WO2024093197A1 - 燃料电池系统的氢气计量比确定方法 - Google Patents

燃料电池系统的氢气计量比确定方法 Download PDF

Info

Publication number
WO2024093197A1
WO2024093197A1 PCT/CN2023/094820 CN2023094820W WO2024093197A1 WO 2024093197 A1 WO2024093197 A1 WO 2024093197A1 CN 2023094820 W CN2023094820 W CN 2023094820W WO 2024093197 A1 WO2024093197 A1 WO 2024093197A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fuel cell
cell system
inlet
pressure
Prior art date
Application number
PCT/CN2023/094820
Other languages
English (en)
French (fr)
Inventor
李新用
邵恒
唐厚闻
Original Assignee
上海氢晨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海氢晨新能源科技有限公司 filed Critical 上海氢晨新能源科技有限公司
Publication of WO2024093197A1 publication Critical patent/WO2024093197A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to the technical field of fuel cells, and in particular to a method for determining a hydrogen stoichiometric ratio of a fuel cell system.
  • a fuel cell is a power generation device that can directly convert the chemical energy of fuel into electrical energy. It has the advantages of high energy conversion efficiency and cleanliness and is pollution-free. Its commercial application has broad development prospects.
  • the hydrogen circulating inside the fuel cell has a high relative humidity and contains some nitrogen that penetrates from the cathode to the anode.
  • the general gas flow meter can only test the flow of a certain dry gas. There is a large error in the flow measurement of wet gas and gas with humidity changes, resulting in low calculation accuracy of the hydrogen stoichiometric ratio of the fuel cell system.
  • a gas flow meter is added to the rear end of the hydrogen pressure reducing valve, and a temperature and humidity sensor is installed in the hydrogen circulation loop and the hydrogen inlet loop respectively.
  • the flow of dry gas and the relative humidity of the circulation loop and the inlet loop are measured.
  • the flow of gas in the circulation loop is calculated based on the principle of conservation of mass, and then the circulating hydrogen flow is calculated based on the circulating gas humidity.
  • the stoichiometric ratio of hydrogen is determined.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. To this end, the present disclosure proposes a method for determining the hydrogen stoichiometric ratio of a fuel cell system and a fuel cell system, which can achieve accurate measurement of the hydrogen stoichiometric ratio, have a simple structure, low cost, and strong practicality.
  • the present disclosure provides a method for determining a hydrogen stoichiometric ratio of a fuel cell system, the method comprising:
  • a hydrogen stoichiometric ratio of the fuel cell system is determined based on the hydrogen circulation flow rate and the hydrogen consumption.
  • determining the gas state influencing factor of the fuel cell system based on the inlet temperature, the inlet pressure, and the outlet pressure includes:
  • the gas state influencing factor is determined based on the inlet pressure, the inlet/outlet pressure difference, the inlet temperature and the water vapor volume fraction.
  • determining the water vapor volume fraction at the inlet of the hydrogen circulation device based on the inlet temperature and the inlet pressure includes:
  • the water vapor volume fraction is determined based on the inlet pressure and the saturated vapor pressure.
  • determining the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system includes:
  • the hydrogen circulation flow rate is determined based on the outlet hydrogen flow rate and the water vapor volume fraction.
  • determining the outlet hydrogen flow rate of the hydrogen circulation device based on the gas state influencing factor and the gas utilization rate includes:
  • Q is the outlet hydrogen flow rate
  • K is the volume of the hydrogen circulation device
  • is the gas utilization rate
  • is the gas state influence factor
  • n is the rotation speed of the hydrogen circulation device.
  • the inlet temperature, the inlet pressure, the gas state After determining the hydrogen circulation flow rate of the fuel cell system based on the response factor and the gas utilization rate of the fuel cell system, and before determining the hydrogen stoichiometric ratio of the fuel cell system based on the hydrogen circulation flow rate and the hydrogen consumption, the method further includes:
  • the hydrogen circulation flow rate is converted into the hydrogen circulation flow rate under standard conditions.
  • the present disclosure also provides a fuel cell system, which includes:
  • a gas-water separator wherein the hydrogen source is connected to a first inlet of the gas-water separator
  • a hydrogen circulation device wherein the inlet of the hydrogen circulation device is connected to the first outlet of the gas-water separator, the inlet of the hydrogen circulation device is provided with a temperature and pressure sensor, and the outlet of the hydrogen circulation device is provided with a pressure sensor, the temperature and pressure sensor is used to collect the inlet temperature and inlet pressure of the hydrogen circulation device, and the pressure sensor is used to collect the outlet pressure of the hydrogen circulation device;
  • a fuel cell stack wherein the fuel cell stack is connected to the outlet of the hydrogen circulation device, and a current sensor is provided at the negative electrode of the fuel cell stack, and the current sensor is used to collect the stack current;
  • a controller is electrically connected to the hydrogen circulation device, the temperature and pressure sensor, the pressure sensor and the current sensor, and is used to determine the hydrogen stoichiometric ratio of the fuel cell system based on the above-mentioned method for determining the hydrogen stoichiometric ratio of the fuel cell system.
  • a first switch valve and a second switch valve electrically connected to the controller are further included, wherein the first switch valve is arranged between the hydrogen source and the first inlet, and the second switch valve is arranged between the hydrogen source and the fuel cell stack.
  • a pressure reducing valve and a proportional pressure regulating valve are provided in sequence between the hydrogen source and the gas-water separator.
  • An embodiment of the present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the method for determining the hydrogen stoichiometric ratio of the fuel cell system as described above is implemented.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the method for determining the hydrogen stoichiometric ratio of the fuel cell system as described above is implemented.
  • the embodiment of the present disclosure also provides a computer program product, including a computer program, which, when executed by a processor, implements the method for determining the hydrogen stoichiometric ratio of the fuel cell system as described above.
  • the present disclosure provides a method for determining the hydrogen stoichiometric ratio of a fuel cell system, which measures the temperature and pressure data at the inlet and outlet of a hydrogen circulation device, calculates the hydrogen circulation flow rate, and determines the hydrogen stoichiometric ratio by combining the hydrogen consumption.
  • the invention has the advantages of high efficiency, fast response speed, high accuracy of calculation results, no need to change the pipeline structure of the fuel cell system, and can effectively reduce the system cost. Additional aspects and advantages of the present invention will be given in part in the following description, and will become apparent from the following description, or will be understood through the practice of the present invention.
  • FIG1 is a flow chart of a method for determining a hydrogen stoichiometric ratio of a fuel cell system according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of the structure of a fuel cell system provided by an embodiment of the present disclosure.
  • FIG3 is a second flow chart of a method for determining a hydrogen stoichiometric ratio of a fuel cell system provided in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the structure of a device for determining a hydrogen stoichiometric ratio of a fuel cell system provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present disclosure.
  • Hydrogen source 10 pressure reducing valve 20 , proportional pressure regulating valve 30 , first switch valve 41 , second switch valve 42 , fuel cell stack 50 , gas-water separator 60 , temperature and pressure sensor 70 , hydrogen circulation device 80 , pressure sensor 90 .
  • first, second, etc. in the specification and claims of the present disclosure are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the data used in this way can be interchangeable when appropriate, so that the embodiments of the present disclosure can be implemented in an order other than those illustrated or described herein, and the objects distinguished by "first”, “second”, etc. are generally of one type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally indicates that the objects associated with each other are in an "or” relationship.
