WO2024092141A1 - Compositions et procédés pour la gestion d'une maladie virale dans des systèmes d'aquaculture - Google Patents

Compositions et procédés pour la gestion d'une maladie virale dans des systèmes d'aquaculture Download PDF

Info

Publication number
WO2024092141A1
WO2024092141A1 PCT/US2023/077937 US2023077937W WO2024092141A1 WO 2024092141 A1 WO2024092141 A1 WO 2024092141A1 US 2023077937 W US2023077937 W US 2023077937W WO 2024092141 A1 WO2024092141 A1 WO 2024092141A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
azadirachtin
virus
caused
pest control
Prior art date
Application number
PCT/US2023/077937
Other languages
English (en)
Inventor
David A. Cook
Alex Kalathil EAPEN
Padmakumar B. PILLAI
Jorge Eduardo Pino Marambio
Stanko SKUGOR
Original Assignee
Can Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Can Technologies, Inc. filed Critical Can Technologies, Inc.
Publication of WO2024092141A1 publication Critical patent/WO2024092141A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/26Meliaceae [Chinaberry or Mahogany family], e.g. mahogany, langsat or neem
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof

Definitions

  • the present disclosure is directed to compositions and methods for the management of viral disease in fish.
  • the present disclosure is directed to compositions and methods for administering a pest control agent through a fish feed or pest control agent composition to manage various viral infections or infestations in fish populations.
  • the dysregulation of the immune system can include the suppression of protective, beneficial immune and physiological responses in parallel with the exaggeration of non-protective or harmful immune responses. Such dysregulation can cause a negative immune response whereby the immune system can be stopped, prevented, or decreased in effectiveness when faced with an immune challenge.
  • overactivation of non-protective immune responses can be directly damaging for a host’s tissues, which can lead to immunopathology in the host.
  • the salmon louse Lepeopththeirus salmonis
  • is an ectoparasite that has adapted evolutionarily to attach to salmon and remain unharmed by the fish’s immune system.
  • L. salmonis can modulate and evade the host immunity through the secretion of one or more molecules, including proteins, lipids, and the like to induce a suppressive effect on the protective, beneficial immune responses of fish.
  • Such a down regulation of the protective host response can lead to opportunistic infection by other parasites, bacteria, viruses, protozoa, amoeba, and the like, which can in turn lead to an upregulation of non-protective or harmful immune responses.
  • Many viral pathogens modulate host immune responses to create an environment that favors progression of infection.
  • the down regulation of the protective host response can itself lead to an upregulation of the non-protective or harmful immune responses.
  • overstimulation of non-protective or harmful immune responses can have numerous adverse effects in fish at the physiological, histological, biochemical, and enzymatic levels.
  • the energetic cost of a non-protective immune or physiological response may interfere with the fish’s ability to clear toxic compounds, deal with oxidative stress, heat stress or other environmental assaults.
  • RNA virus named piscine myocarditis virus is the causative agent of the cardiomyopathy syndrome (i.e., CMS), which is a disease associated with severe myocarditis in fish where immunopathology is strongly implicated.
  • CMS cardiomyopathy syndrome
  • the present disclosure provides a method for reducing, preventing, or controlling a viral infection in a fish population.
  • the method can include providing a fish feed including a neem extract rich in azadirachtin A, the neem extract including from 15 wt. % to 33 wt. % of azadirachtin A and administering to one or more fish the fish feed including the neem extract rich in azadirachtin A, where the fish feed provides a concentration from 0.01 mg to 5.0 mg azadirachtin A per kg body weight per day to the one or more fish.
  • the method further includes where the fish feed is administered to the farmed fish for at least 11 days. [0008] In an aspect, the method further includes where the fish feed is administered to the farmed fish for at least 14 days.
  • the method further includes where the viral infection is caused by one or more viruses including salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • viruses including salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • the method further includes where the viral infection is caused by salmon isa virus, and wherein the method further reduces one or more symptoms associated with infectious salmon anemia as caused by salmon isa virus infection.
  • the method further includes where the viral infection is caused by piscine orthoreovirus, and wherein the method further reduces one or more symptoms associated with heart and skeletal muscle inflammation as caused by piscine orthoreovirus infection.
  • the method further includes where the viral infection is caused by piscine myocarditis virus, and wherein the method further reduces one or more symptoms associated with cardiomyopathy syndrome as caused by piscine myocarditis virus infection.
  • the method further includes where the viral infection is caused by infectious pancreatic necrosis virus, and wherein the method further reduces one or more symptoms associated with infectious pancreatic necrosis as caused by infectious pancreatic necrosis virus infection.
  • the method further includes where the neem extract rich in azadirachtin A is administered to the fish at a concentration from 1.5 mg to 2.5 mg azadirachtin A per kg body weight per day.
  • the method further includes where the neem extract rich in azadirachtin A is administered to the fish at a concentration from 2.6 mg to 5.0 mg azadirachtin A per kg body weight per day.
  • the method further includes where the fish feed further including one or more components including antibacterial agents, antifungal agents, antiviral agents, antiparasitic agents, or antiprotozoal agents.
  • the method further includes where the fish feed is administered to species of fish belonging to one or more families including Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini, and Salmonidae.
  • families including Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini, and Salmonidae.
  • the method further includes where the pest control agent is including to produce an inhibitory effect including one or more of an antiparasitic effect, an antibacterial effect, an antiviral effect, an antifungal effect, or an antiprotozoal effect.
  • the method further includes where the neem extract rich in azadirachtin A does not comprise neem oil.
  • the method further includes where the neem extract rich in azadirachtin A is obtained by a method including the steps of providing neem seeds; crushing the neem seeds; extracting azadirachtin from the crushed seeds with water; adding a second extraction solution that includes a non-aqueous solvent which is not miscible with water and has a higher solubility of azadirachtin than water or a surfactant having a turbidity temperature between 20 °C and 80 °C; and recovering the concentrated azadirachtin from the second extraction solution.
  • the present disclosure provides a method for reducing, preventing, or controlling a viral infection or infestation in fish.
  • the method can include providing a pest control agent composition including a pest control agent including neem extract rich in azadirachtin A; and administering the pest control agent composition to one or more fish for from 1 to 20 days during an infection or infestation, where the concentration of azadirachtin A administered to the fish through the pest control agent composition is from 0.01 mg to 5 mg azadirachtin A per kg body weight per day.
  • the method further includes where the viral infection is caused by one or more viruses including salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • viruses including salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • the method further includes where the viral infection is caused by salmon isa virus, and wherein the method further reduces one or more symptoms associated with infectious salmon anemia as caused by salmon isa virus infection.
  • the method further includes where the viral infection is caused by piscine orthoreovirus, and wherein the method further reduces one or more symptoms associated with heart and skeletal muscle inflammation as caused by piscine orthoreovirus infection.
  • the method further includes where the viral infection is caused by piscine myocarditis virus, and wherein the method further reduces one or more symptoms associated with cardiomyopathy syndrome as caused by piscine myocarditis virus infection.
  • the method further includes where the viral infection is caused by infectious pancreatic necrosis virus, and wherein the method further reduces one or more symptoms associated with infectious pancreatic necrosis as caused by infectious pancreatic necrosis virus infection.
  • the present disclosure provides fish feeds and pest control agent compositions containing one or more pest control agents for reducing, preventing, or controlling a viral infection or infestation in fish or a fish population.
  • Various pests can cause dysregulation of a protective immune response or a protective physiological response within a host fish, and they can modulate the immune responses and physiological responses to their benefit.
  • Some parasitic species can benefit by exposing a host to anti-inflammatory mediators to dampen the host’ s protective immune responses or protective physiological responses.
  • Some parasitic species benefit by stimulating non-protective immune and non-protective physiological responses, which in turn suppresses activation of protective immune and protective physiological responses.
  • Some parasitic species can exert their modulatory pressures long enough on a host fish such that the host fish’s immune response results in harmful immunomodulatory or inflammatory effects for the fish long term.
  • the pest control agents herein can be administered to fish and can be effective at modulating the host fish’s immune response or physiological response in either the presence or absence of a parasite.
  • the modulation of an immune response or physiological response can be exerted by the pest control agents prior to, after, or during an infection or infestation.
  • the modulation of an immune response or physiological response can occur by decreasing the dysregulation of the immune response or the physiological response as caused by various viruses during an infection or infestation.
  • the pest control agents can stimulate protective immune responses or suppress harmful immune responses in the fish.
  • the pest control agents herein can contribute directly or indirectly in reducing, preventing, or controlling an infection or infestation caused by the pests described herein.
  • the pest control agents herein can have a direct antiparasitic effect on parasites feeding on their hosts that have ingested the pest control agents be reducing the ability of the parasites to immunomodulate their hosts.
  • the pest control agents can induce an immunomodulatory effect and provide anti-inflammatory effects by lessening the parasitic load in the fish or population of fish such that the host’s immune responses and physiological responses can return to a pre-dysregulated state.
