WO2024090563A1 - Nucleic acid for gene expression uses, gene expression vector, method for producing gene expression vector, and gene expression method - Google Patents

Nucleic acid for gene expression uses, gene expression vector, method for producing gene expression vector, and gene expression method Download PDF

Info

Publication number
WO2024090563A1
WO2024090563A1 PCT/JP2023/038909 JP2023038909W WO2024090563A1 WO 2024090563 A1 WO2024090563 A1 WO 2024090563A1 JP 2023038909 W JP2023038909 W JP 2023038909W WO 2024090563 A1 WO2024090563 A1 WO 2024090563A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene expression
sequence
gene
nucleic acid
expression vector
Prior art date
Application number
PCT/JP2023/038909
Other languages
French (fr)
Japanese (ja)
Inventor
親文 千葉
ロブレス マーチン ミゲル カスコ
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Publication of WO2024090563A1 publication Critical patent/WO2024090563A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to the expression of a specific gene in an organism, in particular to a nucleic acid contained in a gene expression vector when expressing a specific gene under certain conditions, a gene expression vector using the same, a method for producing a gene expression vector, and a gene expression method.
  • Cre-LoxP system is widely used because it is possible to knock out a gene with a specific sequence flanked by LoxP sequences by expressing the Cre gene.
  • the Cre-LoxP system can be used for conditional knockout by expressing the Cre gene under certain conditions. For example, by expressing the Cre gene under certain conditions, it is possible to knock out the gene of the specific sequence under those conditions. For example, such conditions can be achieved by introducing a tissue-specific promoter upstream of the Cre recombinase gene of Cre-LoxP, which causes the Cre gene to be expressed only in specific tissues, thereby making it possible to knock out the gene of the specific sequence under the condition of a specific tissue.
  • Patent Document 1 discloses a non-human mammalian animal that retains at least one human cytochrome P450 gene, the expression of which is inducible by a compound that serves as a substrate for the gene product, as an example of gene introduction and knockout technology using the Cre-LoxP system, and also discloses a technology for disrupting the cytochrome P450 gene specific to the non-human mammalian animal using the Cre-loxP system.
  • This technology aims to create a mouse with a human P450 gene (CYP3A family) and also with the mouse's endogenous P450 gene (Cyp3a family) disrupted, a so-called gene replacement mouse.
  • Non-Patent Document 1 discloses a technology that utilizes the CREM (Cre-M) sequence, in which an intron sequence from the human ⁇ -globin gene is inserted into the Cre gene. This technology inserts an intron sequence into the recombinase gene, preventing the recombinase from being expressed in E. coli and making it possible to amplify the vector gene in E. coli.
  • CREM CREM
  • Cre-LoxP mouse into which the Cre-LoxP gene has been introduced
  • a procedure that involves at least two generations of mice has been used. For example, a Cre mouse into which a Cre vector containing a Cre recombinase sequence has been introduced, and a LoxP mouse into which a LoxP vector containing a LoxP sequence and a specific sequence sandwiched between the LoxP sequences has been introduced are created. The Cre mouse and the LoxP mouse are then crossed to create a Cre-LoxP mouse into which the Cre vector and the LoxP vector have each been introduced.
  • Cre-LoxP mice requires at least one crossbreeding, which is costly and time-consuming. Also, although mice are one of the organisms with a relatively short generational turnover period, it was thought that producing Cre-LoxP organisms, for example, in research on organisms with even longer generational turnover periods, would require even greater cost and time.
  • the present inventors investigated the possibility of further simplifying the production of Cre-LoxP organisms and broadening the range of applications of the Cre-LoxP system by introducing a gene containing a Cre recombinase sequence, a LoxP sequence, and a specific sequence sandwiched between LoxP sequences into a target organism.
  • a vector such as a plasmid having both the Cre vector sequence and the LoxP vector sequence, and attempted to introduce the Cre-LoxP vector into the organism into which it was introduced (first generation) in order to study gene expression and knockout using the Cre-LoxP system.
  • Cre-LoxP vector a tissue-specific promoter that does not express Cre except in certain tissues is inserted upstream of the Cre recombinase.
  • Cre is expressed in E. coli regardless of whether the promoter is tissue-specific or not, and spontaneous recombination occurs. From these results, it was difficult to use the Cre-LoxP vector having both the Cre vector sequence and the LoxP vector sequence as it is.
  • Non-Patent Document 1 discloses a technology that utilizes a CREM (Cre-M) sequence in which an intron sequence of the human ⁇ -globin gene is inserted into the sequence of the Cre gene. This technology prevents the expression of the recombinase in E. coli by inserting an intron sequence into the recombinase gene. With this technology, it is believed that it is also possible to amplify in E. coli a Cre-LoxP vector that contains both the sequence of the Cre vector and the sequence of the LoxP vector, without expressing Cre in E. coli.
  • CREM CREM
  • Non-Patent Document 1 uses introns from human genes, so there are limitations on the organisms that can be targeted.
  • the expression of a functional recombinase when introduced into a target organism depends not only on the activity of the promoter but also on the splicing efficiency of mRNA, making it difficult to predict the expression level in the cells to be analyzed.
  • the inventors have been conducting extensive research into conditions under which spontaneous recombination does not occur in growing cells such as E. coli without inserting an intron into the Cre gene.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a nucleic acid for gene expression that can be used in a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level; a gene expression vector using the same; a method for producing the same; and a gene expression method.
  • Aspect 1 of the present invention is a nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence in which TA is repeated five or more times, to be introduced upstream of the recombinant enzyme expression gene.
  • Aspect 2 of the present invention is a nucleic acid for gene expression according to aspect 1, which contains a sequence in which the TA is repeated 5 to 23 times.
  • Aspect 3 of the present invention is a nucleic acid for gene expression according to aspect 1 or 2, which contains a sequence in which the TA is repeated 9 times.
  • Aspect 4 of the present invention is a nucleic acid for use in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence having 50% or more homology with the SOSBox sequence (TACTGTATATATATACAGTA) for introduction upstream of the recombinant enzyme expression gene.
  • SOSBox sequence TACTGTATATATATACAGTA
  • Aspect 5 of the present invention is a nucleic acid for use in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence that has homology to the sequence of the -1700 to -900 site of the CarA promoter, and is to be introduced upstream of the recombinant enzyme expression gene.
  • Aspect 6 of the present invention is a gene expression vector comprising a nucleic acid for gene expression according to any one of aspects 1 to 5, a recombinant enzyme expression gene, a substrate sequence that serves as a substrate for the recombinant enzyme expression gene, and a planned recombination sequence sandwiched between the substrate sequences.
  • aspects 7 of the present invention is the gene expression vector according to aspect 6, in which the recombinase expression gene contains a Cre gene sequence, the gene expression nucleic acid is contained upstream of the recombinase expression gene, and the substrate sequence contains a LoxP sequence.
  • Aspect 8 of the present invention is the gene expression vector according to aspect 6 or 7, in which the gene expression vector is used for gene expression using the Cre-LoxP system.
  • Aspect 9 of the present invention is a gene expression vector according to aspect 7 or 8, in which an insulator sequence is inserted between the sequence of the recombinase expression gene and the intended recombination sequence.
  • Aspect 10 of the present invention is a gene expression vector according to any one of aspects 7 to 9, which is configured so that an insulator sequence is inserted into the binding site between the genome sequence of the organism into which the gene expression vector is introduced and the gene expression vector.
  • Aspect 13 of the present invention is a method for gene expression, which comprises introducing into an organism a gene expression vector containing the nucleic acid for gene expression according to any one of aspects 1 to 6.
  • Aspect 14 of the present invention is the gene expression method according to aspect 13, in which the organism is a mouse, an African clawed frog, or a Japanese fire belly newt.
  • the present invention provides a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, as well as a gene expression vector using the same, a method for producing the same, and a gene expression method.
  • FIG. 1 is a schematic diagram showing sequences used in searching for sequence elements that inhibit spontaneous recombination in Test Example 1.
  • FIG. 1 is a schematic diagram showing sequences used in examining conditions for inhibiting spontaneous recombination in Test Example 2.
  • FIG. 1 is a photograph showing the extraction of nucleic acid from a LoxP region in Test Example 2.
  • FIG. 1 is a photograph showing extraction of nucleic acid from the CarA-CreER T2 site in Test Example 2. This is a photograph showing the extraction of full-length Transgene Target nucleic acid in Test Example 2.
  • This is a graph showing the amount of nucleic acid obtained in the Stbl3 E. coli strain and the NEB Stable E. coli strain in Test Example 2.
  • FIG. 1 is a schematic diagram showing sequences used in searching for sequence elements that inhibit spontaneous recombination in Test Example 1.
  • FIG. 1 is a schematic diagram showing sequences used in examining conditions for inhibiting spontaneous recombination in Test Example 2.
  • FIG. 1 is
  • FIG. 1 is a schematic diagram showing sequences used in examining sequences that suppress spontaneous recombination in Test Example 3.
  • FIG. 13 is a photograph showing the extraction of nucleic acid from the LoxP region in Test Example 3.
  • FIG. 13 is a photograph showing extraction of nucleic acid from the PRE65-CreER T2 site in Test Example 3. This is a photograph showing the extraction of full-length Transgene Target nucleic acid in Test Example 3.
  • FIG. 1 is a schematic diagram of plasmid DNA used in Test Example 4.
  • FIG. 1 is a schematic diagram of the design of the KI construct in Test Example 4.
  • FIG. 13 is a photograph showing fluorescent observation of the tail of a knock-in mouse in Test Example 4.
  • FIG. 13 is a photograph showing the results of PCR analysis of genomic DNA of knock-in mice in Test Example 4.
  • FIG. 13 is a photograph showing fluorescent observation of stages 10 and 43 of transgenic red-bellied newts in Test Example 5.
  • FIG. 13 is a photograph showing fluorescent observation of stage 59 of a transgenic red-bellied newt in Test Example 5.
  • FIG. 13 is a photograph showing the results of immunostaining of frozen sections of the eyeball of a transgenic red-bellied newt in Test Example 5.
  • FIG. 2 is a schematic diagram of an experiment in Test Example 6 of this embodiment.
  • FIG. 1 is a photograph showing fluorescence in skeletal muscles of the limb before and after tamoxifen administration.
  • nucleic acid for gene expression the gene expression vector using the nucleic acid, the method for producing the same, and the gene expression method according to the present invention, with reference to the embodiments.
  • present invention is not limited to the following embodiments.
  • the nucleic acid for gene expression of this embodiment is a nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene, and contains a sequence in which TA is repeated five or more times in order to be introduced upstream of the recombinant enzyme expression gene.
  • Nucleic acid for gene expression broadly refers to nucleic acid used in manipulations related to the expression of genes in an organism. Such nucleic acid can be either DNA or RNA. Manipulations related to gene expression broadly refer to manipulations using DNA or RNA, but in this embodiment, it refers to a nucleic acid sequence used to incorporate a specific sequence into a gene expression vector. For example, it is a DNA sequence used to be inserted into a gene expression vector.
  • the nucleic acid for gene expression is a nucleic acid for use in a gene expression vector containing a recombinase expression gene, and is introduced upstream of the recombinase expression gene.
  • the recombinase expression gene is a gene that causes recombination of a specific sequence by a recombinase expressed by the recombinase expression gene.
  • the recombinase is selected so as to exhibit the function of recognizing a specific substrate sequence and causing recombination of a planned recombination sequence, which is the specific sequence. Specific examples of the recombinase expression gene, substrate sequence, planned recombination sequence, and gene expression vector will be described later.
  • the nucleic acid for gene expression contains, for example, a sequence that repeats the TA (thymine-adenine) sequence five or more times.
  • TA thymine-adenine
  • a sequence that repeats TA 5 to 23 times can be used. 5 or more TAs are sufficient, but the length can be appropriately selected depending on the conditions for amplifying the nucleic acid, convenience for other operations, etc.
  • TA is preferably repeated 8 to 10 times, and more preferably repeated 9 times (SEQ ID NO: 1).
  • a sequence in which TA is repeated 9 times may be referred to as a (TA)9 sequence, a TAx9 sequence, a TAX9 or a 9xTA sequence, etc.
  • a sequence in which the (TA)9 sequence is repeated twice i.e., 18 times of TA
  • TA 9X2 sequence.
  • 9 repetitions of TA the effect of this embodiment of suppressing spontaneous recombination can be fully exerted, and the sequence is unlikely to be too long, causing secondary structures or interactions that would reduce the effect.
  • a sequence with 9 repetitions of TA can exert a particularly strong effect of suppressing spontaneous recombination compared to other sequences.
  • SEQ ID NO:1 TATATATATATATATATATA
  • the nucleic acid comprises a sequence having 50% or more homology with the SOSBox sequence (SEQ ID NO: 2).
  • SEQ ID NO: 2 TACTGTATATATATACAGTA
  • the SOSBox sequence is known as a LexA repressor binding motif in E. coli. Its function is known to be related to the SOS response, which activates RecA and dissociates LexA when DNA damage occurs.
  • the SOS response is involved in the arrest of cell division and DNA repair involving mutations, and is thought to contribute to the acquisition of antibiotic resistance.
  • the present inventors found that when a vector for gene expression using the Cre-LoxP system was prepared by inserting a CarA promoter derived from the Xenopus genome upstream of a Cre recombinase sequence, spontaneous recombination and removal of the site flanked by the LoxP sequences did not occur in E. coli. Thus, a search was conducted for a gene that would function to prevent spontaneous recombination, and the search was narrowed down to the sequence of SEQ ID NO:3.
  • SEQ ID NO: 3 ACAATATGGATTAATATATATATATATATATATATATATATATGTGCACCCGAGCCGAACCCACCCTTCCTCCACCCTTTTATAGACCCGCCCAGGCACTCAGCTATAAAAGCGAAAGTCGGAT
  • SEQ ID NO:3 was similar to the SOSBox sequence. Furthermore, the researchers focused on a sequence of consecutive TAs in the SOSBox and found that this sequence functions to prevent spontaneous recombination, thus completing the present invention.
  • the sequence having homology to the SOSBox sequence contains a portion of the SOSBox sequence in which five consecutive TAs occur.
  • the nucleic acid for gene expression contains a sequence having homology to the sequence at positions ⁇ 1700 to ⁇ 900 of the CarA promoter.
  • the CarA (Cardiac Actin) promoter includes the full-length sequence of the CarA (Xl_CarA) promoter in the Xenopus genome from -3167 to +133 (Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385).
  • Xl_CarA has an AT-rich region at -1700 to -900.
  • the sequence of the ⁇ 1700 to ⁇ 900 region of the CarA promoter analyzed by the present inventors is shown in SEQ ID NO:4.
  • spontaneous recombination can be prevented.
  • the present inventors have found that spontaneous recombination can be prevented by placing the Xl_CarA promoter upstream of the Cre sequence, and that spontaneous recombination can also be prevented by using the -1700 to -900 site of the Xl_CarA promoter, which has an AT-rich region.
  • the nucleic acid for gene expression may contain a single sequence or multiple sequences. For example, it may contain a sequence of 5 or more consecutive TAs, or a sequence having homology to the SOSBox sequence may be consecutive 2 or more times. It may also be consecutive via a sequence other than TA.
  • the gene expression vector of this embodiment comprises any of the above-described nucleic acids for gene expression, a recombinase expression gene, a substrate sequence that serves as a substrate for the recombinase expression gene, and a planned recombination sequence sandwiched between the substrate sequences.
  • a gene expression vector various vectors that are conventionally used for gene expression manipulation can be used.
  • a plasmid vector can be used.
  • the combination of the recombinase expression gene, the substrate sequence, and the planned recombination sequence is selected so that the recombinase expressed by the recombinase expression gene exhibits the function of recognizing the substrate sequence and causing recombination with the planned recombination sequence.
  • the Cre-LoxP system described above is used. That is, the recombinase expression gene is a Cre gene that expresses the Cre recombinase (E. coli targeting P1) enzyme, the substrate sequence is LoxP, and the planned recombination sequence is sandwiched between the LoxP sequences.
  • the gene expression vector preferably contains a Cre gene sequence for the recombinase expression gene, the gene expression nucleic acid upstream of the recombinase expression gene, and the substrate sequence contains a LoxP sequence.
  • the gene expression vector may be configured, for example, from upstream to downstream, with a gene expression nucleic acid, a recombinase expression gene, a substrate sequence, and a planned recombination sequence sandwiched between the sequences.
  • the gene expression nucleic acid of this embodiment By using the gene expression nucleic acid of this embodiment, spontaneous recombination can be prevented, so that when the nucleic acid of the vector sequence having the above sequence is propagated using E. coli or the like, the planned recombination sequence is not removed by spontaneous recombination. Therefore, a gene expression vector having a Cre gene, a LoxP sequence, and a planned recombination sequence sandwiched between the LoxP sequences in one vector sequence can be produced. Recombination of the planned recombination sequence can be carried out by introducing this gene expression vector into an organism in which it is desired to carry out recombination under certain conditions, and there is no need to crossbreed the organisms or pass through generations.
  • the gene expression vector is preferably one used for gene expression using the Cre-LoxP system.
  • the Cre-LoxP system is a gene recombination system that uses a mechanism in which a target recombination sequence sandwiched between LoxP sequences of a substrate sequence is removed by the action of a recombinase, Cre.
  • a Cre vector having a Cre gene that is a recombinase expression gene, a LoxP sequence, and a LoxP vector having a target recombination sequence sandwiched between the LoxP sequences are introduced into an organism.
  • the gene expression vector used for gene expression using the Cre-LoxP system of this embodiment preferably has a Cre gene, a LoxP sequence, and a planned recombination sequence sandwiched between the LoxP sequences in one vector sequence, as described below.
  • the gene expression vector of this embodiment can be applied to site-specific gene recombination techniques, not limited to the Cre-LoxP system.
  • site-specific gene recombination techniques include the FLP-FRP system.
  • an insulator sequence is inserted between the sequence of the recombinase expression gene and the intended recombination sequence.
  • the insulator sequence is a factor that regulates the expression of genes spaced apart in the sequence, and is believed to mainly inhibit transcription enhancers in eukaryotes and block chromatin changes, etc., and has been reported for various biological species.
  • the insulator sequence can be appropriately selected depending on the biological species in which the gene expression vector is used and other conditions, and multiple types or multiple sequences may be used.
  • the insulator sequence is the HS4 core insulator described in the Examples.
  • 2 ⁇ HS4 in which two HS4s are linked in tandem, is inserted between a site containing a Cre gene sequence and a site containing LoxP.
  • the gene expression vector of this embodiment has an insulator sequence inserted between the sequence of the recombinase expression gene and the intended recombination sequence, which makes it possible to suppress interactions between the respective sequence sites (cassettes). This makes it possible to particularly enhance the effect of the present invention in preventing spontaneous recombination.
  • the gene expression vector of this embodiment is preferably configured so that an insulator sequence is inserted into the binding site between the genome sequence of the organism into which the gene expression vector is introduced and the gene expression vector.
  • the insulator sequence can be inserted into the binding site between the genome sequence and the gene expression vector.
  • the insulator sequence can be provided on the introduction construct side just inside the recognition sequence of the restriction enzyme.
  • a promoter for expression under certain conditions may be provided upstream of the Cre gene sequence.
