WO2024090817A1 - Beverage-cooling apparatus capable of rapidly cooling and maintaining beverage at proper temperature - Google Patents

Beverage-cooling apparatus capable of rapidly cooling and maintaining beverage at proper temperature Download PDF

Info

Publication number
WO2024090817A1
WO2024090817A1 PCT/KR2023/014852 KR2023014852W WO2024090817A1 WO 2024090817 A1 WO2024090817 A1 WO 2024090817A1 KR 2023014852 W KR2023014852 W KR 2023014852W WO 2024090817 A1 WO2024090817 A1 WO 2024090817A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
beverage
housing
cooling device
container
Prior art date
Application number
PCT/KR2023/014852
Other languages
French (fr)
Korean (ko)
Inventor
박한진
김윤성
김의식
백지원
서지호
이상탁
전리오
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220172608A external-priority patent/KR20240059502A/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2024090817A1 publication Critical patent/WO2024090817A1/en

Links

Images

Definitions

  • the present disclosure relates to a beverage cooling device, and more specifically, to a beverage cooling device that can rapidly cool and maintain beverages at an appropriate temperature.
  • beverages are distributed in containers such as cans, glass bottles, or plastic bottles.
  • beverages have the most delicious temperature depending on the type of beverage, and the user may have a preferred temperature.
  • the beverage can be cooled by submerging the beverage container in cold water.
  • you can cool the beverage by cooling the beverage container using cold air or a cold brush.
  • the purpose of the present disclosure is to provide a beverage cooling device that can rapidly cool a beverage to an appropriate temperature and maintain the appropriate temperature.
  • a beverage cooling device includes a housing (10); A container receiving portion 20 that is installed inside the housing 10, forms a container chamber C in which a beverage container is accommodated, and includes a flexible side; Refrigerant accommodated between the housing 10 and the container receiving portion 20; a refrigerant control device (30) configured to adjust the amount of refrigerant between the housing (10) and the container receiving portion (20); It may include a refrigerant cooling device 40 configured to cool the refrigerant.
  • the refrigerant control device 30 adjusts the amount of refrigerant according to the type of beverage contained in the beverage container and adjusts the contact area between the flexible side of the container receiving portion 20 and the beverage container to optimize the beverage. It can be cooled and maintained at a temperature of
  • the container receiving portion 20 may be rotatably installed with respect to the housing 10.
  • the container receiving portion 20 may be provided to rotate by a motor installed at the lower portion of the housing 10.
  • the container receiving portion 20 includes a base plate 21; A support ring (23) installed on the upper side of the base plate (21); A plurality of connecting bars (26) connecting the base plate and the support ring (23); a plurality of support bars (22) extending upward from the base plate (21) and installed at regular intervals between the plurality of connection bars (26); and a flexible membrane 25 installed inside the plurality of support bars 22, the tip of which is fixed to the support ring 23, and forming the container chamber C.
  • the refrigerant control device 30 includes a cylinder 31; A piston (32) installed inside the cylinder (31); and a linear motor 35 that reciprocates the piston 32 in a straight line.
  • the refrigerant cooling device 40 may be provided separately from the housing 10.
  • the refrigerant cooling device 40 includes a discharge pipe 41 connected to the housing 10 and discharging the refrigerant of the housing 10; A radiator (42) connected to the discharge pipe (41) and lowering the temperature of the refrigerant; an inlet pipe (43) supplying the refrigerant discharged from the radiator (42) to the housing (10); and a circulation pump 44 installed in one of the discharge pipe 41 and the inflow pipe 43.
  • the radiator 42 may be configured to exchange heat with the heat exchanger of a refrigeration cycle including a compressor, a condenser, an expansion valve, and a heat exchanger.
  • the heat radiator 42 may be formed to exchange heat with a Peltier effect device 80.
  • the refrigerant cooling device 40 may include a plurality of Peltier elements 80 installed on the outer peripheral surface of the housing 10.
  • the refrigerant cooling device 40 may include a Peltier element cooling device 81 that cools the plurality of Peltier elements 80.
  • the refrigerant may include water.
  • the housing 10 may be installed at an angle with respect to the reference plane.
  • a beverage cooling device includes a temperature sensor configured to measure the temperature of the beverage container; A beverage recognition sensor configured to recognize the type of beverage contained in the beverage container; And controlling the refrigerant control device according to the temperature of the beverage container transmitted from the temperature sensor and the type of beverage transmitted from the beverage recognition sensor to adjust the contact area between the flexible side of the container receiving portion and the beverage container. It may further include a processor configured to cool the beverage to an optimal temperature and maintain the temperature of the cooled beverage.
  • a home appliance includes a housing (10); A container receiving portion 20 that is installed inside the housing 10, forms a container chamber C in which a beverage container is accommodated, and includes a flexible side; Refrigerant accommodated between the housing 10 and the container receiving portion 20; a refrigerant control device (30) configured to adjust the amount of refrigerant between the housing (10) and the container receiving portion (20); It may include a beverage cooling device including a refrigerant cooling device 40 configured to cool the refrigerant.
  • FIG. 1 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
  • Figure 2 is a perspective view showing the housing 10 of a beverage cooling device according to one or more embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of the housing 10 of FIG. 2 cut along line A-A.
  • FIG. 4 is a cross-sectional perspective view of the housing 10 of FIG. 2.
  • FIG. 5 is an exploded perspective view of the housing 10 of FIG. 2.
  • Figure 6 is a cross-sectional view showing a container receiving portion including a membrane fixing member.
  • Figure 7 is a diagram showing a state in which refrigerant is filled in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure.
  • Figure 8 is a diagram showing a state in which the refrigerant in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure is sucked into the refrigerant control device 30.
  • Figure 9 shows a state in which the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure is filled with refrigerant and the flexible side of the container receiving portion 20 is in close contact with the beverage container. It is a drawing.
  • FIG. 10 shows that only a portion of the refrigerant is accommodated in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure, and the lower portion of the flexible side of the container receiving portion 20 is in close contact with the beverage container. It is a drawing showing one state.
  • Figure 11 is a functional block diagram of a beverage cooling device according to one or more embodiments of the present disclosure.
  • Figure 12 is a flowchart for explaining the operation of a beverage cooling device according to one or more embodiments of the present disclosure.
  • Figure 13 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
  • FIG 14 is a functional block diagram of the beverage cooling device of Figure 13.
  • Figure 15 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
  • FIG 16 is a functional block diagram of the beverage cooling device of Figure 15.
  • Figure 17 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure formed from a single home appliance.
  • Figure 18 is a diagram showing a refrigerator installed with a beverage cooling device according to one or more embodiments of the present disclosure.
  • expressions such as “have,” “may have,” “includes,” or “may include” refer to the presence of the corresponding feature (e.g., component such as numerical value, function, operation, or part). , and does not rule out the existence of additional features.
  • expressions such as “A or B,” “at least one of A or/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B” (1) includes at least one A, (2) includes at least one B, or (3) it may refer to all cases including both at least one A and at least one B.
  • FIG. 1 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • the beverage cooling device 1 may include a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. You can.
  • the housing 10 may be formed to accommodate the refrigerant and the container receiving portion 20.
  • the housing 10 may be formed in the shape of a container with a bottom.
  • the internal space of the housing 10 may be formed in a cylindrical shape.
  • the container receiving portion 20 is installed inside the housing 10 and can form a container chamber C in which a beverage container is accommodated.
  • the container receiving portion 20 may include a flexible side that can be in contact with the beverage container inserted into the container chamber C.
  • the container receiving portion 20 may be formed in a substantially cylindrical shape.
  • the container receiving portion 20 may be formed in the shape of a cylindrical container with a bottom.
  • the diameter of the container receiving portion 20 may be smaller than the inner diameter of the housing 10. Accordingly, a ring-shaped space (hereinafter referred to as refrigerant chamber R) may be formed between the housing 10 and the container receiving portion 20.
  • refrigerant chamber R a ring-shaped space
  • Refrigerant may be accommodated in the refrigerant chamber (R) between the housing 10 and the container receiving portion 20.
  • the refrigerant may be formed to cool the beverage container inserted into the container receiving portion 20.
  • water can be used as a refrigerant.
  • the refrigerant control device 30 may be configured to adjust the amount of refrigerant in the refrigerant chamber (R) between the housing 10 and the container receiving portion 20.
  • the refrigerant control device 30 may be configured to inject refrigerant into the refrigerant chamber (R) or remove refrigerant from the refrigerant chamber (R).
  • the contact area between the refrigerant and the beverage container may increase.
  • the refrigerant control device 30 extracts the refrigerant and the amount of refrigerant in the refrigerant chamber (R) decreases, the contact area between the refrigerant and the beverage container may decrease. Accordingly, the refrigerant control device 30 can adjust the contact area between the flexible side of the container receiving portion 20 and the beverage container.
  • the flexible side of the container receiving part 20 can be brought into close contact with the beverage container. Then, the contact area between the beverage container and the refrigerant increases, so the beverage in the beverage container can be cooled rapidly.
  • the flexible side of the container receiving part 20 is not expanded, so the beverage container can be easily inserted into the container receiving part 20. can do.
  • the refrigerant regulator 30 may include a cylinder 31, a piston 32, and a linear motor 35.
  • a refrigerant pipe 37 connected to the housing 10 may be connected to the tip of the cylinder 31. That is, one end of the refrigerant pipe 37 may be connected to the tip of the cylinder 31, and the other end may be connected to the refrigerant chamber R of the housing 10.
  • a refrigerant hole 14 may be formed in the lower surface of the housing 10 corresponding to the refrigerant chamber R. The other end of the refrigerant pipe 37 may be connected to the refrigerant hole 14 of the housing 10.
  • the piston 32 is installed inside the cylinder 31 and can move linearly back and forth inside the cylinder 31. By the linear reciprocating movement of the piston 32, the refrigerant in the housing 10 may be sucked into the cylinder 31 of the refrigerant control device 30, or the refrigerant in the cylinder 31 may be discharged into the housing 10.
  • the linear motor 35 is formed to move the piston 32 in a straight line. That is, the piston 32 can reciprocate in a straight line inside the cylinder 31 by the linear motor 35.
  • the linear motor 35 may be formed so that the motor itself implements linear motion.
  • the linear motor 35 may be formed to implement linear reciprocating motion using a rotating motor and a linear movement mechanism that converts the rotational motion of the motor into linear motion.
  • One end of the rod 33 of the piston 32 may be fixed to the moving part 36 of the linear motor 35.
  • the piston 32 is fixed to the other end of the rod 33. Therefore, when the linear motor 35 operates, the piston 32 can move in a straight line by the moving part 36.
  • the refrigerant cooling device 40 may be configured to cool the refrigerant contained in the housing 10.
  • the refrigerant cooling device 40 may be provided separately from the housing 10. That is, the refrigerant cooling device 40 may be provided at a certain distance from the housing 10. As another example, the refrigerant cooling device 40 may be installed on the outer peripheral surface of the housing 10.
  • the refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44.
  • the discharge pipe 41 is connected to the housing 10 and is formed to discharge the refrigerant of the housing 10.
  • the discharge pipe 41 may be installed to connect the housing 10 and the radiator 42.
  • An outlet 12 may be formed in the lower portion of the outer peripheral surface of the housing 10.
  • the outlet 12 may be formed adjacent to the lower surface of the housing 10.
  • the outlet 12 may be formed to penetrate the side wall of the housing 10.
  • the discharge pipe 41 may be connected to the discharge port 12 of the housing 10. Accordingly, the refrigerant contained in the refrigerant chamber (R) of the housing 10 may flow into the discharge pipe 41 through the discharge port 12.
  • the refrigerant contained in the refrigerant chamber (R) of the housing 10 may flow to the radiator 42 through the discharge pipe 41.
  • the radiator 42 may be formed to lower the temperature of the refrigerant. That is, when the radiator 42 is connected to the discharge pipe 41, it is formed to cool the refrigerant discharged through the discharge pipe 41.
  • the inlet pipe 43 is formed to supply the refrigerant discharged from the radiator 42 to the housing 10.
  • the inflow pipe 43 may be installed to connect the housing 10 and the radiator 42.
  • An inlet 13 may be formed in the upper portion of the outer peripheral surface of the housing 10.
  • the inlet may be formed adjacent to the top of the housing 10.
  • the inlet 13 may be located higher than the outlet 12.
  • the inlet 13 may be formed to penetrate the side wall of the housing 10.
  • the inlet pipe 43 may be connected to the inlet 13 of the housing 10. Accordingly, the refrigerant flowing along the inlet pipe 43 may flow into the housing 10 through the inlet 13.
  • the refrigerant cooled in the radiator 42 may flow into the refrigerant chamber (R) of the housing 10 through the inlet pipe 43.
  • the circulation pump 44 is configured to circulate the refrigerant between the housing 10 and the radiator 42. Accordingly, the refrigerant can circulate along the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 by the circulation pump 44. That is, the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 may form a refrigerant circulation system.
  • Circulation pump 44 may be installed in the inlet pipe 43.
  • the circulation pump 44 operates, the refrigerant whose temperature has risen while cooling the beverage container can be cooled by moving to the radiator 42 through the discharge pipe 41.
  • the refrigerant cooled in the radiator 42 may be supplied to the refrigerant chamber (R) of the housing 10 through the inlet pipe 43. Accordingly, the refrigerant in the housing 10 can always be maintained at a constant temperature capable of cooling the beverage container.
  • the circulation pump 44 may be installed in the discharge pipe 41. Accordingly, the circulation pump 44 can be installed in any of the inlet pipe 43 and the discharge pipe 41 as long as it can circulate the refrigerant between the housing 10 and the radiator 42.
  • the radiator 42 is formed to cool the refrigerant introduced through the discharge pipe 41.
  • the radiator 42 may be configured to exchange heat with the heat exchanger 54 of the refrigeration cycle. Therefore, when the refrigerant passes through the radiator 42, the refrigerant can be cooled by heat exchange with the heat exchanger 54.
  • the refrigeration cycle may include a compressor 51, a condenser 52, an expansion valve 53, and a heat exchanger 54.
  • the refrigeration cycle may form a refrigerant cooling system that cools the refrigerant circulating along the refrigerant circulation system.
  • the refrigerant in the refrigeration cycle may cause a phase transition when it circulates through the compressor 51, condenser 52, expansion valve 53, and heat exchanger 54.
  • the refrigerant circulating between the housing 10 and the radiator 42 can exchange heat between the low temperature section and the high temperature section in a single phase state without phase change.
  • the circulation pump 44 when the circulation pump 44 operates, the refrigerant in the housing 10 flows into the radiator 42 through the discharge pipe 41, and the refrigerant flowing into the radiator 42 is connected to the heat exchanger 54 of the refrigeration cycle.
  • the temperature is lowered by heat exchange, and the refrigerant whose temperature has been lowered can flow into the housing 10 through the inlet pipe 43.
  • FIG. 2 is a perspective view showing the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view of the housing 10 of FIG. 2 cut along line A-A.
  • FIG. 4 is a cross-sectional perspective view of the housing 10 of FIG. 2.
  • FIG. 5 is an exploded perspective view of the housing 10 of FIG. 2.
  • the housing 10 may be formed in the shape of a container with a bottom.
  • the housing 10 may be formed in the shape of a cylindrical container with a bottom.
  • the internal space of the housing 10 may be formed in a cylindrical shape.
  • the container receiving portion 20 may be installed inside the housing 10.
  • the container receiving portion 20 is installed inside the housing 10 and can form a container chamber C in which a beverage container is accommodated.
  • the container receiving portion 20 may include a base plate 21, a support ring 23, a plurality of connecting bars 26, and a flexible membrane 25.
  • the base plate 21 is formed to support the lower surface of the beverage container.
  • the base plate 21 may be formed to have a size smaller than the inner diameter of the housing 10.
  • the rotational diameter of the base plate 21 may be smaller than the inner diameter of the housing 10.
  • the support ring 23 may be installed on the upper side of the base plate 21.
  • the support ring 23 may be installed on the upper side of the base plate 21 at a certain distance apart.
  • the support ring 23 may be formed to secure the edge of the flexible membrane 25.
  • the support ring 23 may be formed in a ring shape.
  • a plurality of bolt holes 23a may be provided on the upper surface of the support ring 23.
  • An upper seal 18 may be installed between the support ring 23 and the housing 10.
  • the upper seal 18 may be installed between the outer peripheral surface of the support ring 23 and the inner surface of the upper end of the housing 10.
  • the upper seal 18 is formed to prevent the refrigerant inside the housing 10 from leaking to the outside.
  • a plurality of connecting bars 26 may be formed to connect the base plate 21 and the support ring 23.
  • a plurality of connection bars 26 may be installed at right angles to the base plate 21 and the support ring 23.
  • a plurality of connecting bars 26 may be installed at regular intervals along the outer peripheral surface of the base plate 21.
  • Each of the plurality of connecting bars 26 may be formed in the shape of a long thin rod or bar.
  • the lower ends of the plurality of connection bars 26 may be fixed to the base plate 21, and the other ends may be fixed to the support ring 23. Accordingly, the base plate 21, the support ring 23, and the plurality of connection bars 26 can be formed as one body.
  • the base plate 21 and the support ring 23 are connected by three connecting bars 26.
  • the base plate 21 may be formed in a substantially triangular shape.
  • Three connecting bars 26 may be installed at the three vertices of the base plate 21.
  • the number of connecting bars 26 is not limited to this.
  • the plurality of connection bars 26 may include four or more connection bars 26.
  • the base plate 21 can be formed into a substantially circular or polygonal shape.
  • a plurality of support bars 22 may be installed on the base plate 21.
  • a plurality of support bars 22 are formed to support the side of the beverage container.
  • a plurality of support bars 22 may extend upward from the base plate 21.
  • a plurality of support bars 22 may be arranged in a circular shape on the upper surface of the base plate 21.
  • a plurality of support bars 22 may be installed spaced apart at regular intervals.
  • the plurality of support bars 22 may be arranged along a circle having a smaller diameter than the virtual circle formed by the plurality of connecting bars 26. Accordingly, the plurality of support bars 22 may be installed on the upper surface of the base plate 21 inside the plurality of connecting bars 26.
  • support bars 22 are installed on the base plate 21.
  • the number of support bars 22 is not limited to this. Depending on need, the number of support bars 22 may be less or more than 6.
  • Each of the plurality of support bars 22 may be formed in the shape of a long, thin bar.
  • the plurality of support bars 22 may be formed in the same shape.
  • the support bar 22 may be bent.
  • the bent portion 22a of the support bar 22 may be formed on the upper part of the support bar 22. That is, a portion of the upper part of the support bar 22 may be bent.
  • the support bar 22 may be formed to have a substantially hockey stick shape.
  • the flexible membrane 25 may be installed inside the plurality of support bars 22.
  • the flexible membrane 25 is approximately circular and may be formed in a concave shape with the central portion facing downward.
  • the flexible membrane 25 may include edges and recesses.
  • the concave portion may be provided in the center of the flexible membrane 25.
  • the edge of the flexible membrane 25 may be fixed to the support ring 23.
  • the central portion of the concave flexible film 25 is located on the upper surface of the base plate 21. Accordingly, the recessed portion of the flexible membrane 25 can form the container chamber C.
  • a fixing cap 27 may be installed on the upper surface of the support ring 23.
  • the fixing cap 27 may be formed to fix the edge of the flexible membrane 25 to the support ring 23.
  • the fixing cap 27 may be formed as a thin ring-shaped plate.
  • the fixing cap 27 may include a plurality of through holes 27a.
  • the plurality of through holes 27a may be formed to correspond to the plurality of bolt holes 23a of the support ring 23.
  • the flexible film 25 When the edge of the flexible film 25 is fixed to the support ring 23, the flexible film 25 has a substantially cylindrical shape and the top can be open.
  • the flexible membrane 25 forms a container chamber C in which a beverage container is accommodated. Accordingly, the flexible membrane 25 can form the flexible side of the container receiving portion 20.
  • the flexible membrane 25 can divide the internal space of the housing 10 into a container chamber (C) in which the beverage container is accommodated and a refrigerant chamber (R) in which the refrigerant is accommodated.
  • the container chamber (C) may be formed in a substantially cylindrical shape, and the refrigerant chamber (R) may be formed in an annular shape surrounding the container chamber (C).
  • the refrigerant may be contained in the annular-shaped refrigerant chamber (R) formed by the flexible membrane 25 and the inner surface of the housing 10. The refrigerant is blocked by the flexible membrane 25 and therefore does not flow into the container chamber C.
  • the flexible film 25 may be formed of flexible vinyl or plastic.
  • the flexible membrane 25 may be formed of low density polyethylene (LDPE), which has flexible properties.
  • LDPE low density polyethylene
  • the flexible membrane 25 may be compressed and come into close contact with the inside of the flexible membrane 25, that is, the outer peripheral surface of the beverage container inserted into the container chamber (C). Therefore, heat exchange between the refrigerant and the beverage inside the beverage container can be effectively performed.
  • the flexible membrane 25 When the refrigerant is drained from the refrigerant chamber (R), the flexible membrane 25 is restored to its original state and becomes loose. Then, the flexible membrane 25 falls off from the outer peripheral surface of the beverage container. Accordingly, the user can easily remove the beverage container from the container receiving portion 20.
  • the container receiving portion 20 may include a membrane fixing member 75.
  • Figure 6 is a cross-sectional view showing the container receiving portion 20 including the membrane fixing member 75.
  • the membrane fixing member 75 is formed to fix the lower surface of the flexible membrane 25 to the upper surface of the base plate 21.
  • the membrane fixing member 75 may include a first magnet 751 installed on the lower surface of the flexible membrane 25 and a second magnet 752 installed on the upper surface of the base plate 21.
  • the first magnet 751 may be installed at the center of the lower surface of the flexible membrane 25.
  • the second magnet 752 may be installed at the center of the upper surface of the base plate 21.
  • the first magnet 751 and the second magnet 752 are formed to attract each other. Therefore, when the flexible film 25 is installed on the base plate 21, the lower surface of the flexible film 25 will be fixed to the upper surface of the base plate 21 by the first magnet 751 and the second magnet 752. You can. In other words, the lower surface of the flexible membrane 25 can be fixed to the base plate 21 by the membrane fixing member 75.
  • the membrane fixing member 75 is formed of two magnets 751 and 752 has been described, but the membrane fixing member 75 is not limited to this.
  • a variety of one-touch connection structures may be used as the membrane fixing member 75.
  • the container receiving portion 20 may be rotatably installed with respect to the housing 10 .
  • the container receiving portion 20 may be formed to rotate by a motor 60 installed in the lower portion of the housing 10.
  • a rotation axis 24 may be installed on the lower surface of the base plate 21.
  • the rotation axis 24 may be installed perpendicularly to the lower surface of the base plate 21.
  • the rotation axis 24 may be formed integrally with the base plate 21.
  • a boss 16 may be installed on the lower surface of the housing 10.
  • the boss 16 may be formed to protrude downward from the lower surface of the housing 10.
  • a through hole may be provided in the center of the boss 16.
  • the rotation axis 24 of the base plate 21 may be inserted into the through hole of the boss 16.
  • the lower end of the rotation axis 24 of the base plate 21 may protrude downward from the boss 16 of the housing 10.
  • a lower seal 17 may be installed on the inner surface of the through hole of the boss 16.
  • the lower seal 17 may be formed to prevent refrigerant from leaking between the boss 16 and the rotating shaft 24.
  • the lower seal 17 may be formed as a rotating seal to support the rotation of the rotating shaft 24 of the base plate 21.
  • the upper seal 18 between the upper end of the housing 10 and the support ring 23 may also be formed as a rotating seal.
  • the support ring 23 can then rotate relative to the housing 10 . Accordingly, when the rotation shaft 24 rotates, the base plate 21, the plurality of connecting bars 26, the support ring 23, and the flexible membrane 25 can rotate as one body.
  • a motor 60 may be installed below the housing 10.
  • the motor 60 may be installed to rotate the rotation axis 24 of the base plate 21.
  • the motor 60 may be fixed to the housing 10 by a motor bracket 70.
  • the motor bracket 70 may fix the motor 60 to the housing 10 so that the shaft 61 of the motor 60 is positioned in a straight line with the rotation axis 24 of the base plate 21.
  • the shaft 61 of the motor 60 and the rotation axis 24 of the base plate 21 may be connected to the coupling 66. Therefore, when the shaft 61 of the motor 60 rotates, the rotation shaft 24 rotates, so the base plate 21 can rotate.
  • the base plate 21 rotates, the plurality of connecting bars 26, the support ring 23, the plurality of support bars 22, and the flexible membrane 25 installed on the base plate 21 can rotate integrally. there is. That is, the container receiving part 20 can be rotated by the motor 60.
  • the housing 10 When rotating the container receiving portion 20, the housing 10 may be installed at an angle. That is, the housing 10 may be installed at an angle with respect to the reference surface 5 (see FIG. 1). For example, the housing 10 can be installed at an angle with respect to the reference surface 5 with a fixing bracket 3 (see FIG. 1).
  • the rotation axis 24 of the base plate 21 and the shaft 61 of the motor 60 are also relative to the reference surface 5 at the same angle as the housing 10. It can be installed inclinedly.
  • the container receiving part 20 can rotate at a certain angle with respect to the reference surface 5.
  • the center line of the rotation axis 24 of the container receiving portion 20 may be inclined in a range of about 5 degrees to 40 degrees with respect to an imaginary straight line perpendicular to the reference surface 5.
  • the beverage container accommodated in the container receiving part 20 can be cooled quickly. That is, when the beverage container is rotated in an inclined state, the beverage contained in the beverage container can be cooled more quickly than when the beverage container is rotated in a vertical state.
  • FIG. 7 is a diagram showing a state in which the refrigerant chamber (R) of the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure is filled with the refrigerant (W).
  • refrigerant (W) is filled in the refrigerant chamber (R) of the housing (10). That is, the refrigerant (W) is filled up to the top of the refrigerant chamber (R) of the housing (10).
  • the refrigerant (W) can be circulated by the circulation pump (44). That is, the refrigerant W may circulate through the discharge pipe 41, the radiator 42, the inlet pipe 43, and the refrigerant chamber R of the housing 10 by the circulation pump 44.
  • Figure 8 is a diagram showing a state in which the refrigerant (W) of the refrigerant chamber (R) of the housing (10) of the beverage cooling device (1) according to one or more embodiments of the present disclosure is sucked into the refrigerant control device (30).
  • refrigerant (W) is filled in the cylinder 31 of the refrigerant control device 30. At this time, most of the refrigerant (W) moves to the cylinder (31), and only a small amount of refrigerant (W) remains in the refrigerant chamber (R) of the housing (10).
  • the amount of refrigerant (W) remaining in the refrigerant chamber (R) of the housing 10 may be determined so that the refrigerant (W) can circulate through the refrigerant cooling device (40). That is, the amount of refrigerant in the refrigerant chamber (R) of the housing 10 can be set so that the refrigerant (W) can circulate through the discharge pipe 41, the radiator 42, the inlet pipe 43, and the housing 10.
  • the refrigerant (W) remaining in the refrigerant chamber (R) of the housing 10 is discharged into the discharge pipe ( 41), it can be cooled by the refrigerant cooling device 40 while circulating through the radiator 42, the inlet pipe 43, and the housing 10.
  • the flexible membrane 25 of the container receiving portion 20 since force is not applied to the flexible membrane 25 of the container receiving portion 20 by the refrigerant W, the flexible membrane 25 may be in a loose state. In this state, a beverage container can be easily inserted into the container chamber (C) of the container receiving portion (20).
  • the refrigerant control device 30 can be operated to move the refrigerant in the cylinder 31 to the refrigerant chamber (R) of the housing 10. there is.
  • Figure 9 shows that the refrigerant chamber (R) of the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure is filled with refrigerant (W), so that the flexible side of the container receiving portion 20 is a beverage container.
  • This is a diagram showing a state in close contact with (100).
  • the piston 32 can move downward.
  • the refrigerant W in the cylinder 31 moves into the refrigerant chamber R of the housing 10 through the refrigerant pipe 37.
  • the piston 32 contacts the tip of the cylinder 31 all the refrigerant (W) inside the cylinder 31 moves to the refrigerant chamber (R) of the housing 10 and fills the refrigerant chamber (R).
  • the flexible membrane 25 of the container receiving portion 20 is contracted and comes into close contact with the outer peripheral surface of the beverage container 100. That is, the refrigerant W causes the flexible membrane 25 of the container receiving portion 20 to come into close contact with the outer peripheral surface of the beverage container 100 inserted into the container space C.
  • the flexible membrane 25 of the container receiving portion 20 When the flexible membrane 25 of the container receiving portion 20 is in close contact with the outer peripheral surface of the beverage container 100, the outer peripheral surface of the beverage container 100 and the refrigerant (W) in the refrigerant chamber (R) of the housing 10 are connected to the flexible membrane. Efficient heat exchange can be achieved through (25). Therefore, the beverage contained in the beverage container 100 can be quickly cooled by the refrigerant (W).
  • the linear motor 35 of the refrigerant control device 30 can be operated to move the piston 32 upward. Then, the refrigerant (W) contained in the refrigerant chamber (R) of the housing 10 can be sucked into the cylinder 31 through the refrigerant pipe 37.
  • the flexible membrane (25) of the container receiving portion (20) becomes loose. If the flexible membrane 25 becomes loose while the beverage container 100 is inserted into the container chamber C, the flexible membrane 25 falls off the outer peripheral surface of the beverage container 100, so the user must use the container receiving portion 20. The beverage container 100 can be easily removed from.
  • the beverage cooling device 1 can move only a portion of the refrigerant W in the housing 10 to the cylinder 31 as shown in FIG. 10 by operating the refrigerant control device 30.
  • Figure 10 shows that only a portion of the refrigerant (W) is accommodated in the refrigerant chamber (R) of the housing (10) of the beverage cooling device (1) according to one or more embodiments of the present disclosure, and the flexible membrane (25) of the container receiving portion (20) is ) is a diagram showing a state in which the lower part is in close contact with the beverage container 100.
  • the refrigerant chamber (R) of the housing 10 is filled with refrigerant (W) to approximately half its height, and the remaining refrigerant (W) is sucked into the cylinder 31 of the refrigerant control device 30. there is.
  • FIG. 10 shows a case where the refrigerant W is filled to approximately half the height of the refrigerant chamber R, but the height of the refrigerant chamber R filled with the refrigerant W is not limited to this.
  • the height of the refrigerant chamber (R) filled with the refrigerant (W) may be determined in various ways depending on the optimal temperature of the beverage contained in the container chamber (C) of the container receiving portion (20).
  • FIG 11 is a functional block diagram of a beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • the beverage cooling device 1 may include a refrigerant control device 30 and a processor 90 that controls the refrigerant cooling device 40.
  • the processor 90 can control the linear motor 35 of the refrigerant control device 30 to reciprocate the piston 32 straight up and down. Accordingly, the processor 90 can adjust the contact area between the beverage container 100 and the flexible membrane 25 by adjusting the amount of refrigerant in the refrigerant chamber (R) of the housing 10 using the linear motor 35.
  • the processor 90 may cool the refrigerant contained in the refrigerant chamber (R) of the housing 10 by controlling the compressor 51 and the circulation pump 44 of the refrigerant cooling device 40.
  • the processor 90 may control the circulation pump 44 to allow the refrigerant to circulate through the refrigerant chamber (R), discharge pipe 41, radiator 42, and inlet pipe 43 of the housing 10. there is.
  • the processor 90 may operate the compressor 51 to cool the refrigerant flowing into the radiator 42. That is, when the processor 90 operates the compressor 51 and the circulation pump 44 of the refrigerant cooling device 40, the refrigerant flows into the refrigerant chamber (R), the discharge pipe 41, the radiator 42, and the inlet pipe ( While circulating along 43), it can be cooled by the heat exchanger 54 of the refrigeration cycle in the radiator 42.
  • the processor 90 may control the motor 60 that rotates the container receiving portion 20. That is, the processor 90 can rotate the motor 60 to rotate the container receiving portion 20.
  • the beverage cooling device 1 may include a temperature sensor 91 and a beverage recognition sensor 92.
  • the processor 90 may receive temperature information from the temperature sensor 91 that measures the temperature of the beverage container 100.
  • the temperature sensor 91 is formed to measure the temperature of the beverage container 100 inserted into the container chamber C of the container receiving portion 20, generate temperature information, and transmit it to the processor 90.
  • the processor 90 may cool the beverage container 100 using temperature information input from the temperature sensor 91.
  • the processor 90 may receive beverage information from the beverage recognition sensor 92.
  • the beverage recognition sensor 92 recognizes the type of beverage contained in the beverage container 100 inserted into the container chamber C of the container receiving portion 20, generates beverage information, and transmits it to the processor 90. is formed
  • the processor 90 can cool the beverage container 100 to an appropriate temperature according to the type of beverage by using the beverage information input from the beverage recognition sensor 92.
  • the beverage recognition sensor 92 may be configured to recognize the type of beverage contained in the beverage container 100 in various ways.
  • the beverage recognition sensor 92 may be configured to recognize the type of beverage using a label attached to the outside of the beverage container 100.
  • Processor 90 may include memory 93.
  • the appropriate drinking temperature depending on the type of beverage can be stored in the memory 93.
  • the appropriate drinking temperature refers to the temperature at which the drinker can properly feel the taste of the beverage.
  • the appropriate drinking temperature for cola may be 3°C
  • the appropriate drinking temperature for beer may be 8°C
  • the appropriate drinking temperature for red wine may be 15°C
  • the appropriate drinking temperature for water may be 12°C.
  • the user's preferred drinking temperature may be stored in the memory 93 depending on the type of beverage.
  • Figure 12 is a flowchart for explaining the operation of the beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • the refrigerant control device 30 sucks the refrigerant (W) (S10). Specifically, when the processor 90 controls the linear motor 35 of the refrigerant control device 30 to move the piston 32, the refrigerant (W) contained in the refrigerant chamber (R) of the housing 10 is transferred to the refrigerant pipe. It can be sucked into the cylinder 31 of the refrigerant control device 30 through (37). As shown in FIG. 7, when the refrigerant W fills the cylinder 31 of the refrigerant control device 30, the flexible membrane 25 of the container receiving portion 20 becomes loose.
  • the user inserts the beverage container 100 into the housing 10 (S20). Specifically, the user inserts the beverage container 100 into the container chamber C of the housing 10.
  • the refrigerant (W) in the housing (10) moves to the cylinder (31) of the refrigerant control device (30), the flexible membrane (25) of the container receiving portion (20) is loosened, so the user can easily use the beverage container (100). It can be inserted into the container chamber (C) of the housing (10).
  • the refrigerant control device 30 fills the housing 10 with refrigerant (W) (S30). Specifically, when the beverage container 100 is inserted into the housing 10, the processor 90 controls the linear motor 35 of the refrigerant control device 30 to move the piston 32 in the opposite direction. Then, the refrigerant (W) in the cylinder (31) can move to the refrigerant chamber (R) of the housing (10) through the refrigerant pipe (37).
  • the flexible side of the container receiving portion 20 comes into close contact with the beverage container 100 (S40) . That is, the flexible membrane 25 is contracted by the pressure of the refrigerant (W) filled in the refrigerant chamber (R) and comes into close contact with the outer peripheral surface of the beverage container (100) located inside the container receiving portion (20).
  • the beverage container (100) inserted into the housing (10) is cooled by the refrigerant (W). begins to cool down.
  • the container receiving part 20 is rotated (S50). Specifically, the processor 90 controls the motor 60 to rotate the shaft 61. Then, the rotating shaft 24 connected to the shaft 61 rotates, so the container receiving portion 20 provided integrally with the rotating shaft 24 rotates.
  • the beverage container 100 Since the beverage container 100 is accommodated in the container chamber C of the container accommodating part 20, when the container accommodating part 20 rotates, the beverage container 100 can also rotate integrally. When the beverage container 100 rotates, a flow occurs in the beverage inside the beverage container 100, so the cooling rate of the beverage may increase. Therefore, when the beverage container 100 rotates, the beverage contained within the beverage container 100 can be cooled faster than when the beverage container 100 does not rotate.
  • the processor 90 determines whether the beverage container 100 has reached an appropriate temperature (S60).
  • the temperature sensor 91 measures the temperature of the beverage container 100 and generates temperature information
  • the beverage recognition sensor 92 is connected to the beverage container 100. Beverage information can be generated by recognizing the type of beverage received.
  • the processor 90 determines an appropriate beverage temperature, which is a target temperature for cooling the beverage container inserted into the container receiving portion, from the beverage information received from the beverage recognition sensor 92 and the appropriate drinking temperature according to the type of beverage stored in the memory 93. It can be recognized.
  • the processor 90 rotates the container receiving portion 20 using the motor 60 and measures the temperature of the beverage container 100 using the temperature sensor 91.
  • the processor 90 stops the rotation of the container receiving portion 20 (S70). That is, when the processor 90 turns off the motor 60, the container accommodating part 20 stops rotating.
  • the processor 90 may notify the outside that cooling of the beverage container 100 has been completed. For example, completion of cooling can be announced through sound or voice. Alternatively, completion of cooling can be notified through a mobile device such as a smart phone.
  • the processor 90 operates the refrigerant control device 30 to suck in refrigerant (S80). Specifically, the processor 90 operates the linear motor 35 of the refrigerant control device 30 to move the piston 32 in a direction away from the tip of the cylinder 31. Then, the refrigerant (W) in the refrigerant chamber (R) of the housing 10 can be sucked into the cylinder 31 through the refrigerant pipe 37.
  • the refrigerant cooling device 40 used in the beverage cooling device 1 according to one or more embodiments of the present disclosure is not limited thereto.
  • FIG. 13 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • FIG. 14 is a functional block diagram of the beverage cooling device 1 of FIG. 13.
  • the beverage cooling device 1 includes a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. may include.
  • the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
  • the refrigerant cooling device 40 may be configured to cool the refrigerant in the refrigerant chamber (R) of the housing 10.
  • the refrigerant cooling device 40 may be provided separately from the housing 10. That is, the refrigerant cooling device 40 may be provided at a certain distance from the housing 10.
  • the refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44.
  • the discharge pipe 41 is formed to discharge the refrigerant in the housing 10 to the radiator 42.
  • the discharge pipe 41 may be installed to connect the discharge port 12 of the housing 10 and the radiator 42. That is, one end of the discharge pipe 41 may be connected to the discharge port 12 of the housing 10, and the other end may be connected to the radiator 42. Accordingly, the refrigerant contained in the refrigerant chamber (R) of the housing 10 can flow to the radiator 42 through the discharge pipe 41.
  • the radiator 42 may be formed to lower the temperature of the refrigerant. That is, when the radiator 42 is connected to the discharge pipe 41, it is formed to cool the refrigerant discharged through the discharge pipe 41.
  • the inlet pipe 43 is formed to supply the refrigerant discharged from the radiator 42 to the housing 10.
  • the inlet pipe 43 may be installed to connect the inlet 13 of the housing 10 and the radiator 42. That is, one end of the inlet pipe 43 may be connected to the radiator 42, and the other end may be connected to the inlet 13 of the housing 10.
  • the refrigerant cooled in the radiator 42 may flow into the refrigerant chamber (R) of the housing 10 through the inflow pipe 43.
  • the circulation pump 44 is configured to circulate the refrigerant between the housing 10 and the radiator 42. Accordingly, the refrigerant can circulate along the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 by the circulation pump 44. That is, the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 may form a refrigerant circulation system.
  • Circulation pump 44 may be installed in the inlet pipe 43.
  • the refrigerant in the housing 10 whose temperature has risen while cooling the beverage container may be cooled by moving to the radiator 42 through the discharge pipe 41.
  • the refrigerant cooled in the radiator 42 may be supplied to the refrigerant chamber (R) of the housing 10 through the inlet pipe 43. Accordingly, the refrigerant in the housing 10 can be maintained at a constant temperature capable of cooling the beverage container.
  • the radiator 42 is formed to cool the refrigerant introduced through the discharge pipe 41.
  • the radiator 42 may be formed to allow the refrigerant to exchange heat with the Peltier effect device (80). Therefore, while the refrigerant passes through the radiator 42, the refrigerant can be cooled by heat exchange with the Peltier element 80.
  • the Peltier element 80 includes a low temperature part 80a and a high temperature part 80b.
  • the low temperature part 80a of the Peltier element 80 may be installed in the radiator 42, and a separate cooling device, that is, the Peltier element cooling device 81, may be installed in the high temperature part 80b.
  • the refrigerant passing through the radiator 42 can be cooled by heat exchange with the low temperature portion 80a of the Peltier element 80.
  • the high temperature portion 80b of the Peltier element 80 may be cooled by the Peltier element cooling device 81.
  • the Peltier element cooling device 81 may include a water block 82, a water pump 84, and a radiator 83.
  • the water block 82, water pump 84, and radiator 83 may be connected by a circulation pipe 85.
  • the water block 82 is installed in the high temperature part 80b of the Peltier element 80 and may be formed to cool the high temperature part 80b of the Peltier element 80.
  • the water block 82 is formed with an area corresponding to the high temperature portion 80b of the Peltier element 80 and is formed to accommodate water therein.
  • the water contained in the water block 82 can exchange heat with the high temperature portion 80b of the Peltier element 80 to lower the temperature of the high temperature portion 80b of the Peltier element 80. Water heated by heat exchange with the high temperature portion 80b of the Peltier element 80 may be discharged to the radiator 83.
  • the water pump 84 allows water to circulate through the water block 82 and the radiator 83 along the circulation pipe 85.
  • the radiator 83 is formed to cool water that has become high temperature through heat exchange with the high temperature portion 80b of the Peltier element 80. Water cooled by the radiator 83 may be supplied to the water block 82 by the water pump 84.
  • the processor 90 operates the Peltier element cooling device 81, the water pump 84 and the radiator 83 operate to circulate water to cool the high temperature portion 80b of the Peltier element 80. .
  • the circulation pump 44 of the refrigerant cooling device 40 operates, the refrigerant in the housing 10 flows into the radiator 42 through the discharge pipe 41, and the refrigerant flowing into the radiator 42 is connected to the Peltier element.
  • the temperature is lowered by heat exchange with the low temperature portion 80a of (80), and the refrigerant whose temperature has been lowered can flow into the housing 10 through the inlet pipe 43.
  • the high temperature portion 80b of the Peltier element 80 may be cooled by the Peltier element cooling device 81.
  • the refrigerant cooling device 40 is installed away from the housing 10 and the refrigerant circulates to cool the beverage container has been described, but the present disclosure is not limited to this.
  • the refrigerant cooling device 40 may be installed directly in the housing 10. In this case, there is no need to circulate the refrigerant.
  • FIG. 15 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • FIG. 16 is a functional block diagram of the beverage cooling device 1 of FIG. 15.
  • the beverage cooling device 1 includes a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. may include.
  • the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
  • the refrigerant cooling device 40 may be configured to cool the refrigerant in the refrigerant chamber (R) of the housing 10.
  • the refrigerant cooling device 40 may be installed on the outer peripheral surface of the housing 10.
  • the refrigerant cooling device 40 may include a Peltier element 80 and a Peltier element cooling device 81.
  • the Peltier element 80 may be installed on the outer peripheral surface of the housing 10.
  • the Peltier element 80 may be provided to cool the refrigerant by exchanging heat with the refrigerant contained in the refrigerant chamber (R) of the housing 10.
  • the Peltier element 80 may include a plurality of Peltier elements 80 installed at regular intervals along the outer peripheral surface of the housing 10.
  • the Peltier element 80 includes a low temperature part 80a and a high temperature part 80b.
  • the low temperature portion 80a of the Peltier element 80 is installed on the outer peripheral surface of the housing 10.
  • a Peltier element cooling device 81 may be installed in the high temperature portion 80b of the Peltier element 80. Accordingly, the high temperature portion 80b of the Peltier element 80 can be cooled by the Peltier element cooling device 81.
  • the Peltier element cooling device 81 may include a water block 82, a water pump 84, and a radiator 83.
  • the water block 82, water pump 84, and radiator 83 may be connected by a circulation pipe 85.
  • the water block 82 is installed in the high temperature part 80b of the Peltier element 80 and may be formed to cool the high temperature part 80b of the Peltier element 80.
  • the water block 82 is formed with an area corresponding to the high temperature portion 80b of the Peltier element 80 and is formed to accommodate water therein.
  • the water pump 84 allows water to circulate through the water block 82 and the radiator 83 along the circulation pipe 85.
  • the radiator 83 is formed to cool water that has become high temperature through heat exchange with the high temperature portion 80b of the Peltier element 80.
  • the processor 90 operates the Peltier element cooling device 81, the water pump 84 and the radiator 83 operate to circulate water to cool the high temperature portion 80b of the Peltier element 80. .
  • the refrigerant contained in the refrigerant chamber (R) of the housing 10 can be maintained at a low temperature.
  • the refrigerant may be cooled by heat exchange with the Peltier element 80 installed on the outer peripheral surface of the housing 10. Heat moving from the low temperature part 80a to the high temperature part 80b of the Peltier element 80 may be discharged to the outside by the Peltier element cooling device 81. Accordingly, the refrigerant in the refrigerant chamber (R) of the housing 10 can be maintained at a low temperature.
  • the beverage cooling device 1 may be formed as an independent home appliance or as a part of a home appliance equipped with a refrigeration cycle.
  • Figure 17 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure formed as a single home appliance.
  • the beverage cooling device 1 may be installed inside the main body 200.
  • the main body 200 may be configured to be transportable.
  • the main body 200 may be formed as a cylindrical case or a rectangular parallelepiped case with an empty interior.
  • the internal space of the main body 200 may accommodate a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40.
  • the housing 10 may be installed directly below the upper surface of the main body 200.
  • the container receiving portion 20 may be installed inside the housing 10.
  • the refrigerant control device 30 and the refrigerant cooling device 40 may be appropriately installed inside the main body 200.
  • the housing 10, the container receiving part 20, the refrigerant control device 30, and the refrigerant cooling device 40 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed descriptions are omitted.
  • An opening 201 communicating with the container chamber C of the housing 10 may be provided on the upper surface of the main body 200. The user can insert or remove a beverage container into the container chamber (C) of the housing (10) through the opening (201).
  • the beverage cooling device 1 As shown in FIG. 17, if the beverage cooling device 1 according to one or more embodiments of the present disclosure is formed as an independent home appliance, it can be easily transported, thereby increasing the convenience of use of the beverage cooling device 1. .
  • Figure 18 is a diagram showing a refrigerator 300 installed with a beverage cooling device 1 according to one or more embodiments of the present disclosure.
  • the beverage cooling device 1 may be installed in the refrigerator 300.
  • a housing 10, a container receiving portion 20, and a refrigerant control device 30 may be accommodated inside the refrigerator 300.
  • the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
  • the refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44.
  • the discharge pipe 41, the inlet pipe 43, and the circulation pump 44 are the same as those in the above-described embodiment.
  • the heat exchanger 54 of the radiator 42 may be connected to the refrigeration cycle 301 of the refrigerator 300. That is, the heat exchanger 54 of the radiator 42 can be connected to the refrigeration cycle 301 of the refrigerator 300 to cool the refrigerant passing through the radiator 42.
  • the beverage cooling device 1 can be installed in various home appliances equipped with a refrigeration cycle.
  • the beverage cooling device 1 according to one or more embodiments of the present disclosure may be installed in an air conditioner, dehumidifier, etc.
  • the beverage cooling device 1 cools the refrigerant in the refrigerant chamber R formed by the housing 10 and the flexible membrane 25 without direct contact with water or ice. You can use this to cool beverage containers quickly.
  • the beverage cooling device 1 can adjust the contact area, that is, the heat transfer area, between the flexible membrane 25 and the beverage container, so that the beverage contained in the beverage container is optimally adjusted according to the type of beverage. It can be cooled to a temperature of and the cooled temperature can be maintained.
  • the beverage cooling device 1 divides the refrigerant cooling device 40 into a refrigerant circulation system that circulates the refrigerant that cools the beverage container and a refrigerant cooling system that cools the refrigerant. Because it is formed, the cooling temperature of the beverage container can be effectively controlled.