  • the pest control agents can exert effects on the host immune and physiological pathways that can contribute to a positive outcome of a viral infection.
  • the pest control agents may promote effective antimicrobial immune responses, suppress non-protective and harmful immune responses, stimulate antioxidant defenses, detoxification pathways, repair of tissue damages mediated by own immune response or that caused by the pathogen and promote wound repair.
  • Modulation of an immune response or physiological response by pest control agents in host fish can include various immunomodulatory effects in the fish.
  • the immunomodulatory effects can include a reduction or prevention of various immunopathology caused by a dysregulated immune response of physiological response.
  • the immunopathology can include tissue damage caused by an exaggerated immune response, such as decrease in heart muscle damage, skeletal muscle damage, and the like.
  • the present disclosure provides fish feeds, pest control agent compositions, and pest control agents for reducing, preventing, or controlling one or more viral infections in fish and a fish population.
  • infection can refer to a condition where a pestilent organism, including the various pests defined elsewhere herein, can invade any internal or external portion of a host organism’s body such that the host organism experiences harm, and where the pestilent organism uses components of the host organism to sustain itself, reproduce, or colonize the host organism.
  • festation can refer to the presence of an abnormally large number of pests as defined herein, where the pests are concentrated in a region in numbers that can cause damage or disease through infection of a host organism.
  • pest can refer to any organism that is detrimental to the health, value, or appearance of another organism.
  • the term pest can include, but is not to be limited to, one or more of various parasites including worms, helminths, and flukes; one or more species of bacteria; one or more viruses; one or more type of fungi; and various protozoa (e.g., amoeba).
  • the term “parasite” can refer to one or more species of ectoparasite or endoparasite.
  • the term “endoparasite” can refer to organisms that inhabit one or more internal niches of another organism.
  • an endoparasite can inhabit one or more of the tissues, organs, or systems of a host organism.
  • an endoparasite can inhabit the gut, blood, or both, of a host organism.
  • the term “ectoparasite” can refer to organisms that inhabit or occupy an external niche of another species.
  • an ectoparasite can inhabit or occupy the surface of a host species.
  • ectoparasites can inhabit the skin of the fish where they sometimes lodge between scales, and they further can feed off of the mucus, blood, skin, gills, muscle, or any combination thereof.
  • pest control agent can refer to an agent for reducing, preventing, or controlling an infection or infestation caused or contributed to by one or more pests.
  • pest control agents described herein can refer to an agent for reducing, preventing, or controlling an infection or infestation caused by one or more endoparasites or ectoparasites.
  • the fish feeds provided herein can be fed as a fish feed diet or used to feed any fish that is susceptible to infection or infestation by one or more pest.
  • the fish feed can be used in aquaculture as a component of a diet fed to any farmed fish including, for example, commercially relevant fish species.
  • the fish feeds provided herein can form part of diet fed to any of freshwater fish, brackish fish, or saltwater fish.
  • the fish feeds can be used as a component of a diet fed to any species belonging to the families Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini and Salmonidae.
  • the fish feeds herein can be used to feed species belonging to any of the genera within these families and in particular, those species that are farmed for human or animal consumption.
  • the fish feeds described herein can be used to feed species belonging to the genera Salmo and/or Oncorhynchus .
  • the fish feeds herein can be used to control pests in populations of wild or farmed salmon or trout species, including, for example, any of Atlantic salmon (Salmo salary Pacific salmon, Char, or Rainbow trout.
  • the fish feed can be used as a pest control agent for other fish species within the aquaculture industry such as sea bass, bream, grouper, pompano, and tuna, as well as in the pet and decorative fish industries, for example for pest control in koi (Cyprinus rubrofuscus) and goldfish (Carassius auralus).
  • Pests of the target fish herein can include viruses that can cause a number of diseases in fish.
  • the viruses that are suitable for targeting with the pest control agents described herein can include one or more of salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus. These viruses can all cause one or more clinical manifestations of disease that can decrease the wellbeing of the fish, affect the edible muscle quality of the fish, can lower farm productivity by decreasing the fish available for market, increase mortality in the fish populations, and can lead to significant economic losses for farmers.
  • Infectious salmon anemia is caused by the salmon isa virus, a double stranded ribonucleic acid virus belonging to the family Orthomyxoviridae.
  • the virus has caused severe economic impact in many of the salmon producing regions including Chile, Norway, Scotland, Faroes, Canada, and USA.
  • the disease results in severe anemia in Atlantic salmon, affecting the hematopoietic tissues including the spleen, kidney as well as the liver and heart.
  • ISA can cause pale gills, raised scales, ulcers in the skin, a bloated abdomen, and bulging eyes. Trout and other marine species may be asymptomatic carriers of the disease.
  • Levels of mortality are highly variable, but exceptional losses of up to 90% have been recorded. The peaks of outbreak generally occur in the spring and early summer with temperatures around 10°C. ISA has occurred within a temperature range of 3°C - 15°C.
  • Infectious pancreatic necrosis i.e., IPN
  • IPN Infectious pancreatic necrosis
  • CMS Cardiomyopathy syndrome
  • CMS is a severe cardiac disease of adult farmed Atlantic salmon caused by a double stranded RNA virus of the family Totiviridae, and is named piscine myocarditis virus.
  • CMS is characterized by cardiac histopathology, involving severe inflammation and necrosis of the spongy myocardium of the atrium and ventricle. Farmed fish often lack clinical signs of the disease and may die suddenly from CMS.
  • Heart and skeletal muscle inflammation can be caused in fish by the piscine orthoreovirus, a double-stranded deoxyribonucleic acid virus belonging to the family Reoviridae.
  • the virus is widespread in the waters off the coasts of Canada, Norway, Alaska, Chile, Ireland, Japan, and the Pacific coasts of North American and South America.
  • Piscine orthoreovirus can cause outbreaks of HSMI in fish farmed in aquaculture, causing inflammation of cardiac and skeletal muscle cells observable using microscopy techniques.
  • External manifestations of the infection can include symptoms such as anorexia, lethargy, jaundice, anemia, and necrotic lesions of the liver and kidneys.
  • Tilapia lake virus disease is a disease found in tilapia causing high mortality rates, including as high as 90% globally.
  • Tilapia lake virus disease is caused by tilapia lake virus, a single-stranded RNA virus from the family Amnoonviridae .
  • Tilapia lake virus infects the vital organs of fish, including the eyes, brain, and liver. The disease is highly pathogenic and can be transmitted through generations and between generations of fish.
  • the present disclosure provides fish feeds to be used as fish diets in aquaculture applications. It will be appreciated that the fish feeds herein can include suitable types of fish feed specific for a given fish species.
  • the fish feeds can be used as a component of a diet fed to any species belonging to the families Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini and Salmonidae.
  • this disclosure provides a fish feed or fish feed diet for species within the family Salmonidae.
  • the fish feeds provided herein can be used to feed wild fish or farmed fish. In various aspects, both wild fish and farmed fish can be fed simultaneously. Further, the fish feed can be used to feed freshwater fish or salt water (e.g., marine) fish, or both.
  • the fish feeds of the present disclosure can be produced using a base feed formulation that is a solid feed or a liquid feed using raw materials that can be chosen based on the application in which it is to be used and on the fish species.
  • the fish feed is a solid fish feed.
  • the fish feed is a liquid fish feed.
  • the fish feed can include both a solid fish feed component and a liquid fish feed component.
  • Fish feeds in solid form can include pellets, extruded nuggets, steam pellets, flakes, tablets, powders, and the like.
  • the base feed can include a base feed pellet.
  • the base feed pellet can include a porous matrix distributed throughout.
  • Fish feeds in liquid form can include aqueous solutions, oils, oil and water emulsions, slurries, suspensions, and the like.
  • a solid fish feed can further include one or more oils disposed on the surface or distributed throughout the fish feed.
  • the fish feeds herein can include a number of different ingredients or raw materials that can sustain life, growth, and reproduction of the fish.
  • the fish feeds can include any substrate that is edible to fish.
  • an edible substrate can provide a source of nutrition to the fish or can be an inert substrate with no nutritive value to the fish.
  • the fish feeds herein can include feeds that are either nutritional fish feeds or non-nutritional feeds.
  • Nutritional fish feeds can include a nutritional food stuff formulated for fish as part of its diet as the main source of nutrition, growth, and reproduction. Suitable nutritional fish feeds can include one or more of proteinaceous material as a source of proteins, peptides, and amino acids; carbohydrates; and fats, as described below.
  • Non-nutritional fish feeds can include any substrate that is edible to fish but does not provide nutrition to sustain life, growth, or reproduction.
  • the nutritional or non-nutritional fish feeds herein can include one or more compounds designed to alter the quality, quantity, or appearance of a fish and fish tissue.
  • a nutritional or non-nutritional fish feed can include a carotenoid compound to improve the appearance (e.g., color) of the muscle tissue.
  • the carotenoid compound can include compounds such as astaxanthin.
  • the fish feeds herein can include a complete fish feed.
  • a complete fish feed can include a feed for fish that is compounded to be fed as the sole ration and that can maintain life, promote growth, and sustain reproduction without any additional substances being consumed except water.
  • Complete fish feeds can include compounded mixtures containing various energy sources such as carbohydrates, proteins, and fats.
  • the fish feeds herein can include at least a protein and a starch. Additional ingredients can be included, such as vitamins and minerals as necessary to support the life, growth, and reproduction of fish.
