WO2024092397A1 - Antenna assembly and device provided with the antenna assembly - Google Patents

Antenna assembly and device provided with the antenna assembly Download PDF

Info

Publication number
WO2024092397A1
WO2024092397A1 PCT/CN2022/128604 CN2022128604W WO2024092397A1 WO 2024092397 A1 WO2024092397 A1 WO 2024092397A1 CN 2022128604 W CN2022128604 W CN 2022128604W WO 2024092397 A1 WO2024092397 A1 WO 2024092397A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna assembly
ground plane
antenna
ground
assembly according
Prior art date
Application number
PCT/CN2022/128604
Other languages
French (fr)
Inventor
Katsunori Ishimiya
Original Assignee
Goertek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Inc. filed Critical Goertek Inc.
Priority to PCT/CN2022/128604 priority Critical patent/WO2024092397A1/en
Publication of WO2024092397A1 publication Critical patent/WO2024092397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present disclosure generally relates to antenna devices suitable for application in mobile terminals, and in particular, to an antenna assembly and an electronic device including the antenna assembly.
  • Mobile devices such as mobile phones, personal digital assistant (PDA) devices, gaming devices, and Augmented Reality/virtual reality (AR/VR) devices are becoming increasingly popular.
  • PDA personal digital assistant
  • AR/VR Augmented Reality/virtual reality
  • Such electronic devices are often provided with wireless communications capabilities and are integrated with antennas for the wireless communications. Due to small form factors of such mobile devices, there is limited space for antennas in the mobile devices.
  • Loop antennas are widely used in high-frequency applications.
  • Conventional loop antennas are subjected to the drawbacks of complex matching circuitry, relatively large distance from the ground plane, and large loss in radiation efficiency.
  • the present disclosure aims to provide an antenna assembly having a small size, a thin thickness, a simple structure and good performance. At least following technical solutions are provided to achieve the above objective.
  • an antenna assembly includes an antenna radiator, where the antenna radiator includes: a ground element configured for electrical connection to a ground plane at a grounding point; a feeding element configured for electrical connection to a radio signal circuitry at a feeding point; and an additional element.
  • the ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly.
  • At least a second portion of the additional element extends substantially parallel to at least a portion of the feed element to provide capacitive coupling between the additional element and the feed element during operation of the antenna assembly.
  • the antenna assembly further includes a first matching element configured for connecting the ground element to the ground plane at the grounding point, and a second matching element configured for connecting the feeding element to the radio signal circuitry at the feeding point.
  • the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is substantially the same as a length of the second matching element.
  • the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is shorter than a length of the second matching element.
  • an angle greater than 0 degree and less than 30 degrees is formed between the first matching element and the second matching element.
  • the antenna assembly further includes a dielectric carrier for supporting the antenna radiator.
  • the antenna radiator is planar.
  • the planar antenna radiator is arranged in a same plane as the ground plane.
  • the planar antenna radiator is arranged in a plane which is spaced from the ground plane and is substantially parallel to the ground plane.
  • the first matching element and the second matching element are arranged in a plane perpendicular to the ground plane.
  • the grounding point is located in a central portion of the ground plane, and the antenna radiator projects outwardly with respect to the grounding point, with at least a part of the antenna radiator facing the ground plane.
  • the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an inside of the ground plane with respect to the grounding point, with at least a part of the antenna radiator facing the ground plane.
  • the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an outside of the ground plane with respect to the grounding point, with no part of the antenna radiator facing the ground plane.
  • the ground plane and the antenna radiator are formed on different layers of a printed circuit board.
  • the feeding element is electrically connected to the radio signal circuity via an inner conductor of a coaxial cable
  • the ground element is electrically connected to the ground plane via a conducting shield of the coaxial cable, wherein the conducting shield is concentric to the inner conductor and surrounds the inner conductor, and the inner conductor and the conducting shield are separated from each other by a dielectric insulator.
  • an electronic device including the antenna assembly according to any of the foregoing embodiments is provided.
  • the electronic device further includes a housing, and the housing functions as the ground plane to be connected to the ground element of the antenna assembly.
  • the antenna assembly includes a ground element configured for electrical connection to a ground plane at a grounding point, a feeding element configured for electrical connection to a radio signal circuitry at a feeding point, and an additional element.
  • the ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly.
  • the antenna assembly according to the present disclosure may be manufactured with small size and thin thickness, while ensuring the performance and antenna efficiency of the antenna assembly. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices into which the antenna assembly is mounted and provide benefits for the miniaturization of the devices. For example, in mobile devices such as gaming devices having Bluetooth technology for communication with wireless controller, if antenna performance is good, these gaming devices do not have any connection issue between main devices and controller in even bad environment with high noise floor, for example, in cases that there are many wireless devices using same frequency, such as Bluetooth, wireless LAN, microwave oven, etc.
  • Figure 1 is a schematic diagram of a pattern of an antenna assembly according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram showing exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram showing another exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure
  • Figures 4a-4f are schematic diagrams of exemplary patterns of multi-band antennas according to yet other embodiments of the present disclosure.
  • Figure 5 is a graph showing a simulated return loss of an antenna assembly provided according to an embodiment of the present disclosure
  • Figure 6 is a graph showing a simulated antenna efficiency of an antenna assembly provided according to an embodiment of the present disclosure.
  • Figure 7 is a schematic diagraph showing an arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • Figure 8 is a schematic diagraph showing another arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • Figure 9 is a schematic diagraph showing yet another arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of a mobile device in which an antenna assembly is provided according to an embodiment of the present disclosure.
  • first and the second features are in direct contact and the case that additional features are present between the first and the second features, i.e., the first and the second feature may be not in direct contact.
  • FIG. 1 is a schematic diagram of a pattern of an antenna assembly according to an embodiment of the present disclosure.
  • the antenna assembly 1 includes an antenna radiator 101.
  • the antenna radiator 101 includes a ground element 111, a feeding element 121 and an additional element 131.
  • the ground element 111 is configured for electrical connection to a ground plane (not shown) at a grounding point 104.
  • the feeding element 121 is configured for electrical connection to a radio signal circuitry (RF) at a feeding point 105.
  • RF radio signal circuitry
  • the feeding point 105 is positioned adjacent to the grounding point 104.
  • the ground element 111, the feeding element 121, and the additional element 131 are physically separated and physically disconnected from one another.
  • At least a portion 1111 of the ground element 111 extends substantially parallel to a portion 1311 of the additional element 131 in the same direction.
  • the portion 1111 of the ground element 111 is arranged in proximity to the portion 1311 of the additional element 131, with a slit or a gap formed between the two portions 1111 and 1311.
  • the portion 1311 of the additional element 131 is arranged to form the capacitive slit/gap providing capacitive coupling between the additional element 131 and the ground element 111 during operation of the antenna assembly.
  • the width of the slit or gap between the portions 1111 and 1311 is appropriately selected. In a preferable embodiment, the width of the slit or gap between the portions 1111 and 1211 ranges from 0.1mm to 5mm.
  • the portion 1311 of the additional element 131 has a length which is sufficient to provide a useable coupling capacitance.
  • the total length of the additional element 131 is preferably required to be shorter than a shortest resonant length at the lowest operation frequency of the antenna assembly.
  • the additional element 131 may further include a portion 1312 that runs substantially parallel to a portion of the feed element 121 in the same direction.
  • the portion 1312 of the additional element 131 is arranged in proximity to the portion of the feed element 121, with a slit or a gap formed between the two portions.
  • the portion 1312 of the additional element 131 is arranged to form the capacitive slit/gap providing capacitive coupling between the additional element 131 and the feed element 121 during operation of the antenna assembly.
  • the width of the slit or gap between the portion 1312 of the additional element 131 and the feed element 121 is appropriately selected, for example, less than 5mm.
