の端子電圧SM1、SM2のうちモータ5から電流が流れだす側の端子電圧がHブリッジ回路12の電源電圧SPSよりも高くなる。リレー駆動処理部11cは、これらの状態により回生電流が流れているか否かを判定できる。 When the rotation speed of the motor 5 increases and the terminal voltage SM2 becomes sufficiently higher than the power supply voltage SPS, a regenerative current is generated through the following path: GND of the H-bridge circuit 12 → FET 12c → motor 5 → motor relay 13 → FET 12b → power supply of the H-bridge circuit 12. When a regenerative current is flowing, the current detection value SCU output by the current detection circuit 14 becomes a negative value, and the terminal voltage of the terminal voltages SM1, SM2 of the motor 5 from which current flows out of the motor 5 becomes higher than the power supply voltage SPS of the H-bridge circuit 12. The relay drive processing unit 11c can determine whether or not a regenerative current is flowing based on these states.
 図4は、本実施形態に係る電動パワーステアリング装置のタイミングチャートである。この図は、横軸を時間とし、マイコン11による異常検出の有無と、動作状態SSTと、FET駆動信号SD1~SD4と、モータ5のモータ電流(端子電圧SM1から端子電圧SM2へのモータ電流)と、リレー駆動信号SRYとを時間軸で示している。ここで、マイコン11による異常検出とは、電動パワーステアリング装置100における何らかの異常の検出であり、例えば、トルクセンサ2または電流検出回路14の故障などによる異常の検出である。 FIG. 4 is a timing chart of the electric power steering device according to this embodiment. In this diagram, the horizontal axis represents time, and the time axis represents the presence or absence of abnormality detection by the microcomputer 11, the operating state SST, the FET drive signals SD1 to SD4, the motor current of the motor 5 (motor current from terminal voltage SM1 to terminal voltage SM2), and the relay drive signal SRY. Here, detection of an abnormality by the microcomputer 11 refers to detection of some kind of abnormality in the electric power steering device 100, such as detection of an abnormality due to a failure of the torque sensor 2 or the current detection circuit 14.
 マイコン11による異常検出が行われる前は、動作状態SSTがモータ駆動許可状態であり、FET駆動信号SD1とFET駆動信号SD4とがPWM駆動してモータ5を駆動している(FET駆動信号SD1とFET駆動信号SD4とはOFF)。また、リレー駆動信号SRYがONしておりモータリレー13がONしている。 Before the microcomputer 11 detects an abnormality, the operating state SST is the motor drive permitted state, and the FET drive signal SD1 and the FET drive signal SD4 are PWM driven to drive the motor 5 (the FET drive signal SD1 and the FET drive signal SD4 are OFF). In addition, the relay drive signal SRY is ON, and the motor relay 13 is ON.
 マイコン11による異常検出が行われた後は、フェールセーフが作動して動作状態SSTがモータ駆動停止状態になり、FET駆動信号SD1とFET駆動信号SD4とがOFFしてモータ5の駆動を停止する。その後、回生電流が流れなくなったときに、リレー駆動信号SRYがOFFになりモータリレー13がOFFされる。 After the microcomputer 11 detects an abnormality, the fail-safe is activated, the operating state SST becomes a motor drive stop state, and the FET drive signal SD1 and the FET drive signal SD4 turn OFF to stop the drive of the motor 5. After that, when the regenerative current stops flowing, the relay drive signal SRY turns OFF and the motor relay 13 is turned OFF.
 次に、リレー駆動処理部11cが、2つの独立した手段により回生電流が流れていないと判定した場合にモータリレー13をOFFするリレー駆動処理の動作について説明する。ここでは、電流検出回路14が出力する電流検出値SCUの値を用いる手段と、Hブリッジ回路12の電源電圧SPSとモータ5の端子電圧との比較を用いる手段との2つの独立した手段を用いる例を説明する。 Next, we will explain the operation of the relay drive processing in which the relay drive processing unit 11c turns off the motor relay 13 when it determines by two independent means that no regenerative current is flowing. Here, we will explain an example that uses two independent means: a means that uses the current detection value SCU output by the current detection circuit 14, and a means that uses a comparison between the power supply voltage SPS of the H-bridge circuit 12 and the terminal voltage of the motor 5.
 図5は、本実施形態に係るリレー駆動処理の一例を示すフローチャートである。
 ステップS1において、リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であるか否かを判定する。リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であると判定した場合(ステップS1:YES)、ステップS7へ進み、リレー駆動信号SRYをONにする。一方、リレー駆動処理部11cは、動作状態SSTがモータ駆動停止状態であると判定した場合(ステップS1:NO)、ステップS2へ進む。
FIG. 5 is a flowchart showing an example of a relay driving process according to the present embodiment.
In step S1, the relay drive processing unit 11c judges whether the operation state SST is a motor drive permitted state. If the relay drive processing unit 11c judges that the operation state SST is a motor drive permitted state (step S1: YES), the process proceeds to step S7 and turns on the relay drive signal SRY. On the other hand, if the relay drive processing unit 11c judges that the operation state SST is a motor drive stopped state (step S1: NO), the process proceeds to step S2.
