WO2024093643A1 - 极耳检测系统及极耳检测方法 - Google Patents
极耳检测系统及极耳检测方法 Download PDFInfo
- Publication number
- WO2024093643A1 WO2024093643A1 PCT/CN2023/124360 CN2023124360W WO2024093643A1 WO 2024093643 A1 WO2024093643 A1 WO 2024093643A1 CN 2023124360 W CN2023124360 W CN 2023124360W WO 2024093643 A1 WO2024093643 A1 WO 2024093643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tab
- ear
- image
- area
- cathode
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 134
- 230000007547 defect Effects 0.000 claims abstract description 79
- 238000005520 cutting process Methods 0.000 claims abstract description 28
- 238000003475 lamination Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 178
- 238000000034 method Methods 0.000 claims description 52
- 239000002699 waste material Substances 0.000 claims description 24
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000012790 confirmation Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 210000005069 ears Anatomy 0.000 description 9
- 230000002950 deficient Effects 0.000 description 8
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 6
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 230000033764 rhythmic process Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the technical field of battery production, and in particular to a tab detection system and a tab detection method.
- the pole ears are formed through the die-cutting process.
- the pole ears are easily folded during the die-cutting process, the stacking/winding process, and the transportation process. After the battery cell is formed, the folded pole ears are not easy to detect and identify.
- the folded pole ears can cause short circuits, lithium deposition, etc., posing serious safety hazards.
- the solution for detecting the tab flipping is to use a photoelectric sensor for irradiation detection.
- the photoelectric sensor is installed at one end of the pole piece in the width direction, and is used to illuminate the part of the pole piece connected to the tab at an angle to the plane where the pole piece is located, and detect the color of the irradiated area.
- the photoelectric sensor is used to illuminate the part of the pole piece connected to the tab, and the color of the irradiated area is detected, so as to judge whether the tab is flipped based on the color obtained by the detection.
- the photoelectric sensor can only detect the presence of the tab, but cannot measure the area of the tab folding.
- the principle of the photoelectric sensor is to achieve detection by converting the change of light intensity into the change of electrical signal, which is easily disturbed by light and causes over-detection and omission.
- the present application provides a tab detection system and a tab detection method, which can solve the problem that the traditional technology cannot accurately detect whether the tab is folded.
- the present application provides a tab detection system, which includes: an image acquisition module and a host computer.
- the image acquisition module is used to obtain the tab image of the battery cell after rolling by the die-cutting module; wherein the image acquisition module is located between the die-cutting module and the lamination module; the host computer is used to confirm whether the tab has defects based on the tab image.
- the system further comprises a position sensor, wherein the position sensor is used to generate an image acquisition instruction and send it to the image acquisition module when detecting that the tab reaches a preset feeding position; wherein the preset feeding position is located between the die-cutting module and the lamination module;
- the image acquisition module When receiving the image acquisition instruction, the image acquisition module acquires an image of the tab, obtains the tab image, and sends the image to the host computer.
- the above-mentioned image acquisition modules include two, and the two image acquisition modules are respectively located at the end of the battery cell where the anode ear is set and the end of the battery cell where the cathode ear is set;
- the two image acquisition modules are used to synchronously acquire the anode ear image and the cathode ear image respectively when receiving the image acquisition instruction.
- the system further comprises at least one backlight source, wherein at least one backlight source is located at the preset material feeding position and is arranged on both sides of the battery cell opposite to the image acquisition module;
- At least one of the backlight sources is used to expose the pole ear along the direction from the pole ear to the image acquisition module during the process of the image acquisition module acquiring an image of the pole ear.
- the system further comprises at least one front light source, wherein at least one front light source is located in the front A material feeding position is set, and the image acquisition module is arranged on the same side of the battery cell;
- At least one of the front light sources is used to expose the pole ear along the direction from the image acquisition module to the pole ear during the process of the image acquisition module acquiring an image of the pole ear.
- the system further comprises at least one backlight source and at least one frontlight source, at least one of the backlight source and at least one of the frontlight source are located at the preset material feeding position, at least one of the frontlight source and the image acquisition module are arranged on the same side of the battery cell, and at least one of the backlight source and the image acquisition module are arranged on opposite sides of the battery cell;
- At least one of the backlight sources and at least one of the frontlight sources are used to expose the tabs on both sides of the battery cell respectively during the process of the image acquisition module acquiring an image of the tabs.
- the above-mentioned host computer is used to identify the anode ear area and the cathode ear area in the pole ear image when acquiring the pole ear image, and confirm whether the anode ear and the cathode ear are folded and/or whether there is any residual material based on the comparison results of the anode ear area with the preset anode ear parameters and the comparison results of the cathode ear area with the preset cathode ear parameters.
- the above-mentioned preset anode ear parameters include a preset anode ear area; the host computer is also used to identify the anode ear image to obtain the anode ear area; obtain the anode ear area according to the grayscale value difference between the anode ear area and the background image of the anode ear image; and confirm whether the anode ear is folded according to whether the anode ear area is smaller than the preset anode ear area.
- the above-mentioned preset cathode ear parameters include a preset cathode ear area; the host computer is also used to identify the cathode ear image to obtain the cathode ear area; the cathode ear area is obtained according to the grayscale value difference between the cathode ear area and the background image of the cathode ear image; and whether the cathode ear is folded is confirmed according to whether the cathode ear area is smaller than the preset cathode ear area.
- the above-mentioned preset anode ear parameters include preset anode ear residual material area; the host computer is also used to obtain the anode ear residual material area according to the anode ear area and the anode ear image; obtain the anode ear residual material area according to the grayscale value difference between the anode ear residual material area and the background image in the anode ear image; and confirm whether there is residual material in the anode ear according to whether the anode ear residual material area is smaller than the preset anode ear residual material area.
- the above-mentioned preset cathode ear parameters include a preset cathode ear residual material area; the host computer is also used to obtain the cathode ear residual material area based on the cathode ear area and the cathode ear image; obtain the cathode ear residual material area based on the grayscale value difference between the cathode ear residual material area and the background image in the cathode ear image; and confirm whether there is residual material in the cathode ear based on whether the cathode ear residual material area is smaller than the preset cathode ear residual material area.
- the above system further includes a lower computer
- the upper computer is also used to send the defect detection result of the tab to the lower computer;
- the lower computer is used to generate a cell discharge instruction or a cell stacking instruction according to the defect detection result when receiving the defect detection result.
- the above system further comprises a waste discharge module
- the upper computer is used to confirm that the tab is folded when the tab image area is smaller than the preset tab area, and/or the tab residual material area is greater than or equal to the preset tab residual material area, confirm that there is residual material in the tab, and send the detection result of the tab being folded and/or having residual material to the lower computer;
- the lower computer is used to generate a waste discharge instruction and send it to the waste discharge module when receiving a signal that the tab is folded and/or there is residual material in the tab;
- the waste discharge module is used to discharge the battery cell upon receiving the waste discharge instruction.
- the upper computer is used to confirm that the tab has not been folded when the tab area is greater than or equal to the preset tab area, and/or the tab residual material area is less than the preset tab residual material area, confirm that there is no residual material in the tab, and send the detection result that the tab has not been folded and/or there is no residual material to the lower computer;
- the lower computer is used for generating a lamination instruction and sending it to the lamination module when receiving a signal that the tab is not folded and/or there is no residual material;
- the stacking module is used to stack the battery cell upon receiving the stacking instruction.
- the present application also provides a tab detection method, which comprises:
- the above-mentioned pole lug image includes an anode lug image and a cathode lug image
- the pole lug region includes an anode lug region and a cathode lug region
- identifying the pole lug image to obtain the pole lug region in the pole lug image includes:
- the cathode ear image is positioned using the preset cathode ear image contour to obtain the cathode ear area.
- the preset anode lug parameters include a preset anode lug area
- the preset cathode lug parameters include a preset cathode lug area
- determining whether the lug has a defect based on a comparison result between the lug area and the preset lug parameters includes:
- Whether the cathode ear is folded is determined according to whether the cathode ear area is smaller than the preset cathode ear area.
- the preset anode lug parameters include a preset anode lug residual area; and the step of confirming whether the lug has a defect based on a comparison result between the lug area and the preset lug parameters further includes:
- Whether there is any residual material in the anode ear is determined according to whether the area of the residual material region of the anode ear is smaller than the preset residual material area of the anode ear.
- the preset cathode lug parameters include a preset cathode lug residual area; and the step of confirming whether the lug has a defect based on a comparison result between the lug area and the preset lug parameters further includes:
- cathode ear residual material area according to the preset cathode ear image contour, the cathode ear area and the cathode ear image;
- Whether there is any residual material in the cathode ear is confirmed according to whether the area of the residual material region of the cathode ear is smaller than the preset residual material area of the cathode ear.
- the above method further comprises:
- the posture parameters of the image acquisition module used to obtain the image of the battery cell tab are confirmed, and the tab defect detection algorithm corresponding to the battery cell is confirmed in a preset tab defect detection algorithm library.
- the first aspect of the beneficial effect provided by the embodiments of the present application is that the tab defect detection is performed after the battery cell is die-cut and rolled. After the tab defect detection is performed on the battery cell, the battery cell will not pass through the die-cutting module rolling device again. This can effectively avoid the battery cell from being folded again during transportation after the tab defect detection is completed, and also ensure the authenticity and reliability of the detection result.
- FIG1 is a schematic diagram of the structure of a tab detection system in one embodiment of the present application.
- FIG2 is a schematic diagram of a side view of a battery cell feeding process in one embodiment of the present application.
- FIG3 is a front view structural diagram of a battery cell feeding in one embodiment of the present application.
- FIG4 is a schematic diagram of the structure of a front light source in one embodiment of the present application.
- FIG5 is a schematic diagram of the structure of a front light source and a back light source in one embodiment of the present application
- FIG6 is a schematic diagram of a process flow of a tab detection method in one embodiment of the present application.
- FIG7 is a schematic diagram of a process for identifying anode ear regions and cathode ear regions in one embodiment of the present application
- FIG8a is a schematic diagram of a process for detecting whether an anode ear is folded in one embodiment of the present application
- FIG8b is a schematic diagram of a process for detecting whether a cathode ear is folded in one embodiment of the present application
- FIG9a is a schematic diagram of a process for detecting whether there is residual material in an anode ear in one embodiment of the present application
- FIG9b is a schematic diagram of a process for detecting whether there is residual material in a cathode ear in one embodiment of the present application.
- FIG10 is a schematic diagram of a process for detecting whether there is residual material in an anode ear in another embodiment of the present application.
- FIG11 is a schematic diagram of a process for detecting whether there is residual material in a cathode ear in another embodiment of the present application.
- FIG. 12 is a schematic diagram of a flow chart of a tab detection algorithm for confirming an embodiment of the present application.
- Lithium-ion batteries have been widely used in a variety of electrical products due to their advantages such as high energy density, long cycle life, and no memory effect.
- electrical products may be, but are not limited to, mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric cars, ships, spacecraft, etc.
- the production process of lithium-ion batteries includes winding process and stacking process.
- the stacked battery manufactured by the stacking process has the characteristics of high discharge rate, low internal resistance, high capacity density and high energy density compared with the wound battery manufactured by the winding process, making the stacked battery gradually become the mainstream power battery.
- the pole ears are formed through the die-cutting process.
- the pole ears are easily folded during the die-cutting process, the stacking/winding process, and the transportation process. After the battery cell is formed, the folded pole ears are not easy to detect and identify.
- the folded pole ears can cause short circuits, lithium deposition, etc., posing serious safety hazards.
