WO2024093291A1 - 光连接器、光尾纤、光跳线、光通信设备及系统 - Google Patents

光连接器、光尾纤、光跳线、光通信设备及系统 Download PDF

Info

Publication number
WO2024093291A1
WO2024093291A1 PCT/CN2023/103275 CN2023103275W WO2024093291A1 WO 2024093291 A1 WO2024093291 A1 WO 2024093291A1 CN 2023103275 W CN2023103275 W CN 2023103275W WO 2024093291 A1 WO2024093291 A1 WO 2024093291A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide device
optical waveguide
optical connector
connector
Prior art date
Application number
PCT/CN2023/103275
Other languages
English (en)
French (fr)
Inventor
史锡婷
赵俊英
陈冲
吴金华
李心白
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093291A1 publication Critical patent/WO2024093291A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present application relates to the field of optical communication technology, and in particular to an optical connector, an optical pigtail, an optical jumper, an optical communication device and a system.
  • optical fiber transmission has gradually evolved from the traditional method of pluggable optical modules on the panel to new forms such as on-board optics (OBO), near package optics (NPO), and co-package optics (CPO).
  • OBO on-board optics
  • NPO near package optics
  • CPO co-package optics
  • the capacity of optical fiber transmission is also increasing.
  • it is necessary to increase the transmission rate of a single wavelength of optical fiber such as from 100Gbps to 200Gbps.
  • space division multiplexing is used to increase the number of optical fibers or the number of fiber cores for transmission
  • WDM wavelength division multiplexing
  • the embodiments of the present application provide an optical connector, an optical pigtail, an optical jumper, an optical communication device and a system, which solve the problem in the prior art that the optical module is large in size and occupies a large layout space in the mainboard.
  • an embodiment of the present application provides an optical connector.
  • the optical connector includes an optical waveguide device and a fixed structure.
  • the optical waveguide device can realize the functions of branching, combining, wave splitting, wave combining, multi-core-single-core conversion, filtering, reflection, mode spot conversion, light path on and off, light path direction conversion or optical power adjustment. Therefore, the optical waveguide device can be any one of a splitter, a combiner, a wave combiner, a wave splitter, a multi-core-single-core converter, a grating, a mode spot converter, a deflector, an adjustable optical attenuator, an optical switch, and an electrically adjustable optical splitter.
  • the optical waveguide device has a first optical port and a second optical port.
  • One of the first optical port and the second optical port is an optical signal input port of the optical waveguide device, and the other of the first optical port and the second optical port is an optical signal output port of the optical waveguide device.
  • the above-mentioned fixed structure is used to fix the optical transmission medium.
  • the optical transmission medium can be an optical fiber or a flexible optical waveguide.
  • the fixed structure can be set on the optical waveguide device or connected to the optical waveguide device.
  • the first optical port of the optical waveguide device can be aligned and connected with the optical transmission medium in the fixing structure, so that the optical signal in the optical transmission medium can be transmitted to the optical waveguide device, or the optical waveguide device can transmit the optical signal to the optical transmission medium.
  • the optical connector of the embodiment of the present application when the optical connector of the embodiment of the present application is applied to the optical module, since the embodiment of the present application can have the functions of wave splitting, wave combining or multi-core-single-core conversion, no matter whether the optical module adopts space division multiplexing technology or wavelength division multiplexing technology, it is not necessary to set an independent multi-core-single-core converter, combiner or wave splitter between the optical fiber cables.
  • the optical waveguide device in the optical connector of the embodiment of the present application can combine the functions of the multi-core-single-core converter, wave combiner or wave splitter with the functions of the existing optical connector, and improve the integration of the optical connector without increasing the volume of the optical connector.
  • the fixed structure in the embodiment of the present application can facilitate the alignment and connection of the first optical port of the optical waveguide device with the optical transmission medium.
  • the optical waveguide device in the embodiments of the present application may be a single-layer structure or a multi-layer structure to meet different optical signal transmission requirements.
  • the optical waveguide device may be made of any one or more of glass, silicon dioxide, lithium niobate, III-V semiconductor compounds, silicon on insulator, silicon oxynitride and high molecular polymer.
  • the angle between the light incident direction of the optical waveguide device and the light emitting direction of the optical waveguide device has a value range of 0-180°.
  • the light incident direction of the optical waveguide device may be the same as the light emitting direction of the optical waveguide device to adapt to the optical transmission application scenario where the transmission angle remains unchanged.
  • the light incident direction of the optical waveguide device may also be perpendicular to the light emitting direction of the optical waveguide device to adapt to the optical transmission application scenario where the transmission angle changes by 90°.
  • the fixing structure includes two clamping plates arranged opposite to each other.
  • the two clamping plates are used to clamp the optical transmission medium and expose the end surface of the optical transmission medium.
  • the two clamping plates are fixedly connected to the optical waveguide device, such as by an adhesive material, so that the optical transmission medium in the clamping plates is aligned with the first optical port of the optical waveguide device and fixedly connected.
  • the fixing structure is relatively simple.
  • a first positioning groove is provided on the contact surface of any one or both clamping plates, and the first positioning groove can be used to position the optical transmission medium.
  • the number of the first positioning grooves can be one or more.
  • the first positioning groove can further ensure that the optical transmission medium can be aligned with the first optical port of the optical waveguide device.
  • the fixing structure is a second positioning groove provided on the optical waveguide device.
  • the second positioning groove can be aligned with the first optical port of the optical waveguide device.
  • the optical transmission medium is positioned by the second positioning groove, so that the optical transmission medium and the first optical port of the optical waveguide device can be aligned and connected (such as end-face alignment connection), and the fixing structure is also relatively simple.
  • the fixing structure is a fixing block.
  • a plurality of fixing holes are provided in the fixing block, and the optical transmission medium can be fixed in the fixing holes.
  • the optical connector further comprises a ferrule, the ferrule is provided with a mounting groove, the optical waveguide device is mounted in the mounting groove, and the second optical port of the optical waveguide device is exposed outside the ferrule.
  • the ferrule can form mechanical protection for the outer wall of the optical waveguide device.
  • the optical waveguide device is interference-fitted with the mounting groove to fix the optical waveguide device in the ferrule.
  • the optical waveguide device is connected to the mounting groove by an adhesive material to fix the optical waveguide device in the ferrule. Both of the above-mentioned connection methods are relatively simple to operate.
  • the optical connector also includes a positioning structure, and the positioning structure can be set on the ferrule or on the optical waveguide device.
  • the positioning structure is used to connect and position with another optical connector (hereinafter referred to as the second optical connector) to achieve alignment and connection between the optical transmission medium in the second optical connector and the second optical port of the optical connector (hereinafter referred to as the first optical connector) of the present application.
  • the second optical connector can be similar to the first optical connector structure, or it can be different from the first optical connector structure.
  • the positioning structure in the first optical connector of the embodiment of the present application also has a variety of structures to cooperate with the structure of the second optical connector for positioning.
  • the positioning structure in the above-mentioned first optical connector is a positioning pin.
  • the positioning pin can be movably mounted on the ferrule or on the optical waveguide device.
  • a positioning hole that cooperates with the positioning pin is provided on the second optical connector. The positioning pin is connected to the positioning hole to achieve the positioning connection between the first optical connector and the second optical connector.
  • the positioning structure on the first optical connector is interchangeable with the positioning structure on the second optical connector. That is, the positioning structure on the first optical connector is a positioning hole.
  • the positioning hole can be provided on the ferrule or on the optical waveguide device.
  • the second optical connector is provided with a positioning pin that matches the positioning hole. The positioning pin is connected to the positioning hole to achieve the positioning connection between the first optical connector and the second optical connector.
  • the optical waveguide device comprises a substrate, an optical waveguide and an electrically controlled component.
  • the optical waveguide can be arranged in the substrate or on the substrate.
  • the electrically controlled component is arranged on the substrate.
  • the electrically controlled component can be used to heat or apply voltage to the optical waveguide.
  • the electrically controlled component can include electrodes, conductive circuits and connecting pads all arranged on the substrate. The electrodes, conductive circuits and connecting pads are connected in sequence.
  • the electrodes can be arranged above or on both sides of the optical waveguide.
  • the electrodes can heat or apply voltage to the optical waveguide in the optical waveguide device, thereby realizing further integration of functions in the optical connector.
  • the optical waveguide device further comprises an optical protective film, which is disposed on the surface where the second optical port of the optical waveguide device is located.
  • the optical protective film can provide mechanical protection for the optical waveguide device and can also provide optical protection.
  • the optical protective film can include any one or more of a heat-resistant film, a heat-conductive film, a heat-resistant film, and an anti-reflective film. Therefore, the optical protective film can have functions such as heat-resistant, heat-conductive, heat-resistant, and anti-reflective films.
  • an embodiment of the present application provides an optical pigtail, which includes an optical transmission medium and the optical connector described in the above embodiment.
  • the optical transmission medium can be an optical fiber or a flexible optical waveguide.
  • the optical pigtail can be an optical fiber pigtail.
  • the fixed structure in the optical connector can fix one end of the optical transmission medium, and the optical transmission medium in the fixed structure can be fixed to the optical fiber.
  • the medium can be aligned and connected with the first optical port of the optical waveguide device. Since the optical connector in the optical pigtail of the present embodiment has the same structure as the optical connector described in the above embodiment, both can solve the same technical problems and obtain the same technical effects, which will not be described here.
  • an embodiment of the present application provides an optical jumper, which includes an optical transmission medium, a first optical connector and a second optical connector.
  • the optical transmission medium can be an optical fiber or a flexible optical waveguide.
  • the optical jumper can be an optical fiber jumper.
  • the first optical connector and the second optical connector are respectively connected to the two ends of the optical transmission medium. Either or both of the first optical connector and the second optical connector are the optical connectors described in the above embodiment.
  • the first optical connector is the optical connector described in the above embodiment, and the first optical connector fixes the optical transmission medium through a fixed structure and aligns and connects with the first optical port of the optical waveguide device.
  • the first optical connector and/or the second optical connector in the optical jumper of the embodiment of the present application have the same structure as the optical connector described in the above embodiment, both can solve the same technical problems and obtain the same technical effects, which will not be repeated here.
  • an embodiment of the present application provides an optical communication device, which includes an optical chip and the optical connector described in the above embodiment.
  • the optical chip is connected to the optical connector.
  • an embodiment of the present application provides an optical communication system, which includes at least two optical communication devices and the optical connector described in the above embodiment. Any two optical communication devices can be connected through an optical connector. Since the optical connector in the optical communication system of the embodiment of the present application has the same structure as the optical connector described in the above embodiment, both can solve the same technical problems and obtain the same technical effects, which will not be described in detail here.
  • FIG1 is a schematic diagram of a module of an optical communication system according to an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of some components of an optical communication device according to an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of some components of an optical communication device in a related art
  • FIG4 is a schematic diagram of the structure of some components of the optical communication device in the related art 2;
  • FIG5 is a schematic diagram of the structure of the connection between the first optical connector and the optical fiber according to an embodiment of the present application.