 ステップS2において、リレー駆動処理部11cは、電流検出値SCUと電源電圧SPSとモータ5の端子電圧SM1と端子電圧SM2とを取り込む。そして、ステップS3へ進む。 In step S2, the relay drive processing unit 11c takes in the current detection value SCU, the power supply voltage SPS, and the terminal voltages SM1 and SM2 of the motor 5. Then, the process proceeds to step S3.
 ステップS3において、リレー駆動処理部11cは、電流検出値SCUが所定値Ithより小さいか否か(負方向に大きく流れているか否か)を判定する。ここで所定値Ithは、回生電流が流れていることを検出可能な閾値(例えば、-2A)として予め設定されている。リレー駆動処理部11cは、電流検出値SCUが所定値Ithより小さい(負方向に大きく流れている)と判定した場合(ステップS3:YES)、回生電流が流れていると判定してステップS7へ進み、リレー駆動信号SRYのONを継続する。一方、リレー駆動処理部11cは、電流検出値SCUが所定値Ith以上であると判定した場合(ステップS3:NO)、ステップS4へ進む。 In step S3, the relay drive processing unit 11c determines whether the current detection value SCU is smaller than a predetermined value Ith (whether a large current is flowing in the negative direction). Here, the predetermined value Ith is preset as a threshold value (e.g., -2A) that can detect the flow of regenerative current. If the relay drive processing unit 11c determines that the current detection value SCU is smaller than the predetermined value Ith (a large current is flowing in the negative direction) (step S3: YES), it determines that a regenerative current is flowing and proceeds to step S7, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the current detection value SCU is equal to or greater than the predetermined value Ith (step S3: NO), it proceeds to step S4.
 ステップS4において、リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPSよりも高いか否かを判定する。リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPSよりも高いと判定した場合(ステップS4:YES)、回生電流が流れていると判定してステップS7へ進み、リレー駆動信号SRYのONを継続する。一方、リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPS以下であると判定した場合(ステップS4:NO)、ステップS5へ進む。 In step S4, the relay drive processing unit 11c determines whether the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS (step S4: YES), it determines that a regenerative current is flowing and proceeds to step S7, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is equal to or lower than the power supply voltage SPS (step S4: NO), it proceeds to step S5.
 ステップS5において、リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPSよりも高いか否かを判定する。リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPSよりも高いと判定した場合(ステップS5:YES)、回生電流が流れていると判定してステップS7へ進み、リレー駆動信号SRYのONを継続する。一方、リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPS以下であると判定した場合(ステップS5:NO)、回生電流が流れていないと判定してステップS6へ進み、リレー駆動信号SRYをOFFする。 In step S5, the relay drive processing unit 11c determines whether the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS (step S5: YES), it determines that a regenerative current is flowing and proceeds to step S7, where it keeps the relay drive signal SRY ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is equal to or lower than the power supply voltage SPS (step S5: NO), it determines that a regenerative current is not flowing and proceeds to step S6, where it turns off the relay drive signal SRY.
 ここで、ステップS3、ステップS4またはステップS5で使用される信号は独立しているため、ステップS3で使用する信号に異常があり正しく判定できない場合でも、ステップS4またはステップS5によって正しく判定される。 Here, the signals used in step S3, step S4, or step S5 are independent, so even if there is an abnormality in the signal used in step S3 and an accurate judgment cannot be made, a correct judgment can be made by step S4 or step S5.
 具体的には、例えば電流検出回路14に異常が発生し、回生電流が流れているにもかかわらず電流検出値がIthより高くなる場合でも、ステップS4におけるモータ5の端子電圧SM1と電源電圧SPSとの比較、またはステップS5におけるモータ5の端子電圧SM2と電源電圧SPSとの比較によって、正しく判定される。 Specifically, for example, even if an abnormality occurs in the current detection circuit 14 and the current detection value becomes higher than Ith despite the flow of regenerative current, a correct determination is made by comparing the terminal voltage SM1 of the motor 5 with the power supply voltage SPS in step S4, or by comparing the terminal voltage SM2 of the motor 5 with the power supply voltage SPS in step S5.
 同様に、例えばステップS4またはステップS5で使用する信号に異常があり正しく判定できない場合でも、ステップS3において正しく判定される。 Similarly, even if there is an abnormality in the signal used in step S4 or step S5 and an accurate judgment cannot be made, a correct judgment will be made in step S3.
 以上説明したように、本実施形態に係る電動パワーステアリング装置100は、モータ5を駆動するHブリッジ回路12(モータ駆動回路の一例)と、Hブリッジ回路12とモータ5との電気的な接続を遮断可能なモータリレー13(リレー回路の一例)と、2つの独立した手段を用いてモータ5に回生電流が流れていることもしくは流れていないことを判定し、判定結果に基づいてモータリレー13を制御するマイコン11(制御部の一例)と、を備える。 As described above, the electric power steering device 100 according to this embodiment includes an H-bridge circuit 12 (an example of a motor drive circuit) that drives the motor 5, a motor relay 13 (an example of a relay circuit) that can cut off the electrical connection between the H-bridge circuit 12 and the motor 5, and a microcomputer 11 (an example of a control unit) that uses two independent means to determine whether or not a regenerative current is flowing through the motor 5 and controls the motor relay 13 based on the determination result.
