WO2024092829A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024092829A1
WO2024092829A1 PCT/CN2022/130137 CN2022130137W WO2024092829A1 WO 2024092829 A1 WO2024092829 A1 WO 2024092829A1 CN 2022130137 W CN2022130137 W CN 2022130137W WO 2024092829 A1 WO2024092829 A1 WO 2024092829A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
cell
serving cell
preset threshold
terminal device
Prior art date
Application number
PCT/CN2022/130137
Other languages
English (en)
French (fr)
Inventor
孙黎
王文会
刘鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/130137 priority Critical patent/WO2024092829A1/zh
Publication of WO2024092829A1 publication Critical patent/WO2024092829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the embodiments of the present application relate to the field of wireless communications, and in particular, to a communication method and device.
  • the architecture of the keyless secure transmission system is shown in Figure 1.
  • the keyless secure transmission system consists of a communication module and a security module.
  • the communication module is the modules in the solid box in Figure 1.
  • the communication module uses physical layer security transmission technology (for example, beamforming and artificial noise schemes) to achieve information transmission and provide basic security capabilities.
  • the security module is the modules in the dotted box in Figure 1.
  • the security module is constructed using cryptographic methods to enable the above-mentioned keyless secure transmission system to achieve provable security strength.
  • This architecture combines cryptographic methods (but different from classical cryptographic techniques such as encryption and decryption) with physical layer security technology, with the goal of achieving a keyless intrinsic security mechanism.
  • physical layer security technology is first used to create a very high error platform (for example, greater than 0.1) at non-target nodes, that is, to introduce random entropy in illegal channels; on this basis, a pre-processing module is introduced in the transmitter, for example, this module is a randomness extractor, which can extract and diffuse the random entropy introduced by physical layer security technology on illegal channels, and obtain an equivalent key with approximately uniform distribution, which is used to make each bit in the information bit group obtain provable security strength.
  • the architecture of the keyless secure transmission system is a new secure transmission architecture, which is different from the cryptography-based secure communication system widely used in practice, and also different from the secure communication system simply implemented by physical layer security technology.
  • a performance indicator to measure and evaluate the security of the keyless secure transmission system. After defining the performance indicator, how to perform cell reselection and/or cell switching based on the performance indicator is a problem worthy of attention.
  • the present application provides a communication method and apparatus for defining a performance indicator for evaluating the security of a keyless secure transmission system, and performing cell reselection and/or cell switching according to the performance indicator.
  • the present application provides a communication method, the method comprising:
  • the terminal device receives the bit error platform of the serving cell from the serving cell; the terminal device determines whether the bit error platform of the serving cell is less than a preset threshold, wherein the preset threshold is determined based on a preset security parameter, and the preset security parameter includes a preset approximation degree or a preset security level, and the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; if the bit error platform of the serving cell is less than the preset threshold, the terminal device initiates cell reselection.
  • the basis for cell reselection is channel conditions, communication resources and other indicators related to communication quality.
  • the terminal device starts cell reselection based on preset security parameters and the error platform of the serving cell.
  • the error platform of the serving cell is less than a preset threshold determined by the preset security parameters, the terminal device starts cell reselection. Therefore, starting cell reselection takes into account the communication security requirements of the terminal device and can improve the security of communication between the terminal device and other devices.
  • the error platform of the serving cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the serving cell and outside the controlled area.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the terminal device when the terminal device initiates cell reselection, the terminal device sends indication information to the serving cell, where the indication information indicates that an error platform of the serving cell is less than the preset threshold.
  • the terminal device notifies the serving cell that the bit error platform of the serving cell is less than a preset threshold, thereby causing the serving cell to send measurement configuration information to the terminal device.
  • the terminal device receives error platforms corresponding to multiple neighboring cells respectively; the terminal device determines, based on the error platforms corresponding to the multiple neighboring cells respectively, a neighboring cell having at least one error platform greater than or equal to a preset threshold value among the multiple neighboring cells; the terminal device determines a reselected cell based on the channel measurement results corresponding to the neighboring cells having at least one error platform greater than or equal to the preset threshold value, and the reselected cell is one of the neighboring cells having at least one error platform greater than or equal to the preset threshold value.
  • the reselected cell determined by the terminal device is a neighboring cell whose bit error platform is greater than or equal to a preset threshold, thereby ensuring the communication security between the terminal device and the selected neighboring cell.
  • the terminal device receives error platforms corresponding to multiple neighboring cells; the terminal device determines that there is no neighboring cell with an error platform greater than or equal to the preset threshold based on the error platforms corresponding to the multiple neighboring cells, and the terminal device updates the preset security parameters; the terminal device determines that there is at least one neighboring cell with an error platform greater than or equal to the updated preset threshold among the multiple neighboring cells based on the error platforms corresponding to the multiple neighboring cells, wherein the updated preset threshold is determined based on the updated preset security parameters; the terminal device determines a reselected cell based on the channel measurement results corresponding to the at least one neighboring cell with an error platform greater than or equal to the updated preset threshold, and the reselected cell is one of the neighboring cells with at least one error platform greater than or equal to the updated preset threshold.
  • the terminal device when the terminal device determines that there is no neighboring cell that meets the conditions, it can adjust the preset parameters so that the error platform of the existing neighboring cell is greater than or equal to the updated preset threshold, thereby ensuring the communication security between the terminal device and the selected neighboring cell.
  • the present application provides a communication method, which includes: a serving cell receives preset security parameters from a terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; the serving cell sends the preset security parameters to multiple neighboring cells; when the serving cell needs to be switched, the serving cell receives a measurement report from the terminal device, the measurement report including verification results of the multiple neighboring cells, the verification result of each neighboring cell in the multiple neighboring cells indicating whether the error platform of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined based on the preset security parameters; the serving cell determines a target cell based on the measurement report, and the error platform of the target cell is greater than or equal to the preset threshold.
  • the service cell sends the preset security parameters reported by the terminal device to multiple neighboring cells, and obtains the verification results of multiple neighboring cells through measurement reports.
  • the target cell is determined based on the verification results of multiple neighboring cells, which can meet the communication security requirements of the terminal device.
  • the service cell determines that the error platform of the service cell is less than the preset threshold, or the service cell determines that the error platform of the service cell is greater than or equal to the preset threshold, but the service cell meets the preset conditions.
  • the need to switch the serving cell may mean that the serving cell does not meet the safety communication requirements of the terminal device, or that the serving cell meets the safety communication requirements and meets the existing judgment conditions for triggering cell switching.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error platform of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the present application provides a communication method, which includes: a serving cell receives preset security parameters from a terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; the serving cell receives error platforms corresponding to multiple neighboring cells; when the serving cell needs to be switched, the serving cell determines a target cell based on the error platforms corresponding to the multiple neighboring cells and the preset security parameters, wherein the error platform of the target cell is greater than or equal to a preset threshold, and the preset threshold is determined based on the preset security parameters.
  • the serving cell receives the preset security parameters reported by the terminal equipment and the error platforms corresponding to multiple neighboring cells, and determines the target cell when the error platform is greater than or equal to the preset threshold, which can meet the communication security requirements of the terminal equipment.
  • the service cell determines that the error platform of the service cell is less than the preset threshold, or the service cell determines that the error platform of the service cell is greater than or equal to the preset threshold, but the service cell meets the preset conditions.
  • the need to switch the serving cell may mean that the serving cell does not meet the safety communication requirements of the terminal device, or that the serving cell meets the safety communication requirements and meets the existing judgment conditions for triggering cell switching.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error platform of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the serving cell before the serving cell receives the error platform corresponding to each of the multiple neighboring cells, the serving cell sends a request message to each of the multiple neighboring cells, where the request message is used to request the error platform of the neighboring cell.
  • the serving cell can request the bit error platforms corresponding to multiple neighboring cells.
  • the serving cell determines a target cell based on the neighboring cell whose bit error platform is greater than or equal to a preset threshold, and the serving cell receives a measurement report from the terminal device; the serving cell determines the target cell based on the neighboring cell whose bit error platform is greater than or equal to the preset threshold and the measurement report, and the measurement report includes channel measurement results corresponding to the neighboring cells whose bit error platform is greater than or equal to the preset threshold.
  • the serving cell can determine the target cell by combining the channel measurement results corresponding to at least one neighboring cell with a bit error platform greater than or equal to a preset threshold.
  • the present application provides a communication device, which includes: a transceiver module, used to receive an error platform of a service cell from a service cell; a processing module, used to determine whether the error platform of the service cell is less than a preset threshold, wherein the preset threshold is determined based on a preset security parameter, and the preset security parameter includes a preset approximation degree or a preset security level, and the preset approximation degree is the ratio of a key entropy required for encrypting information entropy to the information entropy; if the error platform of the service cell is less than the preset threshold, the processing module initiates cell reselection.
  • the error platform of the serving cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the serving cell and outside the controlled area.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data set.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the transceiver module is used to send indication information to the serving cell when initiating cell reselection, wherein the indication information indicates that the error platform of the serving cell is less than the preset threshold.
  • the transceiver module is used to receive error bit platforms corresponding to a plurality of adjacent cells respectively;
  • the processing module is used to determine, according to the error platforms respectively corresponding to the multiple neighboring cells, at least one neighboring cell whose error platform is greater than or equal to the preset threshold; and determine a reselected cell according to the channel measurement results respectively corresponding to the at least one neighboring cell whose error platform is greater than or equal to the preset threshold, the reselected cell being one of the neighboring cells whose at least one error platform is greater than or equal to the preset threshold.
  • the transceiver module is used to receive error platforms corresponding to multiple neighboring cells respectively; the processing module is used to determine that there is no neighboring cell with an error platform greater than or equal to the preset threshold based on the error platforms corresponding to the multiple neighboring cells, and the device updates the preset security parameters; determines that there is at least one neighboring cell with an error platform greater than or equal to the updated preset threshold among the multiple neighboring cells based on the error platforms corresponding to the multiple neighboring cells, wherein the updated preset threshold is determined based on the updated preset security parameters; determines a reselected cell based on the channel measurement results corresponding to the neighboring cells with at least one error platform greater than or equal to the updated preset threshold, and the reselected cell is one of the neighboring cells with at least one error platform greater than or equal to the updated preset threshold.
  • the present application provides a communication device, which includes: a transceiver module, used to receive preset security parameters from a terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; the preset security parameters are sent to multiple neighboring cells; the transceiver module is used to receive a measurement report from the terminal device when switching is required, the measurement report including verification results of the multiple neighboring cells, the verification result of each neighboring cell in the multiple neighboring cells indicates whether the error platform of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined based on the preset security parameters; a processing module is used to determine a target cell based on the measurement report, and the error platform of the target cell is greater than or equal to the preset threshold.
  • the processing module is used to determine that the bit error platform of the device is less than the preset threshold when switching is required, or to determine that the bit error platform of the device is greater than or equal to the preset threshold, but the device meets the preset conditions.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error platform of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the present application provides a communication device, comprising: a transceiver module for receiving preset security parameters from a terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; receiving error platforms corresponding to multiple neighboring cells; the processing module is used to determine the target cell according to the error platforms corresponding to the multiple neighboring cells and the preset security parameters when switching is required, wherein the error platform of the target cell is greater than or equal to a preset threshold, and the preset threshold is determined according to the preset security parameters.
  • the processing module when the device needs to switch, the processing module is used to determine that the bit error platform of the device is less than the preset threshold, or to determine that the bit error platform of the device is greater than or equal to the preset threshold, but the device meets the preset conditions.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error platform of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the transceiver module is used to send a request message to each of the multiple neighboring cells before receiving the error platforms respectively corresponding to the multiple neighboring cells, and the request message is used to request the error platform of the neighboring cell.
  • the transceiver module when determining the target cell based on the neighboring cell whose at least one bit error platform is greater than or equal to a preset threshold, receives a measurement report from the terminal device; the processing module determines the target cell based on the neighboring cell whose at least one bit error platform is greater than or equal to the preset threshold and the measurement report, and the measurement report includes the channel measurement results corresponding to the neighboring cells whose at least one bit error platform is greater than or equal to the preset threshold.
  • the technical effects that can be achieved by the fourth aspect or any possible implementation thereof can refer to the technical effects that can be achieved by the first aspect or any possible implementation thereof.
  • the technical effects that can be achieved by the fifth aspect or any possible implementation thereof can refer to the description of the technical effects that can be achieved by the second aspect or any possible implementation thereof.
  • the technical effects that can be achieved by the sixth aspect or any possible implementation thereof can refer to the description of the technical effects that can be achieved by the third aspect or any possible implementation thereof, and they will not be repeated here.
  • a communication device in an embodiment of the present application, and the device includes: at least one processor and an interface circuit; the interface circuit is used to provide input and/or output of programs or instructions for the at least one processor; the at least one processor is used to execute the program or instructions so that the communication device can implement the method provided by the above-mentioned first aspect or any possible implementation method thereof, or execute the program or instructions so that the communication device can implement the method provided by the above-mentioned second aspect or any possible implementation method thereof, or execute the program or instructions so that the communication device can implement the method provided by the above-mentioned third aspect or any possible implementation method thereof.
  • a computer storage medium in an embodiment of the present application, in which a software program is stored.
  • the software program is read and executed by one or more processors, the method provided by the first aspect or any possible implementation method thereof can be implemented, or the method provided by the second aspect or any possible implementation method thereof can be implemented, or the method provided by the third aspect or any possible implementation method thereof can be implemented.
  • a computer program product comprising instructions is provided in an embodiment of the present application.
  • the computer executes the method provided in the first aspect or any possible implementation manner thereof, or the computer executes the method provided in the second aspect or any possible implementation manner thereof, or the computer executes the method provided in the third aspect or any possible implementation manner thereof.
  • a chip system in an embodiment of the present application, which chip system includes a processor for supporting a device to implement the functions involved in the above-mentioned first aspect, or for supporting a device to implement the functions involved in the above-mentioned second aspect, or for supporting a device to implement the functions involved in the above-mentioned third aspect.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data.
  • the chip system can be composed of a chip, or can include a chip and other discrete devices.
  • a chip system is also provided in an embodiment of the present application, which includes a processor and an interface, wherein the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement or support the device to implement the function involved in the first aspect, or the processor is used to call the program or instruction to implement or support the device to implement the function involved in the second aspect, or the processor is used to call the program or instruction to implement or support the device to implement the function involved in the third aspect.
  • the chip system also includes a memory, and the memory is used to store necessary program instructions and data of the terminal device.
  • the chip system can be composed of a chip, or can include a chip and other discrete devices.
  • FIG1 is a schematic diagram of the architecture of the keyless secure transmission system used in the present application.
  • FIG2 is a schematic diagram of the architecture of a mobile communication system used in an embodiment of the present application.
  • FIG3 is a schematic diagram of a controlled area in this application.
  • FIG4 is a schematic diagram of a randomness extractor in the present application.
  • FIG5 is a flow chart of an overview of a communication method in the present application.
  • FIG6 is a flowchart of another communication method in the present application.
  • FIG7 is a flowchart of another communication method in the present application.
  • FIG8 is a schematic diagram of a structure of a communication device in the present application.
  • FIG. 9 is a second schematic diagram of the structure of a communication device in the present application.