  • the promoter may be, for example, a promoter for eukaryotic cells, or a promoter that is expressed in certain cells or tissues.
  • a tissue-specific promoter may be arranged as a promoter for expression under certain conditions.
  • a universal promoter without specific expression conditions may be arranged upstream of the LoxP sequence, or a promoter for expression under certain conditions may be arranged.
  • a universal promoter By arranging a universal promoter, recombination is carried out depending on the expression conditions of the promoter arranged on the Cre side.
  • upstream means the 5' side, but when a LoxP sequence or the like is arranged in the reverse direction, the 3' side may be upstream.
  • the nucleic acid for gene expression may be provided, for example, further upstream of the promoter.
  • a gene expression vector in which a known promoter sequence is combined with the sequence of this embodiment can be used and introduced.
  • a gene expression vector in which a known promoter sequence is combined with the sequence of this embodiment can be used and introduced.
  • the CRISPR/Cas9 knock-in technique into ROSA26 it can be used in a method for producing conditional gene expression mice, such as Cre-LoxP mice, in a single generation.
  • a vector can be prepared in combination with split cre technology utilizing two different promoters.
  • the nucleic acid for gene expression is introduced into a nucleic acid sequence of a gene expression vector.
  • the production of nucleic acid for gene expression and its introduction into a gene expression vector can be carried out using conventional nucleic acid editing techniques.
  • the method for producing a gene expression vector of this embodiment further includes a step of propagating the gene expression vector using E. coli.
  • Conventionally known methods can be used for propagating the gene expression vector in E. coli and the specific operations thereof.
  • E. coli it is preferable to use an E. coli strain that is suitable for amplifying unstable DNA containing a repetitive sequence.
  • an E. coli strain it is preferable to use the Stbl strain or a derivative thereof.
  • the Stbl strain it is preferable to use, for example, the Stbl3 strain.
  • the E. coli strain is less susceptible to random recombination, and spontaneous recombination can be further prevented.
  • the culture is preferably performed at 30° C. or lower. Also, the culture is more preferably performed at 28° C. Spontaneous recombination can be further prevented by culturing at a temperature lower than the temperature at which E. coli is usually cultured. The reason for this is thought to be that excessive enzyme activity can be prevented. More preferably, this step is carried out using the Stbl strain or a derivative thereof and culturing at 30° C. or lower.
  • the gene expression method of this embodiment includes a method of introducing a gene expression vector into an organism, wherein the gene expression vector includes the nucleic acid for gene expression.
  • Gene expression vectors can be introduced into cultured cells for use. Gene expression vectors can also be directly introduced into living organisms for use. To introduce the vector into an organism, for example, it can be introduced into a fertilized egg.
  • mice Any organism may express the gene, but for example, mice, African clawed frogs, or red-bellied newts can be used. Mice and African clawed frogs can effectively express genes in this embodiment. Red-bellied newts take a long time, more than a year and a half, to change generations, so this embodiment is extremely effective in that the Cre-LoxP system can be used in individuals of the generation into which the gene has been introduced.
  • Cre-LoxP mice can be produced in one generation by combining with the above-mentioned CRISPR/Cas9-based knock-in technique into ROSA26. Furthermore, when an endogenous enhancer/promoter is used, this technology can be used to generate TRE3G>Cre-LoxP mice in one generation and cross them with separately generated rtTA mice to generate Tet mice in a short period of time.
  • a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, a gene expression vector using the same, a production method thereof, and a gene expression method.
  • This embodiment enables the amplification of an integrated conditional gene expression vector in E. coli, similar to the conventional CREM technology that inserts an intron into a CRE sequence, but unlike the CREM technology, it is highly versatile and allows conditional gene expression analysis of a wide range of organisms and cell types.
  • the expression of the recombinant enzyme depends only on the activity of the promoter, it is easy to predict the expression level in the cells to be analyzed.
  • it can be applied without limiting organisms or cell types, it can also be easily applied to the analysis of organisms at the individual level.
  • This embodiment can significantly reduce the time and cost required for conditional gene expression in life science research. It is particularly effective in research using individual organisms.
  • genetically modified individuals can be produced in a short time and at low cost for various animals used in life sciences, such as rodents such as mice, and large animals such as pigs and monkeys, and therefore can also be used in industries such as contract production. Furthermore, this embodiment can also be applied to the development of various vectors and kits used for the artificial expression and functional analysis of genes and proteins.
  • a vector gene was designed that had a partial sequence of the Xenopus CarA promoter (Xl_CarA promoter), a Cre sequence having Cre recombinase, a ubiquitous promoter and a dsRed gene sandwiched between LoxP, and a LoxP sequence having EGFP.
  • This vector gene was prepared by conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain) by heat treatment. E. coli was thinly spread on an agarose plate and cultured at 30° C. for 20 hours or more. The E.
  • coli colonies that appeared were collected and grown in liquid medium, and the vector gene nucleic acid was extracted and examined for the presence or absence of the dsRed gene by PCR.
  • the dsRed gene is detected among the partial sequences of the Xl_CarA promoter introduced, the dsRed gene flanked by LoxP is preserved, and the partial sequence is a sequence element that prevents spontaneous recombination.
  • sequence of SEQ ID NO: 3 which is adjacent to the 3' end of the basal promoter of the Xl_CarA promoter, is a sequence element that prevents spontaneous recombination.
  • SOS box LexA repressor binding motif of Escherichia coli
  • the CarA sequence has an AT-rich region at -1700 to -900 of the full-length sequence -3167 to +133 (Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385). This region closely matches the LexA repressor binding motif (SOS box).
  • the LoxP region is 2.5 kb long if spontaneous recombination does not occur, and 1.5 kbp long if spontaneous recombination occurs.
  • 2 ⁇ HS4 insulator sequences in which two HS4 core insulators are linked in tandem are arranged.
  • the HS4 core insulator was developed by Dr. Gary Felsenfeld of the National Institutes of Health (NIH), Bethesda, MD, USA, and is used with the kind permission of our university, the MTA of the NIH, and Dr. Gary Felsenfeld.
  • a vector gene containing this 12 kb Transgene Target was created using conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain, NEB Stable strain) by heat treatment.
  • E. coli was thinly seeded onto an agarose plate and cultured at 30°C for more than 20 hours. The E. coli colonies that appeared were collected and grown in liquid medium, the vector gene nucleic acid was extracted, and the nucleic acid of the desired site/region was obtained by enzyme treatment, and the length and amount of the grown nucleic acid were examined by agarose gel electrophoresis.
  • Figure 3 shows the nucleic acid extracted from the LoxP region. As shown in the figure, a band at 2.5 kb, i.e., the nucleic acid from the LoxP region where spontaneous recombination was prevented, was confirmed in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
  • FIG. 4 shows the extraction of nucleic acid from the CarA-CreER T2 site.
  • Figure 5 shows the extraction of the full-length 12 kb Transgene Target nucleic acid.
  • the 12 kb Transgene Target is cleaved at both ends by the I-Scel enzyme.
  • a band at the 12 kb position, i.e., the nucleic acid of the 12 kb Transgene Target, was confirmed in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
  • Figure 6 shows the amount of nucleic acid obtained from the Stbl3 E. coli strain and the NEB Stable E. coli strain. The amount of nucleic acid was measured using a microspectrophotometer. Both E. coli strains were able to grow and recover sufficient amounts of nucleic acid.
  • the LoxP region is 2.5 kb long if spontaneous recombination does not occur and 1.5 kbp if spontaneous recombination occurs, and the total length of this sequence of 9.7 kb becomes 8.7 kb if recombination occurs.
  • 2 ⁇ HS4 insulator sequences in which two HS4 core insulators are linked in tandem are arranged.
  • An SOS RE sequence is located upstream (3' side) of cpRPE65.
  • This sequence has partial homology to the SOS box, but uses a sequence of nine TA sequences ((TA)9 sequence), a sequence of nine TA sequences repeated twice ((TA)9X2 sequence), or a sequence of nine TA sequences repeated twice with GGG in between ((TA)9X2GGG sequence).
  • a vector gene containing this 9.7 kb Transgene Target was created using conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain, NEB Stable strain) by heat treatment.
  • E. coli was thinly spread on an agarose plate and cultured at 30°C for more than 20 hours. The E. coli colonies that appeared were collected and grown in liquid medium, the vector gene nucleic acid was extracted, and the nucleic acid of the desired site/region was obtained by enzyme treatment, and the length and amount of the grown nucleic acid were examined by agarose gel electrophoresis.
  • Figure 8 shows the nucleic acid extracted from the LoxP region. As shown in the figure, a band at 2.5 kb was confirmed for the (TA)9 sequence in the Stbl3 E. coli strain, and for the (TA)9X2 sequence and (TA)9X2GGG sequence in the NEB Stable E. coli strain, that is, the nucleic acid of the LoxP region where spontaneous recombination was prevented.
  • FIG. 9 shows the extraction of nucleic acid from the PRE65-CreER T2 site.
  • a band at 3.3 kb i.e., nucleic acid from the PRE65-CreER T2 site.
  • Figure 10 shows the extraction of the full-length 9kb Transgene Target nucleic acid.
  • the 9kb Transgene Target is cleaved at both ends by the I-Scel enzyme.
  • the (TA)9 sequence was confirmed in the Stbl3 E. coli strain, and the (TA)9X2 sequence and (TA)9X2GGG sequence were confirmed in the NEB Stable E. coli strain, meaning that the nucleic acid of the 9kb Transgene Target was confirmed.
  • spontaneous recombination can be prevented by any of the following sequences that share partial homology with the SOS box: a sequence with nine TA sequences ((TA)9 sequence, TAX9 sequence), a sequence with nine TA sequences repeated twice ((TA)9X2 sequence), or a sequence with nine TA sequences repeated twice with GGG in between ((TA)9X2GGG sequence).
  • a sequence with nine TA sequences (a total of 18 base pairs) was able to grow in the Stbl3 strain while preventing spontaneous recombination.
  • the reason why spontaneous recombination was prevented even with a short nucleic acid sequence is thought to be that nonspecific enzyme reactions were suppressed in the Stbl3 strain, effectively preventing spontaneous recombination.
  • Fig. 11 is a schematic diagram of the plasmid DNA used in this test example.
  • the configuration of the transfer cassette is basically the same as that in Test Example 3 (Fig. 7), but cpRPE65 was changed to HACTA1, a human skeletal muscle-specific promoter.
  • HACTA1 Acta1_human_promoter_-2000_to_+239_ Homo sapiens actin alpha 1, skeletal muscle (ACTA1), RefSeqGene (LRG_429) on chromosome 1 is shown in SEQ ID NO:5.
  • FIG. 12 is a schematic diagram of the design of the KI construct.
  • This plasmid DNA was amplified in NEB Stable E. coli strain (30°C, 20 hours or more). The amplified plasmid DNA was then extracted, purified, and concentrated.
  • This plasmid DNA was injected into mouse fertilized eggs together with Cas9 protein and gRNA, and the fertilized eggs were then transplanted into the oviducts of pseudopregnant mice. A total of 621 fertilized eggs were transplanted over two trials, with 88 mice born (birth rate of approximately 14%) and 78 mice surviving (survival rate of approximately 89%). Knock-in was confirmed in 20 of these mice (knock-in rate was approximately 26% of surviving individuals and approximately 3% of transplanted fertilized eggs). The results of two mice (M1 and M1) are shown here as examples. The tip of the tail was taken from each mouse and its fluorescence was examined.
  • FIG. 13 is a photograph showing the fluorescent observation of the tail of a knock-in mouse.
  • (a) shows the bright field of the tail tip
  • (b) shows EGFP
  • (c) shows mCherry fluorescent signals.
  • the left side of the figure is M1 and the right side is M2, neither of which was administered TAM (tamoxifen).
  • the scale bar in the figure indicates 4.5 mm. All tails showed EGFP fluorescence but no mCherry fluorescence, indicating that the DNA region flanked by LoxP was not lost during the preparation of the plasmid DNA or during mouse development, i.e., spontaneous recombination by Cre had not occurred.
  • genomic DNA was extracted from each tail tip and genotyping was performed by PCR. That is, a region containing the DNA sequence encoding CreER T2 (735 bp), a region containing the DNA sequence encoding EGFP (607 bp), and a region containing both the 3'-end of the transfer cassette and the knock-in sequence of the ROSA26 region (3.3 kbp) were amplified by PCR.
  • FIG. 14 is a photograph showing the results of PCR analysis of the genomic DNA of the knock-in mouse.
  • IL-2 (324 bp) is a gene present on another chromosome, and is shown as a positive control to show the quantity and quality of the genomic DNA.
  • all genomic DNAs contained DNA encoding Cre or EGFP, but the transfer cassette was integrated into the ROSA26 region only in the genomic DNA of mouse M2. In other words, it was proven that knock-in was successful in mouse M2. In mouse M1, the transfer cassette is considered to have been randomly integrated into a genomic region other than the ROSA26 region.
  • the plasmid DNA was amplified in NEB Stable E. coli strain (30° C., 20 hours or more), and then the plasmid DNA was extracted, purified, and concentrated.
  • This plasmid DNA was injected into fertilized eggs of the newt together with I-SceI protein (R06945; New England Biolabs Japan, Tokyo, Japan; dilution buffer: 10 mM Tris-HCl, 10 mM MgCl 2 , 1 mM DTT, pH 8.8 at 25°C) and the eggs were raised as is (Casco-Robles et al., Nature Protocols 6: 600-608, 2011; DOI: 10.1038/nprot.2011.334).
  • a total of 390 fertilized eggs were injected with the mixture of plasmid DNA and I-SceI protein (2 nl, plasmid DNA 100 pg, I-SceI 0.002 units) in 13 trials.
  • Figure 15 is a photograph showing fluorescent observation of stages 10 and 43 of transgenic red-bellied newts.
  • (a) shows bright field
  • (b) shows EGFP
  • (c) shows mCherry fluorescent signals.
  • the upper side of the figure is stage 10 (St. 10), and the lower side is stage 43 (St. 43), and in neither case was 4-hydroxytamoxifen (4-OHT) administered.
  • the scale bars in the figures all indicate 2 mm.
  • EGFP fluorescence was confirmed in 38 embryos at stage 10 (late blastula) (gene transfer rate of approximately 9.7%). However, no mCherry fluorescence was confirmed. These individuals developed normally. During this time, EGFP fluorescence was observed throughout the body, but no mCherry fluorescence was observed. An embryo at stage 43 (forelimb stage 6a) is shown as a sample here. This indicates that the DNA region flanked by LoxP was not lost during the preparation of the plasmid DNA or the development of the newt, i.e., spontaneous recombination by Cre did not occur.
  • the larvae were then reared in water containing 4 ⁇ M 4-hydroxytamoxifen (4-OH Tam; (Z)-4-hydroxytamoxifen (H7904-5MG; Merck, Sigma-Aldrich, Tokyo, Japan) dissolved in DMSO) for 2 days to induce Cre-mediated recombination.
  • the water containing 4-OH Tam was replaced with fresh water every other day.
  • FIG. 16 is a photograph showing fluorescence observation of stage 59 of a transgenic newt.
  • (a) shows a bright field
  • (b) shows EGFP
  • (c) shows mCherry fluorescent signals.
  • the upper part of the figure (scale bar in the figure is 8 mm) and the lower part shows a partially enlarged view of the upper part (scale bar in the figure is 2 mm).
  • the image is shown 48 hours after administration of 4-hydroxytamoxifen (4-OH Tam, 4-OHT). As shown in the upper figure, no mCherry fluorescence was observed externally.
  • stage 59 eyeball was enucleated and fixed in a fixative (a modified Zamboni's solution: 2% (w/v) paraformaldehyde and 0.2% (w/v) picric acid in PBS (pH 7.4); Chiba et al., Journal of Comparative Neurology 495: 391-407, 2006; DOI: 10.1002/cne.2088 0) for 6 hours at 4°C, and 20 ⁇ m-thick frozen sections were prepared, and the expression patterns of RPE65 and mCherry proteins were examined immunohistochemically using RPE65 antibody (1:500; MAB5428; EMD Millipore, CA 92590, USA) and RFP antibody (for mCherry; 1:200-500; 600-401-379; Rockland Immunochemicals, PA 19468, USA).
  • a fixative a modified Zamboni's solution: 2% (w/v) paraformaldehyde and 0.2% (w/v) picric acid in PBS (
  • Figure 17 is a photograph showing the results of immunostaining of frozen sections of the eyeball of a transgenic red-bellied newt.
  • the upper, middle, and lower parts of the figure each show an enlarged portion of the upper figure.
  • the image is taken 48 hours after administration of 4-hydroxytamoxifen (4-OH Tam, 4-OHT).
  • the scale bar in the upper figure is 350 ⁇ m, and the lower figure is 100 ⁇ m.
  • Figure 18 is a schematic diagram of this experiment.
  • Tamoxifen was injected intraperitoneally into this mouse, and mCherry expression specific to skeletal muscle fibrocytes was confirmed.
  • mice irradiated the soles of the feet of mice with excitation light, selected mice in which no mCheery fluorescence was observed in their internal muscles, and then injected tamoxifen into the abdominal cavity of these mice.
  • Figure 19 is a photograph showing the fluorescence of the skeletal muscle of the limb before and after tamoxifen administration.
  • Column (a) in the left half of the figure shows the fluorescence of the skeletal muscle of the limb before tamoxifen administration.
  • Column (b) in the right half of the figure shows the fluorescence of the skeletal muscle of the limb one week after the two administrations of tamoxifen.
  • (a) and (b) in the figure are images of different individuals.
  • the scale bar in the figure indicates 5 mm.
  • the present invention provides a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, as well as a gene expression vector using the same, a method for producing the same, and a gene expression method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The purpose of the present invention is to provide: a nucleic acid for gene expression uses, which can amplify a conditional gene expression vector stably, can be used in a gene expression analysis in a wide variety of organism species and cell species, can be predicted with respect to the expression amount thereof, and can be used in a gene expression vector having broad utility and capable of being used for an analysis at an organism individual level; and a gene expression vector, a method for producing the gene expression vector, and a gene expression method, in each of which the nucleic acid is used. Provided are: a nucleic acid for gene expression uses, which is intended to be use in a gene expression vector containing a recombinant enzyme expression gene, is introduced to the upstream of the recombinant enzyme expression gene, and comprises a sequence in which TA is repeated at least five times; and a gene expression vector, a method for producing the gene expression vector, and a gene expression method, in each of which the nucleic acid is used.

Description

遺伝子発現用核酸、遺伝子発現ベクター、遺伝子発現ベクターの製造方法および遺伝子発現方法Nucleic acid for gene expression, gene expression vector, method for producing gene expression vector, and gene expression method
 本発明は、生物への特定遺伝子の発現、特に一定の条件で特定の遺伝子を発現させる際に遺伝子発現ベクターに含まれる核酸、それを用いた遺伝子発現ベクター、遺伝子発現ベクターの製造方法、遺伝子発現方法に関する。
 本願は、2022年10月28日に出願された特願2022-173479号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to the expression of a specific gene in an organism, in particular to a nucleic acid contained in a gene expression vector when expressing a specific gene under certain conditions, a gene expression vector using the same, a method for producing a gene expression vector, and a gene expression method.