 これにより、電動パワーステアリング装置100は、2つの独立した手段でモータ5に回生電流が流れていることもしくは流れていないことを判定するため、一方の手段が、誤判定しても他方の手段で正しく判定することができ、適切なタイミングでHブリッジ回路12とモータ5とを電気的に遮断することができる。よって、例えば、電動パワーステアリング装置100は、モータリレー13を構成する半導体素子の破損を防止できる。 As a result, the electric power steering device 100 uses two independent means to determine whether or not a regenerative current is flowing through the motor 5, so even if one means makes an erroneous determination, the other means can make a correct determination, and the H-bridge circuit 12 and the motor 5 can be electrically disconnected at the appropriate timing. Therefore, for example, the electric power steering device 100 can prevent damage to the semiconductor elements that make up the motor relay 13.
 例えば、マイコン11は、2つの独立した手段によりモータ5に回生電流が流れていないと判定した場合には、モータリレー13を制御する(OFFする)ことによりHブリッジ回路12とモータ5とを電気的に遮断する。 For example, if the microcontroller 11 determines by two independent means that no regenerative current is flowing through the motor 5, it controls (turns off) the motor relay 13 to electrically disconnect the H-bridge circuit 12 from the motor 5.
 これにより、電動パワーステアリング装置100は、2つの独立した手段でモータ5に回生電流が流れていないことを判定するため、一方の手段によって回生電流が流れているにも関わらず流れていないと誤判定されたとしても、回生電流が流れている状態でモータリレー13がOFFされることはなく、適切なタイミングでモータリレー13をOFFにしてHブリッジ回路12とモータ5とを電気的に遮断することができる。 As a result, the electric power steering device 100 uses two independent means to determine that no regenerative current is flowing through the motor 5. Even if one of the means erroneously determines that no regenerative current is flowing when in fact there is, the motor relay 13 will not be turned off while regenerative current is flowing. Instead, the motor relay 13 can be turned off at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5.
 また、2つの独立した手段には、例えば、Hブリッジ回路12に流れる電流値に基づいてモータ5に回生電流が流れていることもしくは流れていないことを判定する手段が含まれる。 The two independent means also include, for example, a means for determining whether or not a regenerative current is flowing through the motor 5 based on the value of the current flowing through the H-bridge circuit 12.
 これにより、電動パワーステアリング装置100は、Hブリッジ回路12に流れる電流値に基づいて、モータ5に回生電流が流れているか否かを判定することができる。 As a result, the electric power steering device 100 can determine whether or not a regenerative current is flowing through the motor 5 based on the value of the current flowing through the H-bridge circuit 12.
 また、2つの独立した手段には、例えば、Hブリッジ回路12に印加されている電源電圧(例えば、電源電圧SPS)とモータ5の端子電圧(例えば、端子電圧SM1または端子電圧SM2)との比較に基づいてモータ5に回生電流が流れていることもしくは流れていないことを判定する手段が含まれる。 The two independent means also include, for example, a means for determining whether or not a regenerative current is flowing through the motor 5 based on a comparison between the power supply voltage (e.g., power supply voltage SPS) applied to the H-bridge circuit 12 and the terminal voltage of the motor 5 (e.g., terminal voltage SM1 or terminal voltage SM2).
 これにより、電動パワーステアリング装置100は、Hブリッジ回路12の電源電圧とモータ5の端子電圧とに基づいて、回生電流が流れているか否かを判定することができる。 As a result, the electric power steering device 100 can determine whether or not a regenerative current is flowing based on the power supply voltage of the H-bridge circuit 12 and the terminal voltage of the motor 5.
<第2の実施形態>
 次に、第2の実施形態について説明する。
 上記の第1の実施形態では、2つ以上の独立した手段により回生電流が流れていないと判定された場合、モータリレー13をOFFする構成を説明したが、2つ以上の独立した手段により回生電流が流れていると判定された場合、モータリレー13のONを継続する構成としても良い。
Second Embodiment
Next, a second embodiment will be described.
In the above first embodiment, a configuration was described in which the motor relay 13 is turned OFF when it is determined by two or more independent means that no regenerative current is flowing, but a configuration in which the motor relay 13 continues to be ON when it is determined by two or more independent means that a regenerative current is flowing may also be used.
 図6は、本実施形態に係るリレー駆動処理の一例を示すフローチャートである。
 ステップS11において、リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であるか否かを判定する。リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であると判定した場合(ステップS11:YES)、ステップS17へ進み、リレー駆動信号SRYをONにする。一方、リレー駆動処理部11cは、動作状態SSTがモータ駆動停止状態であると判定した場合(ステップS11:NO)、ステップS12へ進む。
FIG. 6 is a flowchart showing an example of a relay driving process according to the present embodiment.
In step S11, the relay drive processing unit 11c judges whether the operation state SST is a motor drive permitted state. If the relay drive processing unit 11c judges that the operation state SST is a motor drive permitted state (step S11: YES), the process proceeds to step S17 and turns on the relay drive signal SRY. On the other hand, if the relay drive processing unit 11c judges that the operation state SST is a motor drive stopped state (step S11: NO), the process proceeds to step S12.
 ステップS12において、リレー駆動処理部11cは、電流検出値SCUと電源電圧SPSとモータ5の端子電圧SM1とモータ5の端子電圧SM2とを取り込む。そして、ステップS13へ進む。 In step S12, the relay drive processing unit 11c takes in the current detection value SCU, the power supply voltage SPS, the terminal voltage SM1 of the motor 5, and the terminal voltage SM2 of the motor 5. Then, the process proceeds to step S13.