Abstract

This beverage-cooling apparatus comprises: a housing (10); a container accommodation part (20), which is provided in the housing (10), forms a container chamber (C) in which a beverage container is accommodated, and includes a flexible side; a refrigerant accommodated between the housing (10) and the container accommodation part (20); a refrigerant adjuster (30) for adjusting the amount of refrigerant between the housing (10) and the container accommodation part (20); and a refrigerant cooler (40) for cooling the refrigerant. The refrigerant adjuster (30) adjusts the amount of refrigerant according to the type of beverage contained in the beverage container, and adjusts the contact area between the flexible side of the container accommodation part (20) and the beverage container so as to cool and maintain the beverage at an optimal temperature.

Description

적정 온도로 음료를 급속 냉각하고 유지할 수 있는 음료냉각장치Beverage cooling device that can rapidly cool and maintain beverages at the appropriate temperature
본 개시는 음료냉각장치에 관한 것으로서, 더욱 상세하게는 적정 온도로 음료를 급속 냉각하고 유지할 수 있는 음료냉각장치에 관한 것이다.The present disclosure relates to a beverage cooling device, and more specifically, to a beverage cooling device that can rapidly cool and maintain beverages at an appropriate temperature.
일반적으로 음료는 캔, 유리병, 또는 페트병과 같은 용기에 담긴 상태로 유통되고 있다.Generally, beverages are distributed in containers such as cans, glass bottles, or plastic bottles.
또한, 음료는 음료의 종류에 따라 가장 맛있는 온도가 있으며, 사용자가 좋아하는 온도가 있을 수 있다. Additionally, beverages have the most delicious temperature depending on the type of beverage, and the user may have a preferred temperature.
따라서, 사용자는 음료를 음료의 종류에 따라 적절한 온도로 냉각하여 마시는 것이 일반적이다.Therefore, it is common for users to drink beverages after cooling them to an appropriate temperature depending on the type of beverage.
예를 들면, 음료 용기를 냉장고에 넣어 음료를 냉각시킬 수 있다. 또는, 음료 용기를 차가운 물에 담가서 음료를 냉각시킬 수 있다. 또는 차가운 공기나 차가운 솔을 이용하여 음료 용기를 냉각시켜서 음료를 냉각 시킬 수 있다. For example, you can cool the beverage by placing the beverage container in the refrigerator. Alternatively, the beverage can be cooled by submerging the beverage container in cold water. Alternatively, you can cool the beverage by cooling the beverage container using cold air or a cold brush.
본 개시는 음료를 적정 온도로 급속으로 냉각시키고 적정 온도를 유지할 수 있는 음료냉각장치를 제공하는 것을 목적으로 한다.The purpose of the present disclosure is to provide a beverage cooling device that can rapidly cool a beverage to an appropriate temperature and maintain the appropriate temperature.
본 개시의 하나 이상의 실시 예에 의한 음료냉각장치는, 하우징(10); 상기 하우징(10)의 내부에 설치되고, 음료 용기가 수용되는 용기 챔버(C)를 형성하며, 플렉시블 측면을 포함하는 용기 수용부(20); 상기 하우징(10)과 상기 용기 수용부(20) 사이에 수용되는 냉매; 상기 하우징(10)과 상기 용기 수용부(20) 사이의 상기 냉매의 양을 조절하도록 형성된 냉매 조절장치(30); 상기 냉매를 냉각시키도록 형성된 냉매 냉각장치(40);를 포함할 수 있다. 상기 냉매 조절장치(30)는 상기 음료 용기에 담긴 음료의 종류에 따라 상기 냉매의 양을 조절하여 상기 용기 수용부(20)의 플렉시블 측면과 상기 음료 용기 사이의 접촉 면적을 조절하여 상기 음료를 최적의 온도로 냉각하고 유지할 수 있다.A beverage cooling device according to one or more embodiments of the present disclosure includes a housing (10); A container receiving portion 20 that is installed inside the housing 10, forms a container chamber C in which a beverage container is accommodated, and includes a flexible side; Refrigerant accommodated between the housing 10 and the container receiving portion 20; a refrigerant control device (30) configured to adjust the amount of refrigerant between the housing (10) and the container receiving portion (20); It may include a refrigerant cooling device 40 configured to cool the refrigerant. The refrigerant control device 30 adjusts the amount of refrigerant according to the type of beverage contained in the beverage container and adjusts the contact area between the flexible side of the container receiving portion 20 and the beverage container to optimize the beverage. It can be cooled and maintained at a temperature of
본 개시의 하나 이상의 실시 예에 따르면, 상기 용기 수용부(20)는 상기 하우징(10)에 대해 회전 가능하게 설치될 수 있다. According to one or more embodiments of the present disclosure, the container receiving portion 20 may be rotatably installed with respect to the housing 10.
본 개시의 하나 이상의 실시 예에 따르면, 상기 용기 수용부(20)는 상기 하우징(10)의 하부에 설치된 모터에 의해 회전할 수 있도록 마련될 수 있다. According to one or more embodiments of the present disclosure, the container receiving portion 20 may be provided to rotate by a motor installed at the lower portion of the housing 10.
본 개시의 하나 이상의 실시 예에 따르면, 상기 용기 수용부(20)는, 베이스 판(21); 상기 베이스 판(21)의 상측에 설치되는 지지 링(23); 상기 베이스 판과 상기 지지 링(23)을 연결하는 복수의 연결바(26); 상기 베이스 판(21)에서 상측으로 연장되며, 상기 복수의 연결바(26) 사이에 일정 간격으로 이격되어 설치되는 복수의 지지바(22); 및 상기 복수의 지지바(22) 내부에 설치되고, 선단이 상기 지지 링(23)에 고정되며, 상기 용기 챔버(C)를 형성하는 플렉시블 막(25);을 포함할 수 있다.According to one or more embodiments of the present disclosure, the container receiving portion 20 includes a base plate 21; A support ring (23) installed on the upper side of the base plate (21); A plurality of connecting bars (26) connecting the base plate and the support ring (23); a plurality of support bars (22) extending upward from the base plate (21) and installed at regular intervals between the plurality of connection bars (26); and a flexible membrane 25 installed inside the plurality of support bars 22, the tip of which is fixed to the support ring 23, and forming the container chamber C.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매 조절장치(30)는, 실린더(31); 상기 실린더(31) 내부에 설치되는 피스톤(32); 및 상기 피스톤(32)을 직선 왕복 이동시키는 리니어 모터(35);를 포함할 수 있다.According to one or more embodiments of the present disclosure, the refrigerant control device 30 includes a cylinder 31; A piston (32) installed inside the cylinder (31); and a linear motor 35 that reciprocates the piston 32 in a straight line.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매 냉각장치(40)는 상기 하우징(10)으로부터 떨어져서 마련될 수 있다. According to one or more embodiments of the present disclosure, the refrigerant cooling device 40 may be provided separately from the housing 10.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매 냉각장치(40)는, 상기 하우징(10)에 연결되며, 상기 하우징(10)의 냉매를 배출하는 배출관(41); 상기 배출관(41)에 연결에 연결되며, 냉매의 온도를 낮추는 방열기(42); 상기 방열기(42)에서 배출된 냉매를 상기 하우징(10)으로 공급하는 유입관(43); 및 상기 배출관(41)과 상기 유입관(43) 중 한 곳에 설치되는 순환 펌프(44);를 포함할 수 있다. According to one or more embodiments of the present disclosure, the refrigerant cooling device 40 includes a discharge pipe 41 connected to the housing 10 and discharging the refrigerant of the housing 10; A radiator (42) connected to the discharge pipe (41) and lowering the temperature of the refrigerant; an inlet pipe (43) supplying the refrigerant discharged from the radiator (42) to the housing (10); and a circulation pump 44 installed in one of the discharge pipe 41 and the inflow pipe 43.
본 개시의 하나 이상의 실시 예에 따르면, 상기 방열기(42)는 압축기, 응축기, 팽창밸브, 및 열교환기를 포함하는 냉동 사이클의 상기 열교환기와 열교환하도록 형성될 수 있다. According to one or more embodiments of the present disclosure, the radiator 42 may be configured to exchange heat with the heat exchanger of a refrigeration cycle including a compressor, a condenser, an expansion valve, and a heat exchanger.
본 개시의 하나 이상의 실시 예에 따르면, 상기 방열기(42)는 펠티에 소자(80)(peltier effect device)와 열교환하도록 형성될 수 있다. According to one or more embodiments of the present disclosure, the heat radiator 42 may be formed to exchange heat with a Peltier effect device 80.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매 냉각장치(40)는 상기 하우징(10)의 외주면에 설치된 복수의 펠티에 소자(80)를 포함할 수 있다. According to one or more embodiments of the present disclosure, the refrigerant cooling device 40 may include a plurality of Peltier elements 80 installed on the outer peripheral surface of the housing 10.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매 냉각장치(40)는 상기 복수의 펠티에 소자(80)를 냉각시키는 펠티에 소자 냉각장치(81)를 포함할 수 있다. According to one or more embodiments of the present disclosure, the refrigerant cooling device 40 may include a Peltier element cooling device 81 that cools the plurality of Peltier elements 80.
본 개시의 하나 이상의 실시 예에 따르면, 상기 냉매는 물을 포함할 수 있다.According to one or more embodiments of the present disclosure, the refrigerant may include water.
본 개시의 하나 이상의 실시 예에 따르면, 상기 하우징(10)은 기준면에 대해 경사지게 설치될 수 있다. According to one or more embodiments of the present disclosure, the housing 10 may be installed at an angle with respect to the reference plane.
본 개시의 하나 이상의 실시 예에 의한 음료냉각장치는 상기 음료 용기의 온도를 측정할 수 있도록 형성된 온도 센서; 상기 음료 용기에 담긴 음료의 종류를 인식할 수 있도록 형성된 음료 인식 센서; 및 상기 온도 센서에서 전송된 상기 음료 용기의 온도와 상기 음료 인식 센서에서 전송된 상기 음료의 종류에 따라 상기 냉매 조절장치를 제어하여, 상기 용기 수용부의 플렉시블 측면과 상기 음료 용기 사이의 접촉 면적을 조절함으로써 상기 음료를 최적의 온도로 냉각하고 냉각된 상기 음료의 온도를 유지하도록 형성된 프로세서;를 더 포함할 수 있다. A beverage cooling device according to one or more embodiments of the present disclosure includes a temperature sensor configured to measure the temperature of the beverage container; A beverage recognition sensor configured to recognize the type of beverage contained in the beverage container; And controlling the refrigerant control device according to the temperature of the beverage container transmitted from the temperature sensor and the type of beverage transmitted from the beverage recognition sensor to adjust the contact area between the flexible side of the container receiving portion and the beverage container. It may further include a processor configured to cool the beverage to an optimal temperature and maintain the temperature of the cooled beverage.
본 개시의 하나 이상의 실시 예에 의한 가전기기는, 하우징(10); 상기 하우징(10)의 내부에 설치되고, 음료 용기가 수용되는 용기 챔버(C)를 형성하며, 플렉시블 측면을 포함하는 용기 수용부(20); 상기 하우징(10)과 상기 용기 수용부(20) 사이에 수용되는 냉매; 상기 하우징(10)과 상기 용기 수용부(20) 사이의 상기 냉매의 양을 조절하도록 형성된 냉매 조절장치(30); 상기 냉매를 냉각시키도록 형성된 냉매 냉각장치(40);를 포함하는 음료냉각장치를 포함할 수 있다.A home appliance according to one or more embodiments of the present disclosure includes a housing (10); A container receiving portion 20 that is installed inside the housing 10, forms a container chamber C in which a beverage container is accommodated, and includes a flexible side; Refrigerant accommodated between the housing 10 and the container receiving portion 20; a refrigerant control device (30) configured to adjust the amount of refrigerant between the housing (10) and the container receiving portion (20); It may include a beverage cooling device including a refrigerant cooling device 40 configured to cool the refrigerant.
본 개시의 실시 예들의 상술하거나 다른 측면, 특징, 이익들은 첨부도면을 참조한 아래의 설명으로부터 더욱 명백해질 것이다. 첨부도면에서:The above and other aspects, features, and advantages of embodiments of the present disclosure will become more apparent from the following description with reference to the accompanying drawings. In the attached drawing:
도 1은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치를 나타내는 도면이다.1 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
도 2는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 하우징(10)을 나타내는 사시도이다.Figure 2 is a perspective view showing the housing 10 of a beverage cooling device according to one or more embodiments of the present disclosure.
도 3은 도 2의 하우징(10)을 선A-A를 따라 절단하여 나타낸 단면도이다.FIG. 3 is a cross-sectional view of the housing 10 of FIG. 2 cut along line A-A.
도 4는 도 2의 하우징(10)의 단면 사시도이다.FIG. 4 is a cross-sectional perspective view of the housing 10 of FIG. 2.
도 5는 도 2의 하우징(10)의 분해 사시도이다.FIG. 5 is an exploded perspective view of the housing 10 of FIG. 2.
도 6은 막 고정부재를 포함하는 용기 수용부를 나타내는 단면도이다. Figure 6 is a cross-sectional view showing a container receiving portion including a membrane fixing member.
도 7은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 하우징(10)의 냉매 챔버(R)에 냉매가 채워진 상태를 나타내는 도면이다.Figure 7 is a diagram showing a state in which refrigerant is filled in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure.
도 8은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 하우징(10)의 냉매 챔버(R)의 냉매가 냉매 조절장치(30)에 흡입된 상태를 나타내는 도면이다.Figure 8 is a diagram showing a state in which the refrigerant in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure is sucked into the refrigerant control device 30.
도 9는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 하우징(10)의 냉매 챔버(R)에 냉매가 채워져서 용기 수용부(20)의 플렉스블 측면이 음료 용기에 밀착한 상태를 나타내는 도면이다.Figure 9 shows a state in which the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure is filled with refrigerant and the flexible side of the container receiving portion 20 is in close contact with the beverage container. It is a drawing.
도 10은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 하우징(10)의 냉매 챔버(R)에 냉매가 일부만 수용되어 용기 수용부(20)의 플렉스블 측면의 아래 부분이 음료 용기에 밀착한 상태를 나타내는 도면이다.10 shows that only a portion of the refrigerant is accommodated in the refrigerant chamber (R) of the housing 10 of the beverage cooling device according to one or more embodiments of the present disclosure, and the lower portion of the flexible side of the container receiving portion 20 is in close contact with the beverage container. It is a drawing showing one state.
도 11은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 기능 블록도이다.Figure 11 is a functional block diagram of a beverage cooling device according to one or more embodiments of the present disclosure.
도 12는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치의 동작을 설명하기 위한 순서도이다.Figure 12 is a flowchart for explaining the operation of a beverage cooling device according to one or more embodiments of the present disclosure.
도 13은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치를 나타내는 도면이다.Figure 13 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
도 14는 도 13의 음료냉각장치의 기능 블록도이다.Figure 14 is a functional block diagram of the beverage cooling device of Figure 13.
도 15는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치를 나타내는 도면이다.Figure 15 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure.
도 16은 도 15의 음료냉각장치의 기능 블록도이다.Figure 16 is a functional block diagram of the beverage cooling device of Figure 15.
도 17은 하나의 가전기기로 형성된 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치를 나타내는 도면이다.Figure 17 is a diagram showing a beverage cooling device according to one or more embodiments of the present disclosure formed from a single home appliance.
도 18은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치가 설치된 냉장고를 나타내는 도면이다.Figure 18 is a diagram showing a refrigerator installed with a beverage cooling device according to one or more embodiments of the present disclosure.
본 실시 예들은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 특정한 실시 형태에 대해 범위를 한정하려는 것이 아니며, 본 개시의 실시 예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.Since these embodiments can be modified in various ways and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the scope to specific embodiments, and should be understood to include various modifications, equivalents, and/or alternatives to the embodiments of the present disclosure. In connection with the description of the drawings, similar reference numbers may be used for similar components.
본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. In describing the present disclosure, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present disclosure, the detailed description thereof will be omitted.
덧붙여, 하기 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 개시의 기술적 사상의 범위가 하기 실시 예에 한정되는 것은 아니다. 오히려, 이들 실시 예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 개시의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다.In addition, the following examples may be modified into various other forms, and the scope of the technical idea of the present disclosure is not limited to the following examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete and to completely convey the technical idea of the present disclosure to those skilled in the art.
본 개시에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 권리범위를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in this disclosure are merely used to describe specific embodiments and are not intended to limit the scope of rights. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 개시에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다. In the present disclosure, expressions such as “have,” “may have,” “includes,” or “may include” refer to the presence of the corresponding feature (e.g., component such as numerical value, function, operation, or part). , and does not rule out the existence of additional features.
본 개시에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.In the present disclosure, expressions such as “A or B,” “at least one of A or/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together. . For example, “A or B,” “at least one of A and B,” or “at least one of A or B” (1) includes at least one A, (2) includes at least one B, or (3) it may refer to all cases including both at least one A and at least one B.
본 개시에서 사용된 "제1," "제2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. Expressions such as “first,” “second,” “first,” or “second,” used in the present disclosure can modify various components regardless of order and/or importance, and can refer to one component. It is only used to distinguish from other components and does not limit the components.
또한, 본 개시에서 사용한 '선단', '후단', '상부', '하부', '상단', '하단' 등의 용어는 도면을 기준으로 정의한 것이며, 이 용어에 의해 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.In addition, terms such as 'front end', 'rear end', 'top', 'bottom', 'top', and 'bottom' used in the present disclosure are defined based on the drawings, and the shapes and shapes of each component are defined by these terms. Location is not limited.
이하, 첨부된 도면을 참조하여 본 개시에 의한 음료냉각장치(1)의 실시예에 대해 상세하게 설명한다.Hereinafter, an embodiment of the beverage cooling device 1 according to the present disclosure will be described in detail with reference to the attached drawings.
도 1은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)를 나타내는 도면이다.1 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure.
도 1을 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 하우징(10), 용기 수용부(20), 냉매 조절장치(30), 냉매 냉각장치(40)를 포함할 수 있다.Referring to Figure 1, the beverage cooling device 1 according to one or more embodiments of the present disclosure may include a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. You can.
하우징(10)은 냉매와 용기 수용부(20)를 수용할 수 있도록 형성될 수 있다. 하우징(10)은 바닥이 있는 용기 형상으로 형성될 수 있다. 하우징(10)의 내부 공간은 원통 형상으로 형성될 수 있다. The housing 10 may be formed to accommodate the refrigerant and the container receiving portion 20. The housing 10 may be formed in the shape of a container with a bottom. The internal space of the housing 10 may be formed in a cylindrical shape.
용기 수용부(20)는 하우징(10)의 내부에 설치되며, 음료 용기가 수용되는 용기 챔버(C)를 형성할 수 있다. 용기 수용부(20)는 용기 챔버(C)에 삽입된 음료 용기와 접촉할 수 있는 플렉시블 측면을 포함할 수 있다. The container receiving portion 20 is installed inside the housing 10 and can form a container chamber C in which a beverage container is accommodated. The container receiving portion 20 may include a flexible side that can be in contact with the beverage container inserted into the container chamber C.
용기 수용부(20)는 대략 원통 형상으로 형성될 수 있다. 용기 수용부(20)는 대략 바닥이 있는 원통의 용기 형상으로 형성될 수 있다. The container receiving portion 20 may be formed in a substantially cylindrical shape. The container receiving portion 20 may be formed in the shape of a cylindrical container with a bottom.
용기 수용부(20)의 지름은 하우징(10)의 안지름보다 작게 형성될 수 있다. 따라서, 하우징(10)과 용기 수용부(20) 사이에는 환 형상의 공간(이하, 냉매 챔버(R)라 한다)이 형성될 수 있다. The diameter of the container receiving portion 20 may be smaller than the inner diameter of the housing 10. Accordingly, a ring-shaped space (hereinafter referred to as refrigerant chamber R) may be formed between the housing 10 and the container receiving portion 20.
하우징(10)과 용기 수용부(20) 사이의 냉매 챔버(R)에는 냉매가 수용될 수 있다. 냉매는 용기 수용부(20)에 삽입된 음료 용기를 냉각시킬 수 있도록 형성될 수 있다. 예를 들면, 냉매로는 물을 사용할 수 있다.Refrigerant may be accommodated in the refrigerant chamber (R) between the housing 10 and the container receiving portion 20. The refrigerant may be formed to cool the beverage container inserted into the container receiving portion 20. For example, water can be used as a refrigerant.
냉매 조절장치(30)는 하우징(10)과 용기 수용부(20) 사이의 냉매 챔버(R)의 냉매 양을 조절하도록 형성될 수 있다. 냉매 조절장치(30)는 냉매 챔버(R)에 냉매를 주입하거나, 냉매 챔버(R)에서 냉매를 뺄 수 있도록 형성될 수 있다. The refrigerant control device 30 may be configured to adjust the amount of refrigerant in the refrigerant chamber (R) between the housing 10 and the container receiving portion 20. The refrigerant control device 30 may be configured to inject refrigerant into the refrigerant chamber (R) or remove refrigerant from the refrigerant chamber (R).