This application claims priority based on Japanese Patent Application No. 2022-173479, filed on October 28, 2022, the contents of which are incorporated herein by reference.
 遺伝子を組み換え、特定の遺伝子の発現またはノックアウトを行うシステムは広い応用範囲があるが、例えば、生物の遺伝子機能の解析に広く用いられている。
 例えばCre-LoxPシステムは、Cre遺伝子を発現させることで、LoxP配列に挟まれた特定配列の遺伝子をノックアウトすることができることで広く用いられている。
Systems for recombinant genes to express or knock out specific genes have a wide range of applications, and are widely used, for example, in analyzing gene functions in living organisms.
For example, the Cre-LoxP system is widely used because it is possible to knock out a gene with a specific sequence flanked by LoxP sequences by expressing the Cre gene.
 Cre-LoxPシステムは、一定の条件でCre遺伝子を発現させることで条件付のノックアウトに用いることができる。例えば、一定の条件でCre遺伝子を発現させるようにすることで、その条件で前記特定配列の遺伝子をノックアウトすることができる。このような条件としては、例えばCre-LoxPのCreリコンビナーゼ遺伝子の上流に組織特異的なプロモータを導入するなどによって、特定組織でのみCre遺伝子が発現するので、特定組織という条件において前記特定配列の遺伝子をノックアウトすることができる。 The Cre-LoxP system can be used for conditional knockout by expressing the Cre gene under certain conditions. For example, by expressing the Cre gene under certain conditions, it is possible to knock out the gene of the specific sequence under those conditions. For example, such conditions can be achieved by introducing a tissue-specific promoter upstream of the Cre recombinase gene of Cre-LoxP, which causes the Cre gene to be expressed only in specific tissues, thereby making it possible to knock out the gene of the specific sequence under the condition of a specific tissue.
 Cre-LoxPシステムを用いた遺伝子導入およびノックアウトの技術として、例えば、特許文献1では、ヒトチトクロームP450遺伝子の少なくとも一つを保持し、同遺伝子は、同遺伝子産物の基質となる化合物により誘導発現されることを特徴とする非ヒト哺乳動物を開示し、また、非ヒト哺乳動物固有のチトクロームP450遺伝子の破壊を、Cre-loxPの系を用いて行う技術を開示している。この技術は、ヒトP450遺伝子(CYP3Aファミリー)を有し、さらにマウス内在性のP450遺伝子(Cyp3aファミリー)が破壊された、いわゆる遺伝子が置換されたマウスを作製しようとするものである。 For example, Patent Document 1 discloses a non-human mammalian animal that retains at least one human cytochrome P450 gene, the expression of which is inducible by a compound that serves as a substrate for the gene product, as an example of gene introduction and knockout technology using the Cre-LoxP system, and also discloses a technology for disrupting the cytochrome P450 gene specific to the non-human mammalian animal using the Cre-loxP system. This technology aims to create a mouse with a human P450 gene (CYP3A family) and also with the mouse's endogenous P450 gene (Cyp3a family) disrupted, a so-called gene replacement mouse.
 非特許文献1は、Cre遺伝子にヒトβグロビン遺伝子のイントロン配列を挿入したCREM(Cre-M)配列を利用した技術を開示している。この技術は、組み換え酵素遺伝子にイントロン配列を挿入することで、大腸菌内で組み換え酵素が発現しないようにし、ベクター遺伝子を大腸菌内で増幅することを可能にしているものである。 Non-Patent Document 1 discloses a technology that utilizes the CREM (Cre-M) sequence, in which an intron sequence from the human β-globin gene is inserted into the Cre gene. This technology inserts an intron sequence into the recombinase gene, preventing the recombinase from being expressed in E. coli and making it possible to amplify the vector gene in E. coli.
国際公開第01/011951号WO 01/011951
 従来、Cre-LoxPの遺伝子が導入されたCre-LoxPマウスを作製する場合、最低2世代のマウスの世代を経る操作を用いていた。例えば、Creリコンビナーゼ配列を含むCreベクターを導入したCreマウスと、LoxP配列およびLoxP配列に挟まれた特定配列を含むLoxPベクターを導入したLoxPマウスとを作製する。ついで、前記CreマウスとLoxPマウスを交配させ、CreベクターとLoxPベクターをそれぞれ導入されたCre-LoxPマウスを作製する。  Conventionally, when creating a Cre-LoxP mouse into which the Cre-LoxP gene has been introduced, a procedure that involves at least two generations of mice has been used. For example, a Cre mouse into which a Cre vector containing a Cre recombinase sequence has been introduced, and a LoxP mouse into which a LoxP vector containing a LoxP sequence and a specific sequence sandwiched between the LoxP sequences has been introduced are created. The Cre mouse and the LoxP mouse are then crossed to create a Cre-LoxP mouse into which the Cre vector and the LoxP vector have each been introduced.
 しかし、このCre-LoxPマウスの作製方法は、最低1回の交配を行わなくてはならないことで、費用および時間を要する。また、マウスは比較的世代交代期間が短い生物のひとつであるものの、例えば、さらに世代交代期間の長い生物の研究において、Cre-LoxP生物を製造しようとすると、さらに大きく費用および時間を有することが考えられた。 However, this method of producing Cre-LoxP mice requires at least one crossbreeding, which is costly and time-consuming. Also, although mice are one of the organisms with a relatively short generational turnover period, it was thought that producing Cre-LoxP organisms, for example, in research on organisms with even longer generational turnover periods, would require even greater cost and time.
 そこで、本発明者らは、Creリコンビナーゼ配列、LoxP配列およびLoxP配列に挟まれた特定配列のいずれも含む遺伝子を、対象となる生物に導入することで、Cre-LoxP生物の作製をさらに簡便とし、Cre-LoxPシステムの応用範囲を広めることを検討した。
 すなわち、Creベクターの配列、LoxPベクターの配列の両方を有する1種類のプラスミド等のベクターをデザインし、そのCre-LoxPベクターを導入することで、導入したその生物自体(1世代)でCre-LoxPシステムによる遺伝子発現、ノックアウトの研究に用いることを試みた。
Therefore, the present inventors investigated the possibility of further simplifying the production of Cre-LoxP organisms and broadening the range of applications of the Cre-LoxP system by introducing a gene containing a Cre recombinase sequence, a LoxP sequence, and a specific sequence sandwiched between LoxP sequences into a target organism.
In other words, we designed a vector such as a plasmid having both the Cre vector sequence and the LoxP vector sequence, and attempted to introduce the Cre-LoxP vector into the organism into which it was introduced (first generation) in order to study gene expression and knockout using the Cre-LoxP system.
 しかしながら、上記Cre-LoxPベクターを用いた遺伝子導入を試みた際は、有効に作用しないことが判明した。すなわち、Cre-LoxPベクターの核酸を作製、大腸菌等を用いて増殖、精製した時点で、LoxP配列に挟まれた特定配列の遺伝子が消滅していることが判明した。
 この特定配列の遺伝子の消滅は、核酸の増殖時に大腸菌内でCre-LoxPシステムが機能してしまっていると考えられた。すなわち、通常、ベクター遺伝子となる核酸を作製した後、大腸菌などを用いて、ベクター遺伝子を含む核酸の増殖を行う。しかし、この時点で、大腸菌内でCreが発現し、機能することで、LoxP配列に挟まれた特定配列の遺伝子を除去するという機能を発揮してしまう(自発的組み換え)と思われた。
 このCre-LoxPベクターでは、Creリコンビナーゼの上流に、特定の組織でないとCreが発現しない組織特異的プロモータが挿入されているが、大腸菌内では、プロモータが組織特異的かどうかにかかわらずCreが発現すると考えられ、自発的組み換えが起こっていた。
 これらの結果から、Creベクターの配列、LoxPベクターの配列の両方を有するCre-LoxPベクターを用いることはそのままでは困難であった。
However, when gene transfer was attempted using the Cre-LoxP vector, it was found to be ineffective, i.e., when the nucleic acid of the Cre-LoxP vector was prepared, propagated in E. coli or the like, and purified, it was found that the gene of the specific sequence flanked by the LoxP sequences had disappeared.
It was believed that the disappearance of the gene with this specific sequence was due to the Cre-LoxP system functioning in E. coli during the proliferation of the nucleic acid. That is, usually, after a nucleic acid that will become a vector gene is prepared, the nucleic acid containing the vector gene is propagated using E. coli or the like. However, it was believed that at this point, Cre is expressed and functions in E. coli, thereby exerting its function of removing the gene with the specific sequence sandwiched between the LoxP sequences (spontaneous recombination).
In this Cre-LoxP vector, a tissue-specific promoter that does not express Cre except in certain tissues is inserted upstream of the Cre recombinase. However, it is believed that Cre is expressed in E. coli regardless of whether the promoter is tissue-specific or not, and spontaneous recombination occurs.
From these results, it was difficult to use the Cre-LoxP vector having both the Cre vector sequence and the LoxP vector sequence as it is.
 ここで、非特許文献1は、Cre遺伝子の配列にヒトβグロビン遺伝子のイントロン配列を挿入したCREM(Cre-M)配列を利用した技術を開示している。この技術は、組み換え酵素遺伝子にイントロン配列を挿入することで、大腸菌内で組み換え酵素が発現しないようにしている。この技術であれば、大腸菌内でCreを発現させずに、Creベクターの配列、LoxPベクターの配列の両方を有するCre-LoxPベクターを大腸菌内で増幅することも可能と考えられる。 Here, Non-Patent Document 1 discloses a technology that utilizes a CREM (Cre-M) sequence in which an intron sequence of the human β-globin gene is inserted into the sequence of the Cre gene. This technology prevents the expression of the recombinase in E. coli by inserting an intron sequence into the recombinase gene. With this technology, it is believed that it is also possible to amplify in E. coli a Cre-LoxP vector that contains both the sequence of the Cre vector and the sequence of the LoxP vector, without expressing Cre in E. coli.
 しかしながら、どのイントロン配列を挿入するかは、条件付き遺伝子発現解析の対象となる生物種や細胞種に依存するため、必ずしも汎用性が高いとはいえない。非特許文献1のCREM技術では、ヒト遺伝子のイントロンを用いているため、対象となる生物については制限がある。また、この技術では、対象となる生物に導入した際に機能的な組み換え酵素の発現が、プロモータの活性だけでなくmRNAのスプライシング効率にも依存することになってしまうため、解析対象の細胞における発現量の予測が困難である。
 また、CREM技術を用いて、生物個体レベルの解析を行った例はいまだ殆ど報告されていない。
However, which intron sequence is inserted depends on the organism or cell type that is the subject of conditional gene expression analysis, so it is not necessarily versatile. The CREM technology of Non-Patent Document 1 uses introns from human genes, so there are limitations on the organisms that can be targeted. In addition, with this technology, the expression of a functional recombinase when introduced into a target organism depends not only on the activity of the promoter but also on the splicing efficiency of mRNA, making it difficult to predict the expression level in the cells to be analyzed.
Furthermore, there have been almost no reports of analyses at the individual organism level using the CREM technique.
 本発明者らは、Cre遺伝子にイントロンの挿入等を行わずに、大腸菌などの増殖細胞中での自発的組み換えが起こらない条件について、鋭意研究を進めていった。 The inventors have been conducting extensive research into conditions under which spontaneous recombination does not occur in growing cells such as E. coli without inserting an intron into the Cre gene.
 本発明は上記のような事情を鑑みてなされたものであり、その目的は、条件付き遺伝子発現ベクターを安定的に増幅することができ、幅広い生物種や細胞種において遺伝子発現解析に用いることができ、発現量の予測が可能で、生物個体レベルの解析にも可能な汎用性の高い遺伝子発現ベクターに用いることのできる遺伝子発現用核酸、それを用いた遺伝子発現ベクター、その製造方法、遺伝子発現方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a nucleic acid for gene expression that can be used in a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level; a gene expression vector using the same; a method for producing the same; and a gene expression method.
 本発明の実施態様は、以下の側面を有する。
 本発明の態様1は、組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、前記組み換え酵素発現遺伝子の上流に導入されるための、TAを5回以上繰り返す配列を含む、遺伝子発現用核酸である。
Embodiments of the present invention have the following aspects.
Aspect 1 of the present invention is a nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence in which TA is repeated five or more times, to be introduced upstream of the recombinant enzyme expression gene.
 本発明の態様2は、前記TAを5~23回繰り返す配列を含む、態様1の遺伝子発現用核酸である。 Aspect 2 of the present invention is a nucleic acid for gene expression according to aspect 1, which contains a sequence in which the TA is repeated 5 to 23 times.
 本発明の態様3は、前記TAを9回繰り返す配列を含む、態様1または2に記載の遺伝子発現用核酸である。 Aspect 3 of the present invention is a nucleic acid for gene expression according to aspect 1 or 2, which contains a sequence in which the TA is repeated 9 times.
 本発明の態様4は、組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、前記組み換え酵素発現遺伝子の上流に導入されるための、SOSBox配列(TACTGTATATATATACAGTA)と50%以上の相同性を有する配列を含む、遺伝子発現用核酸である。 Aspect 4 of the present invention is a nucleic acid for use in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence having 50% or more homology with the SOSBox sequence (TACTGTATATATATACAGTA) for introduction upstream of the recombinant enzyme expression gene.
 本発明の態様5は、組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、前記組み換え酵素発現遺伝子の上流に導入されるための、CarAプロモータの-1700~-900の部位の配列と相同性を有する配列を含む、遺伝子発現用核酸である。 Aspect 5 of the present invention is a nucleic acid for use in a gene expression vector containing a recombinant enzyme expression gene, the nucleic acid for gene expression containing a sequence that has homology to the sequence of the -1700 to -900 site of the CarA promoter, and is to be introduced upstream of the recombinant enzyme expression gene.
 本発明の態様6は、態様1から5のいずれか1に記載の遺伝子発現用核酸と、組み換え酵素発現遺伝子と、前記組み換え酵素発現遺伝子の基質となる基質配列と、前記基質配列に挟まれた予定組み換え配列と、を含む遺伝子発現ベクターである。 Aspect 6 of the present invention is a gene expression vector comprising a nucleic acid for gene expression according to any one of aspects 1 to 5, a recombinant enzyme expression gene, a substrate sequence that serves as a substrate for the recombinant enzyme expression gene, and a planned recombination sequence sandwiched between the substrate sequences.
 本発明の態様7は、組み換え酵素発現遺伝子がCre遺伝子配列を含み、前記遺伝子発現用核酸を前記組み換え酵素発現遺伝子の上流に含み、前記基質配列がLoxP配列を含む、態様6に記載の遺伝子発現ベクターである。 Aspect 7 of the present invention is the gene expression vector according to aspect 6, in which the recombinase expression gene contains a Cre gene sequence, the gene expression nucleic acid is contained upstream of the recombinase expression gene, and the substrate sequence contains a LoxP sequence.
 本発明の態様8は、前記遺伝子発現ベクターが、Cre-LoxPシステムを用いた遺伝子発現に用いるものである、態様6または7に記載の遺伝子発現ベクターである。 Aspect 8 of the present invention is the gene expression vector according to aspect 6 or 7, in which the gene expression vector is used for gene expression using the Cre-LoxP system.
 本発明の態様9は、前記組み換え酵素発現遺伝子の配列と、前記予定組み換え配列との間にinsulator配列が挿入されている、態様7または8に記載の遺伝子発現ベクターである。 Aspect 9 of the present invention is a gene expression vector according to aspect 7 or 8, in which an insulator sequence is inserted between the sequence of the recombinase expression gene and the intended recombination sequence.
 本発明の態様10は、前記遺伝子発現ベクターを導入される生物のゲノム配列と前記遺伝子発現ベクターとの結合部位に、insulator配列が挿入されるよう構成されてなる、態様7から9のいずれか1に記載の遺伝子発現ベクターである。 Aspect 10 of the present invention is a gene expression vector according to any one of aspects 7 to 9, which is configured so that an insulator sequence is inserted into the binding site between the genome sequence of the organism into which the gene expression vector is introduced and the gene expression vector.
 本発明の態様11は、態様1から5のいずれか1に記載の遺伝子発現用核酸を遺伝子発現ベクター核酸配列に導入する、遺伝子発現ベクターの製造方法である。 Aspect 11 of the present invention is a method for producing a gene expression vector, which comprises introducing a nucleic acid for gene expression according to any one of aspects 1 to 5 into a nucleic acid sequence of a gene expression vector.
 本発明の態様12は、前記遺伝子発現ベクターを大腸菌を用いて増殖する工程をさらに含み、前記大腸菌は、Stbl株またはその誘導株を用い、30℃以下で培養する、態様11に記載の遺伝子発現ベクターの製造方法である。 Aspect 12 of the present invention is the method for producing a gene expression vector according to aspect 11, further comprising a step of propagating the gene expression vector using E. coli, the E. coli being a Stbl strain or a derivative thereof, and being cultured at 30°C or lower.
 本発明の態様13は、態様1から6のいずれか1に記載の遺伝子発現用核酸を含む遺伝子発現ベクターを生物に導入する、遺伝子発現方法である。 Aspect 13 of the present invention is a method for gene expression, which comprises introducing into an organism a gene expression vector containing the nucleic acid for gene expression according to any one of aspects 1 to 6.
 本発明の態様14は、前記生物がマウス、アフリカツメガエルまたはアカハライモリである、態様13に記載の遺伝子発現方法である。 Aspect 14 of the present invention is the gene expression method according to aspect 13, in which the organism is a mouse, an African clawed frog, or a Japanese fire belly newt.
 本発明によれば、条件付き遺伝子発現ベクターを安定的に増幅することができ、幅広い生物種や細胞種において遺伝子発現解析に用いることができ、発現量の予測が可能で、生物個体レベルの解析にも可能な汎用性の高い遺伝子発現ベクターに用いることのできる遺伝子発現用核酸、それを用いた遺伝子発現ベクター、その製造方法、遺伝子発現方法が得られる。 The present invention provides a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, as well as a gene expression vector using the same, a method for producing the same, and a gene expression method.
