WO2024093826A1 - 生理音采集装置及穿戴设备 - Google Patents

生理音采集装置及穿戴设备 Download PDF

Info

Publication number
WO2024093826A1
WO2024093826A1 PCT/CN2023/127153 CN2023127153W WO2024093826A1 WO 2024093826 A1 WO2024093826 A1 WO 2024093826A1 CN 2023127153 W CN2023127153 W CN 2023127153W WO 2024093826 A1 WO2024093826 A1 WO 2024093826A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological
heart
user
module
wearable
Prior art date
Application number
PCT/CN2023/127153
Other languages
English (en)
French (fr)
Inventor
郄勇
唐茂庆
张永成
潘俊杰
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2024093826A1 publication Critical patent/WO2024093826A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • A61B2560/0247Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value

Definitions

  • the present application relates to the technical field of information collection, and in particular to a physiological sound collection device and a wearable device.
  • Physiological sounds refer to the sounds produced by mechanical wave phenomena in human organs such as the heart and lungs.
  • the present application provides a physiological sound collection device and a wearable device, aiming to improve the convenience of obtaining physiological sounds.
  • the present application provides a physiological sound collection device, the device comprising:
  • Bone conduction sensor and first microphone
  • the bone conduction sensor is used to collect physiological sound signals
  • the first microphone is used to collect a first environmental noise signal
  • the first environmental noise signal is used to remove environmental noise features in the physiological sound signal.
  • the device also includes a second microphone, which is used to collect a second environmental noise signal; the environmental noise feature in the physiological sound signal is removed only when the second environmental noise signal has the same environmental noise feature as that in the first environmental noise signal.
  • the device further includes a reminder module, which is used to output a first reminder when the physiological sound signal strength of the physiological sound signal is less than or equal to a preset physiological sound signal strength threshold. a reminder message to remind the user to adjust the measurement posture; and when the noise signal strength of the second environmental noise signal is greater than or equal to a preset noise signal strength threshold, the reminder module is also used to output a second reminder message to remind the user to select a new environment to collect physiological sounds.
  • a reminder module which is used to output a first reminder when the physiological sound signal strength of the physiological sound signal is less than or equal to a preset physiological sound signal strength threshold.
  • a reminder message to remind the user to adjust the measurement posture
  • the noise signal strength of the second environmental noise signal is greater than or equal to a preset noise signal strength threshold
  • the wearable device includes a wearable body and earphones; the earphones include the physiological sound collection device as described above.
  • the wearable body includes a first communication module
  • the earphone includes a second communication module
  • the first communication module is used to receive the physiological sound signal with environmental noise characteristics removed sent by the second communication module;
  • the first communication module includes a Bluetooth module or a UWB module
  • the second communication module includes a Bluetooth module or a UWB module.
  • the wearable body also includes a heart monitoring trigger data acquisition module; the heart monitoring trigger data acquisition module is used to collect heart monitoring trigger data; the heart monitoring trigger data is used to determine whether the user is a key focus of heart health, and if so, the wearable body enters a heart monitoring mode.
  • a heart monitoring trigger data acquisition module is used to collect heart monitoring trigger data; the heart monitoring trigger data is used to determine whether the user is a key focus of heart health, and if so, the wearable body enters a heart monitoring mode.
  • the heart monitoring trigger data acquisition module is a body fat detection module, and the heart monitoring trigger data is body fat percentage; if the body fat percentage is greater than or equal to a preset body fat percentage threshold, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the heart monitoring trigger data acquisition module is a motion detection module
  • the heart monitoring trigger data is motion data
  • the motion data is used to determine whether the frequency of the user's exercise is less than or equal to a preset frequency threshold. If so, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the heart monitoring trigger data acquisition module includes a body fat detection module and a motion detection module
  • the heart monitoring trigger data includes body fat percentage and motion data; if the body fat percentage is greater than or equal to a preset body fat percentage threshold and the frequency of the user participating in exercise is less than or equal to a preset frequency threshold, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the wearable body further includes a wearing detection module and a physiological parameter signal acquisition module;
  • the wearing detection module is used to determine whether the wearing subject is in a wearing state
  • the physiological parameter signal acquisition module is used to collect the physiological parameter signal when the wearable body is in the wearing state. The user's physiological parameter signals.
  • the wearable body further includes a processor
  • the processor is used to calculate the blood pressure of the user based on the physiological sound signal with the environmental noise feature removed and the physiological parameter signal, and perform corresponding device operations based on the blood pressure.
  • the present application provides a physiological sound acquisition device, the device including a bone conduction sensor and a first microphone; the bone conduction sensor is used to collect physiological sound signals, the first microphone is used to collect a first environmental noise signal, and the first environmental noise signal is used to correct the physiological sound signal.
  • the present application collects physiological sound signals through the bone conduction sensor in the physiological sound acquisition device, so that the user of the device can operate to obtain physiological sounds without the need for a doctor to operate to obtain physiological sounds.
  • the physiological sound signal is corrected by the first environmental noise signal collected by the first microphone, the accuracy of the physiological sound signal is improved.
  • FIG1 is a schematic diagram of a physiological sound signal (top) and a first environmental noise signal (bottom) collected by a physiological sound collection device of the present application;
  • FIG2 is a schematic diagram of the structure of an earphone according to an embodiment of the physiological sound collection device of the present application
  • FIG3 is a schematic diagram of the structure of a watch involved in an embodiment of the wearable device of the present application.
  • FIG4 is a schematic diagram of the structure of another watch involved in an embodiment of the wearable device of the present application.
  • FIG5 is an optional device block diagram of an embodiment of a wearable device of the present application.
  • FIG6 is a flow chart of a data processing method according to a preferred embodiment of the wearable device of the present application.
  • the first embodiment of the present application proposes a physiological sound collection device, including a bone conduction sensor and a first microphone; the bone conduction sensor is used to collect physiological sound signals, the first microphone is used to collect a first environmental noise signal, and the first environmental noise signal is used to correct the physiological sound signal.
  • Physiological sound signals include heart sound signals and lung sound signals.
  • heart sound refers to the sound produced by mechanical wave phenomena caused by myocardial contraction, heart valve closure, and blood hitting the ventricular wall and aorta wall; the main source of lung sound is the rupture of bubbles formed by the interaction of gas passing through the respiratory tract and airway secretions such as effusion, sputum, and blood.
  • Heart sound signals are signals obtained by collecting heart sound
  • lung sound signals are signals obtained by collecting lung sound.
  • the bone conduction sensor collects the vibration signal of the heart.
  • the collected vibration signal needs to be processed by a filtering unit and a signal amplification unit to eliminate noise signals and amplify useful signals.
  • the first environmental noise signal also needs to be processed to eliminate noise signals and amplify useful signals.
  • FIG. 1 is a schematic diagram of the heart sound signal (top) and the first environmental noise signal (bottom) collected by the physiological sound collection device of the present application.