  • the calculation of hydrogen stoichiometric ratio is mainly carried out by adding a gas flow meter at the rear end of the hydrogen pressure reducing valve, and installing a temperature and humidity sensor in the hydrogen circulation loop and the hydrogen inlet loop respectively, to measure the flow rate of dry gas, the relative humidity of the circulation loop and the inlet loop, and calculate the flow rate of gas in the circulation loop according to the principle of conservation of mass, and then calculate the relative humidity of the hydrogen inlet loop according to the relative humidity of the hydrogen inlet loop. According to the circulating gas humidity, the circulating hydrogen flow is calculated, and finally the hydrogen stoichiometric ratio is determined.
  • This type of method requires the additional installation of a gas flow meter and two temperature and humidity sensors, changes to the pipeline structure, and increases the cost of the fuel cell system, limiting its practicality.
  • the method for determining the hydrogen stoichiometric ratio of a fuel cell system may be applied to a terminal, and may be specifically executed by hardware or software in the terminal.
  • the terminal includes, but is not limited to, a portable communication device such as a mobile phone or tablet computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad). It should also be understood that in some embodiments, the terminal may not be a portable communication device, but a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad).
  • a portable communication device such as a mobile phone or tablet computer with a touch-sensitive surface (e.g., a touch screen display and/or a touch pad).
  • a touch-sensitive surface e.g., a touch screen display and/or a touch pad
  • a terminal including a display and a touch-sensitive surface is described.
  • the terminal may include one or more other physical user interface devices such as a physical keyboard, a mouse and a joystick.
  • the embodiment of the present disclosure provides a method for determining the hydrogen stoichiometric ratio of a fuel cell system.
  • the executor of the method for determining the hydrogen stoichiometric ratio of a fuel cell system may be an electronic device or a functional module or functional entity in the electronic device that can implement the method for determining the hydrogen stoichiometric ratio of the fuel cell system.
  • the electronic devices mentioned in the embodiment of the present disclosure include but are not limited to mobile phones, tablet computers, computers, cameras, and wearable devices.
  • the method for determining the hydrogen stoichiometric ratio of a fuel cell system provided in the embodiment of the present disclosure is described below using an electronic device as an example of the executor.
  • the method for determining the hydrogen stoichiometric ratio of the fuel cell system includes steps 110 to 150 .
  • Step 110 obtaining the inlet temperature, inlet pressure and outlet pressure of the hydrogen circulation device 80 of the fuel cell system, and obtaining the stack current of the fuel cell stack 50 of the fuel cell system.
  • the gas output from the fuel cell stack 50 flows into the inlet of the hydrogen circulation device 80 and returns to the fuel cell stack 50 from the outlet of the hydrogen circulation device 80 .
  • the inlet temperature of the hydrogen circulation device 80 refers to the temperature at the inlet of the hydrogen circulation device 80, where the inlet is the gas with a certain humidity output by the fuel cell stack 50; the inlet pressure and outlet pressure of the hydrogen circulation device 80 are the pressures at the inlet and outlet of the hydrogen circulation device 80, respectively.
  • a temperature and pressure sensor 70 may be provided at the inlet of the hydrogen circulation device 80 to collect the inlet temperature and the inlet pressure.
  • the temperature and pressure sensor 70 may be two separate sensors or a two-in-one sensor.
  • a current sensor may be provided at the fuel cell stack 50 to collect the stack current of the fuel cell stack 50 .
  • Step 120 Determine the gas state effect on the fuel cell system based on the inlet temperature, inlet pressure, and outlet pressure. Impact factor.
  • the gas state influencing factor refers to a common factor extracted from a variable group of physical quantities such as pressure and temperature of circulating hydrogen.
  • the pressure, temperature and other physical quantities of the circulating hydrogen can be collected and fitted through mathematical modeling to obtain a curve of the changes in the pressure, temperature and other physical quantities.
  • the slope of the curve or the parameter of the corresponding mathematical function is used as the gas state influencing factor, which can reflect the gas state of the circulating hydrogen.
  • the gas state influencing factor of the circulating hydrogen in the fuel cell system is determined according to the inlet temperature, inlet pressure and outlet pressure of the hydrogen circulation device 80 .
  • Step 130 Determine the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system.
  • the gas utilization rate is determined based on the operating conditions of the fuel cell system.
  • the gas utilization rate of the fuel cell under different operating conditions can be measured during the experimental stage of the fuel cell, and when determining the current hydrogen stoichiometric ratio, the gas utilization rate is determined according to the operating conditions.
  • the hydrogen flow rate at the outlet of the hydrogen circulation device 80 can be obtained based on the inlet temperature, inlet pressure, gas state influencing factor and gas utilization rate of the fuel cell system, that is, the hydrogen circulation flow rate of the fuel cell system can be determined.
  • Step 140 Determine the hydrogen consumption of the fuel cell system based on the stack current.
  • a current sensor may be provided at the negative electrode of the fuel cell stack 50, and the stack current may be collected using the current sensor. Based on the stack current, the hydrogen consumption of the fuel cell stack 50 in the fuel cell system may be determined.
  • Step 150 Determine the hydrogen stoichiometric ratio of the fuel cell system based on the hydrogen circulation flow rate and the hydrogen consumption.
  • the stoichiometric ratio in a fuel cell refers to the ratio of the amount of gas supplied to the amount consumed.
  • the hydrogen supply is the sum of the hydrogen circulation flow and the hydrogen consumption.
  • the ratio of the sum of the hydrogen circulation flow and the hydrogen consumption to the hydrogen consumption is the hydrogen stoichiometric ratio of the fuel cell system.
  • the disclosed embodiment determines the gas state influencing factor by measuring the temperature and pressure data at the inlet and outlet of the hydrogen circulation device 80.
  • the hydrogen circulation flow is calculated.
  • the hydrogen metering ratio is determined in combination with the hydrogen consumption.
  • the response speed is fast and the calculation result is highly accurate. There is no need to change the piping structure of the fuel cell system, thereby reducing the system cost.
  • the hydrogen circulation amount is quickly controlled to improve the power generation efficiency of the fuel cell stack 50.
  • the hydrogen circulation flow rate is calculated by measuring the temperature and pressure data at the inlet and outlet of the hydrogen circulation device 80, and the hydrogen consumption is combined to determine the hydrogen consumption.
  • the gas metering ratio has fast response speed and high calculation result accuracy. It does not need to change the pipeline structure of the fuel cell system, which can effectively reduce the system cost.
  • step 120 determining the gas state influencing factor of the fuel cell system based on the inlet temperature, the inlet pressure, and the outlet pressure, may include:
  • the gas state influencing factor is determined based on the inlet pressure, inlet and outlet pressure difference, inlet temperature and water vapor volume fraction.
  • the pressure-volume-temperature relationship generally refers to the relationship between the pressure, volume and temperature of a gas, and its mathematical expression is also called the equation of state.
  • the gas state influencing factor can be determined to reflect the gas state of the circulating hydrogen.
  • the gas state influencing factors under different inlet pressures, inlet and outlet pressure differences, inlet temperatures and water vapor volume fractions can be summarized and tabulated.