試験例1における、自発的組み換えを阻害する配列要素の探索に用いた配列を示す模式図である。FIG. 1 is a schematic diagram showing sequences used in searching for sequence elements that inhibit spontaneous recombination in Test Example 1. 試験例2における、自発的組み換え阻害の条件の検討に用いた配列を示す模式図である。FIG. 1 is a schematic diagram showing sequences used in examining conditions for inhibiting spontaneous recombination in Test Example 2. 試験例2における、LoxP領域の核酸の抽出を示す写真図である。FIG. 1 is a photograph showing the extraction of nucleic acid from a LoxP region in Test Example 2. 試験例2における、CarA-CreERT2部位の核酸の抽出を示す写真図である。FIG. 1 is a photograph showing extraction of nucleic acid from the CarA-CreER T2 site in Test Example 2. 試験例2における、Transgene Target全長の核酸の抽出を示す写真図である。This is a photograph showing the extraction of full-length Transgene Target nucleic acid in Test Example 2. 試験例2における、Stbl3大腸菌株およびNEB Stable大腸菌株で得られた核酸の量を示すグラフ図である。This is a graph showing the amount of nucleic acid obtained in the Stbl3 E. coli strain and the NEB Stable E. coli strain in Test Example 2. 試験例3における、自発的組み換え抑制の配列の検討に用いた配列を示す模式図である。FIG. 1 is a schematic diagram showing sequences used in examining sequences that suppress spontaneous recombination in Test Example 3. 試験例3における、LoxP領域の核酸の抽出を示す写真図である。FIG. 13 is a photograph showing the extraction of nucleic acid from the LoxP region in Test Example 3. 試験例3における、PRE65-CreERT2部位の核酸の抽出を示す写真図である。FIG. 13 is a photograph showing extraction of nucleic acid from the PRE65-CreER T2 site in Test Example 3. 試験例3における、Transgene Target全長の核酸の抽出を示す写真図である。This is a photograph showing the extraction of full-length Transgene Target nucleic acid in Test Example 3. 試験例4で使用したプラスミドDNAの模式図である。FIG. 1 is a schematic diagram of plasmid DNA used in Test Example 4. 試験例4におけるKIコンストラクトのデザインの模式図である。FIG. 1 is a schematic diagram of the design of the KI construct in Test Example 4. 試験例4におけるノックインマウスの尾の蛍光観察を示す写真図である。FIG. 13 is a photograph showing fluorescent observation of the tail of a knock-in mouse in Test Example 4. 試験例4におけるノックインマウスのゲノムDNAのPCR解析の結果を示す写真図である。FIG. 13 is a photograph showing the results of PCR analysis of genomic DNA of knock-in mice in Test Example 4. 試験例5におけるトランスジェニックアカハライモリのステージ10、43の蛍光観察を示す写真図である。FIG. 13 is a photograph showing fluorescent observation of stages 10 and 43 of transgenic red-bellied newts in Test Example 5. 試験例5におけるトランスジェニックアカハライモリのステージ59の蛍光観察を示す写真図である。FIG. 13 is a photograph showing fluorescent observation of stage 59 of a transgenic red-bellied newt in Test Example 5. 試験例5におけるトランスジェニックアカハライモリの眼球凍結切片の免疫染色の結果を示す写真図である。FIG. 13 is a photograph showing the results of immunostaining of frozen sections of the eyeball of a transgenic red-bellied newt in Test Example 5. 本実施例の試験例6の実験の概略図である。FIG. 2 is a schematic diagram of an experiment in Test Example 6 of this embodiment. タモキシフェン投与前後の肢の骨格筋の蛍光を示す写真図である。FIG. 1 is a photograph showing fluorescence in skeletal muscles of the limb before and after tamoxifen administration.
 以下、本発明に係る遺伝子発現用核酸、それを用いた遺伝子発現ベクター、その製造方法、遺伝子発現方法について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。 The following describes the nucleic acid for gene expression, the gene expression vector using the nucleic acid, the method for producing the same, and the gene expression method according to the present invention, with reference to the embodiments. However, the present invention is not limited to the following embodiments.
 (遺伝子発現用核酸)
 本実施形態の遺伝子発現用核酸は、組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、組み換え酵素発現遺伝子の上流に導入されるための、TAを5回以上繰り返す配列を含む。
(Nucleic acid for gene expression)
The nucleic acid for gene expression of this embodiment is a nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene, and contains a sequence in which TA is repeated five or more times in order to be introduced upstream of the recombinant enzyme expression gene.
 遺伝子発現用核酸とは、生物の遺伝子の発現に関連する操作に用いられる核酸を広く指す。このような核酸は、DNAでもRNAでもあり得る。遺伝子の発現に関連する操作としては、DNAまたはRNAを用いた操作を広く指すが、本実施形態では、遺伝子発現ベクターに特定の配列を組み込むために用いる核酸配列を指す。例えば、DNA配列であり、遺伝子発現ベクターに挿入されるために用いる。 Nucleic acid for gene expression broadly refers to nucleic acid used in manipulations related to the expression of genes in an organism. Such nucleic acid can be either DNA or RNA. Manipulations related to gene expression broadly refer to manipulations using DNA or RNA, but in this embodiment, it refers to a nucleic acid sequence used to incorporate a specific sequence into a gene expression vector. For example, it is a DNA sequence used to be inserted into a gene expression vector.
 遺伝子発現用核酸は、組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いるための核酸であって、組み換え酵素発現遺伝子の上流に導入される。ここで、組み換え酵素発現遺伝子は、組み換え酵素発現遺伝子によって発現した組み換え酵素が、特定の配列に対する組み換えを起こす遺伝子である。好ましくは、組み換え酵素が、特定の基質配列を認識し、前記特定の配列である予定組み換え配列に対する組み換えを起こすという機能を発揮するよう選択される。組み換え酵素発現遺伝子、基質配列、予定組み換え配列および遺伝子発現ベクターの具体例については後述する。 The nucleic acid for gene expression is a nucleic acid for use in a gene expression vector containing a recombinase expression gene, and is introduced upstream of the recombinase expression gene. Here, the recombinase expression gene is a gene that causes recombination of a specific sequence by a recombinase expressed by the recombinase expression gene. Preferably, the recombinase is selected so as to exhibit the function of recognizing a specific substrate sequence and causing recombination of a planned recombination sequence, which is the specific sequence. Specific examples of the recombinase expression gene, substrate sequence, planned recombination sequence, and gene expression vector will be described later.
 遺伝子発現用核酸は、例えば、TA(チミン-アデニン)の配列を5回以上繰り返す配列を含む。目安としては、TAを5~23回繰り返す配列を用いることができる。TAは5回以上でよいが、長さは核酸を増殖する条件、他の操作のための便宜などによって適宜選択できる。 The nucleic acid for gene expression contains, for example, a sequence that repeats the TA (thymine-adenine) sequence five or more times. As a guideline, a sequence that repeats TA 5 to 23 times can be used. 5 or more TAs are sufficient, but the length can be appropriately selected depending on the conditions for amplifying the nucleic acid, convenience for other operations, etc.
 また、TAは8~10回の繰り返しであることが好ましく、9回の繰り返し(配列番号1)であることがさらに好ましい。本明細書では、TAが9回繰り返された配列を、(TA)9配列、TAx9配列、TAX9または9xTA配列等と表記することがある。また、(TA)9配列が2回(すなわち、TAが18回)繰り返された配列を(TA)9X2配列と表記することがある。
 TAが9回の繰り返しで、自発的組み換えを抑える本実施形態の効果を充分に発揮することができ、また、配列が長すぎて二次構造や相互作用を起こしかえって効果が低下するといったことが起こりにくい。条件にもよるが、TAが9回繰り返された配列によって、他の配列と比べても特に自発的組み換えを抑える効果を発揮することができる。
 配列番号1:TATATATATATATATATA
Furthermore, TA is preferably repeated 8 to 10 times, and more preferably repeated 9 times (SEQ ID NO: 1). In this specification, a sequence in which TA is repeated 9 times may be referred to as a (TA)9 sequence, a TAx9 sequence, a TAX9 or a 9xTA sequence, etc. Furthermore, a sequence in which the (TA)9 sequence is repeated twice (i.e., 18 times of TA) may be referred to as a (TA)9X2 sequence.
With 9 repetitions of TA, the effect of this embodiment of suppressing spontaneous recombination can be fully exerted, and the sequence is unlikely to be too long, causing secondary structures or interactions that would reduce the effect. Although it depends on the conditions, a sequence with 9 repetitions of TA can exert a particularly strong effect of suppressing spontaneous recombination compared to other sequences.
SEQ ID NO:1: TATATATATATATATA
 遺伝子発現用核酸は、上記とはまた別の態様として、SOSBox配列(配列番号2)と50%以上の相同性を有する配列を含む。
 配列番号2:TACTGTATATATATACAGTA
In another embodiment of the nucleic acid for gene expression, the nucleic acid comprises a sequence having 50% or more homology with the SOSBox sequence (SEQ ID NO: 2).
SEQ ID NO: 2: TACTGTATATATATACAGTA
 SOSBox配列は、大腸菌E.coliのLexAリプレッサー結合モチーフとして知られる。その機能としては、SOS応答に関連することで知られる。SOS応答は、DNA損傷が起こるとRecAを活性化し、LexAを解離させる。SOS応答は細胞分裂の停止、変異を伴うDNA修復などに関与し、抗生物質耐性の獲得などに寄与すると考えられている。 The SOSBox sequence is known as a LexA repressor binding motif in E. coli. Its function is known to be related to the SOS response, which activates RecA and dissociates LexA when DNA damage occurs. The SOS response is involved in the arrest of cell division and DNA repair involving mutations, and is thought to contribute to the acquisition of antibiotic resistance.
 本発明者らは、Cre-LoxPシステムを用いた遺伝子発現に用いるベクターの作製時、アフリカツメガエルゲノム由来のCarAプロモータをCreリコンビナーゼ配列の上流に挿入して用いた場合に、大腸菌内において、自発的組み換え、LoxP配列で挟まれた部位の除去が起こらないことを見出した。そこで、自発的組み換えを防ぐ機能を起こす遺伝子を探索し、配列番号3の配列まで絞り込んだ。
 配列番号3:ACAATATGGATTAATATATATATATATATAATGTGCACCCGAGCCGAACCCACCCTTCCTCCACCCTTTTATAGACCCGCGCCCAGGCACTCAGCTATAAAAGCGAAAGTCGGAT
The present inventors found that when a vector for gene expression using the Cre-LoxP system was prepared by inserting a CarA promoter derived from the Xenopus genome upstream of a Cre recombinase sequence, spontaneous recombination and removal of the site flanked by the LoxP sequences did not occur in E. coli. Thus, a search was conducted for a gene that would function to prevent spontaneous recombination, and the search was narrowed down to the sequence of SEQ ID NO:3.
SEQ ID NO: 3: ACAATATGGATTAATATATATATATATATATATATATATATATGTGCACCCGAGCCGAACCCACCCTTCCTCCACCCTTTTATAGACCCGCGCCCAGGCACTCAGCTATAAAAGCGAAAGTCGGAT
 配列番号3の配列またはその一部に部分的な相同性を有する配列が、自発的組み換えを防ぐ機能を発揮すると考えられた。配列番号3は前記SOSBox配列に近似していた。さらに、SOSBox内のTAが連続した配列に注目し、この配列が自発的組み換えを防ぐ機能を発揮することを見出し、本発明を完成させたものである。 It was believed that the sequence of SEQ ID NO:3 or a sequence having partial homology to a part of it would function to prevent spontaneous recombination. SEQ ID NO:3 was similar to the SOSBox sequence. Furthermore, the researchers focused on a sequence of consecutive TAs in the SOSBox and found that this sequence functions to prevent spontaneous recombination, thus completing the present invention.
 また、前記SOSBox配列と相同性を有する配列は、SOSBox配列のうち、TAが5回連続した配列の部位を含んでいることがさらに好ましい。 Furthermore, it is more preferable that the sequence having homology to the SOSBox sequence contains a portion of the SOSBox sequence in which five consecutive TAs occur.
 また、遺伝子発現用核酸は、CarAプロモータの-1700~-900の部位の配列と相同性を有する配列を含むことも好ましい。
 CarA(Cardiac Actin)プロモータとしては、アフリカツメガエルのゲノム内のCarA(Xl_CarA)プロモータの全長-3167~+133の配列(Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385)が挙げられる。Xl_CarAは-1700~-900の部位にATリッチな領域を有している。
 本発明者らが解析した前記CarAプロモータの-1700~-900の部位の配列を配列番号4に示した。
 配列番号4:CTTTCTGTTATTTCTATAGACAAATGACATTTGCATTAAAATATATATATATATATATATATATATATATATATATATATATATATAGTCAAAGAGGGACTAGGTTTCCAAAACTCAGCAATTACACCGTGATATTACACAAATTACTGAGTTTTAAACGAGTGCTGGTCCTCTTTACAATTATTTATATACTATTTTGACCAAGCACCCGGAAAACAGCATATTGTGAAGGAGTGCGGCTATCATCTGCATTATTGTTATATATATATATATAGTCCATAGAGATGC
CAGCACTCTTGAAAAAATGTAGTTACTGCCTGGGTGCAGAGCCACAGCAGCATTATTCAATTCGAAAAGAAGTCCAATCATTCAGGTCTTAAAGAACAAAAATATATTTAAGTTTATTACTGGGAGCGTAATGTTTCGGGCCAGCAATCTGGCCTTCCTCAAAGTTAGTCTCTCAGTAATAAACGTAAATATATTTTTTGTTCTTTACGACCTGAGTCTGCGAACTTCTTTTCGAATTATATATATATGCATTAGTGATGTGCGGGCTGGCCCGATACCCTCAGTACC
CGCAGGTCGGGTGGGTTCAGGCTGACCTCGCACCCATATTTGCGGGTGGTGGACCACCTTACACTGCTGGCATCCGACTTTCGCTTTTATAGCTGAGTGCCTGGGCGCGGGTCTATAAAAGGGTGGAGGAAGGGTGGGTTCGGCTCGGGTGCACATTATATATATATATATATTAATCCATATTGTTGGCAAAACAAAC
It is also preferred that the nucleic acid for gene expression contains a sequence having homology to the sequence at positions −1700 to −900 of the CarA promoter.
The CarA (Cardiac Actin) promoter includes the full-length sequence of the CarA (Xl_CarA) promoter in the Xenopus genome from -3167 to +133 (Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385). Xl_CarA has an AT-rich region at -1700 to -900.
The sequence of the −1700 to −900 region of the CarA promoter analyzed by the present inventors is shown in SEQ ID NO:4.
SEQ ID NO: 4: CTTTCTGTTATTTCTATAGACAAATGACATTTGCATTAAAATATATATATATATATATATATATATATATATATATATATATATATATATATATAGTCAAAGAGGGACTAGGTTTCCAAAACTCAGCAATTACACCGTGATATTACACAAATTACTGAGTTTTAAACGAGTGCTGGTCCTCTTTACAATTATTTATATACTATTTTGACCAAGCACCCGGAAAACAGCATATTGTGAAGGAGTGCGGCTATCATCTGCATTATTGTTATATATATATATATAGTCCATAGAGATGC
CAGCACTCTTGAAAAAATGTAGTTACTGCCTGGGTGCAGAGCCACAGCAGCATTATTCAATTCGAAAAGAAGTCCAATCATTCAGGTCTTAAAGAACAAAAATATATTTAAGTTTATTACTGGGAGCGTAATGTTTCGGGCCAGCAATCTGGCCTTCCTCAAAGTTAGTCTCTCAGTAATAAACGTAAATATATTTTTTGTTCTTTACGACCTGAGTCTGCGAACTTCTTTTCGAATTATATATATATGCATTAGTGATGTGCGGGCTGGCCCGATACCCTCAGTACC
CGCAGGTCGGGTGGGTTCAGGCTGACCTCGCACCCATATTTGCGGGTGGTGGACCACCTTACACTGCTGGCATCCGACTTTCGCTTTTATAGCTGAGTGCCTGGGCGCGGGTCTATAAAAGGGTGGAGGAAGGGTGGGTTCGGCTCGGGTGCACATTATATATATATATATATATTAATCCATATTGTTGGCAAAACAAAC
 遺伝子発現用核酸としてCarAプロモータの-1700~-900の部位の配列と相同性を有する配列を含む核酸を用いることで、自発的な組み換えを防ぐことができる。
 本発明者らは、Xl_CarAプロモータをCre配列の上流に配置することで、自発的な組み換えを防ぐことができること、またXl_CarAプロモータのうちATリッチな領域を有している-1700~-900の部位を用いることでも、自発的な組み換えを防ぐことができることを見出している。
By using a nucleic acid containing a sequence having homology to the sequence of the -1700 to -900 site of the CarA promoter as the nucleic acid for gene expression, spontaneous recombination can be prevented.
The present inventors have found that spontaneous recombination can be prevented by placing the Xl_CarA promoter upstream of the Cre sequence, and that spontaneous recombination can also be prevented by using the -1700 to -900 site of the Xl_CarA promoter, which has an AT-rich region.
 遺伝子発現用核酸は、前記配列を単一で含んでいてもよく、複数含んでいてもよい。例えば、TAが5回以上連続した配列、またはSOSBox配列と相同性を有する配列が、2回以上連続していてもよい。また、TA以外の配列を介して連続していてもよい。 The nucleic acid for gene expression may contain a single sequence or multiple sequences. For example, it may contain a sequence of 5 or more consecutive TAs, or a sequence having homology to the SOSBox sequence may be consecutive 2 or more times. It may also be consecutive via a sequence other than TA.
 (遺伝子発現ベクター)
 本実施形態の遺伝子発現ベクターは、前記のいずれかに記載の遺伝子発現用核酸と、組み換え酵素発現遺伝子と、前記組み換え酵素発現遺伝子の基質となる基質配列と、前記基質配列に挟まれた予定組み換え配列と、を含む。
(Gene Expression Vector)
The gene expression vector of this embodiment comprises any of the above-described nucleic acids for gene expression, a recombinase expression gene, a substrate sequence that serves as a substrate for the recombinase expression gene, and a planned recombination sequence sandwiched between the substrate sequences.
 遺伝子発現ベクターとしては、従来の遺伝子発現の操作に用いられている各種のベクターを用いることができる。本実施形態では、例えばプラスミドベクターを用いることができる。 As a gene expression vector, various vectors that are conventionally used for gene expression manipulation can be used. In this embodiment, for example, a plasmid vector can be used.
 組み換え酵素発現遺伝子、基質配列、予定組み換え配列の組み合わせは、組み換え酵素発現遺伝子によって発現した組み換え酵素が、基質配列を認識し、予定組み換え配列に対する組み換えを起こすという機能を発揮するよう選択される。本実施形態では、前述したCre-LoxPシステムを用いる。すなわち、組み換え酵素発現遺伝子は、Creリコンビナーゼ(大腸菌ターゲティングP1)酵素を発現するCre遺伝子、基質配列にはLoxPを用い、LoxP配列に挟まれた予定組み換え配列を用いる。本実施形態の遺伝子発現ベクターは、組み換え酵素発現遺伝子がCre遺伝子配列を含み、前記遺伝子発現用核酸を前記組み換え酵素発現遺伝子の上流に含み、前記基質配列がLoxP配列を含むことが好ましい。遺伝子発現ベクターは、例えば上流から順に遺伝子発現用核酸、組み換え酵素発現遺伝子、基質配列および該配列に挟まれた予定組み換え配列という構成であってもよい。 The combination of the recombinase expression gene, the substrate sequence, and the planned recombination sequence is selected so that the recombinase expressed by the recombinase expression gene exhibits the function of recognizing the substrate sequence and causing recombination with the planned recombination sequence. In this embodiment, the Cre-LoxP system described above is used. That is, the recombinase expression gene is a Cre gene that expresses the Cre recombinase (E. coli targeting P1) enzyme, the substrate sequence is LoxP, and the planned recombination sequence is sandwiched between the LoxP sequences. In this embodiment, the gene expression vector preferably contains a Cre gene sequence for the recombinase expression gene, the gene expression nucleic acid upstream of the recombinase expression gene, and the substrate sequence contains a LoxP sequence. The gene expression vector may be configured, for example, from upstream to downstream, with a gene expression nucleic acid, a recombinase expression gene, a substrate sequence, and a planned recombination sequence sandwiched between the sequences.
