WO2024093160A1 - 一种麦克风传感器幅值一致性检测装置及检测方法 - Google Patents

一种麦克风传感器幅值一致性检测装置及检测方法 Download PDF

Info

Publication number
WO2024093160A1
WO2024093160A1 PCT/CN2023/089955 CN2023089955W WO2024093160A1 WO 2024093160 A1 WO2024093160 A1 WO 2024093160A1 CN 2023089955 W CN2023089955 W CN 2023089955W WO 2024093160 A1 WO2024093160 A1 WO 2024093160A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
sound source
sound
test
signal
Prior art date
Application number
PCT/CN2023/089955
Other languages
English (en)
French (fr)
Inventor
郑希
乔俊贤
吕随心
金淼
刘力
Original Assignee
一汽奔腾轿车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一汽奔腾轿车有限公司 filed Critical 一汽奔腾轿车有限公司
Publication of WO2024093160A1 publication Critical patent/WO2024093160A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements

Definitions

  • the invention belongs to the field of automobile technology, and in particular relates to a device and method for detecting amplitude consistency of a microphone sensor.
  • Microphone sensors are used as the main equipment for noise testing in automotive NVH testing. Microphone sensors are highly sensitive instruments and need to be calibrated by a calibrator before use. However, microphone sensors cannot be regularly calibrated and maintained after factory calibration.
  • the purpose of the present invention is to provide a microphone sensor amplitude consistency detection device and a microphone sensor amplitude consistency detection method.
  • a microphone sensor amplitude consistency detection device comprises a sound source section 1, a test section 5 and a grille 11; one end of the sound source section 1 is a sound source inlet 3, and the other end is connected to the test section 5 through a bayonet 4; the connecting end of the test section 5 and the sound source section 1 is fixed with a microphone fixing frame 6 through a connecting rod 8; a cable groove 9 is provided in the middle of the connecting rod 8; the other end of the test section 5 is fixed to the grille 11 through a thread 14; a plurality of exhaust ports 15 are provided on the surface of the grille 11; a hand rod 12 is fixed in the middle of the grille 11.
  • the sound source section 1 and the test section 5 are both cylindrical and connected to form a cylindrical test space, and the inner diameter of the sound source section 1 and the outer diameter of the test section 5 are in a clearance fit.
  • the bayonet 4 is rectangular and is arranged at one end of the sound source section 1 .
  • glass wool I2 is arranged inside the sound source section 1
  • glass wool II7 is arranged inside the test section 5
  • sound-absorbing cotton 13 is fixed inside the grille 11 .
  • the microphone fixing bracket 6 is located in the middle of the cylindrical test space and is provided with three fixing openings, which are all parallel to the cylindrical axis and are equidistant from each other.
  • the cable groove 9 is arranged on the upper surface of the connecting rod 8 , and the end of the connecting rod 8 protrudes from the cylindrical surface of the testing section 5 to form a rectangular buckle 10 .
  • a method for testing the amplitude consistency of a microphone sensor is implemented by a device for detecting the amplitude consistency of a microphone sensor, and comprises the following steps:
  • Each microphone forms a frequency and sound pressure level distribution curve, where the horizontal axis is frequency and the vertical axis is sound pressure level.
  • the consistency of microphone accuracy is determined by comparing the difference range of the sound pressure levels of the three microphones in different frequency bands.
  • test environment and the fixing status of the microphone need to be checked before the test.
  • the test must be carried out in a semi-anechoic room with no noise interference around.
  • the microphone must be fixed parallel to the detection device and the plane formed by the three microphone heads must be perpendicular to the axis of the detection device.
  • an excitation signal is generated according to the reference excitation signal information through a data acquisition device, and the excitation signal is sent to a signal amplifier, which amplifies the excitation signal and sends it to a volume sound source; the volume sound source receives the excitation signal, converts the excitation signal into a sound signal, and sends the sound signal to the microphone group; the microphone group to be tested picks up the sound signal and processes it to obtain a data signal, and the digital signal is transmitted to the terminal for data processing and then outputs a response function.
