WO2024090523A1 - Lofty blended yarn and method for producing same - Google Patents

Lofty blended yarn and method for producing same Download PDF

Info

Publication number
WO2024090523A1
WO2024090523A1 PCT/JP2023/038721 JP2023038721W WO2024090523A1 WO 2024090523 A1 WO2024090523 A1 WO 2024090523A1 JP 2023038721 W JP2023038721 W JP 2023038721W WO 2024090523 A1 WO2024090523 A1 WO 2024090523A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
artificial
blended yarn
protein
water
Prior art date
Application number
PCT/JP2023/038721
Other languages
French (fr)
Japanese (ja)
Inventor
皓斗 佐藤
瑞季 西門
和秀 関山
憲児 東
嘉隆 中川
Original Assignee
Spiber株式会社
中川絹糸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社, 中川絹糸株式会社 filed Critical Spiber株式会社
Publication of WO2024090523A1 publication Critical patent/WO2024090523A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/24Bulked yarns or threads, e.g. formed from staple fibre components with different relaxation characteristics

Definitions

  • the present invention relates to a bulky blended yarn and a method for producing the same.
  • Patent Document 1 discloses an acrylic fiber bulk processing device that performs bulk processing (bulkification processing) on acrylic fibers, and a manufacturing method thereof.
  • Patent Document 2 discloses a knitted fabric made of high-shrinkage acrylic fibers with a boiling water shrinkage rate of 15% or more and a single fiber fineness of 0.7 to 2.2 dtex and low-shrinkage fibers with a boiling water shrinkage rate of 10% or less, and having a specific volume of 6 to 12 cm3 /g and a heat retention rate of 28 to 60%.
  • Patent Document 2 describes that the knitted fabric has an excellent texture, a soft surface touch, excellent dimensional stability, and is lightweight, bulky, and excellent in heat retention.
  • the object of the present invention is to provide a new bulky blended yarn using fibers containing artificial proteins, a manufacturing method thereof, and a new fabric using bulky blended yarn containing artificial protein fibers.
  • a bulky blended yarn comprising a first fiber containing an artificial protein and capable of shrinking upon contact with water, and a second fiber having a shrinkage rate upon contact with water lower than that of the first fiber, and having a bulkiness of 10 cm 3 /g or more.
  • a method for producing a bulky blended yarn comprising: a step of blending a first sliver containing a first fiber that contains an artificial protein and is shrinkable upon contact with water with a second sliver containing a second fiber whose shrinkage rate upon contact with water is lower than that of the first fiber to obtain a raw blended yarn; and a step of contacting the raw blended yarn with an aqueous medium to shrink at least the first fiber to obtain a bulky blended yarn.
  • a fabric comprising the bulky blended yarn according to any one of [1] to [12].
  • the present invention can provide a new bulky blended yarn containing fibers that contain artificial proteins and a manufacturing method thereof. It can also provide a new fabric using a bulky blended yarn that contains artificial protein fibers.
  • the bulky blended yarn of the present invention has excellent water absorption properties because it contains an artificial protein.
  • the bulky blended yarn of the present invention can ensure a wide variety of properties.
  • the fabric of the present invention also contains the bulky blended yarn as described above, it has excellent water absorption properties and can ensure a wide variety of properties.
  • FIG. 1 is an explanatory diagram illustrating an example of a spinning apparatus for producing a first fiber (artificial protein fiber).
  • the materials exemplified in this specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified.
  • the bulky blended yarn of this embodiment includes a first fiber that contains an artificial protein and is shrinkable upon contact with water, and a second fiber that has a lower shrinkage rate upon contact with water than the first fiber.
  • the bulkiness of the bulky blended yarn is 10 cm 3 /g or more.
  • the bulkiness of the bulky blended yarn may be 15 cm 3 /g or more, 20 cm 3 /g or more, 25 cm 3 /g or more, 30 cm 3 /g or more, 35 cm 3 /g or more, 40 cm 3 /g or more, 45 cm 3 /g or more, 50 cm 3 /g or more, or 55 cm 3 /g or more.
  • the bulkiness of the bulky blended yarn may be 70 cm 3 /g or less, 65 cm 3 /g or less, 60 cm 3 /g or less, 55 cm 3 /g or less, 50 cm 3 /g or less, 45 cm 3 /g or less, or 40 cm 3 /g or less. The higher the bulkiness, the more improved the softness, heat retention, water absorbency, and anti-pilling properties of the bulky blended yarn.
  • the bulkiness of bulky blended yarn is measured in accordance with JIS L 1095A method.
  • the bulkiness of the bulky blended yarn can be adjusted, for example, by controlling the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water.
  • the bulkiness tends to be increased, for example, by increasing the difference between the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water.
  • the first fiber is a fiber containing an artificial protein (artificial protein fiber).
  • the fiber containing an artificial protein referred to here includes a fiber containing only an artificial protein, a fiber containing a component other than the artificial protein that is not physically or chemically bonded to the artificial protein, or a fiber containing a component that is physically or chemically bonded to the artificial protein.
  • the artificial protein includes a chemically modified artificial protein, an artificial protein derivative, etc.
  • artificial protein refers to a protein that is artificially produced. Artificial proteins include recombinant proteins and synthetic proteins. An artificial protein may be a protein whose domain sequence is different from the amino acid sequence of a naturally occurring protein, or may be a protein whose domain sequence is identical to the amino acid sequence of a naturally occurring protein.
  • an “artificial protein” may be a protein that uses the amino acid sequence of a naturally occurring protein as is, may be a protein whose amino acid sequence has been modified based on the amino acid sequence of a naturally occurring protein (for example, a protein whose amino acid sequence has been modified by modifying the gene sequence of a cloned naturally occurring protein), or may be a protein that has been artificially designed and synthesized without relying on a naturally occurring protein (for example, a protein having a desired amino acid sequence by chemically synthesizing a nucleic acid that codes for a designed amino acid sequence).
  • the amino acid sequence of artificial proteins can be freely designed, and therefore the functions, characteristics, physical properties, etc. of the first fiber containing an artificial protein and the bulky blended yarn containing the first fiber can be freely controlled by appropriately designing the amino acid sequence of the artificial protein. Since artificial proteins can always be designed with uniform molecular design, it is possible to stably obtain artificial proteins that are highly homologous to the target protein and are suited to the purpose. This advantageously stabilizes the quality of the first fiber containing an artificial protein and the bulky blended yarn containing the first fiber. From this point of view, artificial structural proteins are advantageously used as the artificial protein.
  • the number of amino acid residues in the artificial protein is not particularly limited, but may be, for example, 50 or more.
  • the number of amino acid residues may be, for example, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more.
  • the number of amino acid residues may be, for example, 5000 or less, 4500 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, 1500 or less, or 1000 or less. The fewer the number of amino acid residues, the higher the solubility in a solvent tends to be.
  • the molecular weight of the artificial protein is not particularly limited, but may be, for example, 2 kDa or more and 500 kDa or less.
  • the molecular weight of the artificial protein may be, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa or more, 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kDa or less, or 200 kDa or less.
  • an artificial protein for example, an artificial protein having physical properties close to those required for a desired application can be used.
  • An example of an artificial protein is an artificial protein that can be used for industrial purposes. "Usable for industrial purposes” means that it can be used for various general-purpose materials used indoors and/or outdoors.
  • An example of an artificial protein that can be used for industrial purposes is an artificial structural protein.
  • the artificial protein may be, for example, an artificial structural protein.
  • the term "artificial structural protein” refers to an artificially produced structural protein.
  • a structural protein is a type of artificial protein that can be used for industrial purposes, and refers to a protein involved in the structure of a living organism, a protein that constitutes a structure produced by a living organism, or a protein derived therefrom.
  • a structural protein also refers to a protein that self-aggregates under certain conditions to form a structure such as a fiber, a film, a resin, a gel, a micelle, or a nanoparticle.
  • a structural protein can also be said to be a protein that has repeated motifs consisting of a characteristic amino acid sequence or a certain number of amino acid residues and forms the skeleton of an organism or material.
  • An artificial structural protein may be a structural protein produced from a microorganism using recombinant gene technology, and may have the same amino acid sequence as a natural structural protein, or may have an amino acid sequence that has been improved from the standpoint of productivity, moldability, etc.
  • artificial structural proteins include spider silk, silkworm silk, keratin, collagen, elastin, and resilin, as well as proteins derived from these.
  • the artificial structural protein according to this embodiment may have 150 or more amino acid residues.
  • the number of amino acid residues may be, for example, 200 or more or 250 or more, and is preferably 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more.
  • the alanine residue content may be, for example, 10-40%, 12-40%, 15-40%, 18-40%, 20-40%, or 22-40%.
  • the glycine residue content may be, for example, 10-55%, 11-55%, 13-55%, 15-55%, 18-55%, 20-55%, 22-55%, or 25-55%.
  • glycine residue content, and the serine residue content, threonine residue content, proline residue content and tyrosine residue content described below are synonymous with the above formula, in which the alanine residue is replaced with glycine residue, serine residue, threonine residue, proline residue and tyrosine residue, respectively.
  • the artificial structural protein may have a total content (total content) of at least one amino acid residue selected from the group consisting of serine, threonine, and tyrosine (i.e., any of the serine residue content, the threonine residue content, the tyrosine residue content, the sum of the serine residue content and the threonine residue content, the sum of the serine residue content and the tyrosine residue content, the sum of the threonine residue content and the tyrosine residue content, the sum of the serine residue content, the threonine residue content and the tyrosine residue content), the alanine residue content, and the glycine residue content, based on the number of amino acid residues, of 40% or more.
  • the total content may be, for example, 45% or more, 50% or more, 55% or more, or 60% or more. There is no particular upper limit to the total content, but it may be, for example, 90% or less, 85% or less, or 80%
  • the artificial structural protein may have a total content of serine residues, threonine residues, and tyrosine residues, based on the number of amino acid residues, of 4% or more, 4.5% or more, 5% or more, 5.5% or more, 6% or more, 6.5% or more, or 7% or more.
  • the total content of serine residues, threonine residues, and tyrosine residues may be, for example, 35% or less, 33% or less, 30% or less, 25% or less, or 20% or less.
  • the artificial structural protein according to this embodiment has an average distribution of serine, threonine, or tyrosine residues, and the total content of serine, threonine, and tyrosine residues in any 20 consecutive amino acid residues may be 4% or more, 5% or more, 10% or more, or 15% or more, and may be 50% or less, 40% or less, 30% or less, or 20% or less.
  • the artificial structural protein contains amino acids with relatively large side chains or amino acids with flexibility homogeneously to a certain extent throughout the entire sequence.
  • the artificial structural protein may contain a motif containing tyrosine residues, threonine residues, and proline residues in a repeated cycle. Such an artificial structural protein is likely to inhibit the formation of strong intermolecular hydrogen bonds during processing after molding, and is likely to improve processability.
  • the total content of proline residues, threonine residues, and tyrosine residues in any 20 consecutive amino acid residues may be 5% or more, more than 5.5%, 6.0% or more, more than 6.5%, 7.0% or more, more than 7.5%, 8.0% or more, more than 8.5%, 9.0% or more, 10.0% or more, or 15.0% or more.
  • the total content of proline residues, threonine residues, and tyrosine residues in any 20 consecutive amino acid residues may be 50% or less, 40% or less, 30% or less, or 20% or less.
  • the artificial structural protein may have a repetitive sequence. That is, the artificial structural protein may have multiple amino acid sequences (repetitive sequence units) with high sequence identity within the artificial structural protein.
  • the number of amino acid residues in the repetitive sequence unit is preferably 6 to 200.
  • the total number of glycine residues, serine residues, glutamine residues, and alanine residues relative to the total number of amino acid residues in the repetitive sequence unit may be 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, or 70% or more.
  • the sequence identity between the repetitive sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the hydrophobicity index of the repeating sequence unit may be, for example, -0.80 or more, -0.70 or more, -0.60 or more, -0.50 or more, -0.40 or more, -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 or more, 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more.
  • the upper limit of the hydrophobicity index of the repeating sequence unit is not particularly limited, but may be, for example, 1.0 or less, or 0.7 or less.
  • the hydropathic index is determined according to a known method using the known hydrophobicity index of amino acid residues.
  • the known hydrophobicity index of amino acid residues is shown in Table 1.
  • the hydrophobicity may be calculated according to the method described in Kyte J, Doolittle R (1982) "A simple method for displaying the hydropathic character of a protein", J. Mol. Biol., 157, pp. 105-132.