냉매 조절장치(30)가 냉매를 주입하여 냉매 챔버(R)의 냉매의 양이 증가하면, 냉매와 음료 용기의 접촉 면적이 증가할 수 있다. 냉매 조절장치(30)가 냉매를 빼내어 냉매 챔버(R)의 냉매의 양이 감소하면, 냉매와 음료 용기의 접촉 면적이 감소할 수 있다. 따라서, 냉매 조절장치(30)는 용기 수용부(20)의 플렉시블 측면과 음료 용기 사이의 접촉 면적을 조절할 수 있다. When the refrigerant control device 30 injects refrigerant and the amount of refrigerant in the refrigerant chamber R increases, the contact area between the refrigerant and the beverage container may increase. When the refrigerant control device 30 extracts the refrigerant and the amount of refrigerant in the refrigerant chamber (R) decreases, the contact area between the refrigerant and the beverage container may decrease. Accordingly, the refrigerant control device 30 can adjust the contact area between the flexible side of the container receiving portion 20 and the beverage container.
냉매 조절장치(30)에 의해 하우징(10)과 용기 수용부(20) 사이에 냉매가 최대로 채워지면, 용기 수용부(20)의 플렉시블 측면이 음료 용기에 밀착될 수 있다. 그러면, 음료 용기와 냉매의 접촉 면적이 커지므로 음료 용기의 음료를 급속하게 냉각시킬 수 있다. When the refrigerant is maximally filled between the housing 10 and the container receiving part 20 by the refrigerant control device 30, the flexible side of the container receiving part 20 can be brought into close contact with the beverage container. Then, the contact area between the beverage container and the refrigerant increases, so the beverage in the beverage container can be cooled rapidly.
냉매 조절장치(30)에 의해 냉매 챔버(R)의 냉매의 양이 최소로 되면, 용기 수용부(20)의 플렉시블 측면이 팽창되지 않은 상태이므로, 음료 용기를 용기 수용부(20)에 쉽게 삽입할 수 있다. When the amount of refrigerant in the refrigerant chamber (R) is minimized by the refrigerant control device 30, the flexible side of the container receiving part 20 is not expanded, so the beverage container can be easily inserted into the container receiving part 20. can do.
냉매 조절장치(30)는 실린더(31), 피스톤(32), 및 리니어 모터(35)를 포함할 수 있다. The refrigerant regulator 30 may include a cylinder 31, a piston 32, and a linear motor 35.
실린더(31)의 선단에는 하우징(10)과 연결되는 냉매관(37)이 연결될 수 있다. 즉, 냉매관(37)의 일단은 실린더(31)의 선단에 연결되고, 타단은 하우징(10)의 냉매 챔버(R)에 연결될 수 있다. 냉매 챔버(R)에 대응하는 하우징(10)의 하면에는 냉매 구멍(14)이 형성될 수 있다. 냉매관(37)의 타단은 하우징(10)의 냉매 구멍(14)에 연결될 수 있다.A refrigerant pipe 37 connected to the housing 10 may be connected to the tip of the cylinder 31. That is, one end of the refrigerant pipe 37 may be connected to the tip of the cylinder 31, and the other end may be connected to the refrigerant chamber R of the housing 10. A refrigerant hole 14 may be formed in the lower surface of the housing 10 corresponding to the refrigerant chamber R. The other end of the refrigerant pipe 37 may be connected to the refrigerant hole 14 of the housing 10.
피스톤(32)은 실린더(31) 내부에 설치되며, 실린더(31) 내부에서 직선 왕복 이동할 수 있다. 피스톤(32)의 직선 왕복 이동에 의해 하우징(10)의 냉매가 냉매 조절장치(30)의 실린더(31)로 흡입되거나, 실린더(31)의 냉매가 하우징(10)으로 배출될 수 있다. The piston 32 is installed inside the cylinder 31 and can move linearly back and forth inside the cylinder 31. By the linear reciprocating movement of the piston 32, the refrigerant in the housing 10 may be sucked into the cylinder 31 of the refrigerant control device 30, or the refrigerant in the cylinder 31 may be discharged into the housing 10.
리니어 모터(35)는 피스톤(32)을 직선 왕복 이동시킬 수 있도록 형성된다. 즉, 리니어 모터(35)에 의해 피스톤(32)이 실린더(31) 내부에서 직선 왕복 이동할 수 있다. The linear motor 35 is formed to move the piston 32 in a straight line. That is, the piston 32 can reciprocate in a straight line inside the cylinder 31 by the linear motor 35.
리니어 모터(35)는 모터 자체가 직선 운동을 구현하도록 형성될 수 있다. 또는, 리니어 모터(35)는 회전하는 모터와 모터의 회전운동을 직선운동으로 변환하는 직선이동기구를 이용하여, 직선 왕복 운동을 구현하도록 형성될 수 있다.The linear motor 35 may be formed so that the motor itself implements linear motion. Alternatively, the linear motor 35 may be formed to implement linear reciprocating motion using a rotating motor and a linear movement mechanism that converts the rotational motion of the motor into linear motion.
리니어 모터(35)의 이동부(36)에 피스톤(32) 로드(33)의 일단이 고정될 수 있다. 피스톤(32) 로드(33)의 타단에는 피스톤(32)이 고정되어 있다. 따라서, 리니어 모터(35)가 작동하면, 이동부(36)에 의해 피스톤(32)이 직선 왕복 이동을 할 수 있다.One end of the rod 33 of the piston 32 may be fixed to the moving part 36 of the linear motor 35. The piston 32 is fixed to the other end of the rod 33. Therefore, when the linear motor 35 operates, the piston 32 can move in a straight line by the moving part 36.
냉매 냉각장치(40)는 하우징(10)에 수용된 냉매를 냉각시키도록 형성될 수 있다. The refrigerant cooling device 40 may be configured to cool the refrigerant contained in the housing 10.
냉매 냉각장치(40)는 하우징(10)으로부터 떨어져서 마련될 수 있다. 즉, 냉매 냉각장치(40)는 하우징(10)에서 일정 거리 이격되어 마련될 수 있다. 다른 예로, 냉매 냉각장치(40)는 하우징(10)의 외주면에 설치될 수 있다. The refrigerant cooling device 40 may be provided separately from the housing 10. That is, the refrigerant cooling device 40 may be provided at a certain distance from the housing 10. As another example, the refrigerant cooling device 40 may be installed on the outer peripheral surface of the housing 10.
냉매 냉각장치(40)는 배출관(41), 방열기(42), 유입관(43), 순환 펌프(44)를 포함할 수 있다.The refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44.
배출관(41)은 하우징(10)에 연결되며, 하우징(10)의 냉매를 배출할 수 있도록 형성된다. 다시 말하면, 배출관(41)은 하우징(10)과 방열기(42)를 연결하도록 설치될 수 있다. The discharge pipe 41 is connected to the housing 10 and is formed to discharge the refrigerant of the housing 10. In other words, the discharge pipe 41 may be installed to connect the housing 10 and the radiator 42.
하우징(10)의 외주면의 하부에는 배출구(12)가 형성될 수 있다. 배출구(12)는 하우징(10)의 하면에 인접하게 형성될 수 있다. 배출구(12)는 하우징(10)의 측벽을 관통하도록 형성될 수 있다. 배출관(41)은 하우징(10)의 배출구(12)에 연결될 수 있다. 따라서, 하우징(10)의 냉매 챔버(R)에 수용된 냉매는 배출구(12)를 통해 배출관(41)으로 흐를 수 있다. An outlet 12 may be formed in the lower portion of the outer peripheral surface of the housing 10. The outlet 12 may be formed adjacent to the lower surface of the housing 10. The outlet 12 may be formed to penetrate the side wall of the housing 10. The discharge pipe 41 may be connected to the discharge port 12 of the housing 10. Accordingly, the refrigerant contained in the refrigerant chamber (R) of the housing 10 may flow into the discharge pipe 41 through the discharge port 12.
하우징(10)의 냉매 챔버(R)에 수용되어 있는 냉매는 배출관(41)을 통해 방열기(42)로 흐를 수 있다. The refrigerant contained in the refrigerant chamber (R) of the housing 10 may flow to the radiator 42 through the discharge pipe 41.
방열기(42)는 냉매의 온도를 낮출 수 있도록 형성될 수 있다. 즉, 방열기(42)는 배출관(41)에 연결되면, 배출관(41)을 통해 배출된 냉매를 냉각시킬 수 있도록 형성된다.The radiator 42 may be formed to lower the temperature of the refrigerant. That is, when the radiator 42 is connected to the discharge pipe 41, it is formed to cool the refrigerant discharged through the discharge pipe 41.
유입관(43)은 방열기(42)에서 배출된 냉매를 하우징(10)으로 공급할 수 있도록 형성된다. 다시 말하면, 유입관(43)은 하우징(10)과 방열기(42)를 연결하도록 설치될 수 있다. The inlet pipe 43 is formed to supply the refrigerant discharged from the radiator 42 to the housing 10. In other words, the inflow pipe 43 may be installed to connect the housing 10 and the radiator 42.
하우징(10)의 외주면의 상부에는 유입구(13)가 형성될 수 있다. 유입구는 하우징(10)의 상단에 인접하게 형성될 수 있다. 유입구(13)는 배출구(12)보다 높은 곳에 위치할 수 있다. 유입구(13)는 하우징(10)의 측벽을 관통하도록 형성될 수 있다. 유입관(43)은 하우징(10)의 유입구(13)에 연결될 수 있다. 따라서, 유입관(43)을 따라 흐르는 냉매는 유입구(13)를 통해 하우징(10)으로 유입될 수 있다. An inlet 13 may be formed in the upper portion of the outer peripheral surface of the housing 10. The inlet may be formed adjacent to the top of the housing 10. The inlet 13 may be located higher than the outlet 12. The inlet 13 may be formed to penetrate the side wall of the housing 10. The inlet pipe 43 may be connected to the inlet 13 of the housing 10. Accordingly, the refrigerant flowing along the inlet pipe 43 may flow into the housing 10 through the inlet 13.
따라서, 방열기(42)에서 냉각된 냉매는 유입관(43)을 통해 하우징(10)의 냉매 챔버(R)로 유입될 수 있다. Accordingly, the refrigerant cooled in the radiator 42 may flow into the refrigerant chamber (R) of the housing 10 through the inlet pipe 43.
순환 펌프(44)는 냉매를 하우징(10)과 방열기(42) 사이에서 순환시킬 수 있도록 형성된다. 따라서, 냉매는 순환 펌프(44)에 의해 하우징(10), 배출관(41), 방열기(42), 및 유입관(43)을 따라 순환할 수 있다. 즉, 하우징(10), 배출관(41), 방열기(42), 및 유입관(43)은 냉매 순환 시스템을 형성할 수 있다.The circulation pump 44 is configured to circulate the refrigerant between the housing 10 and the radiator 42. Accordingly, the refrigerant can circulate along the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 by the circulation pump 44. That is, the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 may form a refrigerant circulation system.
순환 펌프(44)는 유입관(43)에 설치될 수 있다. 순환 펌프(44)가 작동하면, 음료 용기를 냉각시키면서 온도가 상승한 냉매는 배출관(41)을 통해 방열기(42)로 이동하여 냉각될 수 있다. 방열기(42)에서 냉각된 냉매는 유입관(43)을 통해 하우징(10)의 냉매 챔버(R)로 공급될 수 있다. 따라서, 하우징(10)의 냉매는 항상 음료 용기를 냉각시킬 수 있는 일정 온도로 유지될 수 있다. Circulation pump 44 may be installed in the inlet pipe 43. When the circulation pump 44 operates, the refrigerant whose temperature has risen while cooling the beverage container can be cooled by moving to the radiator 42 through the discharge pipe 41. The refrigerant cooled in the radiator 42 may be supplied to the refrigerant chamber (R) of the housing 10 through the inlet pipe 43. Accordingly, the refrigerant in the housing 10 can always be maintained at a constant temperature capable of cooling the beverage container.
다른 예로, 순환 펌프(44)는 배출관(41)에 설치될 수도 있다. 따라서, 순환 펌프(44)는 하우징(10)과 방열기(42) 사이에서 냉매를 순환시킬 수 있으면, 유입관(43)과 배출관(41) 중 어느 곳에나 설치될 수 있다. As another example, the circulation pump 44 may be installed in the discharge pipe 41. Accordingly, the circulation pump 44 can be installed in any of the inlet pipe 43 and the discharge pipe 41 as long as it can circulate the refrigerant between the housing 10 and the radiator 42.
방열기(42)는 배출관(41)을 통해 유입된 냉매를 냉각시킬 수 있도록 형성된다. 방열기(42)는 냉동 사이클의 열교환기(54)와 열교환을 할 수 있도록 형성될 수 있다. 따라서, 냉매가 방열기(42)를 통과하면, 냉매는 열교환기(54)와 열교환을 하여 냉각될 수 있다.The radiator 42 is formed to cool the refrigerant introduced through the discharge pipe 41. The radiator 42 may be configured to exchange heat with the heat exchanger 54 of the refrigeration cycle. Therefore, when the refrigerant passes through the radiator 42, the refrigerant can be cooled by heat exchange with the heat exchanger 54.
냉동 사이클은 압축기(51), 응축기(52), 팽창밸브(53), 및 열교환기(54)를 포함할 수 있다. 냉동 사이클은 냉매 순환 시스템을 따라 순환하는 냉매를 냉각시키는 냉매 냉각 시스템을 형성할 수 있다.The refrigeration cycle may include a compressor 51, a condenser 52, an expansion valve 53, and a heat exchanger 54. The refrigeration cycle may form a refrigerant cooling system that cools the refrigerant circulating along the refrigerant circulation system.
냉동 사이클의 냉매는 압축기(51), 응축기(52), 팽창밸브(53), 및 열교환기(54)를 순환할 때, 상전이(phase transition)를 일으킬 수 있다. 그러나, 하우징(10)과 방열기(42) 사이를 순환하는 냉매는 상변화 없이 단상 상태에서 저온부와 고온부 사이에서 열을 교환할 수 있다. The refrigerant in the refrigeration cycle may cause a phase transition when it circulates through the compressor 51, condenser 52, expansion valve 53, and heat exchanger 54. However, the refrigerant circulating between the housing 10 and the radiator 42 can exchange heat between the low temperature section and the high temperature section in a single phase state without phase change.
따라서, 순환 펌프(44)가 작동하면, 하우징(10)의 냉매가 배출관(41)을 통해 방열기(42)로 유입되고, 방열기(42)로 유입된 냉매는 냉동 사이클의 열교환기(54)와의 열교환에 의해 온도가 낮아지며, 온도가 낮아진 냉매는 유입관(43)을 통해 하우징(10)으로 유입될 수 있다. Therefore, when the circulation pump 44 operates, the refrigerant in the housing 10 flows into the radiator 42 through the discharge pipe 41, and the refrigerant flowing into the radiator 42 is connected to the heat exchanger 54 of the refrigeration cycle. The temperature is lowered by heat exchange, and the refrigerant whose temperature has been lowered can flow into the housing 10 through the inlet pipe 43.
이하, 도 2 내지 도 5를 참조하여, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)과 용기 수용부(20)에 대해 상세하게 설명한다. Hereinafter, with reference to FIGS. 2 to 5, the housing 10 and the container receiving portion 20 of the beverage cooling device 1 according to one or more embodiments of the present disclosure will be described in detail.
도 2는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)을 나타내는 사시도이다. 도 3은 도 2의 하우징(10)을 선A-A를 따라 절단하여 나타낸 단면도이다. 도 4는 도 2의 하우징(10)의 단면 사시도이다. 도 5는 도 2의 하우징(10)의 분해 사시도이다.Figure 2 is a perspective view showing the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure. FIG. 3 is a cross-sectional view of the housing 10 of FIG. 2 cut along line A-A. FIG. 4 is a cross-sectional perspective view of the housing 10 of FIG. 2. FIG. 5 is an exploded perspective view of the housing 10 of FIG. 2.
도 2 내지 도 5를 참조하면, 본 개시의 하나 이상의 실시 예에 의한 하우징(10)은 바닥이 있는 용기 형상으로 형성될 수 있다. 예를 들면, 하우징(10)은 바닥이 있는 원통 용기 형상으로 형성될 수 있다. 하우징(10)의 내부 공간은 원통 형상으로 형성될 수 있다. 2 to 5, the housing 10 according to one or more embodiments of the present disclosure may be formed in the shape of a container with a bottom. For example, the housing 10 may be formed in the shape of a cylindrical container with a bottom. The internal space of the housing 10 may be formed in a cylindrical shape.
따라서, 하우징(10)의 내부에 용기 수용부(20)가 설치될 수 있다. Accordingly, the container receiving portion 20 may be installed inside the housing 10.
용기 수용부(20)는 하우징(10)의 내부에 설치되며, 음료 용기가 수용되는 용기 챔버(C)를 형성할 수 있다. The container receiving portion 20 is installed inside the housing 10 and can form a container chamber C in which a beverage container is accommodated.
용기 수용부(20)는 베이스 판(21), 지지 링(23), 복수의 연결바(26), 플렉시블 막(25)을 포함할 수 있다. The container receiving portion 20 may include a base plate 21, a support ring 23, a plurality of connecting bars 26, and a flexible membrane 25.
베이스 판(21)은 음료 용기의 하면을 지지하도록 형성된다. 베이스 판(21)은 하우징(10)의 안지름보다 작은 크기로 형성될 수 있다. 예를 들면, 베이스 판(21)의 회전 지름은 하우징(10)의 안지름보다 작도록 형성될 수 있다. The base plate 21 is formed to support the lower surface of the beverage container. The base plate 21 may be formed to have a size smaller than the inner diameter of the housing 10. For example, the rotational diameter of the base plate 21 may be smaller than the inner diameter of the housing 10.
지지 링(23)은 베이스 판(21)의 상측에 설치될 수 있다. 지지 링(23)은 베이스 판(21)의 상측으로 일정 거리 이격되어 설치될 수 있다. 지지 링(23)은 플렉시블 막(25)의 가장자리를 고정할 수 있도록 형성될 수 있다. 지지 링(23)은 환 형상으로 형성될 수 있다. 지지 링(23)의 상면에는 복수의 볼트 구멍(23a)이 마련될 수 있다. The support ring 23 may be installed on the upper side of the base plate 21. The support ring 23 may be installed on the upper side of the base plate 21 at a certain distance apart. The support ring 23 may be formed to secure the edge of the flexible membrane 25. The support ring 23 may be formed in a ring shape. A plurality of bolt holes 23a may be provided on the upper surface of the support ring 23.
지지 링(23)과 하우징(10) 사이에는 상부 실(18)이 설치될 수 있다. 예를 들면, 지지 링(23)의 외주면과 하우징(10)의 상단부의 내면 사이에 상부 실(18)이 설치될 수 있다. 상부 실(18)은 하우징(10) 내부의 냉매가 외부로 누출되는 것을 방지할 수 있도록 형성된다.An upper seal 18 may be installed between the support ring 23 and the housing 10. For example, the upper seal 18 may be installed between the outer peripheral surface of the support ring 23 and the inner surface of the upper end of the housing 10. The upper seal 18 is formed to prevent the refrigerant inside the housing 10 from leaking to the outside.
복수의 연결바(26)는 베이스 판(21)과 지지 링(23)을 연결하도록 형성될 수 있다. 복수의 연결바(26)는 베이스 판(21)과 지지 링(23)에 대해 직각으로 설치될 수 있다. 복수의 연결바(26)는 베이스 판(21)의 외주면을 따라 일정 간격으로 이격되어 설치될 수 있다. 복수의 연결바(26) 각각은 가늘고 긴 봉 또는 바 형상으로 형성될 수 있다. A plurality of connecting bars 26 may be formed to connect the base plate 21 and the support ring 23. A plurality of connection bars 26 may be installed at right angles to the base plate 21 and the support ring 23. A plurality of connecting bars 26 may be installed at regular intervals along the outer peripheral surface of the base plate 21. Each of the plurality of connecting bars 26 may be formed in the shape of a long thin rod or bar.
복수의 연결바(26)의 하단은 베이스 판(21)에 고정되고, 타단은 지지 링(23)에 고정될 수 있다. 따라서, 베이스 판(21), 지지 링(23), 및 복수의 연결바(26)는 하나의 몸체로 형성될 수 있다. The lower ends of the plurality of connection bars 26 may be fixed to the base plate 21, and the other ends may be fixed to the support ring 23. Accordingly, the base plate 21, the support ring 23, and the plurality of connection bars 26 can be formed as one body.
본 실시예의 경우에는 3개의 연결바(26)에 의해 베이스 판(21)과 지지 링(23)이 연결되어 있다. 베이스 판(21)은 대략 삼각형 형상으로 형성될 수 있다. 베이스 판(21)의 3개의 꼭지점에 3개의 연결바(26)가 설치될 수 있다. In this embodiment, the base plate 21 and the support ring 23 are connected by three connecting bars 26. The base plate 21 may be formed in a substantially triangular shape. Three connecting bars 26 may be installed at the three vertices of the base plate 21.
그러나, 연결바(26)의 개수는 이에 한정되는 것은 아니다. 다른 예로, 복수의 연결바(26)는 4개 이상의 연결바(26)를 포함할 수 있다. 이 경우, 베이스 판(21)은 대략 원형 또는 다각형으로 형성할 수 있다. However, the number of connecting bars 26 is not limited to this. As another example, the plurality of connection bars 26 may include four or more connection bars 26. In this case, the base plate 21 can be formed into a substantially circular or polygonal shape.
베이스 판(21)에는 복수의 지지바(22)가 설치될 수 있다. 복수의 지지바(22)는 음료 용기의 측면을 지지하도록 형성된다. A plurality of support bars 22 may be installed on the base plate 21. A plurality of support bars 22 are formed to support the side of the beverage container.
복수의 지지바(22)는 베이스 판(21)에서 상측으로 연장될 수 있다. 복수의 지지바(22)는 베이스 판(21)의 상면에 원형으로 배치될 수 있다. 복수의 지지바(22)는 일정 간격으로 이격되어 설치될 수 있다. A plurality of support bars 22 may extend upward from the base plate 21. A plurality of support bars 22 may be arranged in a circular shape on the upper surface of the base plate 21. A plurality of support bars 22 may be installed spaced apart at regular intervals.
복수의 지지바(22)는 복수의 연결바(26)에 의해 형성되는 가상의 원보다 작은 지름을 갖는 원을 따라 배치될 수 있다. 따라서, 복수의 지지바(22)는 복수의 연결바(26) 내측으로 베이스 판(21)의 상면에 설치될 수 있다. The plurality of support bars 22 may be arranged along a circle having a smaller diameter than the virtual circle formed by the plurality of connecting bars 26. Accordingly, the plurality of support bars 22 may be installed on the upper surface of the base plate 21 inside the plurality of connecting bars 26.
본 실시예의 경우에는 베이스 판(21)에 6개의 지지바(22)가 설치되어 있다. 그러나, 지지바(22)의 개수는 이에 한정되는 것은 아니다. 필요에 따라 지지바(22)의 개수는 6개보다 적거나 많을 수 있다. In this embodiment, six support bars 22 are installed on the base plate 21. However, the number of support bars 22 is not limited to this. Depending on need, the number of support bars 22 may be less or more than 6.
복수의 지지바(22) 각각은 가늘고 긴 바 형상으로 형성될 수 있다. 복수의 지지바(22)는 동일한 형상으로 형성될 수 있다. 지지바(22)는 굽힘 가공될 수 있다. 지지바(22)의 굽힘부(22a)는 지지바(22)의 상부에 형성될 수 있다. 즉, 지지바(22)의 상부 일부가 굽힘 가공될 수 있다. 예를 들면, 지지바(22)는 대략 하키 스틱 형상으로 형성될 수 있다.Each of the plurality of support bars 22 may be formed in the shape of a long, thin bar. The plurality of support bars 22 may be formed in the same shape. The support bar 22 may be bent. The bent portion 22a of the support bar 22 may be formed on the upper part of the support bar 22. That is, a portion of the upper part of the support bar 22 may be bent. For example, the support bar 22 may be formed to have a substantially hockey stick shape.
플렉시블 막(25)은 복수의 지지바(22) 내측에 설치될 수 있다. 플렉시블 막(25)은 대략 원형이며 중앙부가 아래로 쳐진 오목한 형상으로 형성될 수 있다. 다시 말하면, 플렉시블 막(25)은 가장자리와 오목부를 포함할 수 있다. 오목부는 플렉시블 막(25)의 중앙부에 마련될 수 있다. 플렉시블 막(25)의 가장자리는 지지 링(23)에 고정될 수 있다. 그러면, 오목한 플렉시블 막(25)의 중앙부는 베이스 판(21)의 상면에 위치하게 된다. 따라서, 플렉시블 막(25)의 오목부는 용기 챔버(C)를 형성할 수 있다.The flexible membrane 25 may be installed inside the plurality of support bars 22. The flexible membrane 25 is approximately circular and may be formed in a concave shape with the central portion facing downward. In other words, the flexible membrane 25 may include edges and recesses. The concave portion may be provided in the center of the flexible membrane 25. The edge of the flexible membrane 25 may be fixed to the support ring 23. Then, the central portion of the concave flexible film 25 is located on the upper surface of the base plate 21. Accordingly, the recessed portion of the flexible membrane 25 can form the container chamber C.
지지 링(23)의 상면에는 고정 캡(27)이 설치될 수 있다. 고정 캡(27)은 플렉시블 막(25)의 가장자리를 지지 링(23)에 고정하도록 형성될 수 있다. 고정 캡(27)은 환 형상의 얇은 판으로 형성될 수 있다. 고정 캡(27)은 복수의 관통공(27a)을 포함할 수 있다. 복수의 관통공(27a)은 지지 링(23)의 복수의 볼트 구멍(23a)에 대응하도록 형성될 수 있다. A fixing cap 27 may be installed on the upper surface of the support ring 23. The fixing cap 27 may be formed to fix the edge of the flexible membrane 25 to the support ring 23. The fixing cap 27 may be formed as a thin ring-shaped plate. The fixing cap 27 may include a plurality of through holes 27a. The plurality of through holes 27a may be formed to correspond to the plurality of bolt holes 23a of the support ring 23.
