WO2024093384A1 - 一种电池管理方法、接口装置、介质、控制器及电池组 - Google Patents
一种电池管理方法、接口装置、介质、控制器及电池组 Download PDFInfo
- Publication number
- WO2024093384A1 WO2024093384A1 PCT/CN2023/109045 CN2023109045W WO2024093384A1 WO 2024093384 A1 WO2024093384 A1 WO 2024093384A1 CN 2023109045 W CN2023109045 W CN 2023109045W WO 2024093384 A1 WO2024093384 A1 WO 2024093384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- battery pack
- communication
- pack
- group
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims abstract description 114
- 230000010354 integration Effects 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 103
- 238000001514 detection method Methods 0.000 claims description 32
- 238000012544 monitoring process Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 21
- 238000011217 control strategy Methods 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 14
- 230000009471 action Effects 0.000 claims description 12
- 230000010365 information processing Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 10
- 230000036541 health Effects 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 6
- 229910001416 lithium ion Inorganic materials 0.000 claims description 6
- 238000011161 development Methods 0.000 abstract description 4
- 238000012827 research and development Methods 0.000 abstract 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 24
- 229910052744 lithium Inorganic materials 0.000 description 24
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- the present invention belongs to the technical field of smart vehicles, and in particular relates to a battery management method, an interface device, a medium, a controller and a battery pack.
- the vehicle's chemical battery and related management and auxiliary systems are indispensable functional units; they are essential components of the vehicle's electronic control, start-stop, auxiliary lighting, thermal management and other processes; for electric and hybrid vehicles, they are energy support units.
- lead-acid batteries are increasingly being replaced by lithium batteries and other batteries with longer service life, more stable discharge characteristics and better environmental protection characteristics.
- ASIL Automobile Safety Integration Level
- various control units MCU Microcontroller Unit
- some special management devices or components have appeared in related technologies; for example, battery sampling analog front end AFE (Analog Front End) and power management chip PMIC (Power Management Integrated Circuit); although they have been widely used, their selection process faces difficulties, and there is an urgent need to reduce system complexity to facilitate the replacement and upgrading of the entire vehicle system and the achievement of technical and economic indicators.
- AFE Analog Front End
- PMIC Power Management Integrated Circuit
- An embodiment of the present invention discloses a battery management method, including an integration and detection step, and a communication and adjustment step; wherein, the integration and detection step integrates a first battery or battery group and a second battery or battery group into a structural unit of a target system, and uses the existing hardware of the second battery or battery group to implement relevant power management for the first battery or battery group; the first battery or battery group and/or the second battery or battery group are electrically connected to the target power system; the switching devices and/or components for switching of the first battery or battery group and/or the second battery or battery group are controlled by a drive unit controlled by the second battery or battery group.
- the communication and adjustment step exchanges data between the first battery or battery pack and the second battery or battery pack through the second communication and adjustment unit; wherein the first battery or battery pack calls the battery management system BMS of the second battery or battery pack to execute the management program or control the action of the actuator; the actions of its management program and/or actuator are shared or used between the first battery or battery pack and the second battery or battery pack; the battery management system BMS is communicatively connected with the integration and detection unit of the first battery or battery pack through the communication line of the communication and adjustment unit.
- the target systems may be systems powered by a first battery or battery pack and/or a second battery or battery pack; the target systems are usually electrical devices that operate independently from a power grid; such target systems include vehicles and other similar electrical devices.
- the integration and detection step obtains a first set of parameter information of the first battery or battery pack
- the communication and adjustment step exchanges information between the first battery or battery pack and the second battery or battery pack and the control unit of the second battery or battery pack sends a control or drive instruction to the first battery or battery pack.
- the communication and adjustment step stores or transmits the first set of parameter information via the communication and adjustment unit; its battery management system BMS manages and controls the second battery or battery pack on the one hand; on the other hand, the first set of parameter information is processed in the second battery management system BMS and then sent to the first battery or battery pack via the communication and adjustment unit for updating related control or management processes.
- the communication and regulation unit can adopt a daisy chain Daisy Chain structure or a CAN link for communication; the daisy chain Daisy Chain structure or the CAN link is communicatively connected between preset boards and/or chips; the communication and regulation unit exchanges communication and regulation information between the integration and detection unit and the second microprocessor; the microprocessor is used to manage the second battery or battery pack; at the same time, the microprocessor receives and processes information from the first battery or battery pack; the communication and regulation information is processed by the battery management system BMS of the second battery or battery pack; the communication and regulation information reflects or controls the power management or input and output of the first battery or battery pack.
- the battery management method may also include a protection and monitoring step; the protection and monitoring step uses the microprocessor, actuator and/or drive unit of the above-mentioned battery management system BMS to process similar data or complete similar functions, which is called "multiplexing"; and then the protection and monitoring step can use the control program and/or control strategy of the battery management system BMS to manage the first battery or battery pack.
- the target power system is composed of a first battery or battery pack and/or a second battery or battery pack.
- Providing electrical energy; its target power system includes a first power system and a second power system; the first battery or battery pack and the second battery or battery pack adopt chemical battery systems of the same type or material; these chemical battery systems may be lithium-ion battery systems; wherein the first battery or battery pack and the second battery or battery pack adopt different rated voltages; the first battery or battery pack supplies power to the first power system; the second battery or battery pack supplies power to the second power system; the rated voltage of the first battery or battery pack is lower than the rated voltage of the second battery or battery pack.
- the rated voltage of the first battery or battery pack may be 12V; the rated output voltage of the voltage level adopted by the second battery or battery pack is greater than the rated voltage of the first battery or battery pack.
- the information processing hardware used by the battery management system BMS supports daisy chain communication; its information processing hardware includes at least one of the power management chip PMIC and the battery sampling analog front end AFE; its driving unit includes at least one of the following driving modes: relay drive, MOSFET tube drive; the control strategies and/or management methods that can be adopted by the battery management system BMS include processing for at least one of the battery state of charge SOC, state of health SOH, remaining energy SOE, and power state SOP; these strategies and methods are also applied to the management or control of the first battery or battery pack.
- an embodiment of the present invention also discloses a battery interface device, comprising an integration and detection unit and a communication and adjustment unit; wherein the integration and detection unit integrates a first battery or battery group and a second battery or battery group into a structural unit of a target system, and the first battery or battery group and/or the second battery or battery group are electrically connected to the target power system; the switching devices and/or components for switching of the first battery or battery group and/or the second battery or battery group are controlled by a driving unit controlled by the second battery or battery group; the communication and adjustment unit exchanges data between the first battery or battery group and the second battery or battery group through the communication and adjustment unit; the first battery or battery group calls the battery management system BMS of the second battery or battery group to execute a management program or control the action of an actuator; the action of the management program and/or the actuator is shared or used between the first battery or battery group and the second battery or battery group; the second battery management system BMS is communicatively connected to the integration and detection unit of the first battery or battery group through the
- the target system is a system powered by a first battery or battery pack and/or a second battery or battery pack; the target system includes an electric device that operates independently from the power grid; the target system may be a vehicle or other similar electric device; the integration and detection unit obtains the first group of the first battery or battery pack
- the communication and adjustment unit exchanges information between the first battery or battery pack and the second battery or battery pack, and the control unit of the second battery or battery pack sends a control or drive instruction to the first battery or battery pack;
- the communication and adjustment unit stores or transmits a first set of parameter information via the communication and adjustment unit;
- the battery management system BMS manages and controls the second battery or battery pack; the first set of parameter information is processed in the second battery management system BMS and then sent to the first battery or battery pack via the communication and adjustment unit.
- the communication and regulation unit can adopt a daisy chain Daisy Chain structure or a CAN link for communication; its daisy chain Daisy Chain structure or CAN link is communicatively connected between preset boards and/or chips; the communication and regulation unit exchanges communication and regulation information between the integration and detection unit and the second microprocessor; the microprocessor is used to manage the second battery or battery pack; at the same time, the microprocessor receives and processes information from the first battery or battery pack; the communication and regulation information is processed by the battery management system BMS of the second battery or battery pack; the communication and regulation information reflects or controls the power management or input and output of the first battery or battery pack.