  • the artificial structural protein may include an (A) n motif.
  • the (A) n motif means an amino acid sequence mainly composed of alanine residues.
  • the number of amino acid residues in the (A) n motif may be 2 to 27, and may be an integer of 2 to 20, 2 to 16, or 2 to 12.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more, 90% or more, 95% or more, or 100%.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif being 100% means that the (A) n motif is composed of only alanine residues.
  • the (A) n motif may be such that the total number of alanine residues, serine residues, threonine residues and valine residues relative to the total number of amino acid residues in the (A) n motif is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 100% (meaning that it is composed of only one or more amino acid residues selected from alanine residues, serine residues, threonine residues and valine residues).
  • the (A) n motifs present in the recombinant structural protein according to this embodiment may have the same amino acid sequence or different amino acid sequences.
  • the artificial structural protein according to this embodiment will have these secondary structures repeatedly, and as described below, when the artificial structural protein is made into a fiber form, it is expected that these secondary structures will provide high strength.
  • the artificial structural protein may be an artificial fibroin.
  • artificial fibroin means artificially produced fibroin (man-made fibroin).
  • the artificial fibroin may be a fibroin having an amino acid sequence different from that of naturally occurring fibroin, or may be a fibroin having an amino acid sequence identical to that of naturally occurring fibroin.
  • Naturally occurring fibroin examples include fibroin produced by insects or spiders.
  • Natural fibroin is a fibrous protein with a molecular weight of approximately 370,000, composed of two subunits, and has a high content of glycine, alanine, serine and tyrosine residues, with these amino acid residues accounting for nearly 90% of the total number of amino acid residues.
  • Natural fibroin has crystalline regions rich in amino acid residues with relatively small side chains such as glycine, alanine and serine, and amorphous regions with amino acid residues with relatively large side chains such as tyrosine.
  • a more specific example of naturally derived fibroin is a fibroin whose sequence information is registered in NCBI GenBank. For example, it can be confirmed by extracting from among the sequences registered in NCBI GenBank that contain INV as a division, sequences with spidroin, amplify, fibroin, "silk and polypeptide", or "silk and protein" as keywords in DEFINITION, a specific product character string from CDS, and a specific character string in TISSUE TYPE from SOURCE.
  • Artificial fibroin can be produced by known methods, for example, the method described in WO 2019/194263.
  • Artificial fibroin may be a fibrous protein having a structure similar to that of naturally occurring fibroin, or may be a fibroin having a sequence similar to the repetitive sequence of naturally occurring fibroin. "A sequence similar to the repetitive sequence of fibroin” may be an actual sequence found in naturally occurring fibroin, or a sequence similar thereto.
  • the artificial fibroin has an amino acid sequence specified in this disclosure, it may be one in which the amino acid sequence is modified based on naturally occurring fibroin (for example, one in which the amino acid sequence is modified by modifying the genetic sequence of a cloned naturally occurring fibroin), or it may be one in which the amino acid sequence is artificially designed without relying on naturally occurring fibroin (for example, one in which the desired amino acid sequence is obtained by chemically synthesizing a nucleic acid that codes for a designed amino acid sequence).
  • Artificial fibroins with modified amino acid sequences are also included in the artificial fibroin category, so long as the amino acid sequence differs from that of naturally occurring fibroin.
  • artificial fibroins examples include artificial silk fibroin (a silk protein produced by silkworms with a modified amino acid sequence) and artificial spider silk fibroin (a spider silk protein produced by spiders with a modified amino acid sequence). Since the artificial fibroin is relatively easy to fibrillate and has a high fiber forming ability, it preferably contains artificial spider silk fibroin, and more preferably consists of artificial spider silk fibroin.
  • the artificial fibroin may be a protein containing a domain sequence represented by formula 1: [(A) n motif-REP] m , or formula 2: [(A) n motif-REP] m- (A) n motif.
  • the artificial fibroin may further have amino acid sequences (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and C-terminal side of the domain sequence.
  • the N-terminal sequence and the C-terminal sequence are typically, but are not limited to, regions that do not have repetitions of amino acid motifs characteristic of fibroin and consist of about 100 amino acid residues.
  • domain sequence refers to an amino acid sequence represented by formula 1: [(A) n motif-REP] m , or formula 2: [(A) n motif-REP] m- (A) n motif.
  • the (A) n motif indicates an amino acid sequence mainly composed of alanine residues, and has 2 to 27 amino acid residues.
  • the number of amino acid residues in the (A) n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, and may be 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more, 90% or more, 95% or more, or 100% (meaning that the sequence is composed only of alanine residues).
  • At least seven of the (A) n motifs present in the domain sequence may be composed of only alanine residues.
  • REP represents an amino acid sequence composed of 2 to 200 amino acid residues.
  • REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
  • m represents an integer of 2 to 300, and may be an integer of 10 to 300.
  • the (A) n motifs present in the domain sequence may be the same amino acid sequence as each other, or different amino acid sequences.
  • the REPs present in the domain sequence may be the same amino acid sequence as each other, or different amino acid sequences.
  • artificial fibroins include artificial fibroins derived from the large spinal duct dragline silk protein produced in the large ampullate gland of spiders as described in WO 2021/187502 (first artificial fibroin), artificial fibroins having a domain sequence with a reduced content of glycine residues (second artificial fibroin), artificial fibroins having a domain sequence with a reduced content of (A) n motifs (third artificial fibroin), artificial fibroins having a reduced content of glycine residues and (A) n motifs (fourth artificial fibroin), artificial fibroins having a domain sequence including a region with a locally high hydrophobic index (fifth artificial fibroin), and artificial fibroins having a domain sequence with a reduced content of glutamine residues (sixth artificial fibroin).
  • first artificial fibroins derived from the large spinal duct dragline silk protein produced in the large ampullate gland of spiders as described in WO 2021/187502
  • first artificial fibroin artificial
  • the artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This allows the artificial fibroin to be isolated, immobilized, detected, and visualized.
  • PRT966 is the sixth artificial fibroin that contains a tag sequence.
  • An example of a tag sequence is an affinity tag that utilizes specific affinity (binding ability, affinity) with other molecules.
  • a specific example of an affinity tag is a histidine tag (His tag).
  • His tag is a short peptide with a sequence of about 4 to 10 histidine residues, and has the property of specifically binding to metal ions such as nickel, so it can be used to isolate artificial fibroin by chelating metal chromatography.
  • a specific example of a tag sequence is the amino acid sequence shown in SEQ ID NO: 8 (an amino acid sequence including a His tag sequence and a hinge sequence).
  • tag sequences such as glutathione-S-transferase (GST), which specifically binds to glutathione, and maltose-binding protein (MBP), which specifically binds to maltose.
  • GST glutathione-S-transferase
  • MBP maltose-binding protein
  • epitope tags that utilize antigen-antibody reactions.
  • an antigenic peptide epitope
  • epitope tags include HA tags (peptide sequence of influenza virus hemagglutinin), myc tags, and FLAG tags.
  • a tag sequence that can be cleaved with a specific protease can also be used.
  • a protease By treating the protein adsorbed via the tag sequence with a protease, it is possible to recover the artificial fibroin from which the tag sequence has been cleaved.
  • artificial fibroins include those shown in SEQ ID NOs: 1 to 7.
  • the artificial fibroins may be artificial fibroins shown in SEQ ID NOs: 1 to 7 or artificial fibroins containing amino acid sequences having 90% or more sequence identity with these amino acid sequences.
  • the contents of alanine residues, glycine residues, serine residues, threonine residues, proline residues and tyrosine residues in the artificial fibroins shown in SEQ ID NOs: 1 to 7 are shown in Table 2 below.
  • the artificial fibroin may be an artificial fibroin having at least two or more characteristics of the first artificial fibroin, the second artificial fibroin, the third artificial fibroin, the fourth artificial fibroin, the fifth artificial fibroin, and the sixth artificial fibroin.
  • the molecular weight of the artificial fibroin according to this embodiment is not particularly limited, and may be, for example, 2 kDa or more and 700 kDa or less.
  • the molecular weight of the artificial fibroin may be, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa or more, 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 700 kDa or less, 600 kDa or less, 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kD
  • the content of the artificial protein may be 30% by mass or more, 40% by mass or more, or 50% by mass or more, 60% by mass or more, 70% by mass or more, or 80% by mass or more, and 100% by mass or less, 95% by mass or less, or 90% by mass or less, based on the total mass of the first fiber.
  • the range of the artificial protein content combining the above upper limit value and lower limit value includes any range (e.g., 30 to 100% by mass, 40 to 95% by mass, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
  • the first fiber is a fiber that can shrink when contacted with water.
  • the shrinkage rate of the first fiber when contacted with water may be, for example, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more.
  • the shrinkage rate of the first fiber when contacted with water may be, for example, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, or 55% or less. The higher the shrinkage rate of the first fiber when contacted with water, the more the bulkiness of the blended yarn is improved, and thus the flexibility, heat retention, pilling properties, water absorbency, and anti-pilling properties of the bulky blended yarn are improved.
  • the range of the shrinkage percentage of the first fiber due to contact with water which is a combination of the above-mentioned upper limit value and lower limit value, includes any range determined by arbitrarily selecting the above-mentioned upper limit value and lower limit value, respectively (e.g., 10 to 80%, 15 to 80%, 20 to 75%, etc.).
  • the "shrinkage rate due to contact with water” in this specification can be measured by the following method. First, a plurality of fibers having the same length are bundled to obtain a fiber bundle, and a 0.8 g lead weight is attached to this fiber bundle and it is immersed in water at 95°C for 10 minutes. After that, the fiber bundle is taken out of the water, and the fiber bundle is dried at room temperature for 2 hours with the 0.8 g lead weight still attached, and the length of the fiber bundle after drying is measured. Next, the "shrinkage rate due to contact with water (%)" of the fiber is calculated according to the following formula I.
  • the "shrinkage rate upon contact with water” in this specification can be adjusted by controlling the amino acid sequence of the artificial protein and the manufacturing conditions of the fiber (for example, the stretching conditions, if a stretching process is performed during fiber manufacturing).
  • the number of crimps of the first fiber may be, for example, 5 or more, 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, or 16 or more.
  • the number of crimps of the first fiber may be, for example, 20 or less, 19 or less, 18 or less, or 17 or less.
  • the higher the first crimp number the more the bulkiness of the blended yarn improves, and the bulky blended yarn tends to have higher flexibility, heat retention, pilling resistance, water absorbency, and anti-pilling properties.
  • the range of the number of crimps of the first fiber which is a combination of the above upper limit and lower limit, includes any range (e.g., 5 to 20, 7 to 18, etc.) determined by arbitrarily selecting the above upper limit and lower limit, respectively.
  • the number of crimps can be measured in accordance with JIS L 1015.
  • the crimping of the first fiber occurs mainly due to shrinkage of the blended yarn upon contact with water, as described below. Therefore, the number of crimps of the first fiber, like the "shrinkage rate upon contact with water" of the first fiber, can be adjusted by controlling the amino acid sequence of the artificial protein and the manufacturing conditions of the fiber (for example, the stretching conditions, etc., if a stretching process is performed during the manufacturing of the fiber).
  • the average length of the first fibers may be, for example, 48 mm or more, 50 mm or more, 60 mm or more, 70 mm or more, 80 mm or more, 90 mm or more, 100 mm or more, 110 mm or more, 120 mm or more, 130 mm or more, 140 mm or more, or 150 mm or more, and may be 170 mm or less, or 160 mm or less. Note that, as the first average length is higher, the bulkiness of the blended yarn is improved, and the flexibility, heat retention, pilling properties, water absorbency, and anti-pilling properties of the bulky blended yarn tend to be improved.
  • the range of the average length of the first fibers which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 48 to 170 mm, 70 to 160 mm, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
  • average fiber length refers to the length of short fibers randomly extracted from the bulky blended yarn. Specifically, “average fiber length” is measured in accordance with JIS L 1015C method.
  • the fineness of the first fiber may be, for example, 0.5 denier or more, 0.7 denier or more, 1.0 denier or more, 1.5 denier or more, or 2.0 denier or more.
  • the fineness of the first fiber may be, for example, 5 denier or less, 4.5 denier or less, 4.0 denier or less, or 3.5 denier or less.
  • by controlling the molecular design of the artificial protein contained in the first fiber it is possible to realize a fiber with excellent mechanical strength even if it is low in fineness, and a fiber with excellent flexibility even if it is high in fineness.