  • the difference between the two sets of data is compared and analyzed with the corresponding set error range to determine the accuracy and stability of the microphone in each frequency band.
  • the present invention has the following beneficial effects:
  • the amplitude consistency detection method of the microphone sensor of the present invention releases stable sound signals through a volume sound source, and the microphone to be detected receives these signals and processes these sound signals into digital signals. After the digital signals are processed, the frequency response function curve is output, and the response data of the microphone is subjected to error analysis. If the error in each frequency band of the wind is not greater than the set error value, then the batch of microphones is correctly detected and can be used for subsequent tests;
  • the operator only needs to fix the microphone in the microphone fixing frame and start the volume sound source to perform the test.
  • the operation is simple and convenient. At the same time, external noise and sound source noise reflection are isolated, and the interference of the external environment on the test results is reduced.
  • the detection device of the present invention can more accurately and quantitatively test and obtain the sound values in each frequency band of the microphone. By comparing the errors of multiple microphones in each frequency band horizontally and comparing and analyzing the initial frequency response functions, the accuracy error of the microphone can be determined, providing more accurate equipment support for the test.
  • FIG1 is a schematic diagram of the overall structure of a device for detecting amplitude consistency of a microphone sensor
  • FIG2 is a schematic cross-sectional view of a sound source section of a microphone sensor amplitude consistency detection device
  • FIG3 is a partial schematic diagram of a test section of a microphone sensor amplitude consistency detection device
  • FIG4 is a schematic diagram of three sides of the grille of the microphone sensor amplitude consistency detection device
  • FIG5 is a graph showing a set of microphone sensor frequency and sound pressure level 1/3 octave bands
  • FIG6 is a comparison diagram of the spectrum curves of the initial response of the sound source and the receiving response of the microphone
  • FIG. 7 is a flowchart of a method for testing the amplitude consistency of a microphone sensor
  • FIG8 is a working principle of a microphone sensor amplitude consistency test method
  • the device for detecting amplitude consistency of a microphone sensor of the present invention includes a sound source section 1 , a test section 5 and a grille 11 .
  • the sound source section 1 is cylindrical, and glass wool I2 is pasted inside the middle of the cylinder for sound insulation and sound absorption; one end of the sound source section 1 is a sound source inlet 3, and the other end is connected to the test section 5 through a bayonet 4.
  • the inner diameter of the sound source section 1 and the outer diameter of the test section 5 form a clearance fit.
  • the test section 5 is cylindrical, with a circle of glass wool II 7 glued and fixed inside.
  • One end of the test section 5, which is connected to the sound source section 1, is fixed with a microphone fixing bracket 6 through a connecting rod 8.
  • the microphone fixing bracket 6 is in the middle of the cylindrical test space formed by the sound source section 1 and the test section 5. Its three fixing ports are aligned with the axis of the cylinder. Parallel and equidistant.
  • a cable groove 9 is provided in the middle of the connecting rod 8 for placing cables.
  • test section 5 The other end of the test section 5 is fixedly connected to the grid 11 via a thread 14 .
  • the surface of the grille 11 is provided with an exhaust port 15.
  • a hand bar 12 is fixed in the middle of the grille 11, and the inner side of the grille is covered with sound-absorbing cotton 13.
  • the connecting rod 8 has a cable groove 9, and the end of the connecting rod 8 protrudes from the cylindrical surface of the test section 5 to form a buckle 10.
  • the bayonet 4 and the buckle 10 are both rectangular, and the bayonet 4 and the buckle 10 can be fixed by clamping.
  • a method for detecting the amplitude consistency of a microphone sensor is implemented by a device for detecting the amplitude consistency of a microphone sensor, and comprises the following steps:
  • Step 1 Place three microphone sensors to be tested on the microphone fixing bracket 6;
  • Step 2 straighten the microphone cable along the cable groove 9 and then take it out from the buckle 10 to connect to the data acquisition device;
  • Step 3 Connect the sound source segment 1 to the test segment 5 and fix them through the bayonet 4;
  • Step 4 Connect the grid 11 and the test section 5 via the thread 14;
  • Step 5 Place the volume sound source opening into the sound source inlet 3, turn on the volume sound source, and test the sound signal through the microphone after it stabilizes. Test it multiple times continuously to ensure data consistency.