- the device may also include a protection and monitoring unit; the protection and monitoring unit uses the microprocessor, actuator and/or drive unit of the battery management system BMS to process corresponding data; the protection and monitoring unit uses the control program and/or control strategy of the battery management system BMS to manage the first battery or battery pack.
- the target power system is provided with electrical energy by a first battery or battery pack and/or a second battery or battery pack;
- the target power system includes a first power system and a second power system;
- the first battery or battery pack and the second battery or battery pack use a chemical battery system of the same type or material;
- the chemical battery system includes a lithium-ion battery system;
- the first battery or battery pack and the second battery or battery pack use different rated voltages;
- the first battery or battery pack supplies power to the first power system;
- the second battery or battery pack supplies power to the second power system;
- the rated voltage of the first battery or battery pack is lower than the rated voltage of the second battery or battery pack.
- the rated voltage of the first battery or battery pack can be 12V; the rated output voltage of the rated voltage adopted by the second battery or battery pack is greater than the rated voltage of the first battery or battery pack; in this embodiment, the second battery or battery pack can be a power battery or battery pack used to provide energy for the drive motor.
- the information processing hardware that can be used by the battery management system BMS can support daisy chain communication; Its information processing hardware can be at least one of a power management chip PMIC and a battery sampling analog front end AFE; its driving unit can adopt at least one of the following driving modes: relay driving, MOSFET tube driving; the control strategy and/or management method adopted by its battery management system BMS includes processing at least one of the battery state of charge SOC, health state SOH, remaining energy SOE, and power state SOP.
- an embodiment of the present invention also discloses a computer storage medium, including a storage medium body for storing a computer program; when the computer program is executed by a microprocessor, the battery management method described above can be implemented.
- a controller is also disclosed, including the battery interface device described above; and/or the computer storage medium described above; similarly, a battery pack is also disclosed, including the battery interface device described above; and/or the computer storage medium described above; and may also include any of the controllers described above.
- the present invention does not need to add additional components such as microprocessor MCU and system basis chip SBC (System Basis Chip), which can simplify the system and significantly save material costs; in terms of software, the present invention can integrate the target battery management system with the existing battery management system, and use the existing battery management program or control strategy of the same type of battery to manage the target battery system, so that development tools and application systems can be reused or shared, further reducing R&D costs; in addition, the system architecture of the present invention has been simplified, so that the physical space occupied by the battery management system is significantly reduced, which is conducive to improving the energy density of the product, promoting the lightweight of the battery system, especially the 12V battery system, and improving the integration quality of the whole vehicle.
- SBC System Basis Chip
- FIG. 1 is a schematic diagram showing the principle of a battery and its management system in the related art.
- FIG. 2 , FIG. 8 , FIG. 9 , and FIG. 10 are schematic diagrams showing the principles of a battery system embodiment of the present invention.
- FIG3 is a schematic diagram of a flow chart of an embodiment of the method of the present invention.
- FIG. 4 is a schematic diagram showing the composition principle of the interface components of the present invention.
- FIG. 5 is a schematic diagram of the structure of the product embodiment of the present invention.
- FIG. 6 is a second schematic diagram of the structure of the product embodiment of the present invention.
- FIG. 7 is a third schematic diagram of the structure of the product embodiment of the present invention.
- the battery management method shown in FIG3 includes an integration and detection step 100 and a communication and adjustment step 200; wherein, as shown in FIG1, FIG2, and FIG7, the integration and detection step 100 integrates the first battery or battery pack 909 and the second battery or battery pack 808 into the target system, i.e., the structural unit of the automobile; the first battery or battery pack 909 and/or the second battery or battery pack 808 are electrically connected to the target power system; the switch devices and/or the components for switching of the first battery or battery pack 909 and/or the second battery or battery pack 808 are controlled by the drive unit 810 controlled by the second battery or battery pack 808;
- the communication and adjustment step 200 exchanges data between the first battery or battery group 909 and the second battery or battery group 808 through the communication and adjustment unit 926; wherein the first battery or battery group 909 calls the battery management system BMS of the second battery or battery group 808 to execute the management program or control the action of the actuator; the action of its management program and/or actuator is shared or used between the first battery
- the target system is a vehicle 900 powered by a first battery or battery pack 909 and/or a second battery or battery pack 808; the target system operates independently from the power grid, and the target can also be other electrical equipment other than the vehicle 900; the integration and detection step 100 obtains a first set of parameter information 101 of the first battery or battery pack 909, and the communication and adjustment step 200 is performed between the first battery or battery pack 909 and the second battery
- the battery management system BMS manages and controls the second battery or battery pack 808; the first group of parameter information 101 is processed in the battery management system BMS and then sent to the first battery or battery pack 909 via the communication and adjustment unit 926.
- the communication and regulation unit 926 can adopt the daisy chain Daisy Chain structure or CAN link 921 as shown in Figure 1 for communication; the daisy chain Daisy Chain structure or CAN link 921 is communicatively connected between preset boards and/or chips; the communication and regulation unit 926 exchanges communication and regulation information 201 between the integration and detection unit 916 and the microprocessor 931; the microprocessor 931 is used to manage the second battery or battery pack 808; at the same time, the microprocessor 931 receives and processes information from the first battery or battery pack 909; the communication and regulation information 201 is processed by the battery management system BMS of the second battery or battery pack 808; the communication and regulation information 201 reflects or controls the power management or input and output of the first battery or battery pack 909.
- the present embodiment also includes a protection and monitoring step 300 ; wherein: the protection and monitoring step 300 uses a microprocessor, an actuator and/or a drive unit 810 of a battery management system BMS; the protection and monitoring step 300 uses a control program and/or a control strategy of the battery management system BMS to manage the first battery or battery pack 909 and exchange a second set of parameter information 301 , and the second set of parameter information 301 includes a control strategy and power management information shared by the first battery or battery pack 909 and the second battery or battery pack 808 .
- the target power system is provided with electrical energy by a first battery or battery pack 909 and a second battery or battery pack 808;
- the target power system includes a first power system and a second power system;
- the first battery or battery pack 909 and the second battery or battery pack 808 use a chemical battery system of the same type or material;
- the chemical battery system includes a lithium-ion battery system;
- the first battery or battery pack 909 and the second battery or battery pack 808 use different rated voltages;
- the first battery or battery pack 909 supplies power to the first power system;
- the second battery or battery pack 808 supplies power to the second power system;
- the rated voltage of the first battery or battery pack 909 is lower than the rated voltage of the second battery or battery pack 808.
- the rated voltage of the first battery or battery pack 909 is 12V; the rated output voltage of the voltage level adopted by the second battery or battery pack 808 is greater than the rated voltage of the first battery or battery pack 909.
- the information processing hardware used by the battery management system BMS supports daisy chain communication; the information processing hardware can be at least one of the power management chip PMIC and the battery sampling analog front end AFE; the drive unit 810 can be a relay drive or a MOSFET tube drive; the control strategy and/or management method used by the battery management system BMS includes processing at least one of the battery state of charge SOC, state of health SOH, remaining energy SOE, and power state SOP.
- a battery interface device 906 including an integration and detection unit 916 and a communication and adjustment unit 926; wherein the integration and detection unit 916 integrates the first battery or battery group 909 and the second battery or battery group 808 into a structural unit of the target system, and the first battery or battery group 909 and/or the second battery or battery group 808 are electrically connected to the target power system; the switch devices and/or the components for switching of the first battery or battery group 909 and/or the second battery or battery group 808 are controlled by the drive unit 810 controlled by the second battery or battery group 808 ; Data is exchanged between the first battery or battery pack 909 and the second battery or battery pack 808 through the communication and adjustment unit 926; wherein the first battery or battery pack 909 calls the battery management system BMS of the second battery or battery pack 808 to execute the management program or control the action of the actuator; the action of the management program and/or the actuator is shared or used between the first battery or battery pack 909 and
- the target system is a system powered by a first battery or battery pack 909 and/or a second battery or battery pack 808; the target system includes electrical equipment that operates independently from the power grid; it can be a vehicle 900 and electrical equipment as shown in Figures 5, 6, and 7; the integration and detection unit 916 obtains a first group of parameter information 101 of the first battery or battery pack 909, the communication and adjustment unit 926 exchanges information between the first battery or battery pack 909 and the second battery or battery pack 808, and the control unit of the second battery or battery pack 808 sends a control or drive instruction to the first battery or battery pack 909; the communication and adjustment unit 926 is used to store or transmit the first group of parameter information 101; the battery management system BMS manages and controls the second battery or battery pack 808; the first group of parameter information 101 is processed in the battery management system BMS and then sent to the first battery or battery pack 909 via the communication and adjustment unit 926; thereby achieving management or control of the first battery or battery pack.