  • the range of the fineness of the first fiber which is a combination of the above upper limit value and the lower limit value, includes any range (for example, 1.0 to 3.5 denier, etc.) determined by arbitrarily selecting the above upper limit value and the lower limit value, respectively.
  • the content of the first fiber may be, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, or 80% by mass or more, and 90% by mass or less, or 85% by mass or less, based on the total mass of the bulky blended yarn. If the content of the first fiber is too low, the bulkiness of the bulky blended yarn may be reduced.
  • the range of the content of the first fiber which is a combination of the above upper limit value and the lower limit value, includes any range (for example, 5 to 90%, 10 to 85%, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
  • the content of the first fiber can be appropriately determined depending on the difference between the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water, or depending on the desired characteristics of the bulky blended yarn to be achieved by combining the characteristics of the first fiber and the characteristics of the second fiber.
  • the first fiber can be produced by a conventional spinning method, including the steps of obtaining a dope solution containing an artificial protein and spinning the dope solution to obtain the first fiber containing the artificial protein.
  • the dope solution can be obtained by dissolving the artificial protein in a solvent.
  • the solvent include dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and hexafluoroisopronol (HFIP).
  • DMSO dimethyl sulfoxide
  • DMF N,N-dimethylformamide
  • HFIP hexafluoroisopronol
  • a dissolution promoter may be used as necessary to dissolve the artificial protein.
  • the dissolution promoter include inorganic salts.
  • Spinning methods include wet spinning, dry spinning, dry-wet spinning, melt spinning, etc.
  • Preferred spinning methods include wet spinning and dry-wet spinning.
  • FIG. 1 is an explanatory diagram that shows a schematic diagram of an example of a spinning apparatus for producing a first fiber.
  • the spinning apparatus 10 shown in FIG. 1 is an example of a spinning apparatus for dry/wet spinning, and includes an extrusion device 1, an undrawn yarn production device 2, a wet heat drawing device 3, and a drying device 4.
  • the dope liquid 6 stored in the storage tank 7 is extruded from the nozzle 9 by the gear pump 8.
  • the dope liquid may be filled in a cylinder and extruded from a nozzle using a syringe pump.
  • the extruded dope liquid 6 is supplied to the coagulation liquid 11 in the coagulation liquid tank 20 through the air gap 19, the solvent is removed, the artificial protein is coagulated, and a fibrous coagulate is formed.
  • the fibrous coagulate is supplied to the warm water 12 in the drawing bath 21 and drawn.
  • the drawing ratio is determined by the speed ratio between the supply nip roller 13 and the take-up nip roller 14.
  • the drawn fibrous coagulate is supplied to the drying device 4 and dried in the yarn path 22, and the artificial protein fiber 36 is obtained as a wound yarn body 5.
  • 18a to 18g are yarn guides.
  • the coagulation liquid 11 may be any solvent capable of desolvation, such as lower alcohols having 1 to 5 carbon atoms, such as methanol, ethanol, and 2-propanol, and acetone.
  • the coagulation liquid 11 may contain water as appropriate.
  • the temperature of the coagulation liquid 11 is preferably 0 to 30°C.
  • the extrusion speed is preferably 0.2 to 6.0 ml/hour per hole, and more preferably 1.4 to 4.0 ml/hour.
  • the distance over which the coagulated protein passes through the coagulation liquid 11 (effectively the distance from the thread guide 18a to the thread guide 18b) may be a length that allows efficient desolvation, and is, for example, 200 to 500 mm.
  • the take-up speed of the undrawn thread may be, for example, 1 to 20 m/min, and is preferably 1 to 3 m/min.
  • the residence time in the coagulation liquid 11 may be, for example, 0.01 to 3 minutes, and preferably 0.05 to 0.15 minutes.
  • stretching pre-stretching
  • the coagulation liquid tank 20 may be provided in multiple stages, and stretching may be performed in each stage or in a specific stage as necessary.
  • the stretching performed to obtain the first fiber may be, for example, the pre-stretching performed in the coagulation liquid bath 20 described above, the wet heat stretching performed in the stretching bath 21, or dry heat stretching.
  • the wet heat drawing can be carried out in hot water, in a solution of hot water with an organic solvent added, or under steam heating.
  • the temperature may be, for example, 50 to 90°C, with 75 to 85°C being preferred.
  • the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times, with 2 to 8 times being preferred.
  • Dry heat drawing can be carried out using an electric tubular furnace or a dry heat plate.
  • the temperature may be, for example, 140°C to 270°C, with 160°C to 230°C being preferred.
  • the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 0.5 to 8 times, with 1 to 4 times being preferred.
  • wet heat stretching and dry heat stretching may be performed alone, or they may be performed in multiple stages or in combination. That is, wet heat stretching may be performed in the first stage and dry heat stretching in the second stage, or wet heat stretching may be performed in the first stage, wet heat stretching in the second stage, and dry heat stretching in the third stage, etc., and wet heat stretching and dry heat stretching may be performed in an appropriate combination.
  • the lower limit of the final draw ratio is preferably more than 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more relative to the undrawn yarn (or pre-drawn yarn), and the upper limit is preferably 40 or less, 30 or less, 20 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, or 10 or less relative to the undrawn yarn (or pre-drawn yarn). If the first fiber is a fiber spun at a draw ratio of 2 or more, the shrinkage rate of the first fiber due to contact with water tends to be higher.
  • the second fiber is a fiber having a shrinkage rate lower than that of the first fiber when contacted with water.
  • the second fiber may include at least one selected from the group consisting of synthetic fibers (including chemical fibers and semi-synthetic fibers), natural fibers, regenerated fibers, and artificial protein fibers.
  • Examples of the second fiber include animal hair fibers such as wool, cashmere, mohair, angora, and alpaca, natural cellulose fibers such as silk (including regenerated silk), cotton, and hemp, regenerated cellulose fibers such as lyocell and rayon, artificial protein fibers, and synthetic fibers such as nylon fibers, polyester fibers, and acrylic fibers.
  • the synthetic fibers natural fibers, regenerated fibers, and artificial protein fibers
  • fibers having a shrinkage rate lower than that of the first fiber when contacted with water are selected.
  • the second fiber is an artificial protein fiber
  • an artificial protein fiber containing the same type of artificial protein as the artificial protein contained in the first fiber but having a shrinkage rate lower than that of the first fiber when contacted with water is selected as the second fiber
  • an artificial protein fiber containing a type of artificial protein different from that of the artificial protein contained in the first fiber is selected.
  • the shrinkage rate of the second fiber upon contact with water may be, for example, 0% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more.
  • the shrinkage rate of the second fiber upon contact with water may be, for example, 45% or less, or 40% or less.
  • the second fiber may be a fiber that does not shrink at all upon contact with water.
  • the range of the shrinkage rate of the second fiber upon contact with water which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 0 to 45% and 5 to 40%) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
  • the difference (X1-X2) between the shrinkage rate X1 of the first fiber due to contact with water and the shrinkage rate X2 of the second fiber due to contact with water may be, for example, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, or 40% or more, and may be 50% or less, or 45% or less.
  • the range of the difference (X1-X2) between the shrinkage rate X1 and the shrinkage rate X2, which is a combination of the upper and lower limits described above, includes any range (e.g., 5 to 50% and 10 to 45%, etc.) determined by arbitrarily selecting the upper and lower limits described above.
  • the number of crimps of the second fiber may be, for example, 5 or more, 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, 17 or more, 19 or more, or 20 or more.
  • the number of crimps of the second fiber may be, for example, 25 or less, 23 or less, or 21 or less.
  • the range of the number of crimps of the second fiber which is a combination of the above upper limit and lower limit, includes any range determined by arbitrarily selecting the above upper limit and lower limit, respectively (for example, 5 to 25, 7 to 23, etc.).
  • the average length of the second fibers may be, for example, 48 mm or more, 50 mm or more, 60 mm or more, 70 mm or more, 80 mm or more, 90 mm or more, 100 mm or more, 110 mm or more, 120 mm or more, 130 mm or more, 140 mm or more, 150 mm or more, or 160 mm or more, and may be 200 mm or less, 190 mm or less, 180 mm or less, or 170 mm or less.
  • the range of the average length of the second fibers which is a combination of the above upper and lower limits, includes any range (e.g., 48 to 200 mm, 60 to 190 mm, etc.) determined by arbitrarily selecting the above upper and lower limits, respectively.
  • the content of the second fiber may be 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass or more, and may be 95% by mass or less, 90% by mass or less, 80% by mass or less, 70% by mass or less, or 60% by mass or less, based on the total mass of the bulky blended yarn.
  • the range of the content of the second fiber which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 5 to 50%, 10 to 45%, etc.) determined by arbitrarily selecting each of the above upper limit value and lower limit value.
  • the second fiber may be a commercially available product as is, may be produced by a known general method, or may be produced by spinning using the same method as the first fiber.
  • the bulky blended yarn can be used, for example, in fabrics for clothing, bedding, and the like.
  • the method for producing the bulky blended yarn according to the present embodiment includes a step of blending a first sliver containing an artificial protein and a first fiber that can shrink when contacted with water with a second sliver containing a second fiber whose shrinkage rate when contacted with water is lower than that of the first fiber to obtain a raw blended yarn (blending step), and a step of contacting the raw blended yarn with water to shrink at least the first fiber to obtain a bulky blended yarn (shrinking step).
  • This method can suitably produce the above-mentioned bulky blended yarn. Details of the artificial protein, the first fiber, and the second fiber may be as described above.
  • this production method it is possible to produce a bulky blended yarn having the above-mentioned bulkiness.
  • known spinning methods such as worsted spinning (including 2-inch spinning), woolen spinning, cotton spinning, and silk spinning can be adopted. From the viewpoint of obtaining a bulky blended yarn having a higher bulkiness, among these spinning methods, for example, worsted spinning can be advantageously adopted.
  • the reason why a bulky blended yarn having a higher bulkiness can be obtained by using a raw spun yarn obtained by worsted spinning is considered to be as follows.
  • the blended yarn obtained by worsted spinning has a smaller number of twists than blended yarns obtained by other spinning methods, so that the whole blended yarn becomes soft.
  • the fiber length of the staple used is longer than that of the staple used in woolen spinning and cotton spinning (for example, fibers with a length of 50 to 170 mm are used in worsted spinning), so the force required for drafting when aligning the slivers is larger. Therefore, in worsted spinning, a larger residual stress is generated in the first fiber, and the shrinkage rate due to contact with water is larger. As a result, it is believed that the bulky blended yarn has a higher bulkiness.
  • the first sliver may be one that has been prepared in advance (already made), or one that has been obtained by a process of making the first sliver using a tow that contains the first fiber (first sliver obtaining process).
  • the second sliver may also be one that has been prepared in advance (already made), or one that has been obtained by a process of making the second sliver using a known method using the second fiber (second sliver obtaining process).
  • the first sliver obtaining process can be carried out, for example, by supplying a tow of the first fiber between two sets of rollers, one before and one after, and draft-cutting (stretch-cutting) the tow by making the surface speed of the latter roller faster than that of the former roller, i.e., by stretch-cutting the tow, a conventional method of obtaining the first sliver can be used.
  • the first sliver can be obtained with the first fiber in an unshrunk and uncrimped state. This makes it easier to obtain a bulky blended yarn whose bulkiness is within the above-mentioned range.
  • the tow is draft cut, the first fiber is pulled, which further increases the residual stress. This is thought to further increase the water shrinkage rate (shrinkage rate when in contact with water) of the first fiber. It is expected that this will result in a bulky blended yarn with sufficient bulkiness.
  • the first sliver and the second sliver are blended to obtain a raw blended yarn.
  • the second sliver contains a second fiber.
  • a commercially available product can be used as is for the second sliver, or the second sliver may be produced using a second fiber that has a lower shrinkage rate upon contact with water than the first fiber. Any known method can be used to obtain the second sliver using the second fiber.
  • the first sliver and the second sliver can be blended using a normal method for blending slivers. Blending can be performed, for example, by a method including a step of forming a roving from the first sliver and the second sliver, and a step of twisting the roving while applying a draft, with the aim of increasing the parallelism of the fibers and mixing them uniformly. Drafting in such a twisting process also further increases the residual stress of the first fiber, further improving the water shrinkage rate. As a result, it is expected that a bulky blended yarn with more sufficient bulkiness can be obtained.
  • the raw blended yarn is brought into contact with an aqueous medium to shrink at least the first fiber to obtain a bulky blended yarn.