 本実施形態の遺伝子発現用核酸を用いると、自発的組み換えを防ぐことができるので、大腸菌などを用いて前記配列を備えたベクター配列の核酸を増殖する際に、自発的組み換えで予定組み換え配列が除去されるといったことがない。したがって、1つのベクター配列に、Cre遺伝子、LoxP配列、およびLoxP配列で挟まれた予定組み換え配列を有する遺伝子発現ベクターを製造することができる。一定の条件で予定組み換え配列の組み換えを行いたい生物に対して、この遺伝子発現ベクターを導入することで行うことができ、生物の交配や世代を経る必要がない。 By using the gene expression nucleic acid of this embodiment, spontaneous recombination can be prevented, so that when the nucleic acid of the vector sequence having the above sequence is propagated using E. coli or the like, the planned recombination sequence is not removed by spontaneous recombination. Therefore, a gene expression vector having a Cre gene, a LoxP sequence, and a planned recombination sequence sandwiched between the LoxP sequences in one vector sequence can be produced. Recombination of the planned recombination sequence can be carried out by introducing this gene expression vector into an organism in which it is desired to carry out recombination under certain conditions, and there is no need to crossbreed the organisms or pass through generations.
 遺伝子発現ベクターは、Cre-LoxPシステムを用いた遺伝子発現に用いるものであることが好ましい。
 Cre-LoxPシステムは、組み換え酵素であるCreの働きによって、基質配列のLoxP配列で挟まれた予定組み換え配列が除去される仕組みを用いた遺伝子組み換えのシステムである。具体的な操作としては、組み換え酵素発現遺伝子であるCre遺伝子を有するCreベクター、LoxP配列およびLoxP配列で挟まれた予定組み換え配列を有するLoxPベクターを生物に導入して用いる。
The gene expression vector is preferably one used for gene expression using the Cre-LoxP system.
The Cre-LoxP system is a gene recombination system that uses a mechanism in which a target recombination sequence sandwiched between LoxP sequences of a substrate sequence is removed by the action of a recombinase, Cre. Specifically, a Cre vector having a Cre gene that is a recombinase expression gene, a LoxP sequence, and a LoxP vector having a target recombination sequence sandwiched between the LoxP sequences are introduced into an organism.
 本実施形態のCre-LoxPシステムを用いた遺伝子発現に用いる遺伝子発現ベクターは、後述するように、1つのベクター配列に、Cre遺伝子、LoxP配列、およびLoxP配列で挟まれた予定組み換え配列を有することが好ましい。 The gene expression vector used for gene expression using the Cre-LoxP system of this embodiment preferably has a Cre gene, a LoxP sequence, and a planned recombination sequence sandwiched between the LoxP sequences in one vector sequence, as described below.
 また、本実施形態の遺伝子発現ベクターは、Cre-LoxPシステムに限らず、部位特異的な遺伝子組み換えの技術に応用することができる。部位特異的な遺伝子組み換えの技術としては、FLP-FRPシステムなどが挙げられる。 Furthermore, the gene expression vector of this embodiment can be applied to site-specific gene recombination techniques, not limited to the Cre-LoxP system. Examples of site-specific gene recombination techniques include the FLP-FRP system.
 本実施形態の遺伝子発現ベクターは、前記組み換え酵素発現遺伝子の配列と、前記予定組み換え配列との間にinsulator配列が挿入されていることが好ましい。
 ここでinsulator配列とは、配列上で離間した遺伝子の発現の調節を行う因子で、主に真核生物の転写エンハンサーの阻害やクロマチン変化などを遮断すると考えられており、各生物種で報告されている。insulator配列は、遺伝子発現ベクターを使用する生物種その他の条件によって適宜選択でき、複数種類、また複数配列を用いても良い。
 本実施形態では、insulator配列としては実施例において述べるHS4 core insulatorを用いる。本実施形態では、HS4をタンデムに2つ連結させた2×HS4を、Cre遺伝子配列を含む部位とLoxPを含む部位の間に挿入している。
In the gene expression vector of this embodiment, it is preferable that an insulator sequence is inserted between the sequence of the recombinase expression gene and the intended recombination sequence.
Here, the insulator sequence is a factor that regulates the expression of genes spaced apart in the sequence, and is believed to mainly inhibit transcription enhancers in eukaryotes and block chromatin changes, etc., and has been reported for various biological species. The insulator sequence can be appropriately selected depending on the biological species in which the gene expression vector is used and other conditions, and multiple types or multiple sequences may be used.
In this embodiment, the insulator sequence is the HS4 core insulator described in the Examples. In this embodiment, 2×HS4, in which two HS4s are linked in tandem, is inserted between a site containing a Cre gene sequence and a site containing LoxP.
 本実施形態の遺伝子発現ベクターは、前記組み換え酵素発現遺伝子の配列と、前記予定組み換え配列との間にinsulator配列が挿入されていることで、それぞれの配列部位(カセット)同士の相互作用を抑えることができる。そのため、自発的組み換えを防ぐという本願発明の効果を特に高くすることができる。 The gene expression vector of this embodiment has an insulator sequence inserted between the sequence of the recombinase expression gene and the intended recombination sequence, which makes it possible to suppress interactions between the respective sequence sites (cassettes). This makes it possible to particularly enhance the effect of the present invention in preventing spontaneous recombination.
 本実施形態の遺伝子発現ベクターは、前記遺伝子発現ベクターを導入される生物のゲノム配列と前記遺伝子発現ベクターとの結合部位に、insulator配列が挿入されるよう構成されてなることが好ましい。 The gene expression vector of this embodiment is preferably configured so that an insulator sequence is inserted into the binding site between the genome sequence of the organism into which the gene expression vector is introduced and the gene expression vector.
 例えば、遺伝子導入ベクター内の、ゲノムに導入する予定である配列である導入コンストラクトの両端にあたる部位にinsulator配列を設けることで、ゲノム配列と前記遺伝子発現ベクターとの結合部位に、insulator配列を挿入することができる。遺伝子導入に制限酵素等を用いる場合、制限酵素の認識配列のすぐ内側の導入コンストラクト側にinsulator配列を設けることができる。 For example, by providing an insulator sequence at both ends of the introduction construct, which is the sequence to be introduced into the genome, in the gene introduction vector, the insulator sequence can be inserted into the binding site between the genome sequence and the gene expression vector. When a restriction enzyme or the like is used for gene introduction, the insulator sequence can be provided on the introduction construct side just inside the recognition sequence of the restriction enzyme.
 遺伝子発現ベクターのその他の構成は、従来知られていたものを用いることができる。例えば、組み換え酵素発現遺伝子としてCre遺伝子配列、基質配列としてLoxP配列を用いる場合、Cre遺伝子配列の上流には、一定条件で発現するためのプロモータを設けてもよい。プロモータとしては、例えば真核細胞のプロモータでもよく、また一定の細胞や組織で発現するプロモータでもよい。
 例えば、一定条件で発現するためのプロモータとして組織特異的なプロモータを配置していてもよい。組織特異的なプロモータを設けることによって、Creによる組み換え酵素発現が特定の組織において行われる条件を付することができる。また、LoxP配列の上流には、特に発現条件のないユニバーサルプロモータが配置されていてもよいし、一定条件で発現するためのプロモータを設けてもよい。ユニバーサルプロモータを配置することで、Cre側に配置したプロモータの発現条件に依存して組み換えが行われる。
 ここで上流とは5’側であるが、LoxP配列などが逆方向に配置されている場合、3’側が上流となることもありえる。
 遺伝子発現用核酸は、例えば前記プロモータのさらに上流に設けられていてもよい。
Other components of the gene expression vector may be those known in the art. For example, when a Cre gene sequence is used as the recombinase expression gene and a LoxP sequence is used as the substrate sequence, a promoter for expression under certain conditions may be provided upstream of the Cre gene sequence. The promoter may be, for example, a promoter for eukaryotic cells, or a promoter that is expressed in certain cells or tissues.
For example, a tissue-specific promoter may be arranged as a promoter for expression under certain conditions. By providing a tissue-specific promoter, it is possible to set conditions for Cre-induced recombinase expression in a specific tissue. In addition, a universal promoter without specific expression conditions may be arranged upstream of the LoxP sequence, or a promoter for expression under certain conditions may be arranged. By arranging a universal promoter, recombination is carried out depending on the expression conditions of the promoter arranged on the Cre side.
Here, "upstream" means the 5' side, but when a LoxP sequence or the like is arranged in the reverse direction, the 3' side may be upstream.
The nucleic acid for gene expression may be provided, for example, further upstream of the promoter.
 遺伝子発現ベクターの具体的な作製例としては、例えば、組み換え酵素の発現を制御するために、既知のプロモータ配列に本実施形態の配列を組み合わせた遺伝子発現ベクターを使用し、導入することができる。
 例えば、CRISPR/Cas9によるROSA26へのノックイン技術と組み合わせることで、Cre-LoxPマウス等の条件付き遺伝子発現マウスを一世代で作製する手法に用いることができる。
 また、例えば、細胞・組織特異性を高めるためには、2つの異なるプロモータを利用したsplit cre技術と組み合わせたベクターを作製することもできる。
As a specific example of how to prepare a gene expression vector, for example, in order to control the expression of a recombinant enzyme, a gene expression vector in which a known promoter sequence is combined with the sequence of this embodiment can be used and introduced.
For example, by combining this with the CRISPR/Cas9 knock-in technique into ROSA26, it can be used in a method for producing conditional gene expression mice, such as Cre-LoxP mice, in a single generation.
Furthermore, for example, in order to enhance cell/tissue specificity, a vector can be prepared in combination with split cre technology utilizing two different promoters.
(遺伝子発現ベクターの製造方法)
 本実施形態の遺伝子発現ベクターの製造方法は、前記遺伝子発現用核酸を、遺伝子発現ベクター核酸配列に導入する。
 遺伝子発現用核酸の製造、および遺伝子発現ベクターへの導入は、従来の核酸編集技術を用いて行うことができる。
(Method for producing gene expression vector)
In the method for producing a gene expression vector of this embodiment, the nucleic acid for gene expression is introduced into a nucleic acid sequence of a gene expression vector.
The production of nucleic acid for gene expression and its introduction into a gene expression vector can be carried out using conventional nucleic acid editing techniques.
 本実施形態の遺伝子発現ベクターの製造方法は、前記遺伝子発現ベクターを大腸菌を用いて増殖する工程をさらに含む。大腸菌内で遺伝子発現ベクターを増殖する方法およびその具体的操作は、従来知られた手法を用いることができる。 The method for producing a gene expression vector of this embodiment further includes a step of propagating the gene expression vector using E. coli. Conventionally known methods can be used for propagating the gene expression vector in E. coli and the specific operations thereof.
 前記大腸菌は、繰り返し配列を含む不安定なDNAの増幅に適した株を用い大腸菌株を用いることが好ましい。このような大腸菌株として、Stbl株あるいはその誘導株を用いることが好ましい。前記Stbl株としては、例えばStbl3株を用いることが好ましい。前記大腸菌株は、不特定の組み換えが起こりにくく、自発的組み換えをさらに防ぐことができる。 As the E. coli, it is preferable to use an E. coli strain that is suitable for amplifying unstable DNA containing a repetitive sequence. As such an E. coli strain, it is preferable to use the Stbl strain or a derivative thereof. As the Stbl strain, it is preferable to use, for example, the Stbl3 strain. The E. coli strain is less susceptible to random recombination, and spontaneous recombination can be further prevented.
 前記遺伝子発現ベクターを大腸菌内で増殖する工程は、30℃以下で培養することが好ましい。また、28℃で培養することがさらに好ましい。通常大腸菌を培養する温度よりも低温で培養することで、自発的組み換えをさらに防ぐことができる。この理由としては、酵素の活性が過剰となることを防ぐことができるためだと考えられる。
 この工程は、Stbl株あるいはその誘導株を用いて、かつ30℃以下で培養することがより好ましい。
In the step of propagating the gene expression vector in E. coli, the culture is preferably performed at 30° C. or lower. Also, the culture is more preferably performed at 28° C. Spontaneous recombination can be further prevented by culturing at a temperature lower than the temperature at which E. coli is usually cultured. The reason for this is thought to be that excessive enzyme activity can be prevented.
More preferably, this step is carried out using the Stbl strain or a derivative thereof and culturing at 30° C. or lower.
 (遺伝子発現方法)
 本実施形態の遺伝子発現方法は、遺伝子発現ベクターを生物に導入する方法を含む。ここで、遺伝子発現ベクターは前記遺伝子発現用核酸を含むものを使用できる。
(Gene Expression Method)
The gene expression method of this embodiment includes a method of introducing a gene expression vector into an organism, wherein the gene expression vector includes the nucleic acid for gene expression.
 遺伝子発現ベクターは、培養細胞に導入して使用することができる。また、遺伝子発現ベクターは、生物に対して直接導入して使用することができる。生物に対して導入するには、例えば、受精卵に対して導入することができる。 Gene expression vectors can be introduced into cultured cells for use. Gene expression vectors can also be directly introduced into living organisms for use. To introduce the vector into an organism, for example, it can be introduced into a fertilized egg.
 遺伝子を発現する生物はいかなるものであってもよいが、例えばマウス、アフリカツメガエル、またはアカハライモリなどを用いることができる。マウスやアフリカツメガエルは本実施形態で有効に遺伝子発現を行うことができる。アカハライモリは、世代交代に要する時間が1年半以上と長いため、遺伝子の導入を行ったその世代の個体においてCre-LoxPシステムを用いることのできる本実施形態においてきわめて有効である。 Any organism may express the gene, but for example, mice, African clawed frogs, or red-bellied newts can be used. Mice and African clawed frogs can effectively express genes in this embodiment. Red-bellied newts take a long time, more than a year and a half, to change generations, so this embodiment is extremely effective in that the Cre-LoxP system can be used in individuals of the generation into which the gene has been introduced.
 マウスで使用する方法としては、例えば、前記したCRISPR/Cas9によるROSA26へのノックイン技術と組み合わせ、Cre-LoxPマウスを一世代で作製することができる。
 また、内在性のエンハンサー/プロモータを利用する場合、本技術でTRE3G>Cre-LoxPマウスを一世代で作製し、別途作製したrtTAマウスと掛け合わせることで、Tetマウスを短期的に作製するといった方法に使用できる。
As a method for use in mice, for example, Cre-LoxP mice can be produced in one generation by combining with the above-mentioned CRISPR/Cas9-based knock-in technique into ROSA26.
Furthermore, when an endogenous enhancer/promoter is used, this technology can be used to generate TRE3G>Cre-LoxP mice in one generation and cross them with separately generated rtTA mice to generate Tet mice in a short period of time.
 (本実施形態の効果)
 本実施形態によって、条件付き遺伝子発現ベクターを安定的に増幅することができ、幅広い生物種や細胞種において遺伝子発現解析に用いることができ、発現量の予測が可能で、生物個体レベルの解析にも可能な汎用性の高い遺伝子発現ベクターに用いることのできる遺伝子発現用核酸、それを用いた遺伝子発現ベクター、その製造方法、遺伝子発現方法が得られる。
(Effects of this embodiment)
According to the present embodiment, there are provided a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, a gene expression vector using the same, a production method thereof, and a gene expression method.
 本実施形態は、従来技術であるCRE配列にイントロンを挿入するCREM技術と同様に、大腸菌内で一体型の条件付き遺伝子発現ベクターの増幅を可能にするが、CREM技術とは異なり汎用性が高く、幅広い生物種や細胞種の条件付き遺伝子発現解析が可能である。また、組み換え酵素の発現がプロモータの活性のみに依存するため、解析対象の細胞における発現量の予測が容易である。さらに、生物種や細胞種を限定せずに応用できるため、生物種の個体レベルの解析にも応用が容易である。 This embodiment enables the amplification of an integrated conditional gene expression vector in E. coli, similar to the conventional CREM technology that inserts an intron into a CRE sequence, but unlike the CREM technology, it is highly versatile and allows conditional gene expression analysis of a wide range of organisms and cell types. In addition, since the expression of the recombinant enzyme depends only on the activity of the promoter, it is easy to predict the expression level in the cells to be analyzed. Furthermore, since it can be applied without limiting organisms or cell types, it can also be easily applied to the analysis of organisms at the individual level.
 本実施形態により、ライフサイエンス研究における条件付き遺伝子発現にかかる時間とコストを大幅に低減することができる。特に、生物個体を用いた研究において効果が大きい。 This embodiment can significantly reduce the time and cost required for conditional gene expression in life science research. It is particularly effective in research using individual organisms.
 本実施形態により、ライフサイエンスに利用される各種の動物、例えばげっ歯類としてマウス等、大型動物としてブタやサル等について、遺伝子組み換え個体を短時間低コストで作製することができるので、受託作製等の産業にも利用することができる。
 また、本実施形態は、遺伝子やタンパク質の人為的発現や機能解析に利用する様々なベクターやキットの開発にも応用することができる。
According to this embodiment, genetically modified individuals can be produced in a short time and at low cost for various animals used in life sciences, such as rodents such as mice, and large animals such as pigs and monkeys, and therefore can also be used in industries such as contract production.
Furthermore, this embodiment can also be applied to the development of various vectors and kits used for the artificial expression and functional analysis of genes and proteins.
 以下、実施例を示す。なお、本発明は実施例に限定されるものではない。 The following are examples. Note that the present invention is not limited to these examples.
 (試験例1:自発的組み換え阻害エレメントの絞り込み)
 本発明者らは、一配列のベクター遺伝子配列上にCre配列と、LoxP配列に挟まれた酵素発現遺伝子を有する場合、Cre配列の上流にアフリカツメガエル(Xenopus Laevis)ゲノム由来のCarA(Cardiac Actin)プロモータが存在すると、大腸菌内ではCreの自発的組み換えの酵素活性が発現せず、LoxP配列に挟まれた配列が保存されることを見出していた。
 そこで、CarA配列中において、自発的組み換えを阻害する配列要素(エレメント)がどの配列であるかを検討した。
(Test Example 1: Narrowing down of spontaneous recombination-inhibiting elements)
The present inventors have found that when a vector gene sequence has a Cre sequence and an enzyme expression gene sandwiched between LoxP sequences, if the CarA (cardiac actin) promoter derived from the Xenopus laevis genome is present upstream of the Cre sequence, the enzyme activity of spontaneous recombination of Cre is not expressed in Escherichia coli, and the sequence sandwiched between the LoxP sequences is preserved.
Therefore, the inventors investigated which sequence elements in the CarA sequence inhibit spontaneous recombination.
 図1に、自発的組み換えを阻害する配列要素の探索に用いた配列を示す。一つの配列に、アフリカツメガエルのCarAプロモータ(Xl_CarAプロモータ)の一部配列、Creリコンビナーゼを有するCre配列と、ユビキタスプロモータとLoxPに挟まれたdsRed遺伝子、EGFPを有するLoxP配列を有するベクター遺伝子をデザインした。
 このベクター遺伝子を従来の核酸編集技術で作製し、熱処理法により大腸菌(Stbl3株)に導入した。大腸菌をアガロースプレート上に薄く播き、30℃で20時間以上培養した。現れた大腸菌コロニーを採取し、液体培地中で増殖させ、ベクター遺伝子核酸を抽出し、PCR法によりdsRed遺伝子の有無を調べた。
 Xl_CarAプロモータの一部配列を導入したうち、dsRed遺伝子が検出されれば、LoxPに挟まれたdsRed遺伝子が保存されているので、その一部配列が自発的組み換えを防ぐ配列要素である。
The sequences used to search for sequence elements that inhibit spontaneous recombination are shown in Figure 1. In one sequence, a vector gene was designed that had a partial sequence of the Xenopus CarA promoter (Xl_CarA promoter), a Cre sequence having Cre recombinase, a ubiquitous promoter and a dsRed gene sandwiched between LoxP, and a LoxP sequence having EGFP.