 ステップS13において、リレー駆動処理部11cは、電流検出値SCUが所定値Ithより小さいか否か(負方向に大きく流れているか否か)を判定する。ここで所定値Ithは、回生電流が流れていることを検出可能な閾値(例えば、-2A)として予め設定されている。リレー駆動処理部11cは、電流検出値SCUが所定値Ithより小さい(負方向に大きく流れている)と判定した場合(ステップS13:YES)、回生電流が流れていると判定してステップS14へ進む。一方、リレー駆動処理部11cは、電流検出値SCUが所定値Ith以上であると判定した場合(ステップS13:NO)、回生電流が流れていないと判定してステップS16へ進み、リレー駆動信号SRYをOFFする。 In step S13, the relay drive processing unit 11c determines whether the current detection value SCU is smaller than a predetermined value Ith (whether a large current is flowing in the negative direction). Here, the predetermined value Ith is preset as a threshold value (e.g., -2A) that can detect that a regenerative current is flowing. If the relay drive processing unit 11c determines that the current detection value SCU is smaller than the predetermined value Ith (a large current is flowing in the negative direction) (step S13: YES), it determines that a regenerative current is flowing and proceeds to step S14. On the other hand, if the relay drive processing unit 11c determines that the current detection value SCU is equal to or greater than the predetermined value Ith (step S13: NO), it determines that a regenerative current is not flowing and proceeds to step S16, where it turns off the relay drive signal SRY.
 ステップS14において、リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPSよりも高いか否かを判定する。リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPSよりも高いと判定した場合(ステップS14:YES)、回生電流が流れていると判定してステップS17へ進み、リレー駆動信号SRYのONを継続する。一方、リレー駆動処理部11cは、モータ5の端子電圧SM1が電源電圧SPS以下であると判定した場合(ステップS14:NO)、ステップS15へ進む。 In step S14, the relay drive processing unit 11c determines whether the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is higher than the power supply voltage SPS (step S14: YES), it determines that a regenerative current is flowing and proceeds to step S17, where the relay drive signal SRY continues to be ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM1 of the motor 5 is equal to or lower than the power supply voltage SPS (step S14: NO), it proceeds to step S15.
 ステップS15において、リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPSよりも高いか否かを判定する。リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPSよりも高いと判定した場合(ステップS15:YES)、回生電流が流れていると判定してステップS17へ進み、リレー駆動信号SRYのONを継続する。一方、リレー駆動処理部11cは、モータ5の端子電圧SM2が電源電圧SPS以下であると判定した場合(ステップS15:NO)、回生電流が流れていないと判定してステップS16へ進み、リレー駆動信号SRYをOFFする。 In step S15, the relay drive processing unit 11c determines whether the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS. If the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is higher than the power supply voltage SPS (step S15: YES), it determines that a regenerative current is flowing and proceeds to step S17, where it keeps the relay drive signal SRY ON. On the other hand, if the relay drive processing unit 11c determines that the terminal voltage SM2 of the motor 5 is equal to or lower than the power supply voltage SPS (step S15: NO), it determines that a regenerative current is not flowing and proceeds to step S16, where it turns off the relay drive signal SRY.
 このように、本実施形態に係る電動パワーステアリング装置100においてマイコン11は、2つの独立した手段によりモータ5に回生電流が流れていると判定した場合には、Hブリッジ回路12とモータ5とが電気的に接続された状態を継続させる。 In this way, in the electric power steering device 100 according to this embodiment, when the microcomputer 11 determines that regenerative current is flowing through the motor 5 by two independent means, it keeps the H-bridge circuit 12 and the motor 5 electrically connected.
 これにより、電動パワーステアリング装置100は、2つの独立した手段でモータ5に回生電流が流れていることを判定してモータリレー13をONするため、何れか一方の手段によって回生電流が流れていないにも関わらず回生電流が流れていると誤判定されたとしても、適切なタイミングでモータリレー13をOFFにしてHブリッジ回路12とモータ5とを電気的に遮断することができる。 As a result, the electric power steering device 100 uses two independent means to determine that a regenerative current is flowing through the motor 5 and turns on the motor relay 13. Therefore, even if one of the means erroneously determines that a regenerative current is flowing when in fact no regenerative current is flowing, the motor relay 13 can be turned off at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5.
<第3の実施形態>
 次に、第3の実施形態について説明する。
 上記の第1及び第2の実施形態では、判定条件を満たす限りモータリレー13のONを継続する構成を説明したが、タイマー処理を設けて、判定条件を満たす場合でも所定時間継続する場合にはモータリレー13をOFFする構成としても良い。本実施形態に係るリレー駆動処理部11cは、所定時間を計時するためのタイマーを備えている。以下では、タイマーの計時値を、タイマーTMRと称する。
Third Embodiment
Next, a third embodiment will be described.
In the above first and second embodiments, the motor relay 13 is kept ON as long as the judgment condition is satisfied. However, a timer process may be provided to turn the motor relay 13 OFF if the judgment condition is satisfied for a predetermined time. The relay drive process unit 11c according to this embodiment includes a timer for counting the predetermined time. Hereinafter, the count value of the timer is referred to as a timer TMR.
