WO2024092490A1 - Concurrent measurement gaps for layer one inter-frequency measurements - Google Patents

Concurrent measurement gaps for layer one inter-frequency measurements Download PDF

Info

Publication number
WO2024092490A1
WO2024092490A1 PCT/CN2022/128899 CN2022128899W WO2024092490A1 WO 2024092490 A1 WO2024092490 A1 WO 2024092490A1 CN 2022128899 W CN2022128899 W CN 2022128899W WO 2024092490 A1 WO2024092490 A1 WO 2024092490A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement gap
measurement
channel measurements
occasion
channel
Prior art date
Application number
PCT/CN2022/128899
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Changhwan Park
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/128899 priority Critical patent/WO2024092490A1/en
Priority to PCT/CN2023/128267 priority patent/WO2024093983A1/en
Publication of WO2024092490A1 publication Critical patent/WO2024092490A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the following relates to wireless communication, including concurrent measurement gaps for layer one (L1) inter-frequency measurements.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
  • UE user equipment
  • a UE may perform mobility and handover procedures to switch between candidate serving cells. In some cases, however, techniques for performing channel measurements for the candidate serving cells may be improved.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support concurrent measurement gaps for layer one (L1) inter-frequency measurement.
  • the described techniques provide for defining and reporting a capability of supporting concurrent measurement gaps for L1 channel measurements.
  • a user equipment (UE) may transmit a capability message indicating its support of concurrent measurement gaps for channel measurements.
  • the capability message may include one or more information elements indicating the support of such measurement gaps for L1 channel measurements, layer three (L3) channel measurements, or both.
  • the UE may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) .
  • the UE may select at least one of the measurement gaps to use for performing L1 channel measurements based on a scheduling collision between the one or more signaled measurement gaps. That is, if two measurement gaps are at least partially overlapping in time, or if a distance in time between the two measurement gaps is less than a defined threshold, the concurrent measurement gaps may have a scheduling conflict that the UE may consider when selecting one or more of the measurement gaps to use.
  • the UE may perform an L1 channel measurement, an L3 channel measurement, or both, using one or more of the selected measurement gaps, and the UE may transmit a channel measurement report in accordance with the measurement.
  • a method for wireless communication at a UE may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the apparatus may include at least one processor and memory coupled with the at least one processor.
  • the memory may store instructions executable the at least one processor to cause the UE to transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receive one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the apparatus may include means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by at least one processor to transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receive one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • transmitting the capability message may include operations, features, means, or instructions for transmitting, via the capability message, a single UE capability information element indicating that the UE may be capable of supporting the concurrent measurement gaps for both the L1 channel measurements and L3 channel measurements.
  • transmitting the capability message may include operations, features, means, or instructions for transmitting, via the capability message, a first UE capability information element indicating that the UE may be capable of supporting the concurrent measurement gaps for the L1 channel measurements, where the first UE capability information element may be separate from a second UE capability information element indicating whether the UE may be capable of supporting the concurrent measurement gaps for L3 channel measurements.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the scheduling collision based on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  • the timing between the first measurement gap occasion and the second measurement gap occasion may be measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, where the first measurement gap occasion occurs before the second measurement gap occasion in time.
  • the defined threshold may be 4 milliseconds.
  • the first measurement gap and the second measurement gap include inter-frequency measurement gaps.
  • the first measurement gap may be associated with a first channel state information (CSI) report and the second measurement gap may be associated with a second CSI report.
  • CSI channel state information
  • FIG. 1 illustrates an example of a wireless communications system that support concurrent measurement gaps for layer one (L1) inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIG. 3 illustrates an example of a measurement configuration that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIGs. 5 and 6 illustrate block diagrams of devices that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIG. 7 illustrates a block diagram of a communications manager that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIG. 8 illustrates a diagram of a system including a device that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • FIGs. 9 through 12 illustrate flowcharts showing methods that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
  • a user equipment may perform layer one (L1) /layer two (L2) mobility procedures, in which the UE may switch between candidate serving cells as it moves throughout a wireless communications system.
  • the UE may perform measurements of cells via different layers of a protocol stack (e.g., L1, L2, layer three (L3) ) .
  • the UE may perform inter-frequency measurements of cells.
  • the UE may use measurement gaps during which the UE may switch between different candidate serving cells to accurately perform channel measurements.
  • the UE may lack techniques to define concurrent measurement gaps, which may decrease efficiency and accuracy of channel measurements. Additionally, the UE may be unable to report a capability to support such measurement gaps.
  • a UE may transmit a capability message indicating that the UE supports concurrent measurement gaps for L1 channel measurements.
  • the UE may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) , and the UE may select at least one or the measurement gaps to use for performing L1 channel measurements based on a scheduling collision between the one or more signaled measurement gaps.
  • the UE may detect the scheduling collision based on an overlap in time or a distance in time between the measurement gaps.
  • the UE may perform an L1 channel measurement, an L3 channel measurement, or both using the selected measurement gaps, and the UE may transmit a channel state information (CSI) report in accordance with performing the channel measurements.
  • CSI channel state information
  • the UE may decrease latency associated with performing the channel measurements and general L1/L2 mobility procedures.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described in the context of measurement configurations and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to using concurrent measurement gaps for L1 inter-frequency measurement.
  • FIG. 1 illustrates an example of a wireless communications system 100 that support concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities.
  • a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature.
  • network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) .
  • a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs 115 and the network entity 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
  • RATs radio access technologies
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
  • a node of the wireless communications system 100 which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein.
  • a node may be a UE 115.
  • a node may be a network entity 105.
  • a first node may be configured to communicate with a second node or a third node.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a UE 115.
  • the first node may be a UE 115
  • the second node may be a network entity 105
  • the third node may be a network entity 105.
  • the first, second, and third nodes may be different relative to these examples.
  • reference to a UE 115, network entity 105, apparatus, device, or computing system may include disclosure of the UE 115, network entity 105, apparatus, device, or computing system being a node.
  • disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
  • network entities 105 may communicate with the core network 130, or with one another, or both.
  • network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) .
  • network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) .
  • network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof.
  • the backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof.
  • a UE 115 may communicate with the core network 130 via a communication link 155.
  • One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) .
  • a base station 140 e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be
  • a network entity 105 may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
  • a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) .
  • IAB integrated access backhaul
  • O-RAN open RAN
  • vRAN virtualized RAN
  • C-RAN cloud RAN
  • a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration (SMO) 180 system, or any combination thereof.
  • An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) .
  • One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) .
  • one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
  • VCU virtual CU
  • VDU virtual DU
  • VRU virtual RU
  • the split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170.
  • functions e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof
  • a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack.
  • the CU 160 may host upper protocol layer (e.g., L3, L2) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) .
  • RRC Radio Resource Control
  • SDAP service data adaption protocol
  • PDCP Packet Data Convergence Protocol
  • the CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as L1 (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160.
  • L1 e.g., physical (PHY) layer
  • L2 e.g., radio link control (RLC) layer, medium access control (MAC) layer
  • MAC medium
  • a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack.
  • the DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) .
  • a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) .
  • a CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions.
  • CU-CP CU control plane
  • CU-UP CU user plane
  • a CU 160 may be connected to one or more DUs 165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) .
  • a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
  • infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) .
  • IAB network one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other.
  • One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor.
  • One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) .
  • the one or more donor network entities 105 may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) .
  • IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor.
  • IAB-MT IAB mobile termination
  • An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) .
  • the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) .
  • one or more components of the disaggregated RAN architecture e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
  • an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115.
  • the IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor may refer to a RAN node with a wired or wireless connection to core network 130.
  • the IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) .
  • IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) .
  • the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
  • An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) .
  • a DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) .
  • an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
  • the DU interface e.g., DUs 165
  • IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both.
  • the IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104.
  • the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both.
  • the CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
  • one or more components of the disaggregated RAN architecture may be configured to support concurrent measurement gaps for L1 inter-frequency measurements as described herein.
  • some operations described as being performed by a UE 115 or a network entity 105 may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a multimedia/entertainment device (e.g., a radio, a MP3 player, or a video device) , a camera, a gaming device, a navigation/positioning device (e.g., GNSS (global navigation satellite system) devices based on, for example, GPS (global positioning system) , Beidou, GLONASS, or Galileo, or a terrestrial-based device) , a tablet computer, a laptop computer, a netbook, a smartbook, a personal computer, a smart device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, virtual reality goggles, a smart wristband, smart jewelry (e.g., a smart ring, a smart bracelet) ) , a drone, a robot/robotic device, a vehicle, a vehicular
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers.
  • the term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105.
  • the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105 may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
  • a network entity 105 e.g., a base station 140, a CU 160, a DU 165, a RU 170
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode, in which case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the network entities 105, the UEs 115, or both
  • the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related.
  • the quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication.
  • a wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots.
  • each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing.
  • Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., a quantity of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed for communication using a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • One or more control regions may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a network entity 105 may be movable and therefore provide communication coverage for a moving coverage area 110.
  • different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105.
  • the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • network entities 105 e.g., base stations 140
  • network entities 105 may have different frame timings, and transmissions from different network entities 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines.
  • MTC or IoT UEs may include MTC/enhanced MTC (eMTC, also referred to as CAT-M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs.
  • eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies.
  • eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , and mMTC (massive MTC)
  • NB-IoT may include eNB-IoT (enhanced NB-IoT) , and FeNB-IoT (further enhanced NB-IoT) .
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless network for example a wireless local area network (WLAN) , such as a Wi-Fi (e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices.
  • the AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) .
  • a wireless device may communicate with a network device bi-directionally.
  • a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) .
  • a wireless personal area network which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices.
  • wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
  • Components within a wireless communication system may be coupled (for example, operatively, communicatively, functionally, electronically, and/or electrically) to each other.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) .
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions.
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data.
  • Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105.
  • one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105.
  • groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group.
  • a network entity 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
  • a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
  • roadside infrastructure such as roadside units
  • network nodes e.g., network entities 105, base stations 140, RUs 170
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • IMS IP Multimedia Subsystem
  • the wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) .
  • Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a network entity 105 e.g., a base station 140, an RU 170
  • a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations.
  • a network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may include one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
  • the network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers.
  • Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations.
  • a network entity 105 e.g., a base station 140, an RU 170
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
  • a transmitting device such as a network entity 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) .
  • a single beam direction e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands.
  • the network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170)
  • a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device e.g., a network entity 105
  • signals such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • receive configuration directions e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or PDCP layer may be IP-based.
  • An RLC layer may perform packet segmentation and reassembly to communicate via logical channels.
  • a MAC layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer also may implement error detection techniques, error correction techniques, or both to support retransmissions to improve link efficiency.
  • an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data.
  • a PHY layer may map transport channels to physical channels.
  • a UE 115 may perform L1/L2 mobility procedures to handover from one serving cell to another in the wireless communications system 100. During such procedures, the UE 115 may measure different layers of a protocol stack (e.g., L1, L2, L3) to determine which cell to handover to. For example, the UE 115 may perform a channel or signal quality measurement (e.g., transmit power, SNR) of a target serving cell and report the measurement to a network entity 105, such that the network entity 105 may determine if the UE 115 is to handover to the target serving cell.
  • a protocol stack e.g., L1, L2, L3
  • SNR transmit power
  • the UE 115 may perform the channel measurements between a current serving cell and the target serving cell in a same frequency (e.g., an intra-frequency measurement) or in different frequencies (e.g., an inter-frequency measurement) . To account for a difference in frequency between the current and target serving cells when performing inter-frequency measurements, the UE 115 may use a measurement gap. During a measurement gap, the UE 115 and the network entity 105 may refrain from transmitting or receiving signaling such that the UE 115 may switch to the target serving cell, perform channel measurements on that cell, and switch back to the current serving cell without dropping any transmissions.
  • a measurement gap the UE 115 and the network entity 105 may refrain from transmitting or receiving signaling such that the UE 115 may switch to the target serving cell, perform channel measurements on that cell, and switch back to the current serving cell without dropping any transmissions.
  • a UE 115 may support active BWPs without synchronization signal blocks (SSBs)
  • the UE 115 may perform L1 measurements outside of the active BWP (but within a configured bandwidth of a corresponding cell) .