  • Step 6 Perform Fourier transform (FFT) on the collected sound signal to generate a frequency response function (FRF).
  • FFT Fourier transform
  • Each microphone forms a frequency and sound pressure level distribution curve, where the horizontal axis is frequency and the vertical axis is sound pressure level.
  • the consistency of microphone accuracy is determined by horizontally comparing the difference range of the sound pressure levels of the three microphones in different frequency bands, as shown in Figure 5.
  • by vertically comparing the spectrum difference between the initial signal of the volume sound source and the microphone receiving signal it is determined whether the test results of the microphone sensor group are all within the normal range to prevent all microphones in the sensor group from being damaged and affecting the results of the horizontal comparison. Compare the spectrum graphs As shown in Figure 6.
  • the volume sound source generates an excitation signal according to the input digital signal, and sends the excitation signal to the sound playback device in the volume sound source.
  • the microphone to be tested is used to pick up the sound signal and obtain a digital signal after processing.
  • the terminal processes the digital signal and finally outputs it as a frequency response function.
  • the equipment used in this test method includes a terminal, a data acquisition device, a power amplifier, a volume sound source, a microphone receiving end, and a microphone signal conversion end.
  • the workflow between the equipment is shown in Figure 7.
  • a reference excitation signal is input through the terminal. After the reference excitation signal enters the data acquisition device, an excitation signal is generated, and it is amplified by the power amplifier and transmitted to the volume sound source; the volume sound source receives the excitation signal and converts it into a sound signal. After the sound signal is received by the microphone, it is converted into a digital signal through the microphone signal conversion end.
  • the digital signal is transmitted back to the terminal and a series of data processing is performed to obtain a related function curve.
  • the related function curves are compared horizontally with each other and vertically with the initial excitation signal curve. If the value is within a certain error range and is qualified, it can be used for subsequent tests.
  • Microphone sensor amplitude consistency detection method before the test, the test environment and the microphone fixing status need to be checked: the test must be in a semi-anechoic room with no noise interference around; the microphone must be fixed parallel to the detection device and the three microphone heads must be in the same plane and perpendicular to the center axis of the device.
  • the present invention adopts a multi-target consistency comparison method to more accurately and quantitatively test the data values of multiple sensors in the same test environment, and repeats the test at least three times or more.
  • the accuracy error of the microphone sensor is obtained through comparative analysis, thereby ensuring the accuracy of the test equipment before the test and ensuring the accuracy of the test results.
  • the principle of the microphone sensor amplitude consistency calibration of the present invention is:
  • the data acquisition device generates an excitation signal based on the reference excitation signal information, and sends the excitation signal to the signal amplifier.
  • the signal amplifier amplifies the excitation signal and sends it to the volume sound source;
  • the volume sound source receives the excitation signal, converts the excitation signal into a sound signal, and sends the sound signal to the microphone group;
  • the microphone group to be tested picks up the sound signal and processes it to obtain a data signal.
  • the digital signal is transmitted to the terminal for data processing and then outputs a response function;
  • the microphone sensor amplitude consistency detection method of the present invention compares the frequency response functions corresponding to the response data obtained by processing the sound digital signals received by different microphones horizontally and the frequency response functions output after the sound processing between the sound source and the microphone vertically, compares and analyzes the difference between the two groups of data with the corresponding set error range, and judges the accuracy and stability of the microphone in each frequency band.