  • the present disclosure is not limited in this aspect; the additional element 131 may be spaced from the feed element 121 with a large distance so that no capacitive coupling is generated between the feed element 121 and the additional element 131.
  • the ground element 111 can be in a variety of shapes.
  • the ground element 111 may be an elongated strip and may have multiple portions connected end to end.
  • the ground element 111 may be in an L-shape at least including a first portion extending in a first direction and a second portion extending in a second direction perpendicular to the first direction, as shown.
  • the ground element 111 may further include a third portion extending in a third direction substantially parallel to the first direction and opposite to the first direction, and the resultant U-shape maintains a long antenna element and therefore the lowest resonance frequency available to the antenna assembly.
  • ground element 111 is shown in Figure 1 as including portions connected end to end, it is noted that the structure of the ground element 111 is not so limited and the ground element 111 may include more than two open ends, i.e., the ground element 111 may include one or more branches stemmed from the main portion of the ground element 111. Furthermore, although the ground element 111 is shown in Figure 1 as having portions of substantially same width, the portions of the ground element 111 may have different widths as needed.
  • the feeding element 121 may be in a variety of shapes.
  • the feeding element 121 may be formed as a bar, as shown in Figure 1.
  • the feeding element 121 maybe a conductive elongated strip folded at one or more points.
  • the feed element 121 may be provided with one or more branches stemmed from the main portion of the feed element 121.
  • the additional element 131 may be formed in a variety of shapes, as will be discussed in connection with Figures 4a-4f in the following.
  • the ground element 111, the feeding element 121 and the additional element 131 may be made of sheet metal, a metal trace on a carrier, or may be made of a flexible substrate or a rigid substrate, a metalized interconnect device (MID) , or the like.
  • the ground element 111, the feeding element 121 and the additional element 131 may be manufactured from various conductive materials, including but not limited to, silver, copper, etc., transparent conductive oxides (such as indium tin oxide ITO) , carbon nanotubes, graphene, etc.
  • the dimension of the antenna assembly is more compact.
  • the antenna assembly according to the present disclosure may be manufactured with small size and thin thickness, while ensuring the performance and antenna efficiency of the antenna assembly. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices into which the antenna assembly is mounted and provide benefits for the miniaturization of the devices.
  • the antenna assembly may further include a first matching element 102 and a second matching element 103.
  • the first matching element 102 is configured for connecting the ground element 111 to the ground plane at the grounding point 104.
  • the second matching element 103 is configured for connecting the feeding element 121 to the RF circuitry at the feeding point 105.
  • the first matching element 102 and the second matching element 103 may be parallel to each other, as shown in Figure 1. In other embodiments, the first matching element 102 and the second matching element 103 may have an included angle, for example, greater than 0 degree and less than 30 degrees. The lengths of the two matching elements 102 and 103 may be the same or different.
  • the input impedance of the antenna assembly can be changed.
  • the antenna assembly may be impedance matched when assembled for the end user environment, so as to achieve maximum efficiency when operating in the desired frequency band. Optimal efficiency results in maximum range, minimum power consumption, reduced heating and reliable data throughput.
  • FIG. 2 is a schematic diagram showing exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure.
  • the antenna assembly includes an antenna radiator 202 and a dielectric carrier 203 for supporting the antenna radiator 202.
  • the dielectric carrier 203 further functions to dielectrically separate the antenna radiator from the ground plane 201.
  • the antenna radiator 202 includes a ground element 212, a feeding element 222, and an additional element 232.
  • the ground element 212 of the antenna assembly is connected to a ground plane 201 at the grounding point 204.
  • the feeding element 222 is connected to a RF circuitry at the feeding point 205.
  • the ground element 212, the feeding element 222, and the additional element 232 are physically separated and physically disconnected from one another. At least a portion of the ground element 212 extends substantially parallel to a portion of the additional element 232 in the same direction, and forms capacitive coupling between the additional element 232 and the ground element 212 during operation of the antenna assembly.
  • the ground plane 201 and the antenna assembly are formed as a planar structure.
  • the planar structure may be formed by etching a printed circuit board (PCB) , stamping metal, or by other schemes.
  • PCB printed circuit board
  • the dielectric carrier 203 may be formed as a frame, a supporting platform or the like.
  • the dielectric carrier 203 may be manufactured from plastic, resin, ceramic, or any other suitable material.
  • the ground plane 201 and the antenna radiator 202 are formed on different layers of a printed circuit board (PCB) .
  • PCB printed circuit board
  • the ground element 212, the feeding element 222 and the additional element 232 can be realized by many different manufacturing methods, for instance, stamped metal parts, conductors etched on a flexible insulating layer (FPC) and attached to the dielectric carrier 203 using an adhesive layer, or Laser Direct Structuring (LDS) techniques.
  • stamped metal parts for instance, stamped metal parts, conductors etched on a flexible insulating layer (FPC) and attached to the dielectric carrier 203 using an adhesive layer, or Laser Direct Structuring (LDS) techniques.
  • FPC flexible insulating layer
  • LDS Laser Direct Structuring
  • the design parameters for the arrangement as shown in Figure 2 may be appropriately determined as needed.
  • the lowest resonant frequency of the antenna assembly may be determined by an overall length of the ground element 212, widths of the portions of the ground element 212, and a distance from the ground plane 201.
  • the antenna assembly depicted in Figure 3 may provide a resonance at a frequency band of 2.4GHz-2.48GHz.
  • the antenna assembly may be designed to operate in other frequency bands or operate for other communication standards, and the present disclosure is not limited in this aspect.
  • the antenna assembly may operate according to a wireless communication standard for cellular network, such as the 2G, 3G, 4G or 5G standard.
  • the antenna assembly may operate alternatively or additionally according to a wireless communication standard for in a band ranging from 2.4GHz to 2.48GHz.
  • the lengths of the ground element 212, the feeding element 222 and the additional element 232, and the width of the capacitive gap between the additional element 232 and the ground element 212 may be appropriately determined as needed, so to optimize impedance value of the antenna assembly at the resonance frequencies and relative bandwidth of the antenna assembly.
  • FIG. 3 is a schematic diagram showing another exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure.
  • the antenna assembly of Figure 3 includes an antenna radiator 302 and a dielectric carrier 303 for supporting the antenna radiator 302.
  • the antenna radiator 302 includes a ground element 312, a feeding element 322, and an additional element 332 which are physically separated and physically disconnected from one another. At least a portion of the ground element 312 extends substantially parallel to a portion of the additional element 332 in the same direction, and forms capacitive coupling between the additional element 332 and the ground element 312 during operation of the antenna assembly.
  • the dielectric carrier 303 may be formed as a frame, a supporting platform or the like.
  • the dielectric carrier 303 may be manufactured from plastic, resin, ceramic, or any other suitable material.
  • the antenna assembly as shown in Figure 3 is connected to a ground plane and a RF circuitry via a transmission line.
  • the antenna assembly may be manufactured as a stand-alone device and may be connected to the ground plane and the RF circuitry via a single coaxial cable 301, in a way that the physical separation of the ground element 312 and the feeding element 322 is still implemented.
  • the coaxial cable 301 consists of an inner conductor 305 surrounded by a concentric conducting shield 304, with the two separated by a dielectric insulator; furthermore, the coaxial cable 301 may also has a protective outer sheath or jacket.
  • the ground element 312 is connected to a ground plane via the conducting shield 304 of the coaxial cable 301.
  • the feeding element 322 is connected to a RF circuitry via the inner conductor 305.
  • ground element may be in any shape or a combination of different shapes, including a square, a triangle, a chamfered rectangle, a chamfered square, an L-shape or a T-shape, which will not be limited herein.
  • the ground element, the feeding element and the additional element may have varying width.
  • the additional element may include at least one portion which is wider than other portions.
  • the wider portion may be formed of metal sheet or the like. In case of multiple wider portions, the wider portions may be arranged symmetrically or asymmetrically.
  • Figure 5 is a graph showing a simulated return loss of an antenna assembly provided according to an embodiment of the present disclosure.
  • Figure 5 shows a characteristic trough, representing a corresponding frequency range of about 2.4GHz to 2.48GHz. It is noted that although exemplary frequency band is illustrated, the present disclosure is not limited in this aspect. In other words, the antenna assembly according to the present disclosure may operate in other frequency bands, and may operate following other communication standards.