  • the UE 115 may support L1 SSB measurements outside of the active BWP with or without a measurement gap.
  • the UE 115 may be configured with a current, serving special cell (SpCell) and multiple candidate SpCells.
  • SpCell serving special cell
  • the UE 115 may switch from the current SpCell to one or the candidate SpCells (e.g., a new SpCell) based on higher layer signaling (e.g., L3 signaling) .
  • higher layer signaling e.g., L3 signaling
  • the UE 115 may switch between the SpCells based on lower layer signaling (e.g., L1/L2 signaling) , which is associated with a lower latency.
  • the SpCells the UE 115 switches between may be intra-or inter-frequency cells. That is, L1/L2-based inter-cell mobility may be applicable to both intra-frequency and inter-frequency scenarios.
  • the UE 115 may perform channel measurements associated with candidate serving cells to determine whether to handover between the cells. For example, the UE 115 may perform L3 intra-or inter-frequency measurements or L1 reference signal received power (RSRP) measurements. The UE 115 may use L3 intra-or inter-frequency measurements during an L3 handover procedure. For an L3 intra-frequency measurement, a measured SSB of a neighbor cell (e.g., a candidate serving cell) and a measured SSB of a current serving cell may have a same center frequency and a same sub-carrier spacing.
  • RSRP reference signal received power
  • an L3 intra-frequency measurement may be defined as an SSB-based intra-frequency measurement provided the center frequency and the subcarrier spacing of the SSB of the serving cell indicated for measurement (e.g., the current serving cell) and the SSB of the neighbor cell are the same.
  • an L3 inter-frequency measurement may be defined as an SSB-based inter-frequency measurement provided the center frequency and the subcarrier spacing of the SSBs are different (e.g., failing to satisfy the conditions of the intra-frequency case) .
  • the UE 115 may use L1 RSRP measurement during an L1 handover procedure.
  • the UE 115 may use an L1-RSRP measurement for reference signals in an active BWP, which may not require a measurement gap.
  • a network entity 105 may configure the UE 115 to perform L1-RSRP measurements of configured CSI-RS resources, SSB resources, or both for L1-RSRP.
  • the UE 115 may perform the measurements for a serving cell, including a primary cell (PCell) , a primary-secondary cell (PSCell) , or a secondary cell (SCell) , on the resources configured for the L1-RSRP measurements within the active BWP.
  • an SpCell may be equivalent to a PCell or a PSCell.
  • the UE 115 may fail to support some cases of L1 channel measurements. Moreover, it may be unspecified whether a given L1 channel measurement scenario uses measurement gaps, which the UE 115 may use for both intra-frequency and inter-frequency scenarios. For example, the UE 115 may fail to support L1 measurements for cases in which an SSB of a measured candidate cell is outside of an active BWP but within a configured bandwidth of an activated or current serving cell (e.g., Case 1) . Additionally, or alternatively, the UE 115 may fail to support L1 measurements for cases in which the SSB of the measured candidate cell is outside of the configured bandwidth of the activated serving cell.
  • the UE 115 may fail to support L1 measurements for cases in which the SSB of the measured candidate cell is within the active bandwidth but with a different center frequency or SCS from a measured SSB of the activated serving cell. That is, the UE 115 and the network entity 105 may lack information about how the UE 115 may perform L1 channel measurements for L1 mobility procedures, and whether measurement gaps may be used for such channel measurements, which may increase latency and decrease handover efficiency.
  • the wireless communications system 100 may support defining and reporting a capability of supporting concurrent measurement gaps for L1 channel measurements.
  • a UE 115 may transmit a capability message indicating its support of concurrent measurement gaps for channel measurements.
  • the capability message may include one or more information elements indicating the support of such measurement gaps for L1 channel measurements, L3 channel measurements, or both.
  • the UE 115 may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) .
  • the UE 115 may select at least one or the measurement gaps to use for performing L1 channel measurements based on an overlap (e.g., scheduling collision) between the one or more signaled measurement gaps.
  • the concurrent measurement gaps may have a scheduling conflict that the UE 115 may consider when selecting one or more of the measurement gaps to use.
  • the UE 115 may perform an L1 channel measurement, an L3 channel measurement, or both using the selected measurement gaps, and transmit a channel measurement report to a network entity in accordance with the measurement.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of the wireless communications system 100 or may be implemented by aspects of the wireless communications system 100.
  • the wireless communications system 200 may include a UE 115-a, a network entity 105-a, and a network entity 105-b.
  • the network entity 105-a may represent a current serving cell of the UE 115-aand the network entity 105-b may represent a candidate serving cell of the UE 115-a.
  • the wireless communications system 200 may support the UE 115-a using concurrent measurement gaps for performing L1 channel measurements during an L1/L2 mobility procedure. That is, the UE 115-a may define concurrent measurement gaps for L1 channel measurements and report its support of such concurrent measurement gaps.
  • a network entity 105 may configure the UE 115-a with concurrent measurement gaps during which the UE 115-a may perform channel measurements of different candidate serving cells.
  • the UE 115-a may measure one or more reference signals corresponding to each candidate serving cell.
  • the network entity 105-a may transmit SSBs or CSI 205-a
  • the network entity 105-b may transmit SSBs or CSI 205-b.
  • such reference signals may collide or have a scheduling overlap in time.
  • the UE 115-a may support concurrent measurement gaps.
  • the UE 115-a may transmit a capability message indicating a capability of the UE 115-a to support the concurrent measurement gaps for L1 channel measurements.
  • the UE 115-a may report its capability to support the concurrent measurement gaps for L1 channel measurements in an information element that indicates a UE capability associated with L3 channel measurements. For example, the UE 115-a may transmit, via the capability message, a single UE capability information element (e.g., concurrentMeasGap-r17) indicating that the UE 115-a is capable of supporting concurrent measurement gaps for both L1 channel measurements and L3 channel measurements. The UE 115-a may indicate its capability in this information element if the UE 115-a defines concurrent measurement gaps for L1 channel measurements the same as for L3 channel measurements. In this way, the information element may indicate that the UE 115-a supports concurrent measurement gaps for both L1 and L3 channel measurements.
  • a single UE capability information element e.g., concurrentMeasGap-r17
  • the UE 115-a may report its capability to support the concurrent measurement gaps for L1 channel measurements in a first information element that is separate from a second information element associated with L3 channel measurements.
  • the UE 115-a may transmit, via the capability message, a first UE capability information element (e.g., concurrentMeasGap-r18) indicating that the UE 115-a is capable of supporting concurrent measurement gaps for L1 channel measurements, where the first UE capability information element is separate from a second UE capability information element indicating whether the UE 115-a is capable of supporting concurrent measurement gaps for L3 channel measurements.
  • the UE 115-a may indicate its capability in the first information element if the UE 115-a defines concurrent measurement gaps for L1 channel measurements based on that of L3 channel measurements.
  • the UE 115-a may be configured to perform at least some of a set of channel measurements for L1, L3, or both based on one or more configured measurement gaps.
  • the UE 115-a may receive one or more signals (e.g., measurement configuration signals) identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the first measurement gap and the second measurement gap may be concurrent, inter-frequency measurement gaps.
  • the UE 115-a may select the first measurement gap, the second measurement gap, or both for performing L1 channel measurements or L3 channel measurements. For example, the UE 115-a may select one of the first measurement gap or the second measurement gap to apply for at least a portion of the set of channel measurements at the UE 115-a (e.g., L1/L3 measurements) according to a scheduling collision (e.g., an overlapping) between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap. In some cases, the UE 115-a may detect the scheduling collision based on a partial or full overlap in time between the first measurement gap occasion and the second measurement gap occasion. In such cases, the UE 115-a may define the concurrent measurement gaps for L1 channel measurements the same as for L3 channel measurements, or based on that for L3 channel measurements (e.g., a simplified definition derived from that for L3 channel measurements) .
  • a scheduling collision e.g., an overlapping
  • the UE 115-a may detect the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold. For example, the UE 115-a may detect the scheduling collision if a distance in time between the two measurement gap occasions is, for example, equal to or smaller than a threshold or 4 ms.
  • the distance between the two measurement gap occasions may be a time difference between an ending point (e.g., an end) of the first measurement gap occasion and a starting point (e.g., a beginning) of the second measurement gap occasion, where the first measurement gap occasion occurs earlier in time than the second measurement gap occasion. In some cases, more than two measurement gap occasions may overlap sequentially.
  • the UE 115-a may perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. For example, the UE 115-a may measure the SSBs or CSI 205-a using the first measurement gap, the SSBs or CSI 205-b using the second measurement gap, or some combination thereof. In addition, the channel measurements may be associated with L1 or L3 signaling or processing at the UE with respect to a candidate serving cell. The UE 115-a may transmit a channel measurement report 210 in accordance with performing at least the portion of the set of channel measurements. That is, the channel measurement report 210 may indicate the results of the channel measurements. In some cases, the channel measurement report 210 may be a CSI report, where the first measurement gap may be associated with a first CSI report and the second measurement gap may be associated with a second CSI report.
  • FIG. 3 illustrates an example of a measurement configuration 300 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the measurement configuration 300 may implement aspects of the wireless communications systems 100 and 200 or may be implemented by aspects of the wireless communications systems 100 and 200.
  • the measurement configuration 300 may be implemented by one or more of an active cell 305, a candidate cell 310-a, and a candidate cell 310-b.
  • the active cell 305 may be an active SpCell of a UE 115
  • the candidate cell 310-a may be a first candidate SpCell of the UE 115 at a first frequency (e.g., SpCell1)
  • the candidate cell 310-b may be a second candidate SpCell of the UE 115 at a second frequency (e.g., SpCell2) . That is, the candidate cell 310-a and the candidate cell 310-b may operate using different frequencies or frequency ranges.
  • the active cell 305 and the candidate cells 310 may be associated with one or more network entities 105 in wireless communications with the UE 115.
  • the active cell 305 may trigger the UE 115 to perform some measurement and reporting for an L1/L2 mobility procedure. For example, the active cell 305 may transmit DCI 315-a triggering the UE 115 to perform an L1 measurement of the candidate cell 310-a and report the measurement. Because the frequencies of the candidate cell 310-a and the candidate cell 310-b may be different (e.g., resulting in the UE 115 performing inter-frequency measurements) , a network entity 105 may configure the UE 115 with a measurement gap 320-a associated with a measured SSB or CSI 325-a or some other measured reference signal corresponding to the candidate cell 310-a.
  • the measurement gap 320-a may provide the UE 115 a relatively larger time duration (e.g., time window) during which the UE 115 may measure one or more reference signals associated with the candidate cell 310-a.
  • the additional time enabled by the measurement gap 320-a may account for time uncertainties associated with an arrival time of one or more SSBs.
  • the UE 115 may be configured with a measurement gap 320-b associated with a measured SSB or CSI 325-b or some other measured reference signal corresponding to the candidate cell 310-b.
  • the measurement gap 320-b may provide the UE 115 with a time window during which the UE 115 may measure one or more reference signals associated with the candidate cell 310-b.
  • the measurement gap 320-a and the measurement gap 320-b may be concurrent measurement gaps.
  • the measurement gaps 320 may experience collisions or scheduling overlaps, which may impact intra-and inter-frequency measurements by the UE.
  • collisions between measurement gap occasions of two concurrent measurement gaps may occur if the measurement gaps 320 include two per-UE measurement gaps, two per-frequency measurement gaps in a same frequency or a same frequency range (e.g., intra-frequency measurement gaps) , or one per-UE measurement gaps and one per-frequency measurement gap.
  • the measurement gaps 320 may be considered as colliding if at least the two corresponding measurement gap occasions are fully or partially overlapping in a time domain or a distance in time between the two measurement gap occasions is, for example, equal to or smaller than 4 ms.
  • the distance may be a time difference between an ending point of the measurement gap 320-a and a starting point of the measurement gap 320-b, where the measurement gap 320-a occurs earlier in time than measurement gap 320-b.
  • more than two measurement gaps 320 may overlap sequentially.