  • the physiological sound signal collection method including the noise caused by the movement of the user's fingers, the noise caused by the friction between the earphone and the clothes, etc.
  • the process is: extract key heart sound signal features (determined by the normal heart sound signal when the heart is free of lesions in medicine) as landmarks, align the heart sound signal and the first environmental noise signal; use the heart sound signal as the main signal and the first environmental noise signal as the correction signal to determine whether the abnormal signal (abnormal sound feature) in the main signal is caused by the user's heart abnormality or an acquisition error.
  • the normal heart sound signal is used to mark the normal signal in the heart sound signal (mark the peaks and/or troughs), and the abnormal signal in the heart sound signal is a signal other than the normal signal that has obvious peaks and/or troughs.
  • the device also includes a second microphone, which is used to collect a second environmental noise signal; the environmental noise feature in the physiological sound signal is removed only when the second environmental noise signal has the same environmental noise feature as that in the first environmental noise signal.
  • the second environmental noise signal also needs to be processed to eliminate noise signals and amplify useful signals.
  • the second microphone needs to be located away from the bone conduction sensor.
  • the two are arranged on opposite sides of the earphone, so that when the bone conduction sensor is close to the chest wall, the second microphone is away from the chest wall, so that the second microphone can receive clear environmental noise.
  • environmental noise refers to the sound of people talking loudly in the environment, the sound of closing doors, etc.
  • noise reduction processing is the process of subtracting the second environmental noise signal from the heart sound signal.
  • the second environmental noise signal and the heart sound signal also need to be aligned.
  • the purpose of providing the second microphone is to perform a second judgment on the abnormal signal in the heart sound signal, thereby improving the accuracy of removing the environmental noise characteristics in the heart sound signal.
  • the device also includes a reminder module, which is used to output a first reminder message to remind the user to adjust the measurement posture when the physiological sound signal strength of the physiological sound signal is less than or equal to a preset physiological sound signal strength threshold; and when the noise signal strength of the second environmental noise signal is greater than or equal to the preset noise signal strength threshold, the reminder module is also used to output a second reminder message to remind the user to select a new environment to collect physiological sounds.
  • a reminder module which is used to output a first reminder message to remind the user to adjust the measurement posture when the physiological sound signal strength of the physiological sound signal is less than or equal to a preset physiological sound signal strength threshold; and when the noise signal strength of the second environmental noise signal is greater than or equal to the preset noise signal strength threshold, the reminder module is also used to output a second reminder message to remind the user to select a new environment to collect physiological sounds.
  • the reminder module includes a signal output module such as a speaker and a display, which is used to output sound signals, text signals or image signals, etc.
  • a signal output module such as a speaker and a display, which is used to output sound signals, text signals or image signals, etc.
  • the physiological sound signal strength of the physiological sound signal is less than or equal to the preset physiological sound signal strength threshold. Because the physiological sound collection device is not close to the human body. For example, the user uses it through clothes or does not make the physiological sound collection device fit closely to the chest. At this time, the user's measurement posture is incorrect, and the user is reminded by outputting a first reminder message to make the physiological sound collection device close to the human body. For example, the first reminder message is "The physiological sound was not successfully collected, please fit the device to the chest and try again.” When the physiological sound signal strength of the physiological sound signal is greater than the preset physiological sound signal strength threshold, there is no need to output a reminder message. Among them, the preset physiological sound signal strength threshold can be set as needed, and this embodiment does not make a specific limitation.
  • the noise signal strength of the second environmental noise signal is greater than or equal to the preset noise signal strength threshold.
  • the second reminder message can be output to remind the user to select a new environment to collect physiological sounds, and when the noise signal strength of the second environmental noise signal is less than the preset noise signal strength threshold, there is no need to output the second reminder message.
  • the second reminder message is "Please collect physiological sounds in a quiet environment.”
  • the preset noise signal strength threshold can be set as needed, and this embodiment does not make specific limitations.
  • the present application provides a physiological sound acquisition device, the device including a bone conduction sensor and a first microphone; the bone conduction sensor is used to collect physiological sound signals, the first microphone is used to collect a first environmental noise signal, and the first environmental noise signal is used to correct the physiological sound signal.
  • the present application collects physiological sound signals through the bone conduction sensor in the physiological sound acquisition device, so that the user of the device can operate to obtain physiological sounds without the need for a doctor to operate to obtain physiological sounds.
  • the physiological sound signal is corrected by the first environmental noise signal collected by the first microphone, the accuracy of the physiological sound signal is improved.
  • the physiological sound collection device may be in a device such as an earphone or a watch, or may be an independent device that only has the function of collecting physiological sounds.
  • the specific implementation of the physiological sound collection device is not specifically limited in this embodiment.
  • FIG. 2 is a schematic diagram of the structure of the earphone involved in the embodiment of the physiological sound collection device of the present application.
  • the wearable device includes the above-mentioned physiological sound collection device, which is a physiological sound collection device including a bone conduction sensor, a first microphone and a second microphone, and a physiological sound collection device without a second microphone.
  • the wearable device can be a mobile phone, a tablet, Watches, bracelets, etc.
  • the physiological sound collection device in the wearable device can be an integrated arrangement with the wearable device body, or can be separately arranged from the wearable device body.
  • the physiological sound collection device can be connected to the wearable device body wirelessly, or can be connected to the wearable device body by wire through a connector (including a pogo-pin connector, a shrapnel connector, a wire connector, etc.).
  • a connector including a pogo-pin connector, a shrapnel connector, a wire connector, etc.
  • this embodiment takes the example that the wearable device is a watch (including a physiological sound collection device and a watch body), and the physiological sound collection device is separately arranged and wirelessly connected to the watch body, wherein the physiological sound collection device is an earphone.
  • Figures 3 and 4 are two structural schematic diagrams of watches involved in the wearable device embodiments of the present application. Among them, the earphones can be placed on the watch by embedding, magnetic attraction, etc.
  • the wearable body includes a first communication module
  • the earphone includes a second communication module
  • the first communication module is used to receive the physiological sound signal with environmental noise characteristics removed sent by the second communication module;
  • the first communication module includes a Bluetooth module or a UWB (Ultra Wide Band) module;
  • the second communication module includes a Bluetooth module or a UWB module.
  • the process of processing the heart sound signal in the first embodiment can also be implemented in the watch body, that is, the earphone sends the collected heart sound signal, the first ambient noise signal and the second ambient noise signal to the watch body, and the watch body corrects and performs noise reduction processing on the heart sound signal through the first ambient noise signal and the second ambient noise signal respectively.
  • the correction and noise reduction processing are basically the same as the implementation method in the first embodiment, and will not be repeated here.