  • the gas state influencing factors corresponding to the current circulating hydrogen can be looked up in a table based on the current inlet pressure, inlet and outlet pressure difference, inlet temperature, water vapor volume fraction and other parameters.
  • determining the water vapor volume fraction at the inlet of the hydrogen circulation device 80 based on the inlet temperature and the inlet pressure may include:
  • step 130 determining the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system, may include:
  • the hydrogen circulation flow rate is determined based on the outlet hydrogen flow rate and the water vapor volume fraction.
  • the outlet hydrogen flow rate of the hydrogen circulation device 80 can be determined according to the gas state influencing factor and the gas utilization rate.
  • the outlet hydrogen flow rate needs to be corrected by using the water vapor volume fraction to obtain the hydrogen circulation flow rate.
  • determining the outlet hydrogen flow rate of the hydrogen circulation device 80 includes:
  • Q is the outlet hydrogen flow rate
  • K is the volume of the hydrogen circulation device 80
  • is the gas utilization rate
  • is the gas state influencing factor
  • n is the rotation speed of the hydrogen circulation device 80.
  • the method for determining the hydrogen stoichiometric ratio of the fuel cell system may further include:
  • the hydrogen circulation flow rate is converted into the hydrogen circulation flow rate under standard conditions.
  • the inlet temperature T of the hydrogen circulation device 80 is collected by the temperature and pressure sensor 70 .
  • the saturated vapor pressure P1 of water at this temperature is obtained by looking up a table or calculating.
  • the temperature and pressure sensor 70 also collects the inlet pressure P2 of the hydrogen circulation device 80 .
  • the outlet pressure P3 of the hydrogen circulation device 80 is collected by the pressure sensor 90 .
  • the inlet and outlet pressure difference ⁇ P of the hydrogen circulation device 80 is calculated as P3 - P2.
  • the gas utilization rate ⁇ is obtained.
  • the gas state influence factor ⁇ is read from the table.
  • the rotation speed n fed back by the hydrogen circulation device 80 is read.
  • the method for determining the hydrogen stoichiometric ratio of a fuel cell system provided in the embodiment of the present disclosure may be performed by a device for determining the hydrogen stoichiometric ratio of a fuel cell system.
  • the device for determining the hydrogen stoichiometric ratio of a fuel cell system is taken as an example to illustrate the method for determining the hydrogen stoichiometric ratio of a fuel cell system provided in the embodiment of the present disclosure.
  • the disclosed embodiment also provides a device for determining the hydrogen stoichiometric ratio of a fuel cell system.
  • the hydrogen stoichiometric ratio determining device of the fuel cell system includes:
  • An acquisition module 410 is used to acquire an inlet temperature, an inlet pressure and an outlet pressure of a hydrogen circulation device 80 of a fuel cell system, and acquire a stack current of a fuel cell stack 50 of the fuel cell system;
  • a first processing module 420 for determining a gas state influencing factor of the fuel cell system based on an inlet temperature, an inlet pressure, and an outlet pressure;
  • a second processing module 430 is used to determine the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system, wherein the gas utilization rate is determined based on the operating condition of the fuel cell system;
  • a third processing module 440 is used to determine the hydrogen consumption of the fuel cell system based on the stack current
  • the fourth processing module 450 is used to determine the hydrogen stoichiometric ratio of the fuel cell system based on the hydrogen circulation flow rate and the hydrogen consumption.
  • the hydrogen circulation flow is calculated by measuring the temperature and pressure data at the inlet and outlet of the hydrogen circulation device 80, and the hydrogen stoichiometric ratio is determined in combination with the hydrogen consumption.
  • the device has a fast response speed and a high accuracy of the calculation result, and does not require changing the piping structure of the fuel cell system, thereby effectively reducing the system cost.
  • the first processing module 420 is used to determine the water vapor volume fraction at the inlet of the hydrogen circulation device 80 based on the inlet temperature and the inlet pressure;
  • the gas state influencing factor is determined based on the inlet pressure, inlet and outlet pressure difference, inlet temperature and water vapor volume fraction.
  • the first processing module 420 is used to determine the saturated vapor pressure corresponding to the inlet temperature based on the inlet temperature;
  • the second processing module 430 is used to determine the outlet hydrogen flow rate of the hydrogen circulation device 80 based on the gas state influencing factor and the gas utilization rate;
  • the hydrogen circulation flow rate is determined based on the outlet hydrogen flow rate and the water vapor volume fraction.
  • the second processing module 430 is used to determine the outlet hydrogen flow rate of the hydrogen circulation device 80 based on the gas state influencing factor and the gas utilization rate, including:
  • Q is the outlet hydrogen flow rate
  • K is the volume of the hydrogen circulation device 80
  • is the gas utilization rate
  • is the gas state influencing factor
  • n is the rotation speed of the hydrogen circulation device 80.
  • the fourth processing module 450 is further used to convert the hydrogen circulation flow rate into the hydrogen circulation flow rate under standard conditions according to the ideal gas state equation before determining the hydrogen stoichiometric ratio of the fuel cell system based on the hydrogen circulation flow rate and the hydrogen consumption.
  • the hydrogen stoichiometric ratio determination device of the fuel cell system in the embodiment of the present disclosure may be an electronic device or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal or other devices other than a terminal.
  • the electronic device may be a mobile phone, a tablet computer, a laptop computer, a PDA, a vehicle-mounted electronic device, a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a robot, a wearable device, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook or a personal digital assistant (personal digital assistant, PDA), etc.
  • It may also be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television (television, TV), a teller machine or a self-service machine, etc., which is not specifically limited in the embodiment of the present disclosure.
  • Network Attached Storage NAS
  • PC personal computer
  • TV television
  • teller machine a self-service machine
  • the hydrogen stoichiometric ratio determination device of the fuel cell system in the embodiment of the present disclosure may be a device having an operating system.
  • the operating system may be an Android operating system, an IOS operating system, or other possible operating systems, which are not specifically limited in the embodiment of the present disclosure.
  • the hydrogen stoichiometric ratio determination device for a fuel cell system provided in the embodiment of the present disclosure can implement each process implemented in the method embodiments of Figures 1 to 3, and will not be described again here to avoid repetition.
  • the present disclosure also provides a fuel cell system, including:
  • the fuel cell system includes a hydrogen source 10 , a gas-water separator 60 , a hydrogen circulation device 80 , a fuel cell stack 50 , and a controller.
  • the hydrogen source 10 is connected to the first inlet of the gas-water separator 60 .
  • the gas-water separator 60 may be an integrated gas-water separator with an integrated preheater function, which can separate gas and liquid and preheat the gas.
  • the inlet of the hydrogen circulation device 80 is connected to the first outlet of the gas-water separator 60.
  • the inlet of the hydrogen circulation device 80 is provided with a temperature and pressure sensor 70, and the outlet of the hydrogen circulation device 80 is provided with a pressure sensor 90.
  • the temperature and pressure sensor 70 is used to collect the inlet temperature and inlet pressure of the hydrogen circulation device 80, and the pressure sensor 90 is used to collect the outlet pressure of the hydrogen circulation device 80.
  • the temperature and pressure sensor 70 may be two separate sensors or a two-in-one sensor; the hydrogen circulation device 80 may be a circulation pump.