  • FIG6 is a schematic structural diagram of a first optical connector having a ferrule according to an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a first type of ferrule in a first optical connector according to an embodiment of the present application
  • FIG8 is a schematic diagram of the structure of a second type of ferrule in the first optical connector according to an embodiment of the present application.
  • FIG9 is a schematic structural diagram of an L-shaped optical waveguide device having a curved chamfer in the first optical connector according to an embodiment of the present application.
  • FIG10 is a schematic structural diagram of an L-shaped optical waveguide device having a planar chamfer in the first optical connector according to an embodiment of the present application;
  • FIG11 is a schematic diagram of the structure of a first optical connector having two optical waveguide devices and a reflector in an embodiment of the present application;
  • FIG12 is a schematic structural diagram of an optical waveguide device having a multi-layer waveguide path in a first optical connector according to an embodiment of the present application
  • FIG13 is an exploded schematic diagram of a first optical connector in an embodiment of the present application in which a fixing structure has two clamping plates;
  • FIG14 is a schematic structural diagram of a first optical connector in which a plurality of optical fibers are clamped by a fixed structure in accordance with an embodiment of the present application;
  • FIG15 is a cross-sectional schematic diagram of the connection between the first optical connector and the optical fiber according to an embodiment of the present application.
  • 16 is a cross-sectional schematic diagram of a second positioning groove in a first optical connector of an embodiment of the present application.
  • FIG17 is a schematic diagram of a structure in which a fixed structure in a first optical connector according to an embodiment of the present application is a fixed block;
  • FIG18 is a second structural schematic diagram of a first optical connector in which the fixed structure is a fixed block according to an embodiment of the present application;
  • FIG19 is a schematic diagram of the structure of a first optical connector having a positioning pin disposed on a ferrule in an embodiment of the present application;
  • FIG20 is a schematic diagram of the structure of the connection between the positioning pin in the first optical connector and the positioning hole in the second optical connector having an optical waveguide device according to an embodiment of the present application;
  • 21 is a schematic diagram of the structure of the connection between the positioning pin in the first optical connector and the positioning hole in the second optical connector to which the optical fiber is fixed according to the embodiment of the present application;
  • FIG22 is a schematic diagram of a structure in which a ferrule in a first optical connector according to an embodiment of the present application has a mounting hole;
  • FIG23 is a schematic diagram of the structure of a first optical connector having a positioning pin disposed on an optical waveguide device in an embodiment of the present application;
  • FIG24 is a schematic diagram of a structure in which a ferrule in a first optical connector according to an embodiment of the present application has a positioning hole
  • 25 is a schematic structural diagram of a positioning hole provided on an optical waveguide device in a first optical connector according to an embodiment of the present application
  • FIG26 is a schematic diagram of the structure of the connection between the positioning hole in the first optical connector and the positioning pin in the second optical connector according to the embodiment of the present application;
  • FIG27 is a schematic structural diagram of the connection between a first optical connector having an optical protective film and a second optical connector according to an embodiment of the present application;
  • FIG28 is a schematic structural diagram of a first optical connector having an electrical control component according to an embodiment of the present application.
  • FIG29 is a schematic diagram of the structure of an optical fiber jumper according to an embodiment of the present application.
  • FIG30 is a schematic diagram of the structure of the optical fiber pigtail according to an embodiment of the present application.
  • first”, “second”, etc. are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the feature.
  • “plurality” means two or more.
  • directional terms such as “up”, “down”, “left”, “right”, “horizontal” and “vertical” are defined relative to the orientation of the components in the drawings. It should be understood that these directional terms are relative concepts. They are used for relative description and clarification, and they may change accordingly according to the changes in the orientation of the components in the drawings.
  • connection should be understood in a broad sense.
  • connection can refer to the connection of mechanical structure or physical structure.
  • it can be a fixed connection, a detachable connection, or an integrated connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can also be understood as the physical contact and electrical conduction of components, and it can also be understood as the form in which different components in the circuit structure are connected through physical lines such as PCB copper foil or wires that can transmit electrical signals.
  • the embodiment of the present application includes an optical communication system, which can be a data communication optical network system, a computer network optical system, an optical distribution network (ODN) system, an optical cross system or an optical backplane system, and the present application does not limit this.
  • the optical communication system includes two or more optical communication devices and multiple optical fiber cables. In the optical communication network, two adjacent optical communication devices are connected by an optical fiber cable.
  • the optical communication device can specifically be a switch, an optical module, an optical fiber splitter box, etc.
  • the above-mentioned optical fiber cable can be an optical jumper or an optical pigtail. It should be noted that the above-mentioned optical jumper includes an optical transmission medium and two optical connectors. The two optical connectors are respectively connected to the two ends of the optical transmission medium.
  • the structures of the two optical connectors can be the same or different, and the present application does not limit this.
  • the above-mentioned optical pigtail includes an optical transmission medium and an optical connector.
  • the optical connector is installed on one end of the optical transmission medium.
  • the above-mentioned optical transmission medium can be an optical fiber or a flexible optical waveguide.
  • the material for making the flexible optical waveguide can be a polymer. If the optical transmission medium is optical fiber, the optical patch cord refers to the optical fiber patch cord, and the optical pigtail refers to the optical fiber pigtail.
  • FIG1 shows a specific optical communication system of an embodiment of the present application.
  • the optical communication system R in the embodiment of the present application includes two optical communication devices 1000A and 1000B, and an optical fiber jumper 2000, and the two optical communication devices 1000A and 1000B are connected by the optical fiber jumper 2000.
  • the switch includes a housing and a circuit board assembly arranged in the housing.
  • the circuit board assembly 100 includes a mainboard 10, and a switching chip 20 and an optical module 30 on the mainboard 10.
  • the mainboard 10 can specifically be a printed circuit board.
  • the switching chip 20 and the optical module 30 can be packaged in CPO, NPO, or OBO manner, and this application does not limit this.
  • the circuit board assembly 100 can also include an adapter board 40, which is arranged between the mainboard 10 and the switching chip 20 and the optical module 30, and can realize signal transmission between the mainboard 10 and the switching chip 20 and the optical module 30.
  • the above-mentioned optical module 30 may include an optical chip 1, a fiber array unit (fiber array unit, FAU) 2 and a first optical connector 3.
  • the transmission mode of the optical fiber 21 in the fiber array unit 2 includes but is not limited to single-mode, multi-mode, few-mode and other optical transmission modes.
  • the optical fiber 21 can be a multi-core optical fiber or a hollow optical fiber, and the present application does not limit this. It is understandable that the optical fiber 21 in the above-mentioned fiber array unit 2 can also be replaced with a flexible optical waveguide.
  • the transmission mode of the flexible optical waveguide includes but is not limited to single-mode, multi-mode, few-mode and other optical transmission modes. The following is mainly explained by taking the optical fiber 21 in the fiber array unit 2 as an example.
  • the first end 211 of the optical fiber 21 in the optical fiber array unit 2 is connected to the optical chip 1, and the second end 212 of the optical fiber 21 in the optical fiber array unit 2 is connected to the first optical connector 3.
  • the housing of the optical communication device 1000 may include a fixed panel 200, on which a second optical connector 300 is mounted, and the first optical connector 3 may be connected to the second optical connector 300.
  • the optical module 30 can use space division multiplexing or wavelength division multiplexing technology to increase the number of channels of optical transmission.
  • space division multiplexing technology as shown in Figure 3, it is necessary to connect an independent converter 04a to the second end 212 of the optical fiber 21 in the optical fiber array unit 2.
  • the optical fiber 21 in the optical fiber array unit 2 can be a multi-core optical fiber to save space. Therefore, the converter is a multi-core to single-core (hereinafter referred to as "multi-core-single-core converter") converter.
  • the multi-core-single-core converter is connected to the first optical connector 3 through a single-core optical fiber cable.
  • the addition of a multi-core-single-core converter makes the optical module 30 occupy a larger board space on the mainboard 10.
  • the optical module 30 uses wavelength division multiplexing technology, as shown in Figure 4, it is necessary to connect the optical fiber 21 in the optical fiber array unit 2 to an independent combiner and splitter 04b.
  • the combiner and splitter 04b are connected to the first optical connector 3 through other optical fiber cables.
  • the addition of the combiner and splitter 04 b will also cause the optical module 30 to occupy a larger board space on the mainboard 10 .
  • the optical module can use 4 16-channel multiplexing (mux) modules (including combiners) and 4 16-channel demultiplexing (demux) modules (including splitters).
  • the size of a multiplexing module is 100mm (length) ⁇ 80mm (width) ⁇ 10mm (height). Therefore, at least 320cm2 of space needs to be reserved on the mainboard 10 for the multiplexing module.
  • 16 4-channel multiplexing modules are used, and the size of a multiplexing module is 16.5mm (length) ⁇ 11mm (width) ⁇ 6.5mm (height). Therefore, at least 29.04cm2 of space needs to be reserved on the mainboard 10.
  • the above two solutions will make the volume of the optical module 30 larger.
  • the embodiment of the present application provides an optical connector with a new structure, which can have the functions of connection, conversion, wave combination or wave splitting at the same time.
  • the first optical connector 3 includes an optical waveguide (planar lightwave circuit, PLC) device 32 and a fixed structure 33.
  • the optical waveguide device 32 can realize functions such as branching, combining, wave splitting, wave combination, multi-core-single-core conversion, filtering, reflection, mode spot conversion, optical path on and off, optical path direction conversion or optical power adjustment.
  • the optical waveguide device 32 can be any one of a splitter, a combiner, a combiner, a wave splitter, a multi-core-single-core converter, a grating, a mode spot converter, a deflector, an adjustable optical attenuator, an optical switch, and an electrically adjustable optical splitter.
  • the optical waveguide has a first optical port 30a and a second optical port 30b.
  • One of the first optical port 30a and the second optical port 30b is an optical signal input port of the optical waveguide device 32, and the other of the first optical port 30a and the second optical port 30b is an optical signal output port of the optical waveguide device 32.
  • the functions of the optical waveguide device 32 are different, and the number of the first optical port 30a and the second optical port 30b is different.
  • the first optical port 30a and the second optical port 30b can be one or more, and the present application does not limit this.
  • the optical waveguide device 32 includes a substrate 321 and an optical waveguide disposed on the substrate 321.
  • the optical waveguide can be made by a film structure.
  • the optical waveguide is directly disposed on the substrate 321 by chemical vapor deposition (low pressure chemical vapor deposition or plasma enhanced chemical vapor deposition) or polymer film bonding.
  • the desired waveguide structure is formed by a photolithography process.
  • the optical waveguide can also be a waveguide structure directly written in the substrate 321 by a femtosecond laser.
  • the optical waveguide can form one or more waveguide paths 322, and the first optical port 30a and the second optical port 30b are respectively located at the two ends of the waveguide path 322, which is not limited in the present application.
  • the following description will be continued by taking the optical waveguide of the optical waveguide device 32 having a waveguide path 322 as an example.
  • the fixing structure 33 can be used to fix the second end 212 of the optical fiber 21 in the optical fiber array unit 2.
  • the fixing structure 33 can be directly set on the optical waveguide device 32, or can be connected to the optical waveguide device 32.