  • An aqueous medium is a liquid or gas (steam) medium that contains water (including water vapor).
  • the aqueous medium may be water or a mixture of water and a hydrophilic medium.
  • a volatile solvent such as ethanol or methanol or its vapor can be used as the hydrophilic medium.
  • the aqueous medium may be a mixture of water and a volatile solvent such as ethanol or methanol, and is preferably water or a mixture of water and ethanol.
  • the ratio of water to the volatile solvent or its vapor is not particularly limited, and may be, for example, 10:90 to 90:10 by mass.
  • the proportion of water is preferably 30% by mass or more, and may be 40% by mass or 50% by mass or more.
  • the aqueous medium is preferably a liquid or gas containing water (including water vapor) at 10 to 230°C.
  • the temperature of the aqueous medium may be 10°C or higher, 25°C or higher, 40°C or higher, 60°C or higher, or 100°C or higher, and may be 230°C or lower, 120°C or lower, 100°C or lower, or 90°C or lower. More specifically, when the aqueous medium is a gas (steam), the temperature of the aqueous medium is preferably 100 to 230°C, more preferably 100 to 120°C.
  • Methods for contacting the raw blended yarn with the aqueous medium include spraying the aqueous medium onto the raw blended yarn, immersing the raw blended yarn in the aqueous medium, and exposing the raw blended yarn to an environment filled with the steam of the aqueous medium.
  • the time of contact with the aqueous medium is adjusted appropriately depending on the type of raw material blended yarn, the temperature of the aqueous medium, the method of contact with the aqueous medium, etc.
  • the time of contact with the aqueous medium may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 15 minutes or more, and may be 30 minutes or less, 20 minutes or less, or 15 minutes or less.
  • the contact with the aqueous medium may be performed under normal pressure or under reduced pressure (e.g., vacuum).
  • the raw material blended yarn that has been brought into contact with the aqueous medium may be washed as necessary. Washing can be carried out, for example, using the aqueous medium described above.
  • the temperature of the aqueous medium during washing may be, for example, 10°C or higher, 20°C or higher, or 30°C or higher, and may be 50°C or lower, 45°C or lower, or 40°C or lower.
  • the raw blended yarn that has been brought into contact with the aqueous medium may be dried.
  • the drying method may be natural drying or drying with hot air or hot rollers.
  • the drying temperature may be, for example, 20 to 150°C, preferably 40 to 120°C, and more preferably 60 to 100°C.
  • the drying time may be, for example, 5 minutes or more, or 10 minutes or more, and may be 30 minutes or less, or 20 minutes or less.
  • the fabric containing the bulky blended yarn of this embodiment may consist only of the bulky blended yarn, or may contain other yarns (e.g., spun yarn, twisted yarn, etc.).
  • the fabric may be either a knitted fabric or a woven fabric, or a combination of both. Any known method can be used for manufacturing the knitted fabric or woven fabric that constitutes the fabric (knitting method or weaving method).
  • nucleic acid encoding the designed artificial protein was synthesized.
  • An NdeI site was added to the 5' end of the nucleic acid, and an EcoRI site was added downstream of the stop codon.
  • the nucleic acid was cloned into a cloning vector (pUC118).
  • the nucleic acid was then excised by restriction enzyme treatment with NdeI and EcoRI, and then recombined into the protein expression vector pET-22b(+) to obtain an expression vector.
  • the seed culture was added to a jar fermenter containing 500 mL of production medium (Table 4) so that the OD 600 was 0.05.
  • the culture temperature was kept at 37° C., and the pH was controlled to be constant at 6.9.
  • the dissolved oxygen concentration in the culture was maintained at 20% of the dissolved oxygen saturation concentration.
  • the feed solution (glucose 455 g/1 L, yeast extract 120 g/1 L) was added at a rate of 1 mL/min.
  • the culture temperature was kept at 37°C, and the culture was controlled to a constant pH of 6.9.
  • the dissolved oxygen concentration in the culture was maintained at 20% of the dissolved oxygen saturation concentration, and the culture was continued for 20 hours.
  • 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce the expression of the artificial protein.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the washed precipitate was suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg/mL, and stirred with a stirrer at 60 ° C. for 30 minutes to dissolve. After dissolution, the solution was dialyzed against water using a dialysis tube (Cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.) The white aggregated protein obtained after dialysis was collected by centrifugation, and the water was removed using a freeze-dryer to collect a freeze-dried powder containing PRT966 as an artificial protein.
  • 8 M guanidine buffer 8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
  • ⁇ Production of first fiber (artificial protein fiber)> Preparation of dope solution
  • the freeze-dried powder of the artificial protein was added to dimethyl sulfoxide (DMSO) to a concentration of 24% by mass, and then LiCl was added as a dissolution promoter to a concentration of 4.0% by mass.
  • the freeze-dried powder of the artificial protein was then dissolved using a shaker for 3 hours to obtain a DMSO solution of the artificial protein. Insoluble matter and bubbles in the obtained DMSO solution were removed to obtain a dope solution.
  • the solution viscosity of the dope solution was 5000 cP (centipoise) at 90°C.
  • the artificial protein fiber was tow-cut to produce a first sliver containing the artificial protein fiber.
  • the cut length of the artificial protein fiber was about 150 mm to 250 mm.
  • the worsted spinning method was used to produce the blended yarn.
  • Example 1 A pre-spinning process was carried out using the first sliver and the second sliver. This process is a process for turning the first sliver and the second sliver into rovings for post-spinning. The purpose of this process is to increase the parallelism of the fibers and mix them uniformly.
  • a wool sliver was used as the second sliver.
  • a commercially available wool sliver was used, and the fiber length was about 75 mm.
  • the pre-spinning process for example, of the 10 slivers, 6 to 8 wool fibers and 2 to 4 artificial protein fibers are drawn together at a draft ratio of 2 to 6 times. This is repeated, for example, 5 times.
  • the post-spinning process was carried out using the roving yarn. Specifically, this process involves twisting the roving yarn while applying a draft. In this process, the number of twists was approximately 300 times/m, and the draft ratio was 25 to 30 times. The twist was applied in the Z direction. In the case of making a two-ply yarn, the number of twists was approximately 230 times/m, and the twist was applied in the S direction.
  • a skein of raw blended yarn obtained by the above method was created (2m40cm).
  • the skein was set in a skein dyeing machine. Inside the skein dyeing machine, 100°C water was sprayed onto the skein for 15-20 minutes. The resulting skein was washed with 30-40°C water, dehydrated, and then dried with hot air at around 90°C for 15 minutes. This resulted in a bulky blended yarn made from artificial protein fiber and wool.
  • the content of the first fiber was 30% by mass, based on the total mass of the blended yarn.
  • the shrinkage rate of the first fiber due to contact with water was 45%.
  • the shrinkage rate of the second fiber due to contact with water was 10%.
  • the "shrinkage rate due to contact with water" of the first fiber and the second fiber was measured in the same manner according to the following method. First, a plurality of fibers having the same length were bundled to obtain a fiber bundle. The obtained fiber bundle was attached with a 0.8 g lead weight and immersed in 95 ° C water for 10 minutes. After that, the fiber bundle was taken out of the water, and the fiber bundle was dried at room temperature for 2 hours with the 0.8 g lead weight still attached, and the length of the fiber bundle after drying was measured.
  • the crimp number of the first fiber was 8.0.
  • the crimp number of the second fiber was 11.8.
  • the crimp numbers were measured according to JIS L 1015.
  • the bulkiness of the blended yarn obtained by the above method was 36.1 cm 3 /g.
  • the bulkiness was measured according to JIS L 1095A method.
  • Example 2 A bulky blended yarn made of artificial protein fiber and silk was obtained in the same manner as in Example 1, except that a silk sliver was used as the second sliver. The raw blended yarn was produced by worsted spinning.
  • the content of the first fiber was 30% by mass, based on the total mass of the blended yarn.
  • the first fiber had a shrinkage of 45% when exposed to water, and the second fiber had a shrinkage of 10% when exposed to water.
  • the number of crimps of the first fiber was 8.0.
  • the number of crimps of the second fiber was 19.1.
  • the average length of the first and second fibers, the shrinkage rate due to contact with water, and the number of crimps were measured in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a lofty blended yarn containing: first fibers comprising engineered protein fibers that contain engineered proteins and that are shrinkable on contact with water; and second fibers having a lower shrinkage rate on contact with water than the first fibers. The loftiness of the blended yarn is 10 cm3/g or greater.

Description

嵩高混紡糸及びその製造方法Bulky blended yarn and its manufacturing method
 本発明は、嵩高混紡糸及びその製造方法に関する。 The present invention relates to a bulky blended yarn and a method for producing the same.
 特許文献1にはアクリル系繊維に対してバルキー処理(かさ高処理)を行うアクリル繊維のバルキー処理装置及びその製造方法について開示されている。特許文献2には、沸水収縮率が15%以上で、単繊維繊度が0.7~2.2dtexの高収縮性アクリル繊維と、沸水収縮率10%以下の低収縮繊維からなる編地であり、比容積が6~12cm/g、保温率が28~60%の編地が開示されている。特許文献2では、当該編地が優れた風合いを有し、表面タッチがソフトで、寸法安定性に優れ、且つ軽量で嵩高であり、保温性に優れると記載されている。 Patent Document 1 discloses an acrylic fiber bulk processing device that performs bulk processing (bulkification processing) on acrylic fibers, and a manufacturing method thereof. Patent Document 2 discloses a knitted fabric made of high-shrinkage acrylic fibers with a boiling water shrinkage rate of 15% or more and a single fiber fineness of 0.7 to 2.2 dtex and low-shrinkage fibers with a boiling water shrinkage rate of 10% or less, and having a specific volume of 6 to 12 cm3 /g and a heat retention rate of 28 to 60%. Patent Document 2 describes that the knitted fabric has an excellent texture, a soft surface touch, excellent dimensional stability, and is lightweight, bulky, and excellent in heat retention.
特開2003-328241号公報JP 2003-328241 A 特開2014-101601号公報JP 2014-101601 A
 本発明の目的は、人工タンパク質を含む繊維を用いた新たな嵩高混紡糸及びその製造方法と、人工タンパク質繊維を含む嵩高混紡糸を用いた新たな生地とを提供することを目的とする。 The object of the present invention is to provide a new bulky blended yarn using fibers containing artificial proteins, a manufacturing method thereof, and a new fabric using bulky blended yarn containing artificial protein fibers.
 本発明は、例えば、以下の各発明に関する。
[1]
 人工タンパク質を含み、水との接触により収縮可能な第1の繊維と、水との接触による収縮率が前記第1の繊維よりも低い第2の繊維とを含み、嵩高性が10cm/g以上である、嵩高混紡糸。
[2]
 前記嵩高性が50cm/g以下である、[1]に記載の嵩高混紡糸。
[3]
 前記第1の繊維の水との接触による収縮率が15%以上である、[1]又は[2]に記載の嵩高混紡糸。
[4]
 前記第1の繊維の捲縮数が5個以上である、[1]~[3]のいずれかに記載の嵩高混紡糸。
[5]
 前記第1の繊維の含有量が、嵩高混紡糸の全質量を基準として、5質量%以上である、[1]~[4]のいずれかに記載の嵩高混紡糸。
[6]
 前記第1の繊維の含有量が、嵩高混紡糸の全質量を基準として、90質量%以下である、[5]に記載の嵩高混紡糸。
[7]
 前記第1の繊維の平均長さが48mm以上170mm以下である、[1]~[6]のいずれかに記載の嵩高混紡糸。
[8]
 前記第1の繊維と前記第2の繊維とが互いに異なる種類のものである、[1]~[7]のいずれかに記載の嵩高混紡糸。
[9]
 前記第1の繊維と前記第2の繊維とが互いに同一種類のものである、[1]~[7]のいずれかに記載の嵩高混紡糸。
[10]
 前記第2の繊維が、獣毛繊維とシルク(絹)のうちの少なくとも何れか一方である、[8]に記載の嵩高混紡糸。
[11]
 前記第2の繊維が、獣毛繊維又はシルクである、[10]に記載の嵩高混紡糸。
[12]
 紡毛紡績によって紡績されている、[1]~[11]のいずれかに記載の嵩高混紡糸。
[13]
 人工タンパク質を含有し、水との接触により収縮可能な第1の繊維を含む第1のスライバーと、水との接触による収縮率が前記第1の繊維よりも低い第2の繊維を含む第2のスライバーとを混紡して原料混紡糸を得る工程と、前記原料混紡糸を水性媒体と接触させて、少なくとも前記第1の繊維を収縮させて嵩高混紡糸を得る工程と、を含む、嵩高混紡糸を製造する方法。
[14]
 前記第1のスライバーを得る工程を更に含む、[13]に記載の方法。
[15]
 前記混紡糸を得る工程が梳毛紡績により行われる、[13]又は[14]に記載の方法。
[16]
 [1]~[12]のいずれかに記載の嵩高混紡糸を含む生地。
The present invention relates to, for example, the following inventions.