  • a complete fish feed can include ingredients such as, but not limited to, fish meal, poultry meal, plant meal, vegetable meal, corn meal, corn gluten meal, soy meal, soy protein concentrate, single cell protein, insect meal, algae meal, algae oil, krill meal, krill oil, meat meal, blood meal, feather meal, starches, tapioca starch, wheat, wheat gluten, guar meal, guar protein concentrate, peas, pea protein concentrate, pea starch, beans, faba beans, sunflower meal, vegetable oil, canola oil, poultry oil, rapeseed oil, fish oil, soy oil, linseed oil, camelina oil, lecithin, macro-minerals, minerals, vitamins, amino acids, pigments, and any combinations thereof.
  • ingredients such as, but not limited to, fish meal, poultry meal, plant meal, vegetable meal, corn meal, corn gluten meal, soy meal, soy protein concentrate, single cell protein, insect meal, algae meal, algae oil, krill meal, krill oil, meat meal, blood meal
  • fish feeds herein can include fish meal that can include plant or animal derived matter. Any animal derived matter present in the fish meal can be derived from the same species of fish or a different species of fish (e.g., heterologous species or non-fish species).
  • the total protein content in the fish feed can be from 10 wt. % to 70 wt.%, from 15 wt.% to 65 wt.%, from 20 wt.% to 60 wt. %, or from 25 wt.% to about 55 wt.%.
  • the total protein in the fish feed can be at least 10%, 15%, 20%, 25%, 30%, 35%, 38%, 40%, 42%, 44%, 46%, 48%, 50%, 52%, 55%, 60%, 65%, or at least 70% by weight, or any amount within a range of any of the forgoing.
  • the total protein in the fish feed can be variable depending on the formulation, species, age, and intended use of the feed. It will be appreciated that the various protein requirements of the species of fish receiving the fish feed can be adjusted to meet the protein requirements of that species.
  • the protein in the fish feeds herein can be from any suitable source including, but not limited to, one or more of fish meal, land-animal protein (e.g., poultry meal), plant-based protein (e.g., vegetable meal), or any combinations thereof.
  • the fish feed can include from 0% to 80%, from 10% to 80%, from 20% to 75%, from 30% to 70%, from 60% to 80%, or from 10% to 30%, or at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 75% fish meal by weight, or any amount within a range of any of the forgoing.
  • the fish feed can include from 0% to 80%, from 10% to 80%, from 20% to 75%, from 30% to 70%, from 60% to 80%, or from 10% to 30%, or at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 75% land-animal protein by weight, or any amount within a range of any of the forgoing.
  • the fish feed can include between 0% to 80%, from 10% to 80%, from 20% to 75%, from 30% to 70%, from 60% to 80%, or from 10% to 30%, or at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 75% plant-based protein by weight, or any amount within a range of any of the forgoing.
  • Total fat (e.g., oil, fat, and/or lipids) in the fish feed can be from 5% to 50%, from 10% to 45%, from 15% to 40%, or from 20% to 35%.
  • the total fat in the fish feed can be at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or at least 50% by weight, or any amount within a range of any of the forgoing.
  • the total fat in the fish feed can be variable depending on the formulation, target fish species, and intended use of the fish feed. It will be appreciated that the various fat requirements of the species of fish receiving the fish feed and can be adjusted to meet the fat requirements of that species.
  • Suitable fats for use herein can include, but are not to be limited to, those provided by canola oil, poultry oil, rapeseed oil, fish oil, soy oil, linseed oil, camelina oil, palm oil, lecithin, or any combinations or fractions thereof.
  • the moisture content of the fish feeds herein can vary depending on the contents and preparation method of the feed. In various aspects, the moisture content can be from 1% to 20%, from 2% to 18%, from 5% to 15%, or from 6% to 12% by weight.
  • the fish feeds herein can include one or more pest control agents.
  • the one or more pest control agents can be present in the fish feed in an amount effective to produce an inhibitory effect on one or more pests, as will be described elsewhere herein.
  • the fish feeds herein can include pest control agents for controlling infections or infestations caused by one or more pests.
  • the fish feeds herein can include pest control agents for controlling endoparasitic or ectoparasitic infections or infestations.
  • Various pests suitable as targets for the pest control agents herein are described elsewhere.
  • Each pest control agent included within the fish feeds herein can be individually capable of controlling one or more of a parasitic, bacterial, viral, fungal, or protozoal infections or infestations. Therefore, it should be understood that any given pest control agent for use in the many aspects described herein can be referred to as exhibiting one or more inhibitory effects, including antiparasitic effects (e.g., anti-ectoparasitic, anti-endoparasitic), antibacterial effects, antiviral effects, antifungal effects, or antiprotozoal effects.
  • antiparasitic effects e.g., anti-ectoparasitic, anti-endoparasitic
  • the inhibitory effect can include an antiparasitic effect, where the antiparasitic effect can further include an anti- ectoparasitic effect, an anti-endoparasitic effect, or both. It will be appreciated that the inhibitory effects can result in reducing, preventing, or controlling the concentration and spread of the various parasitic, bacterial, viral, fungal, or protozoal organisms described herein.
  • a pest control agent of the present disclosure can produce inhibitory effects against one or more pests including one or more effects for reducing, preventing, or controlling the concentration and spread of various endoparasites or ectoparasites.
  • Reducing, preventing, or controlling the parasites can include complete prevention of infection or infestation in the fish population or on each fish, a reduction in the total number of parasites present in the fish population or on each fish, or controlling how many parasites are present in the fish population or on each fish according to local regulatory requirements. It will be appreciated that the inhibitory effects described herein can be measured against a population fish infected or infested with one or more pests that are fed a diet lacking the neem extract rich in azadirachtin A.
  • the fish feeds herein can include an amount of pest control agent at from about 0.01 - 100 grams of pest control agent per kilogram fish feed (g/kg), about 90 g/kg fish feed, about 80 g/kg fish feed, about 70 g/kg fish feed, about 60 g/kg fish feed, about 50 g/kg fish feed, about 40 g/kg fish feed, about 30 g/kg fish feed, about 20 g/kg fish feed, about 1- 10 g/kg fish feed, about 2-9 g/kg fish feed, about 3-7 g/kg fish feed, about 4-6 g/kg fish feed, or about 5 g/kg fish feed.
  • g/kg pest control agent per kilogram fish feed
  • the fish feeds herein can include an amount of pest control agent and/or active ingredient in an amount effective to produce an inhibitory effect against one or more pests, including a concentration from about 0.01 g/kg fish feed, 0.05 g/kg fish feed, 0.1 g/kg fish feed, 0.2 g/kg fish feed, 0.3 g/kg fish feed, 0.4 g/kg fish feed, 0.5 g/kg fish feed, 0.6 g/kg fish feed, 0.7 g/kg fish feed, 0.8 g/kg fish feed, 0.9 g/kg fish feed, 1.0 g/kg fish feed.
  • the fish feeds herein can include an amount of pest control agent effective to produce an inhibitory effect against one or more pests including from 0.001 % w/w, 0.002 % w/w, 0.003 % w/w, 0.004 % w/w, 0.005 % w/w, 0.006 % w/w, 0.007 %w/w, 0.008 % w/w, 0.009 % w/w, 0.010 % w/w, 0.020 % w/w, 0.030 % w/w, 0.040 % w/w, 0.050 % w/w, 0.060 % w/w, 0.070 % w/w, 0.080 % w/w, 0.090 % w/w,
  • the fish feeds can be administered to the fish having a concentration of pest control agent selected from the group including 0.05 % w/w, 0.06 % w/w, 0.07 % w/w, 0.08 % w/w, 0.09 % w/w, 0.10 % w/w, 0.11 % w/w, 0.12 % w/w, 0.13 % w/w, 0.14 % w/w, 0.15 % w/w, 0.16 % w/w, 0.17 % w/w, 0.18 % w/w, 0.19 % w/w, 0.20 % w/w, 0.30 % w/w,
  • the pest control agents suitable for use in the fish feeds and pest control agent compositions herein can adversely affect pests that infect their hosts.
  • the pest control agents can include any functional agent or active agent that affects, facilitates, or contributes to the eradication or reduction of a pest infection or infestation of a fish or population of fish. Additionally, suitable pest control agents can alleviate or improve one or more of the symptoms associated with a pest infection or infestation, as a result of reducing, preventing, or controlling an infection or infestation.
  • Pest control agents for use herein can be biologically active to one or more fish pests and for one or more fish species.
  • the pest control agent is systemically distributed throughout the tissues and fluids of the fish. Pests can be exposed to the pest control agents upon ingestion of the pest control agent through the skin, flesh, blood, mucus, mucous membranes, or other tissues of the host organism.
  • the administration of pest control agents to fish as described herein further can have a beneficial effect on the fish.
  • the administration of the pest control agents can impart a beneficial effect by improving fish welfare by reducing the viral load, or total number of viruses, in a given environment around the fish.
  • the administration of the pest control agents can impart a beneficial effect by a reduction in the overall mortality within a fish population by lessening or reducing the impact of a viral infection or infestation on the fish population.
  • the administration of the pest control agents can impart a beneficial effect by minimizing or altogether eliminating the impact on the quality and quantity of fish flesh within the fish population.
  • the fish feeds described herein can include, or be supplemented with, one or more pest control agents.
  • each pest control agent can be individually active (or biologically active) and capable of modulating a pest.
  • the pest control agents can be a component of a pest control agent composition that can be fed separately to fish.
  • Each pest control agent can be individually effective against one or more different pests as described herein.
  • Pest control agents suitable for use in the fish feeds and pest control agent compositions herein can include one or more active agents, including synthetic or natural agents.
  • the one or more synthetic or natural agents can include agents classified as an active pharmaceutical ingredient, a veterinary medicinal product, and the like.
  • the active agent for the pest control agents herein can be obtained from a plant belonging to the genus Azadirachta.
  • the pest control agent can be obtained or extracted from Azadirachta indica - a tree commonly known as the “Neem” tree. Extracts prepared from plants belonging to the genus Azadirachta (e.g., Azadirachta indica) can include potent terpenoid compounds, including one or more azadirachtinoids.
  • the azadirachtinoids include azadirachtin compounds such as azadirachtin A, azadirachtin B, azadirachtin D, azadirachtin E, azadirachtin F, azadirachtin G, azadirachtin H, azadirachtin I, azadirachtin K, and/or other azadirachtin variants.
  • the extracts from plants belonging to the genus Azadirachta can also include many other components in various quantities.
  • the extracts can include additional compounds such as the limonoids salannin, nimbin, deacetyl salinin, and 6-desacetylnimbin.
  • the extracts can further include one or more azadirachtinins.
  • azadirachtin can refer to the collective term applied to a large group of active compounds and is intended to encompass not only all naturally occurring variants or derivatives of azadirachtin, including but not limited to azadirachtins A, B, D, E, F, G, H, I, K, but also all synthetic variants, fragments, analogues, and derivatives thereof.