  • Figure 6 is a graph showing a simulated antenna efficiency of an antenna assembly provided according to an embodiment of the present disclosure. As can be seen, the antenna assembly proposed according to the present disclosure has good antenna efficiency.
  • the antenna assembly according to the present disclosure has simple structure, compact construction, and good antenna performance in multiple frequency bands. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices. For example, in mobile devices such as gaming devices having Bluetooth technology for communication with wireless controller, if antenna performance is good, these gaming devices do not have any connection issue between main devices and controller in even bad environment with high noise floor, for example, in cases that there are many wireless devices using same frequency, such as Bluetooth, wireless LAN, microwave oven, etc.
  • FIG. 7 is a schematic diagraph showing an arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • the antenna radiator including the ground element and the feeding element, is arranged on a plane different from the ground plane to form a three dimensional structure.
  • the ground element and the feeding element may be supported by a dielectric carrier (not shown) .
  • the dielectric carrier may be manufactured from plastic, resin, ceramic, or any other suitable material.
  • the ground element and the feeding element can be realized by many different manufacturing methods.
  • the antenna radiator (including the ground element and the feeding element) , together with dielectric carrier (if any) , are formed as a planer structure that is located in a plane parallel to the ground plane, and the matching elements are arranged between the antenna radiator and the ground plane, in a plane perpendicular to the ground plane.
  • One of the matching elements connects the ground element of the antenna radiator to the ground plane at the grounding point.
  • the grounding point is located inside the ground plane, i.e., away from an edge of the ground plane, and the antenna radiator projects outwardly with respect to the grounding point, with an edge of the antenna radiator flushing with the edge of the ground plane.
  • the antenna radiator of the antenna assembly faces to the ground plane.
  • a height h1 measured from the antenna radiator to the ground plane needs to have a predetermined value.
  • the height h1 may further depend on mechanical design of the device to which the antenna assembly to be mounted. In preferable embodiments, the height h1 is greater than 2mm, and preferably ranges from 2 mm to 10mm.
  • FIG 8 is a schematic diagraph showing another arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • the grounding point is located at an edge of the ground plane, and the planer antenna radiator projects to an inside of the ground plane with respect to the grounding point.
  • an edge of the antenna radiator flushes with the edge of the ground plane, with the matching elements connecting with the two edges.
  • the antenna radiator of the antenna assembly faces to the ground plane.
  • a height h2 measured from the antenna radiator to the ground plane needs to have a predetermined value.
  • FIG. 9 is a schematic diagraph showing yet another arrangement of an antenna assembly according to an embodiment of the present disclosure.
  • the grounding point is located at an edge of the ground plane, and the antenna radiator projects to outside of the ground plane with respect to the grounding point, so that at least a major part of the antenna radiator does not face the ground plane.
  • a height h3 measured from the antenna radiator to the ground plane may be small.
  • the height h3 may be smaller than h1, and the height h3 may be smaller than h2.
  • Electronic device 1000 of Figure 10 may be a portable computer such as a laptop computer, a portable tablet computer, a mobile telephone, a mobile telephone with media player capabilities, a handheld computer, a remote control, a game player, a global positioning system (GPS) device, a desktop computer, a music player, a multi-touch electronic device, Augmented Reality (AR) glasses, Head Mounted Display (HMD) , a combination of such devices, or any other suitable electronic device.
  • electronic device 1000 may include an in-out circuitry 1100, a processor 1200 and storage 1300.
  • the processor 1200 may be a microprocessor and other suitable integrated circuit.
  • the processor 1200 and storage 1300 may be configured for control the operation of the electronic device 1000.
  • the processor 1200 may run software stored in the storage 1300 for the electronic device 1000, such as operating system functions, phone call applications, Internet browsing, email applications, media playback applications, control functions for controlling radio-frequency power amplifiers and other radio-frequency transceiver, etc.
  • the storage 1300 may include one or more different types of storage such as hard disk drive storage, nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory) , volatile memory (e.g., static or dynamic random-access-memory) .
  • nonvolatile memory e.g., flash memory or other electrically-programmable-read-only memory
  • volatile memory e.g., static or dynamic random-access-memory
  • Communications protocols that may be implemented by the processor 1200 include Internet protocols, cellular telephone protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols, referred to as ) , protocols for other short-range wireless communications links such as the protocol, etc.
  • Internet protocols e.g., cellular telephone protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols, referred to as ) , protocols for other short-range wireless communications links such as the protocol, etc.
  • the in-out circuitry 1100 is configured to implement input and output function of the electronic device 1000.
  • the in-out circuitry 1100 may include an input-output device and a wireless communication circuitry 1120.
  • the input-output device 1111 may be a touch screen and other user input device such as buttons, joysticks, click wheels, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, etc.
  • the input-output device 1111 may include display and audio devices such as liquid-crystal display (LCD) screens, light-emitting diodes (LEDs) , organic light-emitting diodes (OLEDs) , and other components that present visual information and status data.
  • LCD liquid-crystal display
  • LEDs light-emitting diodes
  • OLEDs organic light-emitting diodes
  • the wireless communications circuitry 1120 may include radio-frequency (RF) transceiver circuitry 1121 formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, and other circuitry for handling RF wireless signals.
  • RF transceiver circuitry 1121 may include a cellular transceiver circuitry 1122 for handling wireless communications in cellular bands such as the bands at 600 MHz, 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, and the 2100 MHz data band.
  • the RF transceiver circuitry 1121 may also include a WIFI and Bluetooth transceiver circuitry 1123 that handles 2.4GHz-2.48GHz, 5.15GHz-5.85GHz, and 5.925GHz-7.125GHz bands for WiFi6E/7 communications, and the 2.4 GHz Bluetooth communications band.
  • the Wireless communications circuitry 1120 can include circuitry for other short-range and long-range wireless links if desired.
  • wireless communications circuitry 1120 may include global positioning system (GPS) receiver equipment, wireless circuitry for receiving radio and television signals, paging circuits, etc.
  • GPS global positioning system
  • the RF transceiver circuitry 1121 may be implemented using one or more integrated circuits and associated components (e.g., switching circuits, matching network components such as discrete inductors, capacitors, and resistors, and integrated circuit filter networks, etc. ) . These devices may be mounted on any suitable mounting structures. With one suitable arrangement, transceiver integrated circuits may be mounted on a printed circuit board.
  • integrated circuits and associated components e.g., switching circuits, matching network components such as discrete inductors, capacitors, and resistors, and integrated circuit filter networks, etc.
  • the wireless communications circuitry 1120 may include antenna assembly 1124, such as the antenna assembly as described above by referring to Figures 1, 2, 3, 4a-4f, and 7-9 or variations thereof.
  • the antenna assembly 1124 may be multi-band antenna.
  • a multiband antenna may be used, for example, to cover multiple cellular telephone communications bands, WiFi communication bands, Bluetooth communication bands, etc.
  • the wireless communications circuitry 1120 may further include other circuitries for implementing different communication related functions.
  • the wireless communications circuitry 1120 may include proximity sensing circuitry (not shown) .
  • the wireless communications circuitry 1120 may further include a power adjusting circuitry (not shown) for adjusting power of the RF transceiver circuitry 1121 in response to detecting result from the proximity sensing circuitry.
  • Connections within the RF circuitry 1121 may include any suitable conductive pathways over which radio-frequency signals may be conveyed including transmission line path structures such as coaxial cables, microstrip transmission lines, stripline transmission lines, etc.
  • control signals from processor 1200 may be conveyed to RF circuitry 1121 to adjust output powers in real time.
  • RF circuitry 1121 can be directed to increase or decrease the power level of the radio-frequency signal that is being provided to the antenna assembly 1124 over transmission line to ensure that regulatory limits for electromagnetic radiation emission are satisfied.
  • the proximity sensing circuitry has not detected the presence of external object, power can be provided at a level of normal power-control. If, however, proximity measurement indicates that the user's finger or other body part or other external object is in the immediate vicinity of the antenna assembly (e.g., within 20 mm or less, within 15 mm or less, within 10 mm or less, etc. ) , the processor 1200 can respond accordingly by directing RF circuitry 1121 to transmit radio-frequency signals through transmission line at reduced powers.
  • the electronic device 1000 may include other components for different functionalities.
  • the electronic device 1000 generally includes a housing, which may be formed to serve as ground plane of the antenna assembly 1124.