  • the UE 115 may perform reference signal measurements in a measurement gap occasion associated with a measurement gap 320 with a higher priority, and the UE 115 may drop the measurement gap occasion associated with a relatively lower priority. In this way, the UE 115 may transmit or receive reference signals via serving cells that are not interrupted. In some examples, the UE 115 may refrain from applying such a selection process when the network entity 105 configures a measurement gap 320 without an assigned priority simultaneously with one or more measurement gaps 320 that affect serving carrier in a same frequency range, and when the measurement gaps 320 with and without assigned priorities are colliding with each other.
  • a scheduling conflict between the measurement gaps 320 in a mobility procedure e.g., an L1/L2/L3 mobility procedure
  • the UE 115 may use techniques other than a priority comparison to select measurement gaps 320 if not all configured measurement gaps 320 are assigned a priority.
  • the network entity 105 may configure a priority for a measurement gap 320 via gapPriority in GapConfig. The requirements of the concurrent measurement gaps 320 may apply provided that the network entity 105 configures the two measurement gaps 320 colliding with each other with different priorities.
  • the UE 115 may transmit an L1 report 330-a via a physical uplink shared channel (PUSCH) .
  • the L1 report 330-a may include or indicate the measured SSB or CSI 325-a, the measured SSB or CSI 325-b, or both, based on the measurement gap 320-a, the measurement gap 320-b, or both being configured for the UE 115. That is, the UE 115 may transmit a channel measurement report in accordance with performing one or more channel measurements based on the measurement gaps 320.
  • the UE 115 may receive DCI 315-b triggering the UE 115 to perform an L1 measurement of the candidate cell 310-b and report the measurement.
  • the UE 115 may measure one or more reference signals associated with the candidate cell 310-b (without a measurement gap) and transmit a PUSCH with an L1/L3 report 330-b including the measured SSB/CSI 320-c.
  • FIG. 4 illustrates an example of a process flow 400 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the process flow 400 may implement aspects of wireless communications systems 100 and 200, or may be implemented by aspects of the wireless communications systems 100 and 200.
  • the process flow 400 may illustrate operations between a UE 115-b and a network entity 105-c (e.g., a serving cell) , which may be examples of corresponding devices described herein.
  • a network entity 105-c e.g., a serving cell
  • the operations between the UE 115-b and the network entity 105-c may be transmitted in a different order than the example order shown, or the operations performed by the UE 115-b and the network entity 105-c may be performed in different orders or at different times. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
  • the UE 115-b may transmit a capability message indicating a capability of the UE 115-b to support concurrent measurement gaps for L1 channel measurements.
  • the capability message may include one or more UE capability information elements indicating the UE’s capability to support concurrent measurement gaps for L1 channel measurements, L3 channel measurements, or both.
  • the UE 115-b may receive one or more measurement configuration signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the channel measurements may include SSB measurements, CSI measurements, or other reference signal measurements.
  • the measurement gaps may be concurrent, inter-frequency measurement gaps (e.g., the first measurement gap may be associated with a different frequency than the second measurement gap) .
  • the UE 115-b may detect a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap. For example, the UE 115-b may detect the scheduling collision based on a partial or full overlap in time between the first measurement gap occasion and the second measurement gap occasion, a timing between the first measurement gap occasion and the second measurement gap occasion being equal to or less than a defined threshold (e.g., 4 ms) , or both.
  • a defined threshold e.g., 4 ms
  • the UE 115-b may select one of the first measurement gap or the second measurement gap to apply for at least a portion of the set of channel measurements at the UE according to the detected scheduling collision. For example, the UE 115-b may select the first measurement gap for L1 channel measurements and the second measurement gap for L3 channel measurements.
  • the UE 115-b may perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. For example, the UE 115-b may measure one or more reference signals (e.g., SSBs, CSI-RSs) during the first or second measurement gap for one or more candidate serving cells of the UE 115-b.
  • the UE 115-b may measure one or more reference signals (e.g., SSBs, CSI-RSs) during the first or second measurement gap for one or more candidate serving cells of the UE 115-b.
  • reference signals e.g., SSBs, CSI-RSs
  • the UE 115-b may transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements. For example, the UE 115-b may transmit a first CSI report associated with the first measurement gap and a second CSI report associated with the second measurement gap.
  • FIG. 5 illustrates a block diagram 500 of a device 505 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of concurrent measurement gaps for L1 inter-frequency measurements as described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , a graphics processing unit (GPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware, software (e.g., executed by a processor) , or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • the communications manager 520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the communications manager 520 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the communications manager 520 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the device 505 e.g., a processor controlling or otherwise coupled with the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof
  • the device 505 may support techniques for using concurrent measurement gaps for L1 channel measurements, which may reduce latency and improve UE mobility.
  • FIG. 6 illustrates a block diagram 600 of a device 605 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505 or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the device 605, or various components thereof may be an example of means for performing various aspects of concurrent measurement gaps for L1 inter-frequency measurements as described herein.
  • the communications manager 620 may include a capability component 625, a measurement gap component 630, a channel measurement component 635, a report component 640, or any combination thereof.
  • the communications manager 620 may be an example of aspects of a communications manager 520 as described herein.
  • the communications manager 620, or various components thereof may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the capability component 625 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the measurement gap component 630 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the channel measurement component 635 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the report component 640 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • FIG. 7 illustrates a block diagram 700 of a communications manager 720 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein.
  • the communications manager 720, or various components thereof, may be an example of means for performing various aspects of using concurrent measurement gaps for L1 inter-frequency measurements as described herein.
  • the communications manager 720 may include a capability component 725, a measurement gap component 730, a channel measurement component 735, a report component 740, a selection component 745, a detection component 750, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the capability component 725 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the measurement gap component 730 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the channel measurement component 735 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the report component 740 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the capability component 725 may be configured as or otherwise support a means for transmitting, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and L3 channel measurements.
  • the capability component 725 may be configured as or otherwise support a means for transmitting, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements.
  • the selection component 745 may be configured as or otherwise support a means for selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  • the detection component 750 may be configured as or otherwise support a means for detecting the scheduling collision based on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  • the detection component 750 may be configured as or otherwise support a means for detecting the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  • the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
  • the defined threshold is 4 milliseconds.
  • the first measurement gap and the second measurement gap include inter-frequency measurement gaps.
  • the first measurement gap is associated with a first CSI report and the second measurement gap is associated with a second CSI report.
  • FIG. 8 illustrates a diagram of a system 800 including a device 805 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein.
  • the device 805 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
  • a bus 845 e.g., a bus 845
  • the I/O controller 810 may manage input and output signals for the device 805.
  • the I/O controller 810 may also manage peripherals not integrated into the device 805.
  • the I/O controller 810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 810 may utilize an operating system such as or another known operating system.
  • the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 810 may be implemented as part of a processor, such as the processor 840.
  • a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
  • the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825.
  • the transceiver 815 may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
  • the memory 830 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a GPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting using concurrent measurement gaps for L1 inter-frequency measurements) .
  • the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
  • the communications manager 820 may support wireless communication at a UE in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the communications manager 820 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the communications manager 820 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the device 805 may support techniques for using concurrent measurement gaps for L1 channel measurements, which may reduce latency and improve UE mobility.
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof.
  • the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof.
  • the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of using concurrent measurement gaps for L1 inter-frequency measurements as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
  • FIG. 9 illustrates a flowchart illustrating a method 900 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the operations of the method 900 may be implemented by a UE or its components as described herein.
  • the operations of the method 900 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the operations of 905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 905 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the operations of 910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 910 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
  • the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the operations of 915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 915 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
  • the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the operations of 920 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 920 may be performed by a report component 740 as described with reference to FIG. 7.
  • FIG. 10 illustrates a flowchart illustrating a method 1000 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1000 may be implemented by a UE or its components as described herein.
  • the operations of the method 1000 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, via a capability message, a single UE capability information element indicating that a UE is capable of supporting concurrent measurement gaps for both L1 channel measurements and L3 channel measurements.
  • the operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
  • the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
  • the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the operations of 1020 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1020 may be performed by a report component 740 as described with reference to FIG. 7.
  • FIG. 11 illustrates a flowchart illustrating a method 1100 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1100 may be implemented by a UE or its components as described herein.
  • the operations of the method 1100 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, via a capability message, a first UE capability information element indicating that a UE is capable of supporting concurrent measurement gaps for L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements.
  • the operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
  • the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
  • the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a report component 740 as described with reference to FIG. 7.
  • FIG. 12 illustrates a flowchart illustrating a method 1200 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure.
  • the operations of the method 1200 may be implemented by a UE or its components as described herein.
  • the operations of the method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements.
  • the operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a capability component 725 as described with reference to FIG. 7.
  • the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements.
  • the operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
  • the method may include selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  • the operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a selection component 745 as described with reference to FIG. 7.
  • the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message.
  • the operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
  • the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • the operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a report component 740 as described with reference to FIG. 7.
  • a method for wireless communication at a UE comprising: transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements; receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements; performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  • Aspect 2 The method of aspect 1, wherein transmitting the capability message comprises: transmitting, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and L3 channel measurements.
  • Aspect 3 The method of any of aspects 1 through 2, wherein transmitting the capability message comprises: transmitting, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements.
  • Aspect 4 The method of any of aspects 1 through 3, further comprising: selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  • Aspect 5 The method of aspect 4, further comprising: detecting the scheduling collision based at least in part on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  • Aspect 6 The method of any of aspects 4 through 5, further comprising: detecting the scheduling collision based at least in part on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  • Aspect 7 The method of aspect 6, wherein the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
  • Aspect 8 The method of any of aspects 6 through 7, wherein the defined threshold is 4 milliseconds.
  • Aspect 9 The method of any of aspects 1 through 8, wherein the first measurement gap and the second measurement gap comprise inter-frequency measurement gaps.
  • Aspect 10 The method of any of aspects 1 through 9, wherein the first measurement gap is associated with a first CSI report and the second measurement gap is associated with a second CSI report.
  • Aspect 11 An apparatus for wireless communication at a UE, comprising at least one processor; and memory coupled with the at least one processor, the memory storing instructions executable by the at least one processor to cause the UE to perform a method of any of aspects 1 through 10.
  • Aspect 12 An apparatus for wireless communication at a UE, comprising at least one means for performing a method of any of aspects 1 through 10.
  • Aspect 13 A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by at least one processor to perform a method of any of aspects 1 through 10.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented using hardware, software executed by a processor, or any combination thereof.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, or functions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims.
  • functions described herein may be implemented using software executed by a processor, hardware, hardwiring, or combinations of any of these.
  • Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, phase change memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
  • the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • determining encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may perform mobility procedures to switch between candidate serving cells. To determine whether to switch, the UE may perform layer one (L1) or layer three (L3) channel measurements of reference signals associated with the candidate serving cells. If the candidate serving cells operate in different frequencies, the UE may be configured with one or more concurrent measurement gaps during which the UE may have sufficient time to perform the channel measurements. In some cases, the UE may report its capability to support the concurrent measurement gaps for L1 channel measurements, L3 channel measurements, or both. In addition, the UE may select a measurement gap for the channel measurements based on a scheduling conflict between multiple measurement gaps, where UE may detect the scheduling conflict based on an overlap or a time distance between the measurement gaps.

Description

CONCURRENT MEASUREMENT GAPS FOR LAYER ONE INTER-FREQUENCY MEASUREMENTS TECHNICAL FIELD
The following relates to wireless communication, including concurrent measurement gaps for layer one (L1) inter-frequency measurements.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations, each supporting wireless communication for communication devices, which may be known as user equipment (UE) .
In some wireless communications systems, a UE may perform mobility and handover procedures to switch between candidate serving cells. In some cases, however, techniques for performing channel measurements for the candidate serving cells may be improved.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support concurrent measurement gaps for layer one (L1) inter-frequency measurement. For example, the described techniques provide for defining and reporting a capability of supporting concurrent measurement gaps for L1 channel  measurements. In some examples, a user equipment (UE) may transmit a capability message indicating its support of concurrent measurement gaps for channel measurements. In some cases, the capability message may include one or more information elements indicating the support of such measurement gaps for L1 channel measurements, layer three (L3) channel measurements, or both. The UE may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) . The UE may select at least one of the measurement gaps to use for performing L1 channel measurements based on a scheduling collision between the one or more signaled measurement gaps. That is, if two measurement gaps are at least partially overlapping in time, or if a distance in time between the two measurement gaps is less than a defined threshold, the concurrent measurement gaps may have a scheduling conflict that the UE may consider when selecting one or more of the measurement gaps to use. The UE may perform an L1 channel measurement, an L3 channel measurement, or both, using one or more of the selected measurement gaps, and the UE may transmit a channel measurement report in accordance with the measurement.