  • the microphone sensor amplitude consistency detection method of the present invention solves the problems of being unable to judge the subtle drift of the microphone sensor sensitivity, abnormal reception in certain frequency bands when the receiving end receives the sound signal, and the consistency of the microphone data by analyzing the consistency of the data of multiple microphone sensors. It can more accurately and quantitatively test and obtain the sound value in each frequency band of the microphone, and judge the accuracy error of the microphone by comparing the errors of multiple microphones in each frequency band horizontally and comparing and analyzing the initial frequency response functions, thereby providing more accurate equipment support for the test.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种麦克风传感器幅值一致性检测装置及检测方法,检测装置包括声源段、测试段及格栅,声源段一端为声源进口,另一端与测试段连接,测试段与声源段连接端通过连接杆固定有麦克风固定架,连接杆中间有一凹槽,测试段另一端连接格栅,格栅表面有排气口,中间固定手杆。检测方法通过体积声源释放稳定声音信号,待检测的麦克风接收这些信号,并将这些声音信号处理成数字信号,数字信号经处理后输出频响函数曲线,将麦克风的响应数据进行误差分析,若麦克风各频率段内的误差不大于所设定的误差值,则这批麦克风检测无误,可进行后续测试使用;检测装置操作简便,同时隔绝外部噪声及声源噪声反射,减少外部环境对试验结果的干扰。

Description

一种麦克风传感器幅值一致性检测装置及检测方法 技术领域
本发明属于汽车技术领域,具体涉及一种麦克风传感器幅值一致性检测装置及检测方法。
背景技术
麦克风传感器作为噪声测试的主要设备应用于汽车NVH测试中,麦克风传感器属于高灵敏度仪器,使用前需要通过标定器标定其灵敏度。但麦克风传感器本身经过出厂检定之后,并不能进行定期地检定维护。
日常测试中,由于麦克风传感器使用频率高、使用场景复杂,很难避免麦克风传感器轻微磕碰,由此造成的麦克风的损伤以及较小的精度漂移在测试中很难被发现,影响测试结果的准确性。
发明内容
本发明的目的就在于提供一种麦克风传感器幅值一致性检测装置,还提供一种麦克风传感器幅值一致性检测方法,通过分析多支麦克风传感器数据一致性,以解决麦克风传感器灵敏度细微漂移无法判断、接收端在接收声音信号时某些频率段内收入异常以及麦克风数据一致性等的问题,在缺少检定设备且不能及时到检定机构进行检测时,可判断一个麦克风是否能够正常工作,检测使用中麦克风传感器的精度,减少试验误差。
本发明的目的是通过以下技术方案实现的:
一种麦克风传感器幅值一致性检测装置,包括声源段1、测试段5和格栅11;所述声源段1一端为声源进口3,另一端通过卡口4与测试段5连接;所述测试段5与声源段1连接端通过连接杆8固定有麦克风固定架6;所述连接杆8中间设有一线缆槽9;所述测试段5另一端通过螺纹14与格栅11固定;所述格栅11表面有多个排气口15;所述格栅11中间固定手杆12。
进一步地,所述声源段1与测试段5均为圆筒形,连接组成圆筒形测试空间,声源段1的内径与测试段5的外径成间隙配合。
进一步地,所述卡口4为矩形,设置在声源段1一端。
进一步地,所述声源段1内部设置有玻璃棉Ⅰ2,测试段5内部设置有玻璃棉Ⅱ7,格栅11内部固定有吸音棉13。
更进一步地,所述麦克风固定支架6在圆筒形测试空间中间,其上设有三个固定口,三个固定口均与圆筒形轴线平行且距离相等。
进一步地,所述线缆槽9设置在连接杆8上表面,连接杆8末端突出测试段5圆筒面形成矩形的卡扣10。