  • any azadirachtin variants, fragments, derivatives, or analogues for use herein should be functional, in that they exhibit at least one inhibitory effect as described.
  • Azadirachtin can be obtained or extracted from any part of the Azadirachta indica plant including, for example, the leaves, stems, bark, fruit, seeds, or any combinations thereof by one or more extraction processes. Suitable methods of extraction can include techniques that exploit mechanical pressing of neem seeds (i.e., kernels) and the use of non-polar solvents. Various solvent extraction techniques exploiting alcohol or an aqueous extraction process, mechanical pressing, and non-polar extraction methods can be used to produce azadirachtin A-rich pest control agents for use herein and are described in U.S. Pat. No. 4,556,562; U.S. Pat. No. 5,695,763; and U.S. Pat. No. 11,096,404; the contents of which are incorporated herein by reference in their entirety.
  • azadirachtin can be effectively recovered from the seeds of the Neem tree.
  • An exemplary method to recover azadirachtin from neem seeds can include providing neem seeds, crushing the neem seeds, extracting azadirachtin from the crushed seeds with water, and then extracting azadirachtin from the water by adding a second extraction solvent including a nonaqueous solvent that is not miscible with water and has a higher solubility of azadirachtin than water or a surfactant having a turbidity temperature between 20 °C and 80 °C.
  • the concentrated azadirachtin can be recovered from the second extraction solution and shows high activity as an insecticide and parasiticide. Extraction methods employing polar solvents (e.g. water) lead to extracts that are rich in polar components, such as azadirachtin compounds.
  • the azadirachtin suitable for use herein includes azadirachtin A, which is by its scientific name of dimethyl [2a7?- [2aa,3B,4B(la/?*,25*,3a *,6a5*,75*,7a *),4aB,5a, 7aS*,8B(E),10B,10aa,10bB]]-10-
  • Azadirachtin A is the most abundant of a group of the azadirachtinoids. Azadirachtin A makes up about 80% of the azadirachtinoids in the neem seed kernel.
  • the structural formula of azadirachtin A is:
  • the pest control agents herein can include neem extracts that are an aqueous extract.
  • the neem extract can include an aqueous extract of neem seed.
  • the aqueous extract of neem seed can include an aqueous extract of the neem seed kernel.
  • the aqueous extract of neem seed can include an aqueous extract of the entire neem seed, including the neem seed kernel and the neem seed coating.
  • the aqueous extract of neem seed can be in liquid form, or it can be dried to remove water to create a powder form.
  • the neem extracts herein can include an aqueous extract of neem seed or an aqueous extract of neem seed kernel that has been dried into a powder.
  • the pest control agents described herein are not the same thing as neem extracts described as neem oil or solvent-first neem extracts.
  • the pest control agents herein including azadirachtin are richer in the azadirachtinoid active ingredients, and in particular azadirachtin A, than are neem oil and other oil-based formulations. This is due to the fact that azadirachtinoids, such as azadirachtin A, are relatively polar complex terpenoids with a large number of oxygen functionalities, which make the molecules moderately water-soluble (e.g., a solubility of approximately 2 g/L).
  • azadirachtinoids such as azadirachtin A are present in much higher concentrations in the extracts obtained employing polar solvents than in neem oil or solvent-first neem extracts.
  • bioavailability of the active ingredients to the target parasite in the water-based extract of azadirachtin A rich extracts of the present disclosure can be greater than in neem oil given the increased solubility and miscibility of the water-based extract in water.
  • the pest control agents herein do not, comprise, consist, or consist essentially of, neem oil.
  • the pest control agent of the fish feed provided herein can comprise, consist, or consist essentially of azadirachtin A.
  • the pest control agents including neem extract rich in azadirachtin A can include those having from at least 15 wt. % to 33 wt. % azadirachtin A.
  • pest control agents including neem extract rich in azadirachtin A can include those having from at least 20 wt. % to 26 wt. % azadirachtin A.
  • pest control agents including neem extract rich in azadirachtin A can include those having from at least 28 wt. % to 31 wt. % azadirachtin A.
  • pest control agents including neem extract rich in azadirachtin A can include those having from at least 29 wt. % to 30 wt. % azadirachtin A. In other aspects, pest control agents including neem extract rich in azadirachtin A can include those having from at least 34 wt. % to 40 wt. % azadirachtin A. In various aspects, pest control agents rich in azadirachtin A can include those having from 30 ⁇ 1 wt. % azadirachtin A. In various aspects, pest control agents rich in azadirachtin A can include those having from 15 wt. %, 16 wt. %, 17 wt.
  • pest control agents including neem extract rich in azadirachtin A can include those having from at least 34 wt. % to 45 wt.
  • neem extract rich in azadirachtin A and “azadirachtin A- rich composition” can be used interchangeably unless otherwise noted.
  • a composition of an exemplary neem extract rich in azadirachtin A pest control agent suitable for use herein can include the formula as outlined in Table 1.
  • the pest control agent including a neem extract rich in azadirachtin A can further include other azadirachtinoids at various concentrations.
  • the azadirachtinoids can include azadirachtin compounds such as azadirachtin B at from ⁇ 19.0 % w/w, or from ⁇ 6.0 % w/w, or from 4.0 to 6.0 % w/w, or from 5.6 % w/w to 6.0 % vil'W, azadirachtin D at from ⁇ 13.0 % w/w, or from ⁇ 5.0 % w/w, or from 2.5 to 5.0, or from 4.0 % w/w to 5.0 % vil'W, azadirachtin E at from ⁇ 5.0 % w/w, or from 1.0 % w/w to 5.0 % w/w, or from 1.5 % w/w
  • the extracts further can include azadirachtinin at from ⁇ 5.0 % w/w, or from 1.0 % w/w to 5.0 % w/w, or from 2.5 % w/w to 4.0 % w/w.
  • An exemplary pest control agent suitable for use herein can include an aqueous extract of neem seed that has been dried into a powder.
  • the powder can include the appearance of a fine white powder.
  • the exemplary pest control agent can include azadirachtin A at a concentration of from 17 wt. % to 37 wt. %, azadirachtin B at a concentration of from 0 wt. % to 19 wt. %, and azadirachtin D at a concentration of rom 0 wt. % to 13 wt. %.
  • the exemplary pest control agent further can include trace amounts of other limonoids including nimbin and salannin.
  • Exemplary pest control agents including azadirachtin A rich compositions include, but are not to be limited to, NeemAzal® (Coromandel, Inti. Ltd., Telangana, India) or NeemAzal® Technical (Coromandel, Inti. Ltd., Telangana, India), or any derivatives of combinations thereof
  • the fish feeds herein can include those that are supplemented with the pest control agent azadirachtin A.
  • the fish feeds can be administered to various fish as part of a fish feed diet to control viral pests within an aquaculture environment.
  • the fish feeds can be at least partially coated on an exterior surface with an azadirachtin A-rich composition or completely coated on an exterior surface with an azadirachtin A-rich composition.
  • the fish feeds herein can include an azadirachtin A-rich composition that is at least partially dispersed throughout the fish feed.
  • a solid feed such as a base feed pellet
  • the fish feeds herein can be at least partially coated on an exterior surface with an azadirachtin A-rich composition and further can have an azadirachtin A-rich composition at least partially dispersed throughout the fish feed.
  • the fish feed can include one or more layers of azadirachtin A-rich composition on an exterior surface.
  • the fish feeds herein can include an azadirachtin A-rich composition at a concentration from about 0.01 - 100 grams per kilogram (g/kg) fish feed, about 90 g/kg fish feed, about 80 g/kg fish feed, about 70 g/kg fish feed, about 60 g/kg fish feed, about 50 g/kg fish feed, about 40 g/kg fish feed, about 30 g/kg fish feed, about 20 g/kg fish feed, about 0.01-10 g/kg fish feed, about 1- 10 g/kg fish feed, about 2-9 g/kg fish feed, about 3-7 g/kg fish feed, about 4-6 g/kg fish feed, or about 5 g/kg fish feed.
  • an azadirachtin A-rich composition at a concentration from about 0.01 - 100 grams per kilogram (g/kg) fish feed, about 90 g/kg fish feed, about 80 g/kg fish feed, about 70 g/kg fish feed, about 60 g/kg fish feed, about 50 g/kg fish feed,
  • the fish feeds herein can include an azadirachtin A-rich composition at a concentration from about 0.01 g azadirachtin A-rich composition per kilogram fish feed (g/kg), 0.05 g/kg fish feed, 0.1 g/kg fish feed, 0.2 g/kg fish feed, 0.3 g/kg fish feed, 0.4 g/kg fish feed, 0.5 g/kg fish feed, 0.6 g/kg fish feed, 0.7 g/kg fish feed, 0.8 g/kg fish feed, 0.9 g/kg fish feed, 1.0 g/kg fish feed.
  • an azadirachtin A-rich composition at a concentration from about 0.01 g azadirachtin A-rich composition per kilogram fish feed (g/kg), 0.05 g/kg fish feed, 0.1 g/kg fish feed, 0.2 g/kg fish feed, 0.3 g/kg fish feed, 0.4 g/kg fish feed, 0.5 g/kg fish feed, 0.6 g/kg fish feed, 0.7
  • the fish feeds herein can include an azadirachtin A- rich composition at from 0.001 % w/w, 0.002 % w/w, 0.003 % w/w, 0.004 % w/w, 0.005 % w/w, 0.006 % w/w, 0.007 %w/w, 0.008 % w/w, 0.009 % w/w, 0.010 % w/w, 0.020 % w/w, 0.030 % w/w, 0.040 % w/w, 0.050 % w/w, 0.060 % w/w, 0.070 % w/w, 0.080 % w/w, 0.090
  • the fish feeds can be administered to the fish having an azadirachtin A-rich composition at a concentration selected from the group including 0.05 % w/w, 0.06 % w/w, 0.07 % w/w, 0.08 % w/w, 0.09 % w/w, 0.10 % w/w, 0.11 % w/w, 0.12 % w/w, 0.13 % w/w, 0.14 % w/w, 0.15 % w/w, 0.16 % w/w, 0.17 % w/w, 0.18 % w/w, 0.19 % w/w, 0.20 % w/w, 0.30 % w/w, 0.40 % w/w, 0.50 % w/w, 0.60 % w/w, 0.70 % w/w, 0.80 % w/w, 0.90 % w/w, or 1.0 % w/w, 0.60 % w
  • Azadirachtins can be relatively unstable in water, however when they are a component of a fish feed, such as dispersed throughout or coated thereon, the azadirachtins, including azadirachtin A, are rendered at least temporarily stable such that they can exhibit their full biological activity during feeding. Any fish feed that falls to the ocean floor will degrade upon prolonged exposure to water.
  • azadirachtin A, or any of the neem extract agents of the present disclosure exhibit minimal risk of toxic effects on fish or humans and are therefore safe to use in both wild fish and farmed fish stocks. While arthropods and other invertebrates are sensitive to the active ingredient (i.e.
  • azadirachtin A higher organisms, including mammals, are unaffected. Furthermore, since azadirachtin A or any neem extract as described herein are readily soluble in water, they do not reside and accumulate in fish. Rather, once administration has ceased, the pest control agent can quickly lose effectiveness, as it is metabolized, degraded, and/or excreted. In the case of farmed fish stocks, this ensures a little to no withdrawal period to harvest following administration of a fish feed or composition as described herein.
  • the fish feed provided herein can include an azadirachtin A-rich composition together with one or more other agents.