 図7は、本実施形態に係るリレー駆動処理の一例を示すフローチャートである。
 ステップS21は、本実施形態に係るリレー駆動処理における前段のタイマー処理を実施しない処理部分であり、第1の実施形態の図5に示すリレー駆動処理または第2の実施形態の図6のリレー駆動処理が該当する。
FIG. 7 is a flowchart showing an example of a relay driving process according to the present embodiment.
Step S21 is a processing portion in the relay drive processing according to this embodiment that does not perform the timer processing at the previous stage, and corresponds to the relay drive processing shown in FIG. 5 of the first embodiment or the relay drive processing shown in FIG. 6 of the second embodiment.
 ステップS22において、リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であるか否かを判定する。リレー駆動処理部11cは、動作状態SSTがモータ駆動許可状態であると判定した場合(ステップS22:YES)、処理を終える。一方、リレー駆動処理部11cは、動作状態SSTがモータ駆動停止状態であると判定した場合(ステップS22:NO)、ステップS23へ進みタイマーTMRをインクリメントし、ステップS24へ進む。 In step S22, the relay drive processing unit 11c determines whether the operating state SST is a motor drive permitted state. If the relay drive processing unit 11c determines that the operating state SST is a motor drive permitted state (step S22: YES), it ends the process. On the other hand, if the relay drive processing unit 11c determines that the operating state SST is a motor drive stopped state (step S22: NO), it proceeds to step S23, increments the timer TMR, and proceeds to step S24.
 ステップS24において、リレー駆動処理部11cは、タイマーTMRを所定値Tthと比較し、タイマーTMRが所定値Tthよりも小さいか否かを判定する。ここで、所定値Tthは、上記の所定時間が経過したことを検出するための閾値として予め設定されている。リレー駆動処理部11cは、タイマーTMRが所定値Tthよりも小さいと判定した場合(ステップS24:YES)、処理を終える。一方、リレー駆動処理部11cは、タイマーTMRが所定値Tth以上であると判定した場合(ステップS24:YES)、ステップS25へ進み、リレー駆動信号SRYをOFFする。 In step S24, the relay drive processing unit 11c compares the timer TMR with a predetermined value Tth and determines whether the timer TMR is smaller than the predetermined value Tth. Here, the predetermined value Tth is set in advance as a threshold value for detecting that the above-mentioned predetermined time has elapsed. If the relay drive processing unit 11c determines that the timer TMR is smaller than the predetermined value Tth (step S24: YES), it ends the processing. On the other hand, if the relay drive processing unit 11c determines that the timer TMR is equal to or greater than the predetermined value Tth (step S24: YES), it proceeds to step S25 and turns off the relay drive signal SRY.
 図8は、本実施形態に係る電動パワーステアリング装置のタイミングチャートである。この図は、横軸を時間とし、リレー駆動信号SRY(タイマー処理前)と、動作状態SSTと、タイマーTMRと、リレー駆動信号SRY(タイマー処理後)とを時間軸で示している。 FIG. 8 is a timing chart of the electric power steering device according to this embodiment. In this diagram, the horizontal axis represents time, and the relay drive signal SRY (before timer processing), the operating state SST, the timer TMR, and the relay drive signal SRY (after timer processing) are shown on the time axis.
 リレー駆動信号SRY(タイマー処理前)は、図7におけるリレー駆動処理前段のステップS21の出力であり、動作状態SSTがモータ駆動停止状態になった後もONを継続しているものとする。タイマーTMRは、動作状態SSTがモータ駆動停止状態になってから、インクリメントされる。タイマーTMRが所定値Tthよりも大きくなった時点で、リレー駆動信号SRY(タイマー処理後)がOFFされる。 The relay drive signal SRY (before timer processing) is the output of step S21 in FIG. 7, which is the previous stage of the relay drive processing, and remains ON even after the operating state SST becomes a motor drive stopped state. The timer TMR is incremented after the operating state SST becomes a motor drive stopped state. When the timer TMR becomes larger than a predetermined value Tth, the relay drive signal SRY (after timer processing) is turned OFF.
 このように、本実施形態に係る電動パワーステアリング装置100は、においてマイコン11は、モータ5に回生電流が流れていると判定した場合でも、所定時間経過後にモータリレー13を制御する(OFFする)ことによりHブリッジ回路12とモータ5とを電気的に遮断する。 In this way, in the electric power steering device 100 according to this embodiment, even if the microcomputer 11 determines that a regenerative current is flowing through the motor 5, it controls (turns off) the motor relay 13 after a predetermined time has elapsed to electrically disconnect the H-bridge circuit 12 from the motor 5.
 これにより、電動パワーステアリング装置100は、回生電流の判定によるモータリレー13のONの継続に時間的な制約を持たせることができるため、モータリレー13が必要以上に長い期間ONし続けることを防止することができる。 This allows the electric power steering device 100 to impose a time constraint on the continuation of ON of the motor relay 13 based on the determination of the regenerative current, thereby preventing the motor relay 13 from remaining ON for a period longer than necessary.
<第4の実施形態>
 次に、第4の実施形態について説明する。
 上記第1、第2および第3の実施形態では、回生電流が流れていることの判定に、電流検出値SCU、モータ5の端子電圧SM1、SM2、およびHブリッジ回路12の電源電圧SPSを用いたが、モータ5の回転速度を用いても良い。モータ5の回転速度は、モータ5の回転角度または操舵角センサ4より得られる操舵角度に基づいて求めることができる。ここでは操舵角度に基づいて求める方法について説明する。
Fourth Embodiment
Next, a fourth embodiment will be described.