一种麦克风传感器幅值一致性测试方法,通过一种麦克风传感器幅值一致性检测装置实现,包括以下步骤:
A、将三个需要检测的麦克风传感器放入麦克风固定架6上面;
B、将麦克风连接线沿线缆槽9中理顺后从卡扣10出口中出来连接数据采集设备;
C、将声源段1与测试段5连接并通过卡口4固定;
D、将格栅11与测试段5通过螺纹14连接;
E、将体积声源开口放入声源进口3中,打开体积声源,待稳定后通过麦克风测试声音信号,连续测试多次;
F、对采集到的声音信号进行傅里叶变换将时域信号转化为频率信号,每个麦克风形成一个频率和声压级的分布曲线,其中横坐标为频率,纵坐标为声压级,通过对比不同频率段内三个麦克风声压级的差值范围判断麦克风精度的一致性。
进一步地,测试前需要对试验环境及麦克风固定状态进行检查,测试换进必须是半消音室内,周围没有噪声源干扰,麦克风必须是与检测装置平行固定且三个麦克风头部所成平面与检测装置轴线垂直。
进一步地,通过数据采集设备根据参考激励信号信息生成激励信号,将激励信号发送到信号放大器,信号放大器将激励信号放大后发送给体积声源;体积声源接收激励信号,将激励信号转换为声音信号,并向麦克风组发出声音信号;待测麦克风组拾取声音信号并进行处理获取数据信号,数字信号输送给终端进行数据处理后输出响应函数。
进一步地,通过对不同麦克风之间接受声音数字信号经过处理得到的响应数据对应的频响函数之间的横向比较以及声源与麦克风之间的声音处理后输出的频响函数的纵向比较,将两组数据差值与对应的设定误差范围进行对比分析,判断在各个频率段内麦克风的精确度以及稳定性。
与现有技术相比,本发明的有益效果是:
本发明麦克风传感器幅值一致性检测方法,通过体积声源释放稳定声音信号,待检测的麦克风接收这些信号,并将这些声音信号处理成数字信号,数字信号经处理后输出频响函数曲线,将麦克风的响应数据进行误差分析,若麦克 风各频率段内的误差不大于所设定的误差值,则这批麦克风检测无误,可以进行后续测试使用;
本发明在进行麦克风检测时,操作者只需将麦克风固定在麦克风固定架中,启动体积声源即可进行测试,操作简便,同时隔绝外部噪声及声源噪声反射,减少外部环境对试验结果的干扰;
本发明检测装置能够更准确及量化地测试并得到麦克风各个频率段内的声音数值,通过多支麦克风横向各频率段误差比较以及初始频响函数对比分析,判断麦克风的精度误差,为测试提供更准确的设备支撑。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是麦克风传感器幅值一致性检测装置整体结构示意图;
图2是麦克风传感器幅值一致性检测装置声源段剖面示意图;
图3是麦克风传感器幅值一致性检测装置测试段局部示意图;
图4是麦克风传感器幅值一致性检测装置格栅三面示意图;
图5是一组麦克风传感器频率与声压级1/3倍频程曲线图;
图6是声源初始响应与麦克风接受响应频谱曲线对比图;
图7是麦克风传感器幅值一致性测试方法工作流程图;
图8是麦克风传感器幅值一致性测试方法工作原理;
图中:1.声源段 2.玻璃棉Ⅰ 3.声源进口 4.卡口 5.测试段 6.麦克风固定架 7.玻璃棉Ⅱ 8.连接杆 9.线缆槽 10.卡扣 11.格栅 12.手杆 13.吸音棉 14.螺纹 15.排气口。
具体实施方式
下面结合实施例对本发明作进一步说明:
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
如图1-图4,本发明麦克风传感器幅值一致性检测装置,包括声源段1、测试段5和格栅11。
所述声源段1为圆筒形,圆筒中间内部贴有玻璃棉Ⅰ2,用于隔音及吸音;声源段1一端为声源进口3,另一端通过卡口4与测试段5连接。所述声源段1的内径与测试段5的外径成间隙配合。
所述测试段5为圆筒形,内部粘贴固定有一圈玻璃棉Ⅱ7,其一端即与声源段1连接侧通过连接杆8固定有麦克风固定架6。所述麦克风固定支架6在声源段1与测试段5连接组成的圆筒形测试空间中间,其三个固定口与圆筒形轴线 平行且距离相等。
所述连接杆8中间有一线缆槽9,用于放置线缆。
所述测试段5另一端通过螺纹14固定连接格栅11。
所述格栅11表面有排气口15。所述格栅11中间固定手杆12,所述格栅内侧覆盖有吸音棉13。
所述连接杆8内开有线缆槽9,连接杆8末端突出测试段5圆筒面形成卡扣10。所述卡口4与卡扣10均为矩形,卡口4与卡扣10可以卡接固定。
一种麦克风传感器幅值一致性检测方法,通过麦克风传感器幅值一致性检测装置实现,包括以下步骤:
步骤一、将三个需要检测的麦克风传感器放入麦克风固定架6上面;
步骤二、将麦克风连接线沿线缆槽9中理顺后从卡扣10出口中出来连接数据采集设备;
步骤三、将声源段1与测试段5连接并通过卡口4固定;