  • the fuel cell stack 50 is connected to the outlet of the hydrogen circulation device 80, and the negative electrode of the fuel cell stack 50 is provided with Current sensor:
  • the current sensor is used to collect the stack current.
  • the controller is electrically connected to the hydrogen circulation device 80, the temperature and pressure sensor 70, the pressure sensor 90 and the current sensor, and is used to determine the hydrogen stoichiometric ratio of the fuel cell system based on the above-mentioned method for determining the hydrogen stoichiometric ratio of the fuel cell system.
  • the temperature and pressure data of the inlet and outlet of the hydrogen circulation device 80 are measured, the hydrogen circulation flow is calculated, and the hydrogen metering ratio is determined in combination with the hydrogen consumption.
  • the response speed is fast and the calculation result is highly accurate. There is no need to change the piping structure of the fuel cell system, which can effectively reduce the system cost.
  • the inlet temperature T of the hydrogen circulation device 80 is collected by the temperature and pressure sensor 70 .
  • the saturated vapor pressure P1 of water at this temperature is obtained by looking up a table or calculating.
  • the temperature and pressure sensor 70 also collects the inlet pressure P2 of the hydrogen circulation device 80 .
  • the outlet pressure P3 of the hydrogen circulation device 80 is collected by the pressure sensor 90 .
  • the inlet and outlet pressure difference ⁇ P of the hydrogen circulation device 80 is calculated as P3 - P2.
  • the gas utilization rate ⁇ is obtained.
  • the gas state influence factor ⁇ is read from the table.
  • the rotation speed n fed back by the hydrogen circulation device 80 is read.
  • the fuel cell system may further include a first switch valve 41 and a second switch valve 42 electrically connected to the controller.
  • the switch valve 42 , the first switch valve 41 is arranged between the hydrogen source 10 and the first inlet, and the second switch valve 42 is arranged between the hydrogen source 10 and the fuel cell stack 50 .
  • the first switch valve 41 is used to control the amount of hydrogen input from the hydrogen source 10 to the gas-water separator 60
  • the second switch valve 42 is used to control the amount of hydrogen input from the hydrogen source 10 to the fuel cell stack 50 .
  • the hydrogen passing through the first switch valve 41 first enters the gas-water separator 60, then enters the hydrogen circulation device 80, and then enters the fuel cell stack 50.
  • the gas-water separator 60 can play a role in preheating and separating gas and liquid; the hydrogen passing through the second switch valve 42 directly enters the fuel cell stack 50.
  • the first switch valve 41 and the second switch valve 42 are both electromagnetic switch valves, which are controlled to open and close by the controller. By controlling the opening and closing of the first switch valve 41 and the second switch valve 42, the hydrogen preheating and humidity adjustment entering the fuel cell stack 50 are achieved.
  • the gas-water separator 60 can preheat the gas, and by controlling the first switch valve 41 and the second switch valve 42 , the inlet temperature of the hydrogen circulation device 80 is controlled to be greater than or equal to the first temperature threshold.
  • the first switch valve 41 When the inlet temperature is lower than the first temperature threshold, the first switch valve 41 is opened and the second switch valve 42 is closed to increase the temperature and humidity at the inlet of the hydrogen circulation device 80 .
  • the second switch valve 42 When the inlet temperature is greater than or equal to the first temperature threshold, the second switch valve 42 is opened, the first switch valve 41 is closed, and the waste heat of the integrated gas-water separator 60 is used to preheat the hydrogen and adjust the humidity of the hydrogen.
  • the hydrogen with a relatively low drying temperature is preheated to the temperature of the hydrogen entering the stack through the gas-water separator 60. At this time, the temperature of the circulating hydrogen in the gas-water separator 60 is reduced, so that more liquid water is separated into the water separator, thereby achieving the control of the humidity of the hydrogen entering the stack.
  • the dry hydrogen preheating and the humidity adjustment of the hydrogen circulation loop are achieved by controlling the first switch valve 41 and the second switch valve 42 .
  • a pressure reducing valve 20 and a proportional pressure regulating valve 30 are sequentially provided between the hydrogen source 10 and the gas-water separator 60 .
  • the pressure reducing valve 20 is a valve that reduces the inlet pressure to a certain required outlet pressure through regulation and automatically keeps the outlet pressure stable by relying on the energy of the medium itself.
  • the proportional pressure regulating valve 30 belongs to the control valve series, and its main function is to adjust the pressure, flow, temperature and other parameters of the medium.
  • the embodiment of the present disclosure further provides an electronic device 500, including a processor 501, a memory 502, and a computer program stored in the memory 502 and executable on the processor 501.
  • an electronic device 500 including a processor 501, a memory 502, and a computer program stored in the memory 502 and executable on the processor 501.
  • the program is executed by the processor 501, each process of the embodiment of the method for determining the hydrogen stoichiometric ratio of the above-mentioned fuel cell system is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be described here.
  • the electronic devices in the embodiments of the present disclosure include the mobile electronic devices and the non-mobile electronic devices described above. Electronic equipment.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the various processes of the above-mentioned hydrogen stoichiometric ratio determination method embodiment of the fuel cell system are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the embodiment of the present disclosure also provides a computer program product, including a computer program, which implements the above-mentioned method for determining the hydrogen stoichiometric ratio of the fuel cell system when executed by a processor.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the disclosed embodiment further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned hydrogen stoichiometric ratio determination method embodiment of the fuel cell system, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present disclosure may also be referred to as a system-level chip, a system chip, a chip system, or a system-on-chip chip, etc.
  • the technical solution of the present disclosure is essentially or in other words, a better solution to the existing technology.