In the above first, second and third embodiments, the current detection value SCU, the terminal voltages SM1 and SM2 of the motor 5 and the power supply voltage SPS of the H-bridge circuit 12 are used to determine whether a regenerative current is flowing, but the rotation speed of the motor 5 may also be used. The rotation speed of the motor 5 can be obtained based on the rotation angle of the motor 5 or the steering angle obtained from the steering angle sensor 4. Here, a method of obtaining the rotation speed based on the steering angle will be described.
 図9は、本実施形態に係る電動パワーステアリング装置を搭載した車両の一部の構成を示すブロック図である。車両200は、運転者が操舵する際に操作するステアリングホイール6と、ステアリングホイール6の回転力を伝達するステアリングシャフト7と、ステアリングシャフト7とモータ5とを接続する減速ギア8と、を備える。操舵角センサ4は、ステアリングシャフト7の回転角度を測定し、マイコン11に出力する。 FIG. 9 is a block diagram showing a partial configuration of a vehicle equipped with an electric power steering device according to this embodiment. The vehicle 200 is equipped with a steering wheel 6 operated by the driver when steering, a steering shaft 7 that transmits the rotational force of the steering wheel 6, and a reduction gear 8 that connects the steering shaft 7 to the motor 5. The steering angle sensor 4 measures the rotation angle of the steering shaft 7 and outputs it to the microcomputer 11.
 モータ5の回転角度は、操舵角センサ4の回転角度に減速ギア8のギア比倍したものであるため、単位時間あたりの操舵角の変化量を「dθ」、減速ギア8のギア比を「n」とすると、モータ5の回転角度の変化量は「dθ×n」と求められる。このモータ5の回転角度の変化量をモータ5のモータ角速度ωとし、モータの逆起電力定数をKeとすると、モータが発生する逆起電力Veは下式の様になる。 The rotation angle of motor 5 is the rotation angle of steering angle sensor 4 multiplied by the gear ratio of reduction gear 8, so if the change in steering angle per unit time is "dθ" and the gear ratio of reduction gear 8 is "n", the change in rotation angle of motor 5 can be calculated as "dθ x n". If the change in rotation angle of motor 5 is the motor angular velocity ω of motor 5 and the back electromotive force constant of the motor is Ke, the back electromotive force Ve generated by the motor is expressed by the following formula.
 Ve=Ke×ω
 (ω=dθ×n)
Ve = Ke × ω
(ω=dθ×n)
 マイコン11は、上記の逆起電力Veを算出し、バッテリの定格電圧に基づいて設定された所定値(例えば14V)よりも高い場合に、回生電流が流れていると判定する。 The microcontroller 11 calculates the counter electromotive force Ve and determines that a regenerative current is flowing if it is higher than a predetermined value (e.g., 14 V) set based on the rated voltage of the battery.
 このように、本実施形態に係る電動パワーステアリング装置100において、上述した2つの独立した手段には、モータ5の回転速度に基づいてモータ5に回生電流が流れていることもしくは流れていないことを判定する手段が含まれてもよい。 In this way, in the electric power steering device 100 according to this embodiment, the two independent means described above may include a means for determining whether or not a regenerative current is flowing through the motor 5 based on the rotation speed of the motor 5.
 これにより、電動パワーステアリング装置100は、第1の実施形態で説明した電流検出値SCU、モータ5の端子電圧SM1または端子電圧SM2、または電源電圧SPSなどを用いる手段とは独立したモータ5の回転速度を用いる手段を用いることで、回生電流が流れているか否かの判定に用いる手段の組み合わせのバリエーションを増やすことができる。 As a result, the electric power steering device 100 can increase the variety of combinations of means used to determine whether or not a regenerative current is flowing by using a means that uses the rotational speed of the motor 5 independent of the means that use the current detection value SCU, the terminal voltage SM1 or SM2 of the motor 5, or the power supply voltage SPS, etc., described in the first embodiment.
 例えば、電動パワーステアリング装置100は、電流検出値SCUを用いる手段と、電源電圧SPSとモータ5の端子電圧SM1または端子電圧SM2との比較を用いる手段との2つの手段のいずれかをモータ5の回転速度を用いる手段に代えても良いし、該2つの手段にモータ5の回転速度を用いる手段を加えて3つの手段としてもよい。 For example, the electric power steering device 100 may replace either of the two means, the means using the current detection value SCU and the means using a comparison between the power supply voltage SPS and the terminal voltage SM1 or terminal voltage SM2 of the motor 5, with a means using the rotation speed of the motor 5, or may add a means using the rotation speed of the motor 5 to the two means to provide three means.
 即ち、本実施形態に係る電動パワーステアリング装置100においてマイコン11は、2つ以上の独立した手段を用いてモータ5に回生電流が流れていることもしくは流れていないことを判定し、判定結果に基づいてモータリレー13を制御してもよい。 In other words, in the electric power steering device 100 according to this embodiment, the microcomputer 11 may use two or more independent means to determine whether or not a regenerative current is flowing through the motor 5, and control the motor relay 13 based on the determination result.
