WO2024093772A1 - 波束处理方法、装置、通信设备及可读存储介质 - Google Patents

波束处理方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2024093772A1
WO2024093772A1 PCT/CN2023/126674 CN2023126674W WO2024093772A1 WO 2024093772 A1 WO2024093772 A1 WO 2024093772A1 CN 2023126674 W CN2023126674 W CN 2023126674W WO 2024093772 A1 WO2024093772 A1 WO 2024093772A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement value
communication
configuration information
parameters
Prior art date
Application number
PCT/CN2023/126674
Other languages
English (en)
French (fr)
Inventor
黄伟
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024093772A1 publication Critical patent/WO2024093772A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a beam processing method, apparatus, communication equipment and readable storage medium.
  • the uplink of the terminal device based on RF energy harvesting has communication coverage problems due to the limitations of energy storage capacity and energy conversion efficiency.
  • the receiving end can use beamforming technology to obtain beamforming gain, thereby improving communication coverage.
  • the problem is that the device that provides the downlink energy forming beam is the same device as the device that provides the uplink communication reception forming beam, and because the beam quality evaluation criteria of the energy forming beam and the communication forming beam are different, this leads to the traditional beam correspondence no longer being applicable in the architecture based on downlink energy beam power supply and uplink beam reception. In this case, how to obtain better energy forming beams and communication forming beams at the same time is an urgent problem to be solved.
  • the embodiments of the present application provide a beam processing method, apparatus, communication device, and readable storage medium, which can solve the problem of how to simultaneously obtain a better energy shaping beam and a communication shaping beam.
  • a beam processing method comprising:
  • the communication device obtains a first measurement value and a second measurement value of the first signal
  • the communication device determines the parameters of the first beam according to the first measurement value, and determines the parameters of the second beam according to the second measurement value; wherein the first beam is a beam sent by the first device to the second device and is used to provide energy to the second device; the second beam is a beam of the first device that communicates data with the second device; and the communication device is the first device or the third device.
  • a beam processing device including:
  • An acquisition module configured to acquire a first measurement value and a second measurement value of a first signal
  • a determination module is used to determine the parameters of a first beam according to the first measurement value, and to determine the parameters of a second beam according to the second measurement value; wherein the first beam is a beam sent by a first device to a second device and is used to provide energy to the second device; and the second beam is a beam of the first device for data communication with the second device.
  • a communication device comprising a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a communication system comprising a first device and a second device, or comprising a first device, a second device and a third device, wherein the first device or the third device can be used to execute the steps of the beam processing method as described in the first aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method described in the first aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the first beam is a beam sent by the first device to the second device, and is used to provide energy to the second device;
  • the second beam is a beam of the first device that communicates data with the second device, and a better energy shaping beam and a communication shaping beam can be obtained simultaneously based on the same signal, so that the selected energy shaping beam (i.e., the first beam) can provide a higher-power RF power supply effect, and the selected communication shaping beam (i.e., the second beam) can obtain a better beamforming gain.
  • FIG1A is a block diagram of a single-base backscatter communication system applicable to an embodiment of the present application
  • FIG1B is a block diagram of a bistatic backscatter communication system applicable to embodiments of the present application.
  • FIG2 is a flow chart of a beam processing method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a beam in Embodiment 1 of the present application.
  • FIG4 is a schematic diagram of a beam in Embodiment 2 of the present application.
  • FIG5 is a schematic diagram of a beam in Embodiment 3 of the present application.
  • FIG6 is a schematic diagram of the structure of a beam processing device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • Backscatter Communication refers to the use of radio frequency signals from other devices or the environment to modulate signals to transmit information. It is a typical passive IoT device.
  • the basic components and main functions of the backscatter communication transmitter include:
  • -Antenna unit used to receive RF signals, control commands, and also to send modulated backscattered signals.
  • This module is used for backscatter communication equipment to harvest radio frequency energy or other energy, including but not limited to solar energy, kinetic energy, mechanical energy, thermal energy, etc.
  • the energy harvesting module it may also include a battery power supply module.
  • the backscatter communication device is a semi-passive device. The energy harvesting module or power supply module supplies power to all other modules in the device.
  • -Microcontroller including control of baseband signal processing, energy storage or data scheduling status, switch switching, system synchronization, etc.
  • -Signal receiving module used to demodulate control commands or data sent by the backscatter communication receiving end or other network nodes.
  • - Channel coding and modulation module performs channel coding and signal modulation under the control of the controller, and realizes modulation by selecting different load impedances under the control of the controller through a selection switch.
  • -Memory or sensor module used to store device identification (ID) information, location information or sensor data, etc.
  • the future backscatter communication transmitter can also integrate tunnel diode amplifier modules, low noise amplifier modules, etc. to improve the receiving sensitivity and transmission power of the transmitter.
  • the basic building blocks and main functions of the backscatter communication receiver i.e., the reader, include:
  • -Antenna unit used to receive the modulated backscattered signal.
  • -Backscatter signal detection module used to detect the backscatter signal sent by the backscatter communication transmitter, including but not limited to amplitude shift keying (ASK) detection, phase shift keying (PSK) detection, frequency shift keying (FSK) detection or quadrature amplitude modulation (QAM) detection, etc.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • FSK frequency shift keying
  • QAM quadrature amplitude modulation
  • -Demodulation and decoding module demodulates and decodes the detected signal to restore the original information stream.
  • the backscatter communication device controls the reflection coefficient ⁇ of the modulation circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • the backscatter communication device can be a tag in the traditional radio frequency identification (RFID) or a passive or semi-passive Internet of Things (IoT). For convenience, it is collectively referred to as BSC equipment here.
  • RFID radio frequency identification
  • IoT Internet of Things
  • FIG1A shows a schematic diagram of a monostatic backscatter communication system (MBCSs) applicable to an embodiment of the present application.
  • the MBCS system includes a BSC transmitting device (such as a tag) and a reader.
  • the reader includes an RF source and a BSC receiving device.
  • the RF source is used to generate an RF signal to power the BSC transmitting device/Tag.
  • the BSC transmitting device backscatters the modulated RF signal, and the BSC receiving device in the reader demodulates the signal after receiving the backscatter signal. Since the RF source and the BSC receiving device are in the same device, such as the reader here, it becomes a single-station backscatter communication system.
  • the MBCS system since the RF signal sent from the BSC transmitting device will undergo a double near-far effect caused by the signal attenuation of the round-trip signal, the energy attenuation of the signal is large. Therefore, the MBCS system is generally used for short-distance backscatter communication, such as traditional RFID applications.
  • FIG1B shows a schematic diagram of a bistatic backscatter communication system (BBCSs) applicable to an embodiment of the present application.
  • BBCSs bistatic backscatter communication system
  • the RF source, BSC transmitting device and BSC receiving device in the BBCS system are separate, so the problem of large round-trip signal attenuation can be avoided.
  • the performance of the BBCS communication system can be further improved by reasonably placing the RF source.
  • the ambient backscatter communication system ABCSs is also a bistatic backscatter communication system, but unlike the BBCS system in which the RF source is a dedicated signal RF source, the RF source in the ABCS system can be an RF source in an available environment, such as: a TV tower, a cellular base station, a WiFi signal, a Bluetooth signal, etc.
  • the coverage of backscatter communication is limited by the transmission power of network nodes, two-way link attenuation, energy storage efficiency and capacity of energy storage circuits, receiving sensitivity of backscatter communication equipment, gain of transmitting and receiving antennas, and signal interference.
  • the signal strength or sensitivity of the RF signal received by the backscatter communication equipment for power supply is about -20
  • the receiver sensitivity of the backscatter communication device is about -100dBm, while the receiver sensitivity of the traditional terminal device is about -30dBm.
  • the backscatter communication device has the ability to store energy, its receiving sensitivity for receiving the RF signal used for power supply can be relaxed to -30dBm.
  • the characteristics of the energy harvesting circuit that is, the lower the power of the input signal, the lower the energy conversion efficiency. Therefore, when the input RF signal power is lower than -23dBm, it is difficult for the energy harvesting circuit to effectively collect the signal and rectify it into a usable DC voltage.
  • the backscatter signal strength is about 3dB to 5dB lower than the signal strength of the incident power supply signal.
  • the antenna gain of the low hardware cost backscatter communication device is generally not too large, about 0dBi to 2dBi.
  • MIMO multiple-input multiple-output
  • the use of multiple-input multiple-output (MIMO) beamforming technology can make the energy of the RF signal more concentrated, and combined with energy harvesting circuits with high energy conversion efficiency, it can also effectively improve the problem of backscatter communication coverage.
  • MIMO multiple-input multiple-output
  • the combined beamforming scheme of the transceiver end combining the hybrid beamforming of the RF source and the passive beamforming in the backscatter equipment can effectively enhance the forward coverage.
  • backscatter communication In systems that require RF power supply, such as backscatter communication (taking backscatter communication equipment as an example), since backscatter communication equipment needs to rely on RF signals from other equipment for power supply to transmit data, and is affected by the receiving sensitivity of the backscatter communication equipment, the sensitivity of the backscatter communication equipment receiving the power supply signal is about -20dBm to -30dBm, while the sensitivity of receiving communication data is about -50dBm to -60dBm, so RF power supply becomes a bottleneck restricting the transmission distance of backscatter communication.