  • the wearable body also includes a heart monitoring trigger data acquisition module; the heart monitoring trigger data acquisition module is used to collect heart monitoring trigger data; the heart monitoring trigger data is used to determine whether the user is a key focus of heart health, and if so, the wearable body enters a heart monitoring mode.
  • a heart monitoring trigger data acquisition module is used to collect heart monitoring trigger data; the heart monitoring trigger data is used to determine whether the user is a key focus of heart health, and if so, the wearable body enters a heart monitoring mode.
  • the heart monitoring trigger data acquisition module is a body fat detection module, and the heart monitoring trigger data is body fat percentage; if the body fat percentage is greater than or equal to a preset body fat percentage threshold, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the body fat detection module includes a BIA (Bio-impedance analysis) sensor.
  • BIA Bio-impedance analysis
  • the user's body fat rate exceeds the standard, that is, the body fat rate is greater than or equal to the preset body fat rate threshold, the user's heart is very likely to be in an unhealthy state. For such users, they can be determined as the focus of heart health attention; if the body fat rate is less than the preset body fat rate threshold, it can be determined that the user's heart is in an unhealthy state, and the heart monitoring mode will not be entered.
  • the preset body fat rate threshold can be set as needed, and this embodiment does not specifically limit it.
  • the heart monitoring trigger data acquisition module is a motion detection module
  • the heart monitoring trigger data is motion data
  • the motion data is used to determine whether the frequency of the user's exercise participation is less than or equal to a preset frequency threshold, and if so, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the motion detection module includes an A+G motion sensor.
  • the sports data includes running record data, basketball record data, badminton record data, etc. For example, if there is a running record on August 5, a running record on September 1, and a running record on October 3, then it is determined that the user's running frequency is once a month, and the user's exercise frequency is once a month; for another example, if there is a running record on August 5, a basketball record on August 20, a running record on September 1, a basketball record on September 23, a running record on October 3, a badminton record on October 18, and a basketball record on November 4, then the user's exercise frequency is twice a month.
  • preset frequency threshold can be set as needed and is not specifically limited in this embodiment.
  • the data collected by the body fat detection module and the data collected by the motion detection module can be combined for judgment.
  • the heart monitoring trigger data acquisition module includes a body fat detection module and a motion detection module, and the heart monitoring trigger data includes body fat rate and motion data; if the body fat rate is greater than or equal to a preset body fat rate threshold and the frequency of the user participating in exercise is less than or equal to a preset frequency threshold, it is determined that the user is a key focus of heart health, and the wearable body enters the heart monitoring mode.
  • the user is determined to be a key focus of heart health.
  • the frequency is less than or equal to the preset frequency threshold, it is determined that the user is not a key focus of heart health.
  • This embodiment avoids misjudgment of whether the user is a key focus of heart health, and improves the accuracy of determining whether the user is a key focus of heart health. That is, when the body fat percentage is greater than or equal to the preset body fat percentage threshold, but the user realizes the problem and starts to exercise frequently; or when the frequency of the user's exercise is less than or equal to the preset frequency threshold, but the body fat percentage is less than the preset body fat percentage threshold, the user's heart may not be prone to problems.
  • the exemplary wearable body further includes a wearing detection module and a physiological parameter signal acquisition module;
  • the wearing detection module is used to determine whether the wearing subject is in a wearing state
  • the physiological parameter signal acquisition module is used to collect the physiological parameter signals of the user when the wearable body is in a wearing state.
  • This embodiment also uses a wearing detection module to determine whether the wearable body is in a wearing state to improve the battery life of the wearable body.
  • the wearing detection module includes a CAP (Capacitance) sensor, an infrared sensor, an ultrasonic sensor, a heart rate sensor, etc.
  • the wearable body also includes a PPG (photoplethysmography) sensor module; the PPG sensor module is used to collect physiological parameter signals of the user.
  • PPG photoplethysmography
  • the PPG sensor module includes a PPG sensor and a signal amplification unit.
  • the physiological parameter signal collected by the PPG sensor also needs to be amplified by the signal amplification unit.
  • the PPG sensor module monitors heart rate, blood oxygen and other indicators (achieved through the collected physiological parameter signals).
  • the wearable body also includes a reminder module; the reminder module is used to provide health reminders to the user according to the health risk level corresponding to the physiological parameter signal.
  • the health risk level is set according to the amount by which the indicator exceeds the normal indicator.
  • the health risk level can include high, medium and low, high, medium and low, etc. Taking the health risk level as high, medium and low as an example, the indicators exceeding the normal indicators correspond to the high, medium and low health risk levels from more to less. For example, if the indicator is the heart rate indicator, the normal heart rate indicator is 100. When the heart rate is greater than 100 and less than 120, the health risk level is determined to be low, and the user may not be prompted at this time; when the heart rate is greater than or equal to 120 and less than 160, the health risk level is determined to be high. If the health risk level is medium, the user may be advised to check heart sounds; when the heart rate is greater than or equal to 160, the health risk level is determined to be high, and the user is advised to rest or seek medical attention immediately.
  • the reminder module includes a vibration unit, a sound unit, etc.
  • the vibration unit can vibrate and/or the sound unit can make a sound to remind the user.
  • the PPG sensor module and the body fat detection module are both arranged on the side in direct contact with the user's skin to accurately collect relevant signals.
  • the number of them is not specifically limited in this embodiment and can be set as needed.
  • the wearable device may also include other units or modules.
  • Figure 5 is an optional device block diagram in the embodiment of the wearable device of the present application
  • Figure 6 is a flow chart of a data processing method in a preferred embodiment of the wearable device of the present application.
  • the microprocessor can complete operations such as fetching instructions, executing instructions, and exchanging information with external memory and logic components, and is the operation control part of the wearable device, for example, for processing heart sound signals, first environmental noise signals, physiological parameter signals, etc.
  • the mobile communication module includes a 4G mobile communication module, a 5G mobile communication module, etc., so that the wearable device can be connected to an external network (such as the Internet) through the module
  • the memory is used to store various applications and related data (heart sound signals, first environmental noise signals, physiological parameter signals, etc.);
  • the power supply and power management unit are used to power the wearable device and monitor and control power consumption; in addition to collecting sound signals (such as heart sound signals), the audio module can also include an audio decoding unit, an audio amplifier unit, a MIC unit and a speaker unit, etc., which can decode the audio content and generate sound.
  • the wearable body further includes a processor
  • the processor is used to calculate the blood pressure of the user based on the physiological sound signal with the environmental noise feature removed and the physiological parameter signal, and perform corresponding device operations based on the blood pressure.
  • the device operation includes reminding the user of high blood pressure through the reminder module or providing health care advice through the reminder module; if the blood pressure is not high, the device operation is to record data for the user to review or as a data basis for related statistics.
  • the wearable body can also Determine if the user has premature heart beats.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种生理音采集装置及穿戴设备,生理音采集装置包括骨传导传感器和第一麦克风;骨传导传感器用于采集生理音信号,第一麦克风用于采集第一环境噪声信号,第一环境噪声信号用于对生理音信号进行矫正。通过生理音采集装置中的骨传导传感器来采集生理音信号,从而由装置使用者来操作即可实现生理音的获取,而无需由医生进行操作来获取生理音。通过第一麦克风采集的第一环境噪声信号对生理音信号进行矫正后,提高了生理音信号的准确性。