  • the second end 212 of the optical fiber 21 in the optical fiber array unit 2 can be aligned and coupled with the waveguide path 322 in the optical waveguide device 32. That is, the second end 212 of the optical fiber 21 in the optical fiber array unit 2 shown in FIG. 6 can be coupled with the first optical port 30a of the waveguide path 322 in the optical waveguide device 32.
  • the second end 212 of the optical fiber 21 can be end-face coupled with the first optical port 30a of the waveguide path 322 in the optical waveguide device 32.
  • the optical connector of the embodiment of the present application is applied to the optical module 30, no matter whether the optical module 30 adopts the space division multiplexing technology or the wavelength division multiplexing technology, it is not necessary to set an independent converter 04a, or a combiner and a splitter 04b between the optical fiber cables.
  • the optical waveguide device 32 in the optical connector 3 of the embodiment of the present application combines the functions of a multi-core-single-core converter, a combiner or a splitter with the functions of an existing optical connector, thereby improving the integration of the optical connector 3 without increasing the volume of the optical connector. Therefore, it is not necessary to reserve a separate space required for a multi-core-single-core converter, a combiner or a splitter on the mainboard 10. Thus, the volume of the optical module 30 is reduced, the board area occupied by the optical module 30 is reduced, and the integration of the optical module 30 is improved.
  • the fixing structure 33 in the embodiment of the present application can facilitate the alignment and connection of the waveguide path 322 of the optical waveguide in the optical waveguide device 32 with the optical fiber 21.
  • the optical waveguide device 32 may be made of glass, silicon dioxide SiO 2 , lithium niobate (LiNbO 3 ), Any one of silicon oxynitride, silicon-on-insulator (SOI), III-V semiconductor compounds and polymers, which are not limited in this application.
  • the transmission mode of the optical waveguide device 32 includes but is not limited to single mode, multi-mode, few-mode, etc., which are not limited in this application.
  • the optical connector 3 also includes a ferrule 31 as shown in FIG6.
  • a mounting groove 311 as shown in FIG7 is formed in the ferrule 31, and the optical waveguide device 32 can be fixed in the mounting groove 311.
  • the ferrule 31 can provide mechanical protection for the optical waveguide device 32.
  • the ferrule 31 can be a hollow integral structure, so that the above-mentioned mounting groove 311 is directly formed during manufacturing.
  • the mounting groove 311 can be entirely located inside the ferrule 31, as shown in FIG7.
  • the mounting groove 311 is located on one side surface (such as the upper surface) of the ferrule 31, as shown in FIG8, and the present application does not limit this.
  • the optical waveguide device 32 and the mounting groove 311 of the ferrule 31 are interference fit. Therefore, the ferrule 31 can be made of a material with a certain elasticity, so that the assembly operation of the optical waveguide device 32 and the mounting groove 311 of the ferrule 31 is more convenient. Alternatively, the optical waveguide device 32 and the mounting groove 311 of the ferrule 31 can also be fixedly connected by an adhesive material, and the assembly operation is also simpler.
  • the angle between the light incident direction of the optical waveguide device 32 and the light emitting direction of the optical waveguide device 32 in the optical connector 3 of the embodiment of the present application has an angle value range of 0-180°.
  • the light incident direction of the optical waveguide device 32 is the same as the light emitting direction of the optical waveguide device 32. Thus, it can be applicable to application scenarios where the transmission angle of the optical signal remains unchanged.
  • the light incident direction of the optical waveguide device 32 is perpendicular to the light emitting direction of the optical waveguide device 32. Thus, it can be applicable to application scenarios where the transmission angle of the optical signal changes by 90°.
  • the optical connector 3 may further include other auxiliary optical prisms, which, when combined with a plurality of optical waveguide devices 32, can be applicable to application scenarios where various transmission angles are changed.
  • the light incident direction of the optical waveguide device 32 shown in FIG6 is the same as the light emitting direction of the optical waveguide device 32.
  • the optical waveguide device 32 is a rectangular parallelepiped.
  • the ferrule 31 is also a rectangular parallelepiped.
  • the first end face A and the second end face B of the optical waveguide are respectively located on two opposite surfaces of the optical waveguide device 32.
  • One of the first end face A and the second end face B is a light incident surface
  • the other of the first end face A and the second end face B is a light emitting surface.
  • the following is an example in which the first end face A is the light incident surface and the second end face B is the light emitting surface.
  • the first optical port 30a can be located on the first end face A
  • the second optical port 30b can be located on the second end face B.
  • the light-incoming direction of the optical waveguide device 32 shown in FIG9 is perpendicular to the light-outgoing direction of the optical waveguide device 32.
  • the optical waveguide device 32 is L-shaped.
  • the ferrule 31 may also be L-shaped.
  • the ferrule 31 may be composed of two L-shaped buckle plates that can be buckled with each other.
  • the optical waveguide device 32 may be clamped between the two L-shaped buckle plates.
  • the first optical port 30a and the second optical port 30b of the optical waveguide device 32 are respectively located on two mutually perpendicular outer end faces of the optical waveguide device 32.
  • the first end face A where the first optical port 30a is located and the second end face B where the second optical port 30b is located are perpendicular to each other.
  • the L-shaped optical waveguide device 32 is suitable for application scenarios where the transmission angle of the optical signal changes by 90°.
  • the chamfer at the bending portion of the L-shaped optical waveguide device 32 may be in an arc shape as shown in FIG. 9 , or in a flat shape as shown in FIG. 10 .
  • the optical connector 3 shown in FIG11 includes a first optical waveguide device 32a, a second optical waveguide device 32b and a reflector 35, and the first optical waveguide device 32a and the second optical waveguide device 32b are arranged at intervals.
  • the first end face A and the second end face B of the first optical waveguide device 32a are respectively located on two opposite surfaces of the first optical waveguide device 32a.
  • the first end face and the second end face of the second optical waveguide device 32b are respectively located on two opposite surfaces of the second optical waveguide device 32b.
  • the light emitting direction of the first optical waveguide device 32a and the light emitting direction of the second optical waveguide device 32b are perpendicular to each other.
  • the reflector 35 is arranged between the light emitting direction of the first optical waveguide device 32a and the second optical waveguide device 32b.
  • the reflector 35 can reflect the emitted light of the first optical waveguide device 32a into the second optical waveguide device 32b.
  • the light emitting direction of the first optical waveguide device 32a and the refractive index and other optical parameters of the second optical waveguide device 32b the light enters the first optical waveguide device 32a through the first optical port 30a on the first end face A of the first optical waveguide device 32a, and then exits the first optical waveguide device 32a through the second optical port 30b on the second end face B of the first optical waveguide device 32a.
  • the ferrule 31 can be L-shaped or rectangular.
  • the optical waveguide device 32 may be a single-layer structure as shown in FIG6 . That is, the plurality of waveguide paths 322 in the optical waveguide device 32 may be arranged in the same layer. For example, the plurality of waveguide paths 322 may be arranged on the surface of the substrate 321 or may be formed on the substrate 321.
  • the optical waveguide device 32 may also be a multi-layer structure as shown in FIG12. For example, the plurality of waveguide paths 322 in the optical waveguide device 32 may be stacked on the surface of the substrate 321, or may be spaced apart at different heights in the substrate 321.
  • the above-mentioned fixed structure 33 includes two clamps 331 a arranged opposite to each other.
  • the above-mentioned clamps 331 a can be made of transparent materials such as glass, silicon or plastic.
  • the two clamps 331 a fix and clamp the multiple optical fibers 21, and the ends of the second ends 212 of the multiple optical fibers 21 can be exposed.
  • the two clamps 331 a are connected to the optical waveguide device 32, so that the optical fiber 21 between the two clamps 331 a and the waveguide path 322 in the optical waveguide device 32 can be aligned and connected. Thereby, the optical fiber 21 is accurately connected to the waveguide path 322 in the optical waveguide device 32. Therefore, after the fixed structure 33 is connected to the multiple optical fibers 21, it can also be regarded as constituting the optical fiber array unit 2.
  • the contact surface of any one or two clamps 331a is provided with a first positioning groove 3311 as shown in FIG. 13, and the first positioning groove 3311 can locate the position of the optical fiber 21.
  • the contact surface refers to the surface where the two clamps 331a contact each other.
  • the number of the first positioning groove 3311 can be one, or two or more, and can be determined according to the number of optical fibers 21 to be fixed.
  • the number of the first positioning grooves 3311 set on any one or two clamps 331a is multiple, and the multiple first positioning grooves 3311 are aligned and matched with the multiple optical fibers 21 in the optical fiber array unit 2 one by one.
  • the second ends 212 of the multiple optical fibers 21 in the optical fiber array unit 2 can also be aligned and matched with the first optical ports 30a of the multiple waveguide paths 322 in the optical waveguide device 32.
  • the first positioning groove 3311 can be a U-shaped groove or a V-shaped groove, and this application does not limit this.
  • the two clamping plates 331a and the optical waveguide device 32 can be fixed by, for example, bonding.
  • the two clamping plates 331a can be fixedly connected to the optical waveguide device 32 by means of an adhesive material 332.
  • the end faces of one side of the two clamping plates 331a close to the second ends 212 of the plurality of optical fibers 21 are connected to the end face of the optical waveguide device 32 by means of the adhesive material 332, and the connection method is relatively simple.
  • the adhesive material 332 can be a transparent material to avoid affecting the transmission of the optical signal.
  • a sheath 333 may be provided at the connection between the two clamping plates 331a and the optical waveguide device 32.
  • the sheath 333 may protect the connection between the two clamping plates 331a and the optical waveguide device 32 to prevent the connection between the two clamping plates 331a and the optical waveguide device 32 from breaking and failing.
  • the fixing structure 33 may also be a second positioning groove 331b as shown in FIG16 provided on the optical waveguide device 32.
  • the second positioning groove 331b may be aligned and connected with the first optical port 30a of the waveguide passage 322 in the optical waveguide device 32.
  • the second positioning groove 331b may position the optical fiber 21.
  • the optical fiber 21 may be aligned and connected with the first optical port 30a of the waveguide passage 322 in the optical waveguide device 32.
  • the optical fiber 21 needs to be fixedly connected with the second positioning groove 331b, such as by an adhesive material.
  • the number of the second positioning grooves 331b on the optical waveguide device 32 may be determined according to the number of optical fibers 21 that need to be fixed.
  • the alignment and connection operation between the optical fiber 21 in the fixing structure 33 and the first optical port 30a of the waveguide passage 322 of the optical waveguide device 32 can be completed before the optical waveguide device 32 is installed in the ferrule 31, or after the optical waveguide device 32 is installed in the ferrule 31, and the present application does not limit this.
  • the second positioning groove 331b can be a U-shaped groove or a V-shaped groove, and the present application does not limit this either.
  • the fixing structure 33 shown in Figures 14 and 16 can only fix one row of optical fibers.
  • the fixing structure 33 may also include a fixing block 331c of an integral structure, and a plurality of fixing holes 3310 are provided in the fixing block 331c.
  • the plurality of fixing holes 3310 are arranged along multiple rows (Z-axis direction) and multiple columns (X-axis direction), thereby meeting the need to fix multiple rows of optical fibers 21.