步骤四、将格栅11与测试段5通过螺纹14连接;
步骤五、将体积声源开口放入声源进口3中,打开体积声源,待稳定后通过麦克风测试声音信号,连续测试多次,保证数据一致性;
步骤六、对采集到的声音信号进行傅里叶变换(FFT)生成频响函数(FRF),每个麦克风形成一个频率和声压级的分布曲线,其中横坐标为频率,纵坐标为声压级。通过横向对比不同频率段内三个麦克风声压级的差值范围判断麦克风精度的一致性,如图5所示。同时,通过纵向对比体积声源初始信号与麦克风接受信号之间的频谱差值,判断麦克风传感器组测试结果是否均在正常范围内,防止传感器组中麦克风出现全部损坏的情况影响横向对比的结果,对比频谱图 如图6所示。
其中,所述体积声源根据输入的数字信号生成激励信号,并将激励信号发送到体积声源中的放音设备中。
所述待测麦克风用于拾取所述声音信号,并进行处理后获得数字信号,在终端对数字信号进行处理后最终输出为频响函数。
该测试方法使用到的设备有终端、数据采集设备、功率放大器、体积声源、麦克风接收端以及麦克风信号转换端,设备间的工作流程如图7所示。通过终端输入一个参考激励信号,参考激励信号进入数据采集设备后生成激励信号,并通过功率放大器放大后传输给体积声源;体积声源接受激励信号,并将激励信号转变为声音信号,声音信号被麦克风接收后通过麦克风信号转换端转换为数字信号,数字信号输送回终端并经过一系列数据处理后得到相关函数曲线,相关函数曲线互相之间横向比较并与初始激励信号曲线纵向比较,数值在一定误差范围内及合格,可进行后续测试使用。
麦克风传感器幅值一致性检测方法,测试前需要对试验环境及麦克风固定状态进行检查:所述测试换进必须是半消音室内,周围没有噪声源干扰;所述麦克风必须是与检测装置平行固定且三个麦克风头部必须在一个平面且与装置中轴线垂直。
本发明通过多目标一致性对比方法,更准确和量化地测试多个传感器在同一试验环境下得数据值,并重复测试至少三次及以上,通过对比分析得到麦克风传感器的精度误差,从而能够在试验前确保试验设备精度,保证试验结果的准确性。
如图8所示,本发明麦克风传感器幅值一致性校准的原理为:
1、数据采集设备根据参考激励信号信息生成激励信号,将激励信号发送到信号放大器,信号放大器将激励信号放大后发送给体积声源;
2、体积声源接收激励信号,将激励信号转换为声音信号,并向麦克风组发出声音信号;
3、待测麦克风组拾取所述声音信号并进行处理获取数据信号,数字信号输送给终端进行数据处理后输出响应函数;
4、麦克风的响应数据拉到频谱图中比较每个频率段内的麦克风组横向对比误差以及与初始频响函数对比,进行误差分析,若麦克风各频率内的误差不大于所设定的误差值且各个麦克风一致性均在试验影响范围内,则这批麦克风校准无误,可以进行后续测试使用。
本发明麦克风传感器幅值一致性检测方法,通过对不同麦克风之间接受声音数字信号经过处理得到的响应数据对应的频响函数之间的横向比较以及声源与麦克风之间的声音处理后输出的频响函数的纵向比较,将两组数据差值与对应的设定误差范围进行对比分析,判断在各个频率段内麦克风的精确度以及稳定性。
本发明麦克风传感器幅值一致性检测方法,通过分析多支麦克风传感器数据一致性,解决了麦克风传感器灵敏度细微漂移无法判断、接收端在接收声音信号时某些频率段内收入异常以及麦克风数据一致性等问题,能够更准确及量化地测试并得到麦克风各个频率段内的声音数值,通过多支麦克风横向各频率段误差比较以及初始频响函数对比分析,判断麦克风的精度误差,为测试提供更准确的设备支撑。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员 会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种麦克风传感器幅值一致性检测装置,其特征在于:包括声源段(1)、测试段(5)和格栅(11);所述声源段(1)一端为声源进口(3),另一端通过卡口(4)与测试段(5)连接;所述测试段(5)与声源段(1)连接端通过连接杆(8)固定有麦克风固定架(6);所述连接杆(8)中间设有一线缆槽(9);所述测试段(5)另一端通过螺纹(14)固定连接格栅(11);所述格栅(11)表面有多个排气口(15);所述格栅(11)中间固定手杆(12)。
  2. 根据权利要求1所述一种麦克风传感器幅值一致性检测装置,其特征在于:所述声源段(1)与测试段(5)均为圆筒形,连接组成圆筒形测试空间,声源段(1)的内径与测试段(5)的外径成间隙配合。
  3. 根据权利要求1所述一种麦克风传感器幅值一致性检测装置,其特征在于:所述卡口(4)为矩形,设置在声源段(1)一端。