  • some terminal devices that are not suitable for battery power or have high battery replacement costs can also be powered by RF energy.
  • Such devices can harvest and store energy based on the wireless RF energy of network nodes, and use the harvested energy to autonomously generate carrier signals for communication transmission.
  • the existing beamforming in 5G NR generates directional beams by adjusting the phase of each element in the antenna array, thereby improving transmission coverage, improving edge throughput and suppressing interference.
  • the system capacity and user rate can be improved.
  • the beam alignment at the transceiver end is the prerequisite for achieving reliable transmission of multiple antennas, including beam selection, beam measurement, beam reporting and other steps.
  • the existing beam transmission is mainly designed for communication services. Therefore, in the beam measurement process, parameters such as the Layer 1 Reference Signal Received Power (L1-RSRP) and the Layer 1 Signal to Interference plus Noise Ratio (L1-SINR) of the reference signal are used as signal quality evaluation criteria for beam measurement and beam selection.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • L1-SINR Layer 1 Signal to Interference plus Noise Ratio
  • the power supply device can also use directional beams for beamforming energy transmission, thereby improving the energy conversion of the communication equipment to be powered.
  • Efficiency and near-far effect issues unlike the existing NR system that uses communication signal parameters such as L1-RSRP and L1-SINR as signal quality evaluation criteria for beam measurement and beam selection, the energy beam based on energy transmission does not need to consider the optimal signal quality of the selected beam, but only needs to consider that the selected energy shaping beam can provide the strongest power, including the sum of the total power from the useful signal, interference signal and noise. Therefore, for the beams of energy beam measurement and energy beam selection, it is necessary to design new beam measurement and beam selection criteria, training processes, signaling processes, etc., so that the trained energy shaping beam can achieve a better energy supply effect.
  • the uplink of terminal devices based on RF energy harvesting also has communication coverage problems.
  • the receiving end can also use beamforming technology to obtain beamforming gain, thereby improving communication coverage.
  • the problem is that the device that provides the downlink energy forming beam is the same device as the device that provides the uplink communication reception forming beam, and because the beam quality evaluation criteria of the energy forming beam and the communication forming beam are different, this results in the traditional beam consistency (Beam correspondence) no longer being applicable in the architecture based on downlink energy beam power supply and uplink beam reception, so a new beam training/processing method needs to be designed.
  • the solution in the embodiment of the present application addresses the problem of joint training/processing of energy shaped beams and communication shaped beams, and proposes a method for joint beam training/processing of energy shaped beams and communication shaped beams based on the same reference signal, as well as corresponding signaling procedures, configuration parameters, etc., so that the obtained energy shaped beam can provide a higher-power RF power supply effect, and the obtained communication shaped beam can have a better beamforming gain.
  • the embodiments of the present application can be applied to LTE systems, 5G NR systems and NR evolution systems, such as 6G systems, as well as IEEE 802.11, wireless optical communications, passive Internet of Things, backscatter communications and many other wireless communication systems that require energy beamforming.
  • FIG. 2 is a flowchart of a beam processing method provided in an embodiment of the present application.
  • the method is performed by a communication device. As shown in FIG. 2, the method includes the following steps:
  • Step 21 The communication device obtains a first measurement value and a second measurement value of a first signal
  • Step 22 The communication device determines the parameters of the first beam according to the first measurement value, and determines the parameters of the second beam according to the second measurement value; the first beam is a beam sent by the first device to the second device and used to provide energy to the second device; the second beam is a beam of the first device that performs data communication with the second device. That is, the second beam is a receiving/transmitting beam of the first device used for data communication between the second device and the first device.
  • the communication device may be selected as the first device or the third device.
  • the first device may be selected as, but not limited to, access network devices such as base stations, terminal devices such as UEs, dedicated RF power supply devices, relay devices, etc.
  • the second device may be selected as, but not limited to, backscatter communication devices, terminal devices based on RF power supply, passive Internet of Things devices, etc.
  • the third device is a third-party device different from the first device and the second device, such as a third-party network node, a third-party network device, or other device with configuration or scheduling functions.
  • the first beam may be referred to as an energy shaping beam, which is a beam that provides radio frequency energy to the second device.
  • the second beam may be referred to as a communication shaped beam, and may be a transmitting beam or a receiving beam between the second device and the first device.
  • the first signal may include but is not limited to at least one of the following:
  • SRS Sounding Reference Signal
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • CSI-RS Channel State Information Reference Signal
  • TRS Phase-tracking Reference Signal
  • the following contents are satisfied: the time domain resources are different, the frequency domain resources are the same or different, and the time and frequency domain resources of the plurality of first signals belong to the same resource set, and the same resource set includes time domain resources and frequency domain resources.
  • the resource set of the time and frequency domain resources of the first signal can be allocated by the first device or the third device.
  • the first measurement value of the first signal includes a measurement value related to signal strength, and may include but is not limited to at least one of the following:
  • RSSI received signal strength indication
  • the second measurement value of the first signal includes a measurement value related to signal quality, and may include but is not limited to at least one of the following:
  • RSRP Reference Signal Received Power
  • SINR Signal to Interference plus Noise Ratio
  • the signal-to-noise ratio (SNR) of the first signal is the signal-to-noise ratio (SNR) of the first signal
  • the second measurement value may also be a functional combination of at least two of RSRP, SINR, SNR and RSRQ, such as a linear combination, a product, a ratio, etc.
  • the corresponding first beam and second beam may be sent, thereby providing better energy supply and communication quality.
  • the beam processing method of the embodiment of the present application obtains a first measurement value and a second measurement value of a first signal, and determines a parameter of a first beam according to the first measurement value, and determines a parameter of a second beam according to the second measurement value, wherein the first beam is a beam sent by the first device to the second device and is used to provide energy to the second device; the second beam
  • the beam of the first device that communicates data with the second device can simultaneously obtain a better energy shaping beam and a communication shaping beam based on the same signal, so that the selected energy shaping beam (i.e., the first beam) can provide a stronger RF power supply effect, and the selected communication shaping beam (i.e., the second beam) can obtain a better beamforming gain.
  • the joint training/processing beam method improves the disadvantage of the long training time of the traditional step-by-step training, and solves the high complexity of beam quality measurement and beam reporting.
  • the parameters of the first beam and/or the second beam may include at least one of the following:
  • Precoding matrix indicator (PMI) of the first beam and/or the second beam Precoding matrix indicator (PMI) of the first beam and/or the second beam
  • the number of transmit antennas of the first beam and/or the second beam is the number of transmit antennas of the first beam and/or the second beam
  • the number of receiving antennas of the first beam and/or the second beam is the number of receiving antennas of the first beam and/or the second beam
  • An index of a transmit antenna of the first beam and/or the second beam is an index of a transmit antenna of the first beam and/or the second beam
  • the index of the receive antennas of the first beam and/or the second beam is the index of the receive antennas of the first beam and/or the second beam.
  • the first signal is a signal sent by the second device to the first device.
  • the first device receives the first signal sent by the second device on different receiving beams (Rx beams).
  • the obtaining of the first measurement value and the second measurement value of the first signal may include:
  • the communication device measures a first measurement value and a second measurement value of the first signal; for example, the first device measures a first measurement value and a second measurement value of different first signals on different Rx beams.
  • the time domain resources are different, and the frequency domain resources may be the same or different, but belong to the same resource set.
  • the first signal carries identification (ID) information of the second device so as to identify the second device sending the first signal.
  • ID identification
  • the first signal is a signal generated by the second device, and a method for generating the first signal may include at least one of the following:
  • the second device can collect energy according to the second signal sent by the first device, and autonomously generate the corresponding first signal according to the time-frequency resource configuration of the first signal.
  • the second signal is a radio frequency energy signal and is only used for power supply to the second device;
  • the second signal is obtained by backscattering modulation and resource mapping according to the time-frequency resource configuration of the first signal, wherein the second signal is a radio frequency carrier signal sent by the first device to the second device, and the first signal is a backscattering signal of the second signal;
  • the second signal is obtained by reflecting the second signal according to the configured reflection coefficient, that is, the second signal is not modulated in any way, and the second signal is a radio frequency carrier signal sent by the first device to the second device;
  • the second signal may be SSB, CSI-RS, PSSS, SSSS, TRS or other physical layer signals;
  • the second signal is obtained after performing all-1 backscatter modulation on the second signal, where the second signal is the RF carrier signal sent by the first device to the second device; this all-1 backscatter modulation can be understood as backscatter modulation of the second signal based on the all-1 baseband signal, and the second signal is the first signal at this time; for example, the second signal can be selected as SSB, CSI-RS, PSSS, SSSS, TRS or other physical layer signals.
  • the corresponding parameters of the first signal may be configured for the second device.
  • a communication device such as the first device or the third device may send first configuration information to the second device, where the first configuration information is used to configure the parameters of the first signal, and the parameters of the first signal may include at least one of the following:
  • Time domain related information of the first signal such as whether the first signal is sent periodically, semi-periodically, or aperiodically;
  • Frequency domain related information of the first signal such as bandwidth, frequency band, frequency modulation sequence, etc.