따라서, 플렉시블 막(25)의 가장자리를 지지 링(23)과 고정 캡(27) 사이에 위치시키고, 복수의 볼트로 고정 캡(27)을 지지 링(23)에 고정하면, 플렉시블 막(25)이 지지 링(23)에 고정될 수 있다. Therefore, when the edge of the flexible membrane 25 is positioned between the support ring 23 and the fixed cap 27 and the fixed cap 27 is fixed to the support ring 23 with a plurality of bolts, the flexible membrane 25 It can be fixed to this support ring (23).
플렉시블 막(25)의 가장자리를 지지 링(23)에 고정하면, 플렉시블 막(25)은 대략 원통 형상을 이루며, 상단이 개방될 수 있다. When the edge of the flexible film 25 is fixed to the support ring 23, the flexible film 25 has a substantially cylindrical shape and the top can be open.
플렉시블 막(25)은 음료 용기가 수용되는 용기 챔버(C)를 형성한다. 따라서, 플렉시블 막(25)은 용기 수용부(20)의 플렉시블 측면을 형성할 수 있다. The flexible membrane 25 forms a container chamber C in which a beverage container is accommodated. Accordingly, the flexible membrane 25 can form the flexible side of the container receiving portion 20.
플렉시블 막(25)은 하우징(10)의 내부 공간을 음료 용기가 수용되는 용기 챔버(C)와 냉매가 수용되는 냉매 챔버(R)로 구획할 수 있다. 용기 챔버(C)는 대략 원통 형상으로 형성되고, 냉매 챔버(R)는 용기 챔버(C)를 둘러싸는 환형 형상으로 형성될 수 있다. The flexible membrane 25 can divide the internal space of the housing 10 into a container chamber (C) in which the beverage container is accommodated and a refrigerant chamber (R) in which the refrigerant is accommodated. The container chamber (C) may be formed in a substantially cylindrical shape, and the refrigerant chamber (R) may be formed in an annular shape surrounding the container chamber (C).
냉매는 플렉시블 막(25)과 하우징(10)의 내면으로 형성되는 환형 형상의 냉매 챔버(R)에 수용될 수 있다. 냉매는 플렉시블 막(25)에 의해 차단되므로 용기 챔버(C)로 유입되지 않는다.The refrigerant may be contained in the annular-shaped refrigerant chamber (R) formed by the flexible membrane 25 and the inner surface of the housing 10. The refrigerant is blocked by the flexible membrane 25 and therefore does not flow into the container chamber C.
플렉시블 막(25)은 플렉시블한 비닐 또는 플라스틱으로 형성될 수 있다. 예를 들면, 플렉시블 막(25)는 플렉시블한 특성을 갖는 저밀도 폴리에틸렌(LDPE; low density polyethylene)으로 형성될 수 있다. The flexible film 25 may be formed of flexible vinyl or plastic. For example, the flexible membrane 25 may be formed of low density polyethylene (LDPE), which has flexible properties.
따라서, 냉매 챔버(R)에 냉매가 채워지면, 플렉시블 막(25)이 압축되어 플렉시블 막(25)의 내부, 즉 용기 챔버(C)에 삽입된 음료 용기의 외주면과 밀착될 수 있다. 따라서, 냉매와 음료 용기 내부의 음료와 열교환이 효과적으로 이루어질 수 있다. Accordingly, when the refrigerant chamber (R) is filled with refrigerant, the flexible membrane 25 may be compressed and come into close contact with the inside of the flexible membrane 25, that is, the outer peripheral surface of the beverage container inserted into the container chamber (C). Therefore, heat exchange between the refrigerant and the beverage inside the beverage container can be effectively performed.
냉매 챔버(R)에서 냉매가 빠지면, 플렉시블 막(25)은 원래의 상태로 복원되어 느슨해지게 된다. 그러면, 플렉시블 막(25)이 음료 용기의 외주면에서 떨어지게 된다. 따라서, 사용자는 용기 수용부(20)에서 음료 용기를 쉽게 꺼낼 수 있다. When the refrigerant is drained from the refrigerant chamber (R), the flexible membrane 25 is restored to its original state and becomes loose. Then, the flexible membrane 25 falls off from the outer peripheral surface of the beverage container. Accordingly, the user can easily remove the beverage container from the container receiving portion 20.
도 6에 도시된 바와 같이, 용기 수용부(20)는 막 고정부재(75)를 포함할 수 있다. As shown in FIG. 6, the container receiving portion 20 may include a membrane fixing member 75.
도 6은 막 고정부재(75)를 포함하는 용기 수용부(20)를 나타내는 단면도이다. Figure 6 is a cross-sectional view showing the container receiving portion 20 including the membrane fixing member 75.
도 6을 참조하면, 막 고정부재(75)는 플렉시블 막(25)의 하면을 베이스 판(21)의 상면에 고정할 수 있도록 형성된다. Referring to FIG. 6, the membrane fixing member 75 is formed to fix the lower surface of the flexible membrane 25 to the upper surface of the base plate 21.
막 고정부재(75)는 플렉시블 막(25)의 하면에 설치된 제1자석(751)과 베이스 판(21)의 상면에 설치된 제2자석(752)을 포함할 수 있다. 제1자석(751)은 플렉시블 막(25)의 하면의 중앙에 설치될 수 있다. 제2자석(752)은 베이스 판(21)의 상면의 중앙에 설치될 수 있다. The membrane fixing member 75 may include a first magnet 751 installed on the lower surface of the flexible membrane 25 and a second magnet 752 installed on the upper surface of the base plate 21. The first magnet 751 may be installed at the center of the lower surface of the flexible membrane 25. The second magnet 752 may be installed at the center of the upper surface of the base plate 21.
제1자석(751)과 제2자석(752)은 서로 끌어당길 수 있도록 형성된다. 따라서, 플렉시블 막(25)을 베이스 판(21)에 설치하면, 제1자석(751)과 제2자석(752)에 의해 플렉시블 막(25)의 하면이 베이스 판(21)의 상면에 고정될 수 있다. 다시 말하면, 막 고정부재(75)에 의해 플렉시블 막(25)의 하면이 베이스 판(21)에 고정될 수 있다. The first magnet 751 and the second magnet 752 are formed to attract each other. Therefore, when the flexible film 25 is installed on the base plate 21, the lower surface of the flexible film 25 will be fixed to the upper surface of the base plate 21 by the first magnet 751 and the second magnet 752. You can. In other words, the lower surface of the flexible membrane 25 can be fixed to the base plate 21 by the membrane fixing member 75.
이상에서는 막 고정부재(75)가 2개의 자석(751,752)으로 형성된 경우에 대해 설명하였으나, 막 고정부재(75)가 이에 한정되는 것은 아니다. 막 고정부재(75)로는 다양한 원터치 연결구조가 사용될 수 있다. In the above, the case where the membrane fixing member 75 is formed of two magnets 751 and 752 has been described, but the membrane fixing member 75 is not limited to this. A variety of one-touch connection structures may be used as the membrane fixing member 75.
용기 수용부(20)는 하우징(10)에 대해 회전 가능하게 설치될 수 있다. 용기 수용부(20)는 하우징(10)의 하부에 설치된 모터(60)에 의해 회전할 수 있도록 형성될 수 있다. The container receiving portion 20 may be rotatably installed with respect to the housing 10 . The container receiving portion 20 may be formed to rotate by a motor 60 installed in the lower portion of the housing 10.
이를 위해, 베이스 판(21)의 하면에는 회전축(24)이 설치될 수 있다. 회전축(24)은 베이스 판(21)의 하면에 수직하게 설치될 수 있다. 회전축(24)은 베이스 판(21)과 일체로 형성될 수 있다.For this purpose, a rotation axis 24 may be installed on the lower surface of the base plate 21. The rotation axis 24 may be installed perpendicularly to the lower surface of the base plate 21. The rotation axis 24 may be formed integrally with the base plate 21.
하우징(10)의 하면에는 보스(16)가 설치될 수 있다. 보스(16)는 하우징(10)의 하면에서 아래로 돌출되도록 형성될 수 있다. 보스(16)의 중심에는 관통공이 마련될 수 있다. 베이스 판(21)의 회전축(24)은 보스(16)의 관통공에 삽입될 수 있다. 베이스 판(21)의 회전축(24)의 하단부는 하우징(10)의 보스(16)에서 아래로 돌출될 수 있다. A boss 16 may be installed on the lower surface of the housing 10. The boss 16 may be formed to protrude downward from the lower surface of the housing 10. A through hole may be provided in the center of the boss 16. The rotation axis 24 of the base plate 21 may be inserted into the through hole of the boss 16. The lower end of the rotation axis 24 of the base plate 21 may protrude downward from the boss 16 of the housing 10.
보스(16)의 관통공의 내면에는 하부 실(17)이 설치될 수 있다. 하부 실(17)은 보스(16)와 회전축(24) 사이로 냉매가 누출되는 것을 방지할 수 있도록 형성될 수 있다. 하부 실(17)은 베이스 판(21)의 회전축(24)의 회전을 지지할 수 있도록 회전 실로 형성할 수 있다. A lower seal 17 may be installed on the inner surface of the through hole of the boss 16. The lower seal 17 may be formed to prevent refrigerant from leaking between the boss 16 and the rotating shaft 24. The lower seal 17 may be formed as a rotating seal to support the rotation of the rotating shaft 24 of the base plate 21.
또한, 하우징(10)의 상단부와 지지 링(23) 사이의 상부 실(18)도 회전 실로 형성될 수 있다. 그러면, 지지 링(23)이 하우징(10)에 대해 회전할 수 있다. 따라서, 회전축(24)이 회전하면, 베이스 판(21), 복수의 연결바(26), 지지 링(23), 및 플렉시블 막(25)이 일체로 회전할 수 있다. Additionally, the upper seal 18 between the upper end of the housing 10 and the support ring 23 may also be formed as a rotating seal. The support ring 23 can then rotate relative to the housing 10 . Accordingly, when the rotation shaft 24 rotates, the base plate 21, the plurality of connecting bars 26, the support ring 23, and the flexible membrane 25 can rotate as one body.
하우징(10)의 아래에는 모터(60)가 설치될 수 있다. 모터(60)는 베이스 판(21)의 회전축(24)을 회전시킬 수 있도록 설치될 수 있다. 모터(60)는 모터 브라켓(70)에 의해 하우징(10)에 고정될 수 있다. 모터 브라켓(70)은 모터(60)의 샤프트(61)가 베이스 판(21)의 회전축(24)과 일직선 상에 위치하도록 모터(60)를 하우징(10)에 고정할 수 있다. A motor 60 may be installed below the housing 10. The motor 60 may be installed to rotate the rotation axis 24 of the base plate 21. The motor 60 may be fixed to the housing 10 by a motor bracket 70. The motor bracket 70 may fix the motor 60 to the housing 10 so that the shaft 61 of the motor 60 is positioned in a straight line with the rotation axis 24 of the base plate 21.
모터(60)의 샤프트(61)와 베이스 판(21)의 회전축(24)은 커플링(66)으로 연결될 수 있다. 따라서, 모터(60)의 샤프트(61)가 회전하면 회전축(24)이 회전하므로, 베이스 판(21)이 회전할 수 있다. 베이스 판(21)이 회전하면, 베이스 판(21)에 설치된 복수의 연결바(26), 지지 링(23), 복수의 지지바(22), 및 플렉시블 막(25)이 일체로 회전할 수 있다. 즉, 모터(60)에 의해 용기 수용부(20)가 회전할 수 있다. The shaft 61 of the motor 60 and the rotation axis 24 of the base plate 21 may be connected to the coupling 66. Therefore, when the shaft 61 of the motor 60 rotates, the rotation shaft 24 rotates, so the base plate 21 can rotate. When the base plate 21 rotates, the plurality of connecting bars 26, the support ring 23, the plurality of support bars 22, and the flexible membrane 25 installed on the base plate 21 can rotate integrally. there is. That is, the container receiving part 20 can be rotated by the motor 60.
용기 수용부(20)를 회전시키는 경우, 하우징(10)은 경사지게 설치될 수 있다. 즉, 하우징(10)은 기준면(5)(도 1 참조)에 대해 경사지게 설치될 수 있다. 예를 들면, 하우징(10)은 고정 브라켓(3)(도 1 참조)으로 기준면(5)에 대해 경사지게 설치될 수 있다. When rotating the container receiving portion 20, the housing 10 may be installed at an angle. That is, the housing 10 may be installed at an angle with respect to the reference surface 5 (see FIG. 1). For example, the housing 10 can be installed at an angle with respect to the reference surface 5 with a fixing bracket 3 (see FIG. 1).
하우징(10)을 기준면(5)에 대해 경사지게 설치하면, 베이스 판(21)의 회전축(24)과 모터(60)의 샤프트(61)도 하우징(10)과 동일한 각도로 기준면(5)에 대해 경사지게 설치될 수 있다. When the housing 10 is installed at an angle with respect to the reference surface 5, the rotation axis 24 of the base plate 21 and the shaft 61 of the motor 60 are also relative to the reference surface 5 at the same angle as the housing 10. It can be installed inclinedly.
하우징(10)과 모터(60)를 경사지게 설치하면, 용기 수용부(20)가 기준면(5)에 대해 일정 각도 경사진 상태로 회전할 수 있다. 용기 수용부(20)의 회전축(24)의 중심선은 기준면(5)에 대해 수직한 가상의 직선에 대해 약 5도 내지 40도 범위로 경사질 수 있다. If the housing 10 and the motor 60 are installed at an angle, the container receiving part 20 can rotate at a certain angle with respect to the reference surface 5. The center line of the rotation axis 24 of the container receiving portion 20 may be inclined in a range of about 5 degrees to 40 degrees with respect to an imaginary straight line perpendicular to the reference surface 5.
용기 수용부(20)가 기준면(5)에 대해 일정 각도 경사진 상태로 회전하면, 용기 수용부(20)에 수용된 음료 용기를 빠르게 냉각시킬 수 있다. 즉, 음료 용기를 경사진 상태로 회전시키면, 음료 용기를 수직한 상태로 회전시키는 경우보다 음료 용기에 수용된 음료를 더 빠르게 냉각시킬 수 있다. When the container receiving part 20 rotates at a certain angle with respect to the reference surface 5, the beverage container accommodated in the container receiving part 20 can be cooled quickly. That is, when the beverage container is rotated in an inclined state, the beverage contained in the beverage container can be cooled more quickly than when the beverage container is rotated in a vertical state.
이하, 도 7 내지 도 10을 참조하여, 냉매 조절장치(30)와 하우징(10)에 수용된 냉매의 관계에 대해 상세하게 설명한다. Hereinafter, with reference to FIGS. 7 to 10 , the relationship between the refrigerant control device 30 and the refrigerant contained in the housing 10 will be described in detail.
도 7은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)의 냉매 챔버(R)에 냉매(W)가 채워진 상태를 나타내는 도면이다.FIG. 7 is a diagram showing a state in which the refrigerant chamber (R) of the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure is filled with the refrigerant (W).
도 7을 참조하면, 냉매(W)가 하우징(10)의 냉매 챔버(R)에 채워져 있다. 즉, 냉매(W)는 하우징(10)의 냉매 챔버(R)의 상단까지 차있는 상태이다. 이 상태에서 냉매(W)는 순환 펌프(44)에 의해 순환할 수 있다. 즉, 냉매(W)는 순환 펌프(44)에 의해 배출관(41), 방열기(42), 유입관(43), 및 하우징(10)의 냉매 챔버(R)를 순환할 수 있다. Referring to FIG. 7, refrigerant (W) is filled in the refrigerant chamber (R) of the housing (10). That is, the refrigerant (W) is filled up to the top of the refrigerant chamber (R) of the housing (10). In this state, the refrigerant (W) can be circulated by the circulation pump (44). That is, the refrigerant W may circulate through the discharge pipe 41, the radiator 42, the inlet pipe 43, and the refrigerant chamber R of the housing 10 by the circulation pump 44.
이 경우, 냉매 조절장치(30)의 실린더(31)에는 냉매(W)가 존재하지 않는다. 즉, 피스톤(32)이 실린더(31)의 선단에 접촉하고 있는 상태이다.In this case, there is no refrigerant (W) in the cylinder (31) of the refrigerant control device (30). That is, the piston 32 is in contact with the tip of the cylinder 31.
이 상태에서, 냉매 조절장치(30)를 작동시키면, 하우징(10)의 냉매(W)를 냉매 조절장치(30)로 흡입할 수 있다.In this state, when the refrigerant control device 30 is operated, the refrigerant W in the housing 10 can be sucked into the refrigerant control device 30.
도 8은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)의 냉매 챔버(R)의 냉매(W)가 냉매 조절장치(30)에 흡입된 상태를 나타내는 도면이다.Figure 8 is a diagram showing a state in which the refrigerant (W) of the refrigerant chamber (R) of the housing (10) of the beverage cooling device (1) according to one or more embodiments of the present disclosure is sucked into the refrigerant control device (30).
도 8을 참조하면, 냉매(W)는 냉매 조절장치(30)의 실린더(31)에 채워진 상태이다. 이때, 대부분의 냉매(W)는 실린더(31)로 이동하고, 하우징(10)의 냉매 챔버(R)에는 적은 양의 냉매(W)만 남아 있다. 하우징(10)의 냉매 챔버(R)에 남은 냉매(W)의 양은 냉매(W)가 냉매 냉각장치(40)를 순환할 수 있도록 정해질 수 있다. 즉, 하우징(10)의 냉매 챔버(R)의 냉매량은 냉매(W)가 배출관(41), 방열기(42), 유입관(43) 및 하우징(10)을 순환할 수 있도록 정해질 수 있다. Referring to FIG. 8, refrigerant (W) is filled in the cylinder 31 of the refrigerant control device 30. At this time, most of the refrigerant (W) moves to the cylinder (31), and only a small amount of refrigerant (W) remains in the refrigerant chamber (R) of the housing (10). The amount of refrigerant (W) remaining in the refrigerant chamber (R) of the housing 10 may be determined so that the refrigerant (W) can circulate through the refrigerant cooling device (40). That is, the amount of refrigerant in the refrigerant chamber (R) of the housing 10 can be set so that the refrigerant (W) can circulate through the discharge pipe 41, the radiator 42, the inlet pipe 43, and the housing 10.
따라서, 도 8과 같이 냉매(W)의 대부분이 냉매 조절장치(30)의 실린더(31)로 이동한 상태에서도, 하우징(10)의 냉매 챔버(R)에 남아 있는 냉매(W)는 배출관(41), 방열기(42), 유입관(43) 및 하우징(10)을 순환하면서, 냉매 냉각장치(40)에 의해 냉각될 수 있다. Therefore, even in a state where most of the refrigerant (W) has moved to the cylinder 31 of the refrigerant control device 30 as shown in FIG. 8, the refrigerant (W) remaining in the refrigerant chamber (R) of the housing 10 is discharged into the discharge pipe ( 41), it can be cooled by the refrigerant cooling device 40 while circulating through the radiator 42, the inlet pipe 43, and the housing 10.
이때, 용기 수용부(20)의 플렉시블 막(25)에는 냉매(W)에 의해 힘이 가해지지 않으므로 플렉시블 막(25)은 느슨한 상태가 될 수 있다. 이 상태에서는 용기 수용부(20)의 용기 챔버(C)에 음료 용기가 쉽게 삽입될 수 있다. At this time, since force is not applied to the flexible membrane 25 of the container receiving portion 20 by the refrigerant W, the flexible membrane 25 may be in a loose state. In this state, a beverage container can be easily inserted into the container chamber (C) of the container receiving portion (20).
하우징(10)의 용기 수용부(20)에 음료 용기를 삽입한 상태에서, 냉매 조절장치(30)를 작동시켜 실린더(31)의 냉매를 하우징(10)의 냉매 챔버(R)로 이동시킬 수 있다.With a beverage container inserted into the container receiving portion 20 of the housing 10, the refrigerant control device 30 can be operated to move the refrigerant in the cylinder 31 to the refrigerant chamber (R) of the housing 10. there is.
도 9는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)의 냉매 챔버(R)에 냉매(W)가 채워져서 용기 수용부(20)의 플렉스블 측면이 음료 용기(100)에 밀착한 상태를 나타내는 도면이다.Figure 9 shows that the refrigerant chamber (R) of the housing 10 of the beverage cooling device 1 according to one or more embodiments of the present disclosure is filled with refrigerant (W), so that the flexible side of the container receiving portion 20 is a beverage container. This is a diagram showing a state in close contact with (100).
도 9를 참조하면, 냉매 조절장치(30)의 실린더(31)에는 냉매(W)가 존재하지 않고, 하우징(10)의 냉매 챔버(R)는 냉매(W)로 채워진 상태이다. Referring to FIG. 9, there is no refrigerant (W) in the cylinder 31 of the refrigerant control device 30, and the refrigerant chamber (R) of the housing 10 is filled with refrigerant (W).
즉, 도 8의 상태에서 냉매 조절장치(30)의 리니어 모터(35)가 작동하면, 피스톤(32)이 아래로 이동할 수 있다. 피스톤(32)이 아래로 이동하면, 실린더(31)의 냉매(W)는 냉매관(37)을 통해 하우징(10)의 냉매 챔버(R)으로 이동한다. 피스톤(32)이 실린더(31)의 선단에 접촉하면, 실린더(31) 내부의 모든 냉매(W)가 하우징(10)의 냉매 챔버(R)로 이동하여 냉매 챔버(R)를 채우게 된다. That is, when the linear motor 35 of the refrigerant control device 30 operates in the state of FIG. 8, the piston 32 can move downward. When the piston 32 moves downward, the refrigerant W in the cylinder 31 moves into the refrigerant chamber R of the housing 10 through the refrigerant pipe 37. When the piston 32 contacts the tip of the cylinder 31, all the refrigerant (W) inside the cylinder 31 moves to the refrigerant chamber (R) of the housing 10 and fills the refrigerant chamber (R).
도 9에 도시된 바와 같이, 냉매(W)가 냉매 챔버(R)를 채우면, 용기 수용부(20)의 플렉시블 막(25)이 수축되어 음료 용기(100)의 외주면에 밀착하게 된다. 즉, 냉매(W)에 의해 용기 수용부(20)의 플렉시블 막(25)이 용기 공간(C)에 삽입되어 있는 음료 용기(100)의 외주면과 밀착하게 된다. As shown in FIG. 9, when the refrigerant W fills the refrigerant chamber R, the flexible membrane 25 of the container receiving portion 20 is contracted and comes into close contact with the outer peripheral surface of the beverage container 100. That is, the refrigerant W causes the flexible membrane 25 of the container receiving portion 20 to come into close contact with the outer peripheral surface of the beverage container 100 inserted into the container space C.
용기 수용부(20)의 플렉시블 막(25)이 음료 용기(100)의 외주면과 밀착하면, 음료 용기(100)의 외주면과 하우징(10)의 냉매 챔버(R)의 냉매(W)는 플렉시블 막(25)을 통해 효율적으로 열교환을 할 수 있다. 따라서, 음료 용기(100)에 담긴 음료가 냉매(W)에 의해 빠르게 냉각될 수 있다. When the flexible membrane 25 of the container receiving portion 20 is in close contact with the outer peripheral surface of the beverage container 100, the outer peripheral surface of the beverage container 100 and the refrigerant (W) in the refrigerant chamber (R) of the housing 10 are connected to the flexible membrane. Efficient heat exchange can be achieved through (25). Therefore, the beverage contained in the beverage container 100 can be quickly cooled by the refrigerant (W).
도 9의 상태에서, 냉매 조절장치(30)의 리니어 모터(35)를 작동시켜 피스톤(32)을 상측으로 이동시킬 수 있다. 그러면, 하우징(10)의 냉매 챔버(R)에 수용된 냉매(W)는 냉매관(37)을 통해 실린더(31)로 흡입될 수 있다. In the state of FIG. 9, the linear motor 35 of the refrigerant control device 30 can be operated to move the piston 32 upward. Then, the refrigerant (W) contained in the refrigerant chamber (R) of the housing 10 can be sucked into the cylinder 31 through the refrigerant pipe 37.
용기 수용부(20)의 냉매 챔버(R)로부터 냉매(W)가 빠져나가면, 용기 수용부(20)의 플렉시블 막(25)이 느슨해지게 된다. 용기 챔버(C)에 음료 용기(100)가 삽입되어 있는 상태에서 플렉시블 막(25)이 느슨해지면, 플렉시블 막(25)이 음료 용기(100)의 외주면에서 떨어지게 되므로 사용자는 용기 수용부(20)에서 음료 용기(100)를 쉽게 뺄 수 있다. When the refrigerant (W) escapes from the refrigerant chamber (R) of the container receiving portion (20), the flexible membrane (25) of the container receiving portion (20) becomes loose. If the flexible membrane 25 becomes loose while the beverage container 100 is inserted into the container chamber C, the flexible membrane 25 falls off the outer peripheral surface of the beverage container 100, so the user must use the container receiving portion 20. The beverage container 100 can be easily removed from.
본 개시에 의한 음료냉각장치(1)는 냉매 조절장치(30)를 작동시켜 도 10에 도시된 바와 같이 하우징(10)의 냉매(W)를 일부만 실린더(31)로 이동시킬 수 있다. The beverage cooling device 1 according to the present disclosure can move only a portion of the refrigerant W in the housing 10 to the cylinder 31 as shown in FIG. 10 by operating the refrigerant control device 30.
도 10은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 하우징(10)의 냉매 챔버(R)에 냉매(W)가 일부만 수용되어 용기 수용부(20)의 플렉스블 막(25)의 아래 부분이 음료 용기(100)에 밀착한 상태를 나타내는 도면이다.Figure 10 shows that only a portion of the refrigerant (W) is accommodated in the refrigerant chamber (R) of the housing (10) of the beverage cooling device (1) according to one or more embodiments of the present disclosure, and the flexible membrane (25) of the container receiving portion (20) is ) is a diagram showing a state in which the lower part is in close contact with the beverage container 100.