  4. 根据权利要求1所述一种麦克风传感器幅值一致性检测装置,其特征在于:所述声源段(1)内部设置有玻璃棉Ⅰ(2),测试段(5)内部设置有玻璃棉Ⅱ(7),格栅(11)内部固定有吸音棉(13)。
  5. 根据权利要求1所述一种麦克风传感器幅值一致性检测装置,其特征在于:所述麦克风固定支架(6)在圆筒形测试空间中间,其上设有三个固定口,三个固定口均与圆筒形轴线平行且距离相等。
  6. 根据权利要求1所述一种麦克风传感器幅值一致性检测装置,其特征在于:所述线缆槽(9)设置在连接杆(8)上表面,连接杆(8)末端突出测试段(5)圆筒面形成矩形的卡扣(10)。
  7. 一种麦克风传感器幅值一致性测试方法,其特征在于:通过权利要求1所述的一种麦克风传感器幅值一致性检测装置实现,包括以下步骤:
    A、将三个需要检测的麦克风传感器放入麦克风固定架(6)上面;
    B、将麦克风连接线沿线缆槽(9)中理顺后从卡扣(10)出口中出来连接数据采集设备;
    C、将声源段(1)与测试段(5)连接并通过卡口(4)固定;
    D、将格栅(11)与测试段(5)通过螺纹(14)连接;
    E、将体积声源开口放入声源进口(3)中,打开体积声源,待稳定后通过麦克风测试声音信号,连续测试多次;
    F、对采集到的声音信号进行傅里叶变换将时域信号转化为频率信号,每个麦克风形成一个频率和声压级的分布曲线,其中横坐标为频率,纵坐标为声压级,通过对比不同频率段内三个麦克风声压级的差值范围判断麦克风精度的一致性。
  8. 根据权利要求7所述的一种麦克风传感器幅值一致性测试方法,其特征在于:测试前需要对试验环境及麦克风固定状态进行检查,测试换进必须是半消音室内,周围没有噪声源干扰,麦克风必须是与检测装置平行固定且三个麦克风头部所成平面与检测装置轴线垂直。
  9. 根据权利要求7所述的一种麦克风传感器幅值一致性测试方法,其特征在于:通过数据采集设备根据参考激励信号信息生成激励信号,将激励信号发送到信号放大器,信号放大器将激励信号放大后发送给体积声源;体积声源接收激励信号,将激励信号转换为声音信号,并向麦克风组发出声音信号;待测麦克风组拾取声音信号并进行处理获取数据信号,数字信号输送给终端进行数据处理后输出响应函数。
  10. 根据权利要求7中所述的一种麦克风传感器幅值一致性测试方法,其特征在于:通过对不同麦克风之间接受声音数字信号经过处理得到的响应数据对应的频响函数之间的横向比较以及声源与麦克风之间的声音处理后输出的频 响函数的纵向比较,将两组数据差值与对应的设定误差范围进行对比分析,判断在各个频率段内麦克风的精确度以及稳定性。
PCT/CN2023/089955 2022-11-02 2023-04-22 一种麦克风传感器幅值一致性检测装置及检测方法 WO2024093160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211359683.0A CN115604640A (zh) 2022-11-02 2022-11-02 一种麦克风传感器幅值一致性检测装置及检测方法
CN202211359683.0 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024093160A1 true WO2024093160A1 (zh) 2024-05-10

Family

ID=84850997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089955 WO2024093160A1 (zh) 2022-11-02 2023-04-22 一种麦克风传感器幅值一致性检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN115604640A (zh)
WO (1) WO2024093160A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115604640A (zh) * 2022-11-02 2023-01-13 一汽奔腾轿车有限公司(Cn) 一种麦克风传感器幅值一致性检测装置及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259829A1 (en) * 2004-05-24 2005-11-24 Cochlear Limited Stand-alone microphone test system for a hearing device
CN102175299A (zh) * 2011-01-20 2011-09-07 奇瑞汽车股份有限公司 一种噪声频响函数的测量方法及测量系统