- the integration and detection unit 916 obtain
- the communication and regulation unit 926 can adopt a daisy chain structure or a CAN link. 921 communicates; the daisy chain DaisyChain structure or CAN link 921 communicates and connects between preset boards and/or chips; the communication and regulation unit 926 exchanges communication and regulation information 201 between the first integration and detection unit 916 and the microprocessor 931; the microprocessor 931 is used to manage the second battery or battery pack 808; at the same time, the microprocessor 931 receives and processes information from the first battery or battery pack 909; the communication and regulation information 201 is processed by the battery management system BMS of the second battery or battery pack 808; the communication and regulation information 201 reflects or controls the power management or input and output of the first battery or battery pack 909.
- this embodiment also includes a protection and monitoring unit 936; wherein, the protection and monitoring unit 936 adopts the microprocessor, actuator and/or drive unit 810 of the battery management system BMS for management or control; the protection and monitoring unit 936 adopts the control program and/or control strategy of the battery management system BMS to manage the first battery or battery pack 909 and exchange the second set of parameter information 301, and the second set of parameter information 301 includes the control strategy and power management information shared by the first battery or battery pack 909 and the second battery or battery pack 808.
- the protection and monitoring unit 936 adopts the microprocessor, actuator and/or drive unit 810 of the battery management system BMS for management or control
- the protection and monitoring unit 936 adopts the control program and/or control strategy of the battery management system BMS to manage the first battery or battery pack 909 and exchange the second set of parameter information 301
- the second set of parameter information 301 includes the control strategy and power management information shared by the first battery or battery pack 909 and the second battery or battery pack 808.
- the target power system is provided with electrical energy by the first battery or battery pack 909 and/or the second battery or battery pack 808;
- the target power system includes the first power system and the second power system;
- the first battery or battery pack 909 and the second battery or battery pack 808 adopt a chemical battery system of the same type or material;
- its chemical battery system includes a lithium-ion battery system;
- its first battery or battery pack 909 and the second battery or battery pack 808 adopt different rated voltages;
- the first battery or battery pack 909 supplies power to the first power system;
- the second battery or battery pack 808 supplies power to the second power system;
- the rated voltage of the first battery or battery pack 909 is lower than the rated voltage of the second battery or battery pack 808.
- the rated voltage of the first battery or battery pack 909 may be 12V; the rated output voltage of the voltage level adopted by the second battery or battery pack 808 is greater than 12V.
- the information processing hardware used by the battery management system BMS supports daisy chain communication; its information processing hardware includes at least one of a power management chip PMIC and a battery sampling analog front end AFE; its driving unit 810 includes at least one of the following driving modes: relay drive, MOSFET tube drive; the control strategy and/or management method used by the battery management system BMS includes processing of at least one of the battery state of charge SOC, state of health SOH, remaining energy SOE, and power state SOP.
- a computer storage medium 903 including a storage medium body for storing a computer program; when the computer program is executed by a microprocessor, the following can be achieved: Any of the above battery management methods; similarly, its controller 901, including any of the above battery interface devices 906; and/or computer storage medium 903; also adopts the same inventive concept.
- the battery pack 909 adopting the same inventive concept may also include any of the above battery interface devices 906; and/or computer storage medium 903; and/or any controller 901; their physical processes and solutions are similar or correspond to each other, and will not be described in detail.
- a communication structure supporting daisy chain is adopted, and on the other hand, a 12V first battery or battery pack 909 is adopted; its chemical battery is a 12V lithium battery; its control system shares the resources of the high-voltage BMS; its 12V lithium battery system of the first battery or battery pack 909 also adopts a relay control harness as a drive unit 810; and the above-mentioned daisy chain communication harness is adopted as the basic carrier of the daisy chain DaisyChain structure or CAN link 921; and it is powered by the high-voltage BMS harness.
- the 12V lithium battery system includes battery cells, a sensor shunt for detecting the current of the lithium battery system, a negative temperature coefficient unit NTC (Negative Temperature Coefficient) for detecting the temperature of the shunt sensor, an NTC for detecting the temperature of the 12V lithium battery system, a fuse for protecting the lithium battery system, a relay for switching on and off the output of the 12V lithium battery system, and an acquisition board for monitoring relevant parameters of the 12V lithium battery system.
- NTC Negative Temperature Coefficient
- the acquisition board is mainly composed of a front-end acquisition chip AFE (Active Front End) and corresponding sampling and balancing circuits and daisy chain communication circuits; this acquisition board can collect the voltage of each single cell, collect the current of the 12V lithium battery system through the shunt, and collect the battery module voltage, the fuse back-end voltage, the relay back-end voltage, the shunt temperature, and the module temperature through the AFE battery sampling analog front end AFE (General-purpose input/output), and summarize the above related information into a first group of parameter information 101, and upload it to the high-voltage BMS in real time through the communication and adjustment unit 926, with the help of the daisy chain DaisyChain structure or the CAN link 921 therein.
- AFE Active Front End
- high-voltage BMS is the current common technology. Its minimum system generally includes a power management chip PMIC, a microprocessor MCU, a daisy chain communication bridge chip CB (Communication Bbridge), drive units HSD (High Side Drivers) and LSD (Low Side Drivers).
- PMIC power management chip
- MCU microprocessor MCU
- CB daisy chain communication bridge chip
- HSD High Side Drivers
- LSD Low Side Drivers
- the high voltage BMS receives the signal through the daisy chain structure or the CAN link 921. After receiving the relevant information of the 12V lithium battery system, if it is detected that the 12V lithium battery system has no fault, the relay of the 12V lithium battery system can be closed through the drive unit to realize the external power supply of the 12V lithium battery system; when the high-voltage BMS detects that the parameters of the 12V lithium battery system are abnormal (overvoltage, undervoltage, overtemperature, overcurrent), it can actively disconnect the relay to protect the safety of the 12V lithium battery system.
- the first battery or battery pack 909 which can be NXP's MC33772 or a similar front-end sampling chip that can detect current; at this time, the method of the present invention can be used to realize the above-mentioned function of the acquisition board; wherein, the relevant control strategy is implemented by the high-voltage BMS.
- the hardware resources such as PMIC/MCU of the high-voltage BMS can be reused, and the relevant control strategies of the high-voltage battery management system can be reused in software, such as battery parameter monitoring and battery key algorithms; among them, the key algorithms include several functional units for processing the battery state of charge SOC (State of Charge), health state SOH (State of Health), remaining energy SOE (State of Energy), power state SOP (State of Power), etc.
- the system BOM Bill Of Material
- development cost can be significantly reduced.
- the above-mentioned AFE chip can be selected from current mainstream products, which can generally support the acquisition function and achieve the D-level requirements of ASIL. Therefore, the embodiment of the present invention can support a higher safety level ASIL-D on more economical hardware, thereby improving the feasibility of system integration, promoting the technology upgrade process represented by 12V lithium batteries, and promoting the replacement of lead-acid batteries.
- the 12V BMS data processing unit is moved up to the high-voltage BMS, and the control strategy is also integrated into the high-voltage BMS.
- Only the AFE front-end acquisition unit is retained in the 12V battery system, which can reuse the software and hardware resources of the high-voltage BMS to the greatest extent, has a high degree of integration, and significantly reduces the BOM cost and development cost.