  • the contributed part may be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, disk, CD), and includes a number of instructions for enabling a terminal (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in the various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Abstract

一种燃料电池系统的氢气计量比确定方法包括:获取燃料电池系统的氢气循环装置的入口温度、入口压力和出口压力,并获取燃料电池系统的燃料电池电堆的电堆电流;基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数;基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量,气体利用率基于燃料电池系统的运行工况确定;基于电堆电流,确定燃料电池系统的氢气消耗量;基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比。

Description

燃料电池系统的氢气计量比确定方法
相关申请的交叉引用
本申请基于申请号为:202211358083.2,申请日为2022年11月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及燃料电池技术领域,具体而言,涉及一种燃料电池系统的氢气计量比确定方法。
背景技术
燃料电池是一种可以把燃料所具有的化学能直接转换成电能的一种发电装置,具有能量转换效率高、清洁无污染等优点,其商业化应用存在着广阔的发展前景。
燃料电池系统工作时往往需要将过量的氢气通过循环的方式通入阳极,提高氢气利用率以及满足燃料电池的水管理平衡。但经过燃料电池内部循环的氢气,其相对湿度较高且含有部分从阴极渗透到阳极的氮气,一般的气体流量计只能测试某种特定干气体的流量,对于存在湿气体以及湿度变化气体的流量测量存在较大误差,导致燃料电池系统氢气计量比的计算精度较低。
目前,通过氢气减压阀后端增加气体流量计,并在氢气循环回路和氢气进堆回路中各安装一只温湿度传感器,测量干燥气体的流量、循环回路和进堆回路的相对湿度,根据质量守恒原理,计算出循环回路中气体的流量,再根据循环气体湿度,计算出循环氢气流量,最终确定出氢气的计量比,该类方法需要额外安装气体流量计和两只温湿度传感器,改变管路结构,增加燃料电池系统的成本,实用性受限。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种燃料电池系统的氢气计量比确定方法和燃料电池系统,实现氢气计量比的准确测量,结构简单、成本低,且实用性强。
本公开实施例提供了一种燃料电池系统的氢气计量比确定方法,该方法包括:
获取燃料电池系统的氢气循环装置的入口温度、入口压力和出口压力,并获取所述燃料电池系统的燃料电池电堆的电堆电流;
基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数;
基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,所述气体利用率基于所述燃料电池系统的运行工况确定;
基于所述电堆电流,确定所述燃料电池系统的氢气消耗量;
基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比。
本公开一些实施例中,所述基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数,包括:
基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;
基于所述入口压力和所述出口压力,确定所述氢气循环装置的进出口压差;
基于所述入口压力、所述进出口压差、所述入口温度和所述水蒸气体积分数,确定所述气体状态影响因数。
本公开一些实施例中,所述基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数,包括:
基于所述入口温度,确定所述入口温度对应的饱和蒸汽压;
基于所述入口压力和所述饱和蒸汽压,确定所述水蒸气体积分数。
本公开一些实施例中,所述基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,包括:
基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量;
基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;
基于所述出口氢气流量和所述水蒸气体积分数,确定所述氢气循环流量。
本公开一些实施例中,所述基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量,包括:
应用公式
Q=K*η*λ*n
确定所述出口氢气流量;
其中,Q为所述出口氢气流量,K为所述氢气循环装置的容积,η为所述气体利用率,λ为所述气体状态影响因数,n为所述氢气循环装置的转速。
本公开一些实施例中,在所述基于所述入口温度、所述入口压力、所述气体状态影 响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量之后,在所述基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比之前,所述方法还包括:
根据理想气体状态方程,将所述氢气循环流量转换为标况下的所述氢气循环流量。
本公开实施例还提供了一种燃料电池系统,该系统包括:
氢气源;
气水分离器,所述氢气源与所述气水分离器的第一入口连接;
氢气循环装置,所述氢气循环装置的入口与所述气水分离器的第一出口连接,所述氢气循环装置的入口设有温压传感器,所述氢气循环装置的出口设有压力传感器,所述温压传感器用于采集所述氢气循环装置的入口温度和入口压力,所述压力传感器用于采集所述氢气循环装置的出口压力;
燃料电池电堆,所述燃料电池电堆与所述氢气循环装置的出口连接,所述燃料电池电堆的电堆负极设有电流传感器,所述电流传感器用于采集电堆电流;
控制器,所述控制器与所述氢气循环装置、所述温压传感器、所述压力传感器和所述电流传感器电连接,用于基于上述的燃料电池系统的氢气计量比确定方法,确定所述燃料电池系统的氢气计量比。
本公开一些实施例中,还包括与所述控制器电连接的第一开关阀和第二开关阀,所述第一开关阀设置于所述氢气源和所述第一入口之间,所述第二开关阀设置于所述氢气源和所述燃料电池电堆之间。
本公开一些实施例中,所述氢气源与所述气水分离器之间依次设有减压阀和比例调压阀。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述的燃料电池系统的氢气计量比确定方法。
本公开实施例还提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述的燃料电池系统的氢气计量比确定方法。
本公开实施例还提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述的燃料电池系统的氢气计量比确定方法。
本公开实施例带来了以下有益效果:
本公开实施例提供的一种燃料电池系统的氢气计量比确定方法,通过测量氢气循环装置入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计 量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开实施例提供的燃料电池系统的氢气计量比确定方法的流程示意图之一;
图2是本公开实施例提供的燃料电池系统的结构示意图;
图3是本公开实施例提供的燃料电池系统的氢气计量比确定方法的流程示意图之二;
图4是本公开实施例提供的燃料电池系统的氢气计量比确定装置的结构示意图;
图5是本公开实施例提供的电子设备的结构示意图。
附图标记:
氢气源10,减压阀20,比例调压阀30,第一开关阀41,第二开关阀42,燃料电池电堆50,气水分离器60,温压传感器70,氢气循环装置80,压力传感器90。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
相关技术中,氢气计量比的计算,主要通过氢气减压阀后端增加气体流量计,并在氢气循环回路和氢气进堆回路中各安装一只温湿度传感器,测量干燥气体的流量、循环回路和进堆回路的相对湿度,根据质量守恒原理,计算出循环回路中气体的流量,再根 据循环气体湿度,计算出循环氢气流量,最终确定出氢气的计量比。
该类方法需要额外安装气体流量计和两只温湿度传感器,改变管路结构,增加燃料电池系统的成本,实用性受限。
下面结合附图,通过具体的实施例及其应用场景对本公开实施例提供的燃料电池系统的氢气计量比确定方法、燃料电池系统的氢气计量比确定装置、燃料电池系统、电子设备和可读存储介质进行详细地说明。
其中,燃料电池系统的氢气计量比确定方法可应用于终端,具体可由,终端中的硬件或软件执行。
该终端包括但不限于具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话或平板电脑等便携式通信设备。还应当理解的是,在某些实施例中,该终端可以不是便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。
以下各个实施例中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和控制杆的一个或多个其它物理用户接口设备。
本公开实施例提供的燃料电池系统的氢气计量比确定方法,该燃料电池系统的氢气计量比确定方法的执行主体可以为电子设备或者电子设备中能够实现该燃料电池系统的氢气计量比确定方法的功能模块或功能实体,本公开实施例提及的电子设备包括但不限于手机、平板电脑、电脑、相机和可穿戴设备等,下面以电子设备作为执行主体为例对本公开实施例提供的燃料电池系统的氢气计量比确定方法进行说明。
如图1所示,该燃料电池系统的氢气计量比确定方法包括:步骤110至步骤150。
步骤110、获取燃料电池系统的氢气循环装置80的入口温度、入口压力和出口压力,并获取燃料电池系统的燃料电池电堆50的电堆电流。
燃料电池电堆50输出的气体流入氢气循环装置80的入口,从氢气循环装置80的出口返回燃料电池电堆50。
氢气循环装置80的入口温度指氢气循环装置80入口处的温度,氢气循环装置80入口处为燃料电池电堆50输出的具有一定湿度的气体;氢气循环装置80的入口压力和出口压力分别为氢气循环装置80入口处和出口处的压力。