Landscapes

  • Support Of Aerials (AREA)

Abstract

An antenna assembly and an electronic device provided with the antenna assembly are provided. The antenna assembly includes a ground element configured for electrical connection to a ground plane at a grounding point; a feeding element configured for electrical connection to a radio signal circuitry at a feeding point; and an additional element; where the ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly. The antenna assembly according to the present disclosure may be manufactured with small size and thin thickness, while ensuring the performance and antenna efficiency of the antenna assembly.

Description

ANTENNA ASSEMBLY AND DEVICE PROVIDED WITH THE ANTENNA ASSEMBLY TECHNICAL FIELD
The present disclosure generally relates to antenna devices suitable for application in mobile terminals, and in particular, to an antenna assembly and an electronic device including the antenna assembly.
BACKGROUND
Mobile devices such as mobile phones, personal digital assistant (PDA) devices, gaming devices, and Augmented Reality/virtual reality (AR/VR) devices are becoming increasingly popular. Such electronic devices are often provided with wireless communications capabilities and are integrated with antennas for the wireless communications. Due to small form factors of such mobile devices, there is limited space for antennas in the mobile devices.
In industries, there are provided a variety of antennas for being built-in a mobile device. For example, a planar inverted F antenna is proposed as a multi-band built-in antenna which is capable of operating in multiple frequency bands. But common planar inverted-F antenna is often subjected to reduce of transmission range due to the complexity in space.
Loop antennas are widely used in high-frequency applications. Conventional loop antennas are subjected to the drawbacks of complex matching circuitry, relatively large distance from the ground plane, and large loss in radiation efficiency.
In this concern, there is need for antennas that are applicable for being built-in mobile devices with simple structure and good performance.
SUMMARY
The present disclosure aims to provide an antenna assembly having a small size, a thin thickness, a simple structure and good performance. At least following technical solutions are provided to achieve the above objective.
In one aspect, an antenna assembly is provided. The antenna assembly includes an antenna radiator, where the antenna radiator includes: a ground element configured for electrical connection to a ground plane at a grounding point; a feeding element configured for electrical connection to a radio signal circuitry at a feeding point; and an additional element.
The ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly.
In one embodiment, at least a second portion of the additional element extends substantially parallel to at least a portion of the feed element to provide capacitive coupling between the additional element and the feed element during operation of the antenna assembly.
In one embodiment, the antenna assembly further includes a first matching element configured for connecting the ground element to the ground plane at the grounding point, and a second matching element configured for connecting the feeding element to the radio signal circuitry at the feeding point.
In one embodiment, the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is substantially the same as a length of the second matching element.
In one embodiment, the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is shorter than a length of the second matching element.
In one embodiment, an angle greater than 0 degree and less than 30 degrees is formed between the first matching element and the second matching element.
In one embodiment, the antenna assembly further includes a dielectric carrier for supporting the antenna radiator.
In one embodiment, the antenna radiator is planar.
In one embodiment, the planar antenna radiator is arranged in a same plane as the ground plane.
In one embodiment, the planar antenna radiator is arranged in a plane which is spaced from the ground plane and is substantially parallel to the ground plane.
In one embodiment, the first matching element and the second matching element are arranged in a plane perpendicular to the ground plane.
In one embodiment, the grounding point is located in a central portion of the ground plane, and the antenna radiator projects outwardly with respect to the grounding point, with at least a part of the antenna radiator facing the ground plane.
In one embodiment, the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an inside of the ground plane with respect to the  grounding point, with at least a part of the antenna radiator facing the ground plane.
In one embodiment, the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an outside of the ground plane with respect to the grounding point, with no part of the antenna radiator facing the ground plane.
In one embodiment, the ground plane and the antenna radiator are formed on different layers of a printed circuit board.
In one embodiment, the feeding element is electrically connected to the radio signal circuity via an inner conductor of a coaxial cable, and the ground element is electrically connected to the ground plane via a conducting shield of the coaxial cable, wherein the conducting shield is concentric to the inner conductor and surrounds the inner conductor, and the inner conductor and the conducting shield are separated from each other by a dielectric insulator.
In a second aspect, an electronic device including the antenna assembly according to any of the foregoing embodiments is provided.
In one embodiment, the electronic device further includes a housing, and the housing functions as the ground plane to be connected to the ground element of the antenna assembly.
In the present disclosure, the antenna assembly includes a ground element configured for electrical connection to a ground plane at a grounding point, a feeding element configured for electrical connection to a radio signal circuitry at a feeding point, and an additional element. The ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly. By virtues of the physical separation and disconnection between the ground element and the feeding element, the total physical length of antenna assembly can be reduced; while the capacitive coupling between the feeding element and the ground element during operation of the antenna assembly aids the functioning of the antenna assembly and ensures good performance of the antenna assembly. Thus, the antenna assembly according to the present disclosure may be manufactured with small size and thin thickness, while ensuring the performance and antenna efficiency of the antenna assembly. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices into which the antenna assembly is mounted and provide benefits for the miniaturization of the devices. For example, in mobile devices such as gaming devices having Bluetooth technology for communication with wireless controller, if antenna performance is good, these gaming devices do not have any connection issue between main devices and controller in even bad environment with high noise floor, for example, in cases that there are many wireless devices using same frequency, such as Bluetooth, wireless LAN,  microwave oven, etc.
BRIEF DESCRIPTION OF THE DRAWINGS
For clearer illustration of the technical solutions according to embodiments of the present disclosure or conventional techniques, hereinafter briefly described are the drawings to be applied in embodiments of the present disclosure or conventional techniques. Apparently, the drawings in the following descriptions are only some embodiments of the present disclosure, and other drawings may be obtained by those skilled in the art based on the provided drawings without creative efforts.
Figure 1 is a schematic diagram of a pattern of an antenna assembly according to an embodiment of the present disclosure;
Figure 2 is a schematic diagram showing exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure;
Figure 3 is a schematic diagram showing another exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure;
Figures 4a-4f are schematic diagrams of exemplary patterns of multi-band antennas according to yet other embodiments of the present disclosure;
Figure 5 is a graph showing a simulated return loss of an antenna assembly provided according to an embodiment of the present disclosure;
Figure 6 is a graph showing a simulated antenna efficiency of an antenna assembly provided according to an embodiment of the present disclosure;
Figure 7 is a schematic diagraph showing an arrangement of an antenna assembly according to an embodiment of the present disclosure;
Figure 8 is a schematic diagraph showing another arrangement of an antenna assembly according to an embodiment of the present disclosure;
Figure 9 is a schematic diagraph showing yet another arrangement of an antenna assembly according to an embodiment of the present disclosure; and
Figure 10 is a schematic diagram of a mobile device in which an antenna assembly is provided according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Hereinafter technical solutions in embodiments of the present disclosure are described in conjunction with the drawings in embodiments of the present closure. Apparently, the described embodiments are only some rather than all of the embodiments of the present disclosure. Any other embodiments obtained based on the embodiments of the present disclosure by those skilled in the art without any creative effort fall within the scope of protection of the present disclosure.