- the 12V lead-acid battery is prone to a sharp reduction in battery life when the depth of discharge increases; the battery life is generally close to 1 to 2 years, and the maintenance cost increases; further, after adopting the method and product of the present invention based on lithium battery, technical problems such as a sudden drop in effective capacity and a short cycle life after aging of lead-acid batteries can also be avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明属于智能车技术领域,尤其涉及一种电池管理方法、接口装置、介质、控制器及电池组;硬件方面,本发明不需要增加额外的微处理器MCU(Microcontroller Unit)和系统基础芯片SBC(System Basis Chip)等部件,可以简化系统、显著节省物料成本;软件方面,本发明可将目标电池管理系统与现有的电池管理系统集成,并借助同类型电池现有的电池管理程序或控制策略来管理目标电池系统,使得开发工具和应用系统实现了复用或共享,进一步降低了研发成本;此外,本发明的系统架构得到了简化处理,使得电池管理系统所占的物理空间显著减小,有利于提升产品的能量密度,促进电池系统,尤其是12V电池系统的轻量化,改善整车集成质量。
Description
本发明属于智能车技术领域,尤其涉及一种电池管理方法、接口装置、介质、控制器及电池组。
车辆的化学电池及相关的管理及辅助系统是不可或缺的功能单元;它是车辆电控、启停、辅助照明、热管理等过程的必要组成部分;对于电动车和混动车,它更是能量支持单元。随着化学储能技术的日益革新,铅酸电池越来越多地被锂电池等一些使用寿命更长、放电特性更稳定、环保特性更优的电池所取代。
但是,以锂电池为代表的新型电池系统,其储能单元化学特性活跃;为了提升安全性、避免热失控风险,对系统的安全监控提出了更为严苛的要求;基于此,相关系统的复杂度、集成难度不断增加。
为了获得更优的汽车安全完整性等级ASIL(Automobile Safety Integration Level),在相关技术中出现了各类的控制单元MCU(Microcontroller Unit)和一些专用的管理装置或器件;例如,电池采样模拟前端AFE(Analog Front End)、电源管理芯片PMIC(Power Management Integrated Circuit);虽得到了广泛的应用,但其选型过程面临困难,亟需降低系统复杂度,以利于整车系统的换代升级和技术经济指标的达成。
发明内容
本发明实施例公开了一种电池管理方法,包括集成与检测步骤、通信与调节步骤;其中,集成与检测步骤集成第一电池或电池组与第二电池或电池组于目标系统的结构单元,并借用第二电池或电池组现有的硬件为第一电池或电池组实施相关的电源管理;第一电池或电池组和/或第二电池或电池组与目标用电系统电连接;第一电池或电池组和/或第二电池或电池组的开关器件和/或用于换路的部件由第二电池或电池组支配的驱动单元进行控制。
另一方面,通信与调节步骤通过第二通信与调节单元在第一电池或电池组与第二电池或电池组之间交换数据;其中,第一电池或电池组调用由第二电池或电池组的电池管理系统BMS执行管理程序或控制执行机构的动作;其管理程序和/或执行机构的动作在第一电池或电池组与第二电池或电池组之间共享或共用;电池管理系统BMS通过通信与调节单元的通信线路与第一电池或电池组的集成与检测单元通信连接。
其中,目标系统可以是那些采用第一电池或电池组和/或第二电池或电池组进行供电的系统;该目标系统通常是脱离电网独立运行的用电设备;此类目标系统包括车辆及其它类似的用电设备。
具体地,集成与检测步骤获取第一电池或电池包的第一组参数信息,通信与调节步骤在第一电池或电池包与第二电池或电池包之间交换信息并由第二电池或电池包的控制单元向第一电池或电池包发送控制或驱动指令。
其中,通信与调节步骤经由通信与调节单元存储或传输第一组参数信息;其电池管理系统BMS一方面管理与控制第二电池或电池包;另一方面,第一组参数信息在第二电池管理系统BMS中处理后再经由通信与调节单元发送至第一电池或电池包用于更新相关的控制或管理过程。
具体地,通信与调节单元可采用菊花链DaisyChain结构或CAN链路进行通信;该菊花链DaisyChain结构或CAN链路在预设的板卡和/或芯片之间通信连接;通信与调节单元在集成与检测单元与第二微处理器之间交换通信与调节信息;微处理器用于管理第二电池或电池组;同时,微处理器接收并处理来自第一电池或电池组的信息;通信与调节信息由第二电池或电池组的电池管理系统BMS处理;通信与调节信息反映或支配第一电池或电池组的电能管理或输入输出。
进一步地,该电池管理方法,还可包括保障与监测步骤;该保障与监测步骤采用上述电池管理系统BMS的微处理器、执行机构和/或驱动单元进行同类数据的处理或完成类似的功能,称作“复用”;进而该保障与监测步骤可采用电池管理系统BMS的控制程序和/或控制策略对第一电池或电池包进行管理。
具体地,上述目标用电系统由第一电池或电池组和/或第二电池或电池组
提供电能;其目标用电系统包括第一用电系统和第二用电系统;第一电池或电池包和第二电池或电池包采用相同类型或材料的化学电池系统;这些化学电池系统可以是锂离子电池系统;其中,第一电池或电池包和第二电池或电池包采用不同的额定电压;第一电池或电池包为第一用电系统供电;第二电池或电池包为第二用电系统供电;第一电池或电池包的额定电压低于第二电池或电池包的额定电压。
进一步地,第一电池或电池包的额定电压可以为12V;第二电池或电池包所采用的电压等级的额定输出电压大于第一电池或电池包的额定电压。
具体地,电池管理系统BMS采用的信息处理硬件支持菊花链通讯;其信息处理硬件包括电源管理芯片PMIC以及电池采样模拟前端AFE至少之一;其驱动单元包括下列驱动方式至少之一:继电器驱动、MOSFET管驱动;电池管理系统BMS可采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理;这些策略和方法同样应用于所述第一电池或电池组的管理或控制。
进一步地,本发明实施例还公开了一种电池接口装置,包括集成与检测单元、通信与调节单元;其中,集成与检测单元集成第一电池或电池组与第二电池或电池组于目标系统的结构单元,第一电池或电池组和/或第二电池或电池组与目标用电系统电连接;第一电池或电池组和/或第二电池或电池组的开关器件和/或用于换路的部件由第二电池或电池组支配的驱动单元的进行控制;通信与调节单元通过通信与调节单元在第一电池或电池组与第二电池或电池组之间交换数据;其第一电池或电池组调用由第二电池或电池组的电池管理系统BMS执行管理程序或控制执行机构的动作;其管理程序和/或执行机构的动作在第一电池或电池组与第二电池或电池组之间共享或共用;第二电池管理系统BMS通过通信与调节单元的通信线路与第一电池或电池组的集成与检测单元通信连接。
其中,目标系统为采用第一电池或电池组和/或第二电池或电池组进行供电的系统;目标系统包括脱离电网独立运行的用电设备;目标系统可以是车辆及其它类似的用电设备;集成与检测单元获取第一电池或电池包的第一组
参数信息,通信与调节单元在第一电池或电池包与第二电池或电池包之间交换信息并由第二电池或电池包的控制单元向第一电池或电池包发送控制或驱动指令;通信与调节单元经由通信与调节单元存储或传输第一组参数信息;电池管理系统BMS管理与控制第二电池或电池包;第一组参数信息在第二电池管理系统BMS中处理后再经由通信与调节单元发送至第一电池或电池包。
具体地,通信与调节单元可采用菊花链DaisyChain结构或CAN链路进行通信;其菊花链DaisyChain结构或CAN链路在预设的板卡和/或芯片之间通信连接;通信与调节单元在集成与检测单元与第二微处理器之间交换通信与调节信息;微处理器用于管理第二电池或电池组;同时,微处理器接收并处理来自第一电池或电池组的信息;通信与调节信息由第二电池或电池组的电池管理系统BMS处理;通信与调节信息反映或支配第一电池或电池组的电能管理或输入输出。
进一步地,该装置还可包括保障与监测单元;其保障与监测单元采用电池管理系统BMS的微处理器、执行机构和/或驱动单元处理相应的数据;保障与监测单元采用电池管理系统BMS的控制程序和/或控制策略对第一电池或电池包进行管理。