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDR LTE frequency division duplex
  • FDD FDD
  • LTE time division duplex TDD
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system can be non-standalone (NSA) or standalone (SA).
  • the technical solution provided in the present application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), device-to-device (D2D) network, machine-to-machine (M2M) network, Internet of Things (IoT) network or other networks.
  • IoT network can include vehicle networking, for example.
  • vehicle to X, V2X, X can represent anything
  • the V2X can include: vehicle to vehicle (V2V) communication, vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) communication or vehicle to network (V2N) communication, etc.
  • the network elements involved in this application include network devices and terminal devices.
  • the method provided in the embodiment of this application can be implemented by program code in a memory, wherein the method applied to the network device side can be run in a processing chip in the network device or any device with communication, computing, or storage functions, or any processing device installed on the network device side; the method applied to the terminal device side runs in a built-in processing chip of the terminal device or any device with communication, computing, or storage functions.
  • the network device involved in the present application may be a device in a wireless network.
  • the network device may be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, which may also be referred to as an access network device.
  • RAN radio access network
  • the device for implementing the function of the network device may be a network device; it may be a module or unit that can be applied to the network device; or it may be a device that can support the network device to implement the function, such as a chip system, which may be installed in the network device or used in combination with the network device.
  • the network equipment includes, but is not limited to, evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., and can also be network equipment in 5G mobile communication system.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • AP access point
  • WIFI wireless fidelity
  • WIFI wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • gNB next generation NodeB
  • TRP transmission reception point
  • TP in an NR system
  • the network device may also be a network node constituting a gNB or a transmission point, such as a BBU or a distributed unit (DU).
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, the MAC layer, and the physical (PHY) layer.
  • the AAU implements some physical layer processing functions, RF processing, and related functions of active antennas.
  • the network device can be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into a network device in the RAN, or the CU can be divided into a network device in the core network (CN), which is not limited in this application.
  • the terminal device involved in the present application may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • the terminal device may be a device that provides voice and/or data connectivity to a user, or a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the device for realizing the function of the terminal device may be a terminal device; may be a module or unit that can be applied to the terminal device; or may be a device that can support the terminal device to realize the function, such as a chip system, which may be installed in the terminal device or used in combination with the terminal device.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • Terminal equipment is a device that includes wireless communication functions (providing voice/data connectivity to users).
  • handheld devices with wireless connection functions or vehicle-mounted devices, etc.
  • some examples of terminal equipment are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in Internet of Vehicles, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be TVs, air conditioners, sweepers, speakers, set-top boxes, etc.
  • FIG2 is a schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least one network device, such as the network device 210 shown in FIG2; the communication system 200 may also include at least one terminal device, such as the terminal device 220 shown in FIG2.
  • the network device 210 and the terminal device 220 may communicate via a wireless link.
  • Each communication device, such as the network device 210 or the terminal device 220 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system and the network device 210 and the terminal device 220 may communicate via multi-antenna technology.
  • FIG. 2 is only a simplified schematic diagram for ease of understanding, and the communication system may also include other network devices or other terminal devices, which are not drawn in FIG. 2 .
  • the communication system 200 shown in Figure 2 is only an example of an application scenario of an embodiment of the present application.
  • the present application can also be applied to communication between any two devices, for example, communication between terminal devices, and communication between network devices.
  • FIG1 is a schematic diagram of the data transmission process in the keyless secure transmission system.
  • the first data to be sent is pre-processed, it enters the channel coding process, waveform/modulation process, and multiple input multiple output (MIMO) process in sequence, and then is sent from the transmitting end to the receiving end through the wireless channel.
  • the data received by the receiving end is sequentially processed through the MIMO process, waveform/demodulation process, and channel decoding process, and then is post-processed to obtain the first data to be sent.
  • post-processing can be understood as the inverse operation of pre-processing.
  • the channel between the transmitting end and the receiving end is a legal channel, and the receiving end can also be called a legal receiving end or a target receiving end of the first data.
  • the channel between the transmitting end and the non-target node is an illegal channel.
  • the non-target node is an illegal receiving end or a non-target receiving end of the first data. It should be understood that the non-target node can be a real device or a hypothetical device.
  • the physical layer security transmission technology can introduce random entropy on illegal channels to create a very high error platform at non-target nodes.
  • the preprocessing module i.e., the random extractor
  • the preprocessing module can extract and diffuse the random entropy introduced by the physical layer security transmission technology on illegal channels to obtain an equivalent key with approximately uniform distribution, which is used to enable each bit in the information bit group to obtain a provable security strength.
  • the error platform of a cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the error platform of the cell here can be understood as the error platform determined by the cell and the specific terminal device, or as the error platform introduced at the non-target node due to the physical layer security technology used by the cell and the specific terminal device. It can be seen that the error platform is jointly determined by the cell and the specific terminal device, that is, jointly determined by the communicating parties.
  • the error floor determined by cell A and terminal #1 and the error floor determined by cell A and terminal #2 may be the same or different.
  • the controlled area refers to an area where there are no non-target nodes.
  • the controlled area can refer to a range centered on the terminal device, and the size of the controlled area is related to the actual scenario.
  • the controlled area can refer to a closed park where the terminal device is located, or a room, factory, or car where the terminal device is located.
  • the terminal device is carried by the user, it can be considered that there are no non-target nodes within a certain range, such as within 1m.
  • the controller After the controlled area is determined, it is necessary to determine the bit error rate at any location within the coverage area of the cell and outside the controlled area, and use the minimum bit error rate as the error platform of the cell.
  • the position corresponding to the minimum bit error rate is used as the optimal position of the non-target node. That is to say, if the non-target node is located at this position, the non-target node can achieve the best acquisition performance or the best reception performance, and the amount of information that can be obtained is the largest.
  • cell A and terminal #1 takes cell A and terminal #1 as an example to explain how cell A determines the bit error floor of cell A, that is, how to determine the bit error floor determined by cell A and terminal #1.
  • Cell A first determines the controlled area. As shown in Figure 3, terminal #1 is in a room. Generally, there are no non-target nodes in the room. Therefore, this room can be identified as a controlled area. Terminal #1 is located in the controlled area, and the non-target nodes are located outside the controlled area.
  • Cell A determines a bit error rate (BER) of any location within the coverage of cell A and outside the controlled area according to a preset physical layer security transmission scheme.
  • BER bit error rate
  • cell A may determine the BER of any location within the coverage of cell A and outside the controlled area by a preset derivation scheme or a preset simulation scheme.
  • cell A records the position corresponding to the minimum BER among the BERs obtained at any position as the best acquisition point, and records the BER at this position (i.e., the minimum BER) as p e .
  • p e represents the error platform of the cell, which is used to describe the best acquisition performance that can be achieved by non-target nodes outside the controlled area. That is to say, if the non-target node is located at the position corresponding to p e , the amount of information obtained is the largest.
  • the error platform of a certain cell can be determined by the cell or a specific terminal device, and the present application is not limited thereto.
  • the error platform of cell A is determined as an example, and the error platform of cell A can also be determined by terminal #1.
  • the method for determining the error rate of cell A by terminal #1 can refer to the method for determining the error platform of cell A by cell A, which is not repeated here.
  • determining the bit error platform of a cell can also be understood as the cell or a specific terminal device estimating the bit error platform of the cell.
  • the present application provides two performance indicators for evaluating the security of a keyless secure transmission system, namely, a first approximation and a second approximation. These two performance indicators can also be used to evaluate the security of other types of secure communication schemes and are universal performance indicators.
  • the first approximation also known as the one-time pad approximation
  • the first approximation can be described as the approximation of the security of the current secure communication scheme to the security of the one-time pad security scheme, or the gap between the security of the current secure communication scheme and the security of the one-time pad security scheme.
  • the first approximation degree is a ratio of a key entropy required to encrypt information entropy to the information entropy.
  • Step A Generate a random bit sequence and calculate the key entropy based on the length of the random bit sequence.
  • the random bit sequence can be distributed by the high-level network, for example, the random bit sequence can be distributed according to the root key.
  • the random bit sequence can also be generated based on the randomness extracted from the channel or hardware device.
  • the random bit sequence can also be generated by using the BER introduced at the non-target node using the physical layer security technology.
  • the algorithm for generating the random bit sequence can also be called the key generation algorithm.
  • the random bit sequence may also be generated by using the BER introduced at the non-target node using the physical layer security technology.
  • the minimum entropy H K of each bit in the random bit sequence can be evaluated using the National Institute of Standards and Technology (NIST) SP800-90B or other methods, and the key entropy E K can be obtained by multiplying the length of the random bit sequence by H K .
  • Step B Calculate the information entropy EM according to the distribution of the symbols sent by the information source in the communication system and the length of the information bit sequence.
  • the distribution of symbols sent by the information source will affect the information entropy of the generated information bit sequence. For example, assuming that the symbols generated by the information source have two possibilities, 0 and 1, if the probability of generating 0 and 1 is equal, then the entropy of the binary symbols generated by the information source is 1 bit/symbol, but if the probability of generating 0 and 1 is not equal, then the entropy of the binary symbols generated by the information source will be less than 1 bit/symbol.
  • Step C Calculate the first approximation degree according to formula (1).
  • the reciprocal of the first approximation degree represents the information entropy that can be protected by each bit of key entropy, or the number of information bits that can be protected by each bit of key entropy.
  • the root key when the root key remains unchanged for a long time, the freshness of the key is low. For example, the root key is updated once a day, that is, the root key used every day is the same, so the freshness of the key is low.
  • the security of high-level encryption algorithms depends on the complexity of the algorithm. For high-level encryption algorithms, the first approximation is close to 0.
  • the root key refers to the key stored in the universal subscriber identity module (USIM) card of the terminal device when the terminal device is registered before accessing the network.
  • USIM universal subscriber identity module
  • the encryption algorithm of the one-time pad security scheme is relatively simple, that is, bit-by-bit XOR, so the security of the one-time pad security scheme depends on the freshness of the key.
  • the first approximation is 1.
  • the first approximation is also a measure of the security strength of the communication system. The higher the first approximation, the higher the security strength.
  • the higher the first approximation the greater the key entropy, and thus the more difficult it is to crack the key; on the other hand, for a given numerator, the higher the first approximation, the less information entropy is protected by each bit of key entropy, and thus the amount of information leaked due to the key being obtained is also less.
  • the second approximation degree can also be called one-time one-secret synchronization approximation degree.
  • the second approximation degree is a ratio of key entropy extracted per unit time to information entropy transmitted per unit time.
  • Step a Generate a random bit sequence, and calculate the key entropy extracted per unit time according to the generation rate of the random bit sequence.
  • the generation process of the random bit sequence and the minimum entropy per bit H K can refer to the relevant description in the above step A. Furthermore, by multiplying the generation rate of the random bit sequence by H K , the key entropy R K extracted per unit time can be obtained, and the key entropy R K extracted per unit time can also be called the generation rate of the key entropy.
  • Step b By measuring or estimating the information entropy R M transmitted per unit time, the information entropy transmitted per unit time can also be called the information transmission rate, or the information bit sequence transmission rate.
  • Step c Calculate the second approximation degree according to formula (2).
  • the second approximation is a measure of the ability to approximate the one-time pad security scheme. Under the premise of a given information transmission rate, the higher the first approximation, the higher the rate at which the communication system generates key entropy, that is, the communication system has a stronger ability to achieve high security that matches the information transmission rate.
  • the second approximation can also be used to describe the efficiency of the approximate one-time pad security scheme.
  • first approximation i.e., a given security strength requirement
  • the higher the second approximation the higher the ratio of the information bit sequence transmission time to the key entropy generation time, which means that the additional time overhead introduced to achieve the first approximation is less, that is, the required key entropy generation time is shorter.
  • the key entropy contained in the random bit sequence is m1
  • the time length for generating the random bit sequence (also known as the key entropy generation time) is t1
  • the key entropy generation rate is m1/t1
  • the length of the information bit sequence used for encryption by the random bit sequence is m2
  • the time length for transmitting the information bit sequence (also known as the information bit sequence transmission time) is t2
  • the information bit sequence transmission rate is m2/t2
  • the second approximation is equal to (m1/m2)*(t2/t1), therefore, when m1/m2 is given, the higher the second approximation, the larger t2/t1, that is, the larger the ratio of the information bit sequence transmission time to the key entropy generation time.
  • m1 is less than or equal to m2.
  • the first approximation degree and the second approximation degree are the same. In the following description, the two terms will not be distinguished and will be uniformly referred to as approximation degree.
  • this secure transmission architecture is also called a secure transmission architecture based on implicit encryption.
  • the following uses the calculation of the second approximation as an example to illustrate the calculation process of the approximation.
  • the length of the information bit sequence is L bits and the information bit sequence transmission time is T seconds
  • the length of the random bit sequence is also L bits
  • the time to generate the random bit sequence (also known as the key entropy generation time) is also T seconds.
  • the length of the information bit sequence here can also be called the length of the data group, where the data group refers to the source message group to be transmitted.
  • the minimum entropy per bit caused by the bit error introduced by the physical layer security technology at the non-target node is H ⁇ (X
  • the minimum entropy (i.e., key entropy) of each data group introduced by the physical layer security technology at the non-target node is: H ⁇ (X
  • the second approximation is equal to:
  • Z) ⁇ L represents the key entropy in the keyless secure transmission system
  • L represents the channel entropy in the keyless secure transmission system
  • Z) ⁇ L/T represents the key entropy extracted per unit time in the keyless secure transmission system
  • L/T represents the channel entropy transmitted per unit time in the keyless secure transmission system.
  • the upper bound of the second approximation can be derived:
  • p e represents the error floor determined by the transmitter and receiver.
  • h is a threshold related to security strength.
  • H ⁇ (X) H ⁇ (X
  • equation (A4) can be re-expressed as:
  • Equation (A6) can be expressed as:
  • a specific value of the second approximation can be calculated.
  • the second approximation is:
  • is the security level of the communication between the sender and the receiver, which can be understood as the computational complexity of the brute force attack by the non-target node to obtain the data sent by the sender.
  • the security level of the communication between the sender and the receiver is 128, which means that the number of brute force attacks by the non-target node is 2 128 , that is, the best attack algorithm needs to calculate 2 128 times to crack.
  • m1 , m2 , ..., mq represent source message packets to be transmitted
  • x1 , x2 , ..., xq represent coded packets output by the channel encoder
  • q is a positive integer, and there is a corresponding relationship between mi and xi .
  • the error correction module includes multiple error control coding (ECC), which is the channel coding module in Figure 1.
  • ECC error control coding
  • Various codes widely used in communication systems can be used, such as low density parity check code (LDPC), polar code, etc.
  • LDPC low density parity check code
  • polar code polar code
  • ECC is not a component of the randomness extractor.
  • the error correction module is drawn here only for the completeness of the composition.
  • the function of randomness extraction is implemented by the security module in Figure 4, where the security module includes a one-way randomness extractor (ORE), a bi-directional randomness extractor (BRE), and a compressive random extractor (CRE), and t0 is an initial random vector.