Description

生理音采集装置及穿戴设备
本申请要求于2022年10月31日提交中国专利局、申请号为202211351541.X、发明名称为“生理音采集装置及穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息采集技术领域,尤其涉及一种生理音采集装置及穿戴设备。
背景技术
生理音是指心脏、肺等人体器官中由机械波现象所产生的声音。
目前,获取生理音的方式为就医时进行听诊,即听诊需要在医院由医生进行操作实现,导致生理音的获取不够方便。
发明内容
有鉴于此,本申请提供一种生理音采集装置及穿戴设备,旨在提高获取生理音的便利性。
为实现上述目的,本申请提供一种生理音采集装置,所述装置包括:
骨传导传感器和第一麦克风;
所述骨传导传感器用于采集生理音信号,所述第一麦克风用于采集第一环境噪声信号,所述第一环境噪声信号用于去除所述生理音信号中的环境噪声特征。
示例性的,所述装置还包括第二麦克风,所述第二麦克风用于采集第二环境噪声信号;在所述第二环境噪声信号中存在与所述第一环境噪声信号中相同的环境噪声特征时,才去除所述生理音信号中的所述环境噪声特征。
示例性的,所述装置还包括提醒模块,所述提醒模块用于在所述生理音信号的生理音信号强度小于或等于预设生理音信号强度阈值时,输出第一提 醒信息,以提醒用户调整测量姿势;并且在所述第二环境噪声信号的噪声信号强度大于或等于预设噪声信号强度阈值时,所述提醒模块还用于输出第二提醒信息,以提醒用户选择新环境来采集生理音。
示例性的,所述穿戴设备包括穿戴主体和耳机;所述耳机包括如上所述的生理音采集装置。
示例性的,所述穿戴主体包括第一通信模块,所述耳机包括第二通信模块;
所述第一通信模块用于接收所述第二通信模块发送的去除环境噪声特征的生理音信号;
所述第一通信模块包括蓝牙模块或UWB模块;
所述第二通信模块包括蓝牙模块或UWB模块。
示例性的,所述穿戴主体还包括心脏监测触发数据采集模块;所述心脏监测触发数据采集模块用于采集心脏监测触发数据;所述心脏监测触发数据用于判断使用者是否属于心脏健康重点关注对象,若是,则所述穿戴主体进入心脏监测模式。
示例性的,所述心脏监测触发数据采集模块为体脂检测模块,所述心脏监测触发数据为体脂率;若所述体脂率大于或等于预设体脂率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
示例性的,所述心脏监测触发数据采集模块为运动检测模块,所述心脏监测触发数据为运动数据;所述运动数据用于判断使用者参加运动的频率是否小于或等于预设频率阈值,若是,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
示例性的,所述心脏监测触发数据采集模块包括体脂检测模块和运动检测模块,所述心脏监测触发数据包括体脂率和运动数据;若所述体脂率大于或等于预设体脂率阈值且所述使用者参加运动的频率小于或等于预设频率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
示例性的,所述穿戴主体还包括佩戴检测模块和生理参数信号采集模块;
所述佩戴检测模块用于确定所述穿戴主体是否处于佩戴状态;
所述生理参数信号采集模块用于在所述穿戴主体处于佩戴状态时,采集 用户的生理参数信号。
示例性的,所述穿戴主体还包括处理器;
所述处理器用于基于所述去除环境噪声特征的生理音信号和所述生理参数信号计算所述用户的血压,并基于所述血压执行相应的设备操作。
与现有技术中,获取生理音的方式为就医时进行听诊,而听诊需要在医院由医生进行操作实现,导致生理音的获取不够方便相比,本申请提供一种生理音采集装置,所述装置包括骨传导传感器和第一麦克风;所述骨传导传感器用于采集生理音信号,所述第一麦克风用于采集第一环境噪声信号,所述第一环境噪声信号用于对所述生理音信号进行矫正。本申请通过生理音采集装置中的骨传导传感器来采集生理音信号,从而由装置使用者来操作即可实现生理音的获取,而无需由医生进行操作来获取生理音。此外,通过第一麦克风采集的第一环境噪声信号对生理音信号进行矫正后,提高了生理音信号的准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请生理音采集装置所采集的生理音信号(上)及第一环境噪声信号(下)的示意图;
图2为本申请生理音采集装置实施例涉及的耳机的结构示意图;
图3为本申请穿戴设备实施例涉及的一种手表的结构示意图;
图4为本申请穿戴设备实施例涉及的另一种手表的结构示意图;
图5为本申请穿戴设备实施例中一可选的设备框图;
图6为本申请穿戴设备中一优选实施例的数据处理方法流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
需要说明的是,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
需要说明的是,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
本申请第一实施例提出一种生理音采集装置,包括骨传导传感器和第一麦克风;所述骨传导传感器用于采集生理音信号,所述第一麦克风用于采集第一环境噪声信号,所述第一环境噪声信号用于对所述生理音信号进行矫正。
生理音信号包括心音信号、肺音信号等。其中,心音(heart sound)指由心肌收缩、心脏瓣膜关闭和血液撞击心室壁、大动脉壁等引起的机械波现象所产生的声音;肺音主要的来源是气体通过呼吸道与气道的分泌物如积液、痰、血等作用后形成水泡破裂产生的。心音信号即采集心音得到的信号,肺音信号即采集肺音得到的信号。
以下以采集心音信号为例进行阐述,骨传导传感器采集的是心脏的振动信号,对于采集到的振动信号还需要进行滤波单元和信号放大单元对其消除噪声信号及放大有用信号,对于第一环境噪声信号,同样需要经过消除噪声信号及放大有用信号的处理。在骨传导传感器采集心音信号时,需要使用者将耳机贴近胸壁,从而使得骨传导传感器采集的心音信号更加准确。