具体地,目标用电系统由第一电池或电池组和/或第二电池或电池组提供电能;目标用电系统包括第一用电系统和第二用电系统;第一电池或电池包和第二电池或电池包采用相同类型或材料的化学电池系统;该化学电池系统包括锂离子电池系统;第一电池或电池包和第二电池或电池包采用不同的额定电压;第一电池或电池包为第一用电系统供电;第二电池或电池包为第二用电系统供电;第一电池或电池包的额定电压低于第二电池或电池包的额定电压。
其中,第一电池或电池包的额定电压可以为12V;第二电池或电池包所采用的额定电压的额定输出电压大于第一电池或电池包的额定电压;在本实施例中,第二电池或电池包可以是动力电池或电池包,用于为驱动电机提供能量。
进一步地,电池管理系统BMS可采用的信息处理硬件可支持菊花链通讯;
其信息处理硬件可以是电源管理芯片PMIC以及电池采样模拟前端AFE至少之一;其驱动单元可以采用下列驱动方式至少之一:继电器驱动、MOSFET管驱动;其电池管理系统BMS采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理。
进一步地,本发明实施例还公开了一种计算机存储介质,包括用于存储计算机程序的存储介质本体;该计算机程序在被微处理器执行时,可实现以上描述的电池管理方法。
此外,还公开了一种控制器,包括以上描述的电池接口装置;和/或以上描述的计算机存储介质;类似地,还公开了一种电池组,包括以上描述的电池接口装置;和/或以上描述的计算机存储介质;还可以包括以上描述的任一控制器。
与现有技术相比,硬件方面,本发明不需要增加额外的微处理器MCU和系统基础芯片SBC(System Basis Chip)等部件,可以简化系统、显著节省物料成本;软件方面,本发明可将目标电池管理系统与现有的电池管理系统集成,并借助同类型电池现有的电池管理程序或控制策略来管理目标电池系统,使得开发工具和应用系统实现了复用或共享,进一步降低了研发成本;此外,本发明的系统架构得到了简化处理,使得电池管理系统所占的物理空间显著减小,有利于提升产品的能量密度,促进电池系统,尤其是12V电池系统的轻量化,改善整车集成质量。
需要说明的是,在本文中采用的“第一”、“第二”等类似的语汇,仅仅是为了描述技术方案中的各组成要素,并不构成对技术方案的限定,也不能理解为对相应要素重要性的指示或暗示;带有“第一”、“第二”等类似语汇的要素,表示在对应技术方案中,该要素至少包含一个。
为了更加清晰地说明本发明的技术方案,利于对本发明的技术效果、技术特征和目的进一步理解,下面结合附图对本发明进行详细的描述,附图构
成说明书的必要组成部分,与本发明的实施例一并用于说明本发明的技术方案,但并不构成对本发明的限制。
附图中的同一标号代表相同的部件,具体地:
图1为相关技术中电池及其管理系统原理示意图。
图2、图8、图9、图10为本发明电池系统实施例原理示意图。
图3为本发明方法实施例流程示意图。
图4为本发明接口部件组成原理示意图。
图5为本发明产品实施例组成结构示意图一。
图6为本发明产品实施例组成结构示意图二。
图7为本发明产品实施例组成结构示意图三。
其中:
100-集成与检测步骤;
101-第一组参数信息;
200-通信与调节步骤;
201-通信与调节信息;
300-保障与监测步骤;
301-第二组参数信息;
710-相关技术中的微处理器;
720-相关技术中的系统基础芯片;
730-相关技术中的通信芯片;
800-复用管理单元;
801-第一复用处理单元;
802-第二复用处理单元;
808-第二电池或电池组;
810-驱动单元;
900-车辆;
901-控制器;
903-计算机存储介质;
906-电池接口部件;
909-第一电池或电池组;
916-集成与检测单元;
921-菊花链DaisyChain、CAN总线或其他实时通信链路;
926-通信与调节单元;
936-保障与监测单元。
100-集成与检测步骤;
101-第一组参数信息;
200-通信与调节步骤;
201-通信与调节信息;
300-保障与监测步骤;
301-第二组参数信息;
710-相关技术中的微处理器;
720-相关技术中的系统基础芯片;
730-相关技术中的通信芯片;
800-复用管理单元;
801-第一复用处理单元;
802-第二复用处理单元;
808-第二电池或电池组;
810-驱动单元;
900-车辆;
901-控制器;
903-计算机存储介质;
906-电池接口部件;
909-第一电池或电池组;
916-集成与检测单元;
921-菊花链DaisyChain、CAN总线或其他实时通信链路;
926-通信与调节单元;
936-保障与监测单元。
下面结合附图和实施例,对本发明作进一步的详细说明。当然,下列描述的具体实施例只是为了解释本发明的技术方案,而不是对本发明的限定。此外,实施例或附图中表述的部分,也仅仅是本发明相关部分的举例说明,而不是本发明的全部。
如图3所示的电池管理方法,包括集成与检测步骤100、通信与调节步骤200;其中,如图1、图2、图7所示,集成与检测步骤100集成第一电池或电池组909与第二电池或电池组808于目标系统,即汽车的结构单元之上;第一电池或电池组909和/或第二电池或电池组808与目标用电系统电连接;第一电池或电池组909和/或第二电池或电池组808的开关器件和/或用于换路的部件由第二电池或电池组808支配的驱动单元810进行控制;通信与调节步骤200通过通信与调节单元926在第一电池或电池组909与第二电池或电池组808之间交换数据;其中,第一电池或电池组909调用由第二电池或电池组808的电池管理系统BMS执行管理程序或控制执行机构的动作;其管理程序和/或执行机构的动作在第一电池或电池组909与第二电池或电池组808之间共享或共用;电池管理系统BMS通过通信与调节单元926的通信线路与第一电池或电池组909的集成与检测单元916通信连接。
其中,目标系统为采用第一电池或电池组909和/或第二电池或电池组808进行供电的车辆900;该目标系统脱离电网独立运行,目标还可以是车辆900以外的其它用电设备;集成与检测步骤100获取第一电池或电池包909的第一组参数信息101,通信与调节步骤200在第一电池或电池包909与第二电池
或电池包808之间交换信息并由第二电池或电池包808的控制单元向第一电池或电池包909发送控制或驱动指令;通信与调节步骤200经由通信与调节单元926存储或传输第一组参数信息101;电池管理系统BMS管理与控制第二电池或电池包808;第一组参数信息101在电池管理系统BMS中处理后再经由通信与调节单元926发送至第一电池或电池包909。
进一步地,通信与调节单元926可采用如图1所示的菊花链DaisyChain结构或CAN链路921进行通信;该菊花链DaisyChain结构或CAN链路921在预设的板卡和/或芯片之间通信连接;通信与调节单元926在集成与检测单元916与微处理器931之间交换通信与调节信息201;微处理器931用于管理第二电池或电池组808;同时,微处理器931接收并处理来自第一电池或电池组909的信息;通信与调节信息201由第二电池或电池组808的电池管理系统BMS处理;通信与调节信息201反映或支配第一电池或电池组909的电能管理或输入输出。
进一步地,如图3所示,本实施例还包括保障与监测步骤300;其中:保障与监测步骤300采用电池管理系统BMS的微处理器、执行机构和/或驱动单元810;该保障与监测步骤300采用电池管理系统BMS的控制程序和/或控制策略对第一电池或电池包909进行管理并交换第二组参数信息301,该第二组参数信息301包括第一电池或电池包909与第二电池或电池包808共用的控制策略及电源管理信息。
具体地,目标用电系统由第一电池或电池组909和第二电池或电池组808提供电能;该目标用电系统包括第一用电系统和第二用电系统;第一电池或电池包909和第二电池或电池包808采用相同类型或材料的化学电池系统;该化学电池系统包括锂离子电池系统;该第一电池或电池包909和第二电池或电池包808采用不同的额定电压;第一电池或电池包909为第一用电系统供电;第二电池或电池包808为第二用电系统供电;第一电池或电池包909的额定电压低于第二电池或电池包808的额定电压。
其中,第一电池或电池包909的额定电压为12V;第二电池或电池包808所采用的电压等级的额定输出电压大于第一电池或电池包909的额定电压。
具体地,电池管理系统BMS采用的信息处理硬件支持菊花链通讯;该信息处理硬件可以是电源管理芯片PMIC、电池采样模拟前端AFE至少之一;该驱动单元810可以是继电器驱动或MOSFET管驱动;其电池管理系统BMS采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理。
此外,如图2、图4还公开了一种电池接口装置906,包括集成与检测单元916、通信与调节单元926;其中,集成与检测单元916集成第一电池或电池组909与第二电池或电池组808于目标系统的结构单元,第一电池或电池组909和/或第二电池或电池组808与目标用电系统电连接;第一电池或电池组909和/或第二电池或电池组808的开关器件和/或用于换路的部件由第二电池或电池组808支配的驱动单元810进行控制;通过通信与调节单元926在第一电池或电池组909与第二电池或电池组808之间交换数据;其中,第一电池或电池组909调用由第二电池或电池组808的电池管理系统BMS执行管理程序或控制执行机构的动作;该管理程序和/或执行机构的动作在第一电池或电池组909与第二电池或电池组808之间共享或共用;电池管理系统BMS通过通信与调节单元926的通信线路与第一电池或电池组909的集成与检测单元916通信连接。