- the solution for detecting the tab flipping is to use a photoelectric sensor for irradiation detection.
- the photoelectric sensor is installed at one end of the pole piece in the width direction, and is used to illuminate the part of the pole piece connected to the tab at an angle to the plane where the pole piece is located, and detect the color of the irradiated area.
- the photoelectric sensor is used to illuminate the part of the pole piece connected to the tab, and the color of the irradiated area is detected, so as to judge whether the tab is flipped based on the color obtained by the detection.
- the photoelectric sensor can only detect the presence of the tab, but cannot measure the area of the tab folding.
- the principle of the photoelectric sensor is to achieve detection by converting the change of light intensity into the change of electrical signal, which is easily disturbed by light and causes over-detection and omission.
- the applicant has proposed a tab detection system and a tab detection method.
- the tab defect detection is performed after the battery cell is die-cut and rolled. After the tab defect detection is performed on the battery cell, the battery cell will no longer pass through the die-cutting module rolling device. This can effectively avoid the battery cell from folding again during transportation after the tab defect detection is completed, and also ensure the authenticity and reliability of the detection results.
- this tab detection method it is possible to simultaneously detect the tab folding and the residual material defects, and it is also possible to quantify the folding area and the residual material area for further adjustment of the process.
- the batteries involved in the embodiments of the present application can be divided into, but not limited to, button batteries, laminated batteries, soft-pack batteries, hard-shell batteries, cylindrical batteries, etc. according to the battery shape.
- the batteries involved in the embodiments of the present application can be classified according to battery materials, including but not limited to: ternary batteries, lithium iron phosphate batteries, silicon system batteries, carbon silicon system batteries, lithium sulfur batteries, etc.
- the cathode (or positive electrode) of the battery involved in the embodiment of the present application will be oxidized during the charging process, and lithium ions can escape from the layered intercalation material of the cathode, pass through the electrolyte, and be intercalated into the anode.
- the anode (or negative electrode) of the battery involved in the embodiment of the present application will undergo an oxidation reaction during the discharge process, and lithium ions can escape from the anode, pass through the electrolyte, and be re-intercalated into the cathode.
- FIG1 is a schematic diagram of the structure of a tab detection system in one embodiment of the present application. As shown in FIG1 , it includes an image acquisition module 20 and a host computer 50. Among them, the image acquisition module 20 and the host computer 50 are connected in communication. The image acquisition module 20 is used to obtain the tab image of the battery cell after the die-cutting module is rolled; the host computer 50 is used to confirm whether the tab has defects based on the tab image acquired by the image acquisition module 20.
- the upstream station of the detection module 20 is the die-cutting module 10, and the downstream stations of the detection module 20 are the lamination module 30 and the waste discharge module 40. It can be seen that the detection module 20 is located at the die-cutting module 10 in the battery cell production process. Between the lamination module 30, the tab defect detection is performed after the battery cell is die-cut and rolled. After the tab defect detection is performed on the battery cell, the battery cell will not pass through the die-cutting module rolling device again. This can effectively avoid the battery cell from being folded again during transportation after the tab defect detection is completed, and also ensure the authenticity and reliability of the detection result.
- the tab detection system further includes a lower computer 60.
- the upper computer 50 and the lower computer 60 are connected in communication, and the upper computer 50 is connected in communication with the die-cutting module 10, the detection module 20 and the laminating module 30 respectively; the lower computer 60 is connected in communication with the die-cutting module 10, the detection module 20, the laminating module 30 and the waste discharge module 40 respectively.
- the laminating module 30 performs lamination on the battery cell without defects; when the detection module 20 detects that the battery cell has defects, the waste discharge module 40 discharges the defective battery cell.
- the die-cutting module 10, the inspection module 20, the stacking module 30 and the waste discharge module 40 can be arranged in the same stacking machine, and the die-cutting module 10 can also be independently arranged from the stacking machine including the inspection module 20, the stacking module 30 and the waste discharge module 40. No limitation is made here, as long as the inspection module 20 is located between the die-cutting module 10 and the stacking module 30.
- the detection module 20 includes an image acquisition module 20 and a position sensor 27.
- the image acquisition module 20 is respectively connected to the upper computer 50 and the lower computer 60 for communication, and the position sensor 27 is connected to the image acquisition module 20 for communication.
- the detection module 20 is located between the die-cutting module 10 and the lamination module 30, and the image acquisition module 20 and the position sensor 27 are located between the die-cutting module 10 and the lamination module 30.
- the battery cell 70 includes a plurality of laminated battery cells 73, and an anode ear 71 and a cathode ear 72 extending from both ends of each laminated battery cell 73. It can be seen that the pole ear includes the anode ear 71 and the cathode ear 72.
- the lamination method of the plurality of laminated battery cells 73 is not limited to the stacking method of direct lamination with the separator cut off, nor is it limited to the folding method of Z-shaped lamination with the separator not cut off; in this embodiment, the Z-shaped lamination method is taken as an example for description.
- the position sensor 27 is used to generate an image acquisition instruction and send it to the image acquisition module 20 when detecting that the tab reaches the preset feeding position.
- the image acquisition module 20 acquires an image of the tab of the battery cell 70, obtains the tab image and sends it to the host computer 50.
- the preset feeding position is located between the die cutting module 10 and the laminating module 30. It can be seen that when each laminated cell 73 of the battery cell 70 is fed along the battery cell feeding direction, the image acquisition module 20 completes the acquisition of the tab image of each laminated cell 73 at the preset feeding position.
- the type of the position sensor 27 may be a through-beam sensor. In the present embodiment, the type is not limited thereto, as long as it can detect the anode ear 71 and the cathode ear 72 during the lamination feeding process.
- the position sensor 27 detects that when the anode ear 71 and the cathode ear 72 reach the preset feeding position during the feeding process of the stacked sheets, an image acquisition instruction is generated and sent to the image acquisition module 20 to automatically capture the image of each pole ear passing the preset feeding position to avoid missing the pole ears.
- the image acquisition module 20 includes two image acquisition modules 20 , which are respectively located at the end of the laminated battery cell 73 where the anode ear 71 is set and the end of the laminated battery cell 73 where the cathode ear 72 is set.
- the two image acquisition modules 20 are respectively the first image acquisition module 21 and the second image acquisition module 22.
- the first image acquisition module 21 sets a preset feeding position, which is the position where the anode ear 71 passes along the feeding direction of the battery cell. Therefore, the first image acquisition module 21 is used to capture the image of the anode ear 71 of each laminated battery cell 73;
- the second image acquisition module 22 sets a preset feeding position, which is the position where the cathode ear 72 passes along the feeding direction of the battery cell. Therefore, the second image acquisition module 22 is used to capture the image of the cathode ear 72 of each laminated battery cell 73.
- the position sensor 27 also includes two, one position sensor 27 is set in the first image acquisition module 21, and the other position sensor 27 is set in the second image acquisition module 22.
- the first image acquisition module 21 and the second image acquisition module 22 are used to respectively receive In the case of image acquisition instructions, the anode ear image and the cathode ear image are acquired synchronously.
- the anode ear 71 and the cathode ear 72 can be synchronously captured to avoid the anode ear image and the cathode ear image from mixing with each other and affecting the detection result.
- the number of image acquisition modules 20 can be any number, for example, one image acquisition module 20 is used to capture the image of the anode ear and the cathode ear at the same time; for another example, one image acquisition module 20 is used to capture the image of the anode ear and the cathode ear at the same time, and then two image acquisition modules 20 are used to capture the image of the anode ear and the cathode ear respectively; for another example, four image acquisition modules 20 are set as a group, and each group of image acquisition modules captures the image of the anode ear 71 and the cathode ear 72 on both sides of each laminated battery cell 73; the present application does not limit the number of image acquisition modules 20, as long as the acquisition of the anode ear
- the image acquisition module 20 can be an RGB camera, an infrared camera, a depth of field camera, a point cloud camera, etc.
- the specific type can be selected according to the actual situation of the image format used for defect detection. This application does not limit the specific type and model of the image acquisition module 20.
- the tab detection system further includes at least one backlight source, which is located at a preset feeding position and arranged on both sides of the battery cell 70 opposite to the image acquisition module 20; the at least one backlight source is used to expose the tab along the direction from the tab to the image acquisition module 20 during the process of the image acquisition module 20 acquiring the image of the tab.
- the at least one backlight source is used to expose the tab along the direction from the tab to the image acquisition module 20 during the process of the image acquisition module 20 acquiring the image of the tab.
- the backlight source includes a first backlight source 23 and a second backlight source 24 (not shown).
- the first backlight source 23 and the first image acquisition module 21 are provided at the end of the laminated battery cell 73 having the anode ear 71, and the first backlight source 23 and the first image acquisition module 21 are relatively provided on both sides of the battery cell 70; when the first image acquisition module 21 performs image acquisition on the anode ear 71 at a preset feeding position, the first backlight source 23 exposes the anode ear 71.
- the second backlight source 24 and the second image acquisition module 22 are provided at the end of the laminated battery cell 73 having the cathode ear 72, and the second backlight source 24 and the second image acquisition module 22 are relatively provided on both sides of the battery cell 70; when the second image acquisition module 22 performs image acquisition on the cathode ear 72 at a preset feeding position, the second backlight source 24 exposes the cathode ear 72.
- the tab area in the tab image can be highlighted, making it easier to segment the tab area and the background area in the tab image in the subsequent defect detection process, further improving the efficiency and accuracy of defect detection.
- the tab detection system also includes at least one front light source, which is located at a preset feeding position and is arranged on the same side of the battery cell as the image acquisition module; the at least one front light source is used to expose the tab along the direction from the image acquisition module to the tab during the process of the image acquisition module capturing the image of the tab.
- the front light sources include a first front light source 25 and a second front light source 26 (not shown).
- the first front light source 25 and the first image acquisition module 21 are provided at the end of the laminated battery cell 73 having the anode ear 71, and the first front light source 25 and the first image acquisition module 21 are provided on the same side of the battery cell 70; when the first image acquisition module 21 performs image acquisition on the anode ear 71 at the preset feeding position, the first front light source 25 exposes the anode ear 71.
- the second front light source 26 and the second image acquisition module 22 are provided at the end of the laminated battery cell 73 having the cathode ear 72, and the second front light source 26 and the second image acquisition module 22 are provided on the same side of the battery cell 70; when the second image acquisition module 22 performs image acquisition on the cathode ear 72 at the preset feeding position, the second front light source 26 exposes the cathode ear 72.
- the tab area in the tab image can also be highlighted, which is also convenient for later use.
- the defect detection process continues to segment the tab area in the tab image and the background area in the tab image, further improving the efficiency and accuracy of defect detection.
- the tab detection system also includes at least one backlight source and at least one frontlight source, at least one backlight source and at least one frontlight source are located at a preset feeding position, at least one frontlight source is arranged on the same side of the battery cell as the image acquisition module, and at least one backlight source and the image acquisition module are arranged on both sides of the battery cell opposite to each other; at least one backlight source and at least one frontlight source are used to expose the tab on both sides of the battery cell respectively during the process of the image acquisition module performing image acquisition on the tab.
- the backlight source includes a first backlight source 23 and a second backlight source 24, and the frontlight source includes a first frontlight source 25 and a second frontlight source 26.
- the first backlight source 23 and the first frontlight source 25 are arranged opposite to each other at the end of the laminated battery cell 73 having the anode ear 71, wherein the first frontlight source 25 and the first image acquisition module 21 are located on the same side of the battery cell 70, and the first backlight source 23 is located on the other side of the battery cell 70; when the first image acquisition module 21 acquires an image of the anode ear 71 at the preset feeding position, the first backlight source 23 and the first frontlight source 25 simultaneously expose the anode ear 71.