[1]
A bulky blended yarn comprising a first fiber containing an artificial protein and capable of shrinking upon contact with water, and a second fiber having a shrinkage rate upon contact with water lower than that of the first fiber, and having a bulkiness of 10 cm 3 /g or more.
[2]
The bulky blended yarn according to [1], wherein the bulkiness is 50 cm 3 /g or less.
[3]
The bulky blended yarn according to [1] or [2], wherein the first fiber has a shrinkage rate of 15% or more upon contact with water.
[4]
The bulky blended yarn according to any one of [1] to [3], wherein the number of crimps of the first fiber is 5 or more.
[5]
The bulky blended yarn according to any one of [1] to [4], wherein the content of the first fiber is 5 mass% or more based on the total mass of the bulky blended yarn.
[6]
The bulky blended yarn according to [5], wherein the content of the first fiber is 90 mass% or less, based on the total mass of the bulky blended yarn.
[7]
The bulky blended yarn according to any one of [1] to [6], wherein the average length of the first fibers is 48 mm or more and 170 mm or less.
[8]
The bulky blended yarn according to any one of [1] to [7], wherein the first fibers and the second fibers are different from each other.
[9]
The bulky blended yarn according to any one of [1] to [7], wherein the first fibers and the second fibers are of the same type.
[10]
The bulky blended yarn according to [8], wherein the second fiber is at least one of animal hair fiber and silk.
[11]
The bulky blended yarn according to [10], wherein the second fiber is animal hair fiber or silk.
[12]
The bulky blended yarn according to any one of [1] to [11], which is spun by woolen spinning.
[13]
A method for producing a bulky blended yarn, comprising: a step of blending a first sliver containing a first fiber that contains an artificial protein and is shrinkable upon contact with water with a second sliver containing a second fiber whose shrinkage rate upon contact with water is lower than that of the first fiber to obtain a raw blended yarn; and a step of contacting the raw blended yarn with an aqueous medium to shrink at least the first fiber to obtain a bulky blended yarn.
[14]
The method of claim 13, further comprising obtaining the first sliver.
[15]
The method according to [13] or [14], wherein the step of obtaining the blended yarn is carried out by worsted spinning.
[16]
A fabric comprising the bulky blended yarn according to any one of [1] to [12].
 本発明によれば、人工タンパク質を含む繊維を含む新たな嵩高混紡糸及びその製造方法を提供することができる。また、人工タンパク質繊維を含む嵩高混紡糸を用いた新たな生地を提供することができる。 The present invention can provide a new bulky blended yarn containing fibers that contain artificial proteins and a manufacturing method thereof. It can also provide a new fabric using a bulky blended yarn that contains artificial protein fibers.
 本発明の嵩高混紡糸は、人工タンパク質を含むことから、吸水性に優れている。また、分子設計が可能な人工タンパク質を含む第1の繊維と、第1の繊維とは異なる第2の繊維とを含むため、本発明の嵩高混紡糸では、バリエーション豊富な特性確保が可能になる。また、本発明の生地にあっても、上記のような嵩高混紡糸を含んでいることから、吸水性に優れ、且つバリエーション豊富な特性確保が可能になる。 The bulky blended yarn of the present invention has excellent water absorption properties because it contains an artificial protein. In addition, since it contains a first fiber containing an artificial protein that can be molecularly designed, and a second fiber that is different from the first fiber, the bulky blended yarn of the present invention can ensure a wide variety of properties. Furthermore, since the fabric of the present invention also contains the bulky blended yarn as described above, it has excellent water absorption properties and can ensure a wide variety of properties.
第1の繊維(人工タンパク質繊維)を製造するための紡糸装置の一例を概略的に示す説明図である。FIG. 1 is an explanatory diagram illustrating an example of a spinning apparatus for producing a first fiber (artificial protein fiber).
 以下、本開示を実施するための形態について、場合によって図面を参照し、詳細に説明する。ただし、以下の実施形態は本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。 Below, the form for implementing this disclosure will be described in detail, with reference to the drawings where appropriate. However, the following embodiments are merely examples for explaining this disclosure, and are not intended to limit this disclosure to the following content.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Unless otherwise specified, the materials exemplified in this specification may be used alone or in combination of two or more. When multiple substances corresponding to each component are present in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified.
[嵩高混紡糸]
 本実施形態に係る嵩高混紡糸は、人工タンパク質を含み、水との接触により収縮可能な第1の繊維と、水との接触による収縮率が第1の繊維よりも低い第2の繊維とを含む。
[Bulky blended yarn]
The bulky blended yarn of this embodiment includes a first fiber that contains an artificial protein and is shrinkable upon contact with water, and a second fiber that has a lower shrinkage rate upon contact with water than the first fiber.
 嵩高混紡糸の嵩高性は、10cm/g以上である。嵩高混紡糸の嵩高性は、15cm/g以上、20cm/g以上、25cm/g以上、30cm/g以上、35cm/g以上、40cm/g以上、45cm/g以上、50cm/g以上、又は55cm/g以上であってよい。嵩高混紡糸の嵩高性は、70cm/g以下、65cm/g以下、60cm/g以下、55cm/g以下、50cm/g以下、45cm/g以下、又は40cm/g以下であってよい。嵩高性が高い程、嵩高混紡糸の柔軟性、保温性、吸水性、及び抗ピリング性等が向上する。 The bulkiness of the bulky blended yarn is 10 cm 3 /g or more. The bulkiness of the bulky blended yarn may be 15 cm 3 /g or more, 20 cm 3 /g or more, 25 cm 3 /g or more, 30 cm 3 /g or more, 35 cm 3 /g or more, 40 cm 3 /g or more, 45 cm 3 /g or more, 50 cm 3 /g or more, or 55 cm 3 /g or more. The bulkiness of the bulky blended yarn may be 70 cm 3 /g or less, 65 cm 3 /g or less, 60 cm 3 /g or less, 55 cm 3 /g or less, 50 cm 3 /g or less, 45 cm 3 /g or less, or 40 cm 3 /g or less. The higher the bulkiness, the more improved the softness, heat retention, water absorbency, and anti-pilling properties of the bulky blended yarn.
 嵩高混紡糸の嵩高性は、JIS L 1095A法に準拠して測定される。 The bulkiness of bulky blended yarn is measured in accordance with JIS L 1095A method.
 嵩高混紡糸の嵩高性は、例えば、第1の繊維の水との接触による収縮率、及び第2の繊維の水との接触による収縮率を制御することによって調整することができる。嵩高性は、例えば、第1の繊維の水との接触による収縮率と、第2の繊維の水との接触による収縮率との差を大きくすることによって高くなる傾向がある。 The bulkiness of the bulky blended yarn can be adjusted, for example, by controlling the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water. The bulkiness tends to be increased, for example, by increasing the difference between the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water.
<第1の繊維>
 第1の繊維は、人工タンパク質を含む繊維(人工タンパク質繊維)である。なお、ここで言う人工タンパク質を含む繊維には、人工タンパク質のみを含む繊維や、人工タンパク質以外に人工タンパク質とは物理的或いは化学的に結合していない成分を含む繊維、或いは人工タンパク質と物理的或いは化学的に結合した成分を含む繊維等が含まれる。付言すれば、人工タンパク質には、化学修飾人工タンパク質や人工タンパク質誘導体等が含まれる。
<First fiber>
The first fiber is a fiber containing an artificial protein (artificial protein fiber). The fiber containing an artificial protein referred to here includes a fiber containing only an artificial protein, a fiber containing a component other than the artificial protein that is not physically or chemically bonded to the artificial protein, or a fiber containing a component that is physically or chemically bonded to the artificial protein. In addition, the artificial protein includes a chemically modified artificial protein, an artificial protein derivative, etc.
(人工タンパク質)
 本明細書において「人工タンパク質」とは、人為的に製造されたタンパク質を意味する。人工タンパク質は、組換え(リコンビナント)タンパク質と合成タンパク質とを含む。人工タンパク質は、そのドメイン配列が、天然由来のタンパク質のアミノ酸配列とは異なるタンパク質であってもよく、天然由来のタンパク質のアミノ酸配列と同一であるタンパク質であってもよい。「人工タンパク質」は、天然由来のタンパク質のアミノ酸配列をそのまま利用したものであってもよく、天然由来のタンパク質のアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のタンパク質の遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、天然由来のタンパク質に依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
(Artificial Proteins)
In this specification, the term "artificial protein" refers to a protein that is artificially produced. Artificial proteins include recombinant proteins and synthetic proteins. An artificial protein may be a protein whose domain sequence is different from the amino acid sequence of a naturally occurring protein, or may be a protein whose domain sequence is identical to the amino acid sequence of a naturally occurring protein. An "artificial protein" may be a protein that uses the amino acid sequence of a naturally occurring protein as is, may be a protein whose amino acid sequence has been modified based on the amino acid sequence of a naturally occurring protein (for example, a protein whose amino acid sequence has been modified by modifying the gene sequence of a cloned naturally occurring protein), or may be a protein that has been artificially designed and synthesized without relying on a naturally occurring protein (for example, a protein having a desired amino acid sequence by chemically synthesizing a nucleic acid that codes for a designed amino acid sequence).
 人工タンパク質は、天然タンパク質とは異なり、アミノ酸配列を自由に設計し得るものであることから、人工タンパク質を含む第1の繊維及び当該第1の繊維を含む嵩高混紡糸は、人工タンパク質のアミノ酸配列を適宜にデザインすることによって、機能、特性、物性等を任意にコントロールすることができる。人工タンパク質は、常に均一な分子デザインが可能であるため、目的タンパク質との相同性の高い、目的に応じた人工タンパク質を安定的に得ることができる。以て、人工タンパク質を含む第1の繊維及び当該第1の繊維を含む嵩高混紡糸の品質の安定化が有利に図られる。その点からして、人工タンパク質としては、人工構造タンパク質が有利に用いられる。 Unlike natural proteins, the amino acid sequence of artificial proteins can be freely designed, and therefore the functions, characteristics, physical properties, etc. of the first fiber containing an artificial protein and the bulky blended yarn containing the first fiber can be freely controlled by appropriately designing the amino acid sequence of the artificial protein. Since artificial proteins can always be designed with uniform molecular design, it is possible to stably obtain artificial proteins that are highly homologous to the target protein and are suited to the purpose. This advantageously stabilizes the quality of the first fiber containing an artificial protein and the bulky blended yarn containing the first fiber. From this point of view, artificial structural proteins are advantageously used as the artificial protein.
 人工タンパク質のアミノ酸残基数は、特に限定されないが、例えば、50以上であってよい。当該アミノ酸残基数は、例えば、100以上、150以上、200以上、250以上、300以上、350以上、400以上、450以上、又は500以上であってよい。当該アミノ酸残基数は、例えば、5000以下、4500以下、4000以下、3500以下、3000以下、2500以下、2000以下、1500以下、又は1000以下であってもよい。アミノ酸残基数が少ない程、溶媒への溶解度が高まる傾向にある。 The number of amino acid residues in the artificial protein is not particularly limited, but may be, for example, 50 or more. The number of amino acid residues may be, for example, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more. The number of amino acid residues may be, for example, 5000 or less, 4500 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, 1500 or less, or 1000 or less. The fewer the number of amino acid residues, the higher the solubility in a solvent tends to be.
 人工タンパク質の分子量は、特に限定されないが、例えば、2kDa以上500kDa以下であってよい。人工タンパク質の分子量は、例えば、2kDa以上、3kDa以上、4kDa以上、5kDa以上、6kDa以上、7kDa以上、8kDa以上、9kDa以上、10kDa以上、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、500kDa以下、400kDa以下、360kDa未満、300kDa以下、又は200kDa以下であってよい。 The molecular weight of the artificial protein is not particularly limited, but may be, for example, 2 kDa or more and 500 kDa or less. The molecular weight of the artificial protein may be, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa or more, 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kDa or less, or 200 kDa or less.