其中,目标系统为采用第一电池或电池组909和/或第二电池或电池组808进行供电的系统;目标系统包括脱离电网独立运行的用电设备;可以是如图5、图6、图7的车辆900及用电设备;集成与检测单元916获取第一电池或电池包909的第一组参数信息101,通信与调节单元926在第一电池或电池包909与第二电池或电池包808之间交换信息并由第二电池或电池包808的控制单元向第一电池或电池包909发送控制或驱动指令;通信与调节单元926用于存储或传输第一组参数信息101;电池管理系统BMS管理与控制第二电池或电池包808;第一组参数信息101在电池管理系统BMS中处理后再经由通信与调节单元926发送至第一电池或电池包909;从而实现了对第一电池或电池包的管理或控制。
具体地,通信与调节单元926可采用菊花链DaisyChain结构或CAN链路
921进行通信;菊花链DaisyChain结构或CAN链路921在预设的板卡和/或芯片之间通信连接;通信与调节单元926在第一集成与检测单元916与微处理器931之间交换通信与调节信息201;微处理器931用于管理第二电池或电池组808;同时,微处理器931接收并处理来自第一电池或电池组909的信息;通信与调节信息201由第二电池或电池组808的电池管理系统BMS处理;通信与调节信息201反映或支配第一电池或电池组909的电能管理或输入输出。
进一步地,该实施例还包括保障与监测单元936;其中,保障与监测单元936采用电池管理系统BMS的微处理器、执行机构和/或驱动单元810进行管理或控制;保障与监测单元936采用电池管理系统BMS的控制程序和/或控制策略对第一电池或电池包909进行管理并交换第二组参数信息301,第二组参数信息301包括第一电池或电池包909与第二电池或电池包808共用的控制策略及电源管理信息。
其中,目标用电系统由第一电池或电池组909和/或第二电池或电池组808提供电能;目标用电系统包括第一用电系统和第二用电系统;第一电池或电池包909和第二电池或电池包808采用相同类型或材料的化学电池系统;其化学电池系统包括锂离子电池系统;其第一电池或电池包909和第二电池或电池包808采用不同的额定电压;第一电池或电池包909为第一用电系统供电;第二电池或电池包808为第二用电系统供电;第一电池或电池包909的额定电压低于第二电池或电池包808的额定电压。
具体地,第一电池或电池包909的额定电压可以是12V;第二电池或电池包808所采用的电压等级的额定输出电压大于12V。
进一步地,电池管理系统BMS采用的信息处理硬件支持菊花链通讯;其信息处理硬件包括电源管理芯片PMIC、电池采样模拟前端AFE至少之一;其驱动单元810包括下列驱动方式至少之一:继电器驱动、MOSFET管驱动;其电池管理系统BMS采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理。
此外,如图5至图7还公开了一种计算机存储介质903,包括用于存储计算机程序的存储介质本体;该计算机程序在被微处理器执行时,可实现如
上的任一电池管理方法;类似地,其控制器901,包括如上任一电池接口装置906;和/或计算机存储介质903;也采用了同样的发明构思。采用了同样发明构思的电池组909,也可包括如上的任一电池接口装置906;和/或计算机存储介质903;和/或任一控制器901;其物理过程和解决方案类似或者互相对应,具体不再赘述。
对于如图2所示的电池管理系统:一方面采用了支持菊花链的通讯结构,另一方面采用了12V的第一电池或电池组909;其化学电池为12V的锂电池;其控制系统共享了高压BMS的资源;其第一电池或电池组909的12V锂电池系统还采用了继电器控制线束作为驱动单元810;并采用上述菊花链通讯线束作为菊花链DaisyChain结构或CAN链路921的基本载体;并由高压BMS线束供电。
其中,12V锂电池系统包括电芯、用于检测锂电池系统电流的传感器shunt、用于检测shunt传感器温度的负温度系数单元NTC(Negative Temperature Coefficient)、用于检测12V锂电池系统温度的NTC、用于保护锂电池系统的熔断器Fuse、用于通断12V锂电池系统输出的继电器、用于监控12V锂电池系统相关参数的采集板。
具体地,其采集板主要由前端采集芯片AFE(Active Front End)和相应的采样均衡电路、菊花链通讯电路组成;此采集板可以采集各单体电芯的电压、通过shunt采集12V锂电池系统的电流、通过AFE的电池采样模拟前端AFE(General-purpose input/output)采集电池模组电压、Fuse后端电压、继电器后端电压、shunt的温度、模组的温度,并将以上相关信息汇总为第一组参数信息101,并通过通信与调节单元926,借助其中的菊花链DaisyChain结构或CAN链路921,实时上传给高压BMS。
其中,高压BMS为目前的通用技术,其最小系统一般包括电源管理芯片PMIC、微处理器MCU、菊花链通讯桥接芯片CB(Communication Bbridge)、驱动单元HSD(High Side Drivers)及LSD(Low Side Drivers)组成;其高压BMS的供电可取自12V的锂电池系统Fuse后端,形成常供电。
具体地,高压BMS在通过菊花链DaisyChain结构或CAN链路921收到
12V锂电池系统的相关信息后,若检测到12V锂电池系统无故障,即可通过驱动单元将12V锂电池系统的继电器闭合,实现12V锂电池系统的对外供电;当高压BMS检测到12V锂电池系统参数异常后(过压、欠压、过温、过流),则可主动断开继电器,保护12V锂电池系统安全。
其中,仅须在12V锂电池系统也即第一电池或电池组909内布置一块AFE芯片,可为NXP的MC33772或类似的可检测电流的前端采样芯片;此时,即可采用本发明的方法实现采集板的上述功能;其中,相关的控制策略由高压BMS实现。
由于12V锂电池系统所使用的锂电池与高压电池系统中所使用的锂电池相同;因此,可复用高压BMS的PMIC/MCU等硬件资源,软件上可复用高压电池管理系统的相关控制策略,如电池参数监控、电池关键算法;其中,关键算法包括对电池荷电状态SOC(State of Charge)、健康状态SOH(State of Health)、剩余能量SOE(State of Energy)、功率状态SOP(State of Power)等进行处理的若干功能单元。
基于上述改进,使得系统物料BOM(Bill Of Material)成本和开发成本都能够显著降低;另外,在进行物料选型时,例如上述AFE芯片,可在目前主流产品中选取,一般都能够支持采集功能,并实现ASIL的D级要求;进而使得本发明实施例可在较经济的硬件上支持较高的安全等级ASIL-D,从提升了系统集成的可行性,利于促进以12V锂电池为代表的技术升级过程,并推动铅酸蓄电池的更新换代;其中,由图1、图2对比可以看出:12V的BMS与高压BMS的核心控制模块处理了类似的信息或可采用相同的数据结构,都具有电源管理单元、数据管理单元及驱动单元;且高压电池同样有热失控的风险,所以高压BMS的安全等级要求也需满足ASIL C~ASIL D;若12V的BMS选择了较高端的芯片,同时12V电池系统的数据量相对较少,则很可能会造成资源上的浪费;如图2、图8、图9、图10所示,本发明实施例将12V的BMS数据处理单元上移到高压BMS中,控制策略也集成在高压BMS中,12V电池系统中仅保留AFE前端采集单元,可最大程度复用高压BMS的软硬件资源,集成化程度高,BOM成本及开发成本显著降低。
另一方面,12V的铅酸蓄电池易在放电深度加大时,导致电池寿命锐减;电池寿命普遍接近1~2年,维护成本增加;进一步地,采用基于锂电的本发明方法和产品后,也可避免铅酸电池老化后,有效容量突降、循环寿命较短等技术问题。
需要说明的是,上述实施例仅是为了更清楚地说明本发明的技术方案,本领域技术人员可以理解,本发明的实施方式不限于以上内容,基于上述内容所进行的明显变化、替换或替代,均不超出本发明技术方案涵盖的范围;在不脱离本发明构思的情况下,其它实施方式也将落入本发明的范围。
Claims (17)