A method for wireless communication at a UE is described. The method may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
An apparatus for wireless communication at a UE is described. The apparatus may include at least one processor and memory coupled with the at least one processor. The memory may store instructions executable the at least one processor to cause the UE to transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receive one or  more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by at least one processor to transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements, receive one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements, perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message, and transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the capability message may include operations, features, means, or instructions for transmitting, via the capability message, a single UE capability information element indicating that the UE may be capable of supporting the concurrent measurement gaps for both the L1 channel measurements and L3 channel measurements.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the capability message may include operations, features, means, or instructions for transmitting, via the capability message, a first UE capability information element indicating that the UE may be capable of supporting the concurrent measurement gaps for the L1 channel measurements, where the first UE capability information element may be separate from a second UE capability information element indicating whether the UE may be capable of supporting the concurrent measurement gaps for L3 channel measurements.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the scheduling collision based on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the timing between the first measurement gap occasion and the second measurement gap occasion may be measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, where the first measurement gap occasion occurs before the second measurement gap occasion in time.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the defined threshold may be 4 milliseconds.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first measurement gap and the second measurement gap include inter-frequency measurement gaps.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first measurement gap may be associated with a first channel state information (CSI) report and the second measurement gap may be associated with a second CSI report.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that support concurrent measurement gaps for layer one (L1) inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIG. 3 illustrates an example of a measurement configuration that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIGs. 5 and 6 illustrate block diagrams of devices that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIG. 7 illustrates a block diagram of a communications manager that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIG. 8 illustrates a diagram of a system including a device that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
FIGs. 9 through 12 illustrate flowcharts showing methods that support concurrent measurement gaps for L1 inter-frequency measurement in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) may perform layer one (L1) /layer two (L2) mobility procedures, in which the UE may switch between candidate serving cells as it moves throughout a wireless communications system. In some cases, the UE may perform measurements of cells via different layers of a protocol stack (e.g., L1, L2, layer three (L3) ) . If the candidate serving cells are associated with different frequencies, the UE may perform inter-frequency measurements of cells. In addition, to account for the difference in frequencies, the UE may use measurement gaps during which the UE may switch between different candidate serving cells to accurately perform channel measurements. Specifically for L1 measurements, however, the UE may lack techniques to define concurrent measurement gaps, which may decrease efficiency and accuracy of channel measurements. Additionally, the UE may be unable to report a capability to support such measurement gaps.
The techniques described herein support the use of concurrent measurement gaps for L1 channel measurements. A UE may transmit a capability message indicating that the UE supports concurrent measurement gaps for L1 channel measurements. The UE may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) ,  and the UE may select at least one or the measurement gaps to use for performing L1 channel measurements based on a scheduling collision between the one or more signaled measurement gaps. The UE may detect the scheduling collision based on an overlap in time or a distance in time between the measurement gaps. In some cases, the UE may perform an L1 channel measurement, an L3 channel measurement, or both using the selected measurement gaps, and the UE may transmit a channel state information (CSI) report in accordance with performing the channel measurements. In this way, the UE may decrease latency associated with performing the channel measurements and general L1/L2 mobility procedures.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are then described in the context of measurement configurations and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to using concurrent measurement gaps for L1 inter-frequency measurement.
FIG. 1 illustrates an example of a wireless communications system 100 that support concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The wireless communications system 100 may include one or more network entities 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, a New Radio (NR) network, or a network operating in accordance with other systems and radio technologies, including future systems and radio technologies not explicitly mentioned herein.
The network entities 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may include devices in different forms or having different capabilities. In various examples, a network entity 105 may be referred to as a network element, a mobility element, a radio access network (RAN) node, or network equipment, among other nomenclature. In some examples, network entities 105 and UEs 115 may wirelessly communicate via one or more communication links 125 (e.g., a radio frequency (RF) access link) . For example, a network entity 105 may support a coverage area 110 (e.g., a geographic coverage area) over which the UEs  115 and the network entity 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a network entity 105 and a UE 115 may support the communication of signals according to one or more radio access technologies (RATs) .
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be capable of supporting communications with various types of devices, such as other UEs 115 or network entities 105, as shown in FIG. 1.
As described herein, a node of the wireless communications system 100, which may be referred to as a network node, or a wireless node, may be a network entity 105 (e.g., any network entity described herein) , a UE 115 (e.g., any UE described herein) , a network controller, an apparatus, a device, a computing system, one or more components, or another suitable processing entity configured to perform any of the techniques described herein. For example, a node may be a UE 115. As another example, a node may be a network entity 105. As another example, a first node may be configured to communicate with a second node or a third node. In one aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a UE 115. In another aspect of this example, the first node may be a UE 115, the second node may be a network entity 105, and the third node may be a network entity 105. In yet other aspects of this example, the first, second, and third nodes may be different relative to these examples. Similarly, reference to a UE 115, network entity 105, apparatus, device, or computing system may include disclosure of the UE 115, network entity 105, apparatus, device, or computing system being a node. For example, disclosure that a UE 115 is configured to receive information from a network entity 105 also discloses that a first node is configured to receive information from a second node.
In some examples, network entities 105 may communicate with the core network 130, or with one another, or both. For example, network entities 105 may communicate with the core network 130 via one or more backhaul communication links 120 (e.g., in accordance with an S1, N2, N3, or other interface protocol) . In some  examples, network entities 105 may communicate with one another via a backhaul communication link 120 (e.g., in accordance with an X2, Xn, or other interface protocol) either directly (e.g., directly between network entities 105) or indirectly (e.g., via a core network 130) . In some examples, network entities 105 may communicate with one another via a midhaul communication link 162 (e.g., in accordance with a midhaul interface protocol) or a fronthaul communication link 168 (e.g., in accordance with a fronthaul interface protocol) , or any combination thereof. The backhaul communication links 120, midhaul communication links 162, or fronthaul communication links 168 may be or include one or more wired links (e.g., an electrical link, an optical fiber link) , one or more wireless links (e.g., a radio link, a wireless optical link) , among other examples or various combinations thereof. A UE 115 may communicate with the core network 130 via a communication link 155.
One or more of the network entities 105 described herein may include or may be referred to as a base station 140 (e.g., a base transceiver station, a radio base station, an NR base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a 5G NB, a next-generation eNB (ng-eNB) , a Home NodeB, a Home eNodeB, or other suitable terminology) . In some examples, a network entity 105 (e.g., a base station 140) may be implemented in an aggregated (e.g., monolithic, standalone) base station architecture, which may be configured to utilize a protocol stack that is physically or logically integrated within a single network entity 105 (e.g., a single RAN node, such as a base station 140) .
In some examples, a network entity 105 may be implemented in a disaggregated architecture (e.g., a disaggregated base station architecture, a disaggregated RAN architecture) , which may be configured to utilize a protocol stack that is physically or logically distributed among two or more network entities 105, such as an integrated access backhaul (IAB) network, an open RAN (O-RAN) (e.g., a network configuration sponsored by the O-RAN Alliance) , or a virtualized RAN (vRAN) (e.g., a cloud RAN (C-RAN) ) . For example, a network entity 105 may include one or more of a central unit (CU) 160, a distributed unit (DU) 165, a radio unit (RU) 170, a RAN Intelligent Controller (RIC) 175 (e.g., a Near-Real Time RIC (Near-RT RIC) , a Non-Real Time RIC (Non-RT RIC) ) , a Service Management and Orchestration  (SMO) 180 system, or any combination thereof. An RU 170 may also be referred to as a radio head, a smart radio head, a remote radio head (RRH) , a remote radio unit (RRU) , or a transmission reception point (TRP) . One or more components of the network entities 105 in a disaggregated RAN architecture may be co-located, or one or more components of the network entities 105 may be located in distributed locations (e.g., separate physical locations) . In some examples, one or more network entities 105 of a disaggregated RAN architecture may be implemented as virtual units (e.g., a virtual CU (VCU) , a virtual DU (VDU) , a virtual RU (VRU) ) .
The split of functionality between a CU 160, a DU 165, and an RU 170 is flexible and may support different functionalities depending on which functions (e.g., network layer functions, protocol layer functions, baseband functions, RF functions, and any combinations thereof) are performed at a CU 160, a DU 165, or an RU 170. For example, a functional split of a protocol stack may be employed between a CU 160 and a DU 165 such that the CU 160 may support one or more layers of the protocol stack and the DU 165 may support one or more different layers of the protocol stack. In some examples, the CU 160 may host upper protocol layer (e.g., L3, L2) functionality and signaling (e.g., Radio Resource Control (RRC) , service data adaption protocol (SDAP) , Packet Data Convergence Protocol (PDCP) ) . The CU 160 may be connected to one or more DUs 165 or RUs 170, and the one or more DUs 165 or RUs 170 may host lower protocol layers, such as L1 (e.g., physical (PHY) layer) or L2 (e.g., radio link control (RLC) layer, medium access control (MAC) layer) functionality and signaling, and may each be at least partially controlled by the CU 160. Additionally, or alternatively, a functional split of the protocol stack may be employed between a DU 165 and an RU 170 such that the DU 165 may support one or more layers of the protocol stack and the RU 170 may support one or more different layers of the protocol stack. The DU 165 may support one or multiple different cells (e.g., via one or more RUs 170) . In some cases, a functional split between a CU 160 and a DU 165, or between a DU 165 and an RU 170 may be within a protocol layer (e.g., some functions for a protocol layer may be performed by one of a CU 160, a DU 165, or an RU 170, while other functions of the protocol layer are performed by a different one of the CU 160, the DU 165, or the RU 170) . A CU 160 may be functionally split further into CU control plane (CU-CP) and CU user plane (CU-UP) functions. A CU 160 may be connected to one or more DUs  165 via a midhaul communication link 162 (e.g., F1, F1-c, F1-u) , and a DU 165 may be connected to one or more RUs 170 via a fronthaul communication link 168 (e.g., open fronthaul (FH) interface) . In some examples, a midhaul communication link 162 or a fronthaul communication link 168 may be implemented in accordance with an interface (e.g., a channel) between layers of a protocol stack supported by respective network entities 105 that are in communication via such communication links.
In wireless communications systems (e.g., wireless communications system 100) , infrastructure and spectral resources for radio access may support wireless backhaul link capabilities to supplement wired backhaul connections, providing an IAB network architecture (e.g., to a core network 130) . In some cases, in an IAB network, one or more network entities 105 (e.g., IAB nodes 104) may be partially controlled by each other. One or more IAB nodes 104 may be referred to as a donor entity or an IAB donor. One or more DUs 165 or one or more RUs 170 may be partially controlled by one or more CUs 160 associated with a donor network entity 105 (e.g., a donor base station 140) . The one or more donor network entities 105 (e.g., IAB donors) may be in communication with one or more additional network entities 105 (e.g., IAB nodes 104) via supported access and backhaul links (e.g., backhaul communication links 120) . IAB nodes 104 may include an IAB mobile termination (IAB-MT) controlled (e.g., scheduled) by DUs 165 of a coupled IAB donor. An IAB-MT may include an independent set of antennas for relay of communications with UEs 115, or may share the same antennas (e.g., of an RU 170) of an IAB node 104 used for access via the DU 165 of the IAB node 104 (e.g., referred to as virtual IAB-MT (vIAB-MT) ) . In some examples, the IAB nodes 104 may include DUs 165 that support communication links with additional entities (e.g., IAB nodes 104, UEs 115) within the relay chain or configuration of the access network (e.g., downstream) . In such cases, one or more components of the disaggregated RAN architecture (e.g., one or more IAB nodes 104 or components of IAB nodes 104) may be configured to operate according to the techniques described herein.