  • the one or more or other agents can include anti-ectoparasitic agents, antimicrobial agents (e.g., antibacterial, antifungal, antiviral agents), antiparasitic agents (e.g., anti-endoparasitic agents or anti-ectoparasitic agents), or antiprotozoal agents.
  • the one or more other agents can be mixed with or coated on, or layered within, the fish feed.
  • the one or more other agents can be provided separately (e.g., either in liquid or solid form) and can be administered separately (e.g., before or after) or concurrently with (e.g., during) a fish feed.
  • the pest control agents herein can exert one or more immunomodulatory effects in fish infested with the pests described herein.
  • the pest control agents herein can exert an immunomodulatory effect by lessening or removing any dysregulation of the immune system as experienced by the fish.
  • the dysregulation of the immune system by the parasites as described can include the suppression of protective, beneficial immune responses in parallel with the exaggeration of non-protective or harmful immune responses.
  • the use of the pest control agents herein can exert an immunomodulatory effect by reducing, controlling, or preventing the parasitic load on the animal, where the parasitic load can include the number of parasites present during the infection or infestation.
  • the pest control agents can reduce undesirable inflammatory responses left otherwise unchecked by the immune system in response to the infection or infestation, or can stimulate protective immune protective and physiological responses. Left unchecked, an overactivated immune system can cause a number of types of damage to the host fish’s tissues. As such, in some aspects, the reduction of the undesirable inflammatory responses can be an indirect effect due to the reduction of the number of parasites on the fish. Similarly, stimulation of protective immune responses and physiological responses can also be a result of direct or indirect effects of the pest control agents on parasites or the host.
  • the reduction of undesirable inflammatory responses can be a direct response to the pest control agent itself.
  • the pest control agents can exert an immunomodulatory effect by reducing, controlling, or preventing the infection or infestation with a pest such that there is no suppression of protective, beneficial immune responses and no upregulation of non-protective or harmful immune responses, thus allowing the immune system to function optimally.
  • beneficial protective immune responses can include recognition of parasitic organisms by the immune system, activation of protective immune responses and protective physiological responses, repair of damage caused by non-protective immune responses, and the subsequent removal of parasites.
  • the harmful non-protective immune responses can include those that can lead to immunopathology, such as tissue damage causes by dysregulated immune responses.
  • the harmful non-protective immune responses can also include those that negatively affect the health of the fish by stopping, preventing, or decreasing the effectiveness of the protective immune responses when the fish are faced with an immune challenge, such as an overactivation of regulatory and anti-inflammatory pathways or an activation of competing, non-protective immune responses induced by parasites.
  • the immunomodulatory effect exerted by the pest control agent can include reducing, controlling, or preventing an infection or infestation, thereby minimizing negative effects of the infection or infestation, including minimizing excess mortality, minimizing deleterious effects on flesh quality, and minimizing a decrease in animal welfare, and allowing fish to fight off other pathogens and stressors including heat stress, hypoxic stress, oxidative stress, etc., as compared to infected or infested fish not administered the pest control agent.
  • the disclosure herein provides a method of making a fish feed including one or more pest control agents, such as neem extracts including azadirachtin A-rich compositions.
  • the method can include the step of providing a base feed and applying a quantity of pest control agent to a surface of the base feed.
  • a base feed can be formed from various raw materials as described elsewhere herein.
  • the method can include coating the base feed with a quantity of pest control agent.
  • the base feeds can be at least partially coated on an exterior surface with a pest control agent or completely coated on an exterior surface with a pest control agent.
  • the base feeds herein can include a pest control agent that is at least partially dispersed throughout the base feed.
  • the base feeds herein can be at least partially coated with a pest control agent and further can have a pest control agent at least partially dispersed throughout the base feed.
  • the pest control agent can be distributed throughout the base feed, such as throughout a porous matrix of the base feed.
  • the base feed can be coated on an exterior surface with more than one layer of pest control agent, where each layer can include the same pest control agent, or in some aspects each layer can include a different pest control agent.
  • the pest control agent can be incorporated into or mixed into the base feed by various processes.
  • the base feed can be made using an extrusion process or a pressing process.
  • the pest control agent can be mixed with the base during its manufacture such that it becomes distributed through all or a part of the fish feed.
  • the base feed and pest control agent mixture can be formed into, for example, pellets, flakes, tablets, powders, or any form as desired.
  • temperature sensitive pest control agents such pest control agents can be added to a base feed after it has been formed into one of the various forms as indicated.
  • the pest control agent can be sprayed onto a base feed that has already been formed into pellets, flakes, tablets, and the like.
  • the pest control agent can be applied to a base feed as one or more layers or top coatings.
  • the pest control agent can be applied to an outside surface of a pellet or a flake - in this way a fish feed pellet or flake can become wholly or partially coated with the pest control agent.
  • One or more layers or coatings of agent can be applied to an outside surface of a fish feed flake or pellets. Any layer or coating of agent can be “sealed” or protected by the application of one or more additional coatings or layers of a sealing substance.
  • the pest control agent herein can be dispersed in one or more oils or fractions thereof and can be incorporated into a porous matrix within the fish feed by a vacuum coating process.
  • a layer or coating of agent can be sealed by the application of a layer or coating of oil, such as fish oil.
  • one or more further layers or coatings of fish feed can be applied to the (optionally sealed) coating or layer of fish feed.
  • any given fish feed flake or pellet can include multiple layers of fish feed, sealing substance and/or pest control agent layers.
  • the fish feeds described herein can be at least partially coated on an exterior surface with pest control agent.
  • the fish feeds herein can include a pest control agent that is at least partially dispersed throughout the fish feed.
  • the fish feeds herein can include a pest control agent that is at least partially coated with pest control agent and at least partially dispersed throughout the fish feed.
  • the method for incorporating the pest control agent into the fish feed can include incorporating the pest control agent, such that the final concentration of pest control agent in the fish feed includes from about 0.01 gram pest control agent per kilogram of fish feed (g/kg) to about 1000 g/kg, or from about 0.01 g/kg, 0.1 g/kg, 1 g/kg, 2 g/kg, 3 g/kg, 4 g/kg, 5 g/kg, 6 g/kg, 7 g/kg, 8 g/kg, 9 g/kg or 10 g/kg, 20g/kg, 30g/kg, 40g/kg, 50 g/kg, 60 g/kg, 70 g/kg, 80 g/kg, 90 g/kg, 100 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, or 1000 g/kg, or any amount within a range of any of the forgoing.
  • the method for incorporating the pest control agent into the fish feed can include determining the final concentration of pest control agent that is incorporated as a part of the fish feed.
  • the determination of the final concentration can include sampling the fish feed using various quantitative analytical methods.
  • the fish feed samples can be extracted by a process of overnight protein precipitation in methanol. Following extraction the sample can be cleaned with SupelTM QuE Z-Sep+ (Sigma Aldrich, St. Louis, Missouri, USA) sorbent, which is a silica gel-based material having active zirconia-based phase, a particle size of approximately 50 pm, and a 70-angstrom (A) pore size.
  • the resulting extraction solution can be filtered through polytetrafluoroethylene filters having a pore size from 0.2 pm or greater.
  • Analysis of the final concentration of pest control agent in the fish feed samples can be performed using high performance liquid chromatography with ultraviolet detection (HPLC-UV).
  • the methods herein can include extracting a neem extract rich in azadirachtin A, including those having from at least 15 wt. % to 33 wt. % azadirachtin A, from at least 28 wt. % to 31 wt. % azadirachtin A, and from at least 29 wt. % to 30 wt. % azadirachtin A.
  • the method further can include the step of sealing the azadirachtin A-rich composition applied to a surface of the fish feed.
  • the azadirachtin A-rich composition can be sealed by applying a coating of fish oil to the azadirachtin A-rich composition coated fish feed. Any sealing substance used to seal the azadirachtin A-rich composition can be applied such that it coats all or a part of the azadirachtin A-rich composition coating.
  • the present disclosure further provides a pest control agent composition for administration to fish, where the pest control agent composition can include one or more pest control agents.
  • the pest control agent compositions are not a fish feed and are intended for separate or supplemental administration to fish in addition to a fish feed.
  • the pest control agent compositions can be provided separately for administration before, during, or after administration of the fish feeds.
  • the pest control agent compositions herein can be suitable for use in some aspects as a form of veterinary medicinal product or dietary supplement for reducing, preventing, or controlling pest infections or infestations in fish.
  • the pest control agent compositions can be administered to the fish at the concentrations described elsewhere herein.
  • the pest control agent compositions herein can be administered at from about 0.01 grams pest control agent per kilogram of fish feed (g/kg) to about 100 g/kg, as described elsewhere herein.
  • the pest control agent composition includes a neem extract rich in azadirachtin A.
  • the pest control agent compositions herein can include azadirachtin extracts rich in azadirachtin A.
  • the pest control agent composition can include a liquid, solid, or semi-solid form, and further can include one or more of an excipient, diluent, carrier, vitamins, minerals, or combinations thereof.
  • the pest control agent compositions can be in the form of a dietary supplement that is provided as any of granules, flakes, pellets, powders, tablets, pills, capsules, and the like. In various aspects, the pest control agent compositions herein can be formed into many shapes and sizes.
  • the fish feeds herein can be in the shape of a triangle, a square, a rectangle, a sphere, a diamond, a cylinder, a pellet, a clover, an amorphous shape, and the like.