- the second backlight source 24 and the second frontlight source 26 are arranged relatively to the end of the laminated battery cell 73 having the cathode ear 72, wherein the second frontlight source 26 and the second image acquisition module 22 are located on the same side of the battery cell 70, and the second backlight source 24 is located on the other side of the battery cell 70; during the process of the second image acquisition module 22 capturing the image of the cathode ear 72 at the preset feeding position, the second backlight source 24 and the second frontlight source 26 expose the cathode ear 72 at the same time.
- the tab area in the tab image can be highlighted, making it easier to segment the tab area in the tab image and the background area in the tab image in the subsequent defect detection process.
- the design redundancy of the detection equipment is improved so that when any frontlight source or backlight source fails, the efficiency and accuracy of defect detection can still be guaranteed.
- the host computer 50 is used to identify the anode ear area and the cathode ear area in the pole ear image when acquiring the pole ear image, and confirm whether the anode ear and the cathode ear are folded and/or whether there is any residual material based on the comparison results of the anode ear area with the preset anode ear parameters and the comparison results of the cathode ear area with the preset cathode ear parameters.
- the preset anode ear parameters and the preset cathode ear parameters are confirmed according to the model of the corresponding battery cell 70.
- the pole ear of the battery cell 70 of this model should meet the preset length and width.
- the length and width of the pole ear will change, resulting in the size of the pole ear not meeting the length and width of the pole ear of the battery cell 70 of this model.
- the defect detection method process please refer to steps 710 to 730, steps 810 to 840, steps 910 to 940, steps 1010 to 1030, and steps 1110 to 1130 below, which will not be repeated here.
- the preset anode ear parameter includes a preset anode ear area.
- the host computer 50 is used to identify the anode ear image, obtain the anode ear region in the anode ear image and the background image of the anode ear image; obtain the anode ear area according to the gray value difference between the anode ear region and the background image of the anode ear image; and confirm whether the anode ear is folded according to whether the anode ear area is less than the preset anode ear area. In this way, whether the anode ear is folded and the area of the folded anode ear are quantified to ensure the accuracy of the detection result.
- the preset anode ear area may be a preset range value, and as long as the detected anode ear area falls within the preset anode ear area range value, it is confirmed that the anode ear does not have defects.
- the anode ear area is smaller than the preset anode ear area, and the result of confirming that the detected anode ear area is smaller than the preset anode ear area is obtained.
- the preset cathode ear parameters include a preset cathode ear area.
- the host computer 50 is also used to identify the cathode ear image to obtain the cathode ear area; obtain the cathode ear area according to the gray value difference between the cathode ear area and the background image of the cathode ear image; and confirm whether the cathode ear is folded according to whether the cathode ear area is less than the preset cathode ear area. In this way, whether the cathode ear is folded and the folded area are quantified to ensure the accuracy of the detection result.
- the preset anode ear parameters include a preset anode ear residual material area.
- the host computer 50 is also used to obtain the anode ear residual material area according to the anode ear area and the anode ear image; obtain the anode ear residual material area according to the gray value difference between the anode ear residual material area and the background image in the anode ear image; and confirm whether there is residual material in the anode ear according to whether the anode ear residual material area is less than the preset anode ear residual material area.
- the area of the anode ear residual material is quantified for adjusting the production line process parameters.
- the preset cathode ear parameters include a preset cathode ear residual material area.
- the host computer 50 is also used to obtain the cathode ear residual material area according to the cathode ear area and the cathode ear image; obtain the cathode ear residual material area according to the gray value difference between the cathode ear residual material area and the background image in the cathode ear image; and confirm whether there is residual material in the cathode ear according to whether the cathode ear residual material area is less than the preset cathode ear residual material area.
- the detection of whether there is residual material in the cathode ear is further realized.
- the area of the cathode ear residual material is quantified for adjusting the production line process parameters.
- the upper computer 50 can simultaneously detect the two defects of the tab folding and the existence of residual material, so as to avoid missing the defects of the tab, which would cause safety hazards to the battery cells produced with the defective tabs.
- the upper computer 50 is also used to send the defect detection result of the pole ear to the lower computer 60; the lower computer 60 is used to generate a waste discharge instruction or a stacking instruction for the battery cell according to the defect detection result when receiving the defect detection result, so as to discharge the battery cell 70 with defects in the detected pole ear, and stack the battery cell 70 with no defects in the detected pole ear.
- the upper computer 50 is used to confirm that the tab is folded when the tab image area is greater than or equal to the preset tab area, and/or the tab residual material area is greater than or equal to the preset tab residual material area, confirm that there is residual material in the tab, and send the detection result of the tab being folded and/or the presence of residual material to the lower computer 60;
- the lower computer 60 is used to generate a waste discharge instruction and send it to the waste discharge module 40 when receiving the detection of the tab being folded and/or the presence of residual material in the tab;
- the waste discharge module 40 is used to discharge the defective battery cell 70 when receiving the waste discharge instruction.
- the upper computer 50 when the upper computer 50 detects that the tab has a folding defect, the upper computer 50 communicates with the lower computer 60 in real time to perform waste discharge processing, thereby realizing intelligent control of the production line and effectively ensuring the production line rhythm.
- the upper computer 50 is used to confirm that there is no residual material in the pole lug when the area of the pole lug is smaller than the preset pole lug area, confirming that the pole lug has not been folded, and/or the residual area of the pole lug is smaller than the preset residual area of the pole lug, and send the detection result that the pole lug has not been folded and/or there is no residual material to the lower computer 60;
- the lower computer 60 is used to generate a stacking instruction and send it to the stacking module 30 when receiving the information that the pole lug has not been folded and/or there is no residual material;
- the stacking module 30 is used to stack the battery cell 70 that does not have defects when receiving the stacking instruction.
- the upper computer 50 detects that there is a residual material defect in the tab
- the upper computer 50 communicates with the lower computer 60 in real time for waste disposal.
- the upper computer 50 takes into account the detection of various types of tab defects and, at the same time, realizes intelligent control of the production line, effectively ensuring the production line rhythm.
- FIG6 is a schematic flow chart of a tab detection method in one embodiment of the present application, and the tab detection method can be applied to the tab detection system described above. As shown in FIG6 , the steps include:
- Step 610 Acquire the tab image of the battery cell after rolling.
- Step 620 Identify the tab image to obtain the tab area in the tab image.
- Step 630 Determine whether the tab has defects based on the comparison result between the tab area and the preset tab parameters.
- Defect detection is performed through real-time collected images of the pole lugs, and the results of whether there are defects in the pole lugs on the production line can be obtained in real time, avoiding missed detection or false detection during manual quality inspection of pole lug defects.
- the pole lugs will not be rolled on the production line after defect detection to ensure detection accuracy. Poles without defects can ensure the safety of the battery cells, and defective pole lugs are immediately discharged to ensure the production line rhythm.
- the tab image includes an anode tab image and a cathode tab image
- the tab region includes an anode tab region and a cathode tab region; that is, the anode tab image corresponds to the anode tab region, and the cathode tab image corresponds to the cathode tab region.
- identifying the tab image to obtain the tab region in the tab image includes:
- Step 710 Obtain a preset anode ear image profile and a preset cathode ear image profile.
- Step 720 Use the preset anode ear image contour to locate the anode ear image to obtain the anode ear area.
- Step 730 Use the preset cathode ear image contour to locate the cathode ear image to obtain the cathode ear area.
- step 720 and step 730 there is no temporal sequence relationship between step 720 and step 730.
- the anode ear area and the cathode ear area can be identified synchronously.
- the anode ear area and the cathode ear area are identified by presetting the anode ear image contour and the cathode ear image contour, so as to facilitate further quantification of the area where the ear is folded or has residual material.
- the anode ear area is identified by a preset anode ear contour
- the cathode ear area is identified by a preset cathode ear contour.
- the pole ear area can be identified based on the grayscale value difference, semantic information, etc. between the foreground image corresponding to the pole ear area in the pole ear image and the background image in the pole ear image, including but not limited to the use of various edge detection operators, semantic segmentation models, instance segmentation models, etc. to realize the identification of the anode ear area and the cathode ear area.
- the preset anode ear parameters include a preset anode ear area
- the preset cathode ear parameters include a preset cathode ear area
- the preset anode ear area is the area corresponding to the standard anode ear of the battery cell of this model, and if the anode ear area is detected to be within the preset anode ear area threshold, it means that the anode ear is a non-defective anode ear
- the preset cathode ear area is the area corresponding to the standard cathode ear of the battery cell of this model, and similarly, if the cathode ear area is detected to be within the preset cathode ear area threshold, it means that the cathode ear is a non-defective cathode ear.
- step 630 confirming whether the electrode ear has defects based on the comparison result of the ear area
- Step 810 Obtain the anode ear area according to the grayscale value difference between the anode ear region and the background image of the anode ear image.
- Step 820 Determine whether the anode ear is folded based on whether the anode ear area meets a preset anode ear area threshold range.
- the length of the long side and the width of the short side of the standard anode ear can be confirmed according to the preset anode ear image contour, and the threshold range of the preset anode ear area can be confirmed according to the preset anode ear image length and width. Since the anode ear is exposed by the front light source and/or the back light source, the anode ear area (i.e., the foreground image) in the anode ear image is black, and the background image of the anode ear image is white. When the anode ear 71 is folded, the anode ear area detected will be smaller than the threshold range of the preset anode ear area.
- Step 830 Obtain the cathode ear area according to the gray value difference between the cathode ear region and the background image of the cathode ear image.
- Step 840 Determine whether the cathode ear is folded according to whether the cathode ear area meets a preset cathode ear area threshold range.
- the length of the long side and the width of the short side of the standard cathode ear can be confirmed according to the preset cathode ear image contour, and the threshold range of the preset cathode ear area can be confirmed according to the preset cathode ear image length and width. Since the cathode ear is exposed by the front light source and/or the back light source, the cathode ear area (i.e., the foreground image) in the cathode ear image is black, and the background image of the cathode ear image is white. When the cathode ear 72 is folded, the cathode ear area detected will be smaller than the threshold range of the preset cathode ear area.
- the preset anode ear parameters include a preset anode ear residual material area
- the preset cathode ear parameters include a preset cathode ear residual material area.
- Step 910 Obtaining the anode ear residual material area according to the preset anode ear image contour, anode ear area and anode ear image.
- Step 920 Determine whether there is any residual material in the anode ear according to whether the area of the residual material region of the anode ear is smaller than the preset residual material area of the anode ear.
- Step 930 Obtain the cathode ear residual material area according to the preset cathode ear image contour, cathode ear area and cathode ear image.
- Step 940 Determine whether there is any residual material in the cathode ear according to whether the area of the residual material region of the cathode ear is smaller than the preset residual material area of the cathode ear.
- the preset anode ear residual material area and the preset cathode ear residual material area can be determined according to the battery cell model and its quality requirements. While detecting whether the anode ear 71 and the cathode ear 72 are folded, it is also possible to detect whether there is residual material in the anode ear 71 and the cathode ear 72.
- step 910 specifically includes:
- Step 1010 According to a preset anode ear image contour, a region portion exceeding the anode ear region is identified in the anode ear image, and the region portion exceeding the anode ear region is identified as an anode ear residual material region.
- step 920 specifically includes:
- Step 1020 Obtain the anode ear residual material area according to the gray value difference between the anode ear residual material area and the background image of the anode ear image.
- Step 1030 Determine whether there is any residual material in the anode ear according to whether the residual material area of the anode ear is smaller than a preset residual material area of the anode ear.