For instance, an access network (AN) or RAN may include communications between access nodes (e.g., an IAB donor) , IAB nodes 104, and one or more UEs 115. The IAB donor may facilitate connection between the core network 130 and the AN (e.g., via a wired or wireless connection to the core network 130) . That is, an IAB donor  may refer to a RAN node with a wired or wireless connection to core network 130. The IAB donor may include a CU 160 and at least one DU 165 (e.g., and RU 170) , in which case the CU 160 may communicate with the core network 130 via an interface (e.g., a backhaul link) . IAB donor and IAB nodes 104 may communicate via an F1 interface according to a protocol that defines signaling messages (e.g., an F1 AP protocol) . Additionally, or alternatively, the CU 160 may communicate with the core network via an interface, which may be an example of a portion of backhaul link, and may communicate with other CUs 160 (e.g., a CU 160 associated with an alternative IAB donor) via an Xn-C interface, which may be an example of a portion of a backhaul link.
An IAB node 104 may refer to a RAN node that provides IAB functionality (e.g., access for UEs 115, wireless self-backhauling capabilities) . A DU 165 may act as a distributed scheduling node towards child nodes associated with the IAB node 104, and the IAB-MT may act as a scheduled node towards parent nodes associated with the IAB node 104. That is, an IAB donor may be referred to as a parent node in communication with one or more child nodes (e.g., an IAB donor may relay transmissions for UEs through one or more other IAB nodes 104) . Additionally, or alternatively, an IAB node 104 may also be referred to as a parent node or a child node to other IAB nodes 104, depending on the relay chain or configuration of the AN. Therefore, the IAB-MT entity of IAB nodes 104 may provide a Uu interface for a child IAB node 104 to receive signaling from a parent IAB node 104, and the DU interface (e.g., DUs 165) may provide a Uu interface for a parent IAB node 104 to signal to a child IAB node 104 or UE 115.
For example, IAB node 104 may be referred to as a parent node that supports communications for a child IAB node, or referred to as a child IAB node associated with an IAB donor, or both. The IAB donor may include a CU 160 with a wired or wireless connection (e.g., a backhaul communication link 120) to the core network 130 and may act as parent node to IAB nodes 104. For example, the DU 165 of IAB donor may relay transmissions to UEs 115 through IAB nodes 104, or may directly signal transmissions to a UE 115, or both. The CU 160 of IAB donor may signal communication link establishment via an F1 interface to IAB nodes 104, and the IAB nodes 104 may schedule transmissions (e.g., transmissions to the UEs 115 relayed from the IAB donor) through the DUs 165. That is, data may be relayed to and from IAB  nodes 104 via signaling via an NR Uu interface to MT of the IAB node 104. Communications with IAB node 104 may be scheduled by a DU 165 of IAB donor and communications with IAB node 104 may be scheduled by DU 165 of IAB node 104.
In the case of the techniques described herein applied in the context of a disaggregated RAN architecture, one or more components of the disaggregated RAN architecture may be configured to support concurrent measurement gaps for L1 inter-frequency measurements as described herein. For example, some operations described as being performed by a UE 115 or a network entity 105 (e.g., a base station 140) may additionally, or alternatively, be performed by one or more components of the disaggregated RAN architecture (e.g., IAB nodes 104, DUs 165, CUs 160, RUs 170, RIC 175, SMO 180) .
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a multimedia/entertainment device (e.g., a radio, a MP3 player, or a video device) , a camera, a gaming device, a navigation/positioning device (e.g., GNSS (global navigation satellite system) devices based on, for example, GPS (global positioning system) , Beidou, GLONASS, or Galileo, or a terrestrial-based device) , a tablet computer, a laptop computer, a netbook, a smartbook, a personal computer, a smart device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, virtual reality goggles, a smart wristband, smart jewelry (e.g., a smart ring, a smart bracelet) ) , a drone, a robot/robotic device, a vehicle, a vehicular device, a meter (e.g., parking meter, electric meter, gas meter, water meter) , a monitor, a gas pump, an appliance (e.g., kitchen appliance, washing machine, dryer) , a location tag, a medical/healthcare device, an implant, a sensor/actuator, a display, or any other suitable device configured to communicate via a wireless or wired medium. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the network entities 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the network entities 105 may wirelessly communicate with one another via one or more communication links 125 (e.g., an access link) using resources associated with one or more carriers. The term “carrier” may refer to a set of RF spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a RF spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers. Communication between a network entity 105 and other devices may refer to communication between the devices and any portion (e.g., entity, sub-entity) of a network entity 105. For example, the terms “transmitting, ” “receiving, ” or “communicating, ” when referring to a network entity 105, may refer to any portion of a network entity 105 (e.g., a base station 140, a CU 160, a DU 165, a RU 170) of a RAN communicating with another device (e.g., directly or via one or more other network entities 105) .
In some examples, such as in a carrier aggregation configuration, a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute RF channel number (EARFCN) ) and may be identified according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode, in which  case initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode, in which case a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include downlink transmissions (e.g., forward link transmissions) from a network entity 105 to a UE 115, uplink transmissions (e.g., return link transmissions) from a UE 115 to a network entity 105, or both, among other configurations of transmissions. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the RF spectrum and, in some examples, the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a set of bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the network entities 105, the UEs 115, or both) may have hardware configurations that support communications using a particular carrier bandwidth or may be configurable to support communications using one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include network entities 105 or UEs 115 that support concurrent communications using carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating using portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted via a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may refer to resources of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, in which case the symbol period and subcarrier spacing may be inversely related. The quantity of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the  modulation scheme, or both) , such that a relatively higher quantity of resource elements (e.g., in a transmission duration) and a relatively higher order of a modulation scheme may correspond to a relatively higher rate of communication. A wireless communications resource may refer to a combination of an RF spectrum resource, a time resource, and a spatial resource (e.g., a spatial layer, a beam) , and the use of multiple spatial resources may increase the data rate or data integrity for communications with a UE 115.
The time intervals for the network entities 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, for which Δf max may represent a supported subcarrier spacing, and N f may represent a supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively-numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a quantity of slots. Alternatively, each frame may include a variable quantity of slots, and the quantity of slots may depend on subcarrier spacing. Each slot may include a quantity of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots associated with one or more symbols. Excluding the cyclic prefix, each symbol period may be associated with one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., a quantity of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed for communication using a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed for signaling via a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a set of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to an amount of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
network entity 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a network entity 105 (e.g., using a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell also may refer to a coverage area 110 or a portion of a coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the network entity 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service  subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered network entity 105 (e.g., a lower-powered base station 140) , as compared with a macro cell, and a small cell may operate using the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A network entity 105 may support one or multiple cells and may also support communications via the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a network entity 105 (e.g., a base station 140, an RU 170) may be movable and therefore provide communication coverage for a moving coverage area 110. In some examples, different coverage areas 110 associated with different technologies may overlap, but the different coverage areas 110 may be supported by the same network entity 105. In some other examples, the overlapping coverage areas 110 associated with different technologies may be supported by different network entities 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the network entities 105 provide coverage for various coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, network entities 105 (e.g., base stations 140) may have similar frame timings, and transmissions from different network entities 105 may be approximately aligned in time. For asynchronous operation, network entities 105 may have different frame timings, and transmissions from different network entities 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a network entity 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging. In an aspect, techniques disclosed herein may be applicable to MTC or IoT UEs. MTC or IoT UEs may include MTC/enhanced MTC (eMTC, also referred to as CAT-M, Cat M1) UEs, NB-IoT (also referred to as CAT NB1) UEs, as well as other types of UEs. eMTC and NB-IoT may refer to future technologies that may evolve from or may be based on these technologies. For example, eMTC may include FeMTC (further eMTC) , eFeMTC (enhanced further eMTC) , and mMTC (massive MTC) , and NB-IoT may include eNB-IoT (enhanced NB-IoT) , and FeNB-IoT (further enhanced NB-IoT) .
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless network, for example a wireless local area network (WLAN) , such as a Wi-Fi (e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices. The AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) . A wireless device may communicate with a network device bi-directionally. For  example, in a WLAN, a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) . A wireless personal area network (PAN) , which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices. For example, wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets. Components within a wireless communication system may be coupled (for example, operatively, communicatively, functionally, electronically, and/or electrically) to each other.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) . The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions. Ultra-reliable communications may include private communication or group communication and may be supported by one or more services such as push-to-talk, video, or data. Support for ultra-reliable, low-latency functions may include prioritization of services, and such services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may be configured to support communicating directly with other UEs 115 via a device-to-device (D2D) communication link 135 (e.g., in accordance with a peer-to-peer (P2P) , D2D, or sidelink protocol) . In some examples, one or more UEs 115 of a group that are performing D2D communications may be within the coverage area 110 of a network entity 105 (e.g., a base station 140, an RU 170) , which may support aspects of such D2D communications being configured by (e.g., scheduled by) the network entity 105. In some examples, one or more UEs 115 of such a group may be outside the coverage area 110 of a network entity 105 or may be otherwise unable to or not configured to receive transmissions from a network entity 105. In some examples, groups of the UEs 115 communicating via D2D communications may support a one-to-many (1: M) system in which each UE 115 transmits to each of the other UEs 115 in the group. In some examples, a network entity  105 may facilitate the scheduling of resources for D2D communications. In some other examples, D2D communications may be carried out between the UEs 115 without an involvement of a network entity 105.
In some systems, a D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., network entities 105, base stations 140, RUs 170) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the network entities 105 (e.g., base stations 140) associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
The wireless communications system 100 may operate using one or more frequency bands, which may be in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high  frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features, which may be referred to as clusters, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. Communications using UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to communications using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed RF spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology using an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. While operating using unlicensed RF spectrum bands, devices such as the network entities 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations using unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating using a licensed band (e.g., LAA) . Operations using unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
A network entity 105 (e.g., a base station 140, an RU 170) or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a network entity 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a network entity 105 may be located at diverse geographic locations. A network entity 105 may include an antenna array with a set of rows and columns of antenna ports that the network entity 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may include one or more antenna arrays that may support various  MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support RF beamforming for a signal transmitted via an antenna port.
The network entities 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry information associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , for which multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , for which multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a network entity 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating along particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
network entity 105 or a UE 115 may use beam sweeping techniques as part of beamforming operations. For example, a network entity 105 (e.g., a base station 140, an RU 170) may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a network entity 105 multiple times along different directions. For example, the network entity 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions along different beam directions may be used to identify (e.g., by a transmitting device, such as a network entity 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the network entity 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by transmitting device (e.g., a transmitting network entity 105, a transmitting UE 115) along a single beam direction (e.g., a direction associated with the receiving device, such as a receiving network entity 105 or a receiving UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted along one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the network entity 105 along different directions and may report to the network entity 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a network entity 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or beamforming to generate a combined beam for transmission (e.g., from a network entity 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured set of beams across a system bandwidth or one or more sub-bands. The network entity 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based  feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted along one or more directions by a network entity 105 (e.g., a base station 140, an RU 170) , a UE 115 may employ similar techniques for transmitting signals multiple times along different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal along a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may perform reception operations in accordance with multiple receive configurations (e.g., directional listening) when receiving various signals from a receiving device (e.g., a network entity 105) , such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may perform reception in accordance with multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned along a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or PDCP layer may be IP-based. An RLC layer may perform packet segmentation and reassembly to communicate via logical channels. A MAC layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer also may implement error detection techniques, error correction  techniques, or both to support retransmissions to improve link efficiency. In the control plane, an RRC layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network entity 105 or a core network 130 supporting radio bearers for user plane data. A PHY layer may map transport channels to physical channels.
UE 115 may perform L1/L2 mobility procedures to handover from one serving cell to another in the wireless communications system 100. During such procedures, the UE 115 may measure different layers of a protocol stack (e.g., L1, L2, L3) to determine which cell to handover to. For example, the UE 115 may perform a channel or signal quality measurement (e.g., transmit power, SNR) of a target serving cell and report the measurement to a network entity 105, such that the network entity 105 may determine if the UE 115 is to handover to the target serving cell. The UE 115 may perform the channel measurements between a current serving cell and the target serving cell in a same frequency (e.g., an intra-frequency measurement) or in different frequencies (e.g., an inter-frequency measurement) . To account for a difference in frequency between the current and target serving cells when performing inter-frequency measurements, the UE 115 may use a measurement gap. During a measurement gap, the UE 115 and the network entity 105 may refrain from transmitting or receiving signaling such that the UE 115 may switch to the target serving cell, perform channel measurements on that cell, and switch back to the current serving cell without dropping any transmissions.