CN111510842A (zh) * 2020-04-17 2020-08-07 北京百度网讯科技有限公司 麦克风测试系统和测试方法
CN115604640A (zh) * 2022-11-02 2023-01-13 一汽奔腾轿车有限公司(Cn) 一种麦克风传感器幅值一致性检测装置及检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050259829A1 (en) * 2004-05-24 2005-11-24 Cochlear Limited Stand-alone microphone test system for a hearing device
CN102175299A (zh) * 2011-01-20 2011-09-07 奇瑞汽车股份有限公司 一种噪声频响函数的测量方法及测量系统
CN111510842A (zh) * 2020-04-17 2020-08-07 北京百度网讯科技有限公司 麦克风测试系统和测试方法
CN115604640A (zh) * 2022-11-02 2023-01-13 一汽奔腾轿车有限公司(Cn) 一种麦克风传感器幅值一致性检测装置及检测方法

Also Published As

Publication number Publication date
CN115604640A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US5117676A (en) Leak detector for natural gas pipelines
WO2024093160A1 (zh) 一种麦克风传感器幅值一致性检测装置及检测方法
US5172597A (en) Method and application for measuring sound power emitted by a source in a background of ambient noise
US10317275B2 (en) Vibration monitoring systems
EP2207044B1 (en) A signal phase difference measurement method, apparatus and system
CN102426198A (zh) 一种基于匹配型光纤布拉格光栅的声发射信号传感系统
Stanzial et al. Calibration of pressure-velocity probes using a progressive plane wave reference field and comparison with nominal calibration filters
CN101832813A (zh) 基于虚拟仪器技术的噪声和振动测量系统
CN112378512B (zh) 一种多测点压电式振动传感器的检查及使用方法
CN117171516B (zh) 一种x射线测厚仪数据优化校正方法
CN110049423A (zh) 一种利用广义互相关和能量谱检测麦克风的方法和系统
CN117330882A (zh) 一种用于滤波器的自动化测试方法及系统
CN210071661U (zh) 一种激光气体分析仪
CN115236419B (zh) 一种实际电磁环境信号的电场强度标定方法
CN209640197U (zh) 带有参考气室的光声气体浓度检测装置
US6717659B2 (en) Method and apparatus for detecting airlines in optical fibers
CN111190220A (zh) 一种声波信号的探测方法及装置
JP2007322437A (ja) ファイバブラッググレーティング素子反射光波長計測処理装置及び処理方法
KR100693315B1 (ko) 연속파 모드에서 위상검출장치를 이용한 멀티팩터 시험장치 및 그 방법
CN113763679B (zh) 气体绝缘封闭式组合电器异响监测方法及装置
US20230114896A1 (en) Noise detection device and method thereof
US11499866B2 (en) Device for accurately measuring mechanical vibration by photon counter
CN117232644B (zh) 一种基于声学原理的变压器声音监测故障诊断方法及系统
CN216117676U (zh) 一种快速诊断振动试验产品上的传感器信号质量的系统
CN112924415B (zh) 一种激光甲烷遥测设备数据处理方法及系统