It should be noted that, terms such as "first" , "second" , "third" , "fourth" and the like are only used herein to distinguish one entity or operation from another, rather than to necessitate or imply that an actual relationship or order exists between the entities or operations. Furthermore, the terms such as "include" , "comprise" or any other variants thereof means to be non-exclusive. Therefore, a process, a method, an article or a device including a series of elements include not only the disclosed elements but also other elements that are not clearly enumerated, or further include inherent elements of the process, the method, the article or the device. Unless expressively limited, the statement "including a…" does not exclude the case that other similar elements may exist in the process, the method, the article or the device other than enumerated elements.
In addition, the present invention is described in conjunction with the schematic drawings. When describing the embodiments of the present invention in detail, for convenience of illustration, sectional views showing the structure of the device are enlarged partially and are not drawn to scale. The drawings are exemplary and are not intended to limit the protection scope of the invention. Furthermore, in actual manufacture process, three-dimension sizes, i.e. length, width and depth should be considered.
It should be noted that the reference in the structures or steps that a first feature is “on” or “above” a second feature includes the case that the first and the second features are in direct contact and the case that additional features are present between the first and the second features, i.e., the first and the second feature may be not in direct contact.
Figure 1 is a schematic diagram of a pattern of an antenna assembly according to an embodiment of the present disclosure. As shown, the antenna assembly 1 includes an antenna radiator 101. To be specific, the antenna radiator 101 includes a ground element 111, a feeding element 121 and an additional element 131. The ground element 111 is configured for electrical connection to a ground plane (not shown) at a grounding point 104. The feeding element 121 is configured for electrical connection to a radio signal circuitry (RF) at a feeding point 105. The feeding point 105 is positioned adjacent to the grounding point 104.
As shown in Figure 1, the ground element 111, the feeding element 121, and the additional element 131 are physically separated and physically disconnected from one another. In other words, there is no direct electrical connection between the ground element 111 and the additional element 131, and the additional element 131 is physically disconnected from the ground plane. Similarly, there is no direct electrical connection between the feeding element 121 and the additional element 131, and the additional element 131 is physically disconnected from the RF circuitry. In addition, there is no direct electrical connection between the feeding element 121 and the ground element 111.
As shown in Figure 1, at least a portion 1111 of the ground element 111 extends substantially parallel to a portion 1311 of the additional element 131 in the same direction. The portion 1111 of the ground element 111 is arranged in proximity to the portion 1311 of  the additional element 131, with a slit or a gap formed between the two  portions  1111 and 1311. In such a configuration, the portion 1311 of the additional element 131 is arranged to form the capacitive slit/gap providing capacitive coupling between the additional element 131 and the ground element 111 during operation of the antenna assembly. For this purpose, the width of the slit or gap between the  portions  1111 and 1311 is appropriately selected. In a preferable embodiment, the width of the slit or gap between the portions 1111 and 1211 ranges from 0.1mm to 5mm.
In preferable embodiments, the portion 1311 of the additional element 131 has a length which is sufficient to provide a useable coupling capacitance. In some implementations, in addition to the requirement that the portion 1311 of the additional element 131 is long enough to ensure effective coupling capacitance, the total length of the additional element 131 is preferably required to be shorter than a shortest resonant length at the lowest operation frequency of the antenna assembly.
As shown in Figure 1, the additional element 131 may further include a portion 1312 that runs substantially parallel to a portion of the feed element 121 in the same direction. In an optional embodiment, the portion 1312 of the additional element 131 is arranged in proximity to the portion of the feed element 121, with a slit or a gap formed between the two portions. In such a configuration, the portion 1312 of the additional element 131 is arranged to form the capacitive slit/gap providing capacitive coupling between the additional element 131 and the feed element 121 during operation of the antenna assembly. For this purpose, the width of the slit or gap between the portion 1312 of the additional element 131 and the feed element 121 is appropriately selected, for example, less than 5mm.
However, it is noted that the present disclosure is not limited in this aspect; the additional element 131 may be spaced from the feed element 121 with a large distance so that no capacitive coupling is generated between the feed element 121 and the additional element 131.
The ground element 111 can be in a variety of shapes. In an embodiment, the ground element 111 may be an elongated strip and may have multiple portions connected end to end. For example, the ground element 111 may be in an L-shape at least including a first portion extending in a first direction and a second portion extending in a second direction perpendicular to the first direction, as shown. In other examples, the ground element 111 may further include a third portion extending in a third direction substantially parallel to the first direction and opposite to the first direction, and the resultant U-shape maintains a long antenna element and therefore the lowest resonance frequency available to the antenna assembly.
Although the ground element 111 is shown in Figure 1 as including portions connected end to end, it is noted that the structure of the ground element 111 is not so limited and the ground element 111 may include more than two open ends, i.e., the ground element  111 may include one or more branches stemmed from the main portion of the ground element 111. Furthermore, although the ground element 111 is shown in Figure 1 as having portions of substantially same width, the portions of the ground element 111 may have different widths as needed.
Similarly, the feeding element 121 may be in a variety of shapes. For example, the feeding element 121 may be formed as a bar, as shown in Figure 1. For another example, the feeding element 121 maybe a conductive elongated strip folded at one or more points. The feed element 121 may be provided with one or more branches stemmed from the main portion of the feed element 121.
The additional element 131 may be formed in a variety of shapes, as will be discussed in connection with Figures 4a-4f in the following.
The ground element 111, the feeding element 121 and the additional element 131 may be made of sheet metal, a metal trace on a carrier, or may be made of a flexible substrate or a rigid substrate, a metalized interconnect device (MID) , or the like. The ground element 111, the feeding element 121 and the additional element 131 may be manufactured from various conductive materials, including but not limited to, silver, copper, etc., transparent conductive oxides (such as indium tin oxide ITO) , carbon nanotubes, graphene, etc.
With the foregoing arrangement of the antenna radiator 101 in the antenna assembly, the dimension of the antenna assembly is more compact. For example, by virtues of the physical separation and disconnection between the ground element and the additional element, the total physical length of antenna assembly can be reduced; while the capacitive coupling between the additional element and the ground element during operation of the antenna assembly aids the functioning of the antenna assembly and ensures good performance of the antenna assembly. Thus, the antenna assembly according to the present disclosure may be manufactured with small size and thin thickness, while ensuring the performance and antenna efficiency of the antenna assembly. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices into which the antenna assembly is mounted and provide benefits for the miniaturization of the devices.
In an embodiment, the antenna assembly may further include a first matching element 102 and a second matching element 103. The first matching element 102 is configured for connecting the ground element 111 to the ground plane at the grounding point 104. The second matching element 103 is configured for connecting the feeding element 121 to the RF circuitry at the feeding point 105.
The first matching element 102 and the second matching element 103 may be parallel to each other, as shown in Figure 1. In other embodiments, the first matching element 102 and the second matching element 103 may have an included angle, for example, greater than 0 degree and less than 30 degrees. The lengths of the two  matching elements  102 and 103 may be the same or different.
According to the embodiments of the present disclosure, by adjusting the lengths of the  matching elements  102 and 103, together with the distance between the first matching element 102 and the second matching element 103, the input impedance of the antenna assembly can be changed.