  • the fish feeds can be formed by a process including one or more of extrusion, retort, cold-pressing, high-pressure processing, and the like.
  • the pest control agent composition can be provided in a form that is edible by fish but that does not provide nutrition to the fish.
  • the pest control agent composition can include a veterinary medicinal product that can include substances or combinations of substances to manage or prevent diseases in fish.
  • the pest control agent composition can also be formulated for parenteral administration.
  • the pest control agent composition can include pharmaceutically acceptable carriers, diluents, or excipients, or combinations thereof.
  • the pest control agent composition can be sterile.
  • the pest control agent compositions herein can be included in one or more types of fish feed designed for mixing with another composition, such as a base feed.
  • the pest control agent composition can be in the form of a premix, a concentrate, a base mix, a supplement, a top dress, liquid drench, or a combination thereof.
  • the pest control agent in the pest control agent compositions herein can include one or more agents for reducing, preventing, or controlling an infection or infestation caused or contributed by one or more pests, including any type of worms, helminths, flukes, bacteria, viruses, fungi, and protozoa, as described elsewhere.
  • Each pest control agent included in the pest control agent compositions can be individually capable of reducing, preventing, or controlling one or more of a parasitic, bacterial, viral, fungal, or protozoal infections or infestations.
  • the pest control agent compositions herein can include those exhibiting one or more inhibitory effects, including an antiparasitic effect, an antibacterial effect, an antiviral effect, an antifungal effect, an antiprotozoal effect, or any combinations thereof.
  • a pest control agent composition can be administered before during or after the administration of any of the fish feeds.
  • the pest control agent compositions can be administered with fish feed that does not contain a pest control agent.
  • the pest control agent compositions can be administered in conjunction with fish feed that does contain a pest control agent.
  • the separate pest control agent composition can include the same pest control agent as in the fish feed or it can be a different pest control agent than in the fish feed.
  • the separate pest control agent composition can be the same concentration as the pest control agent in the fish feed or it can be a different concentration than the pest control agent in the fish feed.
  • the pest control agent compositions herein can be included in the diet of fish in the form of a veterinary medicinal product or dietary supplement to any complete and balanced fish feed or can be provided as a component of a complete fish feed.
  • the pest control agents herein can be administered to fish in the fish feeds and pest control agent compositions. Management methods that utilize the pest control agents within fish feeds can be referred to as in-feed agent delivery methods. Thus, the present disclosure provides in-feed agent delivery methods for reducing, preventing, or controlling pests. It will be appreciated that an in-feed agent delivery method is not a process that applies the pest control agents topically to the target pests. Management methods herein can further utilize pest control agents in a nonfeed form such as a veterinary medicinal product or dietary supplement. Thus, the present disclosure further provides veterinary medicinal products or dietary supplements as agents for reducing, preventing, or controlling pests.
  • the pest control agents that are not included in fish feed can be administered to the fish in a separate pest control agent composition as a complement to fish feed, such as in the form of a veterinary medicinal product or a dietary supplement.
  • the fish feed can be administered at the same time or separately from a pest control agent composition.
  • the various pest control agents herein can be administered to fish that are sick, fish that are infested with parasites, fish that are otherwise healthy in order to prevent parasitic infection, or fish that are less aggressive due to a different infection or condition not associated with a pest infection or infestation. It will be understood that fish that are sick or less aggressive may eat less and therefore may consume lower concentrations of the pest control agent.
  • management methods that are based on the use of both fish feeds and pest control agent compositions can be particularly useful for managing fish whose appetites are affected by illness, infection, infestation, or being a less aggressive fish that generally eats less fish feed.
  • the concurrent use of a pest control agent composition with fish feed supplemented with a pest control agent can boost or ensure the correct concentration of pest control agent is administered to fish.
  • the concentration of pest control agent added to fish feeds or pest control agent compositions herein can be an amount effective to achieve the desired modulation of the behavior, development, or mortality of the pests as discussed elsewhere herein. It will be appreciated that the exact amount of pest control agent to be added to a fish feed or pest control agent compositions herein can vary depending on, for example, the species of fish, the number of fish to be fed, the extent of the infection or infestation, and the like. Other factors that influence the amount of pest control agent added to the fish feeds or pest control agent compositions include, for example, the presence of possible competitors for the feed (i.e.
  • the concentration of pest control agents added to a fish feed or pest control agent composition herein can include an amount effective to achieve a desired effect to modulate the behavior and development of the pests, where the amount effective includes one or more concentrations or ranges of concentrations as recited herein. It will be appreciated that the effective amount effective can be determined by performing a comparison to a control fish or group of fish not fed the pest control agents.
  • the fish feeds and pest control agent compositions can be formulated such that the concentration of the pest control agent administered to the fish through the fish feed or pest control agent compositions can be approximately 0.01-100 mg pest control agent per kg body weight/day (mg/kg/day), 1-90 mg/kg/day, 1-80 mg/kg/day, 1-70 mg/kg/day, 1-60 mg/kg/day, 5-50 mg/kg/day, 10-40 mg/kg/day, 15-35 mg/kg/day, 20-30 mg/kg/day, 0.01-10 mg/kg/day, or 0.01-5.0 mg/kg/day.
  • concentration of the pest control agent administered to the fish through the fish feed or pest control agent compositions can be approximately 0.01-100 mg pest control agent per kg body weight/day (mg/kg/day), 1-90 mg/kg/day, 1-80 mg/kg/day, 1-70 mg/kg/day, 1-60 mg/kg/day, 5-50 mg/kg/day, 10-40 mg/kg/day, 15-35 mg/kg/day, 20-30 mg
  • the pest control agent is administered to the fish in the fish feed at a targeted concentration from 0.01 mg to 5.0 mg azadirachtin A per kg body weight per day. In various aspects, the pest control agent is administered to the fish in the fish feed at a targeted d concentration from 1.5 mg to 2.5 mg azadirachtin A per kg body weight per day. In some aspects, the pest control agent is administered to the fish in the fish feed at a targeted concentration from 2.6 mg to 5.0 mg azadirachtin A per kg body weight per day.
  • the amount of pest control agent administered to the fish can include an amount effective to produce an inhibitory effect against one or more pests within a range of approximately 0.01-100 mg/kg/day (e.g., mg pest control agent/kg body weight/day) includes at least 0.01 mg/kg/day, 0.02 mg/kg/day, 0.03 mg/kg/day, 0.04 mg/kg/day, 0.05 mg/kg/day, 0.06 mg/kg/day, 0.07 mg/kg/day, 0.08 mg/kg/day, 0.09 mg/kg/day, 0.10 mg/kg/day, 0.20 mg/kg/day, 0.30 mg/kg/day, 0.40 mg/kg/day, 0.50 mg/kg/day, 0.60 mg/kg/day, 0.70 mg/kg/day, 0.80 mg/kg/day, 0.90 mg/kg/day, 1.0 mg/kg/day, 2.0 mg/kg/day, 3.0 mg/kg/day, 4.0 mg/kg/day, 5.0 mg/kg/day, 1.0 mg/kg/day, 2.0
  • a fish feed or pest control agent composition can be administered for a period of time for as long as required to achieve the desired inhibitory effect.
  • the pest control agent composition or fish feed can be administered over about a 10 to 20 days, or about 14-18 days.
  • the pest control agent composition, the fish feed, or both can be administered for consecutive days for 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, or 20 days, or for any number of days falling within a range of any of the forgoing.
  • the pest control agent composition or fish feeds herein can be administered for a longer period of time, such as past 20 days.
  • the fish feed or pest control agent can be administered for at least 11 days. In various aspects, the fish feed or pest control agent can be administered for at least 14 days. It should be understood that the time required for administration of the pest control agent composition or fish feeds herein can be of a variable length in order to target the developmental life stages of the pests present in a fish population, for water temperature, pest control agent concentration, or any combinations thereof. In some aspects, the pest control agents herein could be administered prophylactically in the diet of fish at an amount effective to prevent a pest infection or infestation from taking hold within a population of fish.
  • pest control agents herein could be administered prophylactically in the diet for any period of time during the fish life cycle, such as from stocking to harvest, seasonally, or during an infection or infestation outbreak within a population or within a nearby farm infection or infestation outbreak.
  • the pest control agents herein can be administered for non-consecutive days, where the pest control agent is administered for a predetermined period of time followed by a rest period, and then administered again for a predetermined period of time and followed by a rest period, and so on.
  • the pest control agent can be administered for three out of every 10 days.
  • the pest control agent can be administered for seven out of every 14 days.
  • the method for administering the pest control agent for predetermined period of time followed by a rest period can be repeated for as long as desired or until a pest infection or infestation is reduced, prevented, or controlled.
  • the pest control agent can be administered for a predetermined period of time, including from 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, or 10 days out of every 5 days to 30 days of rest in between administration.
  • the pest control agent composition or fish feed can be administered as many times per day as required to achieve the inhibitory effect.
  • the pest control agent composition or fish feeds described herein can be administered about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times a day.
  • a method for reducing, preventing, or controlling a viral infection or infestation in a fish population can include providing a fish feed including a neem extract rich in azadirachtin A, the neem extract including from 15 wt. % to 33 wt. % of azadirachtin A.
  • the method can include administering to one or more fish the fish feed including the neem extract rich in azadirachtin A, where the fish feed provides a concentration from 0.01 mg to 5.0 mg azadirachtin A per kg body weight per day to the one or more fish.