- 一种电池管理方法,其特征在于,包括集成与检测步骤(100)、通信与调节步骤(200);其中,所述集成与检测步骤(100)集成第一电池或电池组(909)与第二电池或电池组(808)于目标系统的结构单元,所述第一电池或电池组(909)和/或所述第二电池或电池组(808)与目标用电系统电连接;所述第一电池或电池组(909)和/或所述第二电池或电池组(808)的开关器件和/或用于换路的部件由所述第二电池或电池组(808)支配的驱动单元(810)进行控制;所述通信与调节步骤(200)通过通信与调节单元(926)在所述第一电池或电池组(909)与所述第二电池或电池组(808)之间交换数据;其中,所述第一电池或电池组(909)调用由第二电池或电池组(808)的电池管理系统BMS执行管理程序或控制执行机构的动作;所述管理程序和/或所述执行机构的动作在所述第一电池或电池组(909)与所述第二电池或电池组(808)之间共享或共用;所述电池管理系统BMS通过所述通信与调节单元(926)的通信线路与所述第一电池或电池组(909)的集成与检测单元(916)通信连接。
- 如权利要求1的所述电池管理方法,其中:所述目标系统为采用所述第一电池或电池组(909)和/或所述第二电池或电池组(808)进行供电的系统;所述目标系统包括脱离电网独立运行的用电设备;所述目标系统包括车辆(900)及用电设备;所述集成与检测步骤(100)获取第一电池或电池包(909)的第一组参数信息(101),所述通信与调节步骤(200)在所述第一电池或电池包(909)与第二电池或电池包(808)之间交换信息并由所述第二电池或电池包(808)的控制单元向所述第一电池或电池包(909)发送控制或驱动指令;所述通信与调节步骤(200)经由所述第二通信与调节单元(926)存储或传输所述第一组参数信息(101);所述电池管理系统BMS管理与控制所述第二电池或电池包(808);所述第一组参数信息(101)在所述电池管理系统BMS中处理后再经由所述通信与调节单元(926)发送至所述第一电池或电池 包(909)。
- 如权利要求1或2的所述电池管理方法,其中:所述通信与调节单元(926)采用菊花链DaisyChain结构或CAN链路(921)进行通信;所述菊花链DaisyChain结构或CAN链路(921)在预设的板卡和/或芯片之间通信连接;所述通信与调节单元(926)在所述集成与检测单元(916)与微处理器(931)之间交换通信与调节信息(201);所述微处理器(931)用于管理所述第二电池或电池组(808);同时,所述微处理器(931)接收并处理来自所述第一电池或电池组(909)的信息;所述通信与调节信息(201)由所述第二电池或电池组(808)的所述电池管理系统BMS处理;所述通信与调节信息(201)反映或支配所述第一电池或电池组(909)的电能管理或输入输出。
- 如权利要求3的所述电池管理方法,还包括保障与监测步骤(300);其中:所述保障与监测步骤(300)采用所述电池管理系统BMS的微处理器、执行机构和/或驱动单元(810);所述保障与监测步骤(300)采用所述电池管理系统BMS的控制程序和/或控制策略对所述第一电池或电池包(909)进行管理并交换第二组参数信息(301),所述第二组参数信息(301)包括所述第一电池或电池包(909)与第二电池或电池包(808)共用的控制策略及电源管理信息。
- 如权利要求1、2或4的所述电池管理方法,其中:所述目标用电系统由所述第一电池或电池组(909)和/或所述第二电池或电池组(808)提供电能;所述目标用电系统包括第一用电系统和第二用电系统;所述第一电池或电池包(909)和所述第二电池或电池包(808)采用相同类型或材料的化学电池系统;所述化学电池系统包括锂离子电池系统;所述第一电池或电池包(909)和所述第二电池或电池包(808)采用不同的额定电压;所述第一电池或电池包(909)为所述第一用电系统供电;所述第二电池或电池包(808)为所述第二用电系统供电;所述第一电池或电池包(909)的额定电压低于所述第二电池或电池包(808)的额定电压。
- 如权利要求5的所述电池管理方法,其中:所述第一电池或电池包(909)的额定电压为12V;所述第二电池或电池包(808)所采用的电压等 级的额定输出电压大于所述第一电池或电池包(909)的额定电压。
- 如权利要求1、2、4或6的所述电池管理方法,其中:所述电池管理系统BMS采用的信息处理硬件支持菊花链通讯;所述信息处理硬件包括电源管理芯片PMIC以及电池采样模拟前端AFE至少之一;所述驱动单元(810)包括下列驱动方式至少之一:继电器驱动、MOSFET管驱动;所述第二电池管理系统BMS采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理。
- 一种电池接口装置(906),包括集成与检测单元(916)、通信与调节单元(926);其中,所述集成与检测单元(916)集成第一电池或电池组(909)与第二电池或电池组(808)于目标系统的结构单元,所述第一电池或电池组(909)和/或所述第二电池或电池组(808)与目标用电系统电连接;所述第一电池或电池组(909)和/或所述第二电池或电池组(808)的开关器件和/或用于换路的部件由所述第二电池或电池组(808)支配的驱动单元(810)进行控制;通过通信与调节单元(926)在所述第一电池或电池组(909)与所述第二电池或电池组(808)之间交换数据;其中,所述第一电池或电池组(909)调用由第二电池或电池组(808)的电池管理系统BMS执行管理程序或控制执行机构的动作;所述管理程序和/或所述执行机构的动作在所述第一电池或电池组(909)与所述第二电池或电池组(808)之间共享或共用;所述电池管理系统BMS通过所述通信与调节单元(926)的通信线路与所述第一电池或电池组(909)的集成与检测单元(916)通信连接。
- 如权利要求8的所述电池接口装置(906),其中:所述目标系统为采用所述第一电池或电池组(909)和/或所述第二电池或电池组(808)进行供电的系统;所述目标系统包括脱离电网独立运行的用电设备;所述目标系统包括车辆(900)及用电设备;所述集成与检测单元(916)获取第一电池或电池包(909)的第一组参数信息(101),所述通信与调节单元(926)在所述第一电池或电池包(909)与第二电池或电池包(808)之间交换信息并由所述第二电池或电池包(808) 的控制单元向所述第一电池或电池包(909)发送控制或驱动指令;所述通信与调节单元(926)经由所述第二通信与调节单元(926)存储或传输所述第一组参数信息(101);所述第二电池管理系统BMS管理与控制所述第二电池或电池包(808);所述第一组参数信息(101)在所述电池管理系统BMS中处理后再经由所述通信与调节单元(926)发送至所述第一电池或电池包(909)。
- 如权利要求8或9的所述电池接口装置(906),其中:所述通信与调节单元(926)采用菊花链DaisyChain结构或CAN链路(921)进行通信;所述菊花链DaisyChain结构或CAN链路(921)在预设的板卡和/或芯片之间通信连接;所述通信与调节单元(926)在所述第一集成与检测单元(916)与微处理器(931)之间交换通信与调节信息(201);所述第二微处理器(931)用于管理所述第二电池或电池组(808);同时,所述微处理器(931)接收并处理来自所述第一电池或电池组(909)的信息;所述通信与调节信息(201)由所述第二电池或电池组(808)的所述电池管理系统BMS处理;所述通信与调节信息(201)反映或支配所述第一电池或电池组(909)的电能管理或输入输出。
- 如权利要求10的所述电池接口装置(906),还包括保障与监测单元(936);其中:所述保障与监测单元(936)采用所述电池管理系统BMS的微处理器、执行机构和/或驱动单元(810);所述保障与监测单元(936)采用所述电池管理系统BMS的控制程序和/或控制策略对所述第一电池或电池包(909)进行管理并交换第二组参数信息(301),所述第二组参数信息(301)包括所述第一电池或电池包(909)与第二电池或电池包(808)共用的控制策略及电源管理信息。
- 如权利要求8、9或11的所述电池接口装置(906),其中:所述目标用电系统由所述第一电池或电池组(909)和/或所述第二电池或电池组(808)提供电能;所述目标用电系统包括第一用电系统和第二用电系统;所述第一电池或电池包(909)和所述第二电池或电池包(808)采用相同类型或材料的化学电池系统;所述化学电池系统包括锂离子电池系统;所述第一电池或 电池包(909)和所述第二电池或电池包(808)采用不同的额定电压;所述第一电池或电池包(909)为所述第一用电系统供电;所述第二电池或电池包(808)为所述第二用电系统供电;所述第一电池或电池包(909)的额定电压低于所述第二电池或电池包(808)的额定电压。
- 如权利要求12的所述电池接口装置(906),其中:所述第一电池或电池包(909)的额定电压为12V;所述第二电池或电池包(808)所采用的电压等级的额定输出电压大于所述第一电池或电池包(909)的额定电压。
- 如权利要求8、9、11或13的所述电池接口装置(906),其中:所述电池管理系统BMS采用的信息处理硬件支持菊花链通讯;所述信息处理硬件包括电源管理芯片PMIC以及电池采样模拟前端AFE至少之一;所述驱动单元(810)包括下列驱动方式至少之一:继电器驱动、MOSFET管驱动;所述电池管理系统BMS采用的控制策略和/或管理方法包括针对电池荷电状态SOC、健康状态SOH、剩余能量SOE、功率状态SOP至少之一进行的处理。