- the detected anode ear residual material area is smaller than the preset anode ear residual material area, it is confirmed that there is no residual material in the anode ear, that is, the anode ear does not have a residual material defect.
- the detected anode ear residual material area is greater than or equal to the preset anode ear residual material area, it is confirmed that there is residual material in the anode ear, that is, the anode ear has a residual material defect.
- the length of the long side and the width of the short side of the standard anode ear can be determined according to the preset anode ear image contour.
- the domain i.e., the foreground image
- the background image of the anode ear image is white.
- the black area outside the long side and/or the short side of the anode ear image is the anode ear residual material area beyond the anode ear area.
- the production line can also perform waste treatment when detecting that there is residual material in the anode ear 71.
- step 930 specifically includes:
- Step 1110 According to a preset cathode ear image contour, a region portion exceeding the cathode ear region is identified in the cathode ear image, and the region portion exceeding the cathode ear region is identified as a cathode ear residual material region.
- step 940 specifically includes:
- Step 1120 obtaining the cathode ear residual material area according to the gray value difference between the cathode ear residual material area and the background image of the cathode ear image;
- Step 1130 Determine whether there is any residual material in the cathode ear according to whether the residual material area of the cathode ear is smaller than the preset residual material area of the cathode ear.
- the detected cathode ear residual material area is smaller than the preset cathode ear residual material area, it is confirmed that there is no residual material in the cathode ear, that is, the cathode ear does not have a residual material defect.
- the detected cathode ear residual material area is greater than or equal to the preset cathode ear residual material area, it is confirmed that there is residual material in the cathode ear, that is, the cathode ear has a residual material defect.
- the length of the long side and the width of the short side of the standard cathode ear can be confirmed according to the preset cathode ear image contour. Since the cathode ear is exposed using a front light source and/or a back light source, the cathode ear area (i.e., the foreground image) in the cathode ear image is black, and the background image of the cathode ear image is white.
- the black area outside the long side and/or the short side in the cathode ear image is the cathode ear residual material area that exceeds the cathode ear area.
- the production line can also perform waste treatment when it is detected that there is residual material in the cathode ear 72.
- the preset anode ear residual material area and the preset cathode ear residual material area can be confirmed according to the battery cell model and its quality requirements.
- the preset anode ear residual material area and the preset cathode ear residual material area thresholds can be set to zero.
- the allowable residual material error range of the anode ear and the cathode ear can be confirmed as the preset anode ear residual material area upper limit value and the preset cathode ear residual material area upper limit value.
- the detected anode ear residual material area and the cathode ear residual material area are both within the upper limit value range, it is considered that the anode ear and the cathode ear do not have residual material defects.
- FIG12 is a flow chart of confirming a tab detection algorithm in one embodiment of the present application. As shown in FIG12 , the method further includes:
- Step 1210 Obtain the identification code of the battery cell.
- the identification code can be the product serial number (Serial Number, SN code).
- Step 1220 According to the identification code of the battery cell, confirm the posture parameters of the image acquisition module used to obtain the image of the battery cell tab, and confirm the tab defect detection algorithm corresponding to the battery cell in a preset tab defect detection algorithm library.
- the posture of the image acquisition module 20 for collecting the tab image i.e., the distance between the image acquisition module 20 and the tab
- the upper computer 50 can preset the posture parameters of the image acquisition module 20 and the corresponding defect detection algorithm for each type of battery cell 70.
- the tab detection system automatically confirms and adjusts the position of the image acquisition module 20 and calls its corresponding defect detection algorithm for defect identification according to the image acquisition instructions generated by the identification code of the battery cell 70, thereby improving the efficiency of tab defect detection.
- the detection of tabs of various types of battery cells 70 can be realized.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本申请涉及一种极耳检测系统及极耳检测方法,该系统包括图像采集模组和上位机。图像采集模组用于获取模切模组辊压后电芯的极耳图像;其中,所述图像采集模组位于所述模切模组和叠片模组之间;上位机用于根据所述极耳图像,确认所述极耳是否存在缺陷。
Description
本申请要求于2022年11月03日在中国专利局提交的、申请号为202211373754.2、发明名称为“极耳检测系统及极耳检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电池生产技术领域,特别是涉及一种极耳检测系统及极耳检测方法。
在电池生产过程中,通过模切工艺形成极耳,极耳在模切过程中、叠片/卷绕过程中、以及转运过程中容易翻折,且形成电芯之后极耳翻折不容易检测识别,极耳翻折会导致短路、析锂等情况发生,存在严重的安全隐患。