This vector gene was prepared by conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain) by heat treatment. E. coli was thinly spread on an agarose plate and cultured at 30° C. for 20 hours or more. The E. coli colonies that appeared were collected and grown in liquid medium, and the vector gene nucleic acid was extracted and examined for the presence or absence of the dsRed gene by PCR.
When the dsRed gene is detected among the partial sequences of the Xl_CarA promoter introduced, the dsRed gene flanked by LoxP is preserved, and the partial sequence is a sequence element that prevents spontaneous recombination.
 結果として、Xl_CarAプロモータが基本プロモータの3’末端に隣接した、前述した配列番号3の配列が自発的組み換えを防ぐ配列要素であることが明らかになった。
 配列番号3の配列に近似したモチーフを探索した結果、この配列は、様々な生物のゲノムに類似したモチーフが存在したが、大腸菌のLexAリプレッサー結合モチーフ(SOS bоx)(前述の配列番号2)に近似していた。この配列は、ATリッチ、特にTAが8つ連続した領域を有する。
As a result, it was revealed that the sequence of SEQ ID NO: 3, which is adjacent to the 3' end of the basal promoter of the Xl_CarA promoter, is a sequence element that prevents spontaneous recombination.
As a result of searching for a motif similar to the sequence of SEQ ID NO: 3, it was found that this sequence has similar motifs in the genomes of various organisms, and was similar to the LexA repressor binding motif (SOS box) of Escherichia coli (SEQ ID NO: 2 above). This sequence has an AT-rich region, particularly a region with eight consecutive TAs.
 CarA配列は、全長-3167~+133の配列(Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385)のうち、-1700~-900の部位にATリッチな領域を有している。この領域が、前記LexAリプレッサー結合モチーフ(SOS bоx)によく一致していた。 The CarA sequence has an AT-rich region at -1700 to -900 of the full-length sequence -3167 to +133 (Xenopus laevis strain J_2021 chromosome 8L, Xenopus laevis v10.1, NC_054385). This region closely matches the LexA repressor binding motif (SOS box).
 (試験例2:自発的組み換え阻害の条件検討)
 さらなる条件検討の前に、全長のCarAプロモータを用いて自発的組み換え阻害の条件の検討を行った。
 図2に示す12kb Transgene Targetを使用した。この配列は、CarAプロモータの下流の組み換え酵素発現遺伝子のCreERT2配列(CarA-CreERT2部位、6.1kb)と、その上流に逆向きに、基質配列のLoxPに挟まれた予定組み換え配列のEGFP、SpAの配列(LoxP領域)を有している。
 LoxP領域は、自発的組み換えが起こらなければ2.5kbの長さとなり、自発的組み換えが起これば1.5kbpとなる。
 Creを有する配列とLoxPに挟まれた配列との間、および配列の両端には、insulator配列として、HS4 core insulatorをタンデムに2つ連結させた2×HS4をそれぞれ配置している。
 なお、HS4 core insulatorは、NIH(National Institutes of Health, Bethesda, MD, USA)のDr. Gary Felsenfeldが開発したもので、本学とNIHのMTAおよびDr. Gary Felsenfeldの好意により使用しているものである。
(Test Example 2: Examination of conditions for inhibiting spontaneous recombination)
Before further examination of conditions, conditions for inhibiting spontaneous recombination were examined using the full-length CarA promoter.
The 12 kb Transgene Target shown in Figure 2 was used. This sequence has the CreER T2 sequence of the recombinase expression gene downstream of the CarA promoter (CarA-CreER T2 site, 6.1 kb), and upstream of it, in the reverse orientation, the sequences of EGFP and SpA, which are the intended recombination sequences, sandwiched between the substrate sequences LoxP (LoxP region).
The LoxP region is 2.5 kb long if spontaneous recombination does not occur, and 1.5 kbp long if spontaneous recombination occurs.
Between the sequence having Cre and the sequence sandwiched between LoxP and on both ends of the sequence, 2×HS4 insulator sequences in which two HS4 core insulators are linked in tandem are arranged.
The HS4 core insulator was developed by Dr. Gary Felsenfeld of the National Institutes of Health (NIH), Bethesda, MD, USA, and is used with the kind permission of our university, the MTA of the NIH, and Dr. Gary Felsenfeld.
 この12kb Transgene Targetを含むベクター遺伝子を従来の核酸編集技術で作製し、熱処理法により大腸菌(Stbl3株、NEB Stable株)に導入した。大腸菌をアガロースプレート上に薄く播き、30℃で20時間以上培養した。現れた大腸菌コロニーを採取し、液体培地中で増殖させ、ベクター遺伝子核酸を抽出し、酵素処理によって目的の部位・領域の核酸を得てから、アガロースゲル電気泳動により増殖された核酸の長さおよび量を検討した。 A vector gene containing this 12 kb Transgene Target was created using conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain, NEB Stable strain) by heat treatment. E. coli was thinly seeded onto an agarose plate and cultured at 30°C for more than 20 hours. The E. coli colonies that appeared were collected and grown in liquid medium, the vector gene nucleic acid was extracted, and the nucleic acid of the desired site/region was obtained by enzyme treatment, and the length and amount of the grown nucleic acid were examined by agarose gel electrophoresis.
 図3に、LoxP領域の核酸を抽出した図を示す。図に示すように、Stbl3大腸菌株、NEB Stable大腸菌株のいずれでも、2.5kbの位置のバンド、すなわち自発的組み換えが防がれたLoxP領域の核酸が確認できた。 Figure 3 shows the nucleic acid extracted from the LoxP region. As shown in the figure, a band at 2.5 kb, i.e., the nucleic acid from the LoxP region where spontaneous recombination was prevented, was confirmed in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
 図4に、CarA-CreERT2部位の核酸を抽出した図を示す。Stbl3大腸菌株、NEB Stable大腸菌株のいずれでも、6.1kbの位置のバンド、すなわちCarA-CreERT2部位の核酸が確認できた。 4 shows the extraction of nucleic acid from the CarA-CreER T2 site. A band at the position of 6.1 kb, i.e., the nucleic acid from the CarA-CreER T2 site, was confirmed in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
 図5に、12kb Transgene Target全長の核酸を抽出した図を示す。12kb Transgene Targetはその両端のI-Scel酵素によって切断している。Stbl3大腸菌株、NEB Stable大腸菌株のいずれでも、12kbの位置のバンド、すなわち12kb Transgene Targetの核酸が確認できた。 Figure 5 shows the extraction of the full-length 12 kb Transgene Target nucleic acid. The 12 kb Transgene Target is cleaved at both ends by the I-Scel enzyme. A band at the 12 kb position, i.e., the nucleic acid of the 12 kb Transgene Target, was confirmed in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
 図6に、Stbl3大腸菌株およびNEB Stable大腸菌株で得られた核酸の量を示す。核酸の量は微量分光光度計によって測定した。いずれの大腸菌株でも、充分な量の核酸を増殖、回収することができた。 Figure 6 shows the amount of nucleic acid obtained from the Stbl3 E. coli strain and the NEB Stable E. coli strain. The amount of nucleic acid was measured using a microspectrophotometer. Both E. coli strains were able to grow and recover sufficient amounts of nucleic acid.
 これらの図の結果から、CarAプロモータを上流に配置することで、一配列上にCre遺伝子(組み換え酵素発現遺伝子)とLoxP領域(基質配列および予定組み換え配列)を有する核酸を増殖することができ、また、Stbl3大腸菌株、NEB Stable大腸菌株のいずれでも自発的組み換えを抑えたまま増殖することができた。 The results of these figures show that by placing the CarA promoter upstream, it is possible to amplify nucleic acids having a Cre gene (recombinase expression gene) and a LoxP region (substrate sequence and planned recombination sequence) on one sequence, and that proliferation is possible while suppressing spontaneous recombination in both the Stbl3 E. coli strain and the NEB Stable E. coli strain.
 (試験例3:自発的組み換え阻害エレメントの検討)
 CarAプロモータ内、SOSBox配列内のどのモチーフが自発的組み換えを抑制できるか、必須の配列およびその効果について、さらなる検討を行った。
 図7に示す9.7kb Transgene Targetを使用した。この配列は、色素細胞プロモータのcpRPE65および組み換え酵素発現遺伝子のCreERT2配列を有するCre配列(cpRPE65-CreERT2部位、3.3kb)と、その上流に逆向きに、基質配列のLoxPに挟まれた予定組み換え配列のEGFP、SpAの配列(LoxP領域)を有している。
 LoxP領域は、自発的組み換えが起こらなければ2.5kbの長さとなり、自発的組み換えが起これば1.5kbpとなる。また、この配列の9.7kbの全長は組み換えが起こると8.7kbとなる。
 Creを有する配列とLoxPに挟まれた配列との間、および配列の両端には、insulator配列として、HS4 core insulatorをタンデムに2つ連結させた2×HS4をそれぞれ配置している。
 cpRPE65の上流(3’側)には、SOS RE配列が配置されている。この配列は、SOS bоxと一部相同性を持つ配列であるが、TA配列9回の配列((TA)9配列)、TA配列9回を2回繰り返した配列((TA)9X2配列)、または、TA配列9回を、GGGを挟んで2回繰り返した配列((TA)9X2GGG配列)を用いている。
(Test Example 3: Examination of spontaneous recombination inhibitor elements)
Further investigation was carried out to determine which motifs in the CarA promoter and SOSBox sequence are capable of suppressing spontaneous recombination, and the essential sequences and their effects.
The 9.7 kb Transgene Target shown in Figure 7 was used. This sequence has a Cre sequence (cpRPE65-CreER T2 site, 3.3 kb) having a pigment cell promoter cpRPE65 and a recombinase expression gene CreER T2 sequence, and upstream of it in the reverse orientation, the sequences of EGFP and SpA, which are intended recombination sequences, sandwiched between LoxP substrate sequences (LoxP region).
The LoxP region is 2.5 kb long if spontaneous recombination does not occur and 1.5 kbp if spontaneous recombination occurs, and the total length of this sequence of 9.7 kb becomes 8.7 kb if recombination occurs.
Between the sequence having Cre and the sequence sandwiched between LoxP and on both ends of the sequence, 2×HS4 insulator sequences in which two HS4 core insulators are linked in tandem are arranged.
An SOS RE sequence is located upstream (3' side) of cpRPE65. This sequence has partial homology to the SOS box, but uses a sequence of nine TA sequences ((TA)9 sequence), a sequence of nine TA sequences repeated twice ((TA)9X2 sequence), or a sequence of nine TA sequences repeated twice with GGG in between ((TA)9X2GGG sequence).
 この9.7kb Transgene Targetを含むベクター遺伝子を従来の核酸編集技術で作製し、熱処理法により大腸菌(Stbl3株、NEB Stable株)に導入した。大腸菌をアガロースプレート上に薄く播き、30℃で20時間以上培養した。現れた大腸菌コロニーを採取し、液体培地中で増殖させ、ベクター遺伝子核酸を抽出し、酵素処理によって目的の部位・領域の核酸を得てから、アガロースゲル電気泳動により増殖された核酸の長さおよび量を検討した。 A vector gene containing this 9.7 kb Transgene Target was created using conventional nucleic acid editing technology and introduced into E. coli (Stbl3 strain, NEB Stable strain) by heat treatment. E. coli was thinly spread on an agarose plate and cultured at 30°C for more than 20 hours. The E. coli colonies that appeared were collected and grown in liquid medium, the vector gene nucleic acid was extracted, and the nucleic acid of the desired site/region was obtained by enzyme treatment, and the length and amount of the grown nucleic acid were examined by agarose gel electrophoresis.
 図8に、LoxP領域の核酸を抽出した図を示す。図に示すように、(TA)9配列はStbl3大腸菌株、(TA)9X2配列および(TA)9X2GGG配列はNEB Stable大腸菌株のいずれでも、2.5kbの位置のバンド、すなわち自発的組み換えが防がれたLoxP領域の核酸が確認できた。 Figure 8 shows the nucleic acid extracted from the LoxP region. As shown in the figure, a band at 2.5 kb was confirmed for the (TA)9 sequence in the Stbl3 E. coli strain, and for the (TA)9X2 sequence and (TA)9X2GGG sequence in the NEB Stable E. coli strain, that is, the nucleic acid of the LoxP region where spontaneous recombination was prevented.
 図9に、PRE65-CreERT2部位の核酸を抽出した図を示す。図に示すように、(TA)9配列はStbl3大腸菌株、(TA)9X2配列および(TA)9X2GGG配列はNEB Stable大腸菌株のいずれでも、3.3kbの位置のバンド、すなわちPRE65-CreERT2部位の核酸が確認できた。 9 shows the extraction of nucleic acid from the PRE65-CreER T2 site. As shown in the figure, a band at 3.3 kb, i.e., nucleic acid from the PRE65-CreER T2 site, was confirmed for the (TA)9 sequence in the Stbl3 E. coli strain, and for the (TA)9X2 sequence and (TA)9X2GGG sequence in the NEB Stable E. coli strain.
 図10に、9kb Transgene Target全長の核酸を抽出した図を示す。9kb Transgene Targetはその両端のI-Scel酵素によって切断している。図に示すように、(TA)9配列はStbl3大腸菌株、(TA)9X2配列および(TA)9X2GGG配列はNEB Stable大腸菌株のいずれでも、すなわち9kb Transgene Targetの核酸が確認できた。 Figure 10 shows the extraction of the full-length 9kb Transgene Target nucleic acid. The 9kb Transgene Target is cleaved at both ends by the I-Scel enzyme. As shown in the figure, the (TA)9 sequence was confirmed in the Stbl3 E. coli strain, and the (TA)9X2 sequence and (TA)9X2GGG sequence were confirmed in the NEB Stable E. coli strain, meaning that the nucleic acid of the 9kb Transgene Target was confirmed.
 以上の結果より、SOS bоxと一部相同性を持つ配列のうち、TA配列9回の配列((TA)9配列、TAX9配列)、TA配列9回を2回繰り返した配列((TA)9X2配列)、または、TA配列9回をGGGを挟んで2回繰り返した配列((TA)9X2GGG配列)のいずれによっても、自発的組み換えを防ぐことができることが示された。
 また、特に、TA配列9回(合計18塩基対)の配列でも、Stbl3株内では自発的組み換えを防いだままで増殖することができた。短い核酸配列でも自発的組み換えが防がれたのは、この効果はStbl3株内では非特異的な酵素反応が抑えられるため、自発的組み換えが効果的に防がれたという理由が考えられる。
The above results show that spontaneous recombination can be prevented by any of the following sequences that share partial homology with the SOS box: a sequence with nine TA sequences ((TA)9 sequence, TAX9 sequence), a sequence with nine TA sequences repeated twice ((TA)9X2 sequence), or a sequence with nine TA sequences repeated twice with GGG in between ((TA)9X2GGG sequence).
In particular, even a sequence with nine TA sequences (a total of 18 base pairs) was able to grow in the Stbl3 strain while preventing spontaneous recombination. The reason why spontaneous recombination was prevented even with a short nucleic acid sequence is thought to be that nonspecific enzyme reactions were suppressed in the Stbl3 strain, effectively preventing spontaneous recombination.
 (試験例4:CreERT2-LoxP導入マウスの作製)
 CRISPR-Cas9相同組み換え法によりCreERT2-LoxPベクターを第6染色体ROSA26領域にノックインしたマウスを作製した。
 図11は、本試験例で使用したプラスミドDNAの模式図である。導入カセットの構成は、試験例3(図7)と基本的に同じだが、cpRPE65がヒト骨格筋特異的プロモータであるHACTA1に変更した。
(Test Example 4: Preparation of CreER T2 -LoxP-introduced mice)
Mice were generated in which the CreER T2 -LoxP vector was knocked into the ROSA26 region of chromosome 6 by CRISPR-Cas9 homologous recombination.
Fig. 11 is a schematic diagram of the plasmid DNA used in this test example. The configuration of the transfer cassette is basically the same as that in Test Example 3 (Fig. 7), but cpRPE65 was changed to HACTA1, a human skeletal muscle-specific promoter.
 HACTA1の配列情報(Acta1_human_promoter_-2000_to_+239_ Homo sapiens actin alpha 1, skeletal muscle (ACTA1), RefSeqGene (LRG_429) on chromosome 1)は、配列番号5に示した。 The sequence information for HACTA1 (Acta1_human_promoter_-2000_to_+239_ Homo sapiens actin alpha 1, skeletal muscle (ACTA1), RefSeqGene (LRG_429) on chromosome 1) is shown in SEQ ID NO:5.