  • a method for reducing, preventing, or controlling a viral infection or infestation in fish can include providing a pest control agent composition including a pest control agent including neem extract rich in azadirachtin A.
  • the method can include administering the pest control agent composition to one or more fish for from 1 to 20 days during an infection or infestation, where the concentration of azadirachtin A administered to the fish through the pest control agent composition is from about 0.01 mg to 5 mg azadirachtin A per kg body weight per day.
  • any method can be directed at administering the fish feed to fish or fish populations experiencing a viral infection that is caused by one or more viruses including salmon isa virus, infectious pancreatic necrosis virus, piscine myocarditis virus, or piscine orthoreovirus.
  • any method can include where the bacterial infection is caused by salmon isa virus, and wherein the method further reduces one or more symptoms associated with Infectious salmon anemia as caused by salmon isa virus infection.
  • any method can include where the viral infection is caused by infectious pancreatic necrosis virus, and wherein the method further reduces one or more symptoms associated with infectious pancreatic necrosis as caused by infectious pancreatic necrosis virus infection.
  • any method can include where the viral infection is caused by piscine orthoreovirus, and wherein the method further reduces one or more symptoms associated with HSMI as caused by piscine orthoreovirus infection.
  • any method can include where the viral infection is caused by piscine myocarditis virus, and wherein the method further reduces one or more symptoms associated with CMS as caused by piscine myocarditis virus infection.
  • any method can include where the viral infection is caused by salmonid alpha virus, and wherein the method further reduces one or more symptoms associated with CMS as caused by piscine salmonid alpha virus.
  • any method can include where the viral infection is caused by tilapia lake virus, and wherein the method further reduces one or more symptoms associated with CMS as caused by tilapia lake virus infection.
  • any method can include where the concentration of azadirachtin A includes a concentration in an amount effective to increase efficacy of azadirachtin A against a viral infection or infestation as compared to fish fed a diet lacking the neem extract rich in azadirachtin A.
  • any method can include administering the fish feed to the farmed fish for at least 14 days.
  • any method can include where the neem extract rich in azadirachtin A is administered to the fish at a concentration from 1.5 mg to 2.5 mg azadirachtin A per kg body weight per day.
  • any method can include where the neem extract rich in azadirachtin A is administered to the fish at a concentration from 2.6 mg to 5.0 mg azadirachtin A per kg body weight per day.
  • any method can include where the fish feed further includes one or more components including antibacterial agents, antifungal agents, antiviral agents, antiparasitic agents, or antiprotozoal agents.
  • any method can include where the fish feed is administered to species of fish belonging to one or more families including Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini, and Salmonidae.
  • Family including Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini, and Salmonidae.
  • any method can include where the pest control agent is configured to produce an inhibitory effect including one or more of an antiparasitic effect, an antibacterial effect, an antiviral effect, an antifungal effect, or an antiprotozoal effect.
  • any method can include where the neem extract rich in azadirachtin A does not include neem oil.
  • any method can include where the neem extract rich in azadirachtin A is obtained by a method including the steps of providing neem seeds; crushing the neem seeds; extracting azadirachtin from the crushed seeds with water; adding a second extraction solution that includes a non-aqueous solvent which is not miscible with water and has a higher solubility of azadirachtin than water or a surfactant having a turbidity temperature between 20 °C and 80 °C; and recovering the concentrated azadirachtin from the second extraction solution.
  • Example 1 Effects of Azadirachtin A-Rich Compositions in Spleen., Liver, and Skin
  • Liver was included in the analysis mainly to assess possible side effects of the product. However, no side effects were observed. The metabolic changes were minor with no overlap between the intact and infected fish. Xenobiotic metabolism was not affected. A number of genes encoding immune factors was regulated in both directions (upregulations and downregulations). Concerning other functional groups, Lice stimulated tubulin cytoskeleton, protein biosynthesis, and RNA metabolism in the Test group.
  • a range of “about 0.1 % to about 5 %” or “about 0.1 % to 5 %” is to be interpreted to include not just about 0.1 % to about 5 %, but also the individual values (e.g., 1 %, 2 %, 3 %, and 4 %) and the sub-ranges (e.g., 0.1 % to 0.5 %, 1.1 % to 2.2 %, 3.3 % to 4.4 %) within the indicated range.
  • the statement “about X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise.
  • Embodiment 1 A method for reducing, preventing, or controlling a viral infection in a fish population comprising: providing a fish feed comprising a neem extract rich in azadirachtin A, the neem extract comprising from 15 wt. % to 33 wt. % of azadirachtin A; administering to one or more fish the fish feed comprising the neem extract rich in azadirachtin A; and wherein the fish feed provides a concentration from 0.01 mg to 5.0 mg azadirachtin A per kg body weight per day to the one or more fish.
  • Embodiment 2 The method of Embodiment 1, wherein the fish feed is administered to the farmed fish for at least 11 days.
  • Embodiment 3 The method of Embodiment 1, wherein the fish feed is administered to the farmed fish for at least 14 days.
  • Embodiment 4 The method of Embodiment 1, wherein the viral infection is caused by one or more viruses comprising salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • Embodiment 5 The method of Embodiment 1, wherein the viral infection is caused by salmon isa virus, and wherein the method further reduces one or more symptoms associated with infectious salmon anemia as caused by salmon isa virus infection.
  • Embodiment 6 The method of Embodiment 1, wherein the viral infection is caused by piscine orthoreovirus, and wherein the method further reduces one or more symptoms associated with heart and skeletal muscle inflammation as caused by piscine orthoreovirus infection.
  • Embodiment 7 The method of Embodiment 1, wherein the viral infection is caused by piscine myocarditis virus, and wherein the method further reduces one or more symptoms associated with cardiomyopathy syndrome as caused by piscine myocarditis virus infection.
  • Embodiment 8 The method of Embodiment 1, wherein the viral infection is caused by infectious pancreatic necrosis virus, and wherein the method further reduces one or more symptoms associated with infectious pancreatic necrosis as caused by infectious pancreatic necrosis virus infection.
  • Embodiment 9 The method of any of Embodiments 1-8, wherein the neem extract rich in azadirachtin A is administered to the fish at a concentration from 1.5 mg to 2.5 mg azadirachtin A per kg body weight per day.
  • Embodiment 10 The method of any of Embodiments 1-9, wherein the neem extract rich in azadirachtin A is administered to the fish at a concentration from 2.6 mg to 5.0 mg azadirachtin A per kg body weight per day.
  • Embodiment 11 The method of any of Embodiments 1-10, wherein the fish feed further comprises one or more components comprising antibacterial agents, antifungal agents, antiviral agents, antiparasitic agents, or antiprotozoal agents.
  • Embodiment 12 The method of any of Embodiments 1-11, wherein the fish feed is administered to species of fish belonging to one or more families comprising Cyprinidae, Cichlidae, Pangasiidae, Sciaenidae, Serranidae, Carangidae, Sparidae, Lateolabracidae, Moronidae, Mugilidae, Cypriniformes, Latidae, Eleotridae, Tilapiini, and Salmonidae.
  • Embodiment 13 The method of any of Embodiments 1-12, wherein the pest control agent is configured to produce an inhibitory effect comprising one or more of an antiparasitic effect, an antibacterial effect, an antiviral effect, an antifungal effect, or an antiprotozoal effect.
  • Embodiment 14 The method of any of Embodiments 1-13, wherein the neem extract rich in azadirachtin A does not comprise neem oil.
  • Embodiment 15 The method of any of Embodiments 1-14, wherein the neem extract rich in azadirachtin A is obtained by a method comprising the steps of: providing neem seeds; crushing the neem seeds; extracting azadirachtin from the crushed seeds with water; adding a second extraction solution that comprises: a non-aqueous solvent which is not miscible with water and has a higher solubility of azadirachtin than water; or a surfactant having a turbidity temperature between 20 °C and 80 °C; and recovering the concentrated azadirachtin from the second extraction solution.
  • a second extraction solution that comprises: a non-aqueous solvent which is not miscible with water and has a higher solubility of azadirachtin than water; or a surfactant having a turbidity temperature between 20 °C and 80 °C; and recovering the concentrated azadirachtin from the second extraction solution.
  • Embodiment 16 A method for reducing, preventing, or controlling a viral infection or infestation in fish comprising: providing a pest control agent composition comprising a pest control agent comprising neem extract rich in azadirachtin A; and administering the pest control agent composition to one or more fish for from 1 to 20 days during an infection or infestation; wherein the concentration of azadirachtin A administered to the fish through the pest control agent composition is from 0.01 mg to 5 mg azadirachtin A per kg body weight per day.
  • Embodiment 17 The method of Embodiment 16, wherein the viral infection is caused by one or more viruses comprising salmon isa virus, salmonid alpha virus, infectious pancreatic necrosis virus, piscine myocarditis virus, piscine orthoreovirus, or tilapia lake virus.
  • Embodiment 18 The method of Embodiment 16, wherein the viral infection is caused by salmon isa virus, and wherein the method further reduces one or more symptoms associated with infectious salmon anemia as caused by salmon isa virus infection.
  • Embodiment 19 The method of Embodiment 16, wherein the viral infection is caused by piscine orthoreovirus, and wherein the method further reduces one or more symptoms associated with heart and skeletal muscle inflammation as caused by piscine orthoreovirus infection.
  • Embodiment 20 The method of Embodiment 16, wherein the viral infection is caused by piscine myocarditis virus, and wherein the method further reduces one or more symptoms associated with cardiomyopathy syndrome as caused by piscine myocarditis virus infection.
  • Embodiment 21 The method of Embodiment 16, wherein the viral infection is caused by infectious pancreatic necrosis virus, and wherein the method further reduces one or more symptoms associated with infectious pancreatic necrosis as caused by infectious pancreatic necrosis virus infection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pest Control & Pesticides (AREA)
  • Polymers & Plastics (AREA)
  • Dentistry (AREA)
  • Insects & Arthropods (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Birds (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Abstract