  • the type of the first signal Type for example, the first signal is SRS, TRS, or a newly designed physical layer signal;
  • the second device may determine the corresponding transceiver beam according to the configured or indicated Transmission Configuration Indication (TCI) state.
  • TCI Transmission Configuration Indication
  • a communication device such as a first device or a third device may configure or indicate the TCI state of the second device. If the second device has a transceiver beam, the first device or the third device may configure or indicate one or more TCI states of the second device.
  • the TCI state may be configured or indicated to the second device through at least one of the following:
  • the communication device sends first radio resource control (RRC) configuration information to the second device, where the first RRC configuration information is used to configure at least one TCI state of the second device; for example, an information unit including quasi co-location (QCL) information may be directly configured by high-level RRC signaling, and the information is notified to the second device;
  • RRC radio resource control
  • the communication device sends second RRC configuration information and first downlink control information (Downlink Control Information, DCI) to the second device, where the second RRC configuration information is used to configure a group of TCI states of the second device and a trigger state corresponding to each TCI state, and the first DCI is used to indicate at least one trigger state and a corresponding TCI state to the second device; for example, a group of TCI states and corresponding trigger states can be configured by high-level RRC signaling, one trigger state corresponds to one TCI state, and then one of the trigger states and the corresponding TCI state is indicated by DCI as a QCL reference signal of the non-periodic CSI-RS;
  • DCI Downlink Control Information
  • the communication device sends third RRC configuration information and a first medium access control control element (MAC CE) to the second device, wherein the third RRC configuration information is used to configure a set of TCI states for the second device, and the first MAC CE is used to select a TCI state for the second device from the configured TCI states.
  • At least one TCI state is activated; for example, a group of TCI states can be configured by high-level RRC signaling, each TCI state can determine the corresponding QCL reference, and then a TCI state is selected from them through MAC CE for activation as the QCL reference of the target reference signal;
  • the communication device sends fourth RRC configuration information, a second MAC CE, and a second DCI to the second device, where the third RRC configuration information is used to configure a group of TCI states for the second device, the second MAC CE is used to select up to 8 TCI states from the configured TCI states for activation for the second device, and the second DCI is used to select at least one TCI state from the activated TCI states for indication; for example, a group of TCI states can be configured by high-level RRC signaling, and then up to 8 TCI states can be selected through MAC CE, and at least one TCI state can be selected from the activated TCI states for indication through DCI.
  • the method for configuring or indicating the TCI status of the second device is not limited to the above methods (1) to (4), and other combinations based on RRC, DCI, MAC CE, serial communication interface (Serial Communication Interface), SCI and/or L1 signaling can be adopted, which is not limited in this embodiment.
  • the configuration/instruction subject communication device in the above (1) to (4) is the first device, and the first device configures or indicates the TCI status to the second device.
  • the configuration/instruction subject communication device in the above (1) to (4) is a third device, and the third device configures or indicates the TCI status to the second device.
  • the first device is a base station device
  • the second device is a user equipment UE that requires RF power but the UE can autonomously generate a first signal as an example, to illustrate the joint training/processing process of the downlink energy shaping beam (i.e., the first beam) and the uplink communication receiving shaping beam (i.e., the second beam).
  • This embodiment is applicable to devices to be powered that have autonomously generated carriers, such as passive or semi-passive UEs, which can generate corresponding reference signals according to configuration information.
  • the specific beam joint training/processing process may include:
  • the base station or the third device configures parameters of the first signal of the UE, where the parameters include:
  • the base station sends a second signal in a different Tx beam
  • the second signal is only used for powering the UE.
  • the UE According to the configured parameters of the first signal, the UE generates a first signal and sends multiple first signals;
  • the first signal may be an SRS signal or a newly designed L1 signal.
  • the time domain resources of the multiple first signals are different, and the frequency domain resources are the same or different, and the time and frequency domain resources of the multiple first signals belong to the same resource set.
  • the base station receives the first signal on different Rx beams, and measures a first measurement value and a second measurement value of the first signal. 2. Measurement value;
  • the first measurement value is RSSI.
  • the second measurement value includes at least one of the following: RSRP, SINR, SNR, RSRQ, etc.
  • the base station determines parameters of an energy forming beam (i.e., a first beam) according to the first measurement value, and determines parameters of a communication forming beam (i.e., a second beam) according to the second measurement value;
  • the first device configures or indicates one or more TCI states of the second device.
  • the joint training/processing process of the downlink energy shaping beam (i.e., the first beam) and the uplink communication receiving shaping beam (i.e., the second beam) is described, wherein the BSC device generates the first signal based on the backscattered signal.
  • This embodiment is applicable to the device to be powered being a BSC device that does not have an autonomously generated carrier and requires other devices to provide RF carriers for backscattered transmission, including passive or semi-passive BSC devices.
  • the specific beam joint training/processing process may include:
  • the base station or the third device configures parameters of the first signal of the BSC device, where the parameters include:
  • the base station sends a second signal in a different Tx beam
  • the second signal is used to supply energy to the BSC device and provides a radio frequency carrier for the BSC device.
  • the BSC device According to the configured parameters of the first signal, the BSC device generates a first signal based on the second signal, and sends multiple first signals;
  • the first signal may be an SRS signal or a newly designed L1 signal.
  • the time domain resources of the multiple first signals are different, and the frequency domain resources are the same or different, and the time and frequency domain resources of the multiple first signals belong to the same resource set.
  • the first signal is a backscattered signal of the second signal.
  • the base station receives the first signal on different Rx beams, and measures a first measurement value and a second measurement value of the first signal;
  • the first measurement value is RSSI.
  • the second measurement value includes at least one of the following: RSRP, SINR, SNR, RSRQ, etc.
  • the base station determines parameters of an energy forming beam (i.e., a first beam) according to the first measurement value, and determines parameters of a communication forming beam (i.e., a second beam) according to the second measurement value;
  • the first device configures or instructs the second device to Multiple TCI states.
  • the joint training/processing process of the downlink energy shaping beam (i.e., the first beam) and the uplink communication receiving shaping beam (i.e., the second beam) is described, wherein the BSC device directly forwards the first signal.
  • This embodiment is applicable to the device to be powered being a BSC device that does not have an autonomously generated carrier and requires other devices to provide RF carriers for backscatter transmission, including passive or semi-passive BSC devices.
  • the specific beam joint training/processing process may include:
  • the base station or the third device configures the parameters of the first signal of the BSC device, wherein the parameters include: a reflection coefficient;
  • the base station sends multiple first signals in different Tx beams
  • part of the power of the first signal is used to supply energy to the BSC device, and the first signal itself is also a reference signal.
  • the first signal may be SSB, CSI-RS, TRS, or a newly designed L1 signal.
  • the time domain resources of the multiple first signals are different, and the frequency domain resources are the same or different, and the time and frequency domain resources of the multiple first signals belong to the same resource set.
  • the BSC device directly reflects multiple first signals sent by the base station in different Tx beams
  • the reflected first signal is also a backscattered signal of the first signal sent by the base station, but is not modulated at all, or is modulated with all 1s and resource mapping is performed.
  • the base station receives the first signal on different Rx beams, and measures a first measurement value and a second measurement value of the first signal;
  • the first measurement value is RSSI.
  • the second measurement value includes at least one of the following: RSRP, SINR, SNR, RSRQ, etc.
  • the base station determines parameters of an energy forming beam (i.e., a first beam) according to the first measurement value, and determines parameters of a communication forming beam (i.e., a second beam) according to the second measurement value;
  • the first device configures or indicates one or more TCI states of the second device.
  • the first device may be a UE, a relay device, or a dedicated RF power supply device, and the other steps are basically similar to those of embodiments 1 to 3, and are not repeated here.
  • the device for configuring the time-frequency resources of the first signal may be:
  • the first device for example, operates in Mode 2(d);
  • the third device such as a base station device, can work in Mode 1 or Mode 2;
  • the reference signals sent and received supported by the first device include but are not limited to at least one of the following:
  • the manner in which the first device configures or indicates one or more TCI states of the second device may include any of the following:
  • the beam processing method provided in the embodiment of the present application may be executed by a beam processing device.
  • the beam processing device performing the beam processing method is taken as an example to illustrate the beam processing device provided in the embodiment of the present application.
  • Figure 6 is a schematic diagram of the structure of a beam processing device provided in an embodiment of the present application, and the device is applied to a communication device, and the communication device can be a first device or a third device.
  • the beam processing device 60 includes:
  • An acquisition module 61 configured to acquire a first measurement value and a second measurement value of a first signal
  • the determination module 62 is used to determine the parameters of the first beam according to the first measurement value, and to determine the parameters of the second beam according to the second measurement value; wherein the first beam is a beam sent by the first device to the second device and is used to provide energy to the second device; and the second beam is a beam of the first device for data communication with the second device.
  • the first signal is a signal sent by the second device to the first device, and the acquisition module 61 is specifically used to measure and obtain a first measurement value and a second measurement value of the first signal.