도 10을 참조하면, 하우징(10)의 냉매 챔버(R)에는 대략 절반의 높이까지 냉매(W)가 채워져 있고, 나머지 냉매(W)는 냉매 조절장치(30)의 실린더(31)에 흡입되어 있다. Referring to FIG. 10, the refrigerant chamber (R) of the housing 10 is filled with refrigerant (W) to approximately half its height, and the remaining refrigerant (W) is sucked into the cylinder 31 of the refrigerant control device 30. there is.
그러면, 용기 수용부(20)의 플렉시블 막(25)의 대략 하부 절반이 음료 용기(100)의 외주면에 밀착된 상태이고, 플렉시블 막(25)의 대략 상부 절반은 음료 용기(100)의 외주면과 밀착되지 않고 떨어진 상태가 된다. 이러한 상태에서는 현재의 음료 용기(100)의 온도를 유지할 수 있다. Then, approximately the lower half of the flexible membrane 25 of the container receiving portion 20 is in close contact with the outer peripheral surface of the beverage container 100, and approximately the upper half of the flexible membrane 25 is in close contact with the outer peripheral surface of the beverage container 100. It does not adhere tightly and falls apart. In this state, the current temperature of the beverage container 100 can be maintained.
도 10에서는 냉매(W)가 냉매 챔버(R)의 높이의 대략 절반까지 채워진 경우를 도시하고 있으나, 냉매(W)에 의해 채워지는 냉매 챔버(R)의 높이는 이에 한정되는 것은 아니다. 냉매(W)에 의해 채워지는 냉매 챔버(R)의 높이는 용기 수용부(20)의 용기 챔버(C)에 수용된 음료의 최적 온도에 따라 다양하게 정해질 수 있다. FIG. 10 shows a case where the refrigerant W is filled to approximately half the height of the refrigerant chamber R, but the height of the refrigerant chamber R filled with the refrigerant W is not limited to this. The height of the refrigerant chamber (R) filled with the refrigerant (W) may be determined in various ways depending on the optimal temperature of the beverage contained in the container chamber (C) of the container receiving portion (20).
음료 용기(100)를 급속하게 최적 온도로 냉각시킨 후, 냉각된 음료 용기(100)를 최적 온도로 유지하고자 하는 경우에는 도 10에 도시된 바와 같이 하우징(10)의 냉매 챔버(R)에 일부의 냉매(W)만 채울 수 있다.After rapidly cooling the beverage container 100 to the optimal temperature, when it is desired to maintain the cooled beverage container 100 at the optimal temperature, a portion of the refrigerant chamber (R) of the housing 10 is added as shown in FIG. 10. Only refrigerant (W) can be filled.
도 11은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 기능 블록도이다.Figure 11 is a functional block diagram of a beverage cooling device 1 according to one or more embodiments of the present disclosure.
도 11을 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 냉매 조절장치(30)와 냉매 냉각장치(40)를 제어하는 프로세서(90)를 포함할 수 있다.Referring to FIG. 11, the beverage cooling device 1 according to one or more embodiments of the present disclosure may include a refrigerant control device 30 and a processor 90 that controls the refrigerant cooling device 40.
프로세서(90)는 냉매 조절장치(30)의 리니어 모터(35)를 제어하여 피스톤(32)을 상하로 직선 왕복 이동시킬 수 있다. 따라서, 프로세서(90)는 리니어 모터(35)를 이용하여 하우징(10)의 냉매 챔버(R)의 냉매량을 조절함으로써 음료 용기(100)와 플렉시블 막(25) 사이의 접촉 면적을 조절할 수 있다. The processor 90 can control the linear motor 35 of the refrigerant control device 30 to reciprocate the piston 32 straight up and down. Accordingly, the processor 90 can adjust the contact area between the beverage container 100 and the flexible membrane 25 by adjusting the amount of refrigerant in the refrigerant chamber (R) of the housing 10 using the linear motor 35.
프로세서(90)는 냉매 냉각장치(40)의 압축기(51)와 순환 펌프(44)를 제어하여 하우징(10)의 냉매 챔버(R)에 수용된 냉매를 냉각시킬 수 있다. The processor 90 may cool the refrigerant contained in the refrigerant chamber (R) of the housing 10 by controlling the compressor 51 and the circulation pump 44 of the refrigerant cooling device 40.
구체적으로, 프로세서(90)는 순환 펌프(44)를 제어하여 냉매가 하우징(10)의 냉매 챔버(R), 배출관(41), 방열기(42), 및 유입관(43)을 순환하도록 할 수 있다. Specifically, the processor 90 may control the circulation pump 44 to allow the refrigerant to circulate through the refrigerant chamber (R), discharge pipe 41, radiator 42, and inlet pipe 43 of the housing 10. there is.
또한, 프로세서(90)는 압축기(51)를 작동시켜 방열기(42)로 유입된 냉매를 냉각시킬 수 있다. 즉, 프로세서(90)가 냉매 냉각장치(40)의 압축기(51)와 순환 펌프(44)를 작동시키면, 냉매가 냉매 챔버(R), 배출관(41), 방열기(42), 및 유입관(43)을 따라 순환하면서, 방열기(42)에서 냉동 사이클의 열교환기(54)에 의해 냉각될 수 있다. Additionally, the processor 90 may operate the compressor 51 to cool the refrigerant flowing into the radiator 42. That is, when the processor 90 operates the compressor 51 and the circulation pump 44 of the refrigerant cooling device 40, the refrigerant flows into the refrigerant chamber (R), the discharge pipe 41, the radiator 42, and the inlet pipe ( While circulating along 43), it can be cooled by the heat exchanger 54 of the refrigeration cycle in the radiator 42.
프로세서(90)는 용기 수용부(20)를 회전시키는 모터(60)를 제어할 수 있다. 즉, 프로세서(90)는 모터(60)를 회전시켜 용기 수용부(20)를 회전시킬 수 있다. The processor 90 may control the motor 60 that rotates the container receiving portion 20. That is, the processor 90 can rotate the motor 60 to rotate the container receiving portion 20.
또한, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 온도 센서(91)와 음료 인식 센서(92)를 포함할 수 있다.Additionally, the beverage cooling device 1 according to one or more embodiments of the present disclosure may include a temperature sensor 91 and a beverage recognition sensor 92.
프로세서(90)는 음료 용기(100)의 온도를 측정하는 온도 센서(91)로부터 온도 정보를 수신할 수 있다. 온도 센서(91)는 용기 수용부(20)의 용기 챔버(C)에 삽입되는 음료 용기(100)의 온도를 측정하여 온도 정보를 생성하고, 이를 프로세서(90)로 전송할 수 있도록 형성된다. 프로세서(90)는 온도 센서(91)에서 입력된 온도 정보를 이용하여 음료 용기(100)를 냉각시킬 수 있다.The processor 90 may receive temperature information from the temperature sensor 91 that measures the temperature of the beverage container 100. The temperature sensor 91 is formed to measure the temperature of the beverage container 100 inserted into the container chamber C of the container receiving portion 20, generate temperature information, and transmit it to the processor 90. The processor 90 may cool the beverage container 100 using temperature information input from the temperature sensor 91.
프로세서(90)는 음료 인식 센서(92)로부터 음료 정보를 수신할 수 있다. 음료 인식 센서(92)는 용기 수용부(20)의 용기 챔버(C)에 삽입되는 음료 용기(100)에 수용된 음료의 종류를 인식하여 음료 정보를 생성하고, 이를 프로세서(90)로 전송할 수 있도록 형성된다. 프로세서(90)는 음료 인식 센서(92)에서 입력된 음료 정보를 이용하여, 음료의 종류에 따라 적절한 온도로 음료 용기(100)를 냉각 시킬 수 있다.The processor 90 may receive beverage information from the beverage recognition sensor 92. The beverage recognition sensor 92 recognizes the type of beverage contained in the beverage container 100 inserted into the container chamber C of the container receiving portion 20, generates beverage information, and transmits it to the processor 90. is formed The processor 90 can cool the beverage container 100 to an appropriate temperature according to the type of beverage by using the beverage information input from the beverage recognition sensor 92.
음료 인식 센서(92)는 다양한 방법으로 음료 용기(100)에 수용된 음료의 종류를 인식하도록 형성될 수 있다. 예를 들면, 음료 인식 센서(92)는 음료 용기(100)의 외부에 부착된 라벨을 이용하여 음료의 종류를 인식하도록 형성될 수 있다. The beverage recognition sensor 92 may be configured to recognize the type of beverage contained in the beverage container 100 in various ways. For example, the beverage recognition sensor 92 may be configured to recognize the type of beverage using a label attached to the outside of the beverage container 100.
프로세서(90)는 메모리(93)를 포함할 수 있다. 메모리(93)에는 음료의 종류에 따른 적정 음용 온도가 저장될 수 있다. 적정 음용 온도는 음료를 마시는 사용자가 음료의 맛을 제대로 느낄 수 있는 온도를 말한다. 예를 들면, 콜라의 적정 음용 온도는 3℃, 맥주의 적정 음용 온도는 8℃, 레드 와인의 적정 음용 온도는 15℃, 물의 적정 음용 온도는 12℃일 수 있다. Processor 90 may include memory 93. The appropriate drinking temperature depending on the type of beverage can be stored in the memory 93. The appropriate drinking temperature refers to the temperature at which the drinker can properly feel the taste of the beverage. For example, the appropriate drinking temperature for cola may be 3°C, the appropriate drinking temperature for beer may be 8°C, the appropriate drinking temperature for red wine may be 15°C, and the appropriate drinking temperature for water may be 12°C.
또는 메모리(93)에는 음료의 종류에 따라 사용자가 좋아하는 적정 음용 온도가 저장될 수 있다.Alternatively, the user's preferred drinking temperature may be stored in the memory 93 depending on the type of beverage.
도 12는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)의 동작을 설명하기 위한 순서도이다.Figure 12 is a flowchart for explaining the operation of the beverage cooling device 1 according to one or more embodiments of the present disclosure.
먼저, 냉매 조절장치(30)가 냉매(W)를 흡입한다(S10). 구체적으로, 프로세서(90)가 냉매 조절장치(30)의 리니어 모터(35)를 제어하여 피스톤(32)을 이동시키면, 하우징(10)의 냉매 챔버(R)에 수용된 냉매(W)가 냉매관(37)을 통해 냉매 조절장치(30)의 실린더(31)로 흡입될 수 있다. 도 7에 도시된 바와 같이, 냉매(W)가 냉매 조절장치(30)의 실린더(31)를 가득 채우면, 용기 수용부(20)의 플렉시블 막(25)이 느슨해지게 된다.First, the refrigerant control device 30 sucks the refrigerant (W) (S10). Specifically, when the processor 90 controls the linear motor 35 of the refrigerant control device 30 to move the piston 32, the refrigerant (W) contained in the refrigerant chamber (R) of the housing 10 is transferred to the refrigerant pipe. It can be sucked into the cylinder 31 of the refrigerant control device 30 through (37). As shown in FIG. 7, when the refrigerant W fills the cylinder 31 of the refrigerant control device 30, the flexible membrane 25 of the container receiving portion 20 becomes loose.
이어서, 사용자는 음료 용기(100)를 하우징(10)에 삽입한다(S20). 구체적으로, 사용자는 음료 용기(100)를 하우징(10)의 용기 챔버(C)에 삽입한다. 하우징(10)의 냉매(W)가 냉매 조절장치(30)의 실린더(31)로 이동하면, 용기 수용부(20)의 플렉시블 막(25)이 느슨해지므로, 사용자는 음료 용기(100)를 쉽게 하우징(10)의 용기 챔버(C)에 삽입할 수 있다.Next, the user inserts the beverage container 100 into the housing 10 (S20). Specifically, the user inserts the beverage container 100 into the container chamber C of the housing 10. When the refrigerant (W) in the housing (10) moves to the cylinder (31) of the refrigerant control device (30), the flexible membrane (25) of the container receiving portion (20) is loosened, so the user can easily use the beverage container (100). It can be inserted into the container chamber (C) of the housing (10).
다음으로, 냉매 조절장치(30)가 하우징(10)에 냉매(W)를 채운다(S30). 구체적으로, 음료 용기(100)가 하우징(10)에 삽입되면, 프로세서(90)는 냉매 조절장치(30)의 리니어 모터(35)를 제어하여 피스톤(32)을 반대방향으로 이동시킨다. 그러면, 실린더(31)의 냉매(W)가 냉매관(37)을 통해 하우징(10)의 냉매 챔버(R)로 이동할 수 있다. Next, the refrigerant control device 30 fills the housing 10 with refrigerant (W) (S30). Specifically, when the beverage container 100 is inserted into the housing 10, the processor 90 controls the linear motor 35 of the refrigerant control device 30 to move the piston 32 in the opposite direction. Then, the refrigerant (W) in the cylinder (31) can move to the refrigerant chamber (R) of the housing (10) through the refrigerant pipe (37).
도 9에 도시된 바와 같이, 하우징(10)의 냉매 챔버(R)에 냉매(W)가 가득 채워지면, 용기 수용부(20)의 플렉시블 측면이 음료 용기(100)에 밀착하게 된다(S40). 즉, 냉매 챔버(R)에 채워진 냉매(W)의 압력에 의해 플렉시블 막(25)이 수축되어 용기 수용부(20)의 내부에 위치하는 음료 용기(100)의 외주면과 밀착하게 된다. As shown in FIG. 9, when the refrigerant chamber (R) of the housing 10 is filled with the refrigerant (W), the flexible side of the container receiving portion 20 comes into close contact with the beverage container 100 (S40) . That is, the flexible membrane 25 is contracted by the pressure of the refrigerant (W) filled in the refrigerant chamber (R) and comes into close contact with the outer peripheral surface of the beverage container (100) located inside the container receiving portion (20).
이때, 하우징(10)의 냉매 챔버(R)의 냉매(W)는 냉매 냉각장치(40)에 의해 계속적으로 냉각되고 있으므로, 하우징(10)에 삽입된 음료 용기(100)는 냉매(W)에 의해 냉각되기 시작한다.At this time, since the refrigerant (W) in the refrigerant chamber (R) of the housing (10) is continuously cooled by the refrigerant cooling device (40), the beverage container (100) inserted into the housing (10) is cooled by the refrigerant (W). begins to cool down.
다음으로, 용기 수용부(20)를 회전시킨다(S50). 구체적으로, 프로세서(90)는 모터(60)를 제어하여 샤프트(61)를 회전시킨다. 그러면, 샤프트(61)에 연결된 회전축(24)이 회전하므로, 회전축(24)과 일체로 마련된 용기 수용부(20)가 회전하게 된다. Next, the container receiving part 20 is rotated (S50). Specifically, the processor 90 controls the motor 60 to rotate the shaft 61. Then, the rotating shaft 24 connected to the shaft 61 rotates, so the container receiving portion 20 provided integrally with the rotating shaft 24 rotates.
용기 수용부(20)의 용기 챔버(C)에는 음료 용기(100)가 수용되어 있으므로, 용기 수용부(20)가 회전하면 음료 용기(100)도 일체로 회전할 수 있다. 음료 용기(100)가 회전하면, 음료 용기(100) 내부의 음료에 유동이 발생하므로 음료의 냉각 속도가 빨라질 수 있다. 따라서, 음료 용기(100)가 회전하면, 음료 용기(100)가 회전하지 않는 경우에 비해 음료 용기(100)의 내부에 수용된 음료가 빠르게 냉각될 수 있다. Since the beverage container 100 is accommodated in the container chamber C of the container accommodating part 20, when the container accommodating part 20 rotates, the beverage container 100 can also rotate integrally. When the beverage container 100 rotates, a flow occurs in the beverage inside the beverage container 100, so the cooling rate of the beverage may increase. Therefore, when the beverage container 100 rotates, the beverage contained within the beverage container 100 can be cooled faster than when the beverage container 100 does not rotate.
프로세서(90)는 음료 용기(100)가 적정 온도에 도달 하였는지를 판단한다(S60). 음료 용기(100)가 하우징(10)에 삽입될 때, 온도 센서(91)는 음료 용기(100)의 온도를 측정하여 온도 정보를 생성하고, 음료 인식 센서(92)는 음료 용기(100)에 수용된 음료의 종류를 인식하여 음료 정보를 생성할 수 있다. The processor 90 determines whether the beverage container 100 has reached an appropriate temperature (S60). When the beverage container 100 is inserted into the housing 10, the temperature sensor 91 measures the temperature of the beverage container 100 and generates temperature information, and the beverage recognition sensor 92 is connected to the beverage container 100. Beverage information can be generated by recognizing the type of beverage received.
프로세서(90)는 음료 인식 센서(92)로부터 수신한 음료 정보와 메모리(93)에 저장된 음료의 종류에 따른 적정 음용 온도로부터 용기 수용부에 삽입된 음료 용기를 냉각시킬 목표 온도인 음료 적정 온도를 인식할 수 있다. The processor 90 determines an appropriate beverage temperature, which is a target temperature for cooling the beverage container inserted into the container receiving portion, from the beverage information received from the beverage recognition sensor 92 and the appropriate drinking temperature according to the type of beverage stored in the memory 93. It can be recognized.
프로세서(90)는 모터(60)를 이용하여 용기 수용부(20)를 회전시키면서, 온도 센서(91)로 음료 용기(100)의 온도를 측정한다. The processor 90 rotates the container receiving portion 20 using the motor 60 and measures the temperature of the beverage container 100 using the temperature sensor 91.
온도 센서(91)로 측정한 온도가 음료 적정 온도에 도달하면, 프로세서(90)는 용기 수용부(20)의 회전을 정지시킨다(S70). 즉, 프로세서(90)가 모터(60)를 오프시키면, 용기 수용부(20)는 회전을 멈추게 된다. When the temperature measured by the temperature sensor 91 reaches the appropriate beverage temperature, the processor 90 stops the rotation of the container receiving portion 20 (S70). That is, when the processor 90 turns off the motor 60, the container accommodating part 20 stops rotating.
이때, 프로세서(90)는 음료 용기(100)의 냉각이 완료되었다는 것을 외부로 알릴 수 있다. 예를 들면, 소리나 음성을 통해 냉각 완료를 알릴 수 있다. 또는, 스마트 폰과 같은 모바일 장치를 통해 냉각 완료를 알릴 수 있다. At this time, the processor 90 may notify the outside that cooling of the beverage container 100 has been completed. For example, completion of cooling can be announced through sound or voice. Alternatively, completion of cooling can be notified through a mobile device such as a smart phone.
용기 수용부(20)의 회전이 멈추면, 프로세서(90)는 냉매 조절장치(30)를 작동시켜 냉매를 흡입한다(S80). 구체적으로, 프로세서(90)는 냉매 조절장치(30)의 리니어 모터(35)를 작동시켜 피스톤(32)을 실린더(31)의 선단에서 멀어지는 방향으로 이동시킨다. 그러면, 하우징(10)의 냉매 챔버(R)의 냉매(W)가 냉매관(37)을 통해 실린더(31)로 흡입될 수 있다.When the rotation of the container receiving part 20 stops, the processor 90 operates the refrigerant control device 30 to suck in refrigerant (S80). Specifically, the processor 90 operates the linear motor 35 of the refrigerant control device 30 to move the piston 32 in a direction away from the tip of the cylinder 31. Then, the refrigerant (W) in the refrigerant chamber (R) of the housing 10 can be sucked into the cylinder 31 through the refrigerant pipe 37.
냉매(W)가 냉매 조절장치(30)의 실린더(31)로 이동하면, 용기 수용부(20)의 플렉시블 막(25)을 가압하던 냉매(W)의 압력이 사라지므로, 플렉시블 막(25)이 느슨해지게 된다. 그러면, 사용자는 하우징(10)의 용기 챔버(C)에서 음료 용기(100)를 쉽게 뺄 수 있다. When the refrigerant (W) moves to the cylinder (31) of the refrigerant control device (30), the pressure of the refrigerant (W) pressing the flexible membrane (25) of the container receiving part (20) disappears, so the flexible membrane (25) This becomes loose. Then, the user can easily remove the beverage container 100 from the container chamber C of the housing 10.
이상에서는 냉매 냉각장치(40)로 냉동 사이클을 사용한 경우에 대해 설명하였으나, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)에 사용되는 냉매 냉각장치(40)는 이에 한정되는 것은 아니다. In the above, the case where a refrigeration cycle is used as the refrigerant cooling device 40 has been described, but the refrigerant cooling device 40 used in the beverage cooling device 1 according to one or more embodiments of the present disclosure is not limited thereto.
이하, 냉매 냉각장치(40)로 펠티에 소자를 사용한 경우에 대해 도 13 및 도 14를 참조하여 설명한다.Hereinafter, the case where a Peltier element is used as the refrigerant cooling device 40 will be described with reference to FIGS. 13 and 14.
도 13은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)를 나타내는 도면이다. 도 14는 도 13의 음료냉각장치(1)의 기능 블록도이다.Figure 13 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure. FIG. 14 is a functional block diagram of the beverage cooling device 1 of FIG. 13.
도 13 및 도 14를 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 하우징(10), 용기 수용부(20), 냉매 조절장치(30), 냉매 냉각장치(40)를 포함할 수 있다.13 and 14, the beverage cooling device 1 according to one or more embodiments of the present disclosure includes a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. may include.
하우징(10), 용기 수용부(20), 및 냉매 조절장치(30)는 상술한 실시예에 의한 음료냉각장치(1)와 동일하므로 상세한 설명은 생략한다. Since the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
본 실시예에 의한 음료냉각장치(1)는 냉매 냉각장치(40)가 상술한 실시예에 의한 음료냉각장치(1)의 냉매 냉각장치(40)와 상이하므로, 이에 대해서만 설명한다.Since the refrigerant cooling device 40 of the beverage cooling device 1 according to this embodiment is different from the refrigerant cooling device 40 of the beverage cooling device 1 according to the above-described embodiment, only this will be described.
냉매 냉각장치(40)는 하우징(10)의 냉매 챔버(R)의 냉매를 냉각시키도록 형성될 수 있다. The refrigerant cooling device 40 may be configured to cool the refrigerant in the refrigerant chamber (R) of the housing 10.
도 13을 참조하면, 본 실시예에 의한 냉매 냉각장치(40)는 하우징(10)으로부터 떨어져서 마련될 수 있다. 즉, 냉매 냉각장치(40)는 하우징(10)에서 일정 거리 이격되어 마련될 수 있다. Referring to FIG. 13, the refrigerant cooling device 40 according to this embodiment may be provided separately from the housing 10. That is, the refrigerant cooling device 40 may be provided at a certain distance from the housing 10.
냉매 냉각장치(40)는 배출관(41), 방열기(42), 유입관(43), 순환 펌프(44)를 포함할 수 있다.The refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44.
배출관(41)은 하우징(10)의 냉매를 방열기(42)로 배출할 수 있도록 형성된다. 다시 말하면, 배출관(41)은 하우징(10)의 배출구(12)와 방열기(42)를 연결하도록 설치될 수 있다. 즉, 배출관(41)의 일단은 하우징(10)의 배출구(12)에 연결되고, 타단은 방열기(42)에 연결될 수 있다. 따라서, 하우징(10)의 냉매 챔버(R)에 수용되어 있는 냉매는 배출관(41)을 통해 방열기(42)로 흐를 수 있다. The discharge pipe 41 is formed to discharge the refrigerant in the housing 10 to the radiator 42. In other words, the discharge pipe 41 may be installed to connect the discharge port 12 of the housing 10 and the radiator 42. That is, one end of the discharge pipe 41 may be connected to the discharge port 12 of the housing 10, and the other end may be connected to the radiator 42. Accordingly, the refrigerant contained in the refrigerant chamber (R) of the housing 10 can flow to the radiator 42 through the discharge pipe 41.
방열기(42)는 냉매의 온도를 낮출 수 있도록 형성될 수 있다. 즉, 방열기(42)는 배출관(41)에 연결되면, 배출관(41)을 통해 배출된 냉매를 냉각시킬 수 있도록 형성된다.The radiator 42 may be formed to lower the temperature of the refrigerant. That is, when the radiator 42 is connected to the discharge pipe 41, it is formed to cool the refrigerant discharged through the discharge pipe 41.
유입관(43)은 방열기(42)에서 배출된 냉매를 하우징(10)으로 공급할 수 있도록 형성된다. 다시 말하면, 유입관(43)은 하우징(10)의 유입구(13)와 방열기(42)를 연결하도록 설치될 수 있다. 즉, 유입관(43)의 일단은 방열기(42)에 연결되고, 타단은 하우징(10)의 유입구(13)에 연결될 수 있다.The inlet pipe 43 is formed to supply the refrigerant discharged from the radiator 42 to the housing 10. In other words, the inlet pipe 43 may be installed to connect the inlet 13 of the housing 10 and the radiator 42. That is, one end of the inlet pipe 43 may be connected to the radiator 42, and the other end may be connected to the inlet 13 of the housing 10.
따라서, 방열기(42)에서 냉각된 냉매는 유입관(43)을 통해 하우징(10)의 냉매 챔버(R)로 유입될 수 있다. Accordingly, the refrigerant cooled in the radiator 42 may flow into the refrigerant chamber (R) of the housing 10 through the inflow pipe 43.