  • ORE one-way randomness extractor
  • BRE bi-directional randomness extractor
  • CRE compressive random extractor
  • the working principle of the randomness extractor is as follows: within a packet, the random entropy introduced on the illegal channel is extracted and diffused through BRE to protect all bits in the packet, that is, the random bit errors introduced by the physical layer security technology can be diffused within a packet; between multiple packets, the channel noise entropy of the previous packet is accumulated through CRE and ORE to avoid the problem that some packets cannot reach the required security strength due to insufficient random entropy introduced by the channel.
  • the channel noise entropy in the previous packet can still be collected through CRE and ORE, and the random bit errors introduced by it can be aggregated and diffused to the current packet.
  • the upper bound of the system security strength can be analyzed using the proposed calculation method.
  • the value of this upper bound is only related to the bit error platform pe introduced by the physical layer security technology.
  • the proposed calculation method can accurately describe the security strength that the system can achieve.
  • this indicator can also guide the design of physical layer security transmission schemes.
  • the error platform p e introduced by the physical layer security technology at the non-target node should satisfy p e ⁇ 1-2 -h .
  • the design of the physical layer security transmission scheme should meet this requirement, otherwise the preset security strength requirement cannot be achieved.
  • the error platform p e introduced by the physical layer security technology at the non-target node should satisfy The design of the physical layer security transmission scheme should meet this requirement, otherwise the preset security strength requirement cannot be achieved.
  • the present application provides a communication method, which can be applicable to a cell reselection scenario, wherein a terminal device can receive an error code platform of a serving cell from a serving cell, and when it is determined that the error code platform of the serving cell is less than a preset threshold, initiate cell reselection, wherein the preset threshold is determined based on preset security parameters, and the preset security parameters include a preset approximation degree or a preset security level.
  • the serving cell sends the bit error platform of the serving cell, and correspondingly, the terminal equipment receives the bit error platform of the serving cell from the serving cell.
  • the serving cell may broadcast the error platform of the serving cell, or carry the error platform of the serving cell through other signaling and send it to the terminal device, which is not limited in this application.
  • the serving cell may determine the error platform determined by the serving cell and the terminal device, and the determination method of the error platform of the serving cell can refer to the above-mentioned related description, which will not be repeated here.
  • the terminal device determines whether the bit error platform of the serving cell is less than a preset threshold. If the bit error platform of the serving cell is less than the preset threshold, the terminal device initiates cell reselection.
  • the preset threshold is determined according to a preset security parameter, and the preset security parameter includes a preset approximation degree or a preset security level.
  • the preset security parameter may be determined by the terminal device itself, or determined by negotiation between the terminal device and the serving cell. This application does not limit the determination method of the preset security parameter.
  • the terminal device determines whether the bit error platform of the serving cell is less than a preset threshold, it can be specifically divided into the following two cases:
  • the preset safety parameters include the preset approximation degree and the preset threshold value.
  • d 0 represents the preset approximation degree.
  • the terminal equipment determines whether the bit error platform of the service cell is less than If so, continue to execute S520, otherwise, the terminal device decides whether to start cell reselection according to the cell reselection start condition in the existing protocol process.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the approximation is the ratio of the preset security level to the length of the data group, that is, at this time, the approximation can be expressed based on the ratio of the preset security level to the length of the data group.
  • the terminal equipment determines whether the bit error platform of the service cell is less than If so, continue to execute S520, otherwise, the terminal device decides whether to start cell reselection according to the cell reselection start condition in the existing protocol process.
  • the terminal device when the terminal device initiates cell reselection, the terminal device sends indication information to the serving cell, and the indication information indicates that the error platform of the serving cell is less than a preset threshold. Further, the serving cell sends measurement configuration information to the terminal device based on the indication information, and the measurement configuration information is used to indicate the configuration information of the measurement signal of each of the multiple neighboring cells, so that the terminal device measures the measurement signals respectively sent by the multiple neighboring cells according to the measurement configuration information, and obtains the channel measurement result of each neighboring cell.
  • neighboring cell A sends the measurement signal of neighboring cell A and the bit error platform of neighboring cell A.
  • neighboring cell A broadcasts the measurement signal of neighboring cell A and the bit error platform of neighboring cell A.
  • neighboring cell B sends the measurement signal of neighboring cell B and the bit error platform of neighboring cell B.
  • neighboring cell B broadcasts the measurement signal of neighboring cell B and the bit error platform of neighboring cell B.
  • each neighboring cell determines an error platform determined by the neighboring cell and the terminal equipment, which is called the error platform of the neighboring cell.
  • the method for determining the error platform of the neighboring cell can refer to the above-mentioned related description and will not be repeated here.
  • the error platform and measurement signal of each cell can be sent together or separately, and this application does not limit this.
  • the measurement signal can be a synchronization signal block (SSB) or a channel state information reference signal (CSI RS), or it can be a new measurement signal defined in the future 6G system, and this application does not limit this.
  • SSB synchronization signal block
  • CSI RS channel state information reference signal
  • FIG5 only takes a case where multiple neighboring areas include neighboring area A and neighboring area B as an example for explanation.
  • the terminal device determines, based on the bit error level of the neighboring cell A and the bit error level of the neighboring cell B, at least one neighboring cell whose bit error level is greater than or equal to a preset threshold.
  • the terminal device may first determine whether the bit error platform of the neighboring cell is greater than or equal to a preset threshold value. If the bit error platform of the neighboring cell is greater than or equal to the preset threshold value, the channel measurement result of the neighboring cell is generated. Otherwise, the channel measurement result of the neighboring cell may not need to be generated.
  • the terminal device may determine at least one neighboring cell among a plurality of neighboring cells whose bit error platform is greater than or equal to the preset threshold value.
  • the terminal device determines a reselected cell based on the channel measurement results corresponding to the neighboring cells with at least one bit error platform greater than or equal to the preset threshold.
  • the reselected cell is one of the neighboring cells with at least one bit error platform greater than or equal to the preset threshold.
  • the terminal device can measure the channel from the neighboring cell to the terminal device using the measurement signal sent by each neighboring cell according to the received measurement configuration information, and generate the channel measurement result of the neighboring cell. Further, the terminal device can determine the reselected cell according to the existing protocol and the channel measurement results corresponding to the neighboring cells with at least one bit error platform greater than or equal to the preset threshold.
  • the terminal device determines that there is no neighboring area with a code error platform greater than or equal to a preset threshold value based on the code error platforms corresponding to multiple neighboring areas, the terminal device can also update the preset security parameter to update the preset threshold value.
  • the terminal device can determine that at least one neighboring area among multiple neighboring areas has a code error platform greater than or equal to the updated preset threshold value based on the code error platforms corresponding to multiple neighboring areas, wherein the updated preset threshold value is determined based on the updated preset security parameter, and then the terminal device executes S540 again, i.e., according to the channel measurement results corresponding to at least one neighboring area with a code error platform greater than or equal to the updated preset threshold value, the reselected cell is determined, and the reselected cell is one of the neighboring areas with at least one code error platform greater than or equal to the updated preset threshold value.
  • the terminal device may start to receive system messages of the reselected cell, and if there is no access restriction, the terminal device resides in the cell.
  • the basis for cell reselection is channel conditions, communication resources and other indicators related to communication quality, without considering the communication security needs of the terminal equipment.
  • the terminal equipment initiates cell reselection. Therefore, the initiation of cell reselection takes into account the communication security needs of the terminal equipment.
  • the terminal equipment determines the neighboring area that meets the communication security needs based on the preset security parameters and the error platforms of multiple neighboring areas, and further evaluates whether to perform cell reselection in combination with the existing protocol, which can meet the communication security needs of the terminal equipment.
  • the present application also provides a communication method, which can be applied to a cell switching scenario, wherein a serving cell receives preset security parameters from a terminal device and sends the preset security parameters to multiple neighboring cells, wherein the preset security parameters include a preset degree of proximity or a preset security level.
  • the serving cell receives a measurement report from the terminal device, wherein the measurement report includes verification results of multiple neighboring cells, wherein the verification result of each neighboring cell in the multiple neighboring cells indicates whether the error platform of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined based on the preset security parameters. Further, the serving cell determines a target cell based on the measurement report, wherein the error platform of the target cell is greater than or equal to the preset threshold.
  • the terminal device sends a preset security parameter to a serving cell, where the preset security parameter includes a preset degree of proximity or a preset security level.
  • the serving cell sends preset security parameters to neighboring cell A.
  • the serving cell sends preset security parameters to neighboring cell B.
  • the serving cell sends preset security parameters to multiple neighboring cells respectively.
  • FIG6 only takes the multiple neighboring cells including neighboring cell A and neighboring cell B as an example for explanation.
  • the serving cell when the serving cell determines that a handover is required, the serving cell sends preset security parameters to multiple neighboring cells respectively.
  • the serving cell needs to be switched, which may mean that the serving cell determines that the error platform of the serving cell is less than a preset threshold, that is, the serving cell does not meet the communication security requirements of the terminal device; or the serving cell determines that the error platform of the serving cell is greater than or equal to the preset threshold, but the serving cell meets the preset conditions, that is, the serving cell meets the communication security requirements of the terminal device and meets the judgment conditions for triggering cell switching.
  • the preset conditions here are the judgment conditions for triggering cell switching specified in the existing protocol.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the preset approximation degree is the ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the serving cell may also send preset security parameters to multiple neighboring cells respectively in advance. That is, even if the serving cell does not need to be switched, the serving cell may send preset security parameters to multiple neighboring cells respectively.
  • S620A Neighboring cell A determines the error floor of neighboring cell A, and determines the verification result of neighboring cell A according to the received preset security parameters.
  • the verification result of neighboring cell A is used to indicate whether the bit error platform of neighboring cell A is greater than or equal to a preset threshold. If it is greater than or equal to the preset threshold, it indicates that neighboring cell A can meet the communication security requirements of the terminal device. Otherwise, neighboring cell A does not meet the communication security requirements of the terminal device.
  • Neighboring cell B determines the error floor of neighboring cell B, and determines the verification result of neighboring cell B according to the received preset security parameters.
  • the verification result of neighboring cell B is used to indicate whether the bit error platform of neighboring cell B is greater than or equal to a preset threshold. If it is greater than or equal to the preset threshold, it indicates that neighboring cell B can meet the communication security requirements of the terminal device. Otherwise, neighboring cell B does not meet the communication security requirements of the terminal device.
  • Neighboring cell A sends the verification result of neighboring cell A and the measurement signal of neighboring cell A.
  • neighboring cell A may broadcast the verification result of neighboring cell A and the measurement signal of neighboring cell A.
  • Neighboring cell B sends the verification result of neighboring cell B and the measurement signal of neighboring cell B.
  • neighboring cell B may broadcast the verification result of neighboring cell B and the measurement signal of neighboring cell B.
  • S640 When the serving cell needs to be switched, the serving cell sends measurement configuration information to the terminal device.
  • the serving cell may carry the measurement configuration information via an RRC configuration message.
  • the terminal device measures the channel from neighboring cell A to the terminal device using the measurement signal sent by neighboring cell A according to the measurement configuration information, and measures the channel from neighboring cell B to the terminal device using the measurement signal sent by neighboring cell B, and generates a measurement report.
  • the measurement report includes verification results of multiple neighboring cells and channel measurement results of multiple neighboring cells, and the verification result of each neighboring cell in the multiple neighboring cells indicates whether the error platform of the neighboring cell is greater than or equal to a preset threshold.
  • the channel measurement result of each neighboring cell in the multiple neighboring cells is generated based on the measurement signal of the neighboring cell.
  • the channel measurement result and verification result of each neighboring cell can be sent separately, or the channel measurement results and verification results of multiple neighboring cells can be sent together, which is not limited in this application.
  • the terminal device measures the channel from neighboring area A to the terminal device using the measurement signal sent by neighboring area A according to the measurement configuration information, and obtains the channel measurement result of neighboring area A. And according to the measurement configuration information, the terminal device measures the channel from neighboring area B to the terminal device using the measurement signal sent by neighboring area B, and obtains the channel measurement result of neighboring area B.
  • the measurement report generated by the terminal device includes the channel measurement result and verification result of neighboring area A, and the channel measurement result and verification result of neighboring area B.
  • the terminal device may also select at least one neighboring cell from multiple neighboring cells based on the verification results of multiple neighboring cells, wherein the bit error platform of at least one neighboring cell is greater than or equal to a preset threshold, and then the terminal device only needs to report the channel measurement results of the neighboring cells that meet the security requirements to the network device.
  • S660 The terminal device sends a measurement report to the serving cell.
  • the serving cell determines a target cell according to the received measurement report, and the error platform of the target cell is greater than or equal to a preset threshold.
  • the serving cell sends the preset security parameters reported by the terminal device to multiple neighboring cells, and the verification results and channel measurement results of multiple neighboring cells obtained through measurement reports are further combined with the existing protocol to evaluate whether to perform cell switching, which can meet the communication security requirements of the terminal device.
  • the present application also provides a communication method, which can be applied to a cell switching scenario, wherein a serving cell receives preset security parameters from a terminal device and error platforms corresponding to a plurality of neighboring cells, wherein the preset security parameters include a preset approximation degree or a preset security level.
  • the serving cell determines a target cell according to the error platforms corresponding to the plurality of neighboring cells and the preset security parameters, wherein the error platform of the target cell is greater than or equal to a preset threshold, and the preset threshold is determined according to the preset security parameters.
  • the terminal device sends a preset security parameter to the serving cell.
  • the preset security parameter includes a preset proximity degree or a preset security level.
  • neighboring cell A sends the bit error platform of neighboring cell A to the serving cell.
  • neighboring cell B sends the bit error platform of neighboring cell B to the serving cell.
  • the serving cell receives bit error platforms corresponding to multiple neighboring cells respectively.
  • FIG7 only takes the example of multiple neighboring cells including neighboring cell A and neighboring cell B for illustration.
  • the serving cell before the serving cell receives the bit error platforms respectively corresponding to the multiple neighboring cells, the serving cell sends a request message to each of the multiple neighboring cells, where the request message is used to request the bit error platform of the neighboring cell.
  • the serving cell when the serving cell determines that a handover is required, the serving cell sends a request message to each of the multiple neighboring cells.
  • the serving cell needs to be switched, which may mean that the serving cell determines that the error platform of the serving cell is less than a preset threshold, that is, the serving cell does not meet the communication security requirements of the terminal device; or the serving cell determines that the error platform of the serving cell is greater than or equal to the preset threshold, but the serving cell meets the preset conditions, that is, the serving cell meets the communication security requirements of the terminal device and meets the judgment conditions for triggering cell switching.
  • the preset conditions here are the judgment conditions for triggering cell switching specified in the existing protocol.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the preset approximation degree is the ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the serving cell may also send a request message to each of the multiple neighboring cells in advance. That is, even if the serving cell does not need to be switched, the serving cell may send a request message to each of the multiple neighboring cells.
  • the serving cell When the serving cell needs to be switched, the serving cell sends measurement configuration information to the terminal device.
  • the serving cell may carry the measurement configuration information via an RRC configuration message.
  • the terminal device measures the channel from neighboring cell A to the terminal device using the measurement signal sent by neighboring cell A according to the measurement configuration information, and measures the channel from neighboring cell B to the terminal device using the measurement signal sent by neighboring cell B, and generates a measurement report.
  • the measurement report includes channel measurement results of multiple neighboring cells, and the channel measurement result of each neighboring cell in the multiple neighboring cells is generated according to the measurement signal of the neighboring cell.