在该实施例中,如图2所示,可以在氢气循环装置80入口设置温压传感器70,采集入口温度和入口压力,温压传感器70可以为两个单独的传感器,也可以为二合一式的传感器;可以在燃料电池电堆50设置电流传感器,采集燃料电池电堆50的电堆电流。
步骤120、基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影 响因数。
其中,气体状态影响因数指循环氢气的压力、温度等物理量的变量群中所提取的具有共性因数。
例如,在实际执行中,可以通过收集循环氢气的压力、温度等物理量,通过数学建模拟合,得到压力、温度等物理量变化的曲线,以曲线的斜率或相应数学函数的参数作为气体状态影响因数,该气体状态影响因数可以反映循环氢气的气体状态。
在该实施例中,根据氢气循环装置80的入口温度、入口压力和出口压力,确定燃料电池系统内循环氢气的气体状态影响因数。
步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量。
其中,气体利用率基于燃料电池系统的运行工况确定。
在实际执行中,可以在燃料电池的实验阶段,测得燃料电池在不同运行工况的气体利用率,在确定当前氢气计量比时,根据运行工况,确定出气体利用率。
在该实施例中,根据入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,可以得到氢气循环装置80出口的氢气流量,也即可以确定出燃料电池系统的氢气循环流量。
步骤140、基于电堆电流,确定燃料电池系统的氢气消耗量。
在该实施例中,可以在燃料电池电堆50的电堆负极设置电流传感器,使用电流传感器采集电堆电流,根据电堆电流,确定燃料电池系统中燃料电池电堆50的氢气消耗量。
步骤150、基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比。
可以理解的是,燃料电池中的化学计量比指的是供气量和消耗量的比值。
在该实施例中,氢气的供气量为氢气循环流量和氢气消耗量的和,氢气循环流量和氢气消耗量的和与氢气消耗量的比值,即为燃料电池系统的氢气计量比。
本公开实施例,通过测量氢气循环装置80入口和出口的温度压力数据,确定气体状态影响因数,在已知气体状态影响因数和气体利用率的情况下,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,降低系统成本。
在实际执行中,通过实时计算氢气计量比,根据氢气计量比和需求计量比,快速进行氢气循环量的控制,提升燃料电池电堆50的发电效率。
根据本公开实施例提供的燃料电池系统的氢气计量比确定方法,通过测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢 气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。
在一些实施例中,步骤120、基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数,可以包括:
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;
基于入口压力和出口压力,确定氢气循环装置80的进出口压差;
基于入口压力、进出口压差、入口温度和水蒸气体积分数,确定气体状态影响因数。
压力-体积-温度关系一般是指气体的压力、体积和温度之间的关系,其数学表示式亦称状态方程。
在该实施例中,通过确定水蒸气体积分数以及进出口压差,可以确定气体状态影响因数,反映循环氢气的气体状态。
在实际执行中,可以汇总不同入口压力、进出口压差、入口温度和水蒸气体积分数下的气体状态影响因数制表,计算氢气计量比时,根据当前的入口压力、进出口压差、入口温度和水蒸气体积分数等参数,查表当前循环氢气所对应的气体状态影响因数。
在一些实施例中,基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数,可以包括:
基于入口温度,确定入口温度对应的饱和蒸汽压;
基于入口压力和饱和蒸汽压,确定水蒸气体积分数。
在一些实施例中,步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量,可以包括:
基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量;
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;
基于出口氢气流量和水蒸气体积分数,确定氢气循环流量。
在该实施例中,根据气体状态影响因数和气体利用率,可以确定出氢气循环装置80的出口氢气流量,出口氢气流量需要进行修正,采用水蒸气体积分数对出口氢气流量进行修正,从而得到氢气循环流量。
在一些实施例中,基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量,包括:
应用公式
Q=K*η*λ*n
确定出口氢气流量;
其中,Q为出口氢气流量,K为氢气循环装置80的容积,η为气体利用率,λ为气体状态影响因数,n为氢气循环装置80的转速。
在一些实施例中,在步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量之后,在步骤150、基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比之前,燃料电池系统的氢气计量比确定方法还可以包括:
根据理想气体状态方程,将氢气循环流量转换为标况下的氢气循环流量。
下面介绍一个具体的实施例。
如图3所示,通过温压传感器70采集氢气循环装置80的入口温度T。
根据温压传感器70采集的入口温度T,通过查表或计算得到此温度下水的饱和蒸汽压P1。
温压传感器70还采集氢气循环装置80的入口压力P2。
根据饱和蒸汽压P1和入口压力P2,计算得到氢气循环装置80的回路中水蒸气体积分数ɑ=P1/P2。
通过压力传感器90采集氢气循环装置80的出口压力P3。
计算氢气循环装置80的进出口压差ΔP=P3-P2。
根据燃料电池电堆50的当前运行工况,获取气体利用率η。
根据进出口压差ΔP、水蒸气体积分数ɑ、入口压力P2和入口温度T,查表读取气体状态影响因数λ。
读取氢气循环装置80反馈的转速n。
计算氢气循环装置80的出口氢气流量Q=K*η*λ*n,K为氢气循环装置80的容积。
根据水蒸气体积分数ɑ,修正得到出口氢气流量Q1,其中,Q1=Q*(1-ɑ)。
再根据理想气体状态方程Pa*Va/Ta=Pb*Vb/Tb,将Q1转换为标况下的氢气循环流量Q2,Q2=P2*Ta*Q1/(T*Pa),其中,Pa、Ta为标准状态下的压力和温度。
获取燃料电池电堆50的电流传感器的电流I,计算得到氢气消耗量Q3,计算得到燃料电池系统的氢气计量比S=(Q2+Q3)/Q3。
本公开实施例提供的燃料电池系统的氢气计量比确定方法,执行主体可以为燃料电池系统的氢气计量比确定装置。本公开实施例中以燃料电池系统的氢气计量比确定装置执行燃料电池系统的氢气计量比确定方法为例,说明本公开实施例提供的燃料电池系统的氢气计量比确定装置。
本公开实施例还提供一种燃料电池系统的氢气计量比确定装置。
如图4所示,该燃料电池系统的氢气计量比确定装置包括:
获取模块410,用于获取燃料电池系统的氢气循环装置80的入口温度、入口压力和出口压力,并获取燃料电池系统的燃料电池电堆50的电堆电流;
第一处理模块420,用于基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数;
第二处理模块430,用于基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量,气体利用率基于燃料电池系统的运行工况确定;
第三处理模块440,用于基于电堆电流,确定燃料电池系统的氢气消耗量;
第四处理模块450,用于基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比。
根据本公开实施例提供的燃料电池系统的氢气计量比确定装置,通过测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。
在一些实施例中,第一处理模块420用于基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;
基于入口压力和出口压力,确定氢气循环装置80的进出口压差;
基于入口压力、进出口压差、入口温度和水蒸气体积分数,确定气体状态影响因数。
在一些实施例中,第一处理模块420用于基于入口温度,确定入口温度对应的饱和蒸汽压;
基于入口压力和饱和蒸汽压,确定水蒸气体积分数。
在一些实施例中,第二处理模块430用于基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量;
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;
基于出口氢气流量和水蒸气体积分数,确定氢气循环流量。
在一些实施例中,第二处理模块430用于基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量,包括:
应用公式
Q=K*η*λ*n
确定出口氢气流量;
其中,Q为出口氢气流量,K为氢气循环装置80的容积,η为气体利用率,λ为气体状态影响因数,n为氢气循环装置80的转速。
在一些实施例中,第四处理模块450还用于在基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比之前,根据理想气体状态方程,将氢气循环流量转换为标况下的氢气循环流量。
本公开实施例中的燃料电池系统的氢气计量比确定装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本公开实施例不作具体限定。
本公开实施例中的燃料电池系统的氢气计量比确定装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为IOS操作系统,还可以为其他可能的操作系统,本公开实施例不作具体限定。
本公开实施例提供的燃料电池系统的氢气计量比确定装置能够实现图1至图3的方法实施例实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种燃料电池系统,包括:
如图2所示,燃料电池系统包括氢气源10、气水分离器60、氢气循环装置80、燃料电池电堆50和控制器。
其中,氢气源10与气水分离器60的第一入口连接,气水分离器60可以是集成预热器功能的集成式气水分离器,可以分离气体和液体,并对气体进行预热。
氢气循环装置80的入口与气水分离器60的第一出口连接,氢气循环装置80的入口设有温压传感器70,氢气循环装置80的出口设有压力传感器90,温压传感器70用于采集氢气循环装置80的入口温度和入口压力,压力传感器90用于采集氢气循环装置80的出口压力。