  • the first signal is generated in a manner including at least one of the following:
  • the second signal is obtained by backscattering modulation and resource mapping according to the time-frequency resource configuration of the first signal
  • the second signal is obtained by performing all-1 backscattering modulation
  • the second signal is a radio frequency carrier signal sent by the first device to the second device.
  • the first signal carries identification information of the second device.
  • the following conditions are satisfied: the time domain resources are different, the frequency domain resources are the same or different, and the time and frequency domain resources of the multiple first signals belong to the same resource set.
  • the first measurement value includes at least one of the following:
  • the second measurement value includes at least one of the following:
  • the first signal includes at least one of the following:
  • Synchronization signal block SSB Synchronization signal block
  • the beam processing device 60 further includes:
  • the first sending module is configured to send first configuration information to the second device, where the first configuration information is used to configure parameters of the first signal, and the parameters of the first signal include at least one of the following:
  • the type of the first signal is the type of the first signal
  • the parameters of the first beam and/or the second beam include at least one of the following:
  • a precoding matrix indicator PMI of the first beam and/or the second beam is
  • the number of transmitting antennas of the first beam and/or the second beam are the number of transmitting antennas of the first beam and/or the second beam
  • the number of receiving antennas of the first beam and/or the second beam is the number of receiving antennas of the first beam and/or the second beam
  • the index of the receiving antenna of the first beam and/or the second beam is the index of the receiving antenna of the first beam and/or the second beam.
  • the beam processing device 60 further includes:
  • the second sending module is configured to perform at least one of the following:
  • Second RRC configuration information is used to configure a set of TCI states of the second device and a trigger state corresponding to each TCI state
  • first DCI is used to indicate at least one trigger state and a corresponding TCI state for the second device
  • Fourth RRC configuration information a second MAC CE and a second DCI are sent to the second device, the third RRC configuration information is used to configure a set of TCI states for the second device, the second MAC CE is used to select up to 8 TCI states from the configured TCI states for activation for the second device, and the second DCI is used to select at least one TCI state from the activated TCI states for indication.
  • the beam processing device 60 provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 2 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application also provides a communication device 70, including a processor 71 and a memory 72, and the memory 72 stores programs or instructions that can be executed on the processor 71.
  • the communication device 70 is a terminal
  • the program or instructions are executed by the processor 71 to implement the various steps of the above-mentioned beam processing method embodiment, and can achieve the same technical effect. To avoid repetition, they are not repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the program or instruction is executed by a processor, each process of the above-mentioned beam processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned beam processing method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned beam processing method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, which includes a first device and a second device, or includes a first device, a second device and a third device, and the first device or the third device can be used to execute the steps of the beam processing method as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束处理方法、装置、通信设备及可读存储介质,属于通信技术领域,本申请实施例的波束处理方法包括:通信设备获取第一信号的第一测量值和第二测量值;根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束;所述通信设备为所述第一设备或者第三设备。

Description

波束处理方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年11月3日提交的中国专利申请No.202211371101.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种波束处理方法、装置、通信设备及可读存储介质。
背景技术
在基于下行能量波束供能和上行波束接收的架构中,受限于储能能力与能量转化效率,基于射频能量采集的终端设备的上行存在通信覆盖的问题。为了提升覆盖距离,接收端可以采用波束赋形技术来获得波束赋形增益,从而提升通信覆盖。但存在的问题在于,提供下行能量赋形波束的设备与提供上行通信接收赋形波束的设备是同一个设备,并且由于能量赋形波束和通信赋形波束的波束质量评估准则不一样,这导致了传统的波束一致性(Beam correspondence)在基于下行能量波束供能和上行波束接收的架构中不再适用。这种情况下,如何同时获得较优的能量赋形波束和通信赋形波束是目前急需解决的问题。
发明内容
本申请实施例提供一种波束处理方法、装置、通信设备及可读存储介质,能够解决如何同时获得较优的能量赋形波束和通信赋形波束的问题。
第一方面,提供了一种波束处理方法,包括:
通信设备获取第一信号的第一测量值和第二测量值;
所述通信设备根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为所述第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束;所述通信设备为所述第一设备或者第三设备。
第二方面,提供了一种波束处理装置,包括:
获取模块,用于获取第一信号的第一测量值和第二测量值;