순환 펌프(44)는 냉매를 하우징(10)과 방열기(42) 사이에서 순환시킬 수 있도록 형성된다. 따라서, 냉매는 순환 펌프(44)에 의해 하우징(10), 배출관(41), 방열기(42), 및 유입관(43)을 따라 순환할 수 있다. 즉, 하우징(10), 배출관(41), 방열기(42), 및 유입관(43)은 냉매 순환 시스템을 형성할 수 있다.The circulation pump 44 is configured to circulate the refrigerant between the housing 10 and the radiator 42. Accordingly, the refrigerant can circulate along the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 by the circulation pump 44. That is, the housing 10, the discharge pipe 41, the radiator 42, and the inlet pipe 43 may form a refrigerant circulation system.
순환 펌프(44)는 유입관(43)에 설치될 수 있다. 순환 펌프(44)가 작동하면, 음료 용기를 냉각시키면서 온도가 상승한 하우징(10)의 냉매는 배출관(41)을 통해 방열기(42)로 이동하여 냉각될 수 있다. 방열기(42)에서 냉각된 냉매는 유입관(43)을 통해 하우징(10)의 냉매 챔버(R)로 공급될 수 있다. 따라서, 하우징(10)의 냉매는 음료 용기를 냉각시킬 수 있는 일정 온도로 유지될 수 있다. Circulation pump 44 may be installed in the inlet pipe 43. When the circulation pump 44 operates, the refrigerant in the housing 10 whose temperature has risen while cooling the beverage container may be cooled by moving to the radiator 42 through the discharge pipe 41. The refrigerant cooled in the radiator 42 may be supplied to the refrigerant chamber (R) of the housing 10 through the inlet pipe 43. Accordingly, the refrigerant in the housing 10 can be maintained at a constant temperature capable of cooling the beverage container.
방열기(42)는 배출관(41)을 통해 유입된 냉매를 냉각시킬 수 있도록 형성된다. 방열기(42)는 냉매가 펠티에 소자(peltier effect device)(80)와 열교환을 할 수 있도록 형성될 수 있다. 따라서, 냉매가 방열기(42)를 통과하는 동안, 냉매는 펠티에 소자(80)와 열교환을 하여 냉각될 수 있다.The radiator 42 is formed to cool the refrigerant introduced through the discharge pipe 41. The radiator 42 may be formed to allow the refrigerant to exchange heat with the Peltier effect device (80). Therefore, while the refrigerant passes through the radiator 42, the refrigerant can be cooled by heat exchange with the Peltier element 80.
구체적으로, 펠티에 소자(80)는 저온부(80a)와 고온부(80b)를 포함한다. 펠티에 소자(80)의 저온부(80a)는 방열기(42)에 설치되고, 고온부(80b)에는 별도의 냉각장치, 즉 펠티에 소자 냉각장치(81)가 설치될 수 있다. Specifically, the Peltier element 80 includes a low temperature part 80a and a high temperature part 80b. The low temperature part 80a of the Peltier element 80 may be installed in the radiator 42, and a separate cooling device, that is, the Peltier element cooling device 81, may be installed in the high temperature part 80b.
따라서, 방열기(42)를 통과하는 냉매는 펠티에 소자(80)의 저온부(80a)와 열교환을 하여 냉각될 수 있다. 펠티에 소자(80)의 고온부(80b)는 펠티에 소자 냉각장치(81)에 의해 냉각될 수 있다. Accordingly, the refrigerant passing through the radiator 42 can be cooled by heat exchange with the low temperature portion 80a of the Peltier element 80. The high temperature portion 80b of the Peltier element 80 may be cooled by the Peltier element cooling device 81.
펠티에 소자 냉각장치(81)는 워터 블록(82), 워터 펌프(84), 및 라디에이터(83)를 포함할 수 있다. 워터 블록(82), 워터 펌프(84), 및 라디에이터(83)는 순환 배관(85)에 의해 연결될 수 있다.The Peltier element cooling device 81 may include a water block 82, a water pump 84, and a radiator 83. The water block 82, water pump 84, and radiator 83 may be connected by a circulation pipe 85.
워터 블록(82)은 펠티에 소자(80)의 고온부(80b)에 설치되며, 펠티에 소자(80)의 고온부(80b)를 냉각 시키도록 형성될 수 있다. 예를 들면, 워터 블록(82)은 펠티에 소자(80)의 고온부(80b)에 대응하는 면적으로 형성되며, 내부에 물이 수용될 수 있도록 형성된다. 워터 블록(82)에 수용된 물은 펠티에 소자(80)의 고온부(80b)와 열교환을 하여 펠티에 소자(80)의 고온부(80b)의 온도를 낮출 수 있다. 펠티에 소자(80)의 고온부(80b)와의 열교환에 의해 뜨거워진 물은 라디에이터(83)로 배출될 수 있다.The water block 82 is installed in the high temperature part 80b of the Peltier element 80 and may be formed to cool the high temperature part 80b of the Peltier element 80. For example, the water block 82 is formed with an area corresponding to the high temperature portion 80b of the Peltier element 80 and is formed to accommodate water therein. The water contained in the water block 82 can exchange heat with the high temperature portion 80b of the Peltier element 80 to lower the temperature of the high temperature portion 80b of the Peltier element 80. Water heated by heat exchange with the high temperature portion 80b of the Peltier element 80 may be discharged to the radiator 83.
워터 펌프(84)는 물이 순환 배관(85)을 따라 워터 블록(82)와 라디에이터(83)를 순환할 수 있도록 한다.The water pump 84 allows water to circulate through the water block 82 and the radiator 83 along the circulation pipe 85.
라디에이터(83)는 펠티에 소자(80)의 고온부(80b)와의 열교환에 의해 고온이 된 물을 냉각시킬 수 있도록 형성된다. 라디에이터(83)에 의해 냉각된 물은 워터 펌프(84)에 의해 워터 블록(82)으로 공급될 수 있다.The radiator 83 is formed to cool water that has become high temperature through heat exchange with the high temperature portion 80b of the Peltier element 80. Water cooled by the radiator 83 may be supplied to the water block 82 by the water pump 84.
따라서, 프로세서(90)가 펠티에 소자 냉각장치(81)를 작동시키면, 워터 펌프(84)와 라디에이터(83)가 작동하여 물을 순환시킴으로써 펠티에 소자(80)의 고온부(80b)를 냉각시킬 수 있다.Therefore, when the processor 90 operates the Peltier element cooling device 81, the water pump 84 and the radiator 83 operate to circulate water to cool the high temperature portion 80b of the Peltier element 80. .
따라서, 냉매 냉각장치(40)의 순환 펌프(44)가 작동하면, 하우징(10)의 냉매가 배출관(41)을 통해 방열기(42)로 유입되고, 방열기(42)로 유입된 냉매는 펠티에 소자(80)의 저온부(80a)와의 열교환에 의해 온도가 낮아지며, 온도가 낮아진 냉매는 유입관(43)을 통해 하우징(10)으로 유입될 수 있다. 또한, 펠티에 소자(80)의 고온부(80b)는 펠티에 소자 냉각장치(81)에 의해 냉각될 수 있다.Therefore, when the circulation pump 44 of the refrigerant cooling device 40 operates, the refrigerant in the housing 10 flows into the radiator 42 through the discharge pipe 41, and the refrigerant flowing into the radiator 42 is connected to the Peltier element. The temperature is lowered by heat exchange with the low temperature portion 80a of (80), and the refrigerant whose temperature has been lowered can flow into the housing 10 through the inlet pipe 43. Additionally, the high temperature portion 80b of the Peltier element 80 may be cooled by the Peltier element cooling device 81.
이상에서는 냉매 냉각장치(40)가 하우징(10)으로부터 떨어져서 설치되어 냉매가 순환하여 음료 용기를 냉각시키는 경우에 대해 설명하였으나, 본 개시는 이에 한정되는 것은 아니다. 다른 예로, 냉매 냉각장치(40)는 하우징(10)에 직접 설치될 수 있다. 이 경우에는 냉매를 순환시킬 필요가 없다.In the above, the case where the refrigerant cooling device 40 is installed away from the housing 10 and the refrigerant circulates to cool the beverage container has been described, but the present disclosure is not limited to this. As another example, the refrigerant cooling device 40 may be installed directly in the housing 10. In this case, there is no need to circulate the refrigerant.
이하, 냉매 냉각장치(40)가 하우징(10)에서 이격되지 않는 음료냉각장치(1)에 대해 도 15와 도 16을 참조하여 설명한다. Hereinafter, the beverage cooling device 1 in which the refrigerant cooling device 40 is not spaced apart from the housing 10 will be described with reference to FIGS. 15 and 16.
도 15는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)를 나타내는 도면이다. 도 16은 도 15의 음료냉각장치(1)의 기능 블록도이다.Figure 15 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure. FIG. 16 is a functional block diagram of the beverage cooling device 1 of FIG. 15.
도 15 및 도 16을 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 하우징(10), 용기 수용부(20), 냉매 조절장치(30), 냉매 냉각장치(40)를 포함할 수 있다.15 and 16, the beverage cooling device 1 according to one or more embodiments of the present disclosure includes a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40. may include.
하우징(10), 용기 수용부(20), 및 냉매 조절장치(30)는 상술한 실시예에 의한 음료냉각장치(1)와 동일하므로 상세한 설명은 생략한다. Since the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
본 실시예에 의한 음료냉각장치(1)는 냉매 냉각장치(40)가 상술한 실시예에 의한 음료냉각장치(1)의 냉매 냉각장치(40)와 상이하므로, 이에 대해서만 설명한다.Since the refrigerant cooling device 40 of the beverage cooling device 1 according to this embodiment is different from the refrigerant cooling device 40 of the beverage cooling device 1 according to the above-described embodiment, only this will be described.
냉매 냉각장치(40)는 하우징(10)의 냉매 챔버(R)의 냉매를 냉각시키도록 형성될 수 있다. The refrigerant cooling device 40 may be configured to cool the refrigerant in the refrigerant chamber (R) of the housing 10.
도 15를 참조하면, 본 실시예에 의한 냉매 냉각장치(40)는 하우징(10)의 외주면에 설치될 수 있다. Referring to FIG. 15, the refrigerant cooling device 40 according to this embodiment may be installed on the outer peripheral surface of the housing 10.
냉매 냉각장치(40)는 펠티에 소자(80)와 펠티에 소자 냉각장치(81)를 포함할 수 있다.The refrigerant cooling device 40 may include a Peltier element 80 and a Peltier element cooling device 81.
펠티에 소자(80)는 하우징(10)의 외주면에 설치될 수 있다. 펠티에 소자(80)는 하우징(10)의 냉매 챔버(R)에 수용된 냉매와 열교환을 하여 냉매를 냉각시킬 수 있도록 마련될 수 있다. 펠티에 소자(80)는 하우징(10)의 외주면을 따라 일정 간격으로 설치된 복수의 펠티에 소자(80)를 포함할 수 있다.The Peltier element 80 may be installed on the outer peripheral surface of the housing 10. The Peltier element 80 may be provided to cool the refrigerant by exchanging heat with the refrigerant contained in the refrigerant chamber (R) of the housing 10. The Peltier element 80 may include a plurality of Peltier elements 80 installed at regular intervals along the outer peripheral surface of the housing 10.
펠티에 소자(80)는 저온부(80a)와 고온부(80b)를 포함한다. 펠티에 소자(80)의 저온부(80a)는 하우징(10)의 외주면에 설치된다. 펠티에 소자(80)의 고온부(80b)에는 펠티에 소자 냉각장치(81)가 설치될 수 있다. 따라서, 펠티에 소자(80)의 고온부(80b)는 펠티에 소자 냉각장치(81)에 의해 냉각될 수 있다. The Peltier element 80 includes a low temperature part 80a and a high temperature part 80b. The low temperature portion 80a of the Peltier element 80 is installed on the outer peripheral surface of the housing 10. A Peltier element cooling device 81 may be installed in the high temperature portion 80b of the Peltier element 80. Accordingly, the high temperature portion 80b of the Peltier element 80 can be cooled by the Peltier element cooling device 81.
펠티에 소자 냉각장치(81)는 워터 블록(82), 워터 펌프(84), 및 라디에이터(83)를 포함할 수 있다. 워터 블록(82), 워터 펌프(84), 및 라디에이터(83)는 순환 배관(85)에 의해 연결될 수 있다.The Peltier element cooling device 81 may include a water block 82, a water pump 84, and a radiator 83. The water block 82, water pump 84, and radiator 83 may be connected by a circulation pipe 85.
워터 블록(82)은 펠티에 소자(80)의 고온부(80b)에 설치되며, 펠티에 소자(80)의 고온부(80b)를 냉각 시키도록 형성될 수 있다. 예를 들면, 워터 블록(82)은 펠티에 소자(80)의 고온부(80b)에 대응하는 면적으로 형성되며, 내부에 물이 수용될 수 있도록 형성된다.The water block 82 is installed in the high temperature part 80b of the Peltier element 80 and may be formed to cool the high temperature part 80b of the Peltier element 80. For example, the water block 82 is formed with an area corresponding to the high temperature portion 80b of the Peltier element 80 and is formed to accommodate water therein.
워터 펌프(84)는 물이 순환 배관(85)을 따라 워터 블록(82)과 라디에이터(83)를 순환할 수 있도록 한다.The water pump 84 allows water to circulate through the water block 82 and the radiator 83 along the circulation pipe 85.
라디에이터(83)는 펠티에 소자(80)의 고온부(80b)와의 열교환에 의해 고온이 된 물을 냉각시킬 수 있도록 형성된다. The radiator 83 is formed to cool water that has become high temperature through heat exchange with the high temperature portion 80b of the Peltier element 80.
따라서, 프로세서(90)가 펠티에 소자 냉각장치(81)를 작동시키면, 워터 펌프(84)와 라디에이터(83)가 작동하여 물을 순환시킴으로써 펠티에 소자(80)의 고온부(80b)를 냉각시킬 수 있다.Therefore, when the processor 90 operates the Peltier element cooling device 81, the water pump 84 and the radiator 83 operate to circulate water to cool the high temperature portion 80b of the Peltier element 80. .
따라서, 하우징(10)의 냉매 챔버(R)에 수용된 냉매는 저온을 유지할 수 있다. 예를 들어, 하우징(10)에 삽입된 음료 용기에 의해 냉매의 온도가 상승하면, 냉매는 하우징(10)의 외주면에 설치된 펠티에 소자(80)와 열교환을 하여 냉각될 수 있다. 펠티에 소자(80)의 저온부(80a)에서 고온부(80b)로 이동한 열은 펠티에 소자 냉각장치(81)에 의해 외부로 방출될 수 있다. 따라서, 하우징(10)의 냉매 챔버(R)의 냉매는 저온을 유지할 수 있다. Accordingly, the refrigerant contained in the refrigerant chamber (R) of the housing 10 can be maintained at a low temperature. For example, when the temperature of the refrigerant increases due to a beverage container inserted into the housing 10, the refrigerant may be cooled by heat exchange with the Peltier element 80 installed on the outer peripheral surface of the housing 10. Heat moving from the low temperature part 80a to the high temperature part 80b of the Peltier element 80 may be discharged to the outside by the Peltier element cooling device 81. Accordingly, the refrigerant in the refrigerant chamber (R) of the housing 10 can be maintained at a low temperature.
도 15에 도시된 바와 같이 펠티에 소자(80)를 하우징(10)의 외주면에 직접 설치하면, 냉매를 순환시킬 필요가 없다.As shown in FIG. 15, if the Peltier element 80 is installed directly on the outer peripheral surface of the housing 10, there is no need to circulate the refrigerant.
본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 하나의 독립된 가전기기로 형성하거나 냉동 사이클을 구비한 가전기기의 일부로 형성할 수 있다. The beverage cooling device 1 according to one or more embodiments of the present disclosure may be formed as an independent home appliance or as a part of a home appliance equipped with a refrigeration cycle.
도 17은 하나의 가전기기로 형성된 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)를 나타내는 도면이다.Figure 17 is a diagram showing a beverage cooling device 1 according to one or more embodiments of the present disclosure formed as a single home appliance.
도 17을 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 본체(200)의 내부에 설치될 수 있다. Referring to FIG. 17, the beverage cooling device 1 according to one or more embodiments of the present disclosure may be installed inside the main body 200.
본체(200)는 운반 가능하게 형성될 수 있다. 본체(200)는 내부가 빈 원통 형상의 케이스 또는 직육면체 형상의 케이스로 형성될 수 있다. The main body 200 may be configured to be transportable. The main body 200 may be formed as a cylindrical case or a rectangular parallelepiped case with an empty interior.
본체(200)의 내부 공간에는 하우징(10), 용기 수용부(20), 냉매 조절장치(30), 및 냉매 냉각장치(40)가 수용될 수 있다. The internal space of the main body 200 may accommodate a housing 10, a container receiving portion 20, a refrigerant control device 30, and a refrigerant cooling device 40.
하우징(10)은 본체(200)의 상면의 바로 아래에 설치될 수 있다. 용기 수용부(20)는 하우징(10)의 내부에 설치될 수 있다. 냉매 조절장치(30)와 냉매 냉각장치(40)는 본체(200)의 내부에 적절하게 설치될 수 있다. The housing 10 may be installed directly below the upper surface of the main body 200. The container receiving portion 20 may be installed inside the housing 10. The refrigerant control device 30 and the refrigerant cooling device 40 may be appropriately installed inside the main body 200.
하우징(10), 용기 수용부(20), 냉매 조절장치(30), 냉매 냉각장치(40)는 상술한 실시예에 의한 음료냉각장치(1)와 동일하므로 상세한 설명은 생략한다.Since the housing 10, the container receiving part 20, the refrigerant control device 30, and the refrigerant cooling device 40 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed descriptions are omitted.
본체(200)의 상면에는 하우징(10)의 용기 챔버(C)와 연통되는 개구(201)가 마련될 수 있다. 사용자는 개구(201)를 통해 하우징(10)의 용기 챔버(C)에 음료 용기를 삽입하거나 빼낼 수 있다. An opening 201 communicating with the container chamber C of the housing 10 may be provided on the upper surface of the main body 200. The user can insert or remove a beverage container into the container chamber (C) of the housing (10) through the opening (201).
도 17에 도시된 바와 같이, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)를 독립된 가전기기로 형성하면, 쉽게 운반을 할 수 있으므로 음료냉각장치(1)의 사용 편의성을 높일 수 있다. As shown in FIG. 17, if the beverage cooling device 1 according to one or more embodiments of the present disclosure is formed as an independent home appliance, it can be easily transported, thereby increasing the convenience of use of the beverage cooling device 1. .
도 18은 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)가 설치된 냉장고(300)를 나타내는 도면이다.Figure 18 is a diagram showing a refrigerator 300 installed with a beverage cooling device 1 according to one or more embodiments of the present disclosure.
도 18을 참조하면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 냉장고(300)에 설치될 수 있다. Referring to FIG. 18, the beverage cooling device 1 according to one or more embodiments of the present disclosure may be installed in the refrigerator 300.
구체적으로, 냉장고(300)의 내부에 하우징(10), 용기 수용부(20), 냉매 조절장치(30)가 수용될 수 있다. Specifically, a housing 10, a container receiving portion 20, and a refrigerant control device 30 may be accommodated inside the refrigerator 300.
하우징(10), 용기 수용부(20), 및 냉매 조절장치(30)는 상술한 실시예에 의한 음료냉각장치(1)와 동일하므로 상세한 설명은 생략한다.Since the housing 10, the container receiving portion 20, and the refrigerant control device 30 are the same as the beverage cooling device 1 according to the above-described embodiment, detailed description is omitted.
냉매 냉각장치(40)는 배출관(41), 방열기(42), 유입관(43), 순환 펌프(44)를 포함할 수 있다. 배출관(41), 유입관(43), 순환 펌프(44)는 상술한 실시예와 동일하다.The refrigerant cooling device 40 may include a discharge pipe 41, a radiator 42, an inflow pipe 43, and a circulation pump 44. The discharge pipe 41, the inlet pipe 43, and the circulation pump 44 are the same as those in the above-described embodiment.
방열기(42)의 열교환기(54)는 냉장고(300)의 냉동 사이클(301)에 연결되도록 형성될 수 있다. 즉, 냉장고(300)의 냉동 사이클(301)에 방열기(42)의 열교환기(54)를 연결하여, 방열기(42)를 통과하는 냉매를 냉각시키도록 형성할 수 있다. The heat exchanger 54 of the radiator 42 may be connected to the refrigeration cycle 301 of the refrigerator 300. That is, the heat exchanger 54 of the radiator 42 can be connected to the refrigeration cycle 301 of the refrigerator 300 to cool the refrigerant passing through the radiator 42.
이와 같이 방열기(42)의 열교환기(54)를 냉장고(300)의 냉동 사이클(301)에 연결하면, 방열기(42)의 냉매를 냉각시키기 위한 별도의 냉동 사이클을 마련할 필요가 없다. In this way, if the heat exchanger 54 of the radiator 42 is connected to the refrigeration cycle 301 of the refrigerator 300, there is no need to provide a separate refrigeration cycle to cool the refrigerant in the radiator 42.
이상에서는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)가 냉장고(300)에 설치된 경우에 대해 설명하였으나, 본 개시의 음료냉각장치(1)가 설치될 수 있는 가전기기는 이에 한정되는 것은 아니다.In the above, the case where the beverage cooling device 1 according to one or more embodiments of the present disclosure is installed in the refrigerator 300 has been described, but the home appliances in which the beverage cooling device 1 of the present disclosure can be installed are limited to this. That is not the case.
본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 냉동 사이클을 구비한 다양한 가전기기에 설치될 수 있다. 예를 들면, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 에어컨, 제습기 등에 설치될 수 있다.The beverage cooling device 1 according to one or more embodiments of the present disclosure can be installed in various home appliances equipped with a refrigeration cycle. For example, the beverage cooling device 1 according to one or more embodiments of the present disclosure may be installed in an air conditioner, dehumidifier, etc.
상기와 같은 구조를 갖는 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 물이나 얼음과의 직접적인 접촉 없이 하우징(10)과 플렉시블 막(25)으로 형성된 냉매 챔버(R)의 냉매를 이용하여 음료 용기를 빠르게 냉각시킬 수 있다.The beverage cooling device 1 according to one or more embodiments of the present disclosure having the structure described above cools the refrigerant in the refrigerant chamber R formed by the housing 10 and the flexible membrane 25 without direct contact with water or ice. You can use this to cool beverage containers quickly.
또한, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 플렉시블 막(25)과 음료 용기의 접촉 면적, 즉 열전달 면적을 조절할 수 있으므로, 음료 용기에 수용된 음료를 음료의 종류에 따라 최적의 온도로 냉각할 수 있으며, 냉각된 온도를 유지할 수 있다.In addition, the beverage cooling device 1 according to one or more embodiments of the present disclosure can adjust the contact area, that is, the heat transfer area, between the flexible membrane 25 and the beverage container, so that the beverage contained in the beverage container is optimally adjusted according to the type of beverage. It can be cooled to a temperature of and the cooled temperature can be maintained.
또한, 본 개시의 하나 이상의 실시 예에 의한 음료냉각장치(1)는 냉매 냉각장치(40)를 음료 용기를 냉각시키는 냉매를 순환시키는 냉매 순환 시스템과 냉매를 냉각시키는 냉매 냉각 시스템으로 구분하여 별개로 형성하였으므로 음료 용기의 냉각 온도를 효과적으로 제어할 수 있다.In addition, the beverage cooling device 1 according to one or more embodiments of the present disclosure divides the refrigerant cooling device 40 into a refrigerant circulation system that circulates the refrigerant that cools the beverage container and a refrigerant cooling system that cools the refrigerant. Because it is formed, the cooling temperature of the beverage container can be effectively controlled.
상기에서 본 개시는 다양한 실시예들을 참조하여 도시되고 설명되었으나, 첨부된 청구범위 및 그 균등물에 의해 정의되는 본 개시의 범위를 벗어나지 않으면서 형태 및 세부 사항에서 다양한 변경이 이루어질 수 있음이 본 기술분야의 통상의 지식을 가진 자에 의해 이해될 것이다.Although the present disclosure has been shown and described above with reference to various embodiments, it is understood that various changes in form and detail may be made in the present technology without departing from the scope of the present disclosure as defined by the appended claims and their equivalents. It will be understood by those with ordinary knowledge in the field.