  • the fixing block 331c may be made of transparent materials such as glass, silicon or plastic.
  • the optical transmission medium to be fixed by the fixing structure 33 is a flexible optical waveguide
  • the multiple fixing holes 3310 in the fixing block 331c are arranged along the Z-axis direction, and are all set to a shape that matches the flexible optical waveguide.
  • the optical connector 3 of the embodiment of the present application needs to be connected to other optical connectors (hereinafter referred to as the second optical connector 300) when used, in order to accurately align the two optical connectors, in some embodiments, the optical connector 3 of the embodiment of the present application also includes a positioning structure 34 as shown in FIG19.
  • the positioning structure 34 can be set on the ferrule 31 or on the optical waveguide device 32, and the present application does not limit this. As shown in FIG20, when the first optical connector 3 is connected to the second optical connector 300, the positioning structure 34 can locate the installation position of the second optical connector 300 on the first optical connector 3.
  • the second optical connector 300 may adopt a structure similar to the first optical connector 3, such as the second optical connector shown in FIG.
  • the optical waveguide device is also installed in the ferrule of the first optical connector 300.
  • an optical fiber 300a is installed in the ferrule of the second optical connector 300. Therefore, the positioning structure 34 can ensure that the second optical port 30b of the waveguide path 322 in the first optical connector 3 can be aligned and connected with the optical fiber 300a or the first optical port of the waveguide path in the second optical connector 300.
  • the processing accuracy of the ferrule 31 of the first optical connector 3 can be reduced, and the alignment accuracy or alignment difficulty of the optical waveguide device 32 in the first optical connector 3 and the optical transmission medium in the second optical connector 300 can be improved.
  • the transmission mode of the optical fiber 300a in the second optical connector 300 includes but is not limited to single-mode, multi-mode, few-mode, etc.
  • the optical fiber 300a can be a multi-core optical fiber or a hollow optical fiber, which is not limited in the present application.
  • the positioning structure 34 can be manufactured into a variety of structures to meet the connection requirements with the second optical connectors 300 of different structures.
  • the positioning structure 34 in the first optical connector 3 is a positioning pin 341a as shown in FIG19.
  • the ferrule 31 is provided with a mounting hole 312 as shown in FIG22.
  • the extension direction of the mounting hole 312 can be the same as the connection direction between the first optical connector 3 and the second optical connector 300.
  • the extension direction of the mounting hole 312 is the Y-axis direction as shown in FIG22.
  • the positioning pin 341a can be movably mounted in the mounting hole 312 of the ferrule 31.
  • the mounting hole 312 can also be provided on the optical waveguide device 32. Therefore, as shown in FIG23, the positioning pin 341a can be movably mounted on the optical waveguide device 32, and the present application does not limit this.
  • the second optical connector 300 can be provided with a positioning hole 301 that cooperates with the positioning pin 341a, and the extension direction of the positioning hole 301 can be the same as the extension direction of the mounting hole 312.
  • the positioning pin 341a on the first optical connector 3 can be inserted into the positioning hole 301 of the second optical connector 300.
  • the first optical connector 3 and the second optical connector 300 are positioned, ensuring that the second optical port 30b of the waveguide path 322 of the optical waveguide device 32 in the first optical connector 3 can be aligned and connected with the first optical port of the waveguide path of the optical fiber 300a or the optical waveguide device in the second optical connector 300.
  • the number of mounting holes 312 on the ferrule 31 of the first optical connector 3 is not limited in this application.
  • two mounting holes 312 are provided on the ferrule 31 of the first optical connector 3.
  • the two mounting holes 312 are respectively located on both sides of the optical waveguide device 32.
  • the first optical connector 3 includes two positioning pins 341a, and the two positioning pins 341a are movably mounted in the two mounting holes 312, respectively.
  • two positioning holes 301 are provided on the second optical connector 300 at positions corresponding to the two positioning pins 341a.
  • the positioning pin 341a on the first optical connector 3 can be interchanged with the positioning hole 301 on the second optical connector 300. That is, as shown in FIG24, the positioning structure 34 on the first optical connector 3 is a positioning hole 341b.
  • the positioning hole 341b can be provided on the ferrule 31 as shown in FIG24, or can be provided on the optical waveguide device 32 as shown in FIG25.
  • the extension direction of the positioning hole 341b can be the same as the connection direction between the first optical connector 3 and the second optical connector 300.
  • a mounting hole 303 is provided on the second optical connector 300 at a position corresponding to the positioning hole 341b on the first optical connector 3, and the extension direction of the mounting hole 303 can be the same as the extension direction of the positioning hole 341b.
  • a positioning pin 302 as shown in FIG26 is movably installed in the mounting hole 303.
  • the positioning pin 302 on the second optical connector 300 can be connected to the positioning hole 341b on the first optical connector 3.
  • there are two positioning holes 341b on the first optical connector 3 and the two positioning holes 341b are respectively located on both sides of the optical waveguide device 32.
  • the ferrule 31 of the first optical connector 3 needs to match the ferrule of the second optical connector 300.
  • the second optical connector 300 can have an LC, SC or MT connector.
  • the ferrule 31 of the first optical connector 3 needs to be made into a shape that matches the connector of the second optical connector 300. Therefore, the ferrule 31 can be circular or a rectangular parallelepiped as shown in Figure 25.
  • other fixing structures need to be set between the first optical connector 3 and the second optical connector 300 to fix them.
  • the fixing structure between the first optical connector 3 and the second optical connector 300 is a clip or an adapter.
  • first optical connector 3 and the second optical connector 300 can also be directly positioned and fixed by using a snap-fit structure.
  • the positioning structure 34 on the first optical connector 3 is a snap-fit groove
  • the second optical connector 300 is provided with a snap-fitting groove.
  • the snap-fitting groove and the snap-fitting groove can not only realize the positioning of the first optical connector 3 and the second optical connector 300, but also realize the fixed connection of the first optical connector 3 and the second optical connector 300.
  • the optical waveguide device 32 further includes an optical protective film 36 as shown in FIG. 27, and the optical protective film 36 is disposed on the surface where the second end face B of the optical waveguide on the optical waveguide device 32 is located.
  • the optical protective film 36 can not only provide mechanical protection for the optical waveguide device 32 but also provide optical protection.
  • the optical protective film 36 can include any one or more of a heat-resistant film, a heat-conducting film, a heat-blocking film, and an anti-reflection film. Therefore, the optical protective film 36 also has the functions of heat-resistant, heat-conducting, heat-blocking, and anti-reflection films.
  • the optical waveguide device 32 in the optical connector 3 is any one of an adjustable optical attenuator, an optical switch or an electrically adjustable optical splitter
  • the optical waveguide device 32 further includes an electric control component 323 as shown in FIG. 28 , and the electric control component 323 is disposed on a substrate 321.
  • the electric control component 323 can heat or apply voltage to the waveguide path 322.
  • other functions such as power supply and electric control (such as optical power adjustment, optical path switching) of the waveguide path 322 are realized.
  • a device with a sensing function may also be provided on the substrate 321 in the optical waveguide device 32, thereby further realizing more complex functional waveguide integration. This will not be described in detail here.
  • the electric control component 323 includes an electrode 3231, a conductive circuit 3232, and a connecting pad 3233, all of which are arranged on the substrate 321 of the optical waveguide device 32.
  • the electrode 3231, the conductive circuit 3232, and the connecting pad 3233 are connected in sequence.
  • the electrode 3231 can be arranged above or on both sides of the waveguide path 322.
  • the electrode 3231 can heat or apply voltage to the waveguide path 322 in the optical waveguide device 32.
  • the electric control component 323 may also include a flexible printed circuit 3234 (FPC), one end of the flexible printed circuit 3234 may be connected to the connection pad 3233 by welding, bonding, conductive adhesive bonding, etc., and the other end of the flexible printed circuit 3234 may be electrically connected to an external circuit device, so that the electrode 3231 is powered by the external circuit device.
  • the flexible printed circuit 3234 is a flexible structure, and the flexible printed circuit 3234 is convenient to connect to the connection pad 3233 and the external circuit device.
  • the structure of the first optical connector 3 can be applied not only to the optical module 30, but also to the optical fiber jumper, or to the optical fiber pigtail.
  • both ends of the optical fiber 2001 in the optical fiber jumper 2000 are connected to the first optical connector 3.
  • one end of the optical fiber 2001 in the optical fiber jumper 2000 is connected to the first optical connector 3
  • the other end of the optical fiber 2001 in the optical fiber jumper 2000 is connected to an optical connector of other structures.
  • one end of the optical fiber 3001 in the optical fiber pigtail 3000 is connected to the first optical connector 3.
  • the first optical connector 3 of the embodiment of the present application can realize the connection between frames in the optical communication system, the connection within the frame in the optical communication system, the connection between chips in the optical communication equipment, and the connection between chips in the optical communication equipment.