确定模块,用于根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为所述第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束。
第三方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种通信系统,包括第一设备和第二设备,或者包括第一设备、第二设备和第三设备,所述第一设备或第三设备可用于执行如第一方面所述的波束处理方法的步骤。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,通过获取第一信号的第一测量值和第二测量值,并根据第一测量值,确定第一波束的参数,和根据第二测量值,确定第二波束的参数,所述第一波束为第一设备发送给第二设备的,且用于为第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束,可以基于相同的信号同时获得较优的能量赋形波束和通信赋形波束,进而使得选出的能量赋形波束(即第一波束)能够提供功率较强的射频供能效果,同时选出的通信赋形波束(即第二波束)能够获得较好的波束赋形增益。
附图说明
图1A是本申请实施例可应用的一种单基地反向散射通信系统的框图;
图1B是本申请实施例可应用的一种双基地反向散射通信系统的框图;
图2是本申请实施例提供的一种波束处理方法的流程图;
图3是本申请实施例一中的波束示意图;
图4是本申请实施例二中的波束示意图;
图5是本申请实施例三中的波束示意图;
图6是本申请实施例提供的一种波束处理装置的结构示意图;
图7是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(OrthogonalFrequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier FrequencyDivision Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术,比如新空口(New Radio,NR)系统,或第6代(6th Generation,6G)通信系统等。
为了便于理解本申请实施例,首先说明以下内容。
反向散射通信(Backscatter Communication,BSC)是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息,是一种比较典型的无源物联设备。反向散射通信发送端的基本构成模块及主要功能包括:
-天线单元:用于接收射频信号、控制命令,同时用于发送调制的反向散射信号。
-能量采集模块或供能模块:该模块用于反向散射通信设备进行射频能量采集,或者其它能量采集,包括但不限于太阳能、动能、机械能、热能等。另外除了包括能量采集模块,也可能包括电池供能模块,此时反向散射通信设备为半无源设备。能量采集模块或供能模块给设备中的其它所有模块进行供电。
-微控制器:包括控制基带信号处理、储能或数据调度状态、开关切换、系统同步等。
-信号接收模块:用于解调反向散射通信接收端或是其它网络节点发送的控制命令或数据等。
-信道编码和调制模块:在控制器的控制下进行信道编码和信号调制,并通过选择开关在控制器的控制下通过选择不同的负载阻抗来实现调制。
-存储器或传感模块:用于存储设备的标识(Identity,ID)信息、位置信息或是传感数据等。
除了上述典型的构成模块之外,未来的反向散射通信发送端还可以集成隧道二极管放大器模块、低噪声放大器模块等,用于提升发送端的接收灵敏度和发送功率。
可选的,反向散射通信接收端即阅读器的基本构成模块及主要功能包括:
-天线单元:用于接收调制的反向散射信号。
-反向散射信号检波模块:用于对反向散射通信发送端发送的反向散射信号进行检波,包括但不限于幅移键控(Amplitude Shift Keying,ASK)检波、相移键控(Phase-Shift Keying,PSK)检波、频移键控(Frequency-Shift Keying,FSK)检波或正交振幅调制(QuadratureAmplitude Modulation,QAM)检波等。
-解调和解码模块:对检波出的信号进行解调制和解码,以恢复出原始信息流。
反向散射通信设备通过调节其内部阻抗来控制调制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗,j表示复数,θT表示相位。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。基于此,反向散射通信设备,可以是传统射频识别标识(Radio Frequency Identification,RFID)中的标签(Tag),或者是无源或半无源物联网(Passive/Semi-passive Internet of Things,IoT)。为了方便,这里统称为BSC设备。
图1A示出了本申请实施例可应用的一种单基地反向散射通信系统(MonostaticBackscatter Communication System,MBCSs)的示意图。MBCS系统包括BSC发送设备(比如标签Tag)和读写器(Reader),读写器Reader中包含RF射频源和BSC接收设备,RF射频源用于产生RF射频信号从而来给BSC发送设备/Tag供能。BSC发送设备反向散射经过调制后的RF射频信号,Reader中的BSC接收设备接收到该反向散射信号后进行信号解调。由于RF射频源和BSC接收设备是在同一个设备中,比如这里的Reader,因此成为单站反向散射通信系统。MBCS系统中,由于从BSC发送设备发送出去的RF射频信号会经过往返信号的信号衰减引起的双倍远近效应,因而信号的能量衰减大,因而MBCS系统一般用于短距离的反向散射通信,比如传统的RFID应用。
图1B示出了本申请实施例可应用的一种双基地反向散射通信系统(BistaticBackscatter Communication Systems,BBCSs)的示意图。不同于单基地反向散射通信系统(Monostatic Backscatter Communication System,MBCSs),BBCS系统中的RF射频源、BSC发送设备和BSC接收设备是分开的,故可以避免往返信号衰减大的问题。另外,通过合理的放置RF射频源的位置可以进一步提高BBCS通信系统的性能。值得注意的是,环境反向散射通信系统ABCSs也是双基地反向散射通信系统的一种,但与BBCS系统中的射频源为专用的信号射频源不同,ABCS系统中的射频源可以是可用的环境中的射频源,比如:电视塔、蜂窝基站、WiFi信号、蓝牙信号等。
对于反向散射通信中的覆盖,受限于网络节点的发送功率、双程链路衰减、储能电路的储能效率与储能容量、反向散射通信设备的接收灵敏度、收发天线增益以及信号干扰等的影响,反向散射通信的前向和反向覆盖都面临较大的技术挑战。具体地,对于从网络节点到反向散射通信设备的前向链路中,由于驱动能量采集电路工作需要几uW到几十uW能量,因此反向散射通信设备接收用于供能的射频信号的信号强度或灵敏度大约为-20 dBm左右,而传统终端设备的接收机灵敏度为-100dBm左右。如果反向散射通信设备具备储能能力的话,则其接收用于供能的射频信号的接收灵敏度可以放松至-30dBm。另外,考虑到能量采集电路的特性,即输入信号的功率越低能量转化效率也会越低,因此当输入的射频信号功率低于-23dBm的情况下,能量采集电路很难有效的采集信号并整流成可用的直流电压。另一方面,从反向散射通信设备到网络节点的反向链路中,由于部分信号能量被用于供能,因此反向散射的信号强度比入射供能信号的信号强度大约低3dB~5dB。另外,低硬件成本反向散射通信设备的天线增益一般也不会太大,大约为0dBi~2dBi。
采用分离式架构以及集成低功耗放大器都是提升反向散射通信覆盖的有效方式。除此之外,通过使用多输入多输出(Multiple-Input Multiple-Output,MIMO)波束成形技术可以使得射频信号的能量更集中,并结合高能量转化效率的能量采集电路,也可以有效的改善反向散射通信覆盖的问题。在满足反向散射通信设备能量采集最大化的约束条件下,结合射频源混合波束成形以及反向散射设备中被动式波束成形的收发端联合波束成形方案,可有效增强前向覆盖。
在反向散射通信等需要射频供能的系统中(以反向散射通信设备为例),由于反向散射通信设备需要依赖于其它设备的射频信号供能才能进行数据传输,并且受到反向散射通信设备接收灵敏度的影响,反向散射通信设备的接收供能信号的灵敏度约为-20dBm~-30dBm,而接收通信数据的灵敏度约为-50dBm~-60dBm,因此射频供能成为制约反向散射通信传输距离的瓶颈。由于上下行传输信号衰减与节点间的距离相关,以下行为例,距离基站等供能设备更近的反向散射通信设备将收割到更多的能量的同时,需要更少的能量来满足上行传输需求;相反,距离基站较远的反向散射通信设备收割到更少能量的同时,需要更多的能量来满足上行传输需求,这个现象被称为双倍远近效应。基于能量波束赋形可以解决双倍远近效应问题,通过控制波束的宽窄和功率,使得较远的用户收割到更多的能量。
除了反向散射通信,一些不适用电池供电或者更换电池成本高的终端设备也可以基于射频能量进行供能。此类设备可以基于网络节点的无线射频能量进行能量收割与能量存储,并且利用收割到的能量自主生成载波信号来进行通信传输。
现有的5G NR中的波束成型(beamforming)通过调整天线阵中每个阵元的相位来产生具有指向性的波束,从而来提升传输覆盖、改善边缘吞吐量及抑制干扰等。另外如果充分利用信道高空间自由度的特点,实现多流传输,则可以提升系统容量和用户速率。而收发端的波束对齐是实现多天线可靠性传输的前提,包括波束选择、波束测量、波束上报等步骤。现有的波束传输主要是为通信业务设计的,因此在波束测量过程中,是以参考信号的层1参考信号接收功率(Layer 1 Reference Signal Received Power,L1-RSRP)、层1信号与干扰加噪声比(Layer 1 Signal to Interference plus Noise Ratio,L1-SINR)等参量作为波束测量和波束选择的信号质量评估准则的。与NR中的基于定向波束进行传输相同,供能设备也可以采用定向波束进行beamforming传能,从而提高待供能通信设备的能量转化 效率与远近效应问题。但不同于现有的NR系统中采用通信信号的L1-RSRP、L1-SINR等参量作为波束测量和波束选择的信号质量评估准则,基于能量传输的能量波束不需要考虑选择的波束的信号质量最优,而只需要考虑选择的能量赋形波束能够提供最强功率,包括来自有用信号、干扰信号以及噪声的总功率之和。因此,针对于能量波束测量和能量波束选择的波束中,需要设计新的波束测量和波束选择准则、训练过程、信令流程等,以使得训练出的能量赋形波束能够达到较优的供能效果。
更进一步的,受限于储能能力与能量转化效率,基于射频能量采集的终端设备的上行同样也存在通信覆盖的问题。为了提升覆盖距离,接收端也可以采用波束赋形技术来获得波束赋形增益,从而提升通信覆盖。但存在的问题在于,提供下行能量赋形波束的设备与提供上行通信接收赋形波束的设备是同一个设备,并且由于能量赋形波束和通信赋形波束的波束质量评估准则不一样,这导致了传统的波束一致性(Beam correspondence)在基于下行能量波束供能和上行波束接收的架构中不再适用,因此需要设计新的波束训练/处理方法。
本申请实施例中方案针对能量赋形波束和通信赋形波束的联合训练/处理问题,提出了一种基于相同的参考信号进行能量赋形波束和通信赋形波束联合波束训练/处理的方法,以及对应的信令流程、配置参数等,使得获得的能量赋形波束能够提供功率较强的射频供能效果,同时获得的通信赋形波束能够具有较好的波束赋形增益。