  • the terminal device measures the channel from neighboring area A to the terminal device according to the measurement configuration information using the measurement signal sent by neighboring area A to generate a channel measurement result of neighboring area A, and measures the channel from neighboring area B to the terminal device using the measurement signal sent by neighboring area B to generate a channel measurement result of neighboring area B.
  • the measurement report generated by the terminal device includes the channel measurement result of neighboring area A and the channel measurement result of neighboring area B.
  • S740 The terminal device sends a measurement report to the serving cell.
  • the serving cell determines a target cell according to the received measurement report, and the bit error platform of the neighboring cell A and the bit error platform of the neighboring cell B, and the bit error platform of the target cell is greater than or equal to a preset threshold.
  • the serving cell may determine a neighboring cell among multiple neighboring cells whose bit error platform is greater than or equal to a preset threshold. Further, the serving cell may determine the target cell based on the channel measurement results of at least one neighboring cell whose bit error platform is greater than or equal to the preset threshold.
  • the serving cell obtains the preset security parameters reported by the terminal equipment and the bit error platforms corresponding to multiple neighboring cells, and evaluates whether to perform cell switching based on the channel measurement results of the neighboring cells whose bit error platforms are greater than or equal to the preset threshold and the existing protocol, which can meet the communication security requirements of the terminal equipment.
  • FIG8 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application, wherein the device 800 includes: a transceiver module 820 and a processing module 810, wherein the transceiver module 820 may include a receiving unit and a sending unit.
  • the processing module 810 is used to control and manage the actions of the device 800.
  • the transceiver module 820 is used to support the communication between the device 800 and other network entities.
  • the device 800 may also include a storage unit, wherein the storage unit is used to store program codes and data of the device 800.
  • each module in the device 800 may be implemented by software.
  • the processing module 810 may be a processor or a controller, for example, a general-purpose central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the processor may also be a combination that implements a computing function, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the transceiver module 820 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is a general term.
  • the communication interface may include multiple interfaces, and the storage unit may be a memory.
  • the processing module 810 in the apparatus 800 can support the apparatus 800 to execute the actions of the terminal device in the above method examples, for example, it can support the apparatus 800 to execute S510, S530, and S540 in FIG. 5 .
  • the transceiver module 820 may support the apparatus 800 to communicate with a serving cell or multiple neighboring cells.
  • the transceiver module 820 may support the apparatus 800 to execute S500, S520A, and S520B in FIG. 5 .
  • the transceiver module 820 is configured to receive the error platform of the serving cell from the serving cell;
  • the processing module 810 is used to determine whether the bit error platform of the service cell is less than a preset threshold, wherein the preset threshold is determined based on a preset security parameter, and the preset security parameter includes a preset approximation degree or a preset security level, and the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; if the bit error platform of the service cell is less than the preset threshold, cell reselection is initiated.
  • the error platform of the serving cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the serving cell and outside the controlled area.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data set.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the transceiver module 820 is used to send indication information to the serving cell when initiating cell reselection, wherein the indication information indicates that the error platform of the serving cell is less than the preset threshold.
  • the transceiver module 820 is used to receive error platforms corresponding to multiple neighboring cells respectively;
  • the processing module 810 is used to determine, based on the error platforms respectively corresponding to the multiple neighboring cells, at least one neighboring cell whose error platform is greater than or equal to the preset threshold; and determine a reselected cell based on the channel measurement results respectively corresponding to the neighboring cells whose error platform is greater than or equal to the preset threshold, the reselected cell being one of the neighboring cells whose error platform is greater than or equal to the preset threshold.
  • the transceiver module 820 is used to receive error platforms corresponding to multiple neighboring cells respectively; the processing module 810 is used to determine that there is no neighboring cell with an error platform greater than or equal to the preset threshold based on the error platforms corresponding to the multiple neighboring cells, and the device updates the preset security parameters; determines that there is at least one neighboring cell with an error platform greater than or equal to the updated preset threshold among the multiple neighboring cells based on the error platforms corresponding to the multiple neighboring cells, wherein the updated preset threshold is determined based on the updated preset security parameters; determines a reselected cell based on the channel measurement results corresponding to the neighboring cells with at least one error platform greater than or equal to the updated preset threshold, and the reselected cell is one of the neighboring cells with at least one error platform greater than or equal to the updated preset threshold.
  • the device 800 may correspond to the terminal device in the aforementioned method embodiment, and the operations and/or functions of the various modules in the device 800 are respectively for implementing the corresponding steps of the method of the terminal device in the aforementioned method embodiment, and therefore the beneficial effects in the aforementioned method embodiment can also be achieved.
  • the beneficial effects in the aforementioned method embodiment can also be achieved.
  • they are not elaborated here.
  • the processing module 810 in the device 800 can support the device 800 to execute the serving cell actions in the above method examples, for example, it can support the device 800 to execute S670 in Figure 6 or S750 in Figure 7.
  • the transceiver module 820 can support the device 800 to communicate with a terminal device or multiple neighboring cells.
  • the transceiver module 820 can support the device 800 to execute S600, S610A, S610B, S640, S660 in Figure 6, or S700, S710A, S710B, S720, S740 in Figure 7.
  • the transceiver module 820 is used to receive preset security parameters from the terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is a ratio of a key entropy required for encrypting information entropy to the information entropy; and send the preset security parameters to multiple neighboring cells;
  • the transceiver module 820 is configured to receive a measurement report from the terminal device when switching is required, the measurement report including verification results of the multiple neighboring cells, the verification result of each neighboring cell in the multiple neighboring cells indicating whether the error floor of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined according to the preset security parameter;
  • the processing module 810 is configured to determine a target cell according to the measurement report, wherein the error floor of the target cell is greater than or equal to a preset threshold.
  • the processing module 810 is used to determine that the bit error platform of the device is less than the preset threshold when switching is required, or to determine that the bit error platform of the device is greater than or equal to the preset threshold, but the device meets the preset conditions.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error platform of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the transceiver module 820 is used to receive preset security parameters from the terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is a ratio of a key entropy required for encrypting information entropy to the information entropy; receive error platforms corresponding to multiple neighboring cells respectively;
  • the processing module 810 is used to determine the target cell when switching is required according to the error platforms corresponding to the multiple neighboring cells and the preset security parameters, wherein the error platform of the target cell is greater than or equal to a preset threshold, and the preset threshold is determined according to the preset security parameters.
  • the processing module 810 when switching is required, the processing module 810 is used to determine that the bit error platform of the device is less than the preset threshold, or to determine that the bit error platform of the device is greater than or equal to the preset threshold, but the device meets the preset conditions.
  • the preset threshold is Wherein, d 0 represents the preset approximation degree.
  • the preset approximation degree is a ratio of the preset security level to the length of the data group.
  • the preset threshold is Wherein, ⁇ 0 represents the preset security level, and L represents the length of the data group.
  • the error floor of each cell refers to the minimum bit error rate among the bit error rates at any location within the coverage area of the cell and outside the controlled area.
  • the transceiver module 820 is used to send a request message to each of the multiple neighboring cells before receiving the error platforms corresponding to the multiple neighboring cells respectively, and the request message is used to request the error platform of the neighboring cell.
  • the transceiver module 820 when determining the target cell based on the neighboring cell whose at least one bit error platform is greater than or equal to a preset threshold, receives a measurement report from the terminal device; the processing module 810 determines the target cell based on the neighboring cell whose at least one bit error platform is greater than or equal to the preset threshold and the measurement report, and the measurement report includes the channel measurement results corresponding to the neighboring cells whose at least one bit error platform is greater than or equal to the preset threshold.
  • the device 800 may correspond to the service cell in the aforementioned method embodiment, and the operations and/or functions of the various modules in the device 800 are respectively for implementing the corresponding steps of the method for serving the cell in the aforementioned method embodiment, and therefore the beneficial effects in the aforementioned method embodiment can also be achieved.
  • the beneficial effects in the aforementioned method embodiment can also be achieved.
  • they are not elaborated here.
  • Fig. 9 shows a schematic structural diagram of a communication device 900 according to an embodiment of the present application.
  • the device 900 includes: a processor 901 .
  • the processor 901 when the processor 901 is used to call an interface to perform the following actions: receiving preset security parameters from the terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; sending the preset security parameters to multiple neighboring cells; when switching is required, receiving a measurement report from the terminal device, the measurement report including verification results of the multiple neighboring cells, the verification result of each neighboring cell in the multiple neighboring cells indicating whether the error platform of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined based on the preset security parameters; determining a target cell based on the measurement report, the error platform of the target cell is greater than or equal to the preset threshold.
  • the device 900 can also be used to execute other steps and/or operations of the terminal device in the above embodiments, which are not described here for the sake of brevity.
  • the processor 901 when the processor 901 is used to call an interface to perform the following actions: receiving preset security parameters from a terminal device; the preset security parameters include a preset approximation degree or a preset security level, wherein the preset approximation degree is the ratio of the key entropy required for encrypting information entropy to the information entropy; sending the preset security parameters to multiple neighboring cells; when switching is required, receiving a measurement report from the terminal device, the measurement report including verification results of the multiple neighboring cells, the verification result of each neighboring cell in the multiple neighboring cells indicating whether the error platform of the neighboring cell is greater than or equal to a preset threshold, wherein the preset threshold is determined based on the preset security parameters; determining a target cell based on the measurement report, the error platform of the target cell is greater than or equal to the preset threshold.
  • the processor 901 when the processor 901 is used to call the interface to perform the following actions: receiving preset security parameters from a terminal device; the preset security parameters include preset approximation or preset security level, wherein the preset approximation is the ratio of the key entropy required for encrypting information entropy to the information entropy; receiving error platforms corresponding to multiple neighboring cells; when switching is required, determining the target cell according to the error platforms corresponding to the multiple neighboring cells and the preset security parameters, wherein the error platform of the target cell is greater than or equal to a preset threshold, and the preset threshold is determined according to the preset security parameters.
  • apparatus 900 may also be used to execute other steps and/or operations of the serving cell in the foregoing embodiments, which are not described herein for the sake of brevity.
  • the processor 901 can call an interface to perform the above-mentioned transceiver action, wherein the called interface can be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 900 also includes a transceiver 903.
  • the device 900 further includes a memory 902 , in which the program code in the above method embodiment can be stored, so as to be called by the processor 901 .
  • the device 900 includes a processor 901, a memory 902, and a transceiver 903, the processor 901, the memory 902, and the transceiver 903 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 901, the memory 902, and the transceiver 903 can be implemented by a chip, and the processor 901, the memory 902, and the transceiver 903 can be implemented in the same chip, or they can be implemented in different chips, or any two of the functions can be combined and implemented in one chip.
  • the memory 902 can store program code, and the processor 901 calls the program code stored in the memory 902 to implement the corresponding function of the device 900.
  • the present application also provides a communication system, which includes a service cell, a terminal device, and multiple neighboring cells, wherein the service cell is used to execute the steps and/or operations on the service cell side in the previous embodiments, the terminal device is used to execute the steps and/or operations on the terminal device side in the previous embodiments, and the multiple neighboring cells are used to execute the steps and/or operations on the multiple neighboring cell sides in the previous embodiments.
  • the method disclosed in the above embodiment of the present application can be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and can also be a system chip (system on chip, SoC), a central processing unit (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), a microcontroller (micro controller unit, MCU), a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • SoC system on chip
  • SoC system on chip
  • CPU central processing unit
  • CPU central processor unit, CPU
  • network processor network processor
  • NP digital signal processing circuit
  • microcontroller micro controller unit, MCU
  • programmable logic device programmable logic device, PLD
  • the general processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application may be directly embodied as being executed by a hardware decoding processor, or may be executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EPROM), or an electrically erasable programmable read-only memory (EPROM).
  • the volatile memory may be a random access memory (RAM) that is used as an external cache.
  • RAM random access memory
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • An embodiment of the present application further provides a computer-readable storage medium, which stores a computer program.