Claims (15)

  1. 하우징(10);housing (10);
    상기 하우징(10)의 내부에 설치되고, 음료 용기가 수용되는 용기 챔버(C)를 형성하며, 플렉시블 측면을 포함하는 용기 수용부(20);A container receiving portion 20 that is installed inside the housing 10, forms a container chamber C in which a beverage container is accommodated, and includes a flexible side;
    상기 하우징(10)과 상기 용기 수용부(20) 사이에 수용되는 냉매;Refrigerant accommodated between the housing 10 and the container receiving portion 20;
    상기 하우징(10)과 상기 용기 수용부(20) 사이의 상기 냉매의 양을 조절하도록 형성된 냉매 조절장치(30);a refrigerant control device (30) configured to adjust the amount of refrigerant between the housing (10) and the container receiving portion (20);
    상기 냉매를 냉각시키도록 형성된 냉매 냉각장치(40);를 포함하며,It includes a refrigerant cooling device (40) configured to cool the refrigerant,
    상기 냉매 조절장치(30)는 상기 음료 용기에 담긴 음료의 종류에 따라 상기 냉매의 양을 조절하여 상기 용기 수용부(20)의 플렉시블 측면과 상기 음료 용기 사이의 접촉 면적을 조절하여 상기 음료를 최적의 온도로 냉각하고 유지하는, 음료냉각장치.The refrigerant control device 30 adjusts the amount of refrigerant according to the type of beverage contained in the beverage container and adjusts the contact area between the flexible side of the container receiving portion 20 and the beverage container to optimize the beverage. A beverage cooling device that cools and maintains a temperature of .
  2. 제 1 항에 있어서,According to claim 1,
    상기 용기 수용부(20)는 상기 하우징(10)에 대해 회전 가능하게 설치되는, 음료냉각장치.A beverage cooling device wherein the container receiving portion (20) is rotatably installed with respect to the housing (10).
  3. 제 2 항에 있어서,According to claim 2,
    상기 용기 수용부(20)는 상기 하우징(10)의 하부에 설치된 모터에 의해 회전할 수 있도록 마련되는, 음료냉각장치.The container receiving portion (20) is provided to be rotated by a motor installed in the lower portion of the housing (10).
  4. 제 1 항에 있어서,According to claim 1,
    상기 용기 수용부(20)는,The container receiving portion 20,
    베이스 판(21);base plate (21);
    상기 베이스 판(21)의 상측에 설치되는 지지 링(23);A support ring (23) installed on the upper side of the base plate (21);
    상기 베이스 판과 상기 지지 링(23)을 연결하는 복수의 연결바(26);A plurality of connecting bars (26) connecting the base plate and the support ring (23);
    상기 베이스 판(21)에서 상측으로 연장되며, 상기 복수의 연결바(26) 사이에 일정 간격으로 이격되어 설치되는 복수의 지지바(22); 및 a plurality of support bars (22) extending upward from the base plate (21) and installed at regular intervals between the plurality of connection bars (26); and
    상기 복수의 지지바(22) 내부에 설치되고, 상기 지지 링(23)에 고정되는 가장자리와 상기 용기 챔버(C)를 형성하는 오목부를 포함하는 플렉시블 막(25);를 포함하는, 음료냉각장치.A beverage cooling device comprising; a flexible membrane 25 installed inside the plurality of support bars 22 and including an edge fixed to the support ring 23 and a recess forming the container chamber C; .
  5. 제 1 항에 있어서,According to claim 1,
    상기 냉매 조절장치(30)는, The refrigerant control device 30,
    실린더(31);cylinder (31);
    상기 실린더(31) 내부에 설치되는 피스톤(32); 및A piston (32) installed inside the cylinder (31); and
    상기 피스톤(32)을 직선 왕복 이동시키는 리니어 모터(35);를 포함하는, 음료냉각장치.A beverage cooling device comprising a linear motor (35) that moves the piston (32) in a straight line.
  6. 제 1 항에 있어서,According to claim 1,
    상기 냉매 냉각장치(40)는 상기 하우징(10)으로부터 떨어져서 마련되는, 음료냉각장치.The refrigerant cooling device (40) is a beverage cooling device provided separately from the housing (10).
  7. 제 6 항에 있어서,According to claim 6,
    상기 냉매 냉각장치(40)는,The refrigerant cooling device 40,
    상기 하우징(10)에 연결되며, 상기 하우징(10)의 냉매를 배출하는 배출관(41);A discharge pipe 41 connected to the housing 10 and discharging the refrigerant of the housing 10;
    상기 배출관(41)에 연결에 연결되며, 냉매의 온도를 낮추는 방열기(42);A radiator (42) connected to the discharge pipe (41) and lowering the temperature of the refrigerant;
    상기 방열기(42)에서 배출된 냉매를 상기 하우징(10)으로 공급하는 유입관(43); 및an inflow pipe (43) supplying the refrigerant discharged from the radiator (42) to the housing (10); and
    상기 배출관(41)과 상기 유입관(43) 중 한 곳에 설치되는 순환 펌프(44);를 포함하는, 음료냉각장치.A beverage cooling device comprising a circulation pump (44) installed in one of the discharge pipe (41) and the inlet pipe (43).
  8. 제 7 항에 있어서,According to claim 7,
    상기 방열기(42)는 압축기, 응축기, 팽창밸브, 및 열교환기를 포함하는 냉동 사이클의 상기 열교환기와 열교환하도록 형성되는, 음료냉각장치.The radiator (42) is configured to exchange heat with the heat exchanger of a refrigeration cycle including a compressor, condenser, expansion valve, and heat exchanger.
  9. 제 7 항에 있어서,According to claim 7,
    상기 방열기(42)는 펠티에 소자(80)(peltier effect device)와 열교환하도록 형성되는, 음료냉각장치.The radiator 42 is formed to exchange heat with a Peltier element 80 (peltier effect device).
  10. 제 1 항에 있어서,According to claim 1,
    상기 냉매 냉각장치(40)는 상기 하우징(10)의 외주면에 설치된 복수의 펠티에 소자(80)를 포함하는, 음료냉각장치.The refrigerant cooling device (40) is a beverage cooling device including a plurality of Peltier elements (80) installed on the outer peripheral surface of the housing (10).
  11. 제 10 항에 있어서,According to claim 10,
    상기 냉매 냉각장치(40)는 상기 복수의 펠티에 소자(80)를 냉각시키는 펠티에 소자 냉각장치(81)를 포함하는, 음료냉각장치.The refrigerant cooling device (40) includes a Peltier element cooling device (81) that cools the plurality of Peltier elements (80).
  12. 제 1 항에 있어서,According to claim 1,
    상기 냉매는 물을 포함하는, 음료냉각장치.A beverage cooling device wherein the refrigerant includes water.
  13. 제 1 항에 있어서,According to claim 1,
    상기 하우징(10)은 기준면에 대해 경사지게 설치되는, 음료냉각장치.The housing (10) is a beverage cooling device that is installed at an angle with respect to a reference surface.
  14. 제 1 항에 있어서,According to claim 1,
    상기 음료 용기의 온도를 측정할 수 있도록 형성된 온도 센서;A temperature sensor configured to measure the temperature of the beverage container;
    상기 음료 용기에 담긴 상기 음료의 종류를 인식할 수 있도록 형성된 음료 인식 센서; 및A beverage recognition sensor configured to recognize the type of beverage contained in the beverage container; and
    상기 온도 센서에서 전송된 상기 음료 용기의 온도와 상기 음료 인식 센서에서 전송된 상기 음료의 종류에 따라 상기 냉매 조절장치를 제어하여, 상기 용기 수용부의 플렉시블 측면과 상기 음료 용기 사이의 접촉 면적을 조절함으로써 상기 음료를 최적의 온도로 냉각하고 냉각된 상기 음료의 온도를 유지하도록 형성된 프로세서;를 더 포함하는, 음료냉각장치.By controlling the refrigerant control device according to the temperature of the beverage container transmitted from the temperature sensor and the type of beverage transmitted from the beverage recognition sensor, the contact area between the flexible side of the container receiving portion and the beverage container is adjusted. A processor configured to cool the beverage to an optimal temperature and maintain the temperature of the cooled beverage.
  15. 제 1 항 내지 제 14 항 중의 어느 한 항의 음료냉각장치를 포함하는, 가전기기.A home appliance comprising the beverage cooling device of any one of claims 1 to 14.
PCT/KR2023/014852 2022-10-27 2023-09-26 Beverage-cooling apparatus capable of rapidly cooling and maintaining beverage at proper temperature WO2024090817A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0140131 2022-10-27
KR20220140131 2022-10-27
KR10-2022-0172608 2022-12-12
KR1020220172608A KR20240059502A (en) 2022-10-27 2022-12-12 Beverage cooling device that rapidly cools and maintains beverages at appropriate temperature