  • the first optical connector 3 can also be used in optical applications, vehicle-mounted, satellite optical communications, optical fiber sensing and other scenarios.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例公开了一种光连接器、光尾纤、光跳线、光通信设备及系统,涉及光通信技术领域,解决了现有技术中光模块体积较大,占用主板上较大布局空间的问题。该光连接器包括具有第一光口的光波导器件和固定结构。光波导器件能够实现分路、合路、分波、合波、多芯-单芯转换、滤波、反射、模斑转换、光路通断、光路方向转换或光功率调节。固定结构用于固定光传输介质。第一光口与固定结构中的光传输介质对准连接。本申请光连接器在不改变现有连接器体积的基础上,将分路、合路、分波、合波、多芯-单芯转换、滤波、反射、模斑转换、光路通断、光路方向转换或光功率调节等功能与连接器功能结合,缩小了光模块的体积,降低了光模块的占板面积。

Description

光连接器、光尾纤、光跳线、光通信设备及系统
本申请要求于2022年11月04日提交中国专利局、申请号为202211376938.4、申请名称为“光连接器、光尾纤、光跳线、光通信设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光连接器、光尾纤、光跳线、光通信设备及系统。
背景技术
在交换机、人工智能(artificial intelligence,AI)集群、高性能计算(high-performance computing,HPC)集群等应用场景,为了满足系统大容量、低功耗、低成本、低时延等发展需求,光纤传输从面板可插拔光模块的传统方式逐步向在板光器件(on board optics,OBO)、近封装光学器件(near package optics,NPO)、共封装光学器件(co-package optics,CPO)等新形态演进。同时,光纤传输的容量也日益攀升。一方面需要提高光纤单波长的传输速率,如从100Gbps提高至200Gbps。另一方面还需要增加光传输的通道数。例如,采用空分复用(Space Division Multiplexing,SDM)增加传输的光纤数量或纤芯数量,或者采用波分复用(wavelength division multiplexing,WDM)增加传输光波长的数量,从而提高光传输的通道数。
但是,在现有一些采用空分复用技术及多芯光纤的光模块中,需要设置与光纤连接的光连接器、以及在多芯光纤和单芯光纤之间设置中置独立的转换器。由于中置独立的转换器需要单独的封装结构进行保护,体积较大,使得光模块的体积较大,导致占用光模块的主板上较大空间的问题。并且,在现有一些采用波分复用技术的光模块中,需要在主板上的光纤线缆之间设置中置独立的合波器和分波器。合波器和分波器占用光模块内较大的空间。并且,合波器、分波器与光纤还需要通过熔接或者额外的连接器进行对接。所以,需要在主板上预留较大的空间。
发明内容
本申请实施例提供一种光连接器、光尾纤、光跳线、光通信设备及系统,解决了现有技术中光模块体积较大,占用主板内较大布局空间的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请实施例提供一种光连接器。该光连接器包括光波导器件和固定结构。其中,光波导器件能够实现分路、合路、分波、合波、多芯-单芯转换、滤波、反射、模斑转换、光路通断、光路方向转换或光功率调节的功能。所以,该光波导器件可以为分路器、合路器、合波器、分波器、多芯-单芯转换器、光栅、模斑转换器、转向器、可调光衰减器、光开关、带电可调光分路器中的任一种。该光波导器件具有第一光口和第二光口。第一光口和第二光口中的一个为光波导器件的光信号输入口,第一光口和第二光口中的另一个为光波导器件的光信号输出口。上述固定结构用于固定光传输介质。例如,光传输介质可以为光纤或柔性光波导。固定结构可以设置在光波导器件上,也可以与光波导器件连接。在光传输介质通过固定结构固定后,光波导器件的第一光口可以与固定结构内的光传输介质对准连接。从而,光传输介质中的光信号可以传输至光波导器件中,或者,光波导器件可以将光信号传输至光传输介质中。
相较于现有光模块,当将本申请实施例的光连接器应用在光模块时,由于本申请实施例可以具有分波、合波或多芯-单芯转换等功能,所以,不管光模块采用空分复用技术或波分复用技术均不需在光纤线缆之间设置中置独立的多芯-单芯转换器、合波器或分波器。本申请实施例光连接器中的光波导器件可以将多芯-单芯转换器、合波器或分波器的功能与现有光连接器的功能结合,在不增大光连接器的体积的基础上,提高了光连接器的集成度。所以,不需在主板上预留单独的多芯-单芯转换器、合波器或分波器所需的空间。从而,缩小了光模块的体积,降低了光模块的占板面积,提升了光模块的集成度。并且,本申请实施例中的固定结构可以便于光波导器件的第一光口与光传输介质对准连接。
在一些实施例中,本申请实施例中的光波导器件可以为单层结构,也可以为多层结构,以满足不同的光信号传输需求。并且,上述光波导器件的制作材料包括玻璃、二氧化硅、铌酸锂、III-V族半导体化合物、绝缘体上硅、氮氧化硅及高分子聚合物中的任一种或任几种。
需要说明的是,光波导器件的入光方向与光波导器件的出光方向之间的夹角的角度取值范围为0-180°。在一些实施例中,上述光波导器件的入光方向可以与光波导器件的出光方向相同,以适应传输角度不变的光传输应用场景。光波导器件的入光方向也可以与光波导器件的出光方向垂直,以适应传输角度改变90°的光传输应用场景。
在一些实施例中,上述固定结构包括两个相对设置的夹板。两个夹板用于将光传输介质夹紧并将光传输介质的端面露出。两个夹板与光波导器件固定连接,如通过胶粘材料连接,以使夹板中的光传输介质与光波导器件的第一光口对准并固定连接。该固定结构较简单。
并且,在任一个或两个夹板的接触面上设有第一定位槽,第一定位槽可以用于定位上述光传输介质。第一定位槽的数量可以为一个,也可以为多个。该第一定位槽可以进一步保证光传输介质可以与光波导器件的第一光口对准。
在一些实施例中,上述固定结构为开设在光波导器件上的第二定位槽。第二定位槽可以与光波导器件的第一光口对准。光传输介质通过第二定位槽定位,可以实现光传输介质与光波导器件的第一光口对准连接(如端面对准连接),固定结构也较简单。
在一些实施例中,固定结构为固定块。固定块内开设有多个固定孔,光传输介质可以固定在固定孔内。从而,可以满足固定多排光传输介质及光传输介质与光波导器件的第一光口对准连接的需要。
在本申请的一些实施例中,光连接器还包括插芯,插芯开设有安装槽。光波导器件安装在该安装槽内。并且,光波导器件的第二光口裸露在插芯外。插芯可以对光波导器件的外壁形成机械保护。
并且,在一些实施例中,上述光波导器件与安装槽过盈配合,以将光波导器件固定在插芯内。在另一些实施例中,光波导器件与安装槽通过胶粘材料连接,以将光波导器件固定在插芯内。上述两种连接方式操作均较简单。
此外,在一些实施例中,光连接器还包括定位结构,定位结构可以设置在插芯上,也可以设置在光波导器件上。该定位结构用于与另一个光连接器(下称为第二光连接器)连接定位,以实现第二光连接器中的光传输介质与本申请的光连接器(下称为第一光连接器)的第二光口对准连接。其中,第二光连接器可以与第一光连接器结构类似,也可以与第一光连接器结构不同。并且,本申请实施例的第一光连接器中的定位结构也有多种结构,以与第二光连接器的结构配合定位。在一些示例中,上述第一光连接器中的定位结构为定位针。定位针可以可移动安装在插芯上,也可以可移动安装在光波导器件上。相应地,第二光连接器上设有与定位针配合的定位孔。定位针与定位孔连接,可以实现第一光连接器与第二光连接器的定位连接。
在另一些示例中,第一光连接器上的定位结构与第二光连接器上的定位结构互换。也就是,第一光连接器上的定位结构为定位孔。定位孔可以开设在插芯上,也可以开设在光波导器件上。相应地,第二光连接器上设有与定位孔配合的定位针。定位针与定位孔连接,可以实现第一光连接器与第二光连接器的定位连接。
其中,对于光波导器件为可调光衰减器、光开关或带电可调光分路器,该光波导器件包括基板、光波导及电控组件。其中,光波导可以设置在基板内,也可以设置在基板上。电控组件设置在基板上。该电控组件可以用于给光波导进行加热或施加电压。具体地,电控组件可以包括均设置在基板上的电极、导电线路及连接焊盘。电极、导电线路及连接焊盘依次连接。电极可以设置在光波导的上方或两侧。从而,电极可以给光波导器件中光波导进行加热或施加电压,实现了光连接器内功能的进一步集成。
在一些实施例中,上述光波导器件还包括光学保护膜,该光学保护膜设置在光波导器件的第二光口所在的表面上。在第一光连接器与第二光连接器连接时,该光学保护膜可以对光波导器件形成机械保护,还可以形成光学保护。示例的,该光学保护膜可以包括耐热膜、导热膜、阻热膜及抗反射膜中的任一种或任几种。所以,光学保护膜可以具有耐热、导热、阻热及抗反射膜等功能。
第二方面,本申请实施例提供一种光尾纤,该光尾纤包括光传输介质以及上述实施例所述的光连接器。其中,光传输介质可以为光纤,也可以为柔性光波导。示例的,若光传输介质为光纤,则光尾纤可以为光纤尾纤。该光连接器中的固定结构可以将光传输介质的一端固定,且固定结构中的光传输 介质可以与光波导器件的第一光口对准连接。由于本申请实施例的光尾纤中的光连接器与上述实施例所述的光连接器结构相同,两者能够解决相同的技术问题,获得相同的技术效果,此处不再赘述。
第三方面,本申请实施例提供一种光跳线,该光跳线包括光传输介质、第一光连接器以及第二光连接器。其中,光传输介质可以为光纤,也可以为柔性光波导。示例的,若光传输介质为光纤,则光跳线可以为光纤跳线。第一光连接器、第二光连接器与光传输介质的两端分别连接。第一光连接器和第二光连接器中任一个或两个均为上述实施例所述的光连接器。并且,以第一光连接器为上述实施例所述的光连接器,该第一光连接器通过固定结构将光传输介质固定并与光波导器件的第一光口对准连接。同样地,由于本申请实施例的光跳线中的第一光连接器和/或第二光连接器与上述实施例所述的光连接器结构相同,两者能够解决相同的技术问题,获得相同的技术效果,此处不再赘述。
第四方面,本申请实施例提供一种光通信设备,该光通信设备包括光芯片、以及上述实施例所述的光连接器。光芯片与光连接器连接。通过设置上述光连接器,该光通信设备的体积也可以缩小。
第五方面,本申请实施例提供一种光通信系统,该光通信系统包括至少两个光通信设备、以及上述实施例所述的光连接器。其中,任两个光通信设备可以通过光连接器连接。由于本申请实施例的光通信系统中的光连接器与上述实施例所述的光连接器结构相同,两者能够解决相同的技术问题,获得相同的技术效果,此处不再赘述。
附图说明
为了说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1为本申请实施例光通信系统的模块示意图;
图2为本申请实施例光通信设备中部分部件的结构示意图;
图3为相关技术一中光通信设备中部分部件的结构示意图;
图4为相关技术二中光通信设备中部分部件的结构示意图;
图5为本申请实施例第一光连接器与光纤连接的结构示意图;
图6为本申请实施例第一光连接器具有插芯的结构示意图;
图7为本申请实施例第一光连接器中第一种插芯的结构示意图;
图8为本申请实施例第一光连接器中第二种插芯的结构示意图;
图9为本申请实施例第一光连接器中具有弧面倒角且呈L形的光波导器件的结构示意图;
图10为本申请实施例第一光连接器中具有平面倒角且呈L形的光波导器件的结构示意图;
图11为本申请实施例第一光连接器中具有两个光波导器件和一个反射镜的结构示意图;
图12为本申请实施例第一光连接器中具有多层波导通路的光波导器件的结构示意图;
图13为本申请实施例第一光连接器中固定结构具有两个夹板的爆炸示意图;
图14为本申请实施例第一光连接器中固定结构夹持有多根光纤的结构示意图;
图15为本申请实施例第一光连接器与光纤连接的截面示意图;
图16为本申请实施例第一光连接器中固定结构为第二定位槽的截面示意图;