目前,极耳翻着检测的方案是使用光电传感器照射检测。使用时,光电传感器安装于极片的宽幅方向上的一端,用于与极片所在平面呈角度的对极片连接极耳的部位进行照射,并检测被照射区域的颜色。如此,利用光电传感器对极片连接极耳的部位进行照射,并检测被照射的区域的颜色,从而根据检测获得的颜色来判断极耳是否翻折。
可知,光电传感器只能检测极耳有无,无法测量出极耳翻折的面积。此外,光电传感器的原理是通过把光强度的变化转换成电信号的变化来实现检测,很容易受到光线的干扰造成过漏检。
申请内容
鉴于上述问题,本申请提供一种极耳检测系统及极耳检测方法,能够解决传统技术中无法准确对极耳是否发生翻折进行检测的问题。
本申请实施例采用的技术方案是:
第一方面,本申请提供了一种极耳检测系统,其包括:图像采集模组和上位机。图像采集模组用于获取模切模组辊压后电芯的极耳图像;其中,所述图像采集模组位于所述模切模组和叠片模组之间;上位机用于根据所述极耳图像,确认所述极耳是否存在缺陷。
在一些实施例中,上述系统还包括位置传感器,所述位置传感器用于在检测到所述极耳到达预设走料位置的情况下,生成图像采集指令并发送至所述图像采集模组;其中,所述预设走料位置位于所述模切模组和所述叠片模组之间;
所述图像采集模组在接收到所述图像采集指令的情况下,对所述极耳进行图像采集,得到所述极耳图像并发送至所述上位机。
在一些实施例中,上述图像采集模组包括两个,两个所述图像采集模组分别位于所述电芯设置阳极耳的端部和所述电芯设置阴极耳的端部;
两个所述图像采集模组用于分别在接收到所述图像采集指令的情况下,同步采集阳极耳图像和阴极耳图像。
在一些实施例中,上述系统还包括至少一个背光源,至少一个所述背光源位于所述预设走料位置,并与所述图像采集模组相对设置于所述电芯的两侧;
至少一个所述背光源用于在所述图像采集模组对极耳进行图像采集的过程中,沿所述极耳至所述图像采集模组的方向对所述极耳曝光。
在一些实施例中,上述系统还包括至少一个前光源,至少一个所述前光源位于所述预
设走料位置,并与所述图像采集模组设置于所述电芯的同一侧;
至少一个所述前光源用于在所述图像采集模组对极耳进行图像采集的过程中,沿所述图像采集模组至所述极耳的方向对所述极耳曝光。
在一些实施例中,上述系统还包括至少一个背光源和至少一个前光源,至少一个所述背光源与至少一个所述前光源位于所述预设走料位置,至少一个所述前光源为与所述图像采集模组设置于所述电芯的同一侧,至少一个所述背光源与所述图像采集模组相对设置于所述电芯的两侧;
至少一个所述背光源和至少一个所述前光源用于在所述图像采集模组对所述极耳进行图像采集的过程中,分别在所述电芯两侧对所述极耳曝光。
在一些实施例中,上述上位机用于在获取所述极耳图像的情况下,识别所述极耳图像中的阳极耳区域和阴极耳区域,根据所述阳极耳区域与预设阳极耳参数比较结果,以及所述阴极耳区域与预设阴极耳参数的比较结果,确认所述阳极耳和所述阴极耳是否发生翻折和/或是否存在余料。
在一些实施例中,上述预设阳极耳参数包括预设阳极耳面积;所述上位机还用于对所述阳极耳图像进行识别,得到所述阳极耳区域;根据所述阳极耳区域与所述阳极耳图像的背景图像的灰度值差异,得到所述阳极耳面积;根据所述阳极耳面积是否小于所述预设阳极耳面积,确认所述阳极耳是否存在翻折。
在一些实施例中,上述预设阴极耳参数包括预设阴极耳面积;所述上位机还用于对所述阴极耳图像进行识别,得到所述阴极耳区域;根据所述阴极耳区域与所述阴极耳图像的背景图像的灰度值差异,得到所述阴极耳面积;根据所述阴极耳面积是否小于所述预设阴极耳面积,确认所述阴极耳是否存在翻折。
在一些实施例中,上述预设阳极耳参数包括预设阳极耳余料面积;所述上位机还用于根据所述阳极耳区域和所述阳极耳图像,得到阳极耳余料区域;根据所述阳极耳余料区域与所述阳极耳图像中背景图像的灰度值差异,得到阳极耳余料面积;根据所述阳极耳余料面积是否小于所述预设阳极耳余料面积,确认所述阳极耳是否存在余料。
在一些实施例中,上述预设阴极耳参数包括预设阴极耳余料面积;所述上位机还用于对根据所述阴极耳区域和所述阴极耳图像,得到阴极耳余料区域;根据所述阴极耳余料区域与所述阴极耳图像中背景图像的灰度值差异,得到阴极耳余料面积;根据所述阴极耳余料面积是否小于所述预设阴极耳余料面积,确认所述阴极耳是否存在余料。
在一些实施例中,上述系统还包括下位机;
所述上位机还用于将所述极耳的缺陷检测结果发送至所述下位机;
所述下位机用于在接收到所述缺陷检测结果的情况下,根据所述缺陷检测结果生成电芯的排废指令或叠片指令。
在一些实施例中,上述系统还包括排废模组;
所述上位机用于在极耳图像面积小于预设极耳面积,确认所述极耳发生翻折,和/或,极耳余料面积大于等于预设极耳余料面积的情况下,确认所述极耳存在余料,并将所述极耳发生翻折和/或存在余料的检测结果发送至所述下位机;
所述下位机用于在接收到所述极耳发生翻折和/或所述极耳存在余料的情况下,生成排废指令并发送至所述排废模组;
所述排废模组用于在接收到所述排废指令的情况下,对该电芯进行排废处理。
在一些实施例中,上述上位机用于在极耳面积大于等于预设极耳面积,确认所述极耳未发生翻折,和/或,极耳余料面积小于预设极耳余料面积的情况下,确认所述极耳不存在余料,并将所述极耳未发生翻折和/或不存在余料的检测结果发送至所述下位机;
所述下位机用于在接收到所述极耳未发生翻折和/或不存在余料的情况下,生成叠片指令并发送至所述叠片模组;
所述叠片模组用于在接收到所述叠片指令的情况下,对该电芯进行叠片处理。
第二方面,本申请还提供了一种极耳检测方法,其包括:
获取辊压后电芯的极耳图像;
对所述极耳图像进行识别,得到所述极耳图像中的极耳区域;
根据所述极耳区域与预设极耳参数的比较结果,确认极耳是否存在缺陷。
在一些实施例中,上述极耳图像包括阳极耳图像和阴极耳图像,所述极耳区域包括阳极耳区域和阴极耳区域;对所述极耳图像进行识别,得到所述极耳图像中的极耳区域,包括:
获取预设阳极耳图像轮廓和预设阴极耳图像轮廓;
使用所述预设阳极耳图像轮廓对所述阳极耳图像进行定位,得到所述阳极耳区域;
使用所述预设阴极耳图像轮廓对所述阴极耳图像进行定位,得到所述阴极耳区域。
在一些实施例中,上述预设阳极耳参数包括预设阳极耳面积,所述预设阴极耳参数包括预设阴极耳面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,包括:
根据所述阳极耳区域与所述阳极耳图像的背景图像的灰度值差异,得到所述阳极耳面积;
根据所述阳极耳面积是否小于所述预设阳极耳面积,确认所述阳极耳是否存在翻折;和/或
根据所述阴极耳区域与所述阴极耳图像的背景图像的灰度值差异,得到所述阴极耳面积;
根据所述阴极耳面积是否小于所述预设阴极耳面积,确认所述阴极耳是否存在翻折。
在一些实施例中,上述预设阳极耳参数包括预设阳极耳余料面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,还包括:
根据所述预设阳极耳图像轮廓、所述阳极耳区域和所述阳极耳图像,得到所述阳极耳余料区域;
根据所述阳极耳余料区域的面积是否小于所述预设阳极耳余料面积,确认所述阳极耳是否存在余料。
在一些实施例中,上述预设阴极耳参数包括预设阴极耳余料面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,还包括:
根据所述预设阴极耳图像轮廓、所述阴极耳区域和所述阴极耳图像,得到所述阴极耳余料区域;
根据所述阴极耳余料区域的面积是否小于所述预设阴极耳余料面积,确认所述阴极耳是否存在余料。
在一些实施例中,上述方法还包括:
获取所述电芯的标识码;
根据所述电芯的标识码,确认获取该电芯极耳图像所使用图像采集模组的位姿参数,以及在预设的极耳缺陷检测算法库内确认该电芯对应的极耳缺陷检测算法。
本申请实施例提供的第一方面的有益效果在于:在电芯进行模切和辊压之后进行极耳的缺陷检测,对电芯进行极耳缺陷检测之后,电芯不会再经过模切模组辊压装置,这样能有效避免对极耳缺陷检测完成后电芯在转运的过程中再次发生翻折,也保证了检测结果的真实性和可靠性。
可以理解的是,本申请的第二方面的有益效果可以参见本申请第一方面的相关描述,在此不再赘述。
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一个实施例中极耳检测系统的结构示意图;
图2为本申请一个实施例中电芯走料的侧视结构示意图;
图3为本申请一个实施例中电芯走料的正视结构示意图;
图4为本申请一个实施例中前光源的结构示意图;
图5为本申请一个实施例中前光源和背光源的结构示意图;
图6为本申请一个实施例中极耳检测方法的流程示意图;
图7为本申请一个实施例中识别阳极耳区域和阴极耳区域的流程示意图;
图8a为本申请一个实施例中检测阳极耳是否发生翻折的流程示意图;
图8b为本申请一个实施例中检测阴极耳是否发生翻折的流程示意图;
图9a为本申请一个实施例中检测阳极耳是否存在余料的流程示意图;
图9b为本申请一个实施例中检测阴极耳是否存在余料的流程示意图;
图10为本申请另一个实施例中检测阳极耳是否存在余料的流程示意图;
图11为本申请另一个实施例中检测阴极耳是否存在余料的流程示意图;
图12为本申请一个实施例确认极耳检测算法的流程示意图。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐
式地理解的是,本文所描述的实施例可以与其它实施例相结合。
锂离子电池(或者简称为锂电池)因具有能量密度高、循环寿命长、无记忆效应等优点,已经在多种用电产品中取得广泛应用。例如,用电产品可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。
锂离子电池的生产工艺包括卷绕工艺和叠片工艺等。其中,叠片工艺制造的叠片电池相比卷绕工艺制造的卷绕电池,具有高放电率、内阻低、容量密度高和能量密度高等特点,使得叠片电池逐渐成为主流动力电池。
在电池生产过程中,通过模切工艺形成极耳,极耳在模切过程中、叠片/卷绕过程中、以及转运过程中容易翻折,且形成电芯之后极耳翻折不容易检测识别,极耳翻折会导致短路、析锂等情况发生,存在严重的安全隐患。
目前,极耳翻着检测的方案是使用光电传感器照射检测。使用时,光电传感器安装于极片的宽幅方向上的一端,用于与极片所在平面呈角度的对极片连接极耳的部位进行照射,并检测被照射区域的颜色。如此,利用光电传感器对极片连接极耳的部位进行照射,并检测被照射的区域的颜色,从而根据检测获得的颜色来判断极耳是否翻折。
可知,光电传感器只能检测极耳有无,无法测量出极耳翻折的面积。此外,光电传感器的原理是通过把光强度的变化转换成电信号的变化来实现检测,很容易受到光线的干扰造成过漏检。
另外,基于人工检测极耳翻折缺陷时,存在较大的不确定性,容易出现漏检和误杀的现象。
基于以上考虑,申请人提出了一种极耳检测系统以及极耳检测方法,一方面,在电芯进行模切和辊压之后进行极耳的缺陷检测,对电芯进行极耳缺陷检测之后,电芯不会再经过模切模组辊压装置,这样能有效避免对极耳缺陷检测完成后电芯在转运的过程中再次发生翻折,也保证了检测结果的真实性和可靠性。另一方面,通过该极耳检测方法,既能够实现对极耳发生翻折和存在余料的缺陷同时进行检测,也可以实现对发生翻折的面积和存在余料的面积进行量化,以供进一步调整工艺。
为了便于理解,本申请实施例中对部分词汇进行介绍。
本申请实施例中涉及的电池按照电池形状划分可以包括但不限于:扣式电池、叠片电池、软包电池、硬壳电池、圆柱电池等。
本申请实施例中涉及的电池按照电池材料划分可以包括但不限于:三元电池、磷酸铁锂电池、硅体系电池、碳硅体系电池、锂硫电池等。
本申请实施例中涉及的电池的阴极(或者称之为正极)在充电过程中会被氧化,锂离子可以从阴极的层状插层材料中脱出穿过电解质并插层到阳极中。对应地,本申请实施例中涉及的电池的阳极(或者称之为负极)在放电过程中会发生氧化反应,锂离子可以从阳极脱出穿过电解质并重新插层到阴极中。
在一个实施例中,图1为本申请一个实施例中极耳检测系统的结构示意图。如图1所示,其包括图像采集模组20和上位机50。其中,图像采集模组20和上位机50通信连接。图像采集模组20用于获取模切模组辊压后电芯的极耳图像;上位机50用于根据图像采集模组20采集的极耳图像,确认极耳是否存在缺陷。
在一个实施例中,检测模组20的上游工位是模切模组10,检测模组20的下游工位是叠片模组30和排废模组40。可知,检测模组20位于电芯生产工艺流程中的模切模组10
和叠片模组30之间,在电芯进行模切和辊压之后进行极耳的缺陷检测,对电芯进行极耳缺陷检测之后,电芯不会再经过模切模组辊压装置,这样能有效避免对极耳缺陷检测完成后电芯在转运的过程中再次发生翻折,也保证了检测结果的真实性和可靠性。
在一个实施例中,极耳检测系统还包括下位机60。上位机50和下位机60之间通信连接,上位机50分别与模切模组10、检测模组20和叠片模组30通信连接;下位机60分别与模切模组10、检测模组20、叠片模组30和排废模组40通信连接。模切模组10模切和辊压后的电芯到达检测模组20后,检测模组20检测到电芯不存在缺陷时,叠片模组30对不存在缺陷的电芯进行叠片;检测模组20检测到电芯存在缺陷时,排废模组40对存在缺陷的电芯进行排废。