Publications (1)

Publication Number Publication Date
WO2024090817A1 true WO2024090817A1 (en) 2024-05-02

Family

ID=90831121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014852 WO2024090817A1 (en) 2022-10-27 2023-09-26 Beverage-cooling apparatus capable of rapidly cooling and maintaining beverage at proper temperature

Country Status (1)

Country Link
WO (1) WO2024090817A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031111A1 (en) * 2010-08-03 2012-02-09 Whirlpool Corporation Direct contact turbo-chill chamber using secondary coolant
KR101515901B1 (en) * 2013-12-30 2015-05-04 서영이앤티 주식회사 Device Of Cooling Canned Beverage
KR101655816B1 (en) * 2009-07-21 2016-09-08 엘지전자 주식회사 Refrigerator and Control process of the same
KR101737906B1 (en) * 2013-02-06 2017-05-19 한온시스템 주식회사 Apparatus for cooling and heating cup holder for vehicle
KR20200038103A (en) * 2018-10-02 2020-04-10 엘지전자 주식회사 Refrigerator for actively opening and closing refrigerant control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655816B1 (en) * 2009-07-21 2016-09-08 엘지전자 주식회사 Refrigerator and Control process of the same
US20120031111A1 (en) * 2010-08-03 2012-02-09 Whirlpool Corporation Direct contact turbo-chill chamber using secondary coolant
KR101737906B1 (en) * 2013-02-06 2017-05-19 한온시스템 주식회사 Apparatus for cooling and heating cup holder for vehicle
KR101515901B1 (en) * 2013-12-30 2015-05-04 서영이앤티 주식회사 Device Of Cooling Canned Beverage
KR20200038103A (en) * 2018-10-02 2020-04-10 엘지전자 주식회사 Refrigerator for actively opening and closing refrigerant control valve

Similar Documents

Publication Publication Date Title
WO2012008758A2 (en) Refrigerator and cooling apparatus
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2021162467A1 (en) Refrigerator, server, and method for controlling the refrigerator
WO2010123177A1 (en) Refrigerator
WO2018174432A1 (en) Refrigerator
WO2016089167A1 (en) Cold-water generating tank, and water cooler equipped with same
WO2019194453A1 (en) Water purifier and method for controlling the same
WO2018143699A1 (en) Cooling and heating cabinet
WO2017126909A1 (en) Image capturing apparatus and control method thereof
WO2020116987A1 (en) Refrigerator
WO2017164711A1 (en) Control method for refrigerator
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2021145663A1 (en) Cooling apparatus for electronic element
WO2024090817A1 (en) Beverage-cooling apparatus capable of rapidly cooling and maintaining beverage at proper temperature
WO2019059650A1 (en) Refrigerator
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2011056031A2 (en) Refrigerator and water tank for refrigerator
WO2022145847A1 (en) Refrigerator and control method therefor
WO2019059651A1 (en) Refrigerator
WO2021206241A1 (en) Refrigerator
EP3596413A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2021118021A1 (en) Refrigerator
WO2019151650A1 (en) Cold-water supply system, drinking-water supply apparatus including the system, and method for controlling the system
WO2021157922A1 (en) Refrigerator
WO2021125653A1 (en) Refrigerator and control method therefor