 人工タンパク質としては、例えば、所望の用途に求められる物性に近い物性を有する人工タンパク質を採用することができる。人工タンパク質としては、工業用に利用できる人工タンパク質等を挙げることができる。工業用に利用可能とは、例えば、屋内及び/又は屋外で使用される様々な汎用材料等に利用し得ることをいう。工業用に利用できる人工タンパク質の具体例としては、人工構造タンパク質を挙げることができる。 As an artificial protein, for example, an artificial protein having physical properties close to those required for a desired application can be used. An example of an artificial protein is an artificial protein that can be used for industrial purposes. "Usable for industrial purposes" means that it can be used for various general-purpose materials used indoors and/or outdoors. An example of an artificial protein that can be used for industrial purposes is an artificial structural protein.
<人工構造タンパク質>
 人工タンパク質は、例えば、人工構造タンパク質であってよい。本明細書において「人工構造タンパク質」とは、人為的に製造された構造タンパク質を意味する。構造タンパク質とは、工業用に利用できる人工タンパク質の一種であり、生体の構造に関わるタンパク質、若しくは生体が作り出す構造体を構成するタンパク質、又はそれらに由来するタンパク質を意味する。構造タンパク質は、また、一定の条件下において自己凝集し、繊維、フィルム、樹脂、ゲル、ミセル、ナノパーティクル等の構造体を形成するタンパク質のことをいう。さらに、構造タンパク質は、特徴的なアミノ酸配列もしくはアミノ酸数残基からなるモチーフが繰り返し存在し、生物や材料の骨格を形成するタンパク質とも言える。
<Artificial structural proteins>
The artificial protein may be, for example, an artificial structural protein. In this specification, the term "artificial structural protein" refers to an artificially produced structural protein. A structural protein is a type of artificial protein that can be used for industrial purposes, and refers to a protein involved in the structure of a living organism, a protein that constitutes a structure produced by a living organism, or a protein derived therefrom. A structural protein also refers to a protein that self-aggregates under certain conditions to form a structure such as a fiber, a film, a resin, a gel, a micelle, or a nanoparticle. Furthermore, a structural protein can also be said to be a protein that has repeated motifs consisting of a characteristic amino acid sequence or a certain number of amino acid residues and forms the skeleton of an organism or material.
 人工構造タンパク質は、遺伝子組換え技術により微生物から生産した構造タンパク質であってよく、天然の構造タンパク質と同じアミノ酸配列を有するものであってもよく、生産性又は成形性等の観点から改良したアミノ酸配列を有するものであってもよい。 An artificial structural protein may be a structural protein produced from a microorganism using recombinant gene technology, and may have the same amino acid sequence as a natural structural protein, or may have an amino acid sequence that has been improved from the standpoint of productivity, moldability, etc.
 人工構造タンパク質の具体例としては、スパイダーシルク(クモ糸)、カイコシルク、ケラチン、コラーゲン、エラスチン及びレシリン、並びにこれら由来のタンパク質等を挙げることができる。 Specific examples of artificial structural proteins include spider silk, silkworm silk, keratin, collagen, elastin, and resilin, as well as proteins derived from these.
 本実施形態に係る人工構造タンパク質は、アミノ酸残基数が150以上であってよい。当該アミノ酸残基数は、例えば、200以上、又は250以上であってよく、好ましくは300以上、350以上、400以上、450以上、又は500以上である。 The artificial structural protein according to this embodiment may have 150 or more amino acid residues. The number of amino acid residues may be, for example, 200 or more or 250 or more, and is preferably 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more.
 人工構造タンパク質を成形する際、比較的小さな側鎖を有するアミノ酸ほど水素結合を形成しやすく、強度がより高くなりやすい。強度により優れることから、アラニン残基含有量は、例えば、10~40%であってよく、12~40%、15~40%、18~40%、20~40%、又は22~40%であってよい。強度により優れることから、グリシン残基含有量は、例えば、10~55%であってよく、11~55%、13~55%、15~55%、18~55%、20~55%、22~55%、又は25~55%であってよい。 When forming an artificial structural protein, amino acids with relatively small side chains tend to form hydrogen bonds more easily and have higher strength. To provide superior strength, the alanine residue content may be, for example, 10-40%, 12-40%, 15-40%, 18-40%, 20-40%, or 22-40%. To provide superior strength, the glycine residue content may be, for example, 10-55%, 11-55%, 13-55%, 15-55%, 18-55%, 20-55%, 22-55%, or 25-55%.
 本明細書において、「アラニン残基の含有量」とは、タンパク質を構成する全アミノ酸残基数に対するアラニン残基の数を意味し、下記式で表される値である。
 アラニン残基の含有量=(タンパク質に含まれるアラニン残基の数/タンパク質の全アミノ酸残基の数)×100(%)
As used herein, the "alanine residue content" refers to the number of alanine residues relative to the total number of amino acid residues constituting a protein, and is a value represented by the following formula:
Alanine residue content = (number of alanine residues contained in protein/total number of amino acid residues in protein) x 100 (%)
 グリシン残基含有量、及び後述するセリン残基含有量、スレオニン残基含有量、プロリン残基含有量及びチロシン残基含有量は、上記式において、アラニン残基をそれぞれグリシン残基、セリン残基、スレオニン残基、プロリン残基及びチロシン残基と読み替えたものと同義である。 The glycine residue content, and the serine residue content, threonine residue content, proline residue content and tyrosine residue content described below are synonymous with the above formula, in which the alanine residue is replaced with glycine residue, serine residue, threonine residue, proline residue and tyrosine residue, respectively.
 人工構造タンパク質はアミノ酸残基の数基準で、セリン、スレオニン及びチロシンからなる群より選択される少なくとも1種のアミノ酸残基含有量(すなわち、セリン残基含有量、スレオニン残基含有量、チロシン残基含有量、セリン残基含有量及びスレオニン残基含有量の合計、セリン残基含有量及びチロシン残基含有量の合計、スレオニン残基含有量及びチロシン残基含有量の合計、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計のいずれか)と、アラニン残基含有量と、グリシン残基含有量とを合計した含有量(合計含有量)が40%以上であってよい。当該合計含有量は、例えば、45%以上、50%以上、55%以上、又は60%以上であってよい。当該合計含有量の上限は特に制限はないが、例えば、90%以下、85%以下、又は80%以下であってよい。 The artificial structural protein may have a total content (total content) of at least one amino acid residue selected from the group consisting of serine, threonine, and tyrosine (i.e., any of the serine residue content, the threonine residue content, the tyrosine residue content, the sum of the serine residue content and the threonine residue content, the sum of the serine residue content and the tyrosine residue content, the sum of the threonine residue content and the tyrosine residue content, the sum of the serine residue content, the threonine residue content and the tyrosine residue content), the alanine residue content, and the glycine residue content, based on the number of amino acid residues, of 40% or more. The total content may be, for example, 45% or more, 50% or more, 55% or more, or 60% or more. There is no particular upper limit to the total content, but it may be, for example, 90% or less, 85% or less, or 80% or less.
 一実施形態において、人工構造タンパク質は、アミノ酸残基の数基準で、セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計が、4%以上、4.5%以上、5%以上、5.5%以上、6%以上、6.5%以上、又は7%以上であってよい。セリン残基含有量、スレオニン残基含有量及びチロシン残基含有量の合計は、例えば、35%以下、33%以下、30%以下、25%以下、又は20%以下であってよい。 In one embodiment, the artificial structural protein may have a total content of serine residues, threonine residues, and tyrosine residues, based on the number of amino acid residues, of 4% or more, 4.5% or more, 5% or more, 5.5% or more, 6% or more, 6.5% or more, or 7% or more. The total content of serine residues, threonine residues, and tyrosine residues may be, for example, 35% or less, 33% or less, 30% or less, 25% or less, or 20% or less.
 本実施形態に係る人工構造タンパク質は、セリン残基、スレオニン残基又はチロシン残基の分布が平均的であり、任意の連続した20アミノ酸残基の中、セリン残基、スレオニン残基及びチロシン残基の合計含有量が、4%以上、5%以上、10%以上、又は15%以上であってよく、50%以下、40%以下、30%以下、又は20%以下であってよい。 The artificial structural protein according to this embodiment has an average distribution of serine, threonine, or tyrosine residues, and the total content of serine, threonine, and tyrosine residues in any 20 consecutive amino acid residues may be 4% or more, 5% or more, 10% or more, or 15% or more, and may be 50% or less, 40% or less, 30% or less, or 20% or less.
 また、人工構造タンパク質は、比較的大きな側鎖を有するアミノ酸又は屈曲性を有するアミノ酸が一定程度、配列全体に均質に含まれていることが好ましい。具体的には、人工構造タンパク質は、チロシン残基、スレオニン残基、及びプロリン残基が含まれるモチーフを繰り返して周期で入っていてもよい。このような人工構造タンパク質であると、成形後加工するときに、強固な分子間水素結合の形成を阻害しやすく、加工性が向上しやすくなる。例えば、任意の連続した20アミノ酸残基の中、プロリン残基、スレオニン残基及びチロシン残基の含有量の合計が、5%以上、5.5%超、6.0%以上、6.5%超、7.0%以上、7.5%超、8.0%以上、8.5%超、9.0%以上、10.0%以上、又は15.0%以上であってよい。例えば、任意の連続した20アミノ酸残基の中、プロリン残基、スレオニン残基及びチロシン残基の各含有量の合計が、50%以下、40%以下、30%以下、又は20%以下であってよい。 Also, it is preferable that the artificial structural protein contains amino acids with relatively large side chains or amino acids with flexibility homogeneously to a certain extent throughout the entire sequence. Specifically, the artificial structural protein may contain a motif containing tyrosine residues, threonine residues, and proline residues in a repeated cycle. Such an artificial structural protein is likely to inhibit the formation of strong intermolecular hydrogen bonds during processing after molding, and is likely to improve processability. For example, the total content of proline residues, threonine residues, and tyrosine residues in any 20 consecutive amino acid residues may be 5% or more, more than 5.5%, 6.0% or more, more than 6.5%, 7.0% or more, more than 7.5%, 8.0% or more, more than 8.5%, 9.0% or more, 10.0% or more, or 15.0% or more. For example, the total content of proline residues, threonine residues, and tyrosine residues in any 20 consecutive amino acid residues may be 50% or less, 40% or less, 30% or less, or 20% or less.
 人工構造タンパク質は、反復配列を有するものであってよい。すなわち、人工構造タンパク質は、人工構造タンパク質内に配列同一性が高いアミノ酸配列(反復配列単位)が複数存在するものであってよい。反復配列単位のアミノ酸残基数は6~200であることが好ましい。反復配列単位中のアミノ酸残基総数に対する、グリシン残基、セリン残基、グルタミン残基及びアラニン残基の総数が、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、又は70%以上であってよい。また、反復配列単位間の配列同一性は、例えば、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上であってよい。 The artificial structural protein may have a repetitive sequence. That is, the artificial structural protein may have multiple amino acid sequences (repetitive sequence units) with high sequence identity within the artificial structural protein. The number of amino acid residues in the repetitive sequence unit is preferably 6 to 200. The total number of glycine residues, serine residues, glutamine residues, and alanine residues relative to the total number of amino acid residues in the repetitive sequence unit may be 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, or 70% or more. Furthermore, the sequence identity between the repetitive sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
 反復配列単位の疎水性度(ハイドロパシー・インデックス)は、例えば、-0.80以上、-0.70以上、-0.60以上、-0.50以上、-0.40以上、-0.30以上、-0.20以上、-0.10以上、0.00以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。反復配列単位の疎水性度の上限値は特に制限されるものではないものの、例えば、1.0以下であってもよく、0.7以下であってもよい。 The hydrophobicity index of the repeating sequence unit may be, for example, -0.80 or more, -0.70 or more, -0.60 or more, -0.50 or more, -0.40 or more, -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 or more, 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more. The upper limit of the hydrophobicity index of the repeating sequence unit is not particularly limited, but may be, for example, 1.0 or less, or 0.7 or less.
 ハイドロパシー・インデックスは、アミノ酸残基の公知の疎水性指標を用いて公知の方法に従って求められる。アミノ酸残基の公知の疎水性指標を表1に示す。例えば、疎水性度は、Kyte J、Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”、J.Mol.Biol.、157、pp.105-132に記載の方法にしたがって算出してもよい。 The hydropathic index is determined according to a known method using the known hydrophobicity index of amino acid residues. The known hydrophobicity index of amino acid residues is shown in Table 1. For example, the hydrophobicity may be calculated according to the method described in Kyte J, Doolittle R (1982) "A simple method for displaying the hydropathic character of a protein", J. Mol. Biol., 157, pp. 105-132.