图17为本申请实施例第一光连接器中固定结构为固定块的结构示意图之一;
图18为本申请实施例第一光连接器中固定结构为固定块的结构示意图之二;
图19为本申请实施例第一光连接器中具有设置在插芯上的定位针的结构示意图;
图20为本申请实施例第一光连接器中的定位针与具有光波导器件的第二光连接器中的定位孔连接的结构示意图;
图21为本申请实施例第一光连接器中的定位针与固定有光纤的第二光连接器中的定位孔连接的结构示意图;
图22为本申请实施例第一光连接器中插芯具有安装孔的结构示意图;
图23为本申请实施例第一光连接器中具有设置在光波导器件上定位针的结构示意图;
图24为本申请实施例第一光连接器中插芯具有定位孔的结构示意图;
图25为本申请实施例第一光连接器中光波导器件上设有定位孔上的结构示意图;
图26为本申请实施例第一光连接器中的定位孔与第二光连接器中的定位针连接的结构示意图;
图27为本申请实施例具有光学保护膜的第一光连接器与第二光连接器连接的结构示意图;
图28为本申请实施例具有电控组件的第一光连接器的结构示意图;
图29为本申请实施例光纤跳线的结构示意图;
图30为本申请实施例光纤尾纤的结构示意图。
附图标号:
1000、1000A、1000B-光通信设备,100-电路板组件,10-主板,20-交换芯片,30-光模块,1-光芯
片,2-光纤阵列单元,21-光纤,211-第一端,212-第二端,3-光连接器、第一光连接器,30a-第一光口,30b-第二光口,31-插芯,311-安装槽,312、303-安装孔,32-光波导器件,32a-第一光波导器件,32b–第二光波导器件,321-基板,322-波导通路,323-电控组件,3231-电极,3232-导电线路,3233-连接焊盘,3234-柔性电路板,33-固定结构,331a-夹板,3311-第一定位槽,332-胶粘材料,333-护套,331b-第二定位槽,331c-固定块,3310-固定孔,34-定位结构,341a、302-定位针,341b、301-定位孔,04a-转换器,04b-合波器和分波器,35-反射镜,36-光学保护膜,40-转接板,200-固定面板,300-第二光连接器,300a-光纤;2000-光纤跳线,2001-光纤,3000-光纤尾纤,3001-光纤。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”、“左”、“右”、“水平”以及“竖直”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是指的机械构造,物理构造的连接。如可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。还可理解为元器件物理接触并电导通,也可理解为线路构造中不同元器件之间通过PCB铜箔或导线等可传输电信号的实体线路进行连接的形式。
需要说明的是,在本申请实施例的描述过程中,“顶部”、“上部”、“上方”、“底部”、“下部”、“下方”均是以附图中部件所处位置的方向作为参照。
本申请实施例包括一种光通信系统,该光通信系统可以为数据通信光网络系统、计算机网络光系统、光分配网络(optical distribution network,ODN)系统、光交叉系统或光背板系统,本申请对此不作限制。该光通信系统包括两个或两个以上的光通信设备、以及多根光纤线缆。在光通信网络中,相邻的两个光通信设备通过光纤电缆连接。该光通信设备具体可以为交换机、光模块、光分纤盒等。上述光纤线缆可以为光跳线,也可以为光尾纤。需要说明的是,上述光跳线包括光传输介质和两个光连接器。两个光连接器与光传输介质的两端分别连接。两个光连接器的结构可以相同,也可以不同,本申请对此不作限制。上述光尾纤包括光传输介质和一个光连接器。光连接器安装在光传输介质的一端上。其中,上述光传输介质可以为光纤,也可以为柔性光波导。具体地,柔性光波导的制作材料可以为聚合物。若光传输介质为光纤,则光跳线是指光纤跳线,光尾纤是指光纤尾纤。
图1示出了本申请实施例一个具体的光通信系统。示例的,参照图1,本申请实施例中的光通信系统R包括两个光通信设备1000A和1000B、光纤跳线2000,两个光通信设备1000A和1000B通过光纤跳线2000连接。以该光通信设备1000为交换机为例,交换机包括外壳和设置在外壳内的电路板组件。参照图2,电路板组件100包括主板10、以及在主板10上的交换芯片20和光模块30。主板10具体可以为印刷电路板。交换芯片20与光模块30可以采用CPO、NPO、OBO方式进行封装,本申请对此不作限制。并且,在一些实施例中,电路板组件100还可以包括转接板40,转接板40设置在主板10与交换芯片20、光模块30之间,可以实现主板10与交换芯片20、光模块30的信号传输。
其中,上述光模块30可以包括光芯片1、光纤阵列单元(fiber array unit,FAU)2及第一光连接器3。具体地,光纤阵列单元2中光纤21的传输模式包括但不限于单模、多模、少模等光传输模式。并且,光纤21可以为多芯光纤,也可以为空心光纤,本申请对此不作限制。可以理解的是,上述光纤阵列单元2中光纤21也可以更换为柔性光波导。柔性光波导的传输模式包括但不限于单模、多模、少模等光传输模式。以下主要以光纤阵列单元2中光纤21为例进行说明。
光纤阵列单元2中光纤21的第一端211与光芯片1连接,光纤阵列单元2中光纤21的第二端212与第一光连接器3连接。需要注意的是,光通信设备1000的外壳可以包括固定面板200,固定面板200上安装有第二光连接器300,第一光连接器3可以与第二光连接器300连接。
为满足光纤传输的大容量需求,该光模块30可以采用空分复用或波分复用技术来增加光传输的通道数。当光模块30采用空分复用技术时,如图3所示,需要在光纤阵列单元2中的光纤21的第二端212连接独立的转换器04a。光纤阵列单元2中的光纤21可以为多芯光纤,以节省占用空间。因此,转换器为多芯转单芯(下简称“多芯-单芯转换器”)的转换器。多芯-单芯转换器通过单芯的光纤线缆与第一光连接器3连接。增设多芯-单芯转换器使得光模块30在主板10上的占板空间较大。而当光模块30采用波分复用技术时,如图4所示,需要在光纤阵列单元2中的光纤21连接独立的合波器和分波器04b。合波器和分波器04b通过其他的光纤线缆与第一光连接器3连接。同样地,增设合波器和分波器04b也会使得光模块30在主板10上的占板空间较大。
例如,对于多通道的光模块30,以64通道的光模块为例,光模块可以采用4个16通道的复用(mux)模块(包括合波器)和4个16通道的解复用(demux)模块(包括分波器),以复用模块为例,一个复用模块的尺寸为100mm(长度)×80mm(宽度)×10mm(高度)。所以,至少在主板10上需要预留320cm2的空间给复用模块。或者,采用16个4通道的复用模块,一个复用模块的尺寸为16.5mm(长度)×11mm(宽度)×6.5mm(高度)。所以,至少在主板10需要预留29.04cm2的空间。上述两种方案都会使得光模块30的体积较大。
为了解决上述问题,本申请实施例提供了一种新结构的光连接器,该光连接器可以同时具有连接功能、以及转换、合波或分波等功能。以上述第一光连接器3具有新的光连接器结构为例,参照图5,该第一光连接器3包括光波导(planar lightwave circuit,PLC)器件32和固定结构33。具体地,光波导器件32能够实现分路、合路、分波、合波、多芯-单芯转换、滤波、反射、模斑转换、光路通断、光路方向转换或光功率调节等功能。所以,该光波导器件32可以为分路器、合路器、合波器、分波器、多芯-单芯转换器、光栅、模斑转换器、转向器、可调光衰减器、光开关、带电可调光分路器中的任一种。参照图6,光波导具有第一光口30a和第二光口30b。第一光口30a和第二光口30b中的一个为光波导器件32的光信号输入口,第一光口30a和第二光口30b中的另一个为光波导器件32的光信号输出口。并且,光波导器件32的功能不同,第一光口30a和第二光口30b的数量不同。第一光口30a和第二光口30b均可以为一个,也可以均为多个,本申请对此不作限制。
示例的,继续参照图5,该光波导器件32包括基板321、以及设置在基板321的光波导。该光波导可以通过膜层结构制作。例如光波导直接通过如化学气相沉积法(低压力化学气相沉积法或等离子增强化学气相沉积)、聚合物薄膜贴合设置在基板321上。之后再通过光刻工艺形成所需的波导结构。光波导还可以为直接通过飞秒激光直写在基板321内的波导结构。并且,在一些示例中,上述光波导可以形成一个或多个波导通路322,第一光口30a和第二光口30b分别位于波导通路322的两端,本申请对此不作限制。以下以光波导器件32的光波导具有波导通路322为例继续进行说明。
上述固定结构33可以用于固定上述光纤阵列单元2中光纤21的第二端212。该固定结构33可以直接设置在光波导器件32上,也可以与光波导器件32连接即可。并且,在光纤阵列单元2中光纤21的第二端212通过固定结构33固定后,光纤阵列单元2中光纤21的第二端212可以与光波导器件32中的波导通路322对准耦合。也就是,图6所示的光纤阵列单元2中光纤21的第二端212可以与光波导器件32中波导通路322的第一光口30a耦合。具体地,光纤21的第二端212可以与光波导器件32中波导通路322的第一光口30a进行端面耦合。当将本申请实施例的光连接器应用在光模块30时,不管光模块30采用空分复用技术或波分复用技术均不需在光纤线缆之间设置中置独立的转换器04a、或合波器和分波器04b。
因此,相较于图3或图4所示的光模块30,本申请实施例光连接器3中的光波导器件32将多芯-单芯转换器、合波器或分波器的功能与现有光连接器的功能结合,在不增大光连接器的体积的基础上,提高了光连接器3的集成度。所以,不需在主板10上预留单独的多芯-单芯转换器、合波器或分波器所需的空间。从而,缩小了光模块30的体积,降低了光模块30的占板面积,提升了光模块30的集成度。并且,本申请实施例中的固定结构33可以便于光波导器件32中光波导的波导通路322与光纤21对准连接。
需要说明的是,上述光波导器件32的制作材料可以为玻璃、二氧化硅SiO2、铌酸锂(LiNbO3)、 氮氧化硅、绝缘体上硅(Silicon-on-Insulator,SOI)、III-V族半导体化合物及聚合物(Polymer)中的任一种,本申请对此不作限制。并且,光波导器件32的传输模式包括但不限于单模、多模、少模等,本申请对此也不作限制。
为了进一步对光波导器件32进行保护,在本申请的一些实施例中,光连接器3还包括如图6所示的插芯31。插芯31内形成有如图7所示的安装槽311,光波导器件32可以固定在该安装槽311内。从而,插芯31可以对光波导器件32形成机械保护。示例的,插芯31可以为中空的一体结构,从而在制作时直接形成上述安装槽311。该安装槽311可以整个位于插芯31的内部,如图7所示。或者,该安装槽311位于插芯31的一侧表面(如上表面)上,如图8所示,本申请对此不作限制。
此外,上述光波导器件32与插芯31的安装槽311的固定方式可以有多种,本申请对此不作限制。示例的,光波导器件32与插芯31的安装槽311过盈配合。因此,插芯31可以采用具有一定弹性的材料制作,使得光波导器件32与插芯31的安装槽311的组装操作较方便。或者,光波导器件32与插芯31的安装槽311还可以通过胶粘材料固定连接,组装操作也较简单。
并且,为满足不同角度光信号的传输需求,本申请实施例光连接器3中光波导器件32的入光方向与光波导器件32的出光方向之间的夹角的角度取值范围为0-180°。在一些实施例中,光波导器件32的入光方向与光波导器件32的出光方向相同。从而,可以适用于光信号传输角度不变的应用场景。在另一些实施例中,光波导器件32的入光方向与光波导器件32的出光方向垂直。从而,可以适用于光信号传输角度改变90°的应用场景。或者,光连接器3还可以包括其他辅助光学棱镜,辅助光学棱镜与多个光波导器件32组合后,可以适用于各种传输角度改变的应用场景。