 配列番号5:AAGGCCCAAATGTAAGCTAGTCCCCTTACGTTACATGCAGCTCATTTGCTAAGTGGTTTTTTTCTAGTATCTCCACTACTCGCTGACACAGGAGGACACAGGATGTTAAAAAGGAAATACAGTTCTGTCAATTATTCACTTACTCTCCAAAATACTTGGAAGAACTAAATATGGAACCATAGGAGACTTTATCCTCACCGCATAGTCCCTATACTAGTCAAACTCCTTATTTTTTAATTGATCATTTTTAGGAAGGTAGCATTTTATTCACTAGAACATTTTTGTTAA
TACTTGTTTATTTTTGGGATGAACTGCCATGATGTGGGCTACAGAGGAGGGTCGCATATGCTTCCATCCCCCTTTTAGAGAATCCACACCTGTCCCAGTTGCTGGGTTCCACTACCAAAAGTGAATTGCAACTATTTTAGGAGCACTTAAGCACATCCGAAAAATGAGTGATTCTGTTCTGGCCCACACCACATCACTGATGTACCCCCTTAAAGCATGTCCCTGAGTTCATCACAGAAGACTGCTCCTCCTGTGCCCTCCACAAGGTTAGAACTGTCCTTGTCTTAG
GGAAAAAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGGGACAGGCACCAACTGGGTAACCTCTGCTGACCCCCACTCTACTTTACCATAAGTAGCTCCAAATCCTTCTAGAAAATCTGAAAGGCATAGCCCCATATATCAGTGATATAAATAGAACCTGCAGCAGGCTCTGGTAAATGATGACTACAAGGTGGACTGGGAGGCAGCCCGGCCTTGGCAGGCATCATCCTCTAAATATAAAGATGAGTTTGTTCAGCCTTTGCAGAA
GGAAAAACTGCCACCCATCCTAGAGTGCCGCGTCCTTGTCCCCCCACCCCCTCCAATTTATTGGGAGGAAGGACCAGCTAAGCCTCATCTAGGAAGAGCCCCTCACCCATCTCCACCTCCACTCCAGGTCTAGCCAGTCCTGGGTTGTGACCCTTGTCTTTCAGCCCCAGGAGAGGGACACACATAGTGCCACCAAAGAGGCTGGGGGAGGGCCTCAGCCCACCAAAACCTGGGGCCAGTGCGTCCTACAGGAGGGGAACCCTCACCCCTTCAATCCCTTTAGGAGAC
CCAAGGGCGCTGCGCGTCCCTGAGGCGGACAGCTCCGTGTGCTCAGGCTTTGCGCCTGACAGGCCTATCCCCGGGAGCCCCCGCGCCTCCTCCCCGGCGCTCCGCCCTCGCCTCCCCCCGCCAGTTGTCTATCCTGCGACAGCTGCGCGCCCTCCGGCCGCCGGTGGCCCTCTGTGCGGTGGGGGAAGGGGTCGACGTGGCTCAGCTTTTTGGATTCAGGGAGCTCGGGGGTGGGAAGAGAGAAATGGAGTTCCAGGGGCGTAAAGGAGAGGGAGTTCGCCTTCCTTC
CCTTCCTGAGACTCAGGAGTGACTGCTTCTCCAATCCTCCCAAGCCCACCACTCCACACGACTCCCTCTTCCCGGTAGTCGCAAGTGGGAGTTTGGGGATCTGAGCAAAGAACCCGAAGAGGAGTTGAAATATTGGAAGTCAGCAGTCAGGCACCTTCCCGAGCGCCCAGGGCGCTCAGAGTGGACATGGTTGGGGAGGCCTTTGGGACAGGTGCGGTTCCCGGAGCGCAGGCGCACACATGCACCCACCGGCGAACGCGGTGACCCTCGCCCCACCCCATCCCCTCC
GGCGGGCAACTGGGTCGGGTCAGGAGGGGCAAACCCGCTAGGGAGACACTCCATATACGGCCCGGCCCGCGTTACCTGGGACCGGGCCAACCCGCTCCTTCTTTGGTCAACGCAGGGGACCCGGGCGGGGGCCCAGGCCGCGAACCGGCCGAGGGAGGGGGCTCTAGTGCCCAACACCCAAATATGGCTCGAGAAGGGCAGCGACATTCCTGCGGGGTGGCGCGGAGGGAATGCCCGCGGGCTATATAAAACCTGAGCAGAGGGACAAGCGGCCACCGCAGCGGACAG
CGCCAAGTGAAGCCTCGCTTCCCCTCCGCGGCGACCAGGGCCCGAGCCGAGAGTAGCAGTTGTAGCTACCCGCCCAGGTAGGGCAGGAGTTGGGAGGGGACAGGGGGACAGGGCACTACCGAGGGGAACCTGAAGGACTCCGGGGCAGAACCCAGTCGGTTCACCTGGTCAGCCCCAGGCCTGCGCCCTGAGCGCTGTGCCTCGTCTCCGGAGCCACACGCGC
SEQ ID NO: 5: AAGGCCCAAATGTAAGCTAGTCCCCTTACGTTACATGCAGCTCATTTGCTAAGTGGTTTTTTTCTAGTATCTCCACTACTCGCTGACACAGGAGGACACAGGATGTTAAAAAGGAAATACAGTTCTGTCAATTATTCACTTACTCTCCAAAATACTTGGAAGAACTAAATATGGAACCATAGGAGACTTTATCCTCACCGCATAGTCCCTATACTAGTCAAACTCCTTATTTTTTAATTGATCATTTTTAGGAAGGTAGCATTTTATTCACTAGAACATTTTTGTTAA
TACTTGTTTATTTTTGGGATGAACTGCCATGATGTGGGCTACAGAGGAGGGTCGCATATGCTTCCATCCCCCTTTTAGAGAATCCACACCTGTCCCAGTTGCTGGGTTCCACTACCAAAGTGAATTGCAACTATTTTAGGAGCACTTAAGCACATCCGAAAAATGAGTGATTCTGTTCTGGCCCACACCACATCACTGATGTACCCCCTTAAAGCATGTCCCTGAGTTCATCACAGAAGACTGCTCCTCCTGTGCCCTCCACAAGGTTAGAACTGTCCTTGTCTTAG
GGAAAAAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGGGACAGGCACCAACTGGGTAACCTCTGCTGACCCCCACTCTACTTTACCATAAGTAGCTCCAAATCCTTCTAGAAAATCTGAAAGGCATAGCCCCATATATCAGTGATATAAATAGAACCTGCAGCAGGCTCTGGTAAATGATGACTACAAGGTGGACTGGGAGGCAGCCCGGCCTTGGCAGGCATCATCCTCTAAATATAAAGATGAGTTTGTTCAGCCTTTGCAGAA
GGAAAAACTGCCACCCATCCTAGAGTGCCGCGTCCTTGTCCCCCCACCCCCTCCAATTTATTGGGAGGAAGGACCAGCTAAGCCTCATCTAGGAAGAGCCCCTCACCCATCTCCACCTCCACTCCAGGTCTAGCCAGTCCTGGGTTGTGACCCTTGTCTTTCAGCCCCAGGAGAGGGACACACATAGTGCCACCAAAGAGGCTGGGGGAGGGCCTCAGCCCACCAAAACCTGGGGCCAGTGCGTCCTACAGGAGGGGAACCCTCACCCCTTCAATCCCTTTAGGAGAC
CCAAGGGCGCTGCGCGTCCCTGAGGCGGACAGCTCCGTGTGCTCAGGCTTTGCGCCTGACAGGCCTATCCCCGGGAGCCCCCGCGCCTCCTCCCCGGCGCTCCGCCCTCGCCTCCCCCCGCCAGTTGTCTATCCTGCGACAGCTGCGCGCCCTCCGGCCGCCGGTGGCCCTCTGTGCGGTGGGGGAAGGGGTCGACGTGGCTCAGCTTTTTGGATTCAGGGAGCTCGGGGGTGGGAAGAGAGAAATGGAGTTCCAGGGGCGTAAAGGAGAGGGAGTTCGCCTTCCTTC
CCTTCCTGAGACTCAGGAGTGACTGCTTCTCCAATCCTCCCAAGCCCACCACTCCACACGACTCCCTCTTCCCGGTAGTCGCAAGTGGGAGTTTGGGGATCTGAGCAAAGAACCCGAAGAGGAGTTGAAATATTGGAAGTCAGCAGTCAGGCACCTTCCCGAGCGCCCAGGGCGCTCAGAGTGGACATGGTTGGGGAGGCCTTTGGGACAGGTGCGGTTCCCGGAGCGCAGGCGCACACATGCACCCACCGGCGAACGCGGTGACCCTCGCCCCACCCCATCCCCTCC
GGCGGGCAACTGGGTCGGGTCAGGAGGGGCAAACCCGCTAGGGAGACACTCCATATACGGCCCGGCCCGCGTTACCTGGGACCGGGCCAACCCGCTCCTTCTTTGGTCAACGCAGGGGACCCGGGCGGGGGCCCAGGCCGCGAACCGGCCGAGGGAGGGGGCTCTAGTGCCCAACACCCAAATATGGCTCGAGAAGGGCAGCGACATTCCTGCGGGGTGGCGCGGAGGGAATGCCCGCGGGCTATATAAAACCTGAGCAGAGGGACAAGCGGCCACCGCAGCGGACAG
CGCCAAGTGAAGCCTCGCTTCCCCTCCGCGGCGACCAGGGCCCGAGCCGAGAGTAGCAGTTGTAGCTACCCGCCCAGGTAGGGCAGGAGTTGGGAGGGGACAGGGGGACAGGGCACTACCGAGGGGAACCTGAAGGACTCCGGGGCAGAACCCAGTCGGTTCACCTGGTCAGCCCCAGGCCTGCGCCCTGAGCGCTGTGCCTCGTCTCCGGAGCCACACGCGC
 また、導入カセットの両端には、I-SceIの認識DNAではなく、ROSA26領域内のノックイン部に対応するDNA(L. Arm と R. Arm)を配置し、ゲノムDNAとの間での相同組換えを可能にした。
 図12は、KIコンストラクトのデザインの模式図である。
Furthermore, at both ends of the transfer cassette, DNA (L. Arm and R. Arm) corresponding to the knock-in site within the ROSA26 region was placed instead of the I-SceI recognition DNA, enabling homologous recombination with the genomic DNA.
FIG. 12 is a schematic diagram of the design of the KI construct.
 このプラスミドDNAを、NEB Stable大腸菌株で増幅した(30℃、20時間以上)。次に、増幅したプラスミドDNAを抽出し、精製し、濃縮した。 This plasmid DNA was amplified in NEB Stable E. coli strain (30°C, 20 hours or more). The amplified plasmid DNA was then extracted, purified, and concentrated.
 このプラスミドDNAをCas9タンパク質とgRNAとともにマウスの受精卵に注入し、その受精卵を偽妊娠マウスの卵管に移植した。2回の試行で合計621個の受精卵を移植し、88匹が出生し(出生率は約14%)、78匹が生存した(生存率は約89%)。そのうちの20匹でノックインが確認された(ノックイン率は、生存した個体のうち約26%で、移植した受精卵のうち約3%)。ここでは例として2匹(M1とM1)の結果を示した。それぞれの個体から尾先を採取し、その蛍光を調べた。 This plasmid DNA was injected into mouse fertilized eggs together with Cas9 protein and gRNA, and the fertilized eggs were then transplanted into the oviducts of pseudopregnant mice. A total of 621 fertilized eggs were transplanted over two trials, with 88 mice born (birth rate of approximately 14%) and 78 mice surviving (survival rate of approximately 89%). Knock-in was confirmed in 20 of these mice (knock-in rate was approximately 26% of surviving individuals and approximately 3% of transplanted fertilized eggs). The results of two mice (M1 and M1) are shown here as examples. The tip of the tail was taken from each mouse and its fluorescence was examined.
 図13は、ノックインマウスの尾の蛍光観察を示す写真図である。(a)は尾先の明視野、(b)はEGFP、(c)はmCherryの蛍光のシグナルを示す。F0(導入した同世代)のマウスで図中の左側がM1、右側がM2であり、いずれもTAM(タモキシフェン)は投与していない。図中のスケールバーは4.5mmを示す。
 いずれの尾もEGFPの蛍光は示したがmCherryの蛍光は示さなかった。このことは、プラスミドDNAの調製過程およびマウスの成長過程において、LoxPで挟まれたDNA領域が失われていない、すなわちCreによる自発的な組換えが起きていないことを示している。
13 is a photograph showing the fluorescent observation of the tail of a knock-in mouse. (a) shows the bright field of the tail tip, (b) shows EGFP, and (c) shows mCherry fluorescent signals. In the F0 (same generation) mice, the left side of the figure is M1 and the right side is M2, neither of which was administered TAM (tamoxifen). The scale bar in the figure indicates 4.5 mm.
All tails showed EGFP fluorescence but no mCherry fluorescence, indicating that the DNA region flanked by LoxP was not lost during the preparation of the plasmid DNA or during mouse development, i.e., spontaneous recombination by Cre had not occurred.
 次に、それぞれの尾先からゲノムDNAを抽出し、PCRによるgenotypingを行った。すなわち、CreERT2をコードするDNA配列を含む領域(735bp)、EGFPをコードするDNA配列を含む領域(607bp)、導入カセットの3’末端部とROSA26領域のノックイン部の配列を同時に含む領域(3.3kbp)をPCRで増幅した。 Next, genomic DNA was extracted from each tail tip and genotyping was performed by PCR. That is, a region containing the DNA sequence encoding CreER T2 (735 bp), a region containing the DNA sequence encoding EGFP (607 bp), and a region containing both the 3'-end of the transfer cassette and the knock-in sequence of the ROSA26 region (3.3 kbp) were amplified by PCR.
 図14は、ノックインマウスのゲノムDNAのPCR解析の結果を示す写真図である。図中、IL-2(324bp)は別の染色体に存在する遺伝子で、ゲノムDNAの量と質を示すポジティブコントロールとして示した。
 図に示すように、いずれのゲノムDNAもCreやEGFPをコードするDNAを有していたが、マウスM2のゲノムDNAにおいてのみ、導入カセットがROSA26領域に組み込まれていた。すなわち、マウスM2においてノックインが成功したことが証明された。マウスM1においては、導入カセットがROSA26領域以外のゲノム領域にランダムに組み込まれたものと考えられる。
14 is a photograph showing the results of PCR analysis of the genomic DNA of the knock-in mouse. In the figure, IL-2 (324 bp) is a gene present on another chromosome, and is shown as a positive control to show the quantity and quality of the genomic DNA.
As shown in the figure, all genomic DNAs contained DNA encoding Cre or EGFP, but the transfer cassette was integrated into the ROSA26 region only in the genomic DNA of mouse M2. In other words, it was proven that knock-in was successful in mouse M2. In mouse M1, the transfer cassette is considered to have been randomly integrated into a genomic region other than the ROSA26 region.
 (試験例5:CreERT2-LoxP導入アカハライモリの作製)
 I-SceI法によりCreERT2-LoxPベクターをゲノムに組み込んだアカハライモリ(Cynops pyrrhogaster)を作製した。
 本試験例の導入カセットの構成は、試験例3と同様のものを用いた。RPE65プロモータ(-1049から+49まで;Casco-Robles et al., Transgenic Research 24: 463-473, 2015; DOI: 10.1007/s11248-014-9857-1)の配下でCreERT2が発現し、タモキシフェン存在下で眼球内の成熟した網膜色素上皮細胞で組み換えが生じる設計となっている。
(Test Example 5: CreER T2 -LoxP-introduced newt production)
A newt (Cynops pyrrhogaster) was prepared in which the CreER T2 -LoxP vector was integrated into the genome by the I-SceI method.
The configuration of the transfer cassette used in this test example was the same as that in Test Example 3. CreER T2 is expressed under the control of the RPE65 promoter (-1049 to +49; Casco-Robles et al., Transgenic Research 24: 463-473 , 2015; DOI: 10.1007/s11248-014-9857-1), and recombination occurs in mature retinal pigment epithelial cells in the eyeball in the presence of tamoxifen.
 このプラスミドDNAをNEB Stable大腸菌株で増幅した(30℃、20時間以上)。次に、プラスミドDNAを抽出し、精製し、濃縮した。
 このプラスミドDNAをI-SceIタンパク質(R06945;New England Biolabs Japan, Tokyo, Japan; 希釈バッファー:10mM Tris-HCl,10mM MgCl, 1mM DTT,pH8.8 at 25℃)とともにアカハライモリの受精卵に注入し、そのまま飼育した(Casco-Robles et al.,Nature Protocols 6: 600-608, 2011; DOI: 10.1038/nprot.2011.334)。13回の試行で合計390個の受精卵にプラスミドDNAとI-SceIタンパク質の混合液(2nl,プラスミドDNA 100pg,I-SceI 0.002units)を注入した。
The plasmid DNA was amplified in NEB Stable E. coli strain (30° C., 20 hours or more), and then the plasmid DNA was extracted, purified, and concentrated.
This plasmid DNA was injected into fertilized eggs of the newt together with I-SceI protein (R06945; New England Biolabs Japan, Tokyo, Japan; dilution buffer: 10 mM Tris-HCl, 10 mM MgCl 2 , 1 mM DTT, pH 8.8 at 25°C) and the eggs were raised as is (Casco-Robles et al., Nature Protocols 6: 600-608, 2011; DOI: 10.1038/nprot.2011.334). A total of 390 fertilized eggs were injected with the mixture of plasmid DNA and I-SceI protein (2 nl, plasmid DNA 100 pg, I-SceI 0.002 units) in 13 trials.
 図15は、トランスジェニックアカハライモリのステージ10、43の蛍光観察を示す写真図である。(a)は明視野、(b)はEGFP、(c)はmCherryの蛍光のシグナルを示す。図中の上側がステージ10(St.10)、下側がステージ43(St.43)であり、いずれも4-ヒドロキシタモキシフェン(4-OHT)は投与していない。図中のスケールバーはいずれも2mmを示す。 Figure 15 is a photograph showing fluorescent observation of stages 10 and 43 of transgenic red-bellied newts. (a) shows bright field, (b) shows EGFP, and (c) shows mCherry fluorescent signals. The upper side of the figure is stage 10 (St. 10), and the lower side is stage 43 (St. 43), and in neither case was 4-hydroxytamoxifen (4-OHT) administered. The scale bars in the figures all indicate 2 mm.
 図に示すように、ステージ10(胞胚後期)で38個の胚にEGFPの蛍光が確認された(遺伝子導入率は約9.7%)。一方、mCherryの蛍光は確認されなかった。これらの個体は正常に発生した。またその間、全身にEGFPの蛍光は示したが、mCherryの蛍光は示さなかった。ここではサンプルとしてステージ43(前肢第6期a)の胚を示した。このことは、プラスミッドDNAの調製過程およびアカハライモリの成長過程において、LoxPで挟まれたDNA領域が失われていない、すなわちCreによる自発的な組換えが起きていないことを示している。 As shown in the figure, EGFP fluorescence was confirmed in 38 embryos at stage 10 (late blastula) (gene transfer rate of approximately 9.7%). However, no mCherry fluorescence was confirmed. These individuals developed normally. During this time, EGFP fluorescence was observed throughout the body, but no mCherry fluorescence was observed. An embryo at stage 43 (forelimb stage 6a) is shown as a sample here. This indicates that the DNA region flanked by LoxP was not lost during the preparation of the plasmid DNA or the development of the newt, i.e., spontaneous recombination by Cre did not occur.
 飼育を続け、ステージ59(おたまじゃくし完成期)の幼生を4μMの4-ヒドロキシタモキシフェン(4-OH Tam;(Z)-4-hydroxytamoxifen (H7904-5MG; Merck, Sigma-Aldrich, Tokyo, Japan) dissolved in DMSO)を含む飼育水で2日間飼育し、Creによる組み換えを誘導した。なお、4-OH Tamを含む飼育水は一日おきに新鮮なものに交換した。 The larvae were then reared in water containing 4 μM 4-hydroxytamoxifen (4-OH Tam; (Z)-4-hydroxytamoxifen (H7904-5MG; Merck, Sigma-Aldrich, Tokyo, Japan) dissolved in DMSO) for 2 days to induce Cre-mediated recombination. The water containing 4-OH Tam was replaced with fresh water every other day.
 図16は、トランスジェニックアカハライモリのステージ59の蛍光観察を示す写真図である。(a)は明視野、(b)はEGFP、(c)はmCherryの蛍光のシグナルを示す。図中の上側(図中のスケールバーは8mm)、下側では上側の一部拡大図(図中のスケールバーは2mm)を示す。4-ヒドロキシタモキシフェン(4-OH Tam、4-OHT)の投与の48時間後を示す。
 上図に示すように、外見ではmCherryの蛍光は確認されなかった。
16 is a photograph showing fluorescence observation of stage 59 of a transgenic newt. (a) shows a bright field, (b) shows EGFP, and (c) shows mCherry fluorescent signals. The upper part of the figure (scale bar in the figure is 8 mm) and the lower part shows a partially enlarged view of the upper part (scale bar in the figure is 2 mm). The image is shown 48 hours after administration of 4-hydroxytamoxifen (4-OH Tam, 4-OHT).
As shown in the upper figure, no mCherry fluorescence was observed externally.