  • the computer program runs on a computer, the computer executes the methods shown in the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:终端设备从服务小区接收服务小区的误码平台,终端设备判断服务小区的误码平台是否小于预设阈值,其中,预设阈值是根据预设安全参数确定的,预设安全参数包括预设逼近度或预设安全等级,预设逼近度为加密信息熵所需的密钥熵与该信息熵之比。若服务小区的误码平台小于预设阈值,则终端设备启动小区重选。采用上述方法,启动小区重选考虑了终端设备的通信安全需求,可以实现提升终端设备与其他设备通信的安全性。

Description

一种通信方法及装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
无密钥安全传输系统的架构如图1所示,无密钥安全传输系统由通信模块和安全模块组成,通信模块为图1中实线框内的各个模块,通信模块利用物理层安全传输技术(例如:波束成型与人工噪声方案)实现信息传输并提供基础的安全能力。安全模块为图1中虚线框内的各个模块,安全模块采用密码学方法构建,使上述无密钥安全传输系统达到可证明的安全强度。
该架构融合了密码学方法(但与经典的密码技术如加密解密不同)与物理层安全技术,目标是实现一种无密钥的内生安全机制。在该架构中,首先利用物理层安全技术在非目标节点处制造很高的误码平台(例如:大于0.1),即:在非法信道引入随机熵;在此基础上,在发射机引入预处理模块,例如,该模块是一个随机性提取器,它能够提取并扩散物理层安全技术在非法信道上引入的随机熵,得到近似均匀分布的等效密钥,用于使信息比特组中的各个比特均获得可证明的安全强度。
无密钥安全传输系统的架构是一种新的安全传输架构,不同于实际中广泛应用的基于密码学的安全通信系统,也不同于单纯利用物理层安全技术而实现的安全通信系统,目前尚缺乏一种性能指标来对无密钥安全传输系统的安全性进行度量和评估,且在定义该性能指标之后,如何根据该性能指标进行小区重选和/或小区切换,都是值得关注的问题。
发明内容
本申请提供一种通信方法及装置,用于实现定义评估无密钥安全传输系统的安全性的性能指标,以及根据该性能指标进行小区重选/或小区切换。
第一方面,本申请提供一种通信方法,该方法包括:
终端设备从服务小区接收所述服务小区的误码平台;所述终端设备判断所述服务小区的误码平台是否小于预设阈值,其中,所述预设阈值是根据预设安全参数确定的,所述预设安全参数包括预设逼近度或预设安全等级,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;若所述服务小区的误码平台小于所述预设阈值,则所述终端设备启动小区重选。
在现有的小区重选方案中,小区重选的依据为信道条件、通信资源等与通信质量相关的指标,而采用上述方法,终端设备根据预设安全参数和服务小区的误码平台,在服务小区的误码平台小于由预设安全参数确定的预设阈值时,则所述终端设备启动小区重选,因此,启动小区重选考虑了终端设备的通信安全需求,可以实现提升终端设备与其他设备通信的安全性。
在一种可能的设计中,所述服务小区的误码平台是指在所述服务小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000001
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000002
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,在所述终端设备启动小区重选时,所述终端设备向所述服务小区发送指示信息,所述指示信息指示所述服务小区的误码平台小于所述预设阈值。
采用上述方法,终端设备向服务小区通知服务小区的误码平台小于预设阈值,进而使得服务小区向终端设备发送测量配置信息。
在一种可能的设计中,所述终端设备接收多个邻区分别对应的误码平台;所述终端设备根据所述多个邻区分别对应的误码平台确定所述多个邻区中至少一个误码平台大于或等于所述预设阈值的邻区;所述终端设备根据所述至少一个误码平台大于或等于所述预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于所述预设阈值的邻区中的一个。
采用上述方法,终端设备确定的重选小区为误码平台大于或等于预设阈值的邻区,进而可以保证终端设备与选定邻区的通信安全。
在一种可能的设计中,所述终端设备接收多个邻区分别对应的误码平台;所述终端设备根据所述多个邻区分别对应的误码平台确定不存在误码平台大于或等于所述预设阈值的邻区,则所述终端设备更新所述预设安全参数;所述终端设备根据所述多个邻区分别对应的误码平台确定所述多个邻区中存在至少一个误码平台大于或等于更新后的预设阈值的邻区,其中,所述更新后的预设阈值是根据更新后的预设安全参数确定的;所述终端设备根据所述至少一个误码平台大于或等于更新后的预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于更新后的预设阈值的邻区中的一个。
采用上述设计,终端设备在确定没有满足条件的邻区时,可以调整预设参数,以使存在邻区的误码平台大于或等于更新后的预设阈值,进而可以保证终端设备与选定邻区的通信安全。
第二方面,本申请提供一种通信方法,该方法包括:服务小区接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;所述服务小区向多个邻区发送所述预设安全参数;在所述服务小区需要切换时,所述服务小区从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;所述服务小区根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
在现有的小区切换方案中,没有考虑终端设备的通信安全需求,而采用上述方法,服务小区将终端设备上报的预设安全参数发送至多个邻区,通过测量报告获得的多个邻区的验证结果,根据多个邻区的验证结果确定目标小区,能够满足终端设备的通信安全需求。
在一种可能的设计中,在所述服务小区需要切换时,所述服务小区确定所述服务小区的误码平台小于所述预设阈值,或者所述服务小区确定所述服务小区的误码平台大于或等于所述预设阈值,但所述服务小区满足预设条件。
可以理解的是,服务小区需要切换可以是指服务小区不满足终端设备的安全通信需求,或者,服务小区满足安全通信需求且满足现有用于触发小区切换的判断条件。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000003
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000004
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
第三方面,本申请提供一种通信方法,该方法包括:服务小区接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;所述服务小区接收多个邻区分别对应的误码平台;在所述服务小区需要切换时,所述服务小区根据所述多个邻区分别对应的误码平台和所述预设安全参数确定目标小区,其中,所述目标小区的误码平台大于或等于预设阈值,所述预设阈值是根据所述预设安全参数确定的。
在现有的小区切换方案中,没有考虑终端设备的通信安全需求,而采用上述方法,服务小区接收终端设备上报的预设安全参数以及多个邻区分别对应的误码平台,将误码平台大于或等于预设阈值确定目标小区,能够满足终端设备的通信安全需求。
在一种可能的设计中在,在所述服务小区需要切换时,所述服务小区确定所述服务小区的误码平台小于所述预设阈值,或者所述服务小区确定所述服务小区的误码平台大于或等于所述预设阈值,但所述服务小区满足预设条件。
可以理解的是,服务小区需要切换可以是指服务小区不满足终端设备的安全通信需求,或者,服务小区满足安全通信需求且满足现有用于触发小区切换的判断条件。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000005
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000006
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,在所述服务小区接收多个邻区分别对应的误码平台之前,所述服务小区向所述多个邻区中的每个邻区发送请求消息,所述请求消息用于请求该邻区的误码平台。
采用上述设计,服务小区可以请求多个邻区分别对应的误码平台。
在一种可能的设计中,所述服务小区根据所述至少一个误码平台大于或等于预设阈值的邻区确定目标小区,所述服务小区从所述终端设备接收测量报告;所述服务小区根据所述至少一个误码平台大于或等于预设阈值的邻区和所述测量报告确定目标小区,所述测量报告包括所述至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果。
采用上述设计,服务小区可以结合至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果确定目标小区。
第四方面,本申请提供一种通信装置,该装置包括:收发模块,用于从服务小区接收所述服务小区的误码平台;处理模块,用于判断所述服务小区的误码平台是否小于预设阈值,其中,所述预设阈值是根据预设安全参数确定的,所述预设安全参数包括预设逼近度或预设安全等级,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;若所述服务小区的误码平台小于预设阈值,则所述处理模块启动小区重选。
在一种可能的设计中,所述服务小区的误码平台是指在所述服务小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000007
其中,d 0表示所述预设逼近度。
在一种可能的设计中所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000008
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,所述收发模块,用于在启动小区重选时,向所述服务小区发送指示信息,所述指示信息指示所述服务小区的误码平台小于所述预设阈值。
在一种可能的设计中,所述收发模块,用于接收多个邻区分别对应的误码平台;
所述处理模块,用于根据所述多个邻区分别对应的误码平台确定所述多个邻区中至少一个误码平台大于或等于所述预设阈值的邻区;根据所述至少一个误码平台大于或等于所述预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于所述预设阈值的邻区中的一个。
在一种可能的设计中,所述收发模块,用于接收多个邻区分别对应的误码平台;所述处理模块,用于根据所述多个邻区分别对应的误码平台确定不存在误码平台大于或等于所述预设阈值的邻区,则所述装置更新所述预设安全参数;根据所述多个邻区分别对应的误码平台确定所述多个邻区中存在至少一个误码平台大于或等于更新后的预设阈值的邻区,其中,所述更新后的预设阈值是根据更新后的预设安全参数确定的;根据所述至少一个误码平台大于或等于更新后的预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于更新后的预设阈值的邻区中的一个。
第五方面,本申请提供一种通信装置,该装置包括:收发模块,用于接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;向多个邻区发送所述预设安全参数;所述收发模块,用于在需要切换时,从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;处理模块,用于根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
在一种可能的设计中,所述处理模块,用于在需要切换时,确定所述装置的误码平台小于所述预设阈值,或者确定所述装置的误码平台大于或等于所述预设阈值,但所述装置满足预设条件。
在一种可能的设计中在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000009
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000010
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
第六方面,本申请提供一种通信装置,该装置包括:收发模块,用于接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;接收多个邻区分别对应的误码平台;所述处理模块,用于在所述需要切换时,根据所述多个邻区分别对应的误码平台和所述预设安全参数确定目标小区,其中,所述目标小区的误码平台大于或等于预设阈值,所述预设阈值是根据所述预设安全参数确定的。
在一种可能的设计中,在所述装置需要切换时,所述处理模块,用于确定所述装置的误码平台小于所述预设阈值,或者确定所述装置的误码平台大于或等于所述预设阈值,但所述装置满足预设条件。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000011
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000012
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,所述收发模块,用于在接收多个邻区分别对应的误码平台之前,向所述多个邻区中的每个邻区发送请求消息,所述请求消息用于请求该邻区的误码平台。
在一种可能的设计中,在根据所述至少一个误码平台大于或等于预设阈值的邻区确定目标小区时,所述收发模块从所述终端设备接收测量报告;所述处理模块根据所述至少一个误码平台大于或等于预设阈值的邻区和所述测量报告确定目标小区,所述测量报告包括所述至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果。
上述第四方面或其中任意一种可能的实现可以达到的技术效果,可以参照上述第一方面或其中任意一种可能的实施方式所能达到的技术效果,上述第五方面或其中任意一种可能的实现可以达到的技术效果,可以参照上述第二方面或其中任意一种可能的实施方式所能达到的技术效果说明,上述第六方面或其中任意一种可能的实现可以达到的技术效果,可以参照上述第三方面或其中任意一种可能的实施方式所能达到的技术效果说明,这里不再重复赘述。
第七方面,本申请实施例中提供一种通信装置,该装置包括:至少一个处理器和接口电路;所述接口电路用于为所述至少一个处理器提供程序或指令的输入和/或输出;所述至少一个处理器用于执行所述程序或者指令以使得所述通信装置可实现上述第一方面或其中任意一种可能的实施方式提供的方法,或者执行所述程序或者指令以使得所述通信装置可实现上述第二方面或其中任意一种可能的实施方式提供的方法,或者执行所述程序或者指令以使得所述通信装置可实现上述第三方面或其中任意一种可能的实施方式提供的方法。
第八方面,本申请实施例中提供一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时,可实现上述第一方面或其中任意一种可 能的实施方式提供的方法,或者可实现上述第二方面或其中任意一种可能的实施方式提供的方法,或者可实现上述第三方面或其中任意一种可能的实施方式提供的方法。
第九方面,本申请实施例中提供一种包含指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行上述第一方面或其中任一种可能的实施方式提供的方法,或者使得计算机执行上述第二方面或其中任一种可能的实施方式提供的方法,或者使得计算机执行上述第三方面或其中任一种可能的实施方式提供的方法。
第十方面,本申请实施例中提供一种芯片系统,该芯片系统包括处理器,用于支持设备实现上述第一方面中所涉及的功能,或者用于支持设备实现上述第二方面中所涉及的功能,或者用于支持设备实现上述第三方面中所涉及的功能。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例中还提供一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持设备实现第一方面所涉及的功能,或者所述处理器用于调用所述程序或指令以实现或者支持设备实现第二方面所涉及的功能,或者所述处理器用于调用所述程序或指令以实现或者支持设备实现第三方面所涉及的功能。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请应用的无密钥安全传输系统的架构的示意图;
图2为本申请的实施例应用的移动通信系统的架构示意图;
图3为本申请中受控区域的示意图;
图4为本申请中随机性提取器的示意图;
图5为本申请中一种通信方法的概述流程图;
图6为本申请中另一种通信方法的概述流程图;
图7为本申请中又一种通信方法的概述流程图;
图8为本申请中一种通信装置的结构示意图之一;
图9为本申请中一种通信装置的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”以及相应术语标号等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新空口(new radio,NR)、无线局域网(wireless local area network,WLAN)系统、无线保真(wireless fidelity,WiFi)系统。其中,5G移动通信系统可以是非独立组网(non-standalone,NSA)或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th Generation,6G)移动通信系统等。本申请对此不作限定。此外,术语“系统”可以和“网络”相互替换。
本申请涉及的网元包括网络设备和终端设备。本申请实施例提供的方法可以通过存储器中的程序代码来实现,其中,应用于网络设备侧的方法可以运行于网络设备内的处理芯片或任何具有通信、计算、存储功能的装置中,或任何在网络设备侧安装的处理设备中;应用于终端设备侧的方法运行于终端设备的内置处理芯片中或任何具有通信、计算、存储功能的装置中。
其中,本申请涉及的网络设备,可以为无线网络中的设备。例如,网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;可以是能够应用于网络设备的模块或单元;或者可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中或者与网络设备匹配使用。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio  network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,NR系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),TP;或者,5G移动通信系统中的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,BBU,或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请中涉及的终端设备,可以是能够接收网络设备调度和指示信息的无线终端设备。终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;可以是能够应用于终端设备的模块或单元;或者可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者与终端设备匹配使用。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备是包括无线通信功能(向用户提供语音/数据连通性)的设备。例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