 このように、電動パワーステアリング装置100は、回生電流を独立した複数の手段で検出し、それらを組み合わせて判定することにより適切なタイミングでモータリレーをOFFにしてHブリッジ回路12とモータ5とを電気的に遮断することができる。これにより、例えば、電動パワーステアリング装置100は、モータリレー13を構成する半導体素子の破損を防止できる。 In this way, the electric power steering device 100 detects the regenerative current using multiple independent means, and by combining and determining the results, can turn off the motor relay at the appropriate timing to electrically disconnect the H-bridge circuit 12 and the motor 5. This allows the electric power steering device 100 to prevent damage to the semiconductor elements that make up the motor relay 13, for example.
 以上、実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、各実施形態を適宜、変形、省略したりすることが可能である。 The above embodiments have been described in detail with reference to the drawings, but the specific configurations are not limited to these embodiments, and each embodiment can be modified or omitted as appropriate.
 例えば、上記実施形態では、2相のHブリッジであるブラシ付きDCモータを用いた電動パワーステアリング装置100を例に説明したが、3相のHブリッジであるブラシレスDCを用いた電動パワーステアリング装置にも適用してもよい。 For example, in the above embodiment, an electric power steering device 100 using a brushed DC motor that is a two-phase H-bridge is described as an example, but it may also be applied to an electric power steering device that uses a brushless DC motor that is a three-phase H-bridge.
 また、上記実施形態では、モータ5を駆動するモータ駆動回路としてモータ5への駆動電流を制御するHブリッジ回路12を用いる例を説明したが、Hブリッジ回路12はマイコン11が備える各部の一部または全部とパッケージ化されて構成されても良いし、Hブリッジ以外のモータ駆動回路を用いてもよい。 In the above embodiment, an example was described in which an H-bridge circuit 12 that controls the drive current to the motor 5 is used as the motor drive circuit that drives the motor 5. However, the H-bridge circuit 12 may be configured as a package with some or all of the components of the microcontroller 11, or a motor drive circuit other than an H-bridge may be used.
 なお、マイコン11(制御部の一例)の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりマイコン11の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In addition, a program for implementing the functions of the microcomputer 11 (an example of a control unit) may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed to perform processing of the microcomputer 11. Note that the term "computer system" here includes hardware such as the OS and peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。 "Computer-readable recording media" refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, as well as storage devices such as hard disks built into computer systems. "Computer-readable recording media" also refers to media that dynamically hold a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, and media that hold a program for a certain period of time, such as volatile memory inside a computer system that serves as a server or client in such cases. The above program may be one that realizes part of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system. The above program may also be stored in a specified server, and distributed (downloaded, etc.) via a communication line in response to a request from another device.
 また、マイコン11の機能の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Furthermore, some or all of the functions of the microcontroller 11 may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each function may be individually processed, or some or all of the functions may be integrated into a processor. The integrated circuit method is not limited to LSI, and may be realized using a dedicated circuit or a general-purpose processor. Furthermore, if an integrated circuit technology that can replace LSI appears due to advances in semiconductor technology, an integrated circuit based on that technology may be used.
 1 コントローラ
 2 トルクセンサ
 3 車速センサ
 4 操舵角センサ
 5 モータ
 6 ステアリングホイール
 7 ステアリングシャフト
 8 減速ギア
 11 マイコン
 11a 目標電流演算処理部
 11b 駆動DUTY演算処理部
 11c リレー駆動処理部
 12 Hブリッジ回路
 12a~12d FET
 13 モータリレー
 14 電流検出回路
 100 電動パワーステアリング装置
 200 車両
REFERENCE SIGNS LIST 1 Controller 2 Torque sensor 3 Vehicle speed sensor 4 Steering angle sensor 5 Motor 6 Steering wheel 7 Steering shaft 8 Reduction gear 11 Microcomputer 11a Target current calculation processing section 11b Drive duty calculation processing section 11c Relay drive processing section 12 H-bridge circuit 12a to 12d FET
13 Motor relay 14 Current detection circuit 100 Electric power steering device 200 Vehicle

Claims (8)

  1.  モータを駆動するモータ駆動回路と、
     前記モータ駆動回路と前記モータとの電気的な接続を遮断可能なリレー回路と、
     2つ以上の独立した手段を用いて前記モータに回生電流が流れていることもしくは流れていないことを判定し、判定結果に基づいて前記リレー回路を制御する制御部と、
     を備える電動パワーステアリング装置。
    a motor drive circuit that drives the motor;
    a relay circuit capable of interrupting an electrical connection between the motor drive circuit and the motor;
    a control unit that uses two or more independent means to determine whether a regenerative current is flowing through the motor and controls the relay circuit based on the determination result;
    An electric power steering device comprising:
  2.  前記制御部は、
     前記2つ以上の独立した手段により前記モータに回生電流が流れていないと判定した場合には、前記リレー回路を制御することにより前記モータ駆動回路と前記モータとを電気的に遮断する、
     請求項1に記載の電動パワーステアリング装置。
    The control unit is
    When it is determined by the two or more independent means that no regenerative current is flowing through the motor, the relay circuit is controlled to electrically disconnect the motor drive circuit from the motor.