示例的,图6所示的光波导器件32的入光方向与光波导器件32的出光方向相同。该光波导器件32呈长方体。对应地,插芯31也呈长方体。光波导的第一端面A和第二端面B分别位于光波导器件32上两个相对的表面。第一端面A和第二端面B中的一个为入光面,第一端面A和第二端面B中的另一个为出光面。以下以第一端面A是入光面和第二端面B是出光面为例进行说明。第一光口30a可以位于第一端面A上,第二光口30b可以位于第二端面B上。通过选择合适光波导的材料及其他操作控制光波导器件的折射率等光学参数,使得光经第一端面A上的第一光口30a进入光波导通路322内,再经第二端面B上的第二光口30b不改变角度直接出射。
图9所示的光波导器件32的入光方向与光波导器件32的出光方向垂直。该光波导器件32呈L形。对应地,插芯31也可以呈L形。并且,插芯31可以由两个能够相互扣合的L形扣板组成。光波导器件32可以被夹持在两个L形扣板之间。光波导器件32的第一光口30a和第二光口30b分别位于光波导器件32上两个相互垂直的外端面上。也就是,第一光口30a所在第一端面A与第二光口30b所在的第二端面B相互垂直。通过选择合适光波导的材料及其他操作控制光波导器件32的折射率等光学参数,使得光可以第一端面A上的第一光口30a进入光波导内,在光波导内被反射90°后再经第二端面B的第二光口30b导出。所以,该L形的光波导器件32适用于光信号传输角度改变90°的应用场景。并且,L形的光波导器件32的弯折处的倒角可以为如图9所示的弧面形,也可以为如图10所示的平面形。
图11所示的光连接器3包括第一光波导器件32a、第二光波导器件32b和一个反射镜35,第一光波导器件32a和第二光波导器件32b间隔设置。第一光波导器件32a的第一端面A和第二端面B分别位于第一光波导器件32a上两个相对的表面。第二光波导器件32b的第一端面和第二端面分别位于第二光波导器件32b上两个相对的表面。并且,第一光波导器件32a的出光方向和第二光波导器件32b的出光方向相互垂直。反射镜35设置在第一光波导器件32a的出光方向和第二光波导器件32b之间。反射镜35可以将第一光波导器件32a的出射光反射至第二光波导器件32b内。通过选择合适光波导的材料及其他操作控制,第一光波导器件32a的出光方向和第二光波导器件32b的折射率等光学参数,使得光经第一光波导器件32a的第一端面A上的第一光口30a进入第一光波导器件32a内,再经第一光波导器件32a的第二端面B上第二光口30b导出第一光波导器件32a。随后,经反射镜35被反射至第二光波导器件32b。光通过第二光波导器件32b的第一端面(为入光面)的第一光口进入第二光波导器件32b。最后,经第二光波导器件32b的第二端面(为出光面)的第二光口导出。相应地,插芯31可以呈L形或呈长方体。
并且,光波导器件32可以为如图6所示的单层结构。也就是,光波导器件32中的多个波导通路322可以均同层设置。示例的,多个波导通路322均设置在基板321的表面上,或者分别形成在基板 321内的同一高度位置。光波导器件32也可以为如图12所示的多层结构。示例的,光波导器件32中的多个波导通路322可以层叠设置在基板321的表面上,或者,也可以间隔设置在基板321内的不同高度位置。
以上主要是对光波导器件32的说明。在一些实施例中,参照图13,上述固定结构33包括两个相对设置的夹板331a。上述夹板331a具体可以采用玻璃、硅或塑料等透明材料制作。如图14所示,两个夹板331a将多根光纤21固定夹紧,且将多根光纤21的第二端212的端部均可以露出。如图15所示,两个夹板331a与光波导器件32连接,可以使得两个夹板331a之间的光纤21与光波导器件32中的波导通路322对准连接。从而,实现光纤21与光波导器件32中波导通路322的准确连接。因此,固定结构33与多根光纤21连接后,也可以看作为构成了光纤阵列单元2。
并且,在一些实施例中,任一个或两个夹板331a的接触面上开设有如图13所示的第一定位槽3311,第一定位槽3311可以定位光纤21的位置。其中,接触面是指两个夹板331a相互接触的表面。第一定位槽3311的数量可以为一个,也可以为两个或两个以上,具体可以根据需要固定光纤21的数量来确定。以固定结构33需要定位上述光纤阵列单元2中多根光纤21为例,任一个或两个夹板331a上设置的第一定位槽3311的数量为多个,多个第一定位槽3311与光纤阵列单元2中多根光纤21一一对准配合。并且,还可以使得光纤阵列单元2中多根光纤21的第二端212与光波导器件32中多个波导通路322的第一光口30a一一对准配合。需要说明的是,第一定位槽3311可以为U形槽或V形槽,本申请对此不作限制。
基于上述固定结构33的结构设计,上述两个夹板331a与光波导器件32可以采用如粘结方式固定。并且,参照图15,两个夹板331a可以通过胶粘材料332与光波导器件32固定连接。换句话说,两个夹板331a上靠近多根光纤21的第二端212的一侧端面与光波导器件32的端面通过胶粘材料332连接,连接方式较简单。其中,胶粘材料332可以为透明材料,以避免影响光信号的传输。
并且,在一些实施例中,继续参照图15,还可以在两个夹板331a与光波导器件32的连接处设置护套333。护套333可以对两个夹板331a与光波导器件32的连接处进行保护,防止两个夹板331a与光波导器件32的连接处断裂失效。
在另一些实施例中,上述固定结构33还可以为开设在光波导器件32上如图16所示的第二定位槽331b。第二定位槽331b可以与光波导器件32中波导通路322的第一光口30a对准连接。第二定位槽331b可以对光纤21进行定位。当光纤21安装在第二定位槽331b内时,光纤21可以与光波导器件32中的波导通路322的第一光口30a对准连接。此外,在光纤21安装在第二定位槽331b内后,还需将光纤21与第二定位槽331b固定连接,如通过胶粘材料固定。同样地,光波导器件32上第二定位槽331b的数量可以根据需要固定的光纤21的数量来确定。
需要说明的是,上述固定结构33中的光纤21与光波导器件32的波导通路322的第一光口30a对准连接操作,可以在光波导器件32安装在插芯31之前完成,也可以在光波导器件32安装在插芯31之后完成,本申请对此不作限制。并且,第二定位槽331b可以为U形槽或V形槽,本申请对此也不作限制。
此外,图14和图16所示的固定结构33的方案,只能对一排光纤进行固定。参照图17和图18,在本申请的一些实施例中,上述固定结构33还可以包括一体结构的固定块331c,固定块331c内开设有多个固定孔3310。多个固定孔3310呈沿多排(Z轴方向)多列(X轴方向)设置,从而可以满足固定多排光纤21的需要。此外,固定块331c具体可以采用玻璃、硅或塑料等透明材料制作。
可以理解的是,若固定结构33需要固定的光传输介质为柔性光波导时,上述夹板331a上的第一定位槽3311为一个,且设置为与柔性光波导相状相匹配的形状。而固定块331c内的多个固定孔3310沿Z轴方向排列,且均设置为与柔性光波导相匹配的形状。
以上结合了具体的实施例对固定结构33进行说明。由于本申请实施例的光连接器3(下称为第一光连接器)在应用时还需与其他光连接器(下称为第二光连接器300)连接,为了使两个光连接器对位准确,所以,在一些实施例中,本申请实施例的光连接器3还包括如图19所示的定位结构34。该定位结构34可以设置在插芯31上,也可以设置在光波导器件32上,本申请对此不作限制。如图20所示,当第一光连接器3与第二光连接器300连接时,该定位结构34可以定位第二光连接器300在第一光连接器3上的安装位置。
示例的,第二光连接器300可以采用与第一光连接器3类似的结构,如图20中示出的第二光连接 器300的插芯内也安装有光波导器件。或者,如图21所示,在第二光连接器300的插芯内安装有光纤300a。所以,定位结构34可以保证第一光连接器3中的波导通路322的第二光口30b可以第二光连接器300中的光纤300a或波导通路的第一光口对准连接。从而,可以降低了第一光连接器3的插芯31的加工精度,提高第一光连接器3中的光波导器件32与第二光连接器300中的光传输介质的对位精度或对准难度。
需要说明的是,上述第二光连接器300中的光纤300a的传输模式包括但不限于单模、多模、少模等光传输模式。并且,该光纤300a可以为多芯光纤,也可以为空心光纤,本申请对此不作限制。
并且,上述定位结构34可以制作为多种结构,以满足与不同结构第二光连接器300的连接需要。
例如,上述第一光连接器3中定位结构34为如图19所示的定位针341a。插芯31上开设有如图22所示的安装孔312。示例的,安装孔312的延伸方向可以与第一光连接器3和第二光连接器300的连接方向相同。示例的,安装孔312的延伸方向为图22所示的Y轴方向。定位针341a可以可移动安装在上述插芯31的安装孔312内。需要说明的是,安装孔312还可以开设在光波导器件32上。所以,如图23所示,定位针341a可以可移动安装在光波导器件32上,本申请对此不作限制。对应地,第二光连接器300上可以设置与定位针341a配合的定位孔301,定位孔301的延伸方向可以与安装孔312的延伸方向相同。当第一光连接器3与第二光连接器300连接时,如图21所示,第一光连接器3上的定位针341a可以插入第二光连接器300的定位孔301内。从而,实现第一光连接器3与第二光连接器300的定位,保证了第一光连接器3中光波导器件32的波导通路322的第二光口30b可以与第二光连接器300中光纤300a或光波导器件波导通路的第一光口对准连接。
此外,第一光连接器3的插芯31上安装孔312的数量,本申请不作限制。在一些实施例中,如图22所示,第一光连接器3的插芯31上设有两个安装孔312。两个安装孔312分别位于光波导器件32的两侧。第一光连接器3包括两个定位针341a,两个定位针341a分别可移动安装在两个安装孔312内。相应地,第二光连接器300上对应两个定位针341a的位置开设有两个定位孔301。当第一光连接器3与第二光连接器300插接时,第一光连接器3上的两个定位针341a可以分别安装在第二光连接器300的两个定位孔301内。
可以理解的是,上述第一光连接器3上的定位针341a可以与第二光连接器300上的定位孔301互换。也就是,如图24所示,在第一光连接器3的定位结构34为定位孔341b。定位孔341b可以如图24所示开设在插芯31上,也可以如图25所示开设在光波导器件32上。定位孔341b的延伸方向可以与第一光连接器3和第二光连接器300的连接方向相同。第二光连接器300上对应第一光连接器3上的定位孔341b的位置设有安装孔303,安装孔303的延伸方向可以与定位孔341b的延伸方向相同。安装孔303内可移动安装有如图26所示的定位针302。第二光连接器300上的定位针302可以与第一光连接器3上的定位孔341b连接。示例的,图24中所示的第一光连接器3上的定位孔341b为两个,两个定位孔341b分别位于光波导器件32的两侧。相应地,第二光连接器300上的定位针302也为两个,第二光连接器300上的两个定位针302可以与第一光连接器3上的两个定位孔341b对应连接。
在第一光连接器3与第二光连接器300连接时,除了还需定位结构34与第二光连接器300定位连接,第一光连接器3的插芯31需要与第二光连接器300的插芯匹配。第二光连接器300可以具有LC、SC或MT的连接头。第一光连接器3的插芯31需要制作为与第二光连接器300的连接头匹配的形状。因此,插芯31可以为圆形、或如图25所示的长方体。并且,第一光连接器3与第二光连接器300之间还需设置其他固定结构来固定。例如,第一光连接器3与第二光连接器300之间的固定结构为卡夹或者适配器。
此外,上述第一光连接器3与第二光连接器300还可以直接采用卡接结构进行定位并固定。示例的,第一光连接器3上的定位结构34为卡槽,第二光连接器300上设置有与卡槽配合的卡扣。卡槽与卡扣卡接,不仅可以实现第一光连接器3与第二光连接器300的定位,而且还可以实现第一光连接器3与第二光连接器300的固定连接。
并且,在本申请的一些实施例中,光波导器件32还包括如图27所示的光学保护膜36,光学保护膜36设置在光波导器件32上光波导的第二端面B所在的表面上。在第一光连接器3与第二光连接器300连接时,该光学保护膜36可以不仅可以对光波导器件32形成机械保护还可以形成光学保护。示例的,该光学保护膜36可以包括耐热膜、导热膜、阻热膜及抗反射膜中的任一种或任几种。所以,光学保护膜36还具有耐热、导热、阻热及抗反射膜等功能。