图2是适用于本申请实施例的通信系统200的示意图。如图2所示,该通信系统200可以包括至少一个网络设备,例如图2所示的网络设备210;该通信系统200还可以包括 至少一个终端设备,例如图2所示的终端设备220。网络设备210与终端设备220可通过无线链路通信。各通信设备,如网络设备210或终端设备220,均可以配置多个天线。对于该通信系统中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发送天线和至少一个用于接收信号的接收天线。因此,该通信系统中的各通信设备之间,网络设备210与终端设备220之间,可通过多天线技术通信。
应理解,图2仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图2中未予以画出。
还应理解,图2所示的通信系统200仅为本申请实施例的应用场景的一种示例,本申请还可以适用于任意两个设备之间的通信,例如,适用于终端设备与终端设备的通信,也可以适用于网络设备与网络设备之间的通信。
以下对本申请涉及的技术概念进行说明:
1、无密钥安全传输系统
图1是无密钥安全传输系统中的数据传输的流程示意图。如图1所示,待发送的第一数据经过预处理后依次进入信道编码流程、波形/调制流程、多输入多输出(multiple input multiple output,MIMO)流程后,经过无线信道,由发送端发送至接收端,接收端接收到的数据依次经过MIMO流程、波形/解调流程、信道译码流程后,经过后处理,可以得到待发送的第一数据。其中,后处理可以理解为预处理的逆运算。
其中,发送端和接收端之间的信道为合法信道,接收端也可以称为第一数据的合法接收端或目标接收端。发送端和非目标节点之间的信道为非法信道,换言之,非目标节点为第一数据的非法接收端或非目标接收端。应理解,非目标节点可以是真实存在的设备,也可以是假设的设备。
示例性地,物理层安全传输技术可以通过在非法信道上引入随机熵,使得在非目标节点处制造很高的误码平台。在此基础上,预处理模块(即随机提取器)可以提取并扩散物理层安全传输技术在非法信道上引入的随机熵,得到近似均匀分布的等效密钥,用于使信息比特组中的各个比特均获得可证明的安全强度。
2、误码平台
在本申请中,小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
这里的小区的误码平台可以理解为该小区与特定终端设备确定的误码平台,又可理解为由于该小区与该特定终端设备采用物理层安全技术使得在非目标节点处引入的误码平台。可见,误码平台是由小区和特定终端设备共同确定的,即通信双方共同确定的。
例如,由小区A与终端#1确定的误码平台,由小区A与终端2#确定的误码平台可能相同,也可能不同。
其中,受控区域是指不存在非目标节点的区域。受控区域可以是指以终端设备为中心的范围,受控区域的大小与实际场景相关。例如,受控区域可以是指终端设备所在的封闭园区,或终端设备所在的房间,厂房,汽车内等。又例如,终端设备携带在用户身上,可以认为在某些范围内没有非目标节点,比如1m以内。
在受控区域确定之后,需要确定在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率,并将其中的最小比特错误率作为该小区的误码平台,此外,将该最小比特错误率对应的位置作为非目标节点的最优位置,也就是说,若非目标节点位于此位置,非 目标节点能达到最佳获取性能或最好接收性能,可以获取到的信息量是最大的。
以下以小区A和终端#1为例,说明小区A如何确定小区A的误码平台,即如何确定由小区A和终端#1确定的误码平台。
小区A首先确定受控区域。如图3所示,终端#1在某个房间内,一般房间内没有非目标节点,因此,这个房间可认定为受控区域。终端#1位于受控区域,非目标节点位于受控区域之外。
小区A根据预设的物理层安全传输方案确定在小区A的覆盖范围内且位于受控区域外的任意位置的比特错误率(Bit Error Rate,BER)。示例性地,小区A可以通过预设推导方案或预设仿真方案确定在小区A的覆盖范围内且位于受控区域外的任意位置的BER。
进一步地,小区A将获得的任意位置的BER中最小BER对应的位置记为最佳获取点,记该位置的BER(即最小BER)为p e,p e表示该小区的误码平台,用于描述在受控区域外非目标节点所能达到的最佳获取性能,也就是说,若非目标节点位于p e对应的位置,则获取到的信息量是最大的。
应理解,某个小区的误码平台可以由该小区确定,或者特定终端设备确定,本申请并不限于此。上文以小区A确定小区A的误码平台为例,小区A的误码平台也可以由终端#1确定,终端#1确定小区A的误码率的确定方式可以参考小区A确定小区A的误码平台的确定方式,在此不赘述。
还应理解,在实际应用中,获得小区的误码平台难度极大,因此,确定小区的误码平台,也可以理解为小区或特定终端设备对小区的误码平台进行估计。
3、逼近度
本申请提供两种用于评估无密钥安全传输系统的安全性的性能指标,分别为第一逼近度和第二逼近度。这两种性能指标还可用于评估其他各类安全通信方案的安全性,是通用的性能指标。
第一逼近度,又可称为一次一密逼近度,它可以描述为当前安全通信方案的安全性相对于一次一密安全方案的安全性的逼近度,或者,当前安全通信方案的安全性相对于一次一密安全方案的安全性的差距。
示例性地,第一逼近度为加密信息熵所需的密钥熵与该信息熵之比。
第一逼近度的计算方法如公式(1)所示:
Figure PCTCN2022130137-appb-000013
具体的计算流程如下:
步骤A:生成随机比特序列,根据随机比特序列的长度计算密钥熵。
其中,随机比特序列可以是由网络高层派发的,例如,随机比特序列可以根据根密钥派发。或者,随机比特序列也可以是基于从信道或硬件设备中提取出的随机性生成的。或者,随机比特序列还可以是利用物理层安全技术在非目标节点处引入的BER生成的。需要说明的是,在本申请中,用于生成随机比特序列的算法,又可称为密钥生成算法。
在本申请中,随机比特序列还可以是利用物理层安全技术在非目标节点处引入的BER生成的。
进一步地,利用美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)SP800-90B或其他方法可以评估随机比特序列中的每比特的最小熵H K, 将随机比特序列的长度与H K的相乘,即可获得密钥熵E K
步骤B:根据通信系统中信源发送符号的分布以及信息比特序列的长度计算信息熵E M
其中,信源发送符号的分布会影响生成信息比特序列的信息熵。例如,假设信源生成的符号有0和1两种可能,如果生成0和1的概率是相等的话,那么信源产生的二进制符号的熵就是1bit/符号,但如果生成0和1的概率不相等,那么信源产生的二进制符号的熵就会小于1bit/符号。
步骤C:根据公式(1)计算第一逼近度。
根据上述公式(1),可以得知第一逼近度具有以下性质:
(1)第一逼近度的倒数表示每比特密钥熵所能保护的信息熵,或者,每比特密钥熵所能保护的信息比特的数量。
(2)需要说明的是,安全算法或者安全方案的安全性依赖于两个方面,一方面是算法的复杂度,另一方面是密钥的新鲜度,可以通过密钥的更新频率衡量。
例如,对于高层加密算法,在根密钥长期不变时,密钥的新鲜度较低。例如,根密钥每天更新一次,也即每一天当中使用的根密钥相同,因此,密钥的新鲜度较低。高层加密算法的安全性依赖于算法的复杂度。对于高层加密算法,第一逼近度接近于0。其中,根密钥是指在终端设备接入网络之前进行注册时,存储在终端设备的全球用户识别卡(universal subscriber identity module,USIM)卡中的密钥。
例如,对于一次一密安全方案,由于随机比特序列和信息比特序列同步更新,随机比特序列中的每个比特仅使用一次,因此密钥的新鲜度最高。一次一密安全方案的加密算法比较简单,即逐比特异或,因此,一次一密安全方案的安全性依赖于密钥的新鲜度。对于一次一密安全方案,第一逼近度为1。
(3)第一逼近度也是对通信系统的安全强度的度量,第一逼近度越高,安全强度越高。针对公式(1),一方面,对于给定的分母,第一逼近度越高,意味着密钥熵越大,从而破解密钥越困难;另一方面,对于给定的分子,第一逼近度越高,则意味着每比特密钥熵保护的信息熵越少,从而由于密钥被获取所造成的泄露的信息量也越少。
第二逼近度,又可称为一次一密同步逼近度。
示例性地,第二逼近度为单位时间提取的密钥熵与单位时间传输的信息熵之比。
第二逼近度的计算方法如公式(2)所示。
Figure PCTCN2022130137-appb-000014
具体的计算流程如下:
步骤a:生成随机比特序列,根据随机比特序列的生成速率计算单位时间提取的密钥熵。
其中,随机比特序列的生成过程以及每比特的最小熵H K可以参考上述步骤A中的相关描述。进一步地,将随机比特序列的生成速率与H K的相乘,即可得到单位时间提取的密钥熵R K,单位时间提取的密钥熵R K又可称为密钥熵的生成速率。
步骤b:通过测量或者估算单位时间传输的信息熵R M,单位时间传输的信息熵又可称为信息传输速率,或信息比特序列传输速率。
步骤c:根据公式(2)计算第二逼近度。
根据上述公式(2),可以得知第二逼近度具有以下性质:
(1)第二逼近度是对逼近一次一密安全方案的能力的度量。在信息传输速率给定的前提下,第一逼近度越高,意味着通信系统生成密钥熵的速率越高,即:通信系统具有较强的能力实现与信息传输速率相匹配的高安全性。
(2)第二逼近度也可以用于描述逼近一次一密安全方案的效率。对于给定的第一逼近度(即给定的安全强度要求),第二逼近度越高,意味着信息比特序列传输时间与密钥熵生成时间之比越高,这表明实现第一逼近度所引入的额外时间开销越少,也即所需的密钥熵生成时间越短。
具体的,由公式(2)可知:
Figure PCTCN2022130137-appb-000015
例如,假设随机比特序列所包含的密钥熵为m1,生成该随机比特序列的时长(又可称为密钥熵生成时间)为t1,则密钥熵的生成速率为m1/t1,该随机比特序列用于加密的信息比特序列的长度为m2,传输该信息比特序列的时长(又可称为信息比特序列传输时间)为t2,信息比特序列传输速率为m2/t2,则第二逼近度等于(m1/m2)*(t2/t1),因此,当给定m1/m2时,第二逼近度越高,意味着t2/t1越大,即信息比特序列传输时间与密钥熵生成时间之比越大。其中,m1小于或等于m2。
对于无密钥安全传输系统来说,因为并不存在显式的密钥生成和交互过程,而是利用物理层传输引入的随机误码作为等效密钥,因此密钥的提取和信息的传输是同步进行的。因此,在无密钥安全传输系统中,第一逼近度和第二逼近度相同。在后面的描述中,将对这两个术语不加区分,统一称为逼近度。
对于无密钥安全传输系统来讲,由于不存在显式的密钥生成和交互过程,因此也将这一安全传输架构称为基于隐式加密的安全传输架构。下述以计算第二逼近度为例说明逼近度的计算过程。
第二逼近度的计算方法具体如下:
假设信息比特序列的长度为L比特,信息比特序列传输时间为T秒,由于密钥的提取和信息的传输是同步进行的,则随机比特序列的长度也为L比特,生成该随机比特序列的时长(又可称为密钥熵生成时间)也为T秒。这里的信息比特序列的长度,又可称为数据组的长度,其中,数据组是指待传输的信源消息分组。
进一步地,物理层安全技术在非目标节点处引入的误码所带来的每比特最小熵为H (X|Z),则每个数据组由于物理层安全技术在非目标节点处引入的最小熵(即密钥熵)为:H (X|Z)×L bits,此即为一个数据组内的等效密钥长度。根据第二逼近度的定义可知,第二逼近度等于:
Figure PCTCN2022130137-appb-000016
其中,H (X|Z)×L表示无密钥安全传输系统中的密钥熵,L表示无密钥安全传输系统中的信道熵。H (X|Z)×L/T表示无密钥安全传输系统中单位时间提取的密钥熵,L/T表示无密钥安全传输系统中单位时间传输的信道熵。
场景1:
如果不给定预处理模块(即随机性提取器)的具体结构,则可以推导出第二逼近度的上界:
Figure PCTCN2022130137-appb-000017
其中,p e表示由发送端和接收端确定的误码平台。
其中,无密钥安全传输系统的逼近度上界的推导过程如下:
考虑一个典型的三节点非法信道模型。信道的输入是X,非目标节点对X的观测记为Z。为了评估物理层安全方案所能达到的安全强度是否足够高,我们需要评估物理层安全方案在非目标节点处引入的最小熵是否满足大于某一阈值,即:
H (X|Z)>h,#(A1)
其中,h是和安全强度相关的阈值。在接下来的推导中,我们将上述最小熵条件转换为错误概率条件。
根据Rényi熵理论,我们有:
H α(X|Z)=H α(X)-I α(X;Z),#(A2)
也就是:
H α(X)=H α(X|Z)+I α(X;Z),#(A3)
根据广义Fano不等式,H α(X)的上界为:
Figure PCTCN2022130137-appb-000018
其中p e是表示在非目标节点引入的误码平台,X所在集合的势为M。
假设α>1成立(由于在这里所做的推导中,是考虑最小熵,而最小熵对应于α等于无穷大的情况,因此这一假设是合理的),(A4)式可重新表示为:
Figure PCTCN2022130137-appb-000019
从而有:
Figure PCTCN2022130137-appb-000020
令α→∞,则H α(X|Z)变为H (X|Z)(即最小熵),且(A6)式可表示为:
Figure PCTCN2022130137-appb-000021
显然,当H (X|Z)>h时,错误概率应满足p e≥1-2 -h。公式(A7)即为同步逼近度的上界。
场景2:
对于给定的预处理模块(即随机性提取器),可以计算出第二逼近度的具体数值,例如,对于如图4所示的随机性提取器,第二逼近度为:
Figure PCTCN2022130137-appb-000022
其中,λ表示安全等级,L表示数据组的长度,且L应满足:
Figure PCTCN2022130137-appb-000023
具体的,λ为发送端和接收端之间的通信的安全等级,可以理解为,非目标节点暴力破解获得发送端发送的数据所产生的计算复杂度。例如,发送端和接收端之间的通信的安全等级为128,表示非目标节点暴力破解需要的次数是2 128,也即采用最好的攻击算法需要计算2 128次才能破解。
图4所示的随机性提取器的基本特征如下:在图4中,m 1,m 2,…,m q表示待传输的信源消息分组,x 1,x 2,…,x q表示信道编码器输出的编码分组,q为正整数,m i与x i存在对应关系。
其中,纠错模块包括多个差错控制编码(error control coding,ECC),ECC即为图1中的信道编码模块,可以采用通信系统中广泛使用的各类编码,如低密度奇偶校验码(low density parity check,LDPC),极化码(polar)等等。ECC不是随机性提取器的组成部分, 这里只是为了构图的完整性,故将纠错模块绘制于此。
随机性提取的功能由图4中的安全模块实现,其中,安全模块包括单向熵提取器(one-way randomness extractor,ORE)、双向熵提取器(bi-directional randomness extractor,BRE)、压缩熵提取器(compressive random extractor,CRE),t 0为一初始的随机向量。
随机性提取器的工作原理如下所述:在一个分组内,通过BRE提取和扩散在非法信道上引入的随机熵,实现对分组内所有比特的保护,即:使物理层安全技术引入的随机误码得以在一个分组内扩散;在多个分组之间,通过CRE和ORE累积前序分组的信道噪声熵,避免部分分组由于信道引入的随机熵不足而无法达到所须安全强度的问题。也就是说,即使非法信道在某个分组内的信道条件很好从而使得当前分组内物理层安全技术无法引入足够的随机熵,但通过CRE和ORE仍然能够收集前序分组中的信道噪声熵,并将其引入的随机误码聚合扩散至当前分组。
可见,通过逼近度可实现无密钥安全传输系统的安全性的评估。
在不给定具体的随机性提取器结构时,即场景1,利用所提出的计算方法能够分析出系统安全强度的上界,该上界的数值仅与物理层安全技术所引入的误码平台pe有关;
在给定具体的随机性提取器结构时,即场景2,利用所提出的计算方法能够准确描述系统所能达到的安全强度。此外,利用该指标还可以指导物理层安全传输方案的设计。
具体来说,根据公式(4)可以得到:
p e≥1-2 -d(6)
因此,若要求逼近度d达到某一水平h,则物理层安全技术在非目标节点处引入的误码平台p e应满足p e≥1-2 -h,物理层安全传输方案的设计应当满足这一要求,否则就无法达到预设的安全强度要求。
根据公式(5)可以得到:
Figure PCTCN2022130137-appb-000024
因此,若要求安全等级λ达到λ 0,则物理层安全技术在非目标节点处引入的误码平台p e应满足
Figure PCTCN2022130137-appb-000025
物理层安全传输方案的设计应当满足这一要求,否则就无法达到预设的安全强度要求。
其中,
Figure PCTCN2022130137-appb-000026
的推导过程如下:
Figure PCTCN2022130137-appb-000027
时,要使λ≥λ 0等价于
Figure PCTCN2022130137-appb-000028
即:
Figure PCTCN2022130137-appb-000029
而p e和最小熵之间满足关系:
Figure PCTCN2022130137-appb-000030
即:
Figure PCTCN2022130137-appb-000031
因此:为了满足公式(B1)给出的用户安全等级要求,p e应满足:
Figure PCTCN2022130137-appb-000032
基于此,本申请提供一种通信方法,该方法可以适用于小区重选场景,其中,终端设备可以从服务小区接收服务小区的误码平台,并在确定服务小区的误码平台小于预设阈值时,启动小区重选,其中,预设阈值是根据预设安全参数确定的,预设安全参数包括预设 逼近度或预设安全等级。
以下结合图5对上述小区重选过程进行说明:
S500、服务小区发送服务小区的误码平台,相应的,终端设备从服务小区接收服务小区的误码平台。
示例性地,服务小区可以广播服务小区的误码平台,或者通过其他信令携带服务小区的误码平台发送至终端设备,本申请对此不作限定。其中,服务小区可以确定由服务小区与终端设备确定的误码平台,服务小区的误码平台的确定方式可以参考上述相关描述,此处不再赘述。
S510、终端设备判断服务小区的误码平台是否小于预设阈值,则若服务小区的误码平台小于预设阈值,终端设备启动小区重选。
示例性地,预设阈值是根据预设安全参数确定的,预设安全参数包括预设逼近度或预设安全等级。其中,预设安全参数可以是终端设备自己确定的,或者终端设备与服务小区协商确定的,本申请不限定预设安全参数的确定方式。
在一种可能的实施例中,在终端设备判断服务小区的误码平台是否小于预设阈值时,具体可以分为以下两种情况:
情况1:预设安全参数包括预设逼近度,预设阈值为
Figure PCTCN2022130137-appb-000033
其中,d 0表示预设逼近度。
终端设备判断服务小区的误码平台是否小于
Figure PCTCN2022130137-appb-000034
若是,则继续执行S520,否则,终端设备根据现有协议流程中的小区重选启动条件决定是否启动小区重选。
情况2:预设安全参数包括预设安全等级时,预设阈值为
Figure PCTCN2022130137-appb-000035