    2. The electric power steering device according to claim 1.
  3.  前記制御部は、
     前記2つ以上の独立した手段により前記モータに回生電流が流れていると判定した場合には、前記モータ駆動回路と前記モータとが電気的に接続された状態を継続させる、
     請求項1に記載の電動パワーステアリング装置。
    The control unit is
    When it is determined by the two or more independent means that a regenerative current is flowing through the motor, the motor drive circuit and the motor are maintained in an electrically connected state.
    2. The electric power steering device according to claim 1.
  4.  前記制御部は、
     前記モータに回生電流が流れていると判定した場合でも、所定時間経過後に前記リレー回路を制御することにより前記モータ駆動回路と前記モータとを電気的に遮断する、
     請求項3に記載の電動パワーステアリング装置。
    The control unit is
    even if it is determined that a regenerative current is flowing through the motor, the relay circuit is controlled after a predetermined time has elapsed to electrically disconnect the motor drive circuit and the motor.
    4. The electric power steering device according to claim 3.
  5.  前記2つ以上の独立した手段には、前記モータ駆動回路に流れる電流値に基づいて前記モータに回生電流が流れていることもしくは流れていないことを判定する手段が含まれる、
     請求項1から請求項3のいずれか一項に記載の電動パワーステアリング装置。
    The two or more independent means include a means for determining whether or not a regenerative current is flowing through the motor based on a current value flowing through the motor drive circuit.
    The electric power steering device according to any one of claims 1 to 3.
  6.  前記2つ以上の独立した手段には、前記モータ駆動回路に印加されている電源電圧と前記モータの端子電圧との比較に基づいて前記モータに回生電流が流れていることもしくは流れていないことを判定する手段が含まれる、
     請求項1から請求項3のいずれか一項に記載の電動パワーステアリング装置。
    The two or more independent means include a means for determining whether or not a regenerative current is flowing through the motor based on a comparison between a power supply voltage applied to the motor drive circuit and a terminal voltage of the motor.
    The electric power steering device according to any one of claims 1 to 3.
  7.  前記2つ以上の独立した手段には、前記モータの回転速度に基づいて前記モータに回生電流が流れていることもしくは流れていないことを判定する手段が含まれる、
     請求項1から請求項3のいずれか一項に記載の電動パワーステアリング装置。
    The two or more independent means include a means for determining whether or not a regenerative current is flowing through the motor based on a rotation speed of the motor.
    The electric power steering device according to any one of claims 1 to 3.
  8.  前記モータ駆動回路は、前記モータへの駆動電流を制御するHブリッジ回路を備える、
     請求項1から請求項3のいずれか一項に記載の電動パワーステアリング装置。
    The motor drive circuit includes an H-bridge circuit that controls a drive current to the motor.
    The electric power steering device according to any one of claims 1 to 3.
PCT/JP2022/040847 2022-11-01 2022-11-01 Electric power steering device WO2024095355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040847 WO2024095355A1 (en) 2022-11-01 2022-11-01 Electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040847 WO2024095355A1 (en) 2022-11-01 2022-11-01 Electric power steering device

Publications (1)

Publication Number Publication Date
WO2024095355A1 true WO2024095355A1 (en) 2024-05-10

Family

ID=90930097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040847 WO2024095355A1 (en) 2022-11-01 2022-11-01 Electric power steering device

Country Status (1)

Country Link
WO (1) WO2024095355A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230193A (en) * 2006-03-27 2006-08-31 Jtekt Corp Electric power steering apparatus
WO2017047708A1 (en) * 2015-09-18 2017-03-23 日本精工株式会社 Electric power steering device
WO2018173469A1 (en) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 Motor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230193A (en) * 2006-03-27 2006-08-31 Jtekt Corp Electric power steering apparatus
WO2017047708A1 (en) * 2015-09-18 2017-03-23 日本精工株式会社 Electric power steering device
WO2018173469A1 (en) * 2017-03-23 2018-09-27 日立オートモティブシステムズ株式会社 Motor system

Similar Documents

Publication Publication Date Title
JP6979767B2 (en) Motor drive and electric power steering
JP5311233B2 (en) Motor control device and electric power steering device using the same
JP4294039B2 (en) Power steering device
JP4177387B2 (en) Motor control device
JP5345764B2 (en) Microcomputer for motor control and control method therefor
JP5104303B2 (en) Electric power steering device
JPH07251749A (en) Motor-driven power steering control device
US6513619B2 (en) Electrically-driven power steering system
US20060049788A1 (en) Electric power steering controller
US10833614B2 (en) Motor drive device and electric power steering device
JP5251469B2 (en) Electric power steering device
WO2024095355A1 (en) Electric power steering device
WO2018142829A1 (en) Motor drive device and electric power steering device
JP2007228704A (en) Motor driver
JP2008074119A (en) Control device of electric power steering device
JP7234055B2 (en) Current direction determination device
JP6831346B2 (en) Motor device and motor drive control method
JP6710188B2 (en) Motor drive control device and motor drive control method
JP2003237605A (en) Control device for electric power steering device
JP4935241B2 (en) Data holding device, motor control device and motor control system
WO2019054089A1 (en) Motor drive device, motor, and electric power steering device
JP3511563B2 (en) Electric power steering control device
CN110937018B (en) Steering apparatus, steering method, and steering control device
CN110622411B (en) Motor driving device and method, electric power steering device, and recording medium
WO2020075693A1 (en) Motor control system, motor, and electric power steering device