此外,模切模组10、检测模组20、叠片模组30和排废模组40可以设置于同一叠片机,模切模组10也可独立于包括检测模组20、叠片模组30和排废模组40的叠片机单独设置,在此不作限定,只要保证检测模组20位于模切模组10和叠片模组30之间即可。
如图2和图3所示,检测模组20包括图像采集模组20和位置传感器27。图像采集模组20分别与上位机50和下位机60通信连接,位置传感器27与图像采集模组20通信连接。结合图1可知,检测模组20位于模切模组10和叠片模组30之间,图像采集模组20和位置传感器27位于模切模组10和叠片模组30之间。
电芯70包括多个叠片电芯73,以及向每个叠片电芯73两端分别延伸出的阳极耳71和阴极耳72。可知,极耳包括阳极耳71和阴极耳72。多个叠片电芯73的叠片方式不限于将隔膜切断的直接叠片的积层式叠片方式,也不限于隔膜不切断的Z字形叠片的折叠式叠片方式;在本实施例中,以Z字形叠片方式为例进行描述。
具体地,位置传感器27用于在检测到极耳到达预设走料位置的情况下,生图像采集指令并发送至图像采集模组20。图像采集模组20在接收到图像采集指令的情况下,对电芯70的极耳进行图像采集,得到极耳图像并发送至上位机50。
其中,预设走料位置位于模切模组10和叠片模组30之间。可知,电芯70的每个叠片电芯73在沿电芯走料方向走料时,图像采集模组20对每个叠片电芯73极耳图像的采集在预设走料位置完成。
位置传感器27的类型可以是对射传感器,在本实施例中不限于其型号,只要能够实现在叠片走料的过程中,实现对阳极耳71和阴极耳72的检测即可。
通过位置传感器27检测叠片在走料过程中,阳极耳71和阴极耳72到达预设的走料位置时,生产图像采集指令并发送至图像采集模组20实现自动对经过预设走料位置的每个极耳进行图像采集,避免对极耳造成漏检。
在一个实施例中,如图2和图3所示,图像采集模组20包括两个,两个图像采集模组20分别位于叠片电芯73设置阳极耳71的端部和叠片电芯73设置阴极耳72的端部。
具体地,两个图像采集模组20分别即为第一图像采集模组21和第二图像采集模组22。其中,第一图像采集模组21设置预设走料位置,沿电芯走料方向阳极耳71经过的位置,由此,第一图像采集模组21用于对每个叠片电芯73的阳极耳71进行图像采集;第二图像采集模组22设置预设走料位置,沿电芯走料方向阴极耳72经过的位置,由此,第二图像采集模组22用于对每个叠片电芯73的阴极耳72进行图像采集。对应地,位置传感器27也包括两个,一个位置传感器27设置于第一图像采集模组21,另一个位置传感器27设置于第二图像采集模组22。第一图像采集模组21和第二图像采集模组22用于分别在接收到
图像采集指令的情况下,同步采集阳极耳图像和阴极耳图像。
通过这样的设置,能够同步实现对阳极耳71和阴极耳72进行极耳图像采集,以避免阳极耳图像和阴极耳图像彼此混合影响检测结果。此外,图像采集模组20的数量可以是任意数量个,例如,使用一个图像采集模组20同时对阳极耳和阴极耳进行图像采集;再例如,使用一个图像采集模组20同时对阳极耳和阴极耳进行图像采集,再分别使用二个图像采集模组20分别对阳极耳和阴极耳进行图像采集;还例如,将四个图像采集模组20设置为一组,每一组图像采集模组分别在每个叠片电芯73的两侧对阳极耳71和阴极耳72进行图像采集;本申请不在于限制图像采集模组20的数量,只要能够实现在预设走料位置完成对阳极耳图像和阴极耳图像的采集即可。
图像采集模组20可以是RGB相机、红外相机、景深相机和点云相机等,其具体类型根据对缺陷检测使用图像格式实际情况选择即可,本申请也不在于限定具体的图像采集模组20的类型和型号。
在一个实施例中,如图2和图3所示,极耳检测系统还包括至少一个背光源,至少一个背光源位于预设走料位置,并与图像采集模组20相对设置于电芯70的两侧;至少一个背光源用于在图像采集模组20对极耳进行图像采集的过程中,沿极耳至图像采集模组20的方向对极耳曝光。通过对阳极耳71和阴极耳72的曝光,使得得到的阳极耳图像中阳极耳区域和其背景图像具有灰度差异,以及阴极耳图像中阴极耳区域和其背景图像具有灰度差异,有助于对极耳的缺陷进行检测。
以背光源设置二个为例,背光源包括第一背光源23和第二背光源24(图未绘示)。第一背光源23和第一图像采集模组21设置于叠片电芯73具有阳极耳71的端部,且第一背光源23与第一图像采集模组21相对设置于电芯70的两侧;第一图像采集模组21在预设走料位置对阳极耳71进行图像采集的过程中,第一背光源23对阳极耳71进行曝光。第二背光源24和第二图像采集模组22设置于叠片电芯73具有阴极耳72的端部,且第二背光源24和第二图像采集模组22相对设置于电芯70的两侧;第二图像采集模组22在预设走料位置对阴极耳72进行图像采集的过程中,第二背光源24对阴极耳72进行曝光。
通过使用背光源对极耳进行曝光,能够凸显极耳图像中的极耳区域,方便后续缺陷检测过程对极耳图像中极耳区域和极耳图像中背景区域的分割,进一步提升缺陷检测的效率和精度。
在一个实施例中,如图3和图4所示,极耳检测系统还包括至少一个前光源,至少一个前光源位于预设走料位置,并与图像采集模组设置于电芯的同一侧;至少一个前光源用于在图像采集模组对极耳进行图像采集的过程中,沿图像采集模组至极耳的方向对极耳曝光。
以前光源设置二个为例,前光源包括第一前光源25和第二前光源26(图未绘示)。第一前光源25和第一图像采集模组21设置于叠片电芯73具有阳极耳71的端部,且第一前光源25与第一图像采集模组21设置于电芯70的同一侧;第一图像采集模组21在预设走料位置对阳极耳71进行图像采集的过程中,第一前光源25对阳极耳71进行曝光。第二前光源26和第二图像采集模组22设置于叠片电芯73具有阴极耳72的端部,且第二前光源26和第二图像采集模组22设置于电芯70的同一侧;第二图像采集模组22在预设走料位置对阴极耳72进行图像采集的过程中,第二前光源26对阴极耳72进行曝光。
通过使用前光源对极耳进行曝光,同样地能够凸显极耳图像中的极耳区域,也方便后
续缺陷检测过程对极耳图像中极耳区域和极耳图像中背景区域的分割,进一步提升缺陷检测的效率和精度。
在一个实施例中,如图3和图5所示,极耳检测系统还包括至少一个背光源和至少一个前光源,至少一个背光源与至少一个前光源位于预设走料位置,至少一个前光源为与图像采集模组设置于电芯的同一侧,至少一个背光源与图像采集模组相对设置于电芯的两侧;至少一个背光源和至少一个前光源用于在图像采集模组对极耳进行图像采集的过程中,分别在电芯两侧对极耳曝光。
以背光源和前光源分别设置二个为例,即背光源包括第一背光源23和第二背光源24,前光源包括第一前光源25和第二前光源26。第一背光源23和第一前光源25相对设置于叠片电芯73具有阳极耳71的端部,其中,第一前光源25与第一图像采集模组21位于电芯70的同一侧,第一背光源23位于电芯70的另一侧;第一图像采集模组21在预设走料位置对阳极耳71进行图像采集的过程中,第一背光源23和第一前光源25同时对阳极耳71进行曝光。第二背光源24和第二前光源26相对设置于叠片电芯73具有阴极耳72的端部,其中,第二前光源26与第二图像采集模组22位于电芯70的同一侧,第二背光源24位于电芯70的另一侧;第二图像采集模组22在预设走料位置对阴极耳72进行图像采集的过程中,第二背光源24和第二前光源26同时对阴极耳72进行曝光。
通过使用背光源和前光源同时对极耳进行曝光,能够凸显极耳图像中的极耳区域,方便后续缺陷检测过程对极耳图像中极耳区域和极耳图像中背景区域的分割,同时,提高检测设备的设计冗余使得当任一前光源或背光源出现故障时,仍能够保证缺陷检测的效率和精度。
在一个实施例中,如图1所示,上位机50用于在获取所述极耳图像的情况下,识别极耳图像中的阳极耳区域和阴极耳区域,根据阳极耳区域与预设阳极耳参数比较结果,以及阴极耳区域与预设阴极耳参数的比较结果,确认阳极耳和阴极耳是否发生翻折和/或是否存在余料。
其中,预设阳极耳参数和预设阴极耳参数是根据对应电芯70的型号确认,例如,该型号电芯70的极耳应满足预设的长度和宽度,极耳发生翻折和/或极耳存在余料的情况下会导致极耳的长度和宽度发生变化,导致极耳的尺寸不满足该型号电芯70的极耳的长度和宽度。缺陷检测方法过程请参考后文步骤710至步骤730、步骤810至步骤840、步骤910至步骤940、步骤1010至步骤1030、以及步骤1110至步骤1130,在此不作赘述。通过该极耳检测方法,既能够实现对极耳发生翻折和存在余料的缺陷同时进行检测,也可以实现对发生翻折的面积和存在余料的面积进行量化,以供进一步调整工艺。
在一个实施例中,预设阳极耳参数包括预设阳极耳面积。上位机50用于对阳极耳图像进行识别,得到阳极耳图像中的阳极耳区域和阳极耳图像的背景图像;根据阳极耳区域与阳极耳图像的背景图像的灰度值差异,得到阳极耳面积;根据阳极耳面积是否小于预设阳极耳面积,确认阳极耳是否存在翻折。通过该方式,实现对阳极耳是否发生翻折以及发生翻折的面积进行量化,保证检测结果的精度。
在这里,预设的阳极耳面积可以是一个预设的范围值,只要检测的阳极耳的面积属于该预设阳极耳面积的范围值内,则确认该阳极耳不存在缺陷。在阳极耳发生翻折的情况下,该阳极耳面积小于该预设阳极耳面积,通过确认检测的阳极耳面积小于该预设阳极耳面积的结果。
在一个实施例中,预设阴极耳参数包括预设阴极耳面积。上位机50还用于对阴极耳图像进行识别,得到阴极耳区域;根据阴极耳区域与阴极耳图像的背景图像的灰度值差异,得到阴极耳面积;根据阴极耳面积是否小于所述预设阴极耳面积,确认阴极耳是否存在翻折。通过该方式,实现对阴极耳是否发生翻折以及发生翻折的面积进行量化,保证检测结果的精度。
在一个实施例中,预设阳极耳参数包括预设阳极耳余料面积。上位机50还用于根据阳极耳区域和阳极耳图像,得到阳极耳余料区域;根据阳极耳余料区域与阳极耳图像中背景图像的灰度值差异,得到阳极耳余料面积;根据阳极耳余料面积是否小于预设阳极耳余料面积,确认阳极耳是否存在余料。通过该方式,在实现对阳极耳是否发生翻折检测的基础上,进一步实现阳极耳是否存在余料的检测,同样地,实现对阳极耳余料的面积进行量化,以供调整产线工艺参数。
在一个实施例中,预设阴极耳参数包括预设阴极耳余料面积。上位机50还用于对根据阴极耳区域和阴极耳图像,得到阴极耳余料区域;根据阴极耳余料区域与阴极耳图像中背景图像的灰度值差异,得到阴极耳余料面积;根据阴极耳余料面积是否小于预设阴极耳余料面积,确认阴极耳是否存在余料。通过该方式,在实现对阴极耳是否发生翻折检测的基础上,进一步实现阴极耳是否存在余料的检测,同样地,实现对阴极耳余料的面积进行量化,以供调整产线工艺参数。
承上述,上位机50同时实现对极耳发生翻折和存在余料两种缺陷进行检测,避免对极耳的缺陷存在漏检,造成存在缺陷的极耳生产的电芯存在安全隐患。
在一个实施例中,如图1所示,上位机50还用于将极耳的缺陷检测结果发送至下位机60;下位机60用于在接收到缺陷检测结果的情况下,根据缺陷检测结果生成电芯的排废指令或叠片指令,以实现对检测极耳存在缺陷的电芯70进行排废处理,以及对检测极耳不存在缺陷的电芯70进行叠片。
通过上述的方式,通过对极耳存在缺陷的电芯进行排废,或对极耳不存在缺陷的电芯进行叠片,实现对产线的智能化控制,有效的保证了产线节拍。
在一个实施例中,如图1所示,上位机50用于在极耳图像面积大于等于预设极耳面积,确认极耳发生翻折,和/或,极耳余料面积大于等于预设极耳余料面积的情况下,确认极耳存在余料,并将极耳发生翻折和/或存在余料的检测结果发送至下位机60;下位机60用于在接收到极耳发生翻折和/或极耳存在余料的情况下,生成排废指令并发送至排废模组40;排废模组40用于在接收到排废指令的情况下,对该存在缺陷的电芯70进行排废处理。
通过上述的方式,当上位机50检测到极耳存在翻折缺陷时,上位机50实时通讯给下位机60进行排废处理,实现对产线的智能化控制,有效保证了产线节拍。
在一个实施例中,如图1所示,上位机50用于在极耳面积小于预设极耳面积,确认极耳未发生翻折,和/或,极耳余料面积小于预设极耳余料面积的情况下,确认极耳不存在余料,并将极耳未发生翻折和/或不存在余料的检测结果发送至下位机60;下位机60用于在接收到极耳未发生翻折和/或不存在余料的情况下,生成叠片指令并发送至叠片模组30;叠片模组30用于在接收到叠片指令的情况下,对该不存在缺陷的电芯70进行叠片处理。
通过上述的方式,当上位机50检测到极耳存在余料缺陷时,上位机50实时通讯给下位机60进行排废处理,上位机50兼顾了多种极耳缺陷类型的检测,同时,实现对产线的智能化控制,有效保证了产线节拍。
在一个实施例中,图6为本申请一个实施例中极耳检测方法的流程示意图,该极耳检测方法可应用于上述极耳检测系统。如图6所示,其步骤包括:
步骤610:获取辊压后电芯的极耳图像。
步骤620:对极耳图像进行识别,得到极耳图像中的极耳区域。