在实际执行中,温压传感器70可以为两个单独的传感器,也可以为二合一式的传感器;氢气循环装置80可以为循环泵。
燃料电池电堆50与氢气循环装置80的出口连接,燃料电池电堆50的电堆负极设有 电流传感器,电流传感器用于采集电堆电流。
控制器与氢气循环装置80、温压传感器70、压力传感器90和电流传感器电连接,用于基于上述燃料电池系统的氢气计量比确定方法,确定燃料电池系统的氢气计量比。
在该实施例中,只需在氢气循环装置80内设置温压传感器70和压力传感器90,即可实现燃料电池系统的氢气计量比的计算。
根据本公开实施例提供的燃料电池系统,通过设置温压传感器70和压力传感器90,测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。
下面介绍一个具体的实施例。
通过温压传感器70采集氢气循环装置80的入口温度T。
根据温压传感器70采集的入口温度T,通过查表或计算得到此温度下水的饱和蒸汽压P1。
温压传感器70还采集氢气循环装置80的入口压力P2。
根据饱和蒸汽压P1和入口压力P2,计算得到氢气循环装置80的回路中水蒸气体积分数ɑ=P1/P2。
通过压力传感器90采集氢气循环装置80的出口压力P3。
计算氢气循环装置80的进出口压差ΔP=P3-P2。
根据燃料电池电堆50的当前运行工况,获取气体利用率η。
根据进出口压差ΔP、水蒸气体积分数ɑ、入口压力P2和入口温度T,查表读取气体状态影响因数λ。
读取氢气循环装置80反馈的转速n。
计算氢气循环装置80的出口氢气流量Q=K*η*λ*n,K为氢气循环装置80的容积。
根据水蒸气体积分数ɑ,修正得到出口氢气流量Q1,其中,Q1=Q*(1-ɑ)。
再根据理想气体状态方程Pa*Va/Ta=Pb*Vb/Tb,将Q1转换为标况下的氢气循环流量Q2,Q2=P2*Ta*Q1/(T*Pa),其中,Pa、Ta为标准状态下的压力和温度。
获取燃料电池电堆50的电流传感器的电流I,计算得到氢气消耗量Q3,计算得到燃料电池系统的氢气计量比S=(Q2+Q3)/Q3。
在该实施例中,通过设置温压传感器70和压力传感器90,实现氢气循环流量和氢气计量比的准确测量,系统结构简单,成本低,实用性强。
在一些实施例中,燃料电池系统还可以包括与控制器电连接的第一开关阀41和第二 开关阀42,第一开关阀41设置于氢气源10和第一入口之间,第二开关阀42设置于氢气源10和燃料电池电堆50之间。
在该实施例中,第一开关阀41用于控制氢气源10向气水分离器60内输入氢气的量,第二开关阀42用于控制氢气源10向燃料电池电堆50输入氢气的量。
经过第一开关阀41的氢气先进入气水分离器60,再进入氢气循环装置80,再进入燃料电池电堆50,气水分离器60可以起到预热和分离气液的作用;经过第二开关阀42的氢气直接进入燃料电池电堆50。
在实际执行中,第一开关阀41和第二开关阀42均为电磁开关阀,受到控制器控制打开和关闭,通过控制第一开关阀41和第二开关阀42的开闭,实现进入燃料电池电堆50的氢气预热与湿度调节的作用。
在该实施例中,气水分离器60可以预热气体,通过控制第一开关阀41和第二开关阀42,控制氢气循环装置80的入口温度大于或等于第一温度阈值。
当入口温度小于第一温度阈值,打开第一开关阀41,关闭第二开关阀42,增加氢气循环装置80入口处的温度湿度。
当入口温度大于或等于第一温度阈值,打开第二开关阀42,关闭第一开关阀41,利用集成气水分离器60的余热,对氢气进行预热,调节氢气的湿度。
干燥温度较低的氢气,经过气水分离器60预热氢气入堆的温度,此时,气水分离器60中的循环氢气温度降低,使液态水更多的分离到水分离器中,可实现氢气入堆的湿度的控制。
在该实施例中,通过第一开关阀41和第二开关阀42的控制,实现干氢气预热和调节氢气循环回路的湿度。
在一些实施例中,氢气源10与气水分离器60之间依次设有减压阀20和比例调压阀30。
减压阀20是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。
比例调压阀30属于控制阀系列,主要作用是调节介质的压力、流量、温度等参数。
在一些实施例中,如图5所示,本公开实施例还提供一种电子设备500,包括处理器501、存储器502及存储在存储器502上并可在处理器501上运行的计算机程序,该程序被处理器501执行时实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本公开实施例中的电子设备包括上述所述的移动电子设备和非移动 电子设备。
本公开实施例还提供一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本公开实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述燃料电池系统的氢气计量比确定方法。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本公开实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本公开实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本公开实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术 做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种燃料电池系统的氢气计量比确定方法,其中,包括:
    获取燃料电池系统的氢气循环装置的入口温度、入口压力和出口压力,并获取所述燃料电池系统的燃料电池电堆的电堆电流;
    基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数;
    基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,所述气体利用率基于所述燃料电池系统的运行工况确定;
    基于所述电堆电流,确定所述燃料电池系统的氢气消耗量;
    基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比。
  2. 根据权利要求1所述的燃料电池系统的氢气计量比确定方法,其中,所述基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数,包括:
    基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;
    基于所述入口压力和所述出口压力,确定所述氢气循环装置的进出口压差;
    基于所述入口压力、所述进出口压差、所述入口温度和所述水蒸气体积分数,确定所述气体状态影响因数。
  3. 根据权利要求2所述的燃料电池系统的氢气计量比确定方法,其中,所述基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数,包括:
    基于所述入口温度,确定所述入口温度对应的饱和蒸汽压;
    基于所述入口压力和所述饱和蒸汽压,确定所述水蒸气体积分数。
  4. 根据权利要求1-3任一项所述的燃料电池系统的氢气计量比确定方法,其中,所述基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,包括:
    基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量;
    基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;
    基于所述出口氢气流量和所述水蒸气体积分数,确定所述氢气循环流量。
  5. 根据权利要求4所述的燃料电池系统的氢气计量比确定方法,其中,所述基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量,包括:
    应用公式
    Q=K*η*λ*n
    确定所述出口氢气流量;
    其中,Q为所述出口氢气流量,K为所述氢气循环装置的容积,η为所述气体利用率,λ为所述气体状态影响因数,n为所述氢气循环装置的转速。
  6. 根据权利要求1-5任一项所述的燃料电池系统的氢气计量比确定方法,其中,在所述基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量之后,在所述基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比之前,所述方法还包括:
    根据理想气体状态方程,将所述氢气循环流量转换为标况下的所述氢气循环流量。
  7. 一种燃料电池系统,其中,包括:
    氢气源;
    气水分离器,所述氢气源与所述气水分离器的第一入口连接;
    氢气循环装置,所述氢气循环装置的入口与所述气水分离器的第一出口连接,所述氢气循环装置的入口设有温压传感器,所述氢气循环装置的出口设有压力传感器,所述温压传感器用于采集所述氢气循环装置的入口温度和入口压力,所述压力传感器用于采集所述氢气循环装置的出口压力;
    燃料电池电堆,所述燃料电池电堆与所述氢气循环装置的出口连接,所述燃料电池电堆的电堆负极设有电流传感器,所述电流传感器用于采集电堆电流;
    控制器,所述控制器与所述氢气循环装置、所述温压传感器、所述压力传感器和所述电流传感器电连接,用于基于权利要求1-6任一项所述的燃料电池系统的氢气计量比确定方法,确定所述燃料电池系统的氢气计量比。
  8. 根据权利要求7所述的燃料电池系统,其中,还包括与所述控制器电连接的第一开关阀和第二开关阀,所述第一开关阀设置于所述氢气源和所述第一入口之间,所述第二开关阀设置于所述氢气源和所述燃料电池电堆之间。
  9. 根据权利要求7或8所述的燃料电池系统,其中,所述氢气源与所述气水分离器之间依次设有减压阀和比例调压阀。
  10. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1-6任一项所述燃料电池系统的氢气计量比确定方法。
PCT/CN2023/094820 2022-11-01 2023-05-17 燃料电池系统的氢气计量比确定方法 WO2024093197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211358083.2A CN115548386B (zh) 2022-11-01 2022-11-01 燃料电池系统的氢气计量比确定方法和燃料电池系统
CN202211358083.2 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093197A1 true WO2024093197A1 (zh) 2024-05-10