By appropriate arrangement of the  matching elements  102 and 103, the antenna assembly may be impedance matched when assembled for the end user environment, so as to achieve maximum efficiency when operating in the desired frequency band. Optimal efficiency results in maximum range, minimum power consumption, reduced heating and reliable data throughput.
Figure 2 is a schematic diagram showing exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure. As shown, the antenna assembly includes an antenna radiator 202 and a dielectric carrier 203 for supporting the antenna radiator 202. The dielectric carrier 203 further functions to dielectrically separate the antenna radiator from the ground plane 201.
The antenna radiator 202 includes a ground element 212, a feeding element 222, and an additional element 232. The ground element 212 of the antenna assembly is connected to a ground plane 201 at the grounding point 204. In addition, the feeding element 222 is connected to a RF circuitry at the feeding point 205.
As shown, the ground element 212, the feeding element 222, and the additional element 232 are physically separated and physically disconnected from one another. At least a portion of the ground element 212 extends substantially parallel to a portion of the additional element 232 in the same direction, and forms capacitive coupling between the additional element 232 and the ground element 212 during operation of the antenna assembly.
As shown in Figure 2, the ground plane 201 and the antenna assembly are formed as a planar structure. The planar structure may be formed by etching a printed circuit board (PCB) , stamping metal, or by other schemes.
The dielectric carrier 203 may be formed as a frame, a supporting platform or the like. The dielectric carrier 203 may be manufactured from plastic, resin, ceramic, or any other suitable material.
In some implementations, the ground plane 201 and the antenna radiator 202 are formed on different layers of a printed circuit board (PCB) .
The ground element 212, the feeding element 222 and the additional element 232 can be realized by many different manufacturing methods, for instance, stamped metal parts, conductors etched on a flexible insulating layer (FPC) and attached to the dielectric carrier 203 using an adhesive layer, or Laser Direct Structuring (LDS) techniques.
It is noted that the design parameters for the arrangement as shown in Figure 2 may be appropriately determined as needed. For example, the lowest resonant frequency of the antenna assembly may be determined by an overall length of the ground element 212, widths  of the portions of the ground element 212, and a distance from the ground plane 201. As an example, the antenna assembly depicted in Figure 3 may provide a resonance at a frequency band of 2.4GHz-2.48GHz. It is noted that the antenna assembly may be designed to operate in other frequency bands or operate for other communication standards, and the present disclosure is not limited in this aspect. For example, the antenna assembly may operate according to a wireless communication standard for cellular network, such as the 2G, 3G, 4G or 5G standard. The antenna assembly may operate alternatively or additionally according to a wireless communication standard for 
Figure PCTCN2022128604-appb-000001
 in a band ranging from 2.4GHz to 2.48GHz.
In addition, the lengths of the ground element 212, the feeding element 222 and the additional element 232, and the width of the capacitive gap between the additional element 232 and the ground element 212 may be appropriately determined as needed, so to optimize impedance value of the antenna assembly at the resonance frequencies and relative bandwidth of the antenna assembly.
Under the inventive concept as proposed in the present disclosure, the antenna assembly may be connected in other schemes, which fall within the scope of the present disclosure. Figure 3 is a schematic diagram showing another exemplary electrical arrangement for an antenna assembly according to an embodiment of the present disclosure.
Similar to the embodiment of Figure 2, the antenna assembly of Figure 3 includes an antenna radiator 302 and a dielectric carrier 303 for supporting the antenna radiator 302. The antenna radiator 302 includes a ground element 312, a feeding element 322, and an additional element 332 which are physically separated and physically disconnected from one another. At least a portion of the ground element 312 extends substantially parallel to a portion of the additional element 332 in the same direction, and forms capacitive coupling between the additional element 332 and the ground element 312 during operation of the antenna assembly. The dielectric carrier 303 may be formed as a frame, a supporting platform or the like. The dielectric carrier 303 may be manufactured from plastic, resin, ceramic, or any other suitable material.
Different from the embodiment of Figure 2, the antenna assembly as shown in Figure 3 is connected to a ground plane and a RF circuitry via a transmission line. In an embodiment, the antenna assembly may be manufactured as a stand-alone device and may be connected to the ground plane and the RF circuitry via a single coaxial cable 301, in a way that the physical separation of the ground element 312 and the feeding element 322 is still implemented. To be specific, the coaxial cable 301 consists of an inner conductor 305 surrounded by a concentric conducting shield 304, with the two separated by a dielectric insulator; furthermore, the coaxial cable 301 may also has a protective outer sheath or jacket. The ground element 312 is connected to a ground plane via the conducting shield 304 of the coaxial cable 301. The feeding element 322 is connected to a RF circuitry via the inner conductor 305. Several exemplary structures and configurations for the antenna assembly according to the present  disclosure are illustrated above. It is noted that some modifications may be made without departing from the essential of the present disclosure and fall within the scope of the present disclosure. Figures 4a-4f are schematic diagrams of exemplary patterns of multi-band antennas according to yet other embodiments of the present disclosure.
It is noted that the ground element, the feeding element and the additional element may be in any shape or a combination of different shapes, including a square, a triangle, a chamfered rectangle, a chamfered square, an L-shape or a T-shape, which will not be limited herein.
In some embodiment, the ground element, the feeding element and the additional element may have varying width. As shown in Figures 4c, 4e and 4f, the additional element may include at least one portion which is wider than other portions. The wider portion may be formed of metal sheet or the like. In case of multiple wider portions, the wider portions may be arranged symmetrically or asymmetrically.
Figure 5 is a graph showing a simulated return loss of an antenna assembly provided according to an embodiment of the present disclosure. Figure 5 shows a characteristic trough, representing a corresponding frequency range of about 2.4GHz to 2.48GHz. It is noted that although exemplary frequency band is illustrated, the present disclosure is not limited in this aspect. In other words, the antenna assembly according to the present disclosure may operate in other frequency bands, and may operate following other communication standards.
Figure 6 is a graph showing a simulated antenna efficiency of an antenna assembly provided according to an embodiment of the present disclosure. As can be seen, the antenna assembly proposed according to the present disclosure has good antenna efficiency.
The antenna assembly according to the present disclosure has simple structure, compact construction, and good antenna performance in multiple frequency bands. Therefore, the antenna assembly according to the present disclosure may provide good wireless connectivity for devices. For example, in mobile devices such as gaming devices having Bluetooth technology for communication with wireless controller, if antenna performance is good, these gaming devices do not have any connection issue between main devices and controller in even bad environment with high noise floor, for example, in cases that there are many wireless devices using same frequency, such as Bluetooth, wireless LAN, microwave oven, etc.
Figure 7 is a schematic diagraph showing an arrangement of an antenna assembly according to an embodiment of the present disclosure. In this embodiment, the antenna radiator, including the ground element and the feeding element, is arranged on a plane different from the ground plane to form a three dimensional structure. The ground element and the feeding element may be supported by a dielectric carrier (not shown) . It should be understood that the dielectric carrier may be manufactured from plastic, resin, ceramic, or any other suitable material. The ground element and the feeding element can be realized by many  different manufacturing methods. The antenna radiator (including the ground element and the feeding element) , together with dielectric carrier (if any) , are formed as a planer structure that is located in a plane parallel to the ground plane, and the matching elements are arranged between the antenna radiator and the ground plane, in a plane perpendicular to the ground plane. One of the matching elements connects the ground element of the antenna radiator to the ground plane at the grounding point. In the structure shown in Figure 7, the grounding point is located inside the ground plane, i.e., away from an edge of the ground plane, and the antenna radiator projects outwardly with respect to the grounding point, with an edge of the antenna radiator flushing with the edge of the ground plane. In this structure, the antenna radiator of the antenna assembly faces to the ground plane. In the structure shown in Figure 7, due to antenna characteristics, a height h1 measured from the antenna radiator to the ground plane, needs to have a predetermined value. Furthermore, the height h1 may further depend on mechanical design of the device to which the antenna assembly to be mounted. In preferable embodiments, the height h1 is greater than 2mm, and preferably ranges from 2 mm to 10mm.