本申请实施例可应用于LTE系统、5G NR系统以及NR演进系统,比如6G系统,以及IEEE 802.11、无线光通信、无源物联网、反向散射通信等诸多适用于需要进行能量波束赋形的无线通信系统等。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的波束处理方法、装置、通信设备及可读存储介质进行详细地说明。
请参见图2,图2是本申请实施例提供的一种波束处理方法的流程图,该方法由通信设备执行,如图2所示,该方法包括如下步骤:
步骤21:通信设备获取第一信号的第一测量值和第二测量值;
步骤22:通信设备根据第一测量值,确定第一波束的参数,和根据第二测量值,确定第二波束的参数;所述第一波束为第一设备发送给第二设备的,且用于为第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束。即所述第二波束为第二设备与第一设备之间的用于数据通信的第一设备的接收/发送波束。
本实施例中,所述通信设备可选为第一设备或者第三设备。所述第一设备可选为但不限于:基站等接入网设备、UE等终端设备、专用的射频供能设备、中继设备等。所述第二设备可选为但不限于:反向散射通信设备、基于射频供能的终端设备、无源物联网设备等。所述第三设备为不同于第一设备和第二设备的第三方设备,比如为第三方网络节点、第三方网络设备等具有配置或调度功能的设备。
这里,所述第一波束可称为能量赋形波束,为给第二设备提供射频能量的波束。所述 第二波束可称为通信赋形波束,可以为第二设备与第一设备之间的发送波束或接收波束。
可选的,所述第一信号可以包括但不限于以下至少一项:
探测参考信号(Sounding Reference Signal,SRS);
同步信号块(Synchronization Signal Block,SSB);
主旁路同步信号(Primary Sidelink Synchronization Signal,PSSS)和/或辅旁路同步信号(Secondary Sidelink Synchronization Signal,SSSS);
信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
相位跟踪参考信号(Phase-tracking Reference Signal,TRS);
其它物理层信号,比如新设计的物理层信号。
一些实施例中,对于与不同第一波束和第二波束对应的多个第一信号,满足以下内容:时域资源不同,频域资源相同或不同,且该多个第一信号的时频域资源属于同一资源集,此同一资源集中包含时域资源和频域资源。比如,可以由第一设备或第三设备分配第一信号的时频域资源的资源集。
可选的,所述第一信号的第一测量值为与信号强度相关的测量值,可以包括但不限于以下至少一项:
第一信号的接收信号强度指示(Received Signal Strength Indication,RSSI);
第一信号的RSSI与目标RSSI的差值,所述目标RSSI为配置或预定义的值,可以基于实际需求设定。
可选的,所述第一信号的第二测量值为与信号质量相关的测量值,可以包括但不限于以下至少一项:
第一信号的参考信号接收功率(Reference Signal Received Power,RSRP);
第一信号的RSRP与目标RSRP的差值,所述目标RSRP为配置或预定义的值;
第一信号的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR);
第一信号的SINR与目标SINR的差值,所述目标SINR为配置或预定义的值;
第一信号的信噪比(Signal to Noise Ratio,SNR);
第一信号的SNR与目标SNR的差值,所述目标SNR为配置或预定义的值;
第一信号的参考信号接收质量(Reference Signal Received Quality,RSRQ);
第一信号的RSRQ与目标RSRQ的差值,所述目标RSRQ为配置或预定义的值。
此外,所述第二测量值还可以为RSRP、SINR、SNR和RSRQ中的至少两项的函数组合,比如线性组合、乘积、比值等。
一些实施例中,在确定第一波束的参数和第二波束的参数之后,即可发送相应的第一波束和第二波束,从而提供较优的能量供应和通信质量。
本申请实施例的波束处理方法,通过获取第一信号的第一测量值和第二测量值,并根据第一测量值,确定第一波束的参数,和根据第二测量值,确定第二波束的参数,所述第一波束为第一设备发送给第二设备的,且用于为第二设备提供能量的波束;所述第二波束 为与第二设备进行数据通信的第一设备的波束,可以基于相同的信号同时获得较优的能量赋形波束和通信赋形波束,进而使得选出的能量赋形波束(即第一波束)能够提供功率较强的射频供能效果,同时选出的通信赋形波束(即第二波束)能够获得较好的波束赋形增益。进一步的,还可以解决传统的波束一致性(Beam correspondence)在基于下行能量波束供能和上行波束接收的架构中不再适用的问题,并且联合训练/处理波束的方式改善了传统分步训练的训练时间长的缺点,同时解决了进行波束质量测量、波束上报带来的复杂度高的问题。
可选的,上述的第一波束和/或第二波束的参数可以包括以下至少一项:
第一波束和/或第二波束的宽窄;
第一波束和/或第二波束的方向;
第一波束和/或第二波束的功率;
第一波束和/或第二波束的索引;
第一波束和/或第二波束的预编码矩阵指示(Precoding matrix indicator,PMI);
第一波束和/或第二波束的占空比;
第一波束和/或第二波束的发送天线个数;
第一波束和/或第二波束的接收天线个数;
第一波束和/或第二波束的发送天线的索引;
第一波束和/或第二波束的接收天线的索引。
可选的,所述第一信号为第二设备发送给第一设备的信号,比如第一设备在不同的接收波束(Rx beam)上接收第二设备发送的第一信号,上述获取第一信号的第一测量值和第二测量值可以包括:
通信设备测量得到所述第一信号的第一测量值和第二测量值;比如,第一设备在不同的Rx beam上测量得到不同第一信号的第一测量值和第二测量值。
一些实施例中,对于在不同Rx beam上的多个第一信号,时域资源不同,频域资源可以相同或不同,但属于同一资源集。
一些实施例中,上述的第一信号中携带第二设备的标识(ID)信息,以便识别发送该第一信号的第二设备。
可选的,所述第一信号为第二设备生成的信号,所述第一信号的生成方式可以包括以下至少一项:
由第二设备自主生成;比如,第二设备可以根据第一设备发送的第二信号进行能量采集,并根据第一信号的时频资源配置自主生成相应的第一信号,此时第二信号为射频能量信号,只用于第二设备的供能;
按照第一信号的时频资源配置对第二信号进行反向散射调制和资源映射后得到,所述第二信号为第一设备发送给第二设备的射频载波信号,所述第一信号为第二信号的反向散射信号;
按照配置的反射系数对第二信号进行反射后得到,即不对第二信号进行任何调制,所述第二信号为第一设备发送给第二设备的射频载波信号;比如,所述第二信号可选为SSB、CSI-RS、PSSS、SSSS、TRS或其他物理层信号等;
对第二信号进行全1反向散射调制后得到,所述第二信号为第一设备发送给第二设备的射频载波信号;此全1反向散射调制可理解为基于全1的基带信号对第二信号进行反向散射调制,此时第二信号即为第一信号;比如,所述第二信号可选为SSB、CSI-RS、PSSS、SSSS、TRS或其他物理层信号等。
本申请实施例中,为了保证第一信号的收发,可以为第二设备配置相应的第一信号的参数。通信设备如第一设备或第三设备,可以向第二设备发送第一配置信息,所述第一配置信息用于配置第一信号的参数,所述第一信号的参数可以包括以下至少一项:
第一信号的时域相关信息,比如第一信号的发送为周期、半周期、非周期等;
第一信号的频域相关信息,比如带宽、频带、调频序列等;
第一信号的类型Type,比如,第一信号为SRS、TRS或新设计的物理层信号等;
第一信号的调制方式;
第一信号的序列生成方式;
第一信号的功率;
第一信号的反射系数。
本申请实施例中,第二设备可以根据配置或指示的传输配置指示(TransmissionConfiguration Indication,TCI)状态,确定对应的收发波束。通信设备如第一设备或第三设备,可以配置或指示第二设备的TCI状态。如果第二设备具备收发波束,第一设备或第三设备可以配置或指示第二设备的一个或多个TCI状态。
可选的,本实施例可以通过如下至少一项向第二设备配置或指示TCI状态:
(1)通信设备向第二设备发送第一无线资源控制(Radio Resource Control,RRC)配置信息,所述第一RRC配置信息用于配置第二设备的至少一个TCI状态;比如,可以直接由高层RRC信令配置一个包含准共址(Quasi Co-Location,QCL)信息的信息单元,并告知第二设备;
(2)通信设备向第二设备发送第二RRC配置信息和第一下行控制信息(DownlinkControl Information,DCI),所述第二RRC配置信息用于配置第二设备的一组TCI状态以及每个TCI状态对应的触发状态,所述第一DCI用于为第二设备指示至少一个触发状态及对应的TCI状态;比如,可以由高层RRC信令配置一组TCI状态以及对应的触发状态,一个触发状态对应一个TCI状态,而后通过DCI指示其中一个触发态及对应的TCI状态作为非周期CSI-RS的QCL参考信号;
(3)通信设备向第二设备发送第三RRC配置信息和第一媒体接入控制控制单元(Medium Access Control Control Element,MAC CE),所述第三RRC配置信息用于配置第二设备的一组TCI状态,所述第一MAC CE用于为第二设备从配置的TCI状态中选择 至少一个TCI状态进行激活;比如,可以由高层RRC信令配置一组TCI状态,每个TCI状态可以确定相应的QCL参考,而后通过MAC CE从中选择一个TCI状态进行激活,作为目标参考信号的QCL参考;
(4)通信设备向第二设备发送第四RRC配置信息、第二MAC CE和第二DCI,所述第三RRC配置信息用于配置第二设备的一组TCI状态,所述第二MAC CE用于为第二设备从配置的TCI状态中选择最多8个TCI状态进行激活,所述第二DCI用于从激活的TCI状态中选择至少一个TCI状态进行指示;比如,可以由高层RRC信令配置一组TCI状态,而后通过MAC CE选择最多8个TCI状态,并通过DCI从激活的TCI状态中选择至少一个TCI状态进行指示。
需指出的,对于配置或指示第二设备的TCI状态的方式,不限于上述(1)至(4)中的方式,可以采用基于RRC、DCI、MAC CE、串行通信接口(Serial Communication Interface),SCI和/或L1信令的其它组合方式,本实施例不对此进行限定。
一些实施例中,上述(1)至(4)中的配置/指示主体通信设备为第一设备,由第一设备向第二设备配置或指示TCI状态。
另一些实施例中,上述(1)至(4)中的配置/指示主体通信设备为第三设备,由第三设备向第二设备配置或指示TCI状态。
实施例一
本实施例一中,如图3所示,以第一设备为基站设备,第二设备为需要射频供能的用户设备UE但该UE可以自主生成第一信号为例,说明下行能量赋形波束(即第一波束)与上行通信接收赋形波束(即第二波束)的联合训练/处理过程。本实施例适用于待供能的设备为具有自主生成载波的设备,比如无源或半无源的UE,该UE可根据配置信息生成对应的参考信号。具体的波束联合训练/处理过程可以包括:
S1:基站或第三设备配置UE的第一信号的参数,所述参数包括:
(a)时域相关参数;
(b)频域相关参数;
(c)调制方式;
(d)发送功率;
(e)序列生成方式。
S2:基站在不同的Tx beam发送第二信号;
比如,该第二信号只用于UE的供能。
S3:根据配置的第一信号的参数,UE生成第一信号,并发送多个第一信号;
比如,该第一信号可以为SRS信号或新设计的L1信号等。
比如,多个第一信号的时域资源不同,频域资源相同或不同,且多个第一信号的时频域资源属于同一个资源集。