步骤630:根据极耳区域与预设极耳参数的比较结果,确认极耳是否存在缺陷。
通过实时采集的极耳图像进行缺陷检测,实时获取产线上极耳是否存在缺陷结果,避免人工质检极耳缺陷时存在漏检或误检的情况,同时,极耳进行缺陷检测后不会在产线上过辊保证检测精度,不存在缺陷的极耳能够保证电芯安全,存在缺陷的极耳即时排废保证了产线节拍。
在一个实施例中,极耳图像包括阳极耳图像和阴极耳图像,极耳区域包括阳极耳区域和阴极耳区域;即阳极耳图像对应阳极耳区域,阴极耳图像对应阴极耳区域。如图7所示,上述步骤620:对所述极耳图像进行识别,得到所述极耳图像中的极耳区域,包括:
步骤710:获取预设阳极耳图像轮廓和预设阴极耳图像轮廓。
步骤720:使用预设阳极耳图像轮廓对阳极耳图像进行定位,得到阳极耳区域。
步骤730:使用预设阴极耳图像轮廓对阴极耳图像进行定位,得到阴极耳区域。
需要说明的是,步骤720和步骤730并不存在时序上的先后关系,为了配合第一图像采集模组21和第二图像采集模组22同步采集阳极耳图像和阴极耳图像的操作,可同步对阳极耳区域和阴极耳区域进行识别。
通过预设阳极耳图像轮廓和预设阴极耳图像轮廓对阳极耳区域和阴极耳区域进行识别,方便进一步对极耳发生翻折或存在余料的面积进行量化。
此外,通过预设阳极耳轮廓对阳极耳区域进行识别以及通过预设阴极耳轮廓对阴极耳区域进行识别,具体来说可以根据极耳图像中极耳区域对应的前景图像和极耳图像中背景图像的灰度值差异、语义信息等进行对极耳区域进行识别,包括并不限于使用各种边缘检测算子以及语义分割模型和实例分割模型等实现对阳极耳区域和阴极耳区域进行识别。
在一个实施中,预设阳极耳参数包括预设阳极耳面积,预设阴极耳参数包括预设阴极耳面积;可知,预设阳极耳面积即为该型号电芯标准阳极耳对应的面积,检测到阳极耳面积在该预设阳极耳面积阈值内,则说明该阳极耳为不存在缺陷的阳极耳;预设阴极耳面积即为该型号电芯标准阴极耳对应的面积,同理,检测到阴极耳面积在该预设阴极耳面积阈值内,则说明该阴极耳为不存在缺陷的阴极耳。如图8a和图8b所示,步骤630:根据耳区域与预设极耳参数的比较结果,确认极耳是否存在缺陷,包括:
如图8a所示,对于阳极耳:
步骤810:根据所阳极耳区域与阳极耳图像的背景图像的灰度值差异,得到阳极耳面积。
步骤820:根据阳极耳面积是否符合预设阳极耳面积的阈值范围,确认阳极耳是否存在翻折。
以阳极耳71为矩形为例,根据预设阳极耳图像轮廓可确认标准阳极耳的长边的长度和短边的宽度,根据该预设阳极耳图长度和宽度即可确认预设阳极耳面积的阈值范围。由于采用前光源和/或背光源对阳极耳进行曝光,阳极耳图像中阳极耳区域(即前景图像)呈黑色,阳极耳图像的背景图像呈白色,当阳极耳71发生翻折其检测得到的阳极耳面积会小于上述预设阳极耳面积的阈值范围。
如图8b所示,对于阴极耳:
步骤830:根据阴极耳区域与阴极耳图像的背景图像的灰度值差异,得到阴极耳面积。
步骤840:根据阴极耳面积是否符合预设阴极耳面积阈值范围,确认阴极耳是否存在翻折。
同理,以阴极耳72为矩形为例,根据预设阴极耳图像轮廓可确认标准阴极耳的长边的长度和短边的宽度,根据该预设阴极耳图长度和宽度即可确认预设阴极耳面积的阈值范围。由于采用前光源和/或背光源对阴极耳进行曝光,阴极耳图像中阴极耳区域(即前景图像)呈黑色,阴极耳图像的背景图像呈白色,当阴极耳72发生翻折其检测得到的阴极耳面积会小于上述预设阴极耳面积的阈值范围。
可知,根据产线的实际要求,可仅对阳极耳是否发生翻折进行检测,也可仅对阴极耳是否发生翻折进行检测,还可以同步对阳极耳是否发生翻折和阴极耳是否发生翻折进行检测。
在一个实施中,预设阳极耳参数包括预设阳极耳余料面积,预设阴极耳参数包括预设阴极耳余料面积。如图9a和图9b所示,步骤630:根据极耳区域与预设极耳参数的比较结果,确认极耳是否存在缺陷,还包括:
如图9a所示,针对阳极耳:
步骤910:根据预设阳极耳图像轮廓、阳极耳区域和阳极耳图像,得到阳极耳余料区域。
步骤920:根据阳极耳余料区域的面积是否小于预设阳极耳余料面积,确认阳极耳是否存在余料。
如图9b所示,针对阴极耳:
步骤930:根据预设阴极耳图像轮廓、阴极耳区域和阴极耳图像,得到阴极耳余料区域。
步骤940:根据阴极耳余料区域的面积是否小于预设阴极耳余料面积,确认阴极耳是否存在余料。
其中,预设的阳极耳余料面积和预设的阴极耳余料面积可以根据该电芯型号及其质量要求确认。在对阳极耳71和阴极耳72是否发生翻折进行检测的同时,还可以对阳极耳71和阴极耳72是否存在余料进行检测。
在一个实施例中,如图10所示,步骤910具体包括:
步骤1010:根据预设阳极耳图像轮廓,在阳极耳图像中确认出超出其阳极耳区域的区域部分,将超出阳极耳区域的区域部分确认为阳极耳余料区域。
对应的,步骤920具体包括:
步骤1020:根据阳极耳余料区域与所述阳极耳图像的背景图像的灰度值差异,得到阳极耳余料面积。
步骤1030:根据阳极耳余料面积是否小于预设阳极耳余料面积,确认阳极耳是否存在余料。
其中,在检测的阳极耳余料面积小于预设的阳极耳余料面积的情况下,确认阳极耳不存在余料,即该阳极耳不存在余料缺陷。在检测的阳极耳余料面积大于等于预设的阳极耳余料面积的情况下,确认阳极耳存存在余料,即该阳极耳存在余料缺陷。
在实现对阳极耳是否发生翻折检测的基础上,进一步实现阳极耳是否存在余料的检测,同样地,实现对阳极耳余料的面积进行量化,以供调整产线工艺参数。
继续以阳极耳71为矩形为例,根据预设阳极耳图像轮廓可确认标准阳极耳的长边的长度和短边的宽度。由于采用前光源和/或背光源对阳极耳进行曝光,阳极耳图像中阳极耳区
域(即前景图像)呈黑色,阳极耳图像的背景图像呈白色,当检测到阳极耳的长边外和/或短边外存在黑色区域,该阳极耳图像中长边外和/或短边外存在黑色区域即为超出阳极耳区域的阳极耳余料区域。产线也可当检测阳极耳71存在余料时就进行排废处理。
在一个实施例中,如图11所示,步骤930具体包括:
步骤1110:根据预设阴极耳图像轮廓,在阴极耳图像中确认出超出其阴极耳区域的区域部分,将超出阴极耳区域的区域部分确认为阴极耳余料区域。
对应地,步骤940具体包括:
步骤1120:根据阴极耳余料区域与阴极耳图像的背景图像的灰度值差异,得到阴极耳余料面积;
步骤1130:根据阴极耳余料面积是否小于预设阴极耳余料面积,确认阴极耳是否存在余料。
其中,在检测的阴极耳余料面积小于预设的阴极耳余料面积的情况下,确认阴极耳不存在余料,即该阴极耳不存在余料缺陷。在检测的阴极耳余料面积大于等于预设的阴极耳余料面积的情况下,确认阴极耳存存在余料,即该阴极耳存在余料缺陷。
在实现对阴极耳是否发生翻折检测的基础上,进一步实现阴极耳是否存在余料的检测,同样地,实现对阴极耳余料的面积进行量化,以供调整产线工艺参数。
继续以阳极耳71为矩形为例,根据预设阴极耳图像轮廓可确认标准阴极耳的长边的长度和短边的宽度。由于采用前光源和/或背光源对阴极耳进行曝光,阴极耳图像中阴极耳区域(即前景图像)呈黑色,阴极耳图像的背景图像呈白色,当检测到阴极耳的长边外和/或短边外存在黑色区域,该阴极耳图像中长边外和/或短边外存在黑色区域即为超出阴极耳区域的阴极耳余料区域。产线也可当检测阴极耳72存在余料时就进行排废处理。
此外,预设阳极耳余料面积和预设阴极耳余料面积可根据电芯型号及其质量要求确认。例如,可将预设阳极耳余料面积和预设阴极耳余料面积阈值均设置为零,只要检测到阳极耳存在余料面积和阴极耳余料面积存在余料面积,则极耳存在余料缺陷;还例如,可将阳极耳和阴极耳允许的余料误差范围确认预设阳极耳余料面积上限值和预设阴极耳余料面积上限值,只要检测的阳极耳余料面积和阴极耳余料面积均处于该上限值范围内,则认为该阳极耳和阴极耳不存在余料缺陷。
在一个实施例中,图12为本申请一个实施例中确认极耳检测算法的流程示意图。如图12所示,所述方法还包括:
步骤1210:获取所述电芯的标识码。
其中,标识码可以是产品序列号(Serial Number,SN码)。
步骤1220:根据所述电芯的标识码,确认获取该电芯极耳图像所使用图像采集模组的位姿参数,以及在预设的极耳缺陷检测算法库内确认该电芯对应的极耳缺陷检测算法。
可以理解的是,由于不同型号的电芯70其对应的图像采集模组20采集极耳图像的位姿(即图像采集模组20与极耳之间的距离)以及缺陷检测算法均可能不同。上位机50内可针对每种型号的电芯70,预设其图像采集模组20的位姿参数和其对应的缺陷检测算法。使用时,极耳检测系统根据电芯70的标识码生产的图像采集指令,自动确认和调整图像采集模组20的位置和调用其对应的缺陷检测算法进行缺陷识别,提高了极耳缺陷检测的效率。同时,基于同一极耳检测系统,可实现对多种型号电芯70极耳的检测。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指
示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (20)
- 一种极耳检测系统,其特征在于,包括:图像采集模组,用于获取模切模组辊压后电芯的极耳图像;其中,所述图像采集模组位于所述模切模组和叠片模组之间;上位机,用于根据所述极耳图像,确认所述极耳是否存在缺陷。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述系统还包括位置传感器,所述位置传感器用于在检测到所述极耳到达预设走料位置的情况下,生成图像采集指令并发送至所述图像采集模组;其中,所述预设走料位置位于所述模切模组和所述叠片模组之间;所述图像采集模组在接收到所述图像采集指令的情况下,对所述极耳进行图像采集,得到所述极耳图像并发送至所述上位机。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述图像采集模组包括两个,两个所述图像采集模组分别位于所述电芯设置阳极耳的端部和所述电芯设置阴极耳的端部;两个所述图像采集模组用于分别在接收到所述图像采集指令的情况下,同步采集阳极耳图像和阴极耳图像。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述系统还包括至少一个背光源,至少一个所述背光源位于所述预设走料位置,并与所述图像采集模组相对设置于所述电芯的两侧;至少一个所述背光源用于在所述图像采集模组对极耳进行图像采集的过程中,沿所述极耳至所述图像采集模组的方向对所述极耳曝光。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述系统还包括至少一个前光源,至少一个所述前光源位于所述预设走料位置,并与所述图像采集模组设置于所述电芯的同一侧;至少一个所述前光源用于在所述图像采集模组对极耳进行图像采集的过程中,沿所述图像采集模组至所述极耳的方向对所述极耳曝光。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述系统还包括至少一个背光源和至少一个前光源,至少一个所述背光源与至少一个所述前光源位于所述预设走料位置,至少一个所述前光源为与所述图像采集模组设置于所述电芯的同一侧,至少一个所述背光源与所述图像采集模组相对设置于所述电芯的两侧;至少一个所述背光源和至少一个所述前光源用于在所述图像采集模组对所述极耳进行图像采集的过程中,分别在所述电芯两侧对所述极耳曝光。
- 根据权利要求1~6任一项所述的极耳检测系统,其特征在于,所述上位机用于在获取所述极耳图像的情况下,识别所述极耳图像中的阳极耳区域和阴极耳区域,根据所述阳极耳区域与预设阳极耳参数比较结果,以及所述阴极耳区域与预设阴极耳参数的比较结果,确认所述阳极耳和所述阴极耳是否发生翻折和/或是否存在余料。
- 根据权利要求7所述的极耳检测系统,其特征在于,所述预设阳极耳参数包括预设阳极耳面积;所述上位机还用于对所述阳极耳图像进行识别,得到所述阳极耳区域;根据所述阳极耳区域与所述阳极耳图像的背景图像的灰度值差异,得到所述阳极耳面积;根据所述阳极 耳面积是否小于所述预设阳极耳面积,确认所述阳极耳是否存在翻折。
- 根据权利要求7所述的极耳检测系统,其特征在于,所述预设阴极耳参数包括预设阴极耳面积;所述上位机还用于对所述阴极耳图像进行识别,得到所述阴极耳区域;根据所述阴极耳区域与所述阴极耳图像的背景图像的灰度值差异,得到所述阴极耳面积;根据所述阴极耳面积是否小于所述预设阴极耳面积,确认所述阴极耳是否存在翻折。
- 根据权利要求7所述的极耳检测系统,其特征在于,所述预设阳极耳参数包括预设阳极耳余料面积;所述上位机还用于根据所述阳极耳区域和所述阳极耳图像,得到阳极耳余料区域;根据所述阳极耳余料区域与所述阳极耳图像中背景图像的灰度值差异,得到阳极耳余料面积;根据所述阳极耳余料面积是否小于所述预设阳极耳余料面积,确认所述阳极耳是否存在余料。
- 根据权利要求7所述的极耳检测系统,其特征在于,所述预设阴极耳参数包括预设阴极耳余料面积;所述上位机还用于对根据所述阴极耳区域和所述阴极耳图像,得到阴极耳余料区域;根据所述阴极耳余料区域与所述阴极耳图像中背景图像的灰度值差异,得到阴极耳余料面积;根据所述阴极耳余料面积是否小于所述预设阴极耳余料面积,确认所述阴极耳是否存在余料。