- 一种计算机存储介质(903),包括用于存储计算机程序的存储介质本体;所述计算机程序在被微处理器执行时,实现如权利要求1至7的任一项所述电池管理方法。
- 一种控制器(901),包括如权利要求8至14的任一项所述电池接口装置(906);和/或如权利要求15所述的计算机存储介质(903)。
- 一种电池组(909),包括如权利要求8至14的任一项所述电池接口装置(906);和/或如权利要求15所述的计算机存储介质(903);和/或如权利要求16的任一项所述控制器(901)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211353399.2 | 2022-11-01 | ||
CN202211353399.2A CN115833300A (zh) | 2022-11-01 | 2022-11-01 | 一种电池管理方法、接口装置、介质、控制器及电池组 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093384A1 true WO2024093384A1 (zh) | 2024-05-10 |
Family
ID=85526018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/109045 WO2024093384A1 (zh) | 2022-11-01 | 2023-07-25 | 一种电池管理方法、接口装置、介质、控制器及电池组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115833300A (zh) |
WO (1) | WO2024093384A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12103406B2 (en) | 2022-09-28 | 2024-10-01 | Delphi Technologies Ip Limited | Systems and methods for integrated gate driver for inverter for electric vehicle |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115833300A (zh) * | 2022-11-01 | 2023-03-21 | 联合汽车电子有限公司 | 一种电池管理方法、接口装置、介质、控制器及电池组 |
CN117634149B (zh) * | 2023-11-03 | 2024-08-16 | 中国南方电网有限责任公司超高压输电公司大理局 | 均衡电路优化方法、装置、计算机设备、存储介质和产品 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150283911A1 (en) * | 2014-04-04 | 2015-10-08 | Dg Systems Llc | Vehicle power sharing and grid connection system for electric motors and drives |
CN105977558A (zh) * | 2016-07-01 | 2016-09-28 | 欣旺达电动汽车电池有限公司 | 可扩展的混合式电池管理系统 |
CN115833300A (zh) * | 2022-11-01 | 2023-03-21 | 联合汽车电子有限公司 | 一种电池管理方法、接口装置、介质、控制器及电池组 |
-
2022
- 2022-11-01 CN CN202211353399.2A patent/CN115833300A/zh active Pending
-
2023
- 2023-07-25 WO PCT/CN2023/109045 patent/WO2024093384A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150283911A1 (en) * | 2014-04-04 | 2015-10-08 | Dg Systems Llc | Vehicle power sharing and grid connection system for electric motors and drives |
CN105977558A (zh) * | 2016-07-01 | 2016-09-28 | 欣旺达电动汽车电池有限公司 | 可扩展的混合式电池管理系统 |
CN115833300A (zh) * | 2022-11-01 | 2023-03-21 | 联合汽车电子有限公司 | 一种电池管理方法、接口装置、介质、控制器及电池组 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12103406B2 (en) | 2022-09-28 | 2024-10-01 | Delphi Technologies Ip Limited | Systems and methods for integrated gate driver for inverter for electric vehicle |
US12122251B2 (en) | 2022-09-28 | 2024-10-22 | BorgWarner US Technologies LLC | Systems and methods for bidirectional message architecture for inverter for electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN115833300A (zh) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024093384A1 (zh) | 一种电池管理方法、接口装置、介质、控制器及电池组 | |
CN102231550B (zh) | 一种动力电池主动均衡充放电系统及实现方法 | |
EP4210151A1 (en) | Battery heating system, battery pack, and electric apparatus | |
CN109659465A (zh) | 一种电动汽车动力电池系统用的电池串模块 | |
CN112737018A (zh) | 电池包主从动态并机方法、用电设备及存储介质 | |
CN110518676B (zh) | 一种运用于锂电池充放电控制的智能电源管理系统 | |
CN112600264B (zh) | 并联电池包的控制方法、系统、电子设备及车辆 | |
CN106450517B (zh) | 电池模块组合系统 | |
CN113659681A (zh) | 一种从控模块、电池管理系统、方法及存储介质 | |
CN205811577U (zh) | 一种大容量锂电池包电源管理系统 | |
CN111106643A (zh) | 一种48v通信电源系统及其蓄电池在线放电控制方法 | |
CN109649191A (zh) | 一种电动汽车动力电池系统 | |
JP2011029010A (ja) | リチウムイオン二次電池システムおよび管理装置への電力供給方法 | |
CN209534757U (zh) | 一种电动汽车动力电池系统 | |
CN211605342U (zh) | 一种基站退役电池智能管理系统 | |
CN111564883A (zh) | 一种主动式蓄电池充放电管理系统及方法 | |
CN206542199U (zh) | 一种多组电池组在通信基站中的矩阵控制装置 | |
CN214957032U (zh) | 一种可充电分散式控制电池系统 | |
CN209730083U (zh) | 模块化电池组及电动装置 | |
CN108092369A (zh) | 一种通信基站中多组电池的矩阵管理系统及方法 | |
CN114844172A (zh) | 用于无人车的电池切换系统 | |
CN102856954A (zh) | 一种动力电池均衡方法、单元、电池管理系统、电动汽车 | |
CN106532872A (zh) | 一种多组电池组在通信基站中的矩阵控制方法 | |
CN210680413U (zh) | 一种轨道牵引车用动力系统 | |
CN217788503U (zh) | 用于车辆的电池包、电池系统和车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884323 Country of ref document: EP Kind code of ref document: A1 |