Figure 8 is a schematic diagraph showing another arrangement of an antenna assembly according to an embodiment of the present disclosure. In this embodiment. In the structure shown in Figure 8, the grounding point is located at an edge of the ground plane, and the planer antenna radiator projects to an inside of the ground plane with respect to the grounding point. In addition, an edge of the antenna radiator flushes with the edge of the ground plane, with the matching elements connecting with the two edges. Still, in this structure, the antenna radiator of the antenna assembly faces to the ground plane. In the structure shown in Figure 8, due to antenna characteristics, a height h2 measured from the antenna radiator to the ground plane, needs to have a predetermined value.
Figure 9 is a schematic diagraph showing yet another arrangement of an antenna assembly according to an embodiment of the present disclosure. In the structure shown in Figure 9, the grounding point is located at an edge of the ground plane, and the antenna radiator projects to outside of the ground plane with respect to the grounding point, so that at least a major part of the antenna radiator does not face the ground plane. In the structure shown in Figure 9, a height h3 measured from the antenna radiator to the ground plane may be small. For example, the height h3 may be smaller than h1, and the height h3 may be smaller than h2. In an extreme case, by utilizing the arrangement shown in Figure 9, the antenna radiator may be positioned at the same height as the ground plane, that is, h2 = 0. Therefore, when being assembled in a housing of a mobile device, no constraint is exerted on the thickness of the housing of the mobile device due to the antenna assembly.
Referring to Figure 10, an electronic device including an antenna assembly according to an embodiment of the present disclosure is shown. Electronic device 1000 of Figure 10 may be a portable computer such as a laptop computer, a portable tablet computer, a mobile  telephone, a mobile telephone with media player capabilities, a handheld computer, a remote control, a game player, a global positioning system (GPS) device, a desktop computer, a music player, a multi-touch electronic device, Augmented Reality (AR) glasses, Head Mounted Display (HMD) , a combination of such devices, or any other suitable electronic device. As shown in Figure 10, electronic device 1000 may include an in-out circuitry 1100, a processor 1200 and storage 1300.
The processor 1200 may be a microprocessor and other suitable integrated circuit. The processor 1200 and storage 1300 may be configured for control the operation of the electronic device 1000. In an exemplary implementation, the processor 1200 may run software stored in the storage 1300 for the electronic device 1000, such as operating system functions, phone call applications, Internet browsing, email applications, media playback applications, control functions for controlling radio-frequency power amplifiers and other radio-frequency transceiver, etc.
The storage 1300 may include one or more different types of storage such as hard disk drive storage, nonvolatile memory (e.g., flash memory or other electrically-programmable-read-only memory) , volatile memory (e.g., static or dynamic random-access-memory) .
Communications protocols that may be implemented by the processor 1200 include Internet protocols, cellular telephone protocols, wireless local area network protocols (e.g., IEEE 802.11 protocols, referred to as
Figure PCTCN2022128604-appb-000002
) , protocols for other short-range wireless communications links such as the
Figure PCTCN2022128604-appb-000003
protocol, etc.
The in-out circuitry 1100 is configured to implement input and output function of the electronic device 1000. The in-out circuitry 1100 may include an input-output device and a wireless communication circuitry 1120. The input-output device 1111 may be a touch screen and other user input device such as buttons, joysticks, click wheels, scrolling wheels, touch pads, key pads, keyboards, microphones, cameras, etc. Furthermore, the input-output device 1111 may include display and audio devices such as liquid-crystal display (LCD) screens, light-emitting diodes (LEDs) , organic light-emitting diodes (OLEDs) , and other components that present visual information and status data.
The wireless communications circuitry 1120 may include radio-frequency (RF) transceiver circuitry 1121 formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, and other circuitry for handling RF wireless signals. For example, the RF transceiver circuitry 1121 may include a cellular transceiver circuitry 1122 for handling wireless communications in cellular bands such as the bands at 600 MHz, 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, and the 2100 MHz data band. The RF transceiver circuitry 1121 may also include a WIFI and Bluetooth transceiver circuitry 1123 that handles 2.4GHz-2.48GHz, 5.15GHz-5.85GHz, and 5.925GHz-7.125GHz bands for WiFi6E/7 communications, and the 2.4 GHz Bluetooth communications band. The  Wireless communications circuitry 1120 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 1120 may include global positioning system (GPS) receiver equipment, wireless circuitry for receiving radio and television signals, paging circuits, etc.
The RF transceiver circuitry 1121 may be implemented using one or more integrated circuits and associated components (e.g., switching circuits, matching network components such as discrete inductors, capacitors, and resistors, and integrated circuit filter networks, etc. ) . These devices may be mounted on any suitable mounting structures. With one suitable arrangement, transceiver integrated circuits may be mounted on a printed circuit board.
The wireless communications circuitry 1120 may include antenna assembly 1124, such as the antenna assembly as described above by referring to Figures 1, 2, 3, 4a-4f, and 7-9 or variations thereof. As described above, the antenna assembly 1124 may be multi-band antenna. A multiband antenna may be used, for example, to cover multiple cellular telephone communications bands, WiFi communication bands, Bluetooth communication bands, etc.
In addition, the wireless communications circuitry 1120 may further include other circuitries for implementing different communication related functions. For example, the wireless communications circuitry 1120 may include proximity sensing circuitry (not shown) . In addition, the wireless communications circuitry 1120 may further include a power adjusting circuitry (not shown) for adjusting power of the RF transceiver circuitry 1121 in response to detecting result from the proximity sensing circuitry.
Connections within the RF circuitry 1121 may include any suitable conductive pathways over which radio-frequency signals may be conveyed including transmission line path structures such as coaxial cables, microstrip transmission lines, stripline transmission lines, etc.
During data transmission operations, control signals from processor 1200 may be conveyed to RF circuitry 1121 to adjust output powers in real time. For example, when data is being transmitted, RF circuitry 1121 can be directed to increase or decrease the power level of the radio-frequency signal that is being provided to the antenna assembly 1124 over transmission line to ensure that regulatory limits for electromagnetic radiation emission are satisfied.
If the proximity sensing circuitry has not detected the presence of external object, power can be provided at a level of normal power-control. If, however, proximity measurement indicates that the user's finger or other body part or other external object is in the immediate vicinity of the antenna assembly (e.g., within 20 mm or less, within 15 mm or less, within 10 mm or less, etc. ) , the processor 1200 can respond accordingly by directing RF circuitry 1121 to transmit radio-frequency signals through transmission line at reduced powers.
In addition to the shown components, the electronic device 1000 may include other  components for different functionalities. For example, the electronic device 1000 generally includes a housing, which may be formed to serve as ground plane of the antenna assembly 1124.
Other details of the electronic device 1000 may refer to the forgoing description concerning the antenna assembly according to the embodiments of the present disclosure, and are not repeated herein.
The embodiments of the present disclosure are described in a progressive manner, and each embodiment places emphasis on the difference from other embodiments. Therefore, one embodiment can refer to other embodiments for the same or similar parts. Since the methods disclosed in the embodiments correspond to the apparatuses disclosed in the embodiments, the description of the methods is simple, and reference may be made to the relevant part of the apparatuses.
According to the description of the disclosed embodiments, those skilled in the art can implement or use the present disclosure. Various modifications made to these embodiments may be obvious to those skilled in the art, and the general principle defined herein may be implemented in other embodiments without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure is not limited to the embodiments described herein but confirms to a widest scope in accordance with principles and novel features disclosed in the present disclosure.