In cases where a UE 115 may support active BWPs without synchronization signal blocks (SSBs) , the UE 115 may perform L1 measurements outside of the active BWP (but within a configured bandwidth of a corresponding cell) . For example, the UE 115 may support L1 SSB measurements outside of the active BWP with or without a measurement gap. In some examples of an L1/L2 mobility procedure, the UE 115 may be configured with a current, serving special cell (SpCell) and multiple candidate SpCells. During a handover procedure as the UE 115 moves throughout the wireless communications system 100, the UE 115 may switch from the current SpCell to one or the candidate SpCells (e.g., a new SpCell) based on higher layer signaling (e.g., L3 signaling) . To decrease latency of this process, the UE 115 may switch between the SpCells based on lower layer signaling (e.g., L1/L2 signaling) , which is associated with  a lower latency. In some examples, the SpCells the UE 115 switches between may be intra-or inter-frequency cells. That is, L1/L2-based inter-cell mobility may be applicable to both intra-frequency and inter-frequency scenarios.
In some examples, the UE 115 may perform channel measurements associated with candidate serving cells to determine whether to handover between the cells. For example, the UE 115 may perform L3 intra-or inter-frequency measurements or L1 reference signal received power (RSRP) measurements. The UE 115 may use L3 intra-or inter-frequency measurements during an L3 handover procedure. For an L3 intra-frequency measurement, a measured SSB of a neighbor cell (e.g., a candidate serving cell) and a measured SSB of a current serving cell may have a same center frequency and a same sub-carrier spacing. That is, an L3 intra-frequency measurement may be defined as an SSB-based intra-frequency measurement provided the center frequency and the subcarrier spacing of the SSB of the serving cell indicated for measurement (e.g., the current serving cell) and the SSB of the neighbor cell are the same. Alternatively, an L3 inter-frequency measurement may be defined as an SSB-based inter-frequency measurement provided the center frequency and the subcarrier spacing of the SSBs are different (e.g., failing to satisfy the conditions of the intra-frequency case) .
The UE 115 may use L1 RSRP measurement during an L1 handover procedure. The UE 115 may use an L1-RSRP measurement for reference signals in an active BWP, which may not require a measurement gap. In some cases, a network entity 105 may configure the UE 115 to perform L1-RSRP measurements of configured CSI-RS resources, SSB resources, or both for L1-RSRP. In addition, the UE 115 may perform the measurements for a serving cell, including a primary cell (PCell) , a primary-secondary cell (PSCell) , or a secondary cell (SCell) , on the resources configured for the L1-RSRP measurements within the active BWP. As described herein, an SpCell may be equivalent to a PCell or a PSCell.
In some cases, however, the UE 115 may fail to support some cases of L1 channel measurements. Moreover, it may be unspecified whether a given L1 channel measurement scenario uses measurement gaps, which the UE 115 may use for both intra-frequency and inter-frequency scenarios. For example, the UE 115 may fail to support L1 measurements for cases in which an SSB of a measured candidate cell is  outside of an active BWP but within a configured bandwidth of an activated or current serving cell (e.g., Case 1) . Additionally, or alternatively, the UE 115 may fail to support L1 measurements for cases in which the SSB of the measured candidate cell is outside of the configured bandwidth of the activated serving cell. In some examples, the UE 115 may fail to support L1 measurements for cases in which the SSB of the measured candidate cell is within the active bandwidth but with a different center frequency or SCS from a measured SSB of the activated serving cell. That is, the UE 115 and the network entity 105 may lack information about how the UE 115 may perform L1 channel measurements for L1 mobility procedures, and whether measurement gaps may be used for such channel measurements, which may increase latency and decrease handover efficiency.
The wireless communications system 100 may support defining and reporting a capability of supporting concurrent measurement gaps for L1 channel measurements. In some examples, a UE 115 may transmit a capability message indicating its support of concurrent measurement gaps for channel measurements. In some cases, the capability message may include one or more information elements indicating the support of such measurement gaps for L1 channel measurements, L3 channel measurements, or both. The UE 115 may receive one or more signals indicating one or more measurement gaps associated with respective channel measurements (e.g., L1, L2, or L3 measurements) . The UE 115 may select at least one or the measurement gaps to use for performing L1 channel measurements based on an overlap (e.g., scheduling collision) between the one or more signaled measurement gaps. That is, if two measurement gaps are at least partially overlapping in time, or if a distance in time between the two measurement gaps is smaller than a defined threshold, the concurrent measurement gaps may have a scheduling conflict that the UE 115 may consider when selecting one or more of the measurement gaps to use. The UE 115 may perform an L1 channel measurement, an L3 channel measurement, or both using the selected measurement gaps, and transmit a channel measurement report to a network entity in accordance with the measurement.
FIG. 2 illustrates an example of a wireless communications system 200 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. In some examples, the  wireless communications system 200 may implement aspects of the wireless communications system 100 or may be implemented by aspects of the wireless communications system 100. For example, the wireless communications system 200 may include a UE 115-a, a network entity 105-a, and a network entity 105-b. In some examples, the network entity 105-a may represent a current serving cell of the UE 115-aand the network entity 105-b may represent a candidate serving cell of the UE 115-a.
The wireless communications system 200 may support the UE 115-a using concurrent measurement gaps for performing L1 channel measurements during an L1/L2 mobility procedure. That is, the UE 115-a may define concurrent measurement gaps for L1 channel measurements and report its support of such concurrent measurement gaps. To reduce latency of L1/L2 mobility procedures, a network entity 105 may configure the UE 115-a with concurrent measurement gaps during which the UE 115-a may perform channel measurements of different candidate serving cells.
During a mobility procedure, the UE 115-a may measure one or more reference signals corresponding to each candidate serving cell. For example, the network entity 105-a may transmit SSBs or CSI 205-a, and the network entity 105-b may transmit SSBs or CSI 205-b. In some cases, such reference signals may collide or have a scheduling overlap in time. To enable the UE 115-a to measure the overlapping reference signals, the UE 115-a may support concurrent measurement gaps. Accordingly, the UE 115-a may transmit a capability message indicating a capability of the UE 115-a to support the concurrent measurement gaps for L1 channel measurements.
In some examples, the UE 115-a may report its capability to support the concurrent measurement gaps for L1 channel measurements in an information element that indicates a UE capability associated with L3 channel measurements. For example, the UE 115-a may transmit, via the capability message, a single UE capability information element (e.g., concurrentMeasGap-r17) indicating that the UE 115-a is capable of supporting concurrent measurement gaps for both L1 channel measurements and L3 channel measurements. The UE 115-a may indicate its capability in this information element if the UE 115-a defines concurrent measurement gaps for L1 channel measurements the same as for L3 channel measurements. In this way, the  information element may indicate that the UE 115-a supports concurrent measurement gaps for both L1 and L3 channel measurements.
Alternatively, the UE 115-a may report its capability to support the concurrent measurement gaps for L1 channel measurements in a first information element that is separate from a second information element associated with L3 channel measurements. For example, the UE 115-a may transmit, via the capability message, a first UE capability information element (e.g., concurrentMeasGap-r18) indicating that the UE 115-a is capable of supporting concurrent measurement gaps for L1 channel measurements, where the first UE capability information element is separate from a second UE capability information element indicating whether the UE 115-a is capable of supporting concurrent measurement gaps for L3 channel measurements. The UE 115-a may indicate its capability in the first information element if the UE 115-a defines concurrent measurement gaps for L1 channel measurements based on that of L3 channel measurements.
The UE 115-a may be configured to perform at least some of a set of channel measurements for L1, L3, or both based on one or more configured measurement gaps. In some cases, the UE 115-a may receive one or more signals (e.g., measurement configuration signals) identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The first measurement gap and the second measurement gap may be concurrent, inter-frequency measurement gaps.
In some cases, the UE 115-a may select the first measurement gap, the second measurement gap, or both for performing L1 channel measurements or L3 channel measurements. For example, the UE 115-a may select one of the first measurement gap or the second measurement gap to apply for at least a portion of the set of channel measurements at the UE 115-a (e.g., L1/L3 measurements) according to a scheduling collision (e.g., an overlapping) between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap. In some cases, the UE 115-a may detect the scheduling collision based on a partial or full overlap in time between the first  measurement gap occasion and the second measurement gap occasion. In such cases, the UE 115-a may define the concurrent measurement gaps for L1 channel measurements the same as for L3 channel measurements, or based on that for L3 channel measurements (e.g., a simplified definition derived from that for L3 channel measurements) .
Alternatively, the UE 115-a may detect the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold. For example, the UE 115-a may detect the scheduling collision if a distance in time between the two measurement gap occasions is, for example, equal to or smaller than a threshold or 4 ms.The distance between the two measurement gap occasions may be a time difference between an ending point (e.g., an end) of the first measurement gap occasion and a starting point (e.g., a beginning) of the second measurement gap occasion, where the first measurement gap occasion occurs earlier in time than the second measurement gap occasion. In some cases, more than two measurement gap occasions may overlap sequentially.
The UE 115-a may perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. For example, the UE 115-a may measure the SSBs or CSI 205-a using the first measurement gap, the SSBs or CSI 205-b using the second measurement gap, or some combination thereof. In addition, the channel measurements may be associated with L1 or L3 signaling or processing at the UE with respect to a candidate serving cell. The UE 115-a may transmit a channel measurement report 210 in accordance with performing at least the portion of the set of channel measurements. That is, the channel measurement report 210 may indicate the results of the channel measurements. In some cases, the channel measurement report 210 may be a CSI report, where the first measurement gap may be associated with a first CSI report and the second measurement gap may be associated with a second CSI report.
FIG. 3 illustrates an example of a measurement configuration 300 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. In some examples, the measurement configuration 300 may implement aspects of the  wireless communications  systems  100 and 200 or may be implemented by aspects of the  wireless communications systems  100 and 200. For example, the measurement configuration 300 may be implemented by one or more of an active cell 305, a candidate cell 310-a, and a candidate cell 310-b. In some examples, the active cell 305 may be an active SpCell of a UE 115, the candidate cell 310-a may be a first candidate SpCell of the UE 115 at a first frequency (e.g., SpCell1) , and the candidate cell 310-b may be a second candidate SpCell of the UE 115 at a second frequency (e.g., SpCell2) . That is, the candidate cell 310-a and the candidate cell 310-b may operate using different frequencies or frequency ranges. The active cell 305 and the candidate cells 310 may be associated with one or more network entities 105 in wireless communications with the UE 115.
In some cases, the active cell 305 may trigger the UE 115 to perform some measurement and reporting for an L1/L2 mobility procedure. For example, the active cell 305 may transmit DCI 315-a triggering the UE 115 to perform an L1 measurement of the candidate cell 310-a and report the measurement. Because the frequencies of the candidate cell 310-a and the candidate cell 310-b may be different (e.g., resulting in the UE 115 performing inter-frequency measurements) , a network entity 105 may configure the UE 115 with a measurement gap 320-a associated with a measured SSB or CSI 325-a or some other measured reference signal corresponding to the candidate cell 310-a. The measurement gap 320-a may provide the UE 115 a relatively larger time duration (e.g., time window) during which the UE 115 may measure one or more reference signals associated with the candidate cell 310-a. For example, the additional time enabled by the measurement gap 320-a may account for time uncertainties associated with an arrival time of one or more SSBs.
Additionally, or alternatively, the UE 115 may be configured with a measurement gap 320-b associated with a measured SSB or CSI 325-b or some other measured reference signal corresponding to the candidate cell 310-b. Like the measurement gap 320-a, the measurement gap 320-b may provide the UE 115 with a time window during which the UE 115 may measure one or more reference signals associated with the candidate cell 310-b.