参照图1,图1为本申请生理音采集装置所采集的心音信号(上)及第一环境噪声信号(下)的示意图。为避免由生理音信号采集方法所带来的采集误差(包括使用者手指的运动带来的杂音、耳机与衣服摩擦带来的杂音等),需要通过第一麦克风采集的第一环境噪声信号对心音信号进行矫正。具体过 程为:提取关键心音信号特征(通过医学上的心脏无病变时的正常心音信号来确定)作为标志点,对齐心音信号和第一环境噪声信号;以心音信号为主信号,第一环境噪声信号为矫正信号,判断主信号中的异常信号(异常声音特征)是使用者心脏异常导致的还是采集误差。其中,正常心音信号用于标示心音信号中的正常信号(标示波峰和/或波谷),心音信号中的异常信号即为除正常信号外的信号出现了明显的波峰和/或波谷。需要说明的是,在心音信号中存在一异常信号且该异常信号也存在于第一环境噪声信号时,确定该异常信号为采集误差;在心音信号中存在一异常信号但该异常信号未存在于第一环境噪声信号时,确定该异常信号为使用者心脏异常导致的。
示例性的,所述装置还包括第二麦克风,所述第二麦克风用于采集第二环境噪声信号;在所述第二环境噪声信号中存在与所述第一环境噪声信号中相同的环境噪声特征时,才去除所述生理音信号中的所述环境噪声特征。
对于第二环境噪声信号,同样需要经过消除噪声信号及放大有用信号的处理。需要说明的是,第二麦克风的位置需要远离骨传导传感器,例如两者在耳机中对侧设置,使得骨传导传感器贴近胸壁时,第二麦克风远离胸壁,以使第二麦克风能够接收到清晰的环境噪声。其中,环境噪声为环境中的人大声说话的声音、关门声等。需要说明的是,降噪处理为使用心音信号减去第二环境噪声信号的过程。
需要说明的是,在通过第二环境噪声信号对心音信号进行降噪处理之前,同样需要对齐第二环境噪声信号和心音信号。
设置第二麦克风的目的在于:对心音信号中的异常信号进行二次判断,从而提高去除心音信号中的环境噪声特征的准确性。
示例性的,所述装置还包括提醒模块,所述提醒模块用于在所述生理音信号的生理音信号强度小于或等于预设生理音信号强度阈值时,输出第一提醒信息,以提醒用户调整测量姿势;并且在所述第二环境噪声信号的噪声信号强度大于或等于预设噪声信号强度阈值时,所述提醒模块还用于输出第二提醒信息,以提醒用户选择新环境来采集生理音。
提醒模块包括扬声器、显示器等信号输出模块,用于输出声音信号、文字信号或图像信号等。
生理音信号的生理音信号强度小于或等于预设生理音信号强度阈值的原 因为生理音采集装置未贴近人体。例如使用者隔着衣物使用或未使生理音采集装置与胸口紧密贴合。此时,用户的测量姿势是不正确的,通过输出第一提醒信息来提醒用户,以使生理音采集装置贴近人体。例如第一提醒信息为“未成功采集生理音,请将装置贴合胸口后重试”。在生理音信号的生理音信号强度大于预设生理音信号强度阈值时,则无需输出提醒信息。其中,预设生理音信号强度阈值可以根据需要进行设置,本实施例不作具体限定。
第二环境噪声信号的噪声信号强度大于或等于预设噪声信号强度阈值,此时测得的心音信号会被噪声严重影响,导致采集的生理音信号不准确。因此,可通过输出第二提醒信息来提醒用户选择新环境来采集生理音,并在第二环境噪声信号的噪声信号强度小于预设噪声信号强度阈值时,无需输出第二提醒信息。例如第二提醒信息为“请在安静的环境下进行生理音采集”。其中,预设噪声信号强度阈值可以根据需要进行设置,本实施例不作具体限定。
与现有技术中,获取生理音的方式为就医时进行听诊,而听诊需要在医院由医生进行操作实现,导致生理音的获取不够方便相比,本申请提供一种生理音采集装置,所述装置包括骨传导传感器和第一麦克风;所述骨传导传感器用于采集生理音信号,所述第一麦克风用于采集第一环境噪声信号,所述第一环境噪声信号用于对所述生理音信号进行矫正。本申请通过生理音采集装置中的骨传导传感器来采集生理音信号,从而由装置使用者来操作即可实现生理音的获取,而无需由医生进行操作来获取生理音。此外,通过第一麦克风采集的第一环境噪声信号对生理音信号进行矫正后,提高了生理音信号的准确性。
示例性的,生理音采集装置既可以在耳机、手表等设备中,也可以是仅具备生理音采集功能的一个独立的装置,生理音采集装置的具体实现方式本实施例不作具体限定。
本实施例以生理音采集装置在耳机中为例,参照图2,图2为本申请生理音采集装置实施例涉及的耳机的结构示意图。
本申请第二实施例中,所述穿戴设备包括上述生理音采集装置,该生理音采集装置为包括骨传导传感器、第一麦克风和第二麦克风的生理音采集装置,和未包括第二麦克风的生理音采集装置。穿戴设备可以为手机、平板、 手表、手环等。需要说明的是,穿戴设备中的生理音采集装置可以是与穿戴设备本体一体式设置的,也可以是和穿戴设备本体分离式设置的,对于分离式设置的情况,生理音采集装置既可以和穿戴设备本体通过无线连接,也可以通过连接器(包括pogo-pin连接器、弹片连接器、导线连接器等)和穿戴设备本体有线连接。可选的,本实施例以穿戴设备为手表(包括生理音采集装置和表体)、生理音采集装置分离式设置且与表体通过无线连接为例,其中生理音采集装置为耳机。参照图3和图4,图3和图4为本申请穿戴设备实施例涉及的手表的两种结构示意图。其中,耳机可通过嵌入、磁吸等方式放置于手表上。
示例性的,所述穿戴主体包括第一通信模块,所述耳机包括第二通信模块;
所述第一通信模块用于接收所述第二通信模块发送的去除环境噪声特征的生理音信号;
所述第一通信模块包括蓝牙模块或UWB(Ultra Wide Band,超宽带)模块;
所述第二通信模块包括蓝牙模块或UWB模块。
需要说明的是,上述第一实施例中对心音信号进行处理的过程还可以在表体中实现,即耳机将其采集的心音信号、第一环境噪声信号和第二环境噪声信号发送至表体,表体分别通过第一环境噪声信号和第二环境噪声信号对心音信号进行矫正及降噪处理。其中,矫正及降噪处理与第一实施例中的实施方式基本相同,在此不再赘述。
可以理解,在生理音采集装置与穿戴设备本体一体式设置时,使用者使用穿戴设备贴近胸壁即可。
示例性的,所述穿戴主体还包括心脏监测触发数据采集模块;所述心脏监测触发数据采集模块用于采集心脏监测触发数据;所述心脏监测触发数据用于判断使用者是否属于心脏健康重点关注对象,若是,则所述穿戴主体进入心脏监测模式。
示例性的,所述心脏监测触发数据采集模块为体脂检测模块,所述心脏监测触发数据为体脂率;若所述体脂率大于或等于预设体脂率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
其中,体脂检测模块包括BIA(Bio-impedance analysis,生物电阻测量法)传感器。