 ついで、同ステージ59の眼球を摘出し、固定液(a modified Zamboni’s solution:2%(w/v) paraformaldehyde and 0.2%(w/v) picric acid in PBS(pH7.4);Chiba et al., Journal of Comparative Neurology 495: 391-407, 2006; DOI: 10.1002/cne.20880)で6時間、4℃で固定し、20μmの厚さの凍結切片を作製し、RPE65抗体(1:500;MAB5428;EMD Millipore,CA 92590,USA)とRFP抗体(for mCherry;1:200-500;600-401-379;Rockland Immunochemicals,PA 19468,USA)を用いて、免疫組織化学的にRPE65タンパク質とmCherryタンパク質の発現パターンを調べた。 Next, the stage 59 eyeball was enucleated and fixed in a fixative (a modified Zamboni's solution: 2% (w/v) paraformaldehyde and 0.2% (w/v) picric acid in PBS (pH 7.4); Chiba et al., Journal of Comparative Neurology 495: 391-407, 2006; DOI: 10.1002/cne.2088 0) for 6 hours at 4°C, and 20 μm-thick frozen sections were prepared, and the expression patterns of RPE65 and mCherry proteins were examined immunohistochemically using RPE65 antibody (1:500; MAB5428; EMD Millipore, CA 92590, USA) and RFP antibody (for mCherry; 1:200-500; 600-401-379; Rockland Immunochemicals, PA 19468, USA).
 図17は、トランスジェニックアカハライモリの眼球凍結切片の免疫染色の結果を示す写真図である。(a)は明視野、(b)はDAPI/RPE65、(c)はDAPI/DsRed、(d)はRPE65/DsRedの蛍光のシグナルを示す。図中の上側、中側、下側はそれぞれより上図の一部拡大図を示す。4-ヒドロキシタモキシフェン(4-OH Tam、4-OHT)の投与の48時間後を示す。図中のスケールバーは上側の図では350μm、下側の図では100μmを示す。 Figure 17 is a photograph showing the results of immunostaining of frozen sections of the eyeball of a transgenic red-bellied newt. (a) Bright field, (b) DAPI/RPE65, (c) DAPI/DsRed, and (d) RPE65/DsRed fluorescent signals. The upper, middle, and lower parts of the figure each show an enlarged portion of the upper figure. The image is taken 48 hours after administration of 4-hydroxytamoxifen (4-OH Tam, 4-OHT). The scale bar in the upper figure is 350 μm, and the lower figure is 100 μm.
 図に示すように、網膜色素上皮細胞がmCherryタンパク質を発現していることが証明された。
 以上の結果から、(TA)9配列が、大腸菌内とは異なり、アカハライモリにおいては組織特異的プロモータの活性を阻害しないこと、および一世代でコンディショナルな遺伝子組み換えが可能であることが実証された。
As shown in the figure, it was demonstrated that retinal pigment epithelial cells expressed mCherry protein.
These results demonstrate that the (TA)9 sequence does not inhibit the activity of tissue-specific promoters in the newt, unlike in E. coli, and that conditional genetic recombination is possible in a single generation.
 (試験例6:CreERT2-LoxP導入マウスによる組み換えの誘導)
誘導型Cre、CreERT2を用いて、成体に達したマウスの腹腔にタモキシフェン(TAM)を注射することで誘導型Creを活性化し、ターゲット細胞に組み換えを誘導する実験を行った。
(Test Example 6: Induction of recombination using CreER T2 -LoxP-introduced mice)
An experiment was carried out using inducible Cre, CreER T2 , in which tamoxifen (TAM) was injected into the abdominal cavity of adult mice to activate inducible Cre and induce recombination in target cells.
 図18は、この実験の概略図である。CreERT2-LoxPベクターをCRISPR-Cas9により第6染色体ROSA26領域へノックインした成体マウスは、試験例4の尾と同様に全身でEGFPを発現し、該当組織へのノックインをEGFPで確認できる。このマウスにタモキシフェン腹腔注射を行い、骨格筋線維細胞に特異的にmCherryの発現を確認した。 Figure 18 is a schematic diagram of this experiment. An adult mouse in which the CreER T2 -LoxP vector was knocked into the ROSA26 region of chromosome 6 by CRISPR-Cas9 expressed EGFP throughout the body, similar to the tail in Test Example 4, and knock-in into the relevant tissues could be confirmed by EGFP. Tamoxifen was injected intraperitoneally into this mouse, and mCherry expression specific to skeletal muscle fibrocytes was confirmed.
 まず、PCRによりノックインを確認したF0個体からオス2匹とメス2匹を無作為に選び、骨格筋の蛍光を調べた結果、すべての個体の骨格筋でEGFPの蛍光が観察された。しかし、オスとメスのそれぞれの半数で、mCherryの蛍光も観察された(これらの結果は図示せず)。これらの個体ではおそらく、導入カセットがRosa26領域にKIされただけでなく、ゲノム中の他の領域にもランダムに挿入されてしまったものと考えられる。実際、これらの骨格筋が示すEGFPの蛍光は、mCherryの蛍光を示さない骨格筋のそれに比べて強い傾向にあった。mCherryが自発的に発現するメカニズムは明らかでなかった。 First, two males and two females were randomly selected from the F0 individuals in which knock-in had been confirmed by PCR, and the fluorescence of their skeletal muscles was examined. EGFP fluorescence was observed in the skeletal muscles of all individuals. However, mCherry fluorescence was also observed in half of the males and half of the females (these results are not shown). In these individuals, it is likely that the transfer cassette was not only knocked out into the Rosa26 region, but also randomly inserted into other regions in the genome. In fact, the EGFP fluorescence of these skeletal muscles tended to be stronger than that of skeletal muscles that did not show mCherry fluorescence. The mechanism by which mCherry was spontaneously expressed was unclear.
 タモキシフェンによる人為的な組み換え誘導が可能かどうか調べるため、マウスの足の裏に励起光を照射し、内部の筋にmCheeryの蛍光が観察されない個体を選別し、それらの個体の腹腔にタモキシフェンを注射した。
 コーンオイル(Corn oil,032-17016;Fujifilm-Wako,Osaka,Japn)に20mg/mlになるように溶かしたタモキシフェン(T5648-1G;Merck,Sigma‐Aldrich,Tokyo,Japan)溶液を、2日連続で1日あたり50-200mgタモキシフェン/kg体重となるように腹腔注射した。
To investigate whether it is possible to artificially induce recombination using tamoxifen, the researchers irradiated the soles of the feet of mice with excitation light, selected mice in which no mCheery fluorescence was observed in their internal muscles, and then injected tamoxifen into the abdominal cavity of these mice.
Tamoxifen (T5648-1G; Merck, Sigma-Aldrich, Tokyo, Japan) solution dissolved in corn oil (032-17016; Fujifilm-Wako, Osaka, Japan) to a concentration of 20 mg/ml was intraperitoneally injected into the mice for two consecutive days at a dose of 50-200 mg tamoxifen/kg body weight per day.
 図19は、タモキシフェン投与前後の肢の骨格筋の蛍光を示す写真図である。図中の左半分のカラム(a)は、タモキシフェン投与前の肢の骨格筋の蛍光を示す。右半分のカラム(b)は、タモキシフェンの前記2回の投与後、1週間目の肢の骨格筋の蛍光を示す。図の(a)と(b)とは、別個体の画像である。図中のスケールバーは5mmを示す。 Figure 19 is a photograph showing the fluorescence of the skeletal muscle of the limb before and after tamoxifen administration. Column (a) in the left half of the figure shows the fluorescence of the skeletal muscle of the limb before tamoxifen administration. Column (b) in the right half of the figure shows the fluorescence of the skeletal muscle of the limb one week after the two administrations of tamoxifen. (a) and (b) in the figure are images of different individuals. The scale bar in the figure indicates 5 mm.
 図中の(a)によると、タモキシフェン投与前の肢の骨格筋の蛍光では、mCherryの蛍光は観察されず、自家蛍光レベルの蛍光の強さであった。
 図中の(b)によると、タモキシフェン投与後1週間目の肢の骨格筋の蛍光では、mCherryの蛍光が観察された。
 これらの結果は、タモキシフェンによる組み換え誘導が可能であることを示している。組み換え後もEGFPの蛍光が見られるのは、多核の筋線維細胞では、全ての核で組み換えが起こるわけではないためと考えられる。
As shown in (a) of the figure, no mCherry fluorescence was observed in the skeletal muscle of the limb before tamoxifen administration, and the fluorescence intensity was at the level of autofluorescence.
As shown in (b) of the figure, mCherry fluorescence was observed in the skeletal muscle of the limb one week after tamoxifen administration.
These results indicate that recombination can be induced by tamoxifen. The reason that EGFP fluorescence was observed even after recombination is thought to be because recombination does not occur in all nuclei of multinucleated myofiber cells.
 タモキシフェンによる人為的な組み換えが誘導できたことから、(TA)9が、大腸菌内とは異なり、マウスにおいては組織特異的プロモータの活性を阻害しないことが証明されたばかりでなく、一世代でコンディショナルな遺伝子組み換えが可能であることが証明された。 The success of artificial recombination induced by tamoxifen not only demonstrated that (TA)9 does not inhibit the activity of tissue-specific promoters in mice, as it does in E. coli, but also demonstrated that conditional genetic recombination is possible in a single generation.
 CRISPR-Cas9 KIでは一般に、導入したプラスミドに由来するDNA断片のゲノムへのランダムな挿入は避けることができない。この場合、野生型マウスとの交配を繰り返し、genotypingによりDNA断片がランダムに挿入された染色体を有する個体を取り除き、純粋なKIマウスをスクリーニングする作業が必要である。本技術によりCre-LoxPマウスを一世代で作製することが可能になったが、このマウスをより精度の高い解析に使用するためには、この作業は不可欠である。
 本技術では、KIされたゲノム領域が既知であるばかりか、KIされたコンストラクトが1つであることから、この作業を効率的に行うことが可能である。
In general, random insertion of DNA fragments derived from the introduced plasmid into the genome cannot be avoided in CRISPR-Cas9 KI. In this case, it is necessary to repeatedly cross with wild-type mice, remove individuals having chromosomes with randomly inserted DNA fragments by genotyping, and screen for pure KI mice. This technology has made it possible to produce Cre-LoxP mice in one generation, but this work is essential in order to use these mice for more accurate analysis.
With this technology, not only are the KI-processed genomic regions known, but there is also only one KI-processed construct, making it possible to carry out this task efficiently.
 本発明によれば、条件付き遺伝子発現ベクターを安定的に増幅することができ、幅広い生物種や細胞種において遺伝子発現解析に用いることができ、発現量の予測が可能で、生物個体レベルの解析にも可能な汎用性の高い遺伝子発現ベクターに用いることのできる遺伝子発現用核酸、それを用いた遺伝子発現ベクター、その製造方法、遺伝子発現方法が得られる。 The present invention provides a nucleic acid for gene expression that can be used for a highly versatile gene expression vector that can stably amplify a conditional gene expression vector, can be used for gene expression analysis in a wide range of organisms and cell types, can predict the expression level, and can be used for analysis at the individual organism level, as well as a gene expression vector using the same, a method for producing the same, and a gene expression method.

Claims (14)

  1.  組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、
     前記組み換え酵素発現遺伝子の上流に導入されるための、TAを5回以上繰り返す配列を含む、遺伝子発現用核酸。
    A nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene,
    A nucleic acid for gene expression, which comprises a sequence repeating TA five or more times and is to be introduced upstream of the recombinant enzyme expression gene.
  2.  前記TAを5~23回繰り返す配列を含む、請求項1に記載の遺伝子発現用核酸。 The nucleic acid for gene expression according to claim 1, which contains a sequence in which the TA is repeated 5 to 23 times.
  3.  前記TAを9回繰り返す配列を含む、請求項1に記載の遺伝子発現用核酸。 The nucleic acid for gene expression according to claim 1, which contains a sequence in which the TA is repeated nine times.
  4.  組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、
     前記組み換え酵素発現遺伝子の上流に導入されるための、SOSBox配列(TACTGTATATATATACAGTA)と50%以上の相同性を有する配列を含む、遺伝子発現用核酸。
    A nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene,
    A nucleic acid for gene expression, which comprises a sequence having 50% or more homology with an SOSBox sequence (TACTGTATATATATACAGTA), and which is to be introduced upstream of the recombinant enzyme expression gene.
  5.  組み換え酵素発現遺伝子を含む遺伝子発現ベクターに用いる核酸であって、
     前記組み換え酵素発現遺伝子の上流に導入されるための、CarAプロモータの-1700~-900の部位の配列と相同性を有する配列を含む、遺伝子発現用核酸。
    A nucleic acid used in a gene expression vector containing a recombinant enzyme expression gene,
    A nucleic acid for gene expression, which comprises a sequence having homology to the sequence of the -1700 to -900 site of the CarA promoter, and is to be introduced upstream of the recombinant enzyme expression gene.
  6.  請求項1、4または5に記載の遺伝子発現用核酸と、
     組み換え酵素発現遺伝子と、
     前記組み換え酵素発現遺伝子の基質となる基質配列と、
     前記基質配列に挟まれた予定組み換え配列と、を含む遺伝子発現ベクター。
    A nucleic acid for gene expression according to claim 1, 4 or 5,
    A recombinant enzyme expression gene;
    A substrate sequence serving as a substrate for the recombinant enzyme expression gene;
    A gene expression vector comprising a planned recombination sequence flanked by the substrate sequences.
  7.  組み換え酵素発現遺伝子がCre遺伝子配列を含み、
     前記遺伝子発現用核酸を前記組み換え酵素発現遺伝子の上流に含み、
     前記基質配列がLoxP配列を含む、請求項6に記載の遺伝子発現ベクター。
    The recombinase expression gene comprises a Cre gene sequence;
    The nucleic acid for gene expression is included upstream of the recombinant enzyme expression gene,
    The gene expression vector of claim 6 , wherein the substrate sequence comprises a LoxP sequence.
  8.  Cre-LoxPシステムを用いた遺伝子発現に用いるものである、請求項6に記載の遺伝子発現ベクター。 The gene expression vector according to claim 6, which is used for gene expression using the Cre-LoxP system.
  9.  前記組み換え酵素発現遺伝子の配列と、前記予定組み換え配列との間にinsulator配列が挿入されている、請求項6に記載の遺伝子発現ベクター。 The gene expression vector according to claim 6, in which an insulator sequence is inserted between the sequence of the recombinase expression gene and the intended recombination sequence.
  10.  前記遺伝子発現ベクターを導入される生物のゲノム配列と前記遺伝子発現ベクターとの結合部位に、insulator配列が挿入されるよう構成されてなる、請求項6に記載の遺伝子発現ベクター。 The gene expression vector according to claim 6, which is configured so that an insulator sequence is inserted into the binding site between the genome sequence of the organism into which the gene expression vector is introduced and the gene expression vector.
  11.  請求項1、4または5に記載の遺伝子発現用核酸を遺伝子発現ベクター核酸配列に導入する、遺伝子発現ベクターの製造方法。 A method for producing a gene expression vector, comprising introducing the nucleic acid for gene expression according to claim 1, 4 or 5 into a nucleic acid sequence of a gene expression vector.
  12.  前記遺伝子発現ベクターを大腸菌を用いて増殖する工程をさらに含み、
     前記大腸菌は、Stbl株またはその誘導株を用い、30℃以下で培養する、請求項11に記載の遺伝子発現ベクターの製造方法。
    The method further comprises a step of propagating the gene expression vector using E. coli,
    The method for producing a gene expression vector according to claim 11, wherein the Escherichia coli is a Stbl strain or a derivative thereof, and is cultured at 30°C or lower.
  13.  請求項1、4または5に記載の遺伝子発現用核酸を含む遺伝子発現ベクターを生物に導入する、遺伝子発現方法。 A method for gene expression, comprising introducing a gene expression vector containing the nucleic acid for gene expression according to claim 1, 4 or 5 into an organism.
  14.  前記生物がマウス、アフリカツメガエルまたはアカハライモリである、請求項13に記載の遺伝子発現方法。 The gene expression method according to claim 13, wherein the organism is a mouse, an African clawed frog, or a Japanese fire belly newt.
PCT/JP2023/038909 2022-10-28 2023-10-27 Nucleic acid for gene expression uses, gene expression vector, method for producing gene expression vector, and gene expression method WO2024090563A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173479 2022-10-28
JP2022-173479 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090563A1 true WO2024090563A1 (en) 2024-05-02

Family

ID=90831037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038909 WO2024090563A1 (en) 2022-10-28 2023-10-27 Nucleic acid for gene expression uses, gene expression vector, method for producing gene expression vector, and gene expression method

Country Status (1)

Country Link
WO (1) WO2024090563A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066541A2 (en) * 2009-11-30 2011-06-03 Trustees Of Boston University Biological circuit chemotactic converters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066541A2 (en) * 2009-11-30 2011-06-03 Trustees Of Boston University Biological circuit chemotactic converters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAN YANG YU: "The latent dedifferentiation capacity of newt limb muscles is unleashed by a combination of metamorphosis and body growth", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 12, no. 1, 1 August 2022 (2022-08-01), US , pages 11653, XP093161863, ISSN: 2045-2322, DOI: 10.1038/s41598-022-15879-z *

Similar Documents

Publication Publication Date Title
Xiang et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs
JP6700306B2 (en) Pre-fertilization egg cell, fertilized egg, and method for modifying target gene
JP7430358B2 (en) Method for producing eukaryotic cells with edited DNA, and kits used in the method
Shao et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos
CN105101787B (en) Animal of genetic modification and preparation method thereof
Van Keuren et al. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes
US20180064077A1 (en) Gene editing of reproductive hormones to sterilize aquatic animals
Ivics et al. The Sleeping Beauty transposable element: evolution, regulation and genetic applications
JP2019122390A (en) Targeted genome editing in zygotes of domestic large animals
JP6948718B2 (en) Genome editing method
KR20160013219A (en) Genetically sterile animals
BR122023023211A2 (en) METHOD OF MAKING MULTIPLEX GENE EDITS IN A VERTEBRATE OR PRIMARY NON-HUMAN EMBRYO CELL
Jakobsen et al. Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT)
CN108697067A (en) Composition and method prepared by the organ of chimeric embryo-auxiliary
Parrington et al. Sperm and testis mediated DNA transfer as a means of gene therapy
Ma et al. Building Cre knockin rat lines using CRISPR/Cas9
JP7426120B2 (en) Method for producing knock-in cells
WO2024090563A1 (en) Nucleic acid for gene expression uses, gene expression vector, method for producing gene expression vector, and gene expression method
CN111787791A (en) Materials and methods for preventing the spread of specific chromosomes
JP2017533716A (en) A heterozygous modification of the tumor suppressor gene and a porcine model of neurofibromatosis type 1
RU2768048C1 (en) METHOD FOR OBTAINING A MOUSE MODEL FOR STUDYING LESCH-NYHAN SYNDROME BY INTRODUCING A DELETION OF P.Val8del INTO THE Hprtl GENE
CN115992176A (en) Method for constructing model pig capable of inducing Cas9 protein expression through drugs
TW202233695A (en) Foki nuclease domain variant
JP7179306B2 (en) Method for producing genetically modified incomplete metamorphosis insects
KR102493904B1 (en) Immunodeficient Animal Model Mutated IL2Rg Gene by EeCpf1 and Method for Producing the same