需要说明的是,对于光连接器3中光波导器件32为可调光衰减器、光开关或带电可调光分路器中的任一种的实施例,则光波导器件32还包括如图28所示的电控组件323,电控组件323设置在基板321上。该电控组件323可以给波导通路322进行加热或施加电压。从而,实现波导通路322的供电和电控(如光功率调节、光路通断)等其他功能。此外,光波导器件32内的基底321上还可以具有传感功能的器件,从而进一步实现更复杂的功能波导集成。此处不在详细说明。
示例的,如图28所示,上述电控组件323包括均设置在光波导器件32的基板321上的电极3231、导电线路3232及连接焊盘3233。电极3231、导电线路3232及连接焊盘3233依次连接。电极3231可以设置在波导通路322的上方或两侧。从而,电极3231可以给光波导器件32中波导通路322进行加热或施加电压。
并且,电控组件323还可以包括柔性电路板3234(flexible printed circuit,FPC),柔性电路板3234的一端可以通过焊接、键合、导电胶粘接等方式与连接焊盘3233连接,柔性电路板3234的另一端可以与外部的电路装置电连接,从而通过外部的电路装置给电极3231供电。柔性电路板3234为柔性结构,柔性电路板3234与连接焊盘3233、外部的电路装置连接操作较方便。
上述第一光连接器3的结构不仅可以应用在上述光模块30中,而且还可以应用在上述光纤跳线中,或者还可以应用在光纤尾纤中。示例的,如图29所示,光纤跳线2000中光纤2001的两端均连接有第一光连接器3。或者,在本申请的一些实施例中,光纤跳线2000中光纤2001的一端连接有第一光连接器3,光纤跳线2000中光纤2001的另一端连接有其他结构的光连接器。又如,如图30所示,光纤尾纤3000中光纤3001的一端连接有第一光连接器3。
因此,本申请实施例的第一光连接器3可以实现光通信系统中的机框之间的连接、光通信系统中的机框内的连接、光通信设备内芯片之间的连接、光通信设备内芯片与芯片之间的连接。并且,第一光连接器3除了应用于上述光网络的场景中,还可以应用于光应用、车载、卫星光通讯、光纤传感等场景中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种光连接器,其特征在于,包括:
    光波导器件,所述光波导器件具有第一光口,且能够实现分路、合路、分波、合波、多芯-单芯转换、滤波、反射、模斑转换、光路通断、光路方向转换或光功率调节;
    固定结构,所述固定结构设置在所述光波导器件上或与所述光波导器件连接;所述固定结构用于固定光传输介质;所述光波导器件的第一光口与所述固定结构中的光传输介质对准连接。
  2. 根据权利要求1所述的光连接器,其特征在于,所述固定结构包括两个相对设置的夹板,两个所述夹板用于将所述光传输介质固定夹紧并将所述光传输介质的端面露出;两个所述夹板与所述光波导器件固定连接,以使所述夹板内的光传输介质与所述光波导器件的第一光口对准连接。
  3. 根据权利要求2所述的光连接器,其特征在于,任一个或两个所述夹板的接触面上开设有第一定位槽,所述第一定位槽用于定位所述光传输介质。
  4. 根据权利要求1所述的光连接器,其特征在于,所述固定结构为固定块,所述固定块内开设有多个用于安装所述光传输介质的固定孔。
  5. 根据权利要求1所述的光连接器,其特征在于,所述固定结构为开设在所述光波导器件上的第二定位槽,所述第二定位槽与所述光波导器件的第一光口对准,且用于定位所述光传输介质。
  6. 根据权利要求1-5中任一项所述的光连接器,其特征在于,所述光波导器件还具有第二光口;所述光连接器还包括:
    插芯,所述插芯开设有安装槽;所述光波导器件安装在所述安装槽内,且所述光波导器件的第二光口裸露在所述插芯外。
  7. 根据权利要求6所述的光连接器,其特征在于,所述光连接器还包括:
    定位结构,所述定位结构设置在所述插芯或所述光波导器件上,且用于与另一个光连接器连接定位。
  8. 根据权利要求7所述的光连接器,其特征在于,所述定位结构为可移动安装在所述插芯或所述光波导器件的定位针,或开设在所述插芯或所述光波导器件上的定位孔。
  9. 根据权利要求1-8中任一项所述的光连接器,其特征在于,所述光波导器件还具有第二光口;所述光波导器件还包括:
    光学保护膜,所述光学保护膜设置在所述光波导器件的第二光口所在的表面上。
  10. 根据权利要求1-9中任一项所述的光连接器,其特征在于,所述光波导器件为单层结构或多层结构。
  11. 根据权利要求1-10中任一项所述的光连接器,其特征在于,所述光波导器件的入光方向与所述光波导器件的出光方向相同;或者,所述光波导器件的入光方向与所述光波导器件的出光方向垂直。
  12. 根据权利要求1-11中任一项所述的光连接器,其特征在于,所述光波导器件的材料为玻璃、二氧化硅、铌酸锂、III-V族半导体化合物、绝缘体上硅、氮氧化硅及高分子聚合物中的任一种。
  13. 一种光尾纤,包括:
    光传输介质;
    上述权利要求1-12中任一项所述的光连接器,所述光连接器中的固定结构将所述光传输介质的一端固定,且所述固定结构中的光传输介质与光波导器件的第一光口对准连接。
  14. 一种光跳线,其特征在于,包括:
    光传输介质;
    第一光连接器和第二光连接器,所述第一光连接器、所述第二光连接器与所述光传输介质的两端分别连接;第一光连接器和/或第二光连接器为上述权利要求1-12中任一项所述的光连接器,且通过固定结构将所述光传输介质固定并与光波导器件的第一光口对准连接。
  15. 一种光通信设备,其特征在于,包括光芯片,以及上述权利要求1-12中任一项所述的光连接器,所述光芯片与所述光连接器连接。
  16. 一种光通信系统,其特征在于,包括至少两个光通信设备,以及上述权利要求1-12中任一项所述的光连接器,两个所述光通信设备通过所述光连接器连接。
PCT/CN2023/103275 2022-11-04 2023-06-28 光连接器、光尾纤、光跳线、光通信设备及系统 WO2024093291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211376938.4A CN118033824A (zh) 2022-11-04 2022-11-04 光连接器、光尾纤、光跳线、光通信设备及系统
CN202211376938.4 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093291A1 true WO2024093291A1 (zh) 2024-05-10

Family

ID=90929577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103275 WO2024093291A1 (zh) 2022-11-04 2023-06-28 光连接器、光尾纤、光跳线、光通信设备及系统

Country Status (2)

Country Link
CN (1) CN118033824A (zh)
WO (1) WO2024093291A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123837A1 (en) * 2001-12-19 2003-07-03 Tsuyoshi Yamamoto Optical fiber array
CN103246022A (zh) * 2012-02-09 2013-08-14 博创科技股份有限公司 可插拔式平面光波导器件及其制作方法
WO2016197332A1 (zh) * 2015-06-09 2016-12-15 华为技术有限公司 一种光纤连接器
JP2018124307A (ja) * 2017-01-30 2018-08-09 日本電信電話株式会社 光コネクタおよび光伝送システム
CN215641957U (zh) * 2021-09-30 2022-01-25 索尔思光电(成都)有限公司 具有模斑转换功能的光纤连接器
CN217181270U (zh) * 2022-03-10 2022-08-12 上海理工大学 一种用于硅光耦合的平面光波导-光纤阵列装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123837A1 (en) * 2001-12-19 2003-07-03 Tsuyoshi Yamamoto Optical fiber array
CN103246022A (zh) * 2012-02-09 2013-08-14 博创科技股份有限公司 可插拔式平面光波导器件及其制作方法
WO2016197332A1 (zh) * 2015-06-09 2016-12-15 华为技术有限公司 一种光纤连接器
JP2018124307A (ja) * 2017-01-30 2018-08-09 日本電信電話株式会社 光コネクタおよび光伝送システム
CN215641957U (zh) * 2021-09-30 2022-01-25 索尔思光电(成都)有限公司 具有模斑转换功能的光纤连接器
CN217181270U (zh) * 2022-03-10 2022-08-12 上海理工大学 一种用于硅光耦合的平面光波导-光纤阵列装置

Also Published As

Publication number Publication date
CN118033824A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US6839492B2 (en) Packaging device for optical waveguide element
US7040814B2 (en) Functional optical module
US11982848B2 (en) Optical fiber-to-chip interconnection
US20170017053A1 (en) Wdm mux/demux on cable and methods of making the same
CN115698790A (zh) 光纤到芯片互连
EP2592454B1 (en) Optical module
US6816296B2 (en) Optical switching network and network node and method of optical switching
US6978076B2 (en) Variable optical attenuator
CN116964501A (zh) 用于将光模块共同封装在开关封装基板上的方法
WO2024093291A1 (zh) 光连接器、光尾纤、光跳线、光通信设备及系统
JPH10227934A (ja) 光回路部品とその作製方法および光回路調心装置
JPH08313744A (ja) 光回路部品
JPH03119306A (ja) 光ケーブル用コネクタ
US20100021103A1 (en) Wavelength blocker
US6711315B1 (en) 3-D electro optical switch
JP2021189227A (ja) 光変調器
JP3341798B2 (ja) ボード間光インタコネクション装置
CN111952833A (zh) 多激光器结构以及高速小型收发器件
CN110618505A (zh) 一种光接收端组件和光模块
US10162118B2 (en) Optical coupling element
JP2002044849A (ja) 光電気複合実装構造
US7317851B2 (en) Optical add/drop patch cord
US20220404566A1 (en) Optical fiber-to-chip interconnection
KR101565795B1 (ko) 중앙처리장치와 메모리 모듈 사이에 광 커넥션을 갖는 반도체 장치
JPS5915422B2 (ja) パツケ−ジ間光伝送方式