可以理解,在使用者体脂率超标,即体脂率大于或等于预设体脂率阈值时,该使用者的心脏极大可能处于不健康的状态,对于这类使用者,可以确定为心脏健康重点关注对象;若体脂率小于预设体脂率阈值,则可确定该使用者的心脏处于不健康的状态较小,则不进入心脏监测模式。其中,预设体脂率阈值可根据需要进行设置,本实施例不作具体限定。
示例性的,所述心脏监测触发数据采集模块为运动检测模块,所述心脏监测触发数据为运动数据;所述运动数据用于判断使用者参加运动的频率是否小于或等于预设频率阈值,若是,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。其中,运动检测模块包括A+G运动传感器。
运动数据包括跑步记录数据、打篮球记录数据、打羽毛球记录数据等,例如8月5日有跑步记录、9月1日有跑步记录、10月3日有跑步记录,则确定使用者跑步的频率为每月一次,且使用者运动的频率为每月一次;又如在8月5日有跑步记录、8月20日有打篮球记录、9月1日有跑步记录、9月23日有打篮球记录、10月3日有跑步记录、10月18日有打羽毛球记录、11月4日有打篮球记录,则使用者运动的频率为每月两次。
需要说明的是,预设频率阈值可根据需要进行设置,本实施例不作具体限定。
示例性的,为提高判断使用者是否属于心脏健康重点关注对象的判断准确性,还可结合体脂检测模块采集的数据和运动检测模块采集的数据共同进行判断。具体地,所述心脏监测触发数据采集模块包括体脂检测模块和运动检测模块,所述心脏监测触发数据包括体脂率和运动数据;若所述体脂率大于或等于预设体脂率阈值且所述使用者参加运动的频率小于或等于预设频率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
可以理解,本实施例中,只有在体脂率大于或等于预设体脂率阈值且使用者参加运动的频率小于或等于预设频率阈值时,才确定使用者属于心脏健康重点关注对象,而在体脂率大于或等于预设体脂率阈值或使用者参加运动 的频率小于或等于预设频率阈值时,均确定使用者不属于心脏健康重点关注对象。
本实施例避免了对使用者是否属于心脏健康重点关注对象的误判,提高了判断使用者是否属于心脏健康重点关注对象的判断准确性。即在体脂率大于或等于预设体脂率阈值,但使用者意识到该问题已经开始频繁进行运动时;或者是使用者参加运动的频率小于或等于预设频率阈值,但体脂率小于预设体脂率阈值时,使用者心脏可能并不容易出现问题。
示例性的所述穿戴主体还包括佩戴检测模块和生理参数信号采集模块;
所述佩戴检测模块用于确定所述穿戴主体是否处于佩戴状态;
所述生理参数信号采集模块用于在所述穿戴主体处于佩戴状态时,采集用户的生理参数信号。
为避免用户未佩戴穿戴主体,还进行生理参数信号的采集,从而提高穿戴主体的电能消耗、降低穿戴主体的续航,本实施例还通过佩戴检测模块来确定穿戴主体是否处于佩戴状态,以提高穿戴主体的续航。其中,佩戴检测模块包括CAP(Capacitance,电容)传感器、红外传感器、超声波传感器、心率传感器等。
示例性的,所述穿戴主体还包括PPG(photoplethysmography,利用光电容积描记)传感器模块;所述PPG传感器模块用于采集使用者的生理参数信号。
其中,PPG传感器模块包括PPG传感器和信号放大单元,PPG传感器采集的生理参数信号同样需要通过信号放大单元进行放大处理。
在穿戴主体进入心脏监测模式后,PPG传感器模块监测心率、血氧等指标(通过采集的生理参数信号实现)。
示例性的,所述穿戴主体还包括提醒模块;所述提醒模块用于根据所述生理参数信号对应的健康风险等级对所述使用者进行健康提醒。
健康风险等级是与指标超出正常指标的多少进行设置的,健康风险等级可包括高中低、高中较低低等,以健康风险等级为高中低为例,指标超出正常指标由多到少分别对应健康风险等级的高中低。例如指标为心率指标,正常的心率指标为100,在心率大于100小于120时,确定健康风险等级为低,此时可不对使用者进行提示;在心率大于或等于120且小于160时,确定健 康风险等级为中,此时可建议使用者检测心音;在心率大于或等于160时,确定健康风险等级为高,此时建议使用者休息或立即就医。
其中,提醒模块包括振动单元、发声单元等,在提醒时可通过振动单元振动和/或发声单元发声,以提醒使用者。
需要说明的是,还可以选择将相关数据(由生理参数信号处理得到的心电数据)通过无线通信模块(包括WIFI/蓝牙模块等)上传至手机,以供手机中的相应APP根据相关数据绘制心脏健康图形,并给出相关的生活与就医建议。
需要说明的是,PPG传感器模块和体脂检测模块均设置于与使用者皮肤直接接触的一侧,以准确采集相关信号。其数量本实施例不作具体限定,可根据需要进行设置。
示例性的,穿戴设备还可包括其他单元或模块。参照图5和图6,图5为本申请穿戴设备实施例中一可选的设备框图,图6为本申请穿戴设备中一优选实施例的数据处理方法流程示意图。其中,微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是穿戴设备的运算控制部分,例如用于处理心音信号、第一环境噪声信号、生理参数信号等;移动通信模块包括4G移动通信模块、5G移动通信模块等,使得穿戴设备可以通过该模块实现与外部的网络(例如互联网)的连接;存储器用于存储各种应用程序以及相关数据(心音信号、第一环境噪声信号、生理参数信号等数据);电源与电源管理单元用于为穿戴设备供电并进行耗电监测、控制等;音频模块除采集声音信号(例如心音信号)外,还可以包含音频解码单元、音频运放单元、MIC单元和扬声器单元等,可以对音频内容进行解码并产生声音。
示例性的,所述穿戴主体还包括处理器;
所述处理器用于基于所述去除环境噪声特征的生理音信号和所述生理参数信号计算所述用户的血压,并基于所述血压执行相应的设备操作。
若血压为高血压,则设备操作包括通过提醒模块提醒用户其血压高或通过提醒模块提供健康医疗建议;若血压非高血压,则设备操作为记录数据,以供用户查阅或作为相关统计的数据基础。
需要说明的是,穿戴主体除了通过数据计算血压外,还可通过相关数据 确定使用者是否存在心脏早搏的情况。
需要说明的是,以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (11)