La présente divulgation concerne un procédé de réduction, de prévention ou de lutte contre une infection virale dans une population de poissons. Le procédé comprend la fourniture d'un aliment pour poissons comprenant un extrait de margousier riche en azadirachtine A, l'extrait de margousier comprenant de 15 % en poids à 33 % en poids d'azadirachtine A et l'administration à un ou plusieurs poissons de l'aliment pour poissons comprenant l'extrait de margousier riche en azadirachtine A, l'aliment pour poissons fournissant une concentration de 0,01 mg à 5,0 mg d'azadirachtine A par kg de poids corporel par jour au ou aux poissons. La divulgation concerne également d'autres aspects.
PCT/US2023/077937 2022-10-28 2023-10-26 Compositions et procédés pour la gestion d'une maladie virale dans des systèmes d'aquaculture WO2024092141A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263381373P 2022-10-28 2022-10-28
US63/381,373 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024092141A1 true WO2024092141A1 (fr) 2024-05-02

Family

ID=88965771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2023/077937 WO2024092141A1 (fr) 2022-10-28 2023-10-26 Compositions et procédés pour la gestion d'une maladie virale dans des systèmes d'aquaculture

Country Status (1)

Country Link
WO (1) WO2024092141A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556562A (en) 1984-03-19 1985-12-03 Vikwood, Ltd. Stable anti-pest neem seed extract
US5695763A (en) 1991-03-22 1997-12-09 Trifolio-M Gmbh, Herstellung Und Vertrieb Method for the production of storage stable azadirachtin from seed kernels of the neem tree
WO2014140623A1 (fr) * 2013-03-15 2014-09-18 Neemco Limited Aliment enrichi pour poisson

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556562A (en) 1984-03-19 1985-12-03 Vikwood, Ltd. Stable anti-pest neem seed extract
US5695763A (en) 1991-03-22 1997-12-09 Trifolio-M Gmbh, Herstellung Und Vertrieb Method for the production of storage stable azadirachtin from seed kernels of the neem tree
WO2014140623A1 (fr) * 2013-03-15 2014-09-18 Neemco Limited Aliment enrichi pour poisson
US11096404B2 (en) 2013-03-15 2021-08-24 Can Technologies, Inc. Supplemented fish feed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MONDAL HAIMANTI ET AL: "Viral infections in cultured fish and shrimps: current status and treatment methods", AQUACULTURE INTERNATIONAL, SPRINGER NETHERLANDS, NL, vol. 30, no. 1, 4 November 2021 (2021-11-04), pages 227 - 262, XP037698348, ISSN: 0967-6120, [retrieved on 20211104], DOI: 10.1007/S10499-021-00795-2 *

Similar Documents

Publication Publication Date Title
Henry et al. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax
Ciji et al. Stress management in aquaculture: A review of dietary interventions
Teimouri et al. The effect of Spirulina platensis meal on antioxidant gene expression, total antioxidant capacity, and lipid peroxidation of rainbow trout (Oncorhynchus mykiss)
Talpur et al. Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch)
El-Sayed et al. Toxicity, biochemical effects and residue of aflatoxin B1 in marine water-reared sea bass (Dicentrarchus labrax L.)
Valenzuela-Gutiérrez et al. Exploring the garlic (Allium sativum) properties for fish aquaculture
Nwabueze The effect of garlic (Allium sativum) on growth and haematological parameters of Clarias gariepinus (Burchell, 1822)
Khalil et al. Embracing nanotechnology for selenium application in aquafeeds
Abd El-Hack et al. Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: an updated knowledge
Esquer-Miranda et al. Effects of methanolic macroalgae extracts from Caulerpa sertularioides and Ulva lactuca on Litopenaeus vannamei survival in the presence of Vibrio bacteria
EP2983496A1 (fr) Aliment enrichi pour poisson
EP3145521A1 (fr) Composé ou composition destinés à la prévention et/ou le traitement d'une infestation ou infection ectoparasitaire par le copépode chez le poisson
Elseady et al. Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus)
Wannavijit et al. Modulatory effects of longan seed powder on growth performance, immune response, and immune-antioxidant related gene expression in Nile tilapia (Oreochromis niloticus) raised under biofloc system
WO2019048776A9 (fr) Poudre d'insectes pour prevenir ou reduire le stress des poissons pendant l'elevage
Supamattaya et al. Effects of ochratoxin A and deoxynivalenol on growth performance and immuno-physiological parameters in black tiger shrimp (Penaeus monodon)
WO2024092141A1 (fr) Compositions et procédés pour la gestion d'une maladie virale dans des systèmes d'aquaculture
Shehata et al. Expression of reproduction and antioxidant-related genes in crayfish Cherax quadricarinatus fed with dietary feed additives
WO2024092130A1 (fr) Compositions et procédés pour la gestion d'une maladie bactérienne dans des systèmes d'aquaculture
Kumar et al. Effect of dietary astaxanthin on growth and immune response of Giant freshwater prawn Macrobrachium rosenbergii (de man)
WO2024092124A1 (fr) Compositions et procédés pour la gestion des maladies parasitaires non copépodes dans des systèmes d'aquaculture
El-Bab The synergy effect of Spirulina platensis and/or chitosan nanoparticles on the growth performance, hematological, biochemical parameters, and body composition of the European seabass (Dicentrarchus labrax)
WO2024092140A1 (fr) Compositions et procédés pour la gestion de co-infections par des nuisibles dans des systèmes d'aquaculture
Gbore et al. Ameliorative Potential of Vitamins on Haematological and Biochemical Profiles of Clarias gariepinus Fed Diets Contaminated with Fumonisin B1
Harikrishnan et al. Immune enhancement of chemotherapeutants on lymphocystis disease virus (LDV) infected Paralichthys olivaceus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23813209

Country of ref document: EP

Kind code of ref document: A1