S4:基站在不同的Rx beam上接收第一信号,并测量得到第一信号的第一测量值和第 二测量值;
比如,所述第一测量值为RSSI。
比如,所述第二测量值包括以下至少一项:RSRP、SINR、SNR、RSRQ等。
S5:基站根据第一测量值确定能量赋形波束(即第一波束)的参数,并根据第二测量值确定通信赋形波束(即第二波束)的参数;
S6:可选的,如果第二设备具备收发波束,则第一设备配置或指示第二设备的一个或多个TCI状态。
实施例二
本实施例二中,如图4所示,以第一设备为基站设备,第二设备为需要射频供能与提供射频载波的BSC设备为例,说明下行能量赋形波束(即第一波束)与上行通信接收赋形波束(即第二波束)的联合训练/处理过程,其中BSC设备基于反向散射信号生成第一信号。本实施例适用于待供能的设备为本身不具有自主生成载波的BSC设备,需要其它设备提供射频载波后进行反向散射传输,包括无源或半无源的BSC设备。具体的波束联合训练/处理过程可以包括:
S1:基站或第三设备配置BSC设备的第一信号的参数,所述参数包括:
(a)时域相关参数;
(b)频域相关参数;
(c)调制方式;
(d)发送功率;
(e)序列生成方式。
S2:基站在不同的Tx beam发送第二信号;
比如,该第二信号为用于BSC设备的供能,同时为BSC设备提供射频载波。
S3:根据配置的第一信号的参数,BSC设备基于第二信号生成第一信号,并发送多个第一信号;
比如,该第一信号可以为SRS信号或新设计的L1信号等。
比如,多个第一信号的时域资源不同,频域资源相同或不同,且多个第一信号的时频域资源属于同一个资源集。
比如,第一信号为第二信号的反向散射信号。
S4:基站在不同的Rx beam上接收第一信号,并测量得到第一信号的第一测量值和第二测量值;
比如,所述第一测量值为RSSI。
比如,所述第二测量值包括以下至少一项:RSRP、SINR、SNR、RSRQ等。
S5:基站根据第一测量值确定能量赋形波束(即第一波束)的参数,并根据第二测量值确定通信赋形波束(即第二波束)的参数;
S6:可选的,如果第二设备具备收发波束,则第一设备配置或指示第二设备的一个或 多个TCI状态。
实施例三
本实施例三中,如图5所示,以第一设备为基站设备,第二设备为需要射频供能与提供射频载波的BSC设备为例,说明下行能量赋形波束(即第一波束)与上行通信接收赋形波束(即第二波束)的联合训练/处理过程,其中BSC设备直接转发第一信号。本实施例适用于待供能的设备为本身不具有自主生成载波的BSC设备,需要其它设备提供射频载波后进行反向散射传输,包括无源或半无源的BSC设备。具体的波束联合训练/处理过程可以包括:
S1:基站或第三设备配置BSC设备的第一信号的参数,所述参数包括:反射系数;
S2:基站在不同的Tx beam发送多个第一信号;
比如,第一信号的部分功率用于BSC设备的供能,本身也是参考信号。
比如,第一信号可以为SSB、CSI-RS、TRS或者新设计的L1信号等。
比如,多个第一信号的时域资源不同,频域资源相同或不同,且多个第一信号的时频域资源属于同一个资源集。
S3:根据配置的反射系数,BSC设备直接反射基站在不同的Tx beam发送的多个第一信号;
比如,反射的第一信号同样为基站发送的第一信号的反向散射信号,只是不经过任何调制,或者进行全1调制和资源映射。
S4:基站在不同的Rx beam上接收第一信号,并测量得到第一信号的第一测量值和第二测量值;
比如,所述第一测量值为RSSI。
比如,所述第二测量值包括以下至少一项:RSRP、SINR、SNR、RSRQ等。
S5:基站根据第一测量值确定能量赋形波束(即第一波束)的参数,并根据第二测量值确定通信赋形波束(即第二波束)的参数;
S6:可选的,如果第二设备具备收发波束,则第一设备配置或指示第二设备的一个或多个TCI状态。
需指出的,相比上述实施例一至三,在其它实施例中,第一设备可以为UE、Relay设备或者专用的射频供能设备等,其他步骤与实施例一至三基本相似,在此不再赘述。以第一设备为UE为例,配置第一信号的时频资源的设备可以是:
(a)第一设备,比如工作在Mode2(d)模式;
(b)第三设备,比如基站设备,此时工作在Mode1或Mode2模式都可以;
其中,第一设备支持的发送和接收的参考信号包括但不限于以下至少一项:
PSSS/SSSS;
SL CSI-RS;
SRS。
更进一步的,上述实施例一至三中,第一设备配置或指示第二设备的一个或多个TCI状态的方式可包括以下任一种:
(a)RRC配置;
(b)RRC配置和SCI指示;
(c)RRC配置和MAC CE激活;
(d)RRC配置、MAC CE激活和SCI指示;
(e)SCI指示;
(f)基于RRC、DCI、MAC CE、SCI或L1信令的其它组合方式。
本申请实施例提供的波束处理方法,执行主体可以为波束处理装置。本申请实施例中以波束处理装置执行波束处理方法为例,说明本申请实施例提供的波束处理装置。
请参见图6,图6是本申请实施例提供的一种波束处理装置的结构示意图,该装置应用于通信设备,所述通信设备可选为第一设备或者第三设备。如图6所示,波束处理装置60包括:
获取模块61,用于获取第一信号的第一测量值和第二测量值;
确定模块62,用于根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为所述第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束。
可选的,所述第一信号为第二设备发送给第一设备的信号,所述获取模块61具体用于:测量得到所述第一信号的第一测量值和第二测量值。
可选的,所述第一信号的生成方式包括以下至少一项:
由所述第二设备自主生成;
按照所述第一信号的时频资源配置对第二信号进行反向散射调制和资源映射后得到;
按照配置的反射系数对第二信号进行反射后得到;
对第二信号进行全1反向散射调制后得到;
其中,所述第二信号为所述第一设备发送给所述第二设备的射频载波信号。
可选的,所述第一信号中携带所述第二设备的标识信息。
可选的,对于在不同波束上发送的多个第一信号,满足以下内容:时域资源不同,频域资源相同或不同,且所述多个第一信号的时频域资源属于同一资源集。
可选的,所述第一测量值包括以下至少一项:
接收信号强度指示RSSI;
所述第一信号的RSSI与目标RSSI的差值,所述目标RSSI为配置或预定义的值;
和/或,所述第二测量值包括以下至少一项:
参考信号接收功率RSRP;
所述第一信号的RSRP与目标RSRP的差值,所述目标RSRP为配置或预定义的值;
信号与干扰加噪声比SINR;
所述第一信号的SINR与目标SINR的差值,所述目标SINR为配置或预定义的值;
信噪比SNR;
所述第一信号的SNR与目标SNR的差值,所述目标SNR为配置或预定义的值;
参考信号接收质量RSRQ;
所述第一信号的RSRQ与目标RSRQ的差值,所述目标RSRQ为配置或预定义的值。
可选的,所述第一信号包括以下至少一项:
探测参考信号SRS;
同步信号块SSB;
主旁路同步信号PSSS和/或辅旁路同步信号SSSS;
信道状态信息参考信号CSI-RS;
相位跟踪参考信号TRS。
可选的,波束处理装置60还包括:
第一发送模块,用于向所述第二设备发送第一配置信息,所述第一配置信息用于配置所述第一信号的参数,所述第一信号的参数包括以下至少一项:
第一信号的时域相关信息;
第一信号的频域相关信息;
第一信号的类型;
第一信号的调制方式;
第一信号的序列生成方式;
第一信号的功率;
第一信号的反射系数。
可选的,所述第一波束和/或第二波束的参数包括以下至少一项:
所述第一波束和/或第二波束的宽窄;
所述第一波束和/或第二波束的方向;
所述第一波束和/或第二波束的功率;
所述第一波束和/或第二波束的索引;
所述第一波束和/或第二波束的预编码矩阵指示PMI;
所述第一波束和/或第二波束的占空比;
所述第一波束和/或第二波束的发送天线个数;
所述第一波束和/或第二波束的接收天线个数;
所述第一波束和/或第二波束的发送天线的索引;
所述第一波束和/或第二波束的接收天线的索引。
可选的,波束处理装置60还包括:
第二发送模块,用于执行以下至少一项:
向所述第二设备发送第一RRC配置信息,所述第一RRC配置信息用于配置所述第二设备的至少一个传输配置指示TCI状态;
向所述第二设备发送第二RRC配置信息和第一DCI,所述第二RRC配置信息用于配置所述第二设备的一组TCI状态以及每个TCI状态对应的触发状态,所述第一DCI用于为所述第二设备指示至少一个触发状态及对应的TCI状态;
向所述第二设备发送第三RRC配置信息和第一MAC CE,所述第三RRC配置信息用于配置所述第二设备的一组TCI状态,所述第一MAC CE用于为所述第二设备从配置的TCI状态中选择至少一个TCI状态进行激活;
向所述第二设备发送第四RRC配置信息、第二MAC CE和第二DCI,所述第三RRC配置信息用于配置所述第二设备的一组TCI状态,所述第二MAC CE用于为所述第二设备从配置的TCI状态中选择最多8个TCI状态进行激活,所述第二DCI用于从激活的TCI状态中选择至少一个TCI状态进行指示。
本申请实施例提供的波束处理装置60能够实现图2所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备70,包括处理器71和存储器72,存储器72上存储有可在所述处理器71上运行的程序或指令,该通信设备70为终端时,该程序或指令被处理器71执行时实现上述波束处理方法实施例的各个步骤,且能达到相同的技术效果,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该处理器为上述实施例中所述的终端中的处理器。该可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述波束处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统包括第一设备和第二设备,或者包括第一设备、第二设备和第三设备,所述第一设备或第三设备可用于执行如上所述的波束处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排 他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (15)

  1. 一种波束处理方法,包括:
    通信设备获取第一信号的第一测量值和第二测量值;
    所述通信设备根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为所述第二设备提供能量的波束;所述第二波束为与所述第二设备进行数据通信的第一设备的波束;所述通信设备为所述第一设备或者第三设备。
  2. 根据权利要求1所述的方法,其中,所述第一信号为所述第二设备发送给所述第一设备的信号,所述获取第一信号的第一测量值和第二测量值包括:
    所述通信设备测量得到所述第一信号的第一测量值和第二测量值。
  3. 根据权利要求2所述的方法,其中,所述第一信号的生成方式包括以下至少一项:
    由所述第二设备自主生成;
    按照所述第一信号的时频资源配置对第二信号进行反向散射调制和资源映射后得到;
    按照配置的反射系数对第二信号进行反射后得到;
    对第二信号进行全1反向散射调制后得到;
    其中,所述第二信号为所述第一设备发送给所述第二设备的射频载波信号。
  4. 根据权利要求2所述的方法,其中,所述第一信号中携带所述第二设备的标识信息。
  5. 根据权利要求1所述的方法,其中,对于在不同波束上发送的多个第一信号,满足以下内容:
    时域资源不同,频域资源相同或不同,且所述多个第一信号的时频域资源属于同一资源集。
  6. 根据权利要求1至5任一项所述的方法,其中,所述第一测量值包括以下至少一项:
    接收信号强度指示RSSI;
    所述第一信号的RSSI与目标RSSI的差值,所述目标RSSI为配置或预定义的值;
    和/或,
    所述第二测量值包括以下至少一项:
    参考信号接收功率RSRP;
    所述第一信号的RSRP与目标RSRP的差值,所述目标RSRP为配置或预定义的值;
    信号与干扰加噪声比SINR;
    所述第一信号的SINR与目标SINR的差值,所述目标SINR为配置或预定义的值;
    信噪比SNR;
    所述第一信号的SNR与目标SNR的差值,所述目标SNR为配置或预定义的值;
    参考信号接收质量RSRQ;
    所述第一信号的RSRQ与目标RSRQ的差值,所述目标RSRQ为配置或预定义的值。
  7. 根据权利要求1至5任一项所述的方法,其中,所述第一信号包括以下至少一项:
    探测参考信号SRS;
    同步信号块SSB;
    主旁路同步信号PSSS和/或辅旁路同步信号SSSS;
    信道状态信息参考信号CSI-RS;
    相位跟踪参考信号TRS。
  8. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述通信设备向所述第二设备发送第一配置信息,所述第一配置信息用于配置所述第一信号的参数,所述第一信号的参数包括以下至少一项:
    所述第一信号的时域相关信息;
    所述第一信号的频域相关信息;
    所述第一信号的类型;
    所述第一信号的调制方式;
    所述第一信号的序列生成方式;
    所述第一信号的功率;
    所述第一信号的反射系数。
  9. 根据权利要求1至5任一项所述的方法,其中,所述第一波束和/或第二波束的参数包括以下至少一项:
    所述第一波束和/或第二波束的宽窄;
    所述第一波束和/或第二波束的方向;
    所述第一波束和/或第二波束的功率;
    所述第一波束和/或第二波束的索引;
    所述第一波束和/或第二波束的预编码矩阵指示PMI;
    所述第一波束和/或第二波束的占空比;
    所述第一波束和/或第二波束的发送天线个数;
    所述第一波束和/或第二波束的接收天线个数;
    所述第一波束和/或第二波束的发送天线的索引;
    所述第一波束和/或第二波束的接收天线的索引。
  10. 根据权利要求1所述的方法,其中,所述方法还包括以下至少一项:
    所述通信设备向所述第二设备发送第一无线资源控制RRC配置信息,所述第一RRC配置信息用于配置所述第二设备的至少一个传输配置指示TCI状态;
    所述通信设备向所述第二设备发送第二RRC配置信息和第一下行控制信息DCI,所述第二RRC配置信息用于配置所述第二设备的一组TCI状态以及每个TCI状态对应的触 发状态,所述第一DCI用于为所述第二设备指示至少一个触发状态及对应的TCI状态;
    所述通信设备向所述第二设备发送第三RRC配置信息和第一媒体接入控制控制单元MAC CE,所述第三RRC配置信息用于配置所述第二设备的一组TCI状态,所述第一MAC CE用于为所述第二设备从配置的TCI状态中选择至少一个TCI状态进行激活;
    所述通信设备向所述第二设备发送第四RRC配置信息、第二MAC CE和第二DCI,所述第三RRC配置信息用于配置所述第二设备的一组TCI状态,所述第二MAC CE用于为所述第二设备从配置的TCI状态中选择最多8个TCI状态进行激活,所述第二DCI用于从激活的TCI状态中选择至少一个TCI状态进行指示。
  11. 一种波束处理装置,包括:
    获取模块,用于获取第一信号的第一测量值和第二测量值;
    确定模块,用于根据所述第一测量值,确定第一波束的参数,和根据所述第二测量值,确定第二波束的参数;其中,所述第一波束为第一设备发送给第二设备的,且用于为所述第二设备提供能量的波束;所述第二波束为与第二设备进行数据通信的第一设备的波束。
  12. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至10任一项所述的波束处理方法的步骤。
  13. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至10任一项所述的波束处理方法的步骤。
  14. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至10任一项所述的波束处理方法的步骤。
  15. 一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至10任一项所述的波束处理方法的步骤。
PCT/CN2023/126674 2022-11-03 2023-10-26 波束处理方法、装置、通信设备及可读存储介质 WO2024093772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211371101.0A CN118041406A (zh) 2022-11-03 2022-11-03 波束处理方法、装置、通信设备及可读存储介质
CN202211371101.0 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093772A1 true WO2024093772A1 (zh) 2024-05-10

Family

ID=90929696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126674 WO2024093772A1 (zh) 2022-11-03 2023-10-26 波束处理方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN118041406A (zh)
WO (1) WO2024093772A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430148A (zh) * 2019-07-18 2019-11-08 华中科技大学 一种背向散射通信系统及其能量波束赋形的优化方法
CN111277311A (zh) * 2020-02-10 2020-06-12 电子科技大学 毫米波共生通信系统主被动式联合波束赋形设计方法
WO2021023232A1 (zh) * 2019-08-05 2021-02-11 维沃移动通信有限公司 波束信息更新的方法、终端设备和网络设备
CN113099534A (zh) * 2021-03-29 2021-07-09 西北工业大学 一种环境反向散射通信系统的资源分配方法
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430148A (zh) * 2019-07-18 2019-11-08 华中科技大学 一种背向散射通信系统及其能量波束赋形的优化方法
WO2021023232A1 (zh) * 2019-08-05 2021-02-11 维沃移动通信有限公司 波束信息更新的方法、终端设备和网络设备
CN111277311A (zh) * 2020-02-10 2020-06-12 电子科技大学 毫米波共生通信系统主被动式联合波束赋形设计方法
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System
CN113099534A (zh) * 2021-03-29 2021-07-09 西北工业大学 一种环境反向散射通信系统的资源分配方法

Also Published As

Publication number Publication date
CN118041406A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US10873867B2 (en) Method, apparatus, and computer program product for improving reliability in wireless communication
US20240163840A1 (en) Use of sidelink communications for backscatter node positioning within wireless networks
KR101740446B1 (ko) 협력 단말을 결정하는 방법 및 그 장치
JP2020507949A (ja) 無線通信方法、端末デバイス、及びネットワークデバイス
Galappaththige et al. Link budget analysis for backscatter-based passive IoT
US10149319B2 (en) Method for performing scanning in wireless access system supporting millimeter wave, and device supporting same
WO2016047373A1 (ja) 基地局装置、端末装置、および通信方法
US20220116098A1 (en) Apparatuses and methods for rsrp measurements for a wireless device with variable output power per antenna arrangement
CN111869123B (zh) 用于高效波束管理的通信设备
US20230189038A1 (en) Acquisition and reporting of channel measurements and interference measurements
WO2024093772A1 (zh) 波束处理方法、装置、通信设备及可读存储介质
US20230403697A1 (en) Management of uplink transmissions and wireless energy transfer signals
US20230361820A1 (en) Downlink symbol-level precoding as part of multiuser miso communication
WO2024093773A1 (zh) 波束处理方法、装置、通信设备及可读存储介质
WO2016047372A1 (ja) 基地局装置、端末装置、および通信方法
WO2024120252A1 (zh) 参数配置方法、装置、设备及可读存储介质
CN117998435A (zh) 波束处理方法、装置、通信设备及可读存储介质
WO2023097564A1 (en) Method and apparatus for transmit and receive beam determination
WO2024093861A1 (zh) 传输处理方法、装置及相关设备
WO2024093776A1 (zh) 级联链路中的信号测量处理方法、装置及相关设备
WO2024131814A1 (zh) 传输方法、装置、设备及可读存储介质
WO2024120246A1 (zh) 参数配置方法、装置、设备及可读存储介质
US20230283442A1 (en) Techniques for communicating channel state information for energy transfer operations
US20230378807A1 (en) Device triggering backscatter communications
WO2024087046A1 (en) Reference signal design for passive wireless devices