  1. 一种生理音采集装置,其特征在于,所述装置包括:
    骨传导传感器和第一麦克风;
    所述骨传导传感器用于采集生理音信号,所述第一麦克风用于采集第一环境噪声信号,所述第一环境噪声信号用于去除所述生理音信号中的环境噪声特征。
  2. 如权利要求1所述的装置,其特征在于,所述装置还包括第二麦克风,所述第二麦克风用于采集第二环境噪声信号;在所述第二环境噪声信号中存在与所述第一环境噪声信号中相同的环境噪声特征时,才去除所述生理音信号中的所述环境噪声特征。
  3. 如权利要求2所述的装置,其特征在于,所述装置还包括提醒模块,所述提醒模块用于在所述生理音信号的生理音信号强度小于或等于预设生理音信号强度阈值时,输出第一提醒信息,以提醒用户调整测量姿势;并且在所述第二环境噪声信号的噪声信号强度大于或等于预设噪声信号强度阈值时,所述提醒模块还用于输出第二提醒信息,以提醒用户选择新环境来采集生理音。
  4. 一种穿戴设备,其特征在于,所述穿戴设备包括穿戴主体和耳机;所述耳机包括如权利要求1至3任一项所述的生理音采集装置。
  5. 如权利要求4所述的穿戴设备,其特征在于,所述穿戴主体包括第一通信模块,所述耳机包括第二通信模块;
    所述第一通信模块用于接收所述第二通信模块发送的去除环境噪声特征的生理音信号;
    所述第一通信模块包括蓝牙模块或UWB模块;
    所述第二通信模块包括蓝牙模块或UWB模块。
  6. 如权利要求5所述的穿戴设备,其特征在于,所述穿戴主体还包括心脏监测触发数据采集模块;所述心脏监测触发数据采集模块用于采集心脏监测触发数据;所述心脏监测触发数据用于判断使用者是否属于心脏健康重点关注对象,若是,则所述穿戴主体进入心脏监测模式。
  7. 如权利要求6所述的穿戴设备,其特征在于,所述心脏监测触发数据采集模块为体脂检测模块,所述心脏监测触发数据为体脂率;若所述体脂率大于或等于预设体脂率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
  8. 如权利要求6所述的穿戴设备,其特征在于,所述心脏监测触发数据采集模块为运动检测模块,所述心脏监测触发数据为运动数据;所述运动数据用于判断使用者参加运动的频率是否小于或等于预设频率阈值,若是,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
  9. 如权利要求6所述的穿戴设备,其特征在于,所述心脏监测触发数据采集模块包括体脂检测模块和运动检测模块,所述心脏监测触发数据包括体脂率和运动数据;若所述体脂率大于或等于预设体脂率阈值且所述使用者参加运动的频率小于或等于预设频率阈值,则确定所述使用者属于心脏健康重点关注对象,所述穿戴主体进入心脏监测模式。
  10. 如权利要求7-9任一项所述的穿戴设备,其特征在于,所述穿戴主体还包括佩戴检测模块和生理参数信号采集模块;
    所述佩戴检测模块用于确定所述穿戴主体是否处于佩戴状态;
    所述生理参数信号采集模块用于在所述穿戴主体处于佩戴状态时,采集用户的生理参数信号。
  11. 如权利要求10所述的穿戴设备,其特征在于,所述穿戴主体还包括处理器;
    所述处理器用于基于所述去除环境噪声特征的生理音信号和所述生理参数信号计算所述用户的血压,并基于所述血压执行相应的设备操作。
PCT/CN2023/127153 2022-10-31 2023-10-27 生理音采集装置及穿戴设备 WO2024093826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351541.X 2022-10-31
CN202211351541.XA CN115624347A (zh) 2022-10-31 2022-10-31 生理音采集装置及穿戴设备