- 根据权利要求1所述的极耳检测系统,其特征在于,所述系统还包括下位机;所述上位机还用于将所述极耳的缺陷检测结果发送至所述下位机;所述下位机用于在接收到所述缺陷检测结果的情况下,根据所述缺陷检测结果生成电芯的排废指令或叠片指令。
- 根据权利要求12所述的极耳检测系统,其特征在于,所述系统还包括排废模组;所述上位机用于在极耳图像面积小于预设极耳面积,确认所述极耳发生翻折,和/或,极耳余料面积大于等于预设极耳余料面积的情况下,确认所述极耳存在余料,并将所述极耳发生翻折和/或存在余料的检测结果发送至所述下位机;所述下位机用于在接收到所述极耳发生翻折和/或所述极耳存在余料的情况下,生成排废指令并发送至所述排废模组;所述排废模组用于在接收到所述排废指令的情况下,对该电芯进行排废处理。
- 根据权利要求12所述的极耳检测系统,其特征在于,所述上位机用于在极耳面积大于等于预设极耳面积,确认所述极耳未发生翻折,和/或,极耳余料面积小于预设极耳余料面积的情况下,确认所述极耳不存在余料,并将所述极耳未发生翻折和/或不存在余料的检测结果发送至所述下位机;所述下位机用于在接收到所述极耳未发生翻折和/或不存在余料的情况下,生成叠片指令并发送至所述叠片模组;所述叠片模组用于在接收到所述叠片指令的情况下,对该电芯进行叠片处理。
- 一种极耳检测方法,其特征在于,包括:获取辊压后电芯的极耳图像;对所述极耳图像进行识别,得到所述极耳图像中的极耳区域;根据所述极耳区域与预设极耳参数的比较结果,确认极耳是否存在缺陷。
- 根据权利要求15所述的极耳检测方法,其特征在于,所述极耳图像包括阳极耳图像和阴极耳图像,所述极耳区域包括阳极耳区域和阴极耳区域;对所述极耳图像进行识别,得到所述极耳图像中的极耳区域,包括:获取预设阳极耳图像轮廓和预设阴极耳图像轮廓;使用所述预设阳极耳图像轮廓对所述阳极耳图像进行定位,得到所述阳极耳区域;使用所述预设阴极耳图像轮廓对所述阴极耳图像进行定位,得到所述阴极耳区域。
- 根据权利要求16所述的极耳检测方法,其特征在于,所述预设极耳参数包括预设阳极耳面积和预设阴极耳面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,包括:根据所述阳极耳区域与所述阳极耳图像的背景图像的灰度值差异,得到所述阳极耳面积;根据所述阳极耳面积是否小于所述预设阳极耳面积,确认所述阳极耳是否存在翻折;和/或根据所述阴极耳区域与所述阴极耳图像的背景图像的灰度值差异,得到所述阴极耳面积;根据所述阴极耳面积是否小于所述预设阴极耳面积,确认所述阴极耳是否存在翻折。
- 根据权利要求16所述的极耳检测方法,其特征在于,所述预设极耳参数包括预设阳极耳余料面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,还包括:根据所述预设阳极耳图像轮廓、所述阳极耳区域和所述阳极耳图像,得到所述阳极耳余料区域;根据所述阳极耳余料区域的面积是否小于所述预设阳极耳余料面积,确认所述阳极耳是否存在余料。
- 根据权利要求16所述的极耳检测方法,其特征在于,所述预设极耳参数包括预设阴极耳余料面积;所述根据所述极耳区域与预设极耳参数的比较结果,确认所述极耳是否存在缺陷,还包括:根据所述预设阴极耳图像轮廓、所述阴极耳区域和所述阴极耳图像,得到所述阴极耳余料区域;根据所述阴极耳余料区域的面积是否小于所述预设阴极耳余料面积,确认所述阴极耳是否存在余料。
- 根据权利要求15~19任一项所述的极耳检测方法,其特征在于,所述方法还包括:获取所述电芯的标识码;根据所述电芯的标识码,确认获取该电芯极耳图像所使用图像采集模组的位姿参数,以及在预设的极耳缺陷检测算法库内确认该电芯对应的极耳缺陷检测算法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211373754.2A CN115839959A (zh) | 2022-11-03 | 2022-11-03 | 极耳检测系统及极耳检测方法 |
CN202211373754.2 | 2022-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093643A1 true WO2024093643A1 (zh) | 2024-05-10 |
Family
ID=85576839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/124360 WO2024093643A1 (zh) | 2022-11-03 | 2023-10-12 | 极耳检测系统及极耳检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115839959A (zh) |
WO (1) | WO2024093643A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115839959A (zh) * | 2022-11-03 | 2023-03-24 | 宁德时代新能源科技股份有限公司 | 极耳检测系统及极耳检测方法 |
CN117723491B (zh) * | 2024-02-07 | 2024-07-23 | 宁德时代新能源科技股份有限公司 | 电芯防爆阀的检测系统及检测方法 |
CN117740792B (zh) * | 2024-02-20 | 2024-07-23 | 宁德时代新能源科技股份有限公司 | 裸电芯检测系统及裸电芯检测系统的点检方法 |
CN117782995B (zh) * | 2024-02-23 | 2024-06-25 | 宁德时代新能源科技股份有限公司 | 缺陷检测方法、缺陷检测系统、装置、设备和存储介质 |
CN117849058B (zh) * | 2024-03-06 | 2024-07-26 | 宁德时代新能源科技股份有限公司 | 用于极片的检测系统和检测方法 |
CN118294378B (zh) * | 2024-06-05 | 2024-11-01 | 宁德时代新能源科技股份有限公司 | 极片毛刺检测系统及极片毛刺检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110364766A (zh) * | 2019-07-16 | 2019-10-22 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
CN110380128A (zh) * | 2019-07-16 | 2019-10-25 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
CN110391449A (zh) * | 2019-07-16 | 2019-10-29 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
CN113156528A (zh) * | 2021-03-09 | 2021-07-23 | 欣旺达电动汽车电池有限公司 | 极耳翻折检测装置和检测方法 |
KR20220101380A (ko) * | 2021-01-11 | 2022-07-19 | 주식회사 엔에스머티리얼즈 | 리드탭 불량 검출 방법 |
CN217504721U (zh) * | 2022-03-30 | 2022-09-27 | 宁德时代新能源科技股份有限公司 | 叠片电芯的极耳翻折检测装置及叠片设备 |
CN115839959A (zh) * | 2022-11-03 | 2023-03-24 | 宁德时代新能源科技股份有限公司 | 极耳检测系统及极耳检测方法 |
-
2022
- 2022-11-03 CN CN202211373754.2A patent/CN115839959A/zh active Pending
-
2023
- 2023-10-12 WO PCT/CN2023/124360 patent/WO2024093643A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110364766A (zh) * | 2019-07-16 | 2019-10-22 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
CN110380128A (zh) * | 2019-07-16 | 2019-10-25 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
CN110391449A (zh) * | 2019-07-16 | 2019-10-29 | 蜂巢能源科技有限公司 | 模切叠片系统及方法 |
KR20220101380A (ko) * | 2021-01-11 | 2022-07-19 | 주식회사 엔에스머티리얼즈 | 리드탭 불량 검출 방법 |
CN113156528A (zh) * | 2021-03-09 | 2021-07-23 | 欣旺达电动汽车电池有限公司 | 极耳翻折检测装置和检测方法 |
CN217504721U (zh) * | 2022-03-30 | 2022-09-27 | 宁德时代新能源科技股份有限公司 | 叠片电芯的极耳翻折检测装置及叠片设备 |
CN115839959A (zh) * | 2022-11-03 | 2023-03-24 | 宁德时代新能源科技股份有限公司 | 极耳检测系统及极耳检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115839959A (zh) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024093643A1 (zh) | 极耳检测系统及极耳检测方法 | |
US11757139B2 (en) | Battery electrode inspection system | |
CN111477897B (zh) | 一种铝壳圆柱锂电池自动组装生产线 | |
US20240154149A1 (en) | Electrode plate stacking method and apparatus, and stacking machine | |
CN113156528B (zh) | 极耳翻折检测装置和检测方法 | |
CN219224594U (zh) | 电芯外观缺陷检测装置以及检测设备 | |
WO2024093644A1 (zh) | 电芯检测系统及电芯检测方法 | |
CN217504721U (zh) | 叠片电芯的极耳翻折检测装置及叠片设备 | |
WO2023202236A1 (zh) | 对复合料带的阴极极片进行检测的方法、装置和系统 | |
US20230402722A1 (en) | Battery cell with a tabless electrode | |
JP4710563B2 (ja) | 非水電解質二次電池および非水電解質二次電池用電極群の製造方法 | |
CN117538335B (zh) | 极耳缺陷检测方法和极耳缺陷检测设备 | |
CN115824062A (zh) | 尺寸检测装置及检测方法、叠片设备 | |
JP2015065178A (ja) | フィルム外装電池の製造方法 | |
CN113299878A (zh) | 一种负极片及其应用 | |
CN104934628B (zh) | 具有极片和隔膜检测的电芯制备系统及方法 | |
CN112629442B (zh) | 一种叠片电芯的探测方法、装置、电子设备和存储介质 | |
CN213079702U (zh) | 一种具有3d相机检测极片缺陷的模切机 | |
WO2021080186A1 (ko) | 레이저 식각을 이용한 전극 제조방법 및 이를 수행하는 전극 제조설비 | |
TWI529993B (zh) | 電芯的檢測方法 | |
CN200995302Y (zh) | 一种电池极片切割机 | |
CN114733781A (zh) | 复合极片在线检测系统和方法 | |
CN114565553A (zh) | 柔性材料卷绕缺陷检测系统、方法、电子设备及存储介质 | |
CN202420442U (zh) | 在线检测锂离子电池极片毛刺装置 | |
CN218601167U (zh) | 一种锂电池极片缺陷改善系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884575 Country of ref document: EP Kind code of ref document: A1 |