Family

ID=84720287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094820 WO2024093197A1 (zh) 2022-11-01 2023-05-17 燃料电池系统的氢气计量比确定方法

Country Status (2)

Country Link
CN (1) CN115548386B (zh)
WO (1) WO2024093197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115548386B (zh) * 2022-11-01 2023-05-12 上海氢晨新能源科技有限公司 燃料电池系统的氢气计量比确定方法和燃料电池系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310046A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd 燃料電池の水素循環量制御装置及び燃料電池の水素循環量制御方法
CN101577339A (zh) * 2008-05-06 2009-11-11 通用汽车环球科技运作公司 用于燃料电池系统的阳极回路观测器
KR20120054141A (ko) * 2010-11-19 2012-05-30 현대자동차주식회사 연료전지 시스템의 수소 재순환량 산출 방법
CN111952643A (zh) * 2020-08-19 2020-11-17 上海捷氢科技有限公司 一种阳极入口湿度的控制方法及相关装置
CN112510229A (zh) * 2020-12-04 2021-03-16 上海捷氢科技有限公司 一种燃料电池系统、及其氢气计量比的计算方法及装置
CN113067018A (zh) * 2021-03-02 2021-07-02 中国重汽集团济南动力有限公司 一种燃料电池氢气循环测试系统
CN113594508A (zh) * 2021-06-10 2021-11-02 东风汽车集团股份有限公司 燃料电池系统的控制方法、控制装置和燃料电池系统
CN114204081A (zh) * 2021-12-08 2022-03-18 上海澄朴科技有限公司 一种燃料电池系统氢气循环流量检测装置
CN114243064A (zh) * 2021-12-08 2022-03-25 中国科学院大连化学物理研究所 一种燃料电池阳极氢气控制方法及装置
CN115548386A (zh) * 2022-11-01 2022-12-30 上海氢晨新能源科技有限公司 燃料电池系统的氢气计量比确定方法和燃料电池系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267852A (zh) * 2021-11-30 2022-04-01 上海氢晨新能源科技有限公司 一种电池的实时氮与水管理的装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310046A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd 燃料電池の水素循環量制御装置及び燃料電池の水素循環量制御方法
CN101577339A (zh) * 2008-05-06 2009-11-11 通用汽车环球科技运作公司 用于燃料电池系统的阳极回路观测器
KR20120054141A (ko) * 2010-11-19 2012-05-30 현대자동차주식회사 연료전지 시스템의 수소 재순환량 산출 방법
CN111952643A (zh) * 2020-08-19 2020-11-17 上海捷氢科技有限公司 一种阳极入口湿度的控制方法及相关装置
CN112510229A (zh) * 2020-12-04 2021-03-16 上海捷氢科技有限公司 一种燃料电池系统、及其氢气计量比的计算方法及装置
CN113067018A (zh) * 2021-03-02 2021-07-02 中国重汽集团济南动力有限公司 一种燃料电池氢气循环测试系统
CN113594508A (zh) * 2021-06-10 2021-11-02 东风汽车集团股份有限公司 燃料电池系统的控制方法、控制装置和燃料电池系统
CN114204081A (zh) * 2021-12-08 2022-03-18 上海澄朴科技有限公司 一种燃料电池系统氢气循环流量检测装置
CN114243064A (zh) * 2021-12-08 2022-03-25 中国科学院大连化学物理研究所 一种燃料电池阳极氢气控制方法及装置
CN115548386A (zh) * 2022-11-01 2022-12-30 上海氢晨新能源科技有限公司 燃料电池系统的氢气计量比确定方法和燃料电池系统

Also Published As

Publication number Publication date
CN115548386B (zh) 2023-05-12
CN115548386A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Chen et al. Optimal interval of air stoichiometry under different operating parameters and electrical load conditions of proton exchange membrane fuel cell
Zhu et al. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system
WO2024093197A1 (zh) 燃料电池系统的氢气计量比确定方法
Bao et al. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—I. Control-oriented modeling
Chu et al. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell
Wang et al. Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control
CN109902435B (zh) 质子交换膜燃料电池建模方法、存储介质及计算机设备
Ismail et al. An efficient mathematical model for air-breathing PEM fuel cells
Jiang et al. Parameter setting and analysis of a dynamic tubular SOFC model
Asensio et al. Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies
Li et al. Numerical investigations of effects of the interdigitated channel spacing on overall performance of vanadium redox flow batteries
Wang et al. Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs
Li et al. Experimental study on anode and cathode pressure difference control and effects in a proton exchange membrane fuel cell system
Feng et al. Optimization of maximum power density output for proton exchange membrane fuel cell based on a data-driven surrogate model
CN112510229B (zh) 一种燃料电池系统、及其氢气计量比的计算方法及装置
CN105701734B (zh) 一种直流配电网含变流器的负荷功率电压特性仿真模型及仿真方法
Fu et al. Fuel cell humidity modeling and control using cathode internal water content
Xu et al. Self-humidification of a polymer electrolyte membrane fuel cell system with cathodic exhaust gas recirculation
Grasser et al. An analytical, control-oriented state space model for a PEM fuel cell system
Johnson et al. Performance of a proton exchange membrane fuel cell stack
Clemente et al. Experimental validation of a vanadium redox flow battery model for state of charge and state of health estimation
Kishor et al. Fuzzy modeling of fuel cell based on mutual information between variables
Hao et al. Effects of temperature, inlet gas pressure and humidity on PEM water contents and current density distribution
Han et al. Measurement of water concentration along the straight channel of proton exchange membrane fuel cell
Radisavljevic On controllability and system constraints of the linear models of proton exchange membrane and solid oxide fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884139

Country of ref document: EP

Kind code of ref document: A1