Publications (1)

Publication Number Publication Date
WO2024093826A1 true WO2024093826A1 (zh) 2024-05-10

Family

ID=84908138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127153 WO2024093826A1 (zh) 2022-10-31 2023-10-27 生理音采集装置及穿戴设备

Country Status (2)

Country Link
CN (1) CN115624347A (zh)
WO (1) WO2024093826A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115624347A (zh) * 2022-10-31 2023-01-20 歌尔科技有限公司 生理音采集装置及穿戴设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003072A1 (en) * 2005-06-29 2007-01-04 Ward Russell C Ambient noise canceling physiological acoustic monitoring system & method
CN104473628A (zh) * 2014-12-23 2015-04-01 东南大学 一种可穿戴的心音监护装置
CN107798350A (zh) * 2017-11-08 2018-03-13 华南师范大学 一种心肺音信号识别方法和系统
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
US20190125263A1 (en) * 2017-10-30 2019-05-02 Delta Electronics Int'l (Singapore) Pte Ltd System and method for health condition monitoring
CN110916716A (zh) * 2019-12-30 2020-03-27 龙岩学院 一种可穿戴式心音监测设备
CN112336320A (zh) * 2019-08-09 2021-02-09 陈汝建 一种智能项链及心音、肺音、颈大血管音的监测方法
CN115624347A (zh) * 2022-10-31 2023-01-20 歌尔科技有限公司 生理音采集装置及穿戴设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003072A1 (en) * 2005-06-29 2007-01-04 Ward Russell C Ambient noise canceling physiological acoustic monitoring system & method
CN104473628A (zh) * 2014-12-23 2015-04-01 东南大学 一种可穿戴的心音监护装置
US20190125263A1 (en) * 2017-10-30 2019-05-02 Delta Electronics Int'l (Singapore) Pte Ltd System and method for health condition monitoring
CN107798350A (zh) * 2017-11-08 2018-03-13 华南师范大学 一种心肺音信号识别方法和系统
CN109646042A (zh) * 2019-01-29 2019-04-19 电子科技大学 一种基于压电传感器的可穿戴心音和肺音监测装置
CN112336320A (zh) * 2019-08-09 2021-02-09 陈汝建 一种智能项链及心音、肺音、颈大血管音的监测方法
CN110916716A (zh) * 2019-12-30 2020-03-27 龙岩学院 一种可穿戴式心音监测设备
CN115624347A (zh) * 2022-10-31 2023-01-20 歌尔科技有限公司 生理音采集装置及穿戴设备

Also Published As

Publication number Publication date
CN115624347A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
KR101178867B1 (ko) 원격진료 청진기
Jiang et al. A wearable tele-health system towards monitoring COVID-19 and chronic diseases
US20210219925A1 (en) Apparatus and method for detection of physiological events
TWI533845B (zh) 無線電子聽診器裝置
EP3295867B1 (en) A phone for use in health monitoring
US20170319082A1 (en) Phono-Electro-Cardiogram Monitoring Unit
WO2024093826A1 (zh) 生理音采集装置及穿戴设备
US10736515B2 (en) Portable monitoring device for breath detection
US11793453B2 (en) Detecting and measuring snoring
CN109276272A (zh) 一种多功能智能听诊器
RU2742707C1 (ru) Бесконтактный мониторинг частоты сердечных сокращений
US20220248967A1 (en) Detecting and Measuring Snoring
CN203710042U (zh) 听诊服及听诊装置
CN104523289A (zh) 肺叶呼吸音监控及自动分析装置
CN104739391A (zh) 一种便携扣式健康监测装置
US20220151582A1 (en) System and method for assessing pulmonary health
US20230028914A1 (en) Characterization of the nasal cycle
CN211300045U (zh) 一种儿童型多功能医用听诊器
KR20180065039A (ko) 바이탈통합 의료장비를 이용한 스마트폰 유비쿼터스 헬스퀘어 진단시스템
CN110801242A (zh) 一种儿童型多功能医用听诊器
TWM594440U (zh) 穿戴式電子聽診器
CN203555754U (zh) 一种医疗内科用听诊器
CN220109756U (zh) 可穿戴设备
US11083403B1 (en) Pulmonary health assessment system
US20210401395A1 (en) Audible Handheld Stethoscope