In some cases, the measurement gap 320-a and the measurement gap 320-b may be concurrent measurement gaps. Regarding mobility procedures (e.g., L1/L2/L3 mobility procedures) , the measurement gaps 320 may experience collisions or  scheduling overlaps, which may impact intra-and inter-frequency measurements by the UE.In some cases, collisions between measurement gap occasions of two concurrent measurement gaps may occur if the measurement gaps 320 include two per-UE measurement gaps, two per-frequency measurement gaps in a same frequency or a same frequency range (e.g., intra-frequency measurement gaps) , or one per-UE measurement gaps and one per-frequency measurement gap. When a network entity 105 configures the UE 115 with concurrent measurement gaps, the measurement gaps 320 may be considered as colliding if at least the two corresponding measurement gap occasions are fully or partially overlapping in a time domain or a distance in time between the two measurement gap occasions is, for example, equal to or smaller than 4 ms. In some examples, the distance may be a time difference between an ending point of the measurement gap 320-a and a starting point of the measurement gap 320-b, where the measurement gap 320-a occurs earlier in time than measurement gap 320-b. In some cases, more than two measurement gaps 320 may overlap sequentially.
In some examples, in the case of a scheduling conflict between the measurement gaps 320 in a mobility procedure (e.g., an L1/L2/L3 mobility procedure) , the UE 115 may perform reference signal measurements in a measurement gap occasion associated with a measurement gap 320 with a higher priority, and the UE 115 may drop the measurement gap occasion associated with a relatively lower priority. In this way, the UE 115 may transmit or receive reference signals via serving cells that are not interrupted. In some examples, the UE 115 may refrain from applying such a selection process when the network entity 105 configures a measurement gap 320 without an assigned priority simultaneously with one or more measurement gaps 320 that affect serving carrier in a same frequency range, and when the measurement gaps 320 with and without assigned priorities are colliding with each other. That is, the UE 115 may use techniques other than a priority comparison to select measurement gaps 320 if not all configured measurement gaps 320 are assigned a priority. In some cases, the network entity 105 may configure a priority for a measurement gap 320 via gapPriority in GapConfig. The requirements of the concurrent measurement gaps 320 may apply provided that the network entity 105 configures the two measurement gaps 320 colliding with each other with different priorities.
The UE 115 may transmit an L1 report 330-a via a physical uplink shared channel (PUSCH) . The L1 report 330-a may include or indicate the measured SSB or CSI 325-a, the measured SSB or CSI 325-b, or both, based on the measurement gap 320-a, the measurement gap 320-b, or both being configured for the UE 115. That is, the UE 115 may transmit a channel measurement report in accordance with performing one or more channel measurements based on the measurement gaps 320. In some cases, the UE 115 may receive DCI 315-b triggering the UE 115 to perform an L1 measurement of the candidate cell 310-b and report the measurement. The UE 115 may measure one or more reference signals associated with the candidate cell 310-b (without a measurement gap) and transmit a PUSCH with an L1/L3 report 330-b including the measured SSB/CSI 320-c.
FIG. 4 illustrates an example of a process flow 400 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The process flow 400 may implement aspects of  wireless communications systems  100 and 200, or may be implemented by aspects of the  wireless communications systems  100 and 200. For example, the process flow 400 may illustrate operations between a UE 115-b and a network entity 105-c (e.g., a serving cell) , which may be examples of corresponding devices described herein. In the following description of the process flow 400, the operations between the UE 115-b and the network entity 105-c may be transmitted in a different order than the example order shown, or the operations performed by the UE 115-b and the network entity 105-c may be performed in different orders or at different times. Some operations may also be omitted from the process flow 400, and other operations may be added to the process flow 400.
At 405, the UE 115-b may transmit a capability message indicating a capability of the UE 115-b to support concurrent measurement gaps for L1 channel measurements. In some cases, the capability message may include one or more UE capability information elements indicating the UE’s capability to support concurrent measurement gaps for L1 channel measurements, L3 channel measurements, or both.
At 410, the UE 115-b may receive one or more measurement configuration signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel  measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The channel measurements may include SSB measurements, CSI measurements, or other reference signal measurements. In addition, the measurement gaps may be concurrent, inter-frequency measurement gaps (e.g., the first measurement gap may be associated with a different frequency than the second measurement gap) .
At 415, the UE 115-b may detect a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap. For example, the UE 115-b may detect the scheduling collision based on a partial or full overlap in time between the first measurement gap occasion and the second measurement gap occasion, a timing between the first measurement gap occasion and the second measurement gap occasion being equal to or less than a defined threshold (e.g., 4 ms) , or both.
At 420, the UE 115-b may select one of the first measurement gap or the second measurement gap to apply for at least a portion of the set of channel measurements at the UE according to the detected scheduling collision. For example, the UE 115-b may select the first measurement gap for L1 channel measurements and the second measurement gap for L3 channel measurements.
At 425, the UE 115-b may perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. For example, the UE 115-b may measure one or more reference signals (e.g., SSBs, CSI-RSs) during the first or second measurement gap for one or more candidate serving cells of the UE 115-b.
At 430, the UE 115-b may transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements. For example, the UE 115-b may transmit a first CSI report associated with the first measurement gap and a second CSI report associated with the second measurement gap.
FIG. 5 illustrates a block diagram 500 of a device 505 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with  one or more aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of concurrent measurement gaps for L1 inter-frequency measurements as described herein. For example, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , a central processing unit (CPU) , a graphics processing unit (GPU) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a  microcontroller, discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally, or alternatively, in some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware, software (e.g., executed by a processor) , or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, a microcontroller, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 520 may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 520 may support wireless communication at a UE in accordance with examples as disclosed herein. For example, the communications manager 520 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements. The communications manager 520 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel  measurements. The communications manager 520 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The communications manager 520 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
By including or configuring the communications manager 520 in accordance with examples as described herein, the device 505 (e.g., a processor controlling or otherwise coupled with the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof) may support techniques for using concurrent measurement gaps for L1 channel measurements, which may reduce latency and improve UE mobility.
FIG. 6 illustrates a block diagram 600 of a device 605 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The device 605 may be an example of aspects of a device 505 or a UE 115 as described herein. The device 605 may include a receiver 610, a transmitter 615, and a communications manager 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . Information may be passed on to other components of the device 605. The receiver 610 may utilize a single antenna or a set of multiple antennas.
The transmitter 615 may provide a means for transmitting signals generated by other components of the device 605. For example, the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to using concurrent measurement gaps for L1 inter-frequency measurements) . In some examples, the transmitter 615 may be co-located  with a receiver 610 in a transceiver module. The transmitter 615 may utilize a single antenna or a set of multiple antennas.
The device 605, or various components thereof, may be an example of means for performing various aspects of concurrent measurement gaps for L1 inter-frequency measurements as described herein. For example, the communications manager 620 may include a capability component 625, a measurement gap component 630, a channel measurement component 635, a report component 640, or any combination thereof. The communications manager 620 may be an example of aspects of a communications manager 520 as described herein. In some examples, the communications manager 620, or various components thereof, may be configured to perform various operations (e.g., receiving, obtaining, monitoring, outputting, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both. For example, the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to obtain information, output information, or perform various other operations as described herein.
The communications manager 620 may support wireless communication at a UE in accordance with examples as disclosed herein. The capability component 625 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements. The measurement gap component 630 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The channel measurement component 635 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The report component 640 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
FIG. 7 illustrates a block diagram 700 of a communications manager 720 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein. The communications manager 720, or various components thereof, may be an example of means for performing various aspects of using concurrent measurement gaps for L1 inter-frequency measurements as described herein. For example, the communications manager 720 may include a capability component 725, a measurement gap component 730, a channel measurement component 735, a report component 740, a selection component 745, a detection component 750, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 720 may support wireless communication at a UE in accordance with examples as disclosed herein. The capability component 725 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements. The measurement gap component 730 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The channel measurement component 735 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The report component 740 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
In some examples, to support transmitting the capability message, the capability component 725 may be configured as or otherwise support a means for transmitting, via the capability message, a single UE capability information element  indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and L3 channel measurements.
In some examples, to support transmitting the capability message, the capability component 725 may be configured as or otherwise support a means for transmitting, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements.
In some examples, the selection component 745 may be configured as or otherwise support a means for selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
In some examples, the detection component 750 may be configured as or otherwise support a means for detecting the scheduling collision based on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
In some examples, the detection component 750 may be configured as or otherwise support a means for detecting the scheduling collision based on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
In some examples, the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time. In some examples, the defined threshold is 4 milliseconds.
In some examples, the first measurement gap and the second measurement gap include inter-frequency measurement gaps. In some examples, the first  measurement gap is associated with a first CSI report and the second measurement gap is associated with a second CSI report.
FIG. 8 illustrates a diagram of a system 800 including a device 805 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein. The device 805 may communicate (e.g., wirelessly) with one or more network entities 105, one or more UEs 115, or any combination thereof. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
The I/O controller 810 may manage input and output signals for the device 805. The I/O controller 810 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 810 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 810 may utilize an operating system such as
Figure PCTCN2022128899-appb-000001
Figure PCTCN2022128899-appb-000002
or another known operating system. Additionally, or alternatively, the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 810 may be implemented as part of a processor, such as the processor 840. In some cases, a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
In some cases, the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein. For example, the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 815 may also include a modem to modulate the  packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825. The transceiver 815, or the transceiver 815 and one or more antennas 825, may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
The memory 830 may include random access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a GPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting using concurrent measurement gaps for L1 inter-frequency measurements) . For example, the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled with or to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
The communications manager 820 may support wireless communication at a UE in accordance with examples as disclosed herein. For example, the communications manager 820 may be configured as or otherwise support a means for transmitting a capability message indicating a capability of the UE to support concurrent measurement  gaps for L1 channel measurements. The communications manager 820 may be configured as or otherwise support a means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The communications manager 820 may be configured as or otherwise support a means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The communications manager 820 may be configured as or otherwise support a means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
By including or configuring the communications manager 820 in accordance with examples as described herein, the device 805 may support techniques for using concurrent measurement gaps for L1 channel measurements, which may reduce latency and improve UE mobility.
In some examples, the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof. Although the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof. For example, the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of using concurrent measurement gaps for L1 inter-frequency measurements as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
FIG. 9 illustrates a flowchart illustrating a method 900 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The operations of the method 900 may be implemented by a UE or its components as described herein. For example, the operations of the method 900 may be performed by a UE 115 as described with  reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 905, the method may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements. The operations of 905 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 905 may be performed by a capability component 725 as described with reference to FIG. 7.
At 910, the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The operations of 910 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 910 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
At 915, the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The operations of 915 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 915 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
At 920, the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements. The operations of 920 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 920 may be performed by a report component 740 as described with reference to FIG. 7.
FIG. 10 illustrates a flowchart illustrating a method 1000 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The operations of the method 1000 may  be implemented by a UE or its components as described herein. For example, the operations of the method 1000 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1005, the method may include transmitting, via a capability message, a single UE capability information element indicating that a UE is capable of supporting concurrent measurement gaps for both L1 channel measurements and L3 channel measurements. The operations of 1005 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1005 may be performed by a capability component 725 as described with reference to FIG. 7.
At 1010, the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The operations of 1010 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1010 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
At 1015, the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The operations of 1015 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1015 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
At 1020, the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements. The operations of 1020 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1020 may be performed by a report component 740 as described with reference to FIG. 7.
FIG. 11 illustrates a flowchart illustrating a method 1100 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The operations of the method 1100 may be implemented by a UE or its components as described herein. For example, the operations of the method 1100 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1105, the method may include transmitting, via a capability message, a first UE capability information element indicating that a UE is capable of supporting concurrent measurement gaps for L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements. The operations of 1105 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1105 may be performed by a capability component 725 as described with reference to FIG. 7.
At 1110, the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The operations of 1110 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1110 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
At 1115, the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The operations of 1115 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1115 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
At 1120, the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements. The operations of 1120 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1120 may be performed by a report component 740 as described with reference to FIG. 7.
FIG. 12 illustrates a flowchart illustrating a method 1200 that supports concurrent measurement gaps for L1 inter-frequency measurements in accordance with one or more aspects of the present disclosure. The operations of the method 1200 may be implemented by a UE or its components as described herein. For example, the operations of the method 1200 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1205, the method may include transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements. The operations of 1205 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1205 may be performed by a capability component 725 as described with reference to FIG. 7.
At 1210, the method may include receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements. The operations of 1210 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1210 may be performed by a measurement gap component 730 as described with reference to FIG. 7.
At 1215, the method may include selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second  measurement gap occasion associated with the second measurement gap. The operations of 1215 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1215 may be performed by a selection component 745 as described with reference to FIG. 7.