Claims (18)

  1. An antenna assembly comprising an antenna radiator, wherein the antenna radiator comprises:
    a ground element configured for electrical connection to a ground plane at a grounding point;
    a feeding element configured for electrical connection to a radio signal circuitry at a feeding point; and
    an additional element;
    wherein the ground element, the feeding element, and the additional element are physically separated and physically disconnected from one another, at least a first portion of the additional element extends substantially parallel to at least a portion of the ground element to provide capacitive coupling between the additional element and the ground element during operation of the antenna assembly.
  2. The antenna assembly according to claim 1, wherein at least a second portion of the additional element extends substantially parallel to at least a portion of the feed element to provide capacitive coupling between the additional element and the feed element during operation of the antenna assembly.
  3. The antenna assembly according to claim 1, further comprising a first matching element configured for connecting the ground element to the ground plane at the grounding point, and a second matching element configured for connecting the feeding element to the radio signal circuitry at the feeding point.
  4. The antenna assembly according to claim 3, wherein the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is substantially the same as a length of the second matching element.
  5. The antenna assembly according to claim 3, wherein the first matching element extends substantially parallel to the second matching element, and a length of the first matching element is shorter than a length of the second matching element.
  6. The antenna assembly according to claim 3, wherein an angle greater than 0 degree and less than 30 degrees is formed between the first matching element and the second matching element.
  7. The antenna assembly according to claim 3, further comprising a dielectric carrier for  supporting the antenna radiator.
  8. The antenna assembly according to claim 7, wherein the antenna radiator is planar.
  9. The antenna assembly according to claim 8, wherein the antenna radiator is arranged in a same plane as the ground plane.
  10. The antenna assembly according to claim 8, wherein the antenna radiator is arranged in a plane which is spaced from the ground plane and is substantially parallel to the ground plane.
  11. The antenna assembly according to claim 10, wherein the first matching element and the second matching element are arranged in a plane perpendicular to the ground plane.
  12. The antenna assembly according to claim 10, wherein the grounding point is located in a central portion of the ground plane, and the antenna radiator projects outwardly with respect to the grounding point, with at least a part of the antenna radiator facing the ground plane.
  13. The antenna assembly according to claim 10, wherein the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an inside of the ground plane with respect to the grounding point, with at least a part of the antenna radiator facing the ground plane.
  14. The antenna assembly according to claim 10, wherein the grounding point is located at an edge of the ground plane, and the antenna radiator projects to an outside of the ground plane with respect to the grounding point, with no part of the antenna radiator facing the ground plane.
  15. The antenna assembly according to any one of claims 1-14, wherein the ground plane and the antenna radiator are formed on different layers of a printed circuit board.
  16. The antenna assembly according to claim 1, wherein the feeding element is electrically connected to the radio signal circuity via an inner conductor of a coaxial cable, and the ground element is electrically connected to the ground plane via a conducting shield of the coaxial cable, wherein the conducting shield is concentric to the inner conductor and surrounds the inner conductor, and the inner conductor and the conducting shield are separated from each other by a dielectric insulator.
  17. An electronic device comprising the antenna assembly according to any one of claims 1-16.
  18. The electronic device according to claim 17, further comprising a housing, wherein the housing is taken as the ground plane.
PCT/CN2022/128604 2022-10-31 2022-10-31 Antenna assembly and device provided with the antenna assembly WO2024092397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128604 WO2024092397A1 (en) 2022-10-31 2022-10-31 Antenna assembly and device provided with the antenna assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128604 WO2024092397A1 (en) 2022-10-31 2022-10-31 Antenna assembly and device provided with the antenna assembly

Publications (1)

Publication Number Publication Date
WO2024092397A1 true WO2024092397A1 (en) 2024-05-10

Family

ID=90929212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128604 WO2024092397A1 (en) 2022-10-31 2022-10-31 Antenna assembly and device provided with the antenna assembly

Country Status (1)

Country Link
WO (1) WO2024092397A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176390A1 (en) * 2004-02-09 2005-08-11 Motorola, Inc. Slotted multiple band antenna
CN1656645A (en) * 2000-12-20 2005-08-17 Amc世纪公司 Antenna device and method of adjusting said antenna device
CN101371400A (en) * 2006-06-19 2009-02-18 香港应用科技研究院有限公司 Miniature balanced antenna with differential feed
CN101432927A (en) * 2006-03-07 2009-05-13 索尼爱立信移动通讯股份有限公司 Multi-frequency band antenna device for radio communication terminal
CN101953022A (en) * 2006-11-16 2011-01-19 盖尔创尼克斯公司 Compact antenna
CN104852147A (en) * 2015-04-16 2015-08-19 中国计量学院 Miniaturized extra wide frequency band terminal antenna and mobile phone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656645A (en) * 2000-12-20 2005-08-17 Amc世纪公司 Antenna device and method of adjusting said antenna device
US20050176390A1 (en) * 2004-02-09 2005-08-11 Motorola, Inc. Slotted multiple band antenna
CN101432927A (en) * 2006-03-07 2009-05-13 索尼爱立信移动通讯股份有限公司 Multi-frequency band antenna device for radio communication terminal
CN101371400A (en) * 2006-06-19 2009-02-18 香港应用科技研究院有限公司 Miniature balanced antenna with differential feed
CN101953022A (en) * 2006-11-16 2011-01-19 盖尔创尼克斯公司 Compact antenna
CN104852147A (en) * 2015-04-16 2015-08-19 中国计量学院 Miniaturized extra wide frequency band terminal antenna and mobile phone

Similar Documents

Publication Publication Date Title
JP5642835B2 (en) Bezel gap antenna
EP2276108B1 (en) Electronic devices with parasitic antenna resonating elements that reduce near field radiation
TWI425713B (en) Three-band antenna device with resonance generation
USRE44588E1 (en) Antenna assembly and portable terminal having the same
CN102683861B (en) Spiral loop
KR101392650B1 (en) Multi-element antenna structure with wrapped substrate
US20130113671A1 (en) Slot antenna
JP2004234270A (en) Touch panel, and input device and electronic apparatus with same
US20140218247A1 (en) Antenna arrangement
CN112436272B (en) Antenna device and electronic apparatus
US11329382B1 (en) Antenna structure
WO2024092397A1 (en) Antenna assembly and device provided with the antenna assembly
US9431710B2 (en) Printed wide band monopole antenna module
CN112952344B (en) Electronic equipment
WO2024092398A1 (en) Multi-band antenna assembly and device provided with the antenna assembly
US20060232481A1 (en) Wideband antenna module for the high-frequency and microwave range
WO2023130418A1 (en) Antenna assembly capable of proxmity sensing and electronic device with the antenna assembly
US20240039157A1 (en) Mobile device supporting wideband operation
CN109075448B (en) Antenna for communication device