 人工構造タンパク質は、(A)モチーフを含むものであってよい。本明細書において、(A)モチーフとは、アラニン残基を主とするアミノ酸配列を意味する。(A)モチーフのアミノ酸残基数は2~27であってよく、2~20、2~16、又は2~12の整数であってよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であってよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%であってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合が100%であることは、(A)モチーフがアラニン残基のみで構成されることを意味する。 The artificial structural protein may include an (A) n motif. In the present specification, the (A) n motif means an amino acid sequence mainly composed of alanine residues. The number of amino acid residues in the (A) n motif may be 2 to 27, and may be an integer of 2 to 20, 2 to 16, or 2 to 12. The ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more, 90% or more, 95% or more, or 100%. The ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif being 100% means that the (A) n motif is composed of only alanine residues.
 (A)モチーフは、(A)モチーフ中のアミノ酸残基総数に対する、アラニン残基、セリン残基、スレオニン残基及びバリン残基の総数が80%以上であってよく、85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基、セリン残基、スレオニン残基及びバリン残基から選択される1種以上のアミノ酸残基のみで構成されることを意味する。)が更により好ましい。本実施形態に係る組み換え構造タンパク質中に複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。なお、(A)モチーフは、アラニン残基を主として含むため、αヘリックス構造又はβシート構造を取りやすい。(A)モチーフが反復配列単位に含まれることにより、本実施形態に係る人工構造タンパク質が、反復してこれら二次構造を有することになるため、後述するように、当該人工構造タンパク質を繊維の形態とすると、これらの二次構造により高い強度を発揮することが期待される。 The (A) n motif may be such that the total number of alanine residues, serine residues, threonine residues and valine residues relative to the total number of amino acid residues in the (A) n motif is 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 100% (meaning that it is composed of only one or more amino acid residues selected from alanine residues, serine residues, threonine residues and valine residues). The (A) n motifs present in the recombinant structural protein according to this embodiment may have the same amino acid sequence or different amino acid sequences. In addition, since the (A) n motif mainly contains alanine residues, it is likely to have an α-helix structure or a β-sheet structure. Since the (A) n motif is included in the repeating sequence unit, the artificial structural protein according to this embodiment will have these secondary structures repeatedly, and as described below, when the artificial structural protein is made into a fiber form, it is expected that these secondary structures will provide high strength.
 人工構造タンパク質は、人工フィブロインであってもよい。本明細書において「人工フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。人工フィブロインは、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。 The artificial structural protein may be an artificial fibroin. In this specification, "artificial fibroin" means artificially produced fibroin (man-made fibroin). The artificial fibroin may be a fibroin having an amino acid sequence different from that of naturally occurring fibroin, or may be a fibroin having an amino acid sequence identical to that of naturally occurring fibroin.
 天然由来のフィブロインとしては、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。天然のフィブロインは繊維状のタンパク質であり、分子量が約37万であり、2つのサブユニットで構成され、グリシン残基、アラニン残基、セリン残基及びチロシン残基の含有量が高く、これらのアミノ酸残基が全アミノ酸残基数の90%近くを占める。天然のフィブロインは、グリシン、アラニン及びセリン等の比較的小さな側鎖を有するアミノ酸残基が豊富な結晶領域と、チロシン等の比較的大きな側鎖を有するアミノ酸残基を有する非晶領域を有する。 Examples of naturally occurring fibroin include fibroin produced by insects or spiders. Natural fibroin is a fibrous protein with a molecular weight of approximately 370,000, composed of two subunits, and has a high content of glycine, alanine, serine and tyrosine residues, with these amino acid residues accounting for nearly 90% of the total number of amino acid residues. Natural fibroin has crystalline regions rich in amino acid residues with relatively small side chains such as glycine, alanine and serine, and amorphous regions with amino acid residues with relatively large side chains such as tyrosine.
 天然由来のフィブロインのより具体的な例としては、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。 A more specific example of naturally derived fibroin is a fibroin whose sequence information is registered in NCBI GenBank. For example, it can be confirmed by extracting from among the sequences registered in NCBI GenBank that contain INV as a division, sequences with spidroin, amplify, fibroin, "silk and polypeptide", or "silk and protein" as keywords in DEFINITION, a specific product character string from CDS, and a specific character string in TISSUE TYPE from SOURCE.
 人工フィブロインは、公知の方法によって製造でき、例えば、国際公開第2019/194263号に記載の方法で製造できる。 Artificial fibroin can be produced by known methods, for example, the method described in WO 2019/194263.
 人工フィブロインは、天然由来フィブロインに準ずる構造を有する繊維状タンパク質であってよく、天然由来フィブロインが有する反復配列と同様の配列を有するフィブロインであってもよい。「フィブロインが有する反復配列と同様の配列」とは、実際に天然由来フィブロインが有する配列であってもよく、それと類似する配列であってもよい。 Artificial fibroin may be a fibrous protein having a structure similar to that of naturally occurring fibroin, or may be a fibroin having a sequence similar to the repetitive sequence of naturally occurring fibroin. "A sequence similar to the repetitive sequence of fibroin" may be an actual sequence found in naturally occurring fibroin, or a sequence similar thereto.
 人工フィブロインは、本開示で特定されるアミノ酸配列を有するものであれば、天然由来のフィブロインに依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、天然由来のフィブロインに依らず人工的にアミノ酸配列を設計したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。人工フィブロインのアミノ酸配列を改変したものも、そのアミノ酸配列が天然由来のフィブロインのアミノ酸配列とは異なるものであれば、人工フィブロインに含まれる。 As long as the artificial fibroin has an amino acid sequence specified in this disclosure, it may be one in which the amino acid sequence is modified based on naturally occurring fibroin (for example, one in which the amino acid sequence is modified by modifying the genetic sequence of a cloned naturally occurring fibroin), or it may be one in which the amino acid sequence is artificially designed without relying on naturally occurring fibroin (for example, one in which the desired amino acid sequence is obtained by chemically synthesizing a nucleic acid that codes for a designed amino acid sequence). Artificial fibroins with modified amino acid sequences are also included in the artificial fibroin category, so long as the amino acid sequence differs from that of naturally occurring fibroin.
 人工フィブロインとしては、例えば、人工絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)、及び人工クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)などが挙げられる。人工フィブロインは、比較的にフィブリル化が容易で繊維形成能が高いことから、好ましくは人工クモ糸フィブロインを含み、より好ましくは人工クモ糸フィブロインからなる。 Examples of artificial fibroins include artificial silk fibroin (a silk protein produced by silkworms with a modified amino acid sequence) and artificial spider silk fibroin (a spider silk protein produced by spiders with a modified amino acid sequence). Since the artificial fibroin is relatively easy to fibrillate and has a high fiber forming ability, it preferably contains artificial spider silk fibroin, and more preferably consists of artificial spider silk fibroin.
 人工フィブロインは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質であってよい。人工フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。 The artificial fibroin may be a protein containing a domain sequence represented by formula 1: [(A) n motif-REP] m , or formula 2: [(A) n motif-REP] m- (A) n motif. The artificial fibroin may further have amino acid sequences (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and C-terminal side of the domain sequence. The N-terminal sequence and the C-terminal sequence are typically, but are not limited to, regions that do not have repetitions of amino acid motifs characteristic of fibroin and consist of about 100 amino acid residues.
 本明細書において「ドメイン配列」とは、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)モチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。 As used herein, the term "domain sequence" refers to an amino acid sequence represented by formula 1: [(A) n motif-REP] m , or formula 2: [(A) n motif-REP] m- (A) n motif. Here, the (A) n motif indicates an amino acid sequence mainly composed of alanine residues, and has 2 to 27 amino acid residues. The number of amino acid residues in the (A) n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16. In addition, the ratio of the number of alanine residues to the total number of amino acid residues in the (A) n motif may be 40% or more, and may be 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more, 90% or more, 95% or more, or 100% (meaning that the sequence is composed only of alanine residues). At least seven of the (A) n motifs present in the domain sequence may be composed of only alanine residues. REP represents an amino acid sequence composed of 2 to 200 amino acid residues. REP may be an amino acid sequence composed of 10 to 200 amino acid residues. m represents an integer of 2 to 300, and may be an integer of 10 to 300. The (A) n motifs present in the domain sequence may be the same amino acid sequence as each other, or different amino acid sequences. The REPs present in the domain sequence may be the same amino acid sequence as each other, or different amino acid sequences.
 人工フィブロインの具体的な例として、例えば、国際公開第2021/187502号に記載されるようなクモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する人工フィブロイン(第1の人工フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第2の人工フィブロイン)、(A)モチーフの含有量が低減されたドメイン配列を有する人工フィブロイン(第3の人工フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された人工フィブロイン(第4の人工フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する人工フィブロイン(第5の人工フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第6の人工フィブロイン)が挙げられる。第1~第6の各人工フィブロインの定義は、国際公開第2021/187502号に記載の内容を参照により本明細書に取り込まれる。 Specific examples of artificial fibroins include artificial fibroins derived from the large spinal duct dragline silk protein produced in the large ampullate gland of spiders as described in WO 2021/187502 (first artificial fibroin), artificial fibroins having a domain sequence with a reduced content of glycine residues (second artificial fibroin), artificial fibroins having a domain sequence with a reduced content of (A) n motifs (third artificial fibroin), artificial fibroins having a reduced content of glycine residues and (A) n motifs (fourth artificial fibroin), artificial fibroins having a domain sequence including a region with a locally high hydrophobic index (fifth artificial fibroin), and artificial fibroins having a domain sequence with a reduced content of glutamine residues (sixth artificial fibroin). The definitions of the first to sixth artificial fibroins are incorporated herein by reference in the contents of WO 2021/187502.
 人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、人工フィブロインの単離、固定化、検出及び可視化等が可能となる。PRT966は、タグ配列を含む第6の人工フィブロインである。 The artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This allows the artificial fibroin to be isolated, immobilized, detected, and visualized. PRT966 is the sixth artificial fibroin that contains a tag sequence.
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による人工フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号8で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。 An example of a tag sequence is an affinity tag that utilizes specific affinity (binding ability, affinity) with other molecules. A specific example of an affinity tag is a histidine tag (His tag). A His tag is a short peptide with a sequence of about 4 to 10 histidine residues, and has the property of specifically binding to metal ions such as nickel, so it can be used to isolate artificial fibroin by chelating metal chromatography. A specific example of a tag sequence is the amino acid sequence shown in SEQ ID NO: 8 (an amino acid sequence including a His tag sequence and a hinge sequence).
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。 It is also possible to use tag sequences such as glutathione-S-transferase (GST), which specifically binds to glutathione, and maltose-binding protein (MBP), which specifically binds to maltose.
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に人工フィブロインを精製することができる。 Furthermore, it is also possible to use "epitope tags" that utilize antigen-antibody reactions. By adding an antigenic peptide (epitope) as a tag sequence, it is possible to bind an antibody against the epitope. Examples of epitope tags include HA tags (peptide sequence of influenza virus hemagglutinin), myc tags, and FLAG tags. By using epitope tags, artificial fibroin can be easily purified with high specificity.
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した人工フィブロインを回収することもできる。 Furthermore, a tag sequence that can be cleaved with a specific protease can also be used. By treating the protein adsorbed via the tag sequence with a protease, it is possible to recover the artificial fibroin from which the tag sequence has been cleaved.
 人工フィブロインの具体例としては、例えば、配列番号1~7で示される人工フィブロインが挙げられる。人工フィブロインは、配列番号1~7で示される人工フィブロイン又はこれらのアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む人工フィブロインであってよい。配列番号1~7で示される人工フィブロインのアラニン残基、グリシン残基、セリン残基、スレオニン残基、プロリン残基及びチロシン残基それぞれの含有量を下記表2に示す。 Specific examples of artificial fibroins include those shown in SEQ ID NOs: 1 to 7. The artificial fibroins may be artificial fibroins shown in SEQ ID NOs: 1 to 7 or artificial fibroins containing amino acid sequences having 90% or more sequence identity with these amino acid sequences. The contents of alanine residues, glycine residues, serine residues, threonine residues, proline residues and tyrosine residues in the artificial fibroins shown in SEQ ID NOs: 1 to 7 are shown in Table 2 below.