其中,λ 0表示预设安全等级,L表示数据组的长度。
参考上述场景2的推导过程,在预处理模块为图4所示的随机性提取器时,逼近度为预设安全等级与数据组的长度之比,也即,此时可以根据预设安全等级与数据组的长度之比表示逼近度。
终端设备判断服务小区的误码平台是否小于
Figure PCTCN2022130137-appb-000036
若是,则继续执行S520,否则,终端设备根据现有协议流程中的小区重选启动条件决定是否启动小区重选。
示例性地,在终端设备启动小区重选时,终端设备向服务小区发送指示信息,该指示信息指示服务小区的误码平台小于预设阈值。进一步地,服务小区基于该指示信息向终端设备发送测量配置信息,测量配置信息用于指示多个邻区中每个邻区的测量信号的配置信息,以使终端设备根据测量配置信息对多个邻区分别发送的测量信号进行测量,获得每个邻区的信道测量结果。
S520A、邻区A发送邻区A的测量信号和邻区A的误码平台。
也即邻区A广播邻区A的测量信号和邻区A的误码平台。
S520B、邻区B发送邻区B的测量信号和邻区B的误码平台。
也即邻区B广播邻区B的测量信号和邻区B的误码平台。
示例性地,每个邻区确定由该邻区与终端设备确定的误码平台,称为该邻区的误码平台,该邻区的误码平台的确定方式可以参考上述相关描述,此处不再赘述。
需要说明的是,每个小区的误码平台和测量信号可以一起发送或分开发送,本申请对此不作限定,其中,测量信号可以为同步信号块(synchronization signal block,SSB)或信道状态信息参考信号(channel state reference signal,CSI RS),也可以是未来6G系统中定义的新的测量信号,本申请对此不作限定。
图5中仅以多个邻区包括邻区A和邻区B为例进行说明。
S530、终端设备根据邻区A的误码平台和邻区B的误码平台确定至少一个误码平台大于或等于预设阈值的邻区。
示例性地,终端设备在根据多个邻区中任意一个邻区的测量信号生成信道测量结果之前,终端设备可以先判断该邻区的误码平台是否大于或等于预设阈值,若该邻区的误码平台大于或等于预设阈值,则生成该邻区的信道测量结果,否则可以不需要生成该邻区的信道测量结果。通过上述过程,终端设备可以确定多个邻区中至少一个误码平台大于或等于预设阈值的邻区。
S540、终端设备根据至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果,确定重选小区,重选小区为至少一个误码平台大于或等于预设阈值的邻区中的一个。
示例性地,终端设备可以根据接收到的测量配置信息,利用每个邻区发送的测量信号对该邻区到终端设备的信道进行测量,生成该邻区的信道测量结果。进一步地,终端设备可以根据现有协议以及至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果确定重选小区。
此外,在一种可能的设计中,若终端设备根据多个邻区分别对应的误码平台确定不存在误码平台大于或等于预设阈值的邻区,则终端设备还可以更新预设安全参数,进而实现更新预设阈值。进一步地,终端设备可以根据多个邻区分别对应的误码平台确定多个邻区中至少一个误码平台大于或等于更新后的预设阈值的邻区,其中,更新后的预设阈值是根据更新后的预设安全参数确定的,然后,终端设备再执行S540,即根据至少一个误码平台大于或等于更新后的预设阈值的邻区分别对应的信道测量结果,确定重选小区,重选小区为至少一个误码平台大于或等于更新后的预设阈值的邻区中的一个。
进一步地,在S540之后,终端设备可以开始接收重选小区的系统消息,如果无接入受限,则终端设备就驻留到该小区。
在现有的小区重选方案中,小区重选的依据为信道条件、通信资源等与通信质量相关的指标,而没有考虑终端设备的通信安全需求,而如图5所示的方法,在服务小区的误码平台小于由预设安全参数确定的预设阈值时,则所述终端设备启动小区重选,因此,启动小区重选考虑了终端设备的通信安全需求,进一步地,终端设备根据预设安全参数和多个邻区的误码平台,确定满足通信安全需求的邻区,进一步结合现有协议评估是否执行小区重选,能够满足终端设备的通信安全需求。
本申请还提供一种通信方法,该方法可以适用于小区切换场景,其中,服务小区接收来自终端设备的预设安全参数,并向多个邻区发送预设安全参数,预设安全参数包括预设逼近度或预设安全等级。在服务小区需要切换时,服务小区从终端设备接收测量报告,测量报告包括多个邻区的验证结果,多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,预设阈值是根据预设安全参数确定的。进一步地,服务小区根据测量报告确定目标小区,目标小区的误码平台大于或等于预设阈值。
以下结合如图6对上述小区切换过程进行说明:
S600、终端设备向服务小区发送预设安全参数,其中,预设安全参数包括预设逼近度或预设安全等级。
S610A、服务小区向邻区A发送预设安全参数。
S610B、服务小区向邻区B发送预设安全参数。
示例性地,服务小区向多个邻区分别发送预设安全参数,图6中仅以多个邻区包括邻区A和邻区B为例进行说明。
在一种可能的实现方式中,在服务小区确定需要切换时,服务小区向多个邻区分别发送预设安全参数。
示例性地,服务小区需要切换可以是指服务小区确定服务小区的误码平台小于预设阈值,也即服务小区不满足终端设备的通信安全需求;或者服务小区确定服务小区的误码平台大于或等于预设阈值,但服务小区满足预设条件,也即服务小区满足终端设备的通信安全需求,且满足触发小区切换的判断条件。其中,这里的预设条件为现有协议中规定的用于触发小区切换的判断条件。
在一示例中,在预设安全参数包括预设安全等级时,预设阈值为
Figure PCTCN2022130137-appb-000037
其中,λ 0表示预设安全等级,L表示数据组的长度。其中,预设逼近度为预设安全等级与数据组的长度之比。
在另一示例中,在预设安全参数包括预设逼近度时,预设阈值为
Figure PCTCN2022130137-appb-000038
其中,d 0表示预设逼近度。
在另一种可能的实现方式中,服务小区也可提前向多个邻区分别发送预设安全参数。也即,即使服务小区不需要切换,服务小区也可以向多个邻区分别发送预设安全参数。
S620A:邻区A确定邻区A的误码平台,并根据接收到的预设安全参数确定邻区A的验证结果。
示例性地,邻区A的验证结果用于指示邻区A的误码平台是否大于或等于预设阈值,若大于或等于预设阈值,则表明邻区A可以满足终端设备的通信安全需求,否则,邻区A不满足终端设备的通信安全需求。
S620B:邻区B确定邻区B的误码平台,并根据接收到的预设安全参数确定邻区B的验证结果。
示例性地,邻区B的验证结果用于指示邻区B的误码平台是否大于或等于预设阈值,若大于或等于预设阈值,则表明邻区B可以满足终端设备的通信安全需求,否则,邻区B不满足终端设备的通信安全需求。
S630A:邻区A发送邻区A的验证结果和邻区A的测量信号。
例如,邻区A可以广播邻区A的验证结果和邻区A的测量信号。
S630B:邻区B发送邻区B的验证结果和邻区B的测量信号。
例如,邻区B可以广播邻区B的验证结果和邻区B的测量信号。
S640:在服务小区需要切换时,服务小区向终端设备发送测量配置信息。
示例性地,服务小区可以通过RRC配置消息携带测量配置信息。
S650:终端设备根据测量配置信息,利用邻区A发送的测量信号对邻区A到终端设备的信道进行测量,以及利用邻区B发送的测量信号对邻区B到终端设备的信道进行测量,生成测量报告。
示例性地,测量报告包括多个邻区的验证结果和多个邻区的信道测量结果,多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值。多个邻区中每个邻区的信道测量结果是根据该邻区的测量信号生成的。其中,每个邻区的信道测量结果和 验证结果可以单独发送,也可以多个邻区的信道测量结果和验证结果一起发送,本申请对此不作限定。
示例性地,终端设备根据测量配置信息,利用邻区A发送的测量信号对邻区A到终端设备的信道进行测量,获得邻区A的信道测量结果,以及根据测量配置信息,利用邻区B发送的测量信号对邻区B到终端设备的信道进行测量,获得邻区B的信道测量结果。此时,终端设备生成的测量报告包括邻区A的信道测量结果和验证结果,以及邻区B的信道测量结果和验证结果。
在一种可能的实现方式中,终端设备还可以根据多个邻区的验证结果,选择多个邻区中的至少一个邻区,其中,至少一个邻区的误码平台大于或等于预设阈值,进而终端设备可以只需向网络设备上报满足安全要求的邻区的信道测量结果。
S660:终端设备向服务小区发送测量报告。
S670:服务小区根据接收到的测量报告确定目标小区,目标小区的误码平台大于或等于预设阈值。
在现有的小区切换方案中,没有考虑终端设备的通信安全需求,而如图6所示的方法,服务小区将终端设备上报的预设安全参数发送至多个邻区,通过测量报告获得的多个邻区的验证结果和信道测量结果,进一步结合现有协议评估是否执行小区切换,能够满足终端设备的通信安全需求。
本申请还提供一种通信方法,该方法可以适用于小区切换场景,其中,服务小区接收来自终端设备的预设安全参数以及多个邻区分别对应的误码平台,预设安全参数包括预设逼近度或预设安全等级。在服务小区需要切换时,服务小区根据多个邻区分别对应的误码平台和预设安全参数确定目标小区,其中,目标小区的误码平台大于或等于预设阈值,预设阈值是根据预设安全参数确定的。
以下结合如图7对上述小区切换过程进行说明:
S700、终端设备向服务小区发送预设安全参数。预设安全参数包括预设逼近度或预设安全等级。
S710A、邻区A向服务小区发送邻区A的误码平台。
S710B、邻区B向服务小区发送邻区B的误码平台。
示例性地,服务小区接收多个邻区分别对应的误码平台。图7中仅以多个邻区包括邻区A和邻区B为例进行说明。
在一种可能的实现方式中,在服务小区接收多个邻区分别对应的误码平台之前,服务小区向多个邻区中的每个邻区发送请求消息,请求消息用于请求该邻区的误码平台。
示例性地,在服务小区确定需要切换时,服务小区向多个邻区中的每个邻区发送请求消息。
其中,服务小区需要切换可以是指服务小区确定服务小区的误码平台小于预设阈值,也即服务小区不满足终端设备的通信安全需求;或者服务小区确定服务小区的误码平台大于或等于预设阈值,但服务小区满足预设条件,也即服务小区满足终端设备的通信安全需求,且满足触发小区切换的判断条件。其中,这里的预设条件为现有协议中规定的用于触发小区切换的判断条件。
在一示例中,在预设安全参数包括预设安全等级时,预设阈值为
Figure PCTCN2022130137-appb-000039
其中,λ 0表 示预设安全等级,L表示数据组的长度。其中,预设逼近度为预设安全等级与数据组的长度之比。
在另一示例中,在预设安全参数包括预设逼近度时,预设阈值为
Figure PCTCN2022130137-appb-000040
其中,d 0表示预设逼近度。
示例性地,服务小区也可提前向多个邻区中的每个邻区发送请求消息。也即,即使服务小区不需要切换,服务小区也可以向多个邻区中的每个邻区发送请求消息。
S720、在服务小区需要切换时,服务小区向终端设备发送测量配置信息。
示例性地,服务小区可以通过RRC配置消息携带测量配置信息。
S730:终端设备根据测量配置信息,利用邻区A发送的测量信号,对邻区A到终端设备的信道进行测量,以及利用邻区B发送的测量信号,对邻区B到终端设备的信道进行测量,生成测量报告。
示例性地,测量报告包括多个邻区的信道测量结果,多个邻区中每个邻区的信道测量结果是根据该邻区的测量信号生成的。
示例性地,终端设备根据测量配置信息,利用邻区A发送的测量信号,对邻区A到终端设备的信道进行测量,生成邻区A的信道测量结果,以及利用邻区B发送的测量信号,对邻区B到终端设备的信道进行测量,生成邻区B的信道测量结果。此时,终端设备生成的测量报告包括邻区A的信道测量结果,以及邻区B的信道测量结果。
S740:终端设备向服务小区发送测量报告。
S750:服务小区根据接收到的测量报告,以及邻区A的误码平台和邻区B的误码平台确定目标小区,目标小区的误码平台大于或等于预设阈值。
示例性地,服务小区可以确定多个邻区中至少一个误码平台大于或等于预设阈值的邻区,进一步地,服务小区可以结合至少一个误码平台大于或等于预设阈值的邻区的信道测量结果确定目标小区。
在现有的小区切换方案中,没有考虑终端设备的通信安全需求,而如图7所示的方法,服务小区获取终端设备上报的预设安全参数以及多个邻区分别对应的误码平台,根据误码平台大于或等于预设阈值的邻区的信道测量结果和现有协议评估是否执行小区切换,能够满足终端设备的通信安全需求。
图8示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该装置800包括:收发模块820和处理模块810,收发模块820可以包括接收单元和发送单元。处理模块810用于对装置800的动作进行控制管理。收发模块820用于支持装置800与其他网络实体的通信。可选地,装置800还可以包括存储单元,所述存储单元用于存储装置800的程序代码和数据。
可选地,所述装置800中各个模块可以是通过软件来实现。
可选地,处理模块810可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微 处理器组合,DSP和微处理器的组合等等。收发模块820可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,存储单元可以是存储器。
当装置800为终端设备或终端设备中的芯片时,装置800中的处理模块810可以支持装置800执行上文中各方法示例中终端设备的动作,例如可以支持装置800执行图5中的S510,S530,S540。
收发模块820可以支持装置800与服务小区或多个邻区进行通信,例如,收发模块820可以支持装置800执行图5中的S500,S520A和S520B。
例如,收发模块820,用于从服务小区接收所述服务小区的误码平台;
处理模块810,用于判断所述服务小区的误码平台是否小于预设阈值,其中,所述预设阈值是根据预设安全参数确定的,所述预设安全参数包括预设逼近度或预设安全等级,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;若所述服务小区的误码平台小于预设阈值,则启动小区重选。
在一种可能的设计中,所述服务小区的误码平台是指在所述服务小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000041
其中,d 0表示所述预设逼近度。
在一种可能的设计中所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000042
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,所述收发模块820,用于在启动小区重选时,向所述服务小区发送指示信息,所述指示信息指示所述服务小区的误码平台小于所述预设阈值。
在一种可能的设计中,所述收发模块820,用于接收多个邻区分别对应的误码平台;
所述处理模块810,用于根据所述多个邻区分别对应的误码平台确定所述多个邻区中至少一个误码平台大于或等于所述预设阈值的邻区;根据所述至少一个误码平台大于或等于所述预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于所述预设阈值的邻区中的一个。
在一种可能的设计中,所述收发模块820,用于接收多个邻区分别对应的误码平台;所述处理模块810,用于根据所述多个邻区分别对应的误码平台确定不存在误码平台大于或等于所述预设阈值的邻区,则所述装置更新所述预设安全参数;根据所述多个邻区分别对应的误码平台确定所述多个邻区中存在至少一个误码平台大于或等于更新后的预设阈值的邻区,其中,所述更新后的预设阈值是根据更新后的预设安全参数确定的;根据所述至少一个误码平台大于或等于更新后的预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于更新后的预设阈值的邻区中的一个。
应理解,根据本申请实施例的装置800可对应于前述方法实施例中终端设备,并且装置800中的各个模块的操作和/或功能分别为了实现前述方法实施例中终端设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
当装置800为服务小区或服务小区中的芯片时,装置800中的处理模块810可以支持装置800执行上文中各方法示例中服务小区的动作,例如可以支持装置800执行图6中的S670,或者图7中的S750。
收发模块820可以支持装置800与终端设备或多个邻区进行通信,例如,收发模块820可以支持装置800执行图6中的S600,S610A,S610B,S640,S660,或者图7中的S700,S710A,S710B,S720,S740。
一种可能的实现方式:
收发模块820,用于接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;向多个邻区发送所述预设安全参数;
所述收发模块820,用于在需要切换时,从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;
处理模块810,用于根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
在一种可能的设计中,所述处理模块810,用于在需要切换时,确定所述装置的误码平台小于所述预设阈值,或者确定所述装置的误码平台大于或等于所述预设阈值,但所述装置满足预设条件。
在一种可能的设计中在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000043
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000044
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
另一种可能的实现方式:
收发模块820,用于接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;接收多个邻区分别对应的误码平台;
所述处理模块810,用于在所述需要切换时,根据所述多个邻区分别对应的误码平台和所述预设安全参数确定目标小区,其中,所述目标小区的误码平台大于或等于预设阈值,所述预设阈值是根据所述预设安全参数确定的。
在一种可能的设计中,在需要切换时,所述处理模块810,用于确定所述装置的误码平台小于所述预设阈值,或者确定所述装置的误码平台大于或等于所述预设阈值,但所述装置满足预设条件。
在一种可能的设计中,在所述预设安全参数包括预设逼近度时,所述预设阈值为
Figure PCTCN2022130137-appb-000045
其中,d 0表示所述预设逼近度。
在一种可能的设计中,所述预设逼近度为所述预设安全等级与数据组的长度之比。
在一种可能的设计中,在所述预设安全参数包括预设安全等级时,所述预设阈值为
Figure PCTCN2022130137-appb-000046
其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
在一种可能的设计中,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区 域外的任意位置的比特错误率中的最小比特错误率。
在一种可能的设计中,所述收发模块820,用于在接收多个邻区分别对应的误码平台之前,向所述多个邻区中的每个邻区发送请求消息,所述请求消息用于请求该邻区的误码平台。
在一种可能的设计中,在根据所述至少一个误码平台大于或等于预设阈值的邻区确定目标小区时,所述收发模块820从所述终端设备接收测量报告;所述处理模块810根据所述至少一个误码平台大于或等于预设阈值的邻区和所述测量报告确定目标小区,所述测量报告包括所述至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果。