At 1220, the method may include performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message. The operations of 1220 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1220 may be performed by a channel measurement component 735 as described with reference to FIG. 7.
At 1225, the method may include transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements. The operations of 1225 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1225 may be performed by a report component 740 as described with reference to FIG. 7.
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communication at a UE, comprising: transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements; receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or an L3 measurement of the set of channel measurements; performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
Aspect 2: The method of aspect 1, wherein transmitting the capability message comprises: transmitting, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent  measurement gaps for both the L1 channel measurements and L3 channel measurements.
Aspect 3: The method of any of aspects 1 through 2, wherein transmitting the capability message comprises: transmitting, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for L3 channel measurements.
Aspect 4: The method of any of aspects 1 through 3, further comprising: selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
Aspect 5: The method of aspect 4, further comprising: detecting the scheduling collision based at least in part on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
Aspect 6: The method of any of aspects 4 through 5, further comprising: detecting the scheduling collision based at least in part on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
Aspect 7: The method of aspect 6, wherein the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
Aspect 8: The method of any of aspects 6 through 7, wherein the defined threshold is 4 milliseconds.
Aspect 9: The method of any of aspects 1 through 8, wherein the first measurement gap and the second measurement gap comprise inter-frequency measurement gaps.
Aspect 10: The method of any of aspects 1 through 9, wherein the first measurement gap is associated with a first CSI report and the second measurement gap is associated with a second CSI report.
Aspect 11: An apparatus for wireless communication at a UE, comprising at least one processor; and memory coupled with the at least one processor, the memory storing instructions executable by the at least one processor to cause the UE to perform a method of any of aspects 1 through 10.
Aspect 12: An apparatus for wireless communication at a UE, comprising at least one means for performing a method of any of aspects 1 through 10.
Aspect 13: A non-transitory computer-readable medium storing code for wireless communication at a UE, the code comprising instructions executable by at least one processor to perform a method of any of aspects 1 through 10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced  throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed using a general-purpose processor, a DSP, an ASIC, a CPU, a GPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor but, in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented using hardware, software executed by a processor, or any combination thereof. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, or functions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. If implemented using software executed by a processor, the functions may be stored as or transmitted using one or more instructions or code of a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose  computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, phase change memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc. Disks may reproduce data magnetically, and discs may reproduce data optically using lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ” As used herein, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
The term “determine” or “determining” encompasses a variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (such as via looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information) , accessing (e.g., accessing data stored in memory) and the like. Also, “determining” can include resolving, obtaining, selecting, choosing, establishing, and other such similar actions.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    at least one processor; and
    memory couple with the at least one processor, the memory storing instructions executable by the at least one processor to cause the UE to:
    transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements;
    receive one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or a layer three measurement of the set of channel measurements;
    perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and
    transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  2. The apparatus of claim 1, wherein the instructions to transmit the capability message are executable by the at least one processor to cause the UE to:
    transmit, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and layer three channel measurements.
  3. The apparatus of claim 1, wherein the instructions to transmit the capability message are executable by the at least one processor to cause the UE to:
    transmit, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether  the UE is capable of supporting the concurrent measurement gaps for layer three channel measurements.
  4. The apparatus of claim 1, wherein the instructions are further executable by the at least one processor to cause the UE to:
    select one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  5. The apparatus of claim 4, wherein the instructions are further executable by the at least one processor to cause the UE to:
    detect the scheduling collision based at least in part on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  6. The apparatus of claim 4, wherein the instructions are further executable by the at least one processor to cause the UE to:
    detect the scheduling collision based at least in part on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  7. The apparatus of claim 6, wherein the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
  8. The apparatus of claim 6, wherein the defined threshold is 4 milliseconds.
  9. The apparatus of claim 1, wherein the first measurement gap and the second measurement gap comprise inter-frequency measurement gaps.
  10. The apparatus of claim 1, wherein the first measurement gap is associated with a first channel state information report and the second measurement gap is associated with a second channel state information report.
  11. A method for wireless communication at a user equipment (UE) , comprising:
    transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements;
    receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or a layer three measurement of the set of channel measurements;
    performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and
    transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  12. The method of claim 11, wherein transmitting the capability message comprises:
    transmitting, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and layer three channel measurements.
  13. The method of claim 11, wherein transmitting the capability message comprises:
    transmitting, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for layer three channel measurements.
  14. The method of claim 11, further comprising:
    selecting one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  15. The method of claim 14, further comprising:
    detecting the scheduling collision based at least in part on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  16. The method of claim 14, further comprising:
    detecting the scheduling collision based at least in part on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  17. The method of claim 16, wherein the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
  18. The method of claim 16, wherein the defined threshold is 4 milliseconds.
  19. The method of claim 11, wherein the first measurement gap and the second measurement gap comprise inter-frequency measurement gaps.
  20. The method of claim 11, wherein the first measurement gap is associated with a first channel state information report and the second measurement gap is associated with a second channel state information report.
  21. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by at least one processor to cause the UE to:
    transmit a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements;
    receive one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or a layer three measurement of the set of channel measurements;
    perform at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and
    transmit a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
  22. The non-transitory computer-readable medium of claim 21, wherein the instructions to transmit the capability message are executable by the at least one processor to cause the UE to:
    transmit, via the capability message, a single UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for both the L1 channel measurements and layer three channel measurements.
  23. The non-transitory computer-readable medium of claim 21, wherein the instructions to transmit the capability message are executable by the at least one processor to cause the UE to:
    transmit, via the capability message, a first UE capability information element indicating that the UE is capable of supporting the concurrent measurement gaps for the L1 channel measurements, wherein the first UE capability information element is separate from a second UE capability information element indicating whether the UE is capable of supporting the concurrent measurement gaps for layer three channel measurements.
  24. The non-transitory computer-readable medium of claim 21, wherein the instructions are further executable by the at least one processor to cause the UE to:
    select one of the first measurement gap or the second measurement gap to apply for at least the portion of the set of channel measurements at the UE according to a scheduling collision between a first measurement gap occasion associated with the first measurement gap and a second measurement gap occasion associated with the second measurement gap.
  25. The non-transitory computer-readable medium of claim 24, wherein the instructions are further executable by the at least one processor to cause the UE to:
    detect the scheduling collision based at least in part on an overlap in time between the first measurement gap occasion and the second measurement gap occasion.
  26. The non-transitory computer-readable medium of claim 24, wherein the instructions are further executable by the at least one processor to cause the UE to:
    detect the scheduling collision based at least in part on a timing between the first measurement gap occasion and the second measurement gap occasion in time being equal to or less than a defined threshold.
  27. The non-transitory computer-readable medium of claim 26, wherein the timing between the first measurement gap occasion and the second measurement gap occasion is measured between an end of the first measurement gap occasion and a beginning of the second measurement gap occasion, wherein the first measurement gap occasion occurs before the second measurement gap occasion in time.
  28. The non-transitory computer-readable medium of claim 26, wherein the defined threshold is 4 milliseconds.
  29. The non-transitory computer-readable medium of claim 21, wherein the first measurement gap and the second measurement gap comprise inter-frequency measurement gaps.
  30. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for transmitting a capability message indicating a capability of the UE to support concurrent measurement gaps for L1 channel measurements;
    means for receiving one or more signals identifying a set of channel measurements and indicating at least a first measurement gap associated with a first L1 measurement of the set of channel measurements and a second measurement gap associated with one or more of: a second L1 measurement of the set of channel measurements or a layer three measurement of the set of channel measurements;
    means for performing at least a portion of the set of channel measurements using the first measurement gap or the second measurement gap in accordance with the capability message; and
    means for transmitting a channel measurement report in accordance with performing at least the portion of the set of channel measurements.
PCT/CN2022/128899 2022-11-01 2022-11-01 Concurrent measurement gaps for layer one inter-frequency measurements WO2024092490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/128899 WO2024092490A1 (en) 2022-11-01 2022-11-01 Concurrent measurement gaps for layer one inter-frequency measurements
PCT/CN2023/128267 WO2024093983A1 (en) 2022-11-01 2023-10-31 Concurrent or overlapping measurement gaps for layer one and layer three measurements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128899 WO2024092490A1 (en) 2022-11-01 2022-11-01 Concurrent measurement gaps for layer one inter-frequency measurements

Publications (1)

Publication Number Publication Date
WO2024092490A1 true WO2024092490A1 (en) 2024-05-10

Family

ID=90929348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128899 WO2024092490A1 (en) 2022-11-01 2022-11-01 Concurrent measurement gaps for layer one inter-frequency measurements

Country Status (1)

Country Link
WO (1) WO2024092490A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269919A1 (en) * 2013-09-30 2016-09-15 Telefonaktiebolaget L M Ericsson (Publ) Procedures for Class-based Measurements on Multiple Carriers
US20190182800A1 (en) * 2017-11-16 2019-06-13 Comcast Cable Communications, Llc Beam Paging Assistance
CN112655266A (en) * 2018-09-10 2021-04-13 高通股份有限公司 Interference detection, signaling and mitigation techniques for low-latency transmissions
CN114616857A (en) * 2019-08-26 2022-06-10 高通股份有限公司 User equipment capability to indicate cross-link interference measurements
CN114982344A (en) * 2020-01-23 2022-08-30 高通股份有限公司 Dynamic Channel State Information (CSI) measurement gaps for bandwidth limited low complexity user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269919A1 (en) * 2013-09-30 2016-09-15 Telefonaktiebolaget L M Ericsson (Publ) Procedures for Class-based Measurements on Multiple Carriers
US20190182800A1 (en) * 2017-11-16 2019-06-13 Comcast Cable Communications, Llc Beam Paging Assistance
CN112655266A (en) * 2018-09-10 2021-04-13 高通股份有限公司 Interference detection, signaling and mitigation techniques for low-latency transmissions
CN114616857A (en) * 2019-08-26 2022-06-10 高通股份有限公司 User equipment capability to indicate cross-link interference measurements
CN114982344A (en) * 2020-01-23 2022-08-30 高通股份有限公司 Dynamic Channel State Information (CSI) measurement gaps for bandwidth limited low complexity user equipment

Similar Documents

Publication Publication Date Title
US20220132526A1 (en) Techniques for deriving a sounding reference signal-based multi-transmission and reception point downlink precoding
US20220078852A1 (en) Beam indications during random access procedures
WO2021150995A1 (en) Measurement report techniques for wireless communications systems
US20220286179A1 (en) Channel state information for multiple communication links
US20220225245A1 (en) Transmitting uplink control information on physical uplink control channels using different transmit powers
US11800456B2 (en) Power control determination for control channel repetitions
WO2024092490A1 (en) Concurrent measurement gaps for layer one inter-frequency measurements
WO2024093983A1 (en) Concurrent or overlapping measurement gaps for layer one and layer three measurements
WO2024092482A1 (en) Overlapping measurement gaps in layer one and layer three measurements
US20230354225A1 (en) Techniques for configuring bandwidth parts and synchronization signal blocks
US20240032039A1 (en) Uplink control opportunities for uplink carrier switching
WO2024103197A1 (en) Overhead reduction for feedback on beam prediction results
WO2024050711A1 (en) Enhancement for aircraft relaying continuity
WO2023245479A1 (en) Delay status reporting for deadline-based scheduling
WO2022116129A1 (en) Uplink control information mapping for uplink transmission switching
WO2023245481A1 (en) Deadline based hybrid automatic repeat request retransmission
WO2024031305A1 (en) Cross-link interference (cli) measurements supporting frequency hopping
US20240056277A1 (en) Frequency resource configurations in full-duplex networks
WO2023236092A1 (en) Relaxation of time alignment timer parameters
US20240040415A1 (en) Perception-aided beam-based communications
US20220224483A1 (en) Techniques for providing ue-assistance for a selection of a demodulation reference signal port multiplexing pattern
US20230363004A1 (en) Bandwidth part configuration for reduced capability devices
WO2023230976A1 (en) Detecting passive devices proximate to a reader device
WO2023201719A1 (en) Multiplexing configured grant signaling and feedback with different priorities
US12010677B2 (en) Cancellation of sidelink data channel