应理解,根据本申请实施例的装置800可对应于前述方法实施例中服务小区,并且装置800中的各个模块的操作和/或功能分别为了实现前述方法实施例中服务小区的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
图9示出了根据本申请实施例的通信装置900的示意性结构图。如图9所示,所述装置900包括:处理器901。
当装置900为终端设备或终端设备中的芯片时,一种可能的实现方式中,当所述处理器901用于调用接口执行以下动作:接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;向多个邻区发送所述预设安全参数;在需要切换时,从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
应理解,所述装置900还可用于执行前文实施例中终端设备的其他步骤和/或操作,为了简洁,这里不作赘述。
当装置900为服务小区或服务小区中的芯片时,一种可能的实现方式中,当所述处理器901用于调用接口执行以下动作:接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;向多个邻区发送所述预设安全参数;在需要切换时,从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
另一种可能的实现方式中,当所述处理器901用于调用接口执行以下动作:接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;接收多个邻区分别对应的误码平台;在所述需要切换时,根据所述多个邻区分别对应的误码平台和所述预设安全参数确定目标小区,其中,所述目标小区的误码平台大于或等于预设阈值,所述预设阈值是根据所述预设安全参数确定的。
应理解,所述装置900还可用于执行前文实施例中服务小区的其他步骤和/或操作,为了简洁,这里不作赘述。
应理解,所述处理器901可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置900还包括收发器903。
可选地,所述装置900还包括存储器902,存储器902中可以存储上述方法实施例中的程序代码,以便于处理器901调用。
具体地,若所述装置900包括处理器901、存储器902和收发器903,则处理器901、存储器902和收发器903之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器901、存储器902和收发器903可以通过芯片实现,处理器901、存储器902和收发器903可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器902可以存储程序代码,处理器901调用存储器902存储的程序代码,以实现装置900的相应功能。
本申请还提供一种通信系统,所述系统包括服务小区、终端设备、多个邻区,其中,所述服务小区用于执行前文实施例中服务小区侧的步骤和/或操作,所述终端设备用于执行前文实施例中终端设备侧的步骤和/或操作,所述多个邻区用于执行前文实施例中多个邻区侧的步骤和/或操作。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,
EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述各个实施例所示的方法。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,固态硬盘Solid State Disk SSD)等。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (26)

  1. 一种通信方法,其特征在于,该方法包括:
    终端设备从服务小区接收所述服务小区的误码平台;
    所述终端设备判断所述服务小区的误码平台是否小于预设阈值,其中,所述预设阈值是根据预设安全参数确定的,所述预设安全参数包括预设逼近度或预设安全等级,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;
    若所述服务小区的误码平台小于所述预设阈值,则所述终端设备启动小区重选。
  2. 如权利要求1所述的方法,其特征在于,所述服务小区的误码平台是指在所述服务小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
  3. 如权利要求1或2所述的方法,其特征在于,在所述预设安全参数包括预设逼近度时,所述预设阈值为
    Figure PCTCN2022130137-appb-100001
    其中,d 0表示所述预设逼近度。
  4. 如权利要求1或2所述的方法,其特征在于,所述预设逼近度为所述预设安全等级与数据组的长度之比。
  5. 如权利要求4所述的方法,其特征在于,在所述预设安全参数包括预设安全等级时,所述预设阈值为
    Figure PCTCN2022130137-appb-100002
    其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述终端设备启动小区重选,包括:
    所述终端设备向所述服务小区发送指示信息,所述指示信息指示所述服务小区的误码平台小于所述预设阈值。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    所述终端设备接收多个邻区分别对应的误码平台;
    所述终端设备根据所述多个邻区分别对应的误码平台确定所述多个邻区中至少一个误码平台大于或等于所述预设阈值的邻区;
    所述终端设备根据所述至少一个误码平台大于或等于所述预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于所述预设阈值的邻区中的一个。
  8. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    所述终端设备接收多个邻区分别对应的误码平台;
    所述终端设备根据所述多个邻区分别对应的误码平台确定不存在误码平台大于或等于所述预设阈值的邻区,则所述终端设备更新所述预设安全参数;
    所述终端设备根据所述多个邻区分别对应的误码平台确定所述多个邻区中存在至少一个误码平台大于或等于更新后的预设阈值的邻区,其中,所述更新后的预设阈值是根据更新后的预设安全参数确定的;
    所述终端设备根据所述至少一个误码平台大于或等于更新后的预设阈值的邻区分别对应的信道测量结果,确定重选小区,所述重选小区为所述至少一个误码平台大于或等于更新后的预设阈值的邻区中的一个。
  9. 一种通信方法,其特征在于,该方法包括:
    服务小区接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;
    所述服务小区向多个邻区发送所述预设安全参数;
    在所述服务小区需要切换时,所述服务小区从所述终端设备接收测量报告,所述测量报告包括所述多个邻区的验证结果,所述多个邻区中每个邻区的验证结果指示该邻区的误码平台是否大于或等于预设阈值,其中,所述预设阈值是根据所述预设安全参数确定的;
    所述服务小区根据所述测量报告确定目标小区,所述目标小区的误码平台大于或等于预设阈值。
  10. 如权利要求9所述的方法,其特征在于,所述服务小区需要切换,包括:
    所述服务小区确定所述服务小区的误码平台小于所述预设阈值,或者所述服务小区确定所述服务小区的误码平台大于或等于所述预设阈值,但所述服务小区满足预设条件。
  11. 如权利要求9或10所述的方法,其特征在于,在所述预设安全参数包括预设逼近度时,所述预设阈值为
    Figure PCTCN2022130137-appb-100003
    其中,d 0表示所述预设逼近度。
  12. 如权利要求9或10所述的方法,其特征在于,所述预设逼近度为所述预设安全等级与数据组的长度之比。
  13. 如权利要求12所述的方法,其特征在于,在所述预设安全参数包括预设安全等级时,所述预设阈值为
    Figure PCTCN2022130137-appb-100004
    其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
  14. 如权利要求9-13任一项所述的方法,其特征在于,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
  15. 一种通信方法,其特征在于,该方法包括:
    服务小区接收来自终端设备的预设安全参数;所述预设安全参数包括预设逼近度或预设安全等级,其中,所述预设逼近度为加密信息熵所需的密钥熵与该信息熵之比;
    所述服务小区接收多个邻区分别对应的误码平台;
    在所述服务小区需要切换时,所述服务小区根据所述多个邻区分别对应的误码平台和所述预设安全参数确定目标小区,其中,所述目标小区的误码平台大于或等于预设阈值,所述预设阈值是根据所述预设安全参数确定的。
  16. 如权利要求15所述的方法,其特征在于,所述服务小区需要切换,包括:
    所述服务小区确定所述服务小区的误码平台小于所述预设阈值,或者所述服务小区确定所述服务小区的误码平台大于或等于所述预设阈值,但所述服务小区满足预设条件。
  17. 如权利要求15或16所述的方法,其特征在于,在所述预设安全参数包括预设逼近度时,所述预设阈值为
    Figure PCTCN2022130137-appb-100005
    其中,d 0表示所述预设逼近度。
  18. 如权利要求15或16所述的方法,其特征在于,所述预设逼近度为所述预设安全等级与数据组的长度之比。
  19. 如权利要求18所述的方法,其特征在于,在所述预设安全参数包括预设安全等级时,所述预设阈值为
    Figure PCTCN2022130137-appb-100006
    其中,λ 0表示所述预设安全等级,L表示所述数据组的长度。
  20. 如权利要求15-19任一项所述的方法,其特征在于,每个小区的误码平台是指在该小区的覆盖区域内且位于受控区域外的任意位置的比特错误率中的最小比特错误率。
  21. 如权利要求15-20任一项所述的方法,其特征在于,在所述服务小区接收多个邻区分别对应的误码平台之前,还包括:
    所述服务小区向所述多个邻区中的每个邻区发送请求消息,所述请求消息用于请求该邻区的误码平台。
  22. 如权利要求15-21任一项所述的方法,其特征在于,所述服务小区根据所述至少一 个误码平台大于或等于预设阈值的邻区确定目标小区,包括:
    所述服务小区从所述终端设备接收测量报告,所述测量报告包括所述至少一个误码平台大于或等于预设阈值的邻区分别对应的信道测量结果;
    所述服务小区根据所述至少一个误码平台大于或等于预设阈值的邻区和所述测量报告确定目标小区。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1至8中任一项所述方法的单元或模块,或者包括用于执行如权利要求9至14中任一项所述方法的单元或模块,或者包括用于执行如权利要求15至22中任一项所述方法的单元或模块。
  24. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得如权利要求1至8任一项所述的方法被实现,或者使得如权利要求9至14任一项所述的方法被实现,或者使得如权利要求15至22任一项所述的方法被实现。
  25. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至22任一项所述的方法。
  26. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1至22中任一项所述的方法被实现。
PCT/CN2022/130137 2022-11-04 2022-11-04 一种通信方法及装置 WO2024092829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130137 WO2024092829A1 (zh) 2022-11-04 2022-11-04 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130137 WO2024092829A1 (zh) 2022-11-04 2022-11-04 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024092829A1 true WO2024092829A1 (zh) 2024-05-10

Family

ID=90929510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130137 WO2024092829A1 (zh) 2022-11-04 2022-11-04 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2024092829A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321313A1 (en) * 2018-12-26 2021-10-14 Huawei Technologies Co., Ltd. Communication Method and Communications Apparatus
WO2022017483A1 (zh) * 2020-07-24 2022-01-27 深圳市万普拉斯科技有限公司 乒乓切换抑制方法、装置、终端及可读存储介质
US11483748B1 (en) * 2021-05-24 2022-10-25 Nanning Fulian Fugui Precision Industrial Co., Ltd. Method and apparatus for managing handovers in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321313A1 (en) * 2018-12-26 2021-10-14 Huawei Technologies Co., Ltd. Communication Method and Communications Apparatus
WO2022017483A1 (zh) * 2020-07-24 2022-01-27 深圳市万普拉斯科技有限公司 乒乓切换抑制方法、装置、终端及可读存储介质
US11483748B1 (en) * 2021-05-24 2022-10-25 Nanning Fulian Fugui Precision Industrial Co., Ltd. Method and apparatus for managing handovers in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Introduction of serving cell idle mode measurements reporting in 36.331", 3GPP DRAFT; R2-1807868 SERVING CELL MEASUREMENT REPORTING IN 36.331, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051444201 *
PAROPKARI RAHUL ARUN; GEBREMICHAIL AKLILU ASSEFA; BEARD CORY: "Fractional Packet Duplication and Fade Duration Outage Probability Analysis for Handover Enhancement in 5G Cellular Networks", 2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), IEEE, 18 February 2019 (2019-02-18), pages 298 - 302, XP033536406, DOI: 10.1109/ICCNC.2019.8685530 *

Similar Documents

Publication Publication Date Title
TWI332345B (en) Security considerations for the lte of umts
CN103109496B (zh) 无线局域网络系统中针对利用服务质量机制的管理帧的密码通信的方法及设备
TW201822553A (zh) 測量方法、終端設備和網路設備
JP7300997B2 (ja) 物理ブロードキャストチャネルペイロード中で同期信号ブロックインデックスを通信するための技法
CN108605225B (zh) 一种安全处理方法及相关设备
JP7127689B2 (ja) コアネットワーク装置、通信端末、及び通信方法
WO2009122260A2 (en) Methods, apparatuses, and computer program products for providing multi-hop cryptographic separation for handovers
WO2017185304A1 (zh) Ra-rnti的确定装置、rar的传输装置、方法以及通信系统
US9491621B2 (en) Systems and methods for fast initial link setup security optimizations for PSK and SAE security modes
CN107211473B (zh) 通信方法、用户设备和基站
KR20230006031A (ko) 저 레이트 폴라 코드들에 대한 저 복잡도 펑처링 방법
WO2021160091A1 (zh) 一种用于组切换的方法和装置
JP2014529231A (ja) ネットワーク品質を改善するための方法およびデバイス、無線ネットワーク制御装置、ならびにチップ
Mughal et al. Performance analysis of V2V communications: A novel scheduling assignment and data transmission scheme
US10122438B2 (en) Systems, methods and devices for modifying relay operation of a wireless device
EP2991283A1 (en) Data transmission method and apparatus
WO2021102843A1 (zh) 一种具有抗干扰能力的短距离通信方法和装置
CN112399418B (zh) 用于通信的方法和装置
WO2024092829A1 (zh) 一种通信方法及装置
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
CN107925874B (zh) 超密集网络安全架构和方法
WO2024092838A1 (zh) 一种数据传输方法及装置
US11051171B2 (en) Communication method, related device, and system
CN111465007B (zh) 一种认证方法、装置和系统
WO2024077597A1 (zh) 无线物理层安全通信的方法和通信装置