 人工フィブロインは、第1の人工フィブロイン、第2の人工フィブロイン、第3の人工フィブロイン、第4の人工フィブロイン、第5の人工フィブロイン、及び第6の人工フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ人工フィブロインであってもよい。 The artificial fibroin may be an artificial fibroin having at least two or more characteristics of the first artificial fibroin, the second artificial fibroin, the third artificial fibroin, the fourth artificial fibroin, the fifth artificial fibroin, and the sixth artificial fibroin.
 本実施形態に係る人工フィブロインの分子量は、特に限定されないが、例えば、2kDa以上700kDa以下であってよい。人工フィブロインの分子量は、例えば、2kDa以上、3kDa以上、4kDa以上、5kDa以上、6kDa以上、7kDa以上、8kDa以上、9kDa以上、10kDa以上、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、700kDa以下、600kDa以下、500kDa以下、400kDa以下、360kDa未満、300kDa以下、又は200kDa以下であってよい。 The molecular weight of the artificial fibroin according to this embodiment is not particularly limited, and may be, for example, 2 kDa or more and 700 kDa or less. The molecular weight of the artificial fibroin may be, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa or more, 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 700 kDa or less, 600 kDa or less, 500 kDa or less, 400 kDa or less, less than 360 kDa, 300 kDa or less, or 200 kDa or less.
(人工タンパク質の含有量)
 人工タンパク質の含有量は、第1の繊維の全質量を基準として、30質量%以上、40質量%以上、又は50質量%以上であってよく、60質量%以上、70質量%以上、又は80質量%以上であってよく、100質量%以下、95質量%以下、又は90質量%以下であってよい。タンパク質の含有量が多い程、第1の繊維の水との接触による収縮率が高くなる傾向がある。なお、上記した上限値と下限値を組み合わせた人工タンパク質の含有量の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば30~100質量%、及び40~95質量%等)が何れも含まれる。
(Artificial protein content)
The content of the artificial protein may be 30% by mass or more, 40% by mass or more, or 50% by mass or more, 60% by mass or more, 70% by mass or more, or 80% by mass or more, and 100% by mass or less, 95% by mass or less, or 90% by mass or less, based on the total mass of the first fiber. The higher the protein content, the higher the shrinkage rate of the first fiber due to contact with water tends to be. The range of the artificial protein content combining the above upper limit value and lower limit value includes any range (e.g., 30 to 100% by mass, 40 to 95% by mass, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
(水との接触による収縮)
 第1の繊維は、水との接触により収縮可能な繊維である。第1の繊維の水との接触による収縮率は、例えば、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、又は50%以上であってよい。第1の繊維の水との接触による収縮率は、例えば、80%以下、75%以下、70%以下、65%以下、60%以下、又は55%以下であってよい。第1の繊維の水との収縮率が高い程、混紡糸の嵩高性が向上し、それによって、嵩高混紡糸の柔軟性、保温性、ピリング性、吸水性、及び抗ピリング性等が向上する。なお、上記した上限値と下限値を組み合わせた、第1の繊維の水との接触による収縮率の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば、10~80%、15~80%、及び20~75%等)が何れも含まれる。
(Shrinkage due to contact with water)
The first fiber is a fiber that can shrink when contacted with water. The shrinkage rate of the first fiber when contacted with water may be, for example, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more. The shrinkage rate of the first fiber when contacted with water may be, for example, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, or 55% or less. The higher the shrinkage rate of the first fiber when contacted with water, the more the bulkiness of the blended yarn is improved, and thus the flexibility, heat retention, pilling properties, water absorbency, and anti-pilling properties of the bulky blended yarn are improved. The range of the shrinkage percentage of the first fiber due to contact with water, which is a combination of the above-mentioned upper limit value and lower limit value, includes any range determined by arbitrarily selecting the above-mentioned upper limit value and lower limit value, respectively (e.g., 10 to 80%, 15 to 80%, 20 to 75%, etc.).
 本明細書における「水との接触による収縮率」は次に示す方法によって測定することができる。先ず、同一長さを有する複数本の繊維を束ねて繊維束を得、この繊維束に0.8gの鉛錘を取り付けて95℃の水に10分間浸漬する。その後、繊維束を水中から取り出した後、取り出した繊維束を、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させ、乾燥後に繊維束の長さを測定する。次いで、繊維の「水との接触による収縮率(%)」を、下記式Iに従って算出する。式I中、L0は水と接触する前の繊維束の長さを示し、Ldは水との接触により収縮した後、乾燥状態にした繊維束の長さを示す。
 式I:収縮率={1-(Ld/L0)}×100(%)
The "shrinkage rate due to contact with water" in this specification can be measured by the following method. First, a plurality of fibers having the same length are bundled to obtain a fiber bundle, and a 0.8 g lead weight is attached to this fiber bundle and it is immersed in water at 95°C for 10 minutes. After that, the fiber bundle is taken out of the water, and the fiber bundle is dried at room temperature for 2 hours with the 0.8 g lead weight still attached, and the length of the fiber bundle after drying is measured. Next, the "shrinkage rate due to contact with water (%)" of the fiber is calculated according to the following formula I. In formula I, L0 indicates the length of the fiber bundle before contact with water, and Ld indicates the length of the fiber bundle after shrinking due to contact with water and being in a dry state.
Formula I: Shrinkage rate = {1 - (Ld/L0)} x 100 (%)
 本明細書における「水との接触による収縮率」は、人工タンパク質のアミノ酸配列及び繊維の製造条件(例えば、繊維を製造する際に延伸処理を行う場合には延伸条件等)を制御することによって調整することができる。 The "shrinkage rate upon contact with water" in this specification can be adjusted by controlling the amino acid sequence of the artificial protein and the manufacturing conditions of the fiber (for example, the stretching conditions, if a stretching process is performed during fiber manufacturing).
(捲縮数)
 第1の繊維の捲縮数は、例えば、5個以上、7個以上、9個以上、11個以上、13個以上、15個以上、又は16個以上であってよい。第1の繊維の捲縮数は、例えば、20個以下、19個以下、18個以下、又は17個以下であってよい。第1の捲縮数が高い程、混紡糸の嵩高性が向上し、嵩高混紡糸の柔軟性、保温性、ピリング性、吸水性、及び抗ピリング性等が高まる傾向がある。なお、上記した上限値と下限値を組み合わせた、第1の繊維の捲縮数の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば5~20個、及び7~18個等)が何れも含まれる。
(Number of crimps)
The number of crimps of the first fiber may be, for example, 5 or more, 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, or 16 or more. The number of crimps of the first fiber may be, for example, 20 or less, 19 or less, 18 or less, or 17 or less. The higher the first crimp number, the more the bulkiness of the blended yarn improves, and the bulky blended yarn tends to have higher flexibility, heat retention, pilling resistance, water absorbency, and anti-pilling properties. The range of the number of crimps of the first fiber, which is a combination of the above upper limit and lower limit, includes any range (e.g., 5 to 20, 7 to 18, etc.) determined by arbitrarily selecting the above upper limit and lower limit, respectively.
 捲縮数は、JIS L 1015法に準拠して測定することができる。 The number of crimps can be measured in accordance with JIS L 1015.
 第1の繊維の捲縮は、主に、後述する混紡糸の水との接触による収縮によって生ずる。そのため、第1の繊維の捲縮数も、第1の繊維の「水との接触による収縮率」と同様に、人工タンパク質のアミノ酸配列及び繊維の製造条件(例えば、繊維を製造する際に延伸処理を行う場合には延伸条件等)を制御することによって調整することができる。 The crimping of the first fiber occurs mainly due to shrinkage of the blended yarn upon contact with water, as described below. Therefore, the number of crimps of the first fiber, like the "shrinkage rate upon contact with water" of the first fiber, can be adjusted by controlling the amino acid sequence of the artificial protein and the manufacturing conditions of the fiber (for example, the stretching conditions, etc., if a stretching process is performed during the manufacturing of the fiber).
(第1の繊維の平均長さ)
 第1の繊維の平均長さは、例えば、48mm以上、50mm以上、60mm以上、70mm以上、80mm以上、90mm以上、100mm以上、110mm以上、120mm以上、130mm以上、140mm以上、又は150mm以上であってよく、170mm以下、又は160mm以下であってよい。なお、第1の平均長さが高い程、混紡糸の嵩高性が向上し、嵩高混紡糸の柔軟性、保温性、ピリング性、吸水性、及び抗ピリング性等が高まる傾向がある。上記した上限値と下限値を組み合わせた、第1の繊維の平均長さの範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば48~170mm、及び70~160mm等)が何れも含まれる。
(Average length of first fiber)
The average length of the first fibers may be, for example, 48 mm or more, 50 mm or more, 60 mm or more, 70 mm or more, 80 mm or more, 90 mm or more, 100 mm or more, 110 mm or more, 120 mm or more, 130 mm or more, 140 mm or more, or 150 mm or more, and may be 170 mm or less, or 160 mm or less. Note that, as the first average length is higher, the bulkiness of the blended yarn is improved, and the flexibility, heat retention, pilling properties, water absorbency, and anti-pilling properties of the bulky blended yarn tend to be improved. The range of the average length of the first fibers, which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 48 to 170 mm, 70 to 160 mm, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
 本明細書における「繊維の平均長さ」とは、嵩高混紡糸から無作為に抜き出した短繊維の長さを意味する。具体的には「繊維の平均長さ」は、JIS L 1015C法に準拠して測定される。 In this specification, "average fiber length" refers to the length of short fibers randomly extracted from the bulky blended yarn. Specifically, "average fiber length" is measured in accordance with JIS L 1015C method.
(第1の繊維の繊度)
 第1の繊維の繊度は、例えば、0.5デニール以上、0.7デニール以上、1.0デニール以上、1.5デニール以上、又は2.0デニール以上であってよい。また、第1の繊維の繊度は、例えば、5デニール以下、4.5デニール以下、4.0デニール以下、又は3.5デニール以下であってよい。例えば、第1の繊維に含まれる人工タンパク質の分子設計をコントロールすることで、低繊度であっても機械的強度に優れた繊維、及び高繊度であっても柔軟性に優れた繊維を実現可能となる。なお、上記した上限値と下限値を組み合わせた、第1の繊維の繊度の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば1.0~3.5デニール等)が何れも含まれる。
(Fineness of First Fiber)
The fineness of the first fiber may be, for example, 0.5 denier or more, 0.7 denier or more, 1.0 denier or more, 1.5 denier or more, or 2.0 denier or more. The fineness of the first fiber may be, for example, 5 denier or less, 4.5 denier or less, 4.0 denier or less, or 3.5 denier or less. For example, by controlling the molecular design of the artificial protein contained in the first fiber, it is possible to realize a fiber with excellent mechanical strength even if it is low in fineness, and a fiber with excellent flexibility even if it is high in fineness. The range of the fineness of the first fiber, which is a combination of the above upper limit value and the lower limit value, includes any range (for example, 1.0 to 3.5 denier, etc.) determined by arbitrarily selecting the above upper limit value and the lower limit value, respectively.
(第1の繊維の含有量)
 第1の繊維の含有量は、嵩高混紡糸の全質量を基準として、例えば、5質量%以上、10質量%以上、15質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、又は80質量%以上であってよく、90質量%以下、又は85質量%以下であってよい。第1の繊維の含有量が低すぎると、嵩高混紡糸の嵩高性が低くなる可能性がある。なお、上記した上限値と下限値を組み合わせた、第1の繊維の含有量の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば5~90%、及び10~85%等)が何れも含まれる。また、第1の繊維の含有量は、第1の繊維の水との接触による収縮率と、第2の繊維の水との接触による収縮率との差等に応じて、或いは第1の繊維が有する特性と第2の繊維が有する特性との組み合わせによって実現されるべき嵩高混紡糸の所望の特性等に応じて適宜決定することができる。
(Content of First Fiber)
The content of the first fiber may be, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, or 80% by mass or more, and 90% by mass or less, or 85% by mass or less, based on the total mass of the bulky blended yarn. If the content of the first fiber is too low, the bulkiness of the bulky blended yarn may be reduced. The range of the content of the first fiber, which is a combination of the above upper limit value and the lower limit value, includes any range (for example, 5 to 90%, 10 to 85%, etc.) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively. In addition, the content of the first fiber can be appropriately determined depending on the difference between the shrinkage rate of the first fiber upon contact with water and the shrinkage rate of the second fiber upon contact with water, or depending on the desired characteristics of the bulky blended yarn to be achieved by combining the characteristics of the first fiber and the characteristics of the second fiber.
(第1の繊維の製造方法)
 第1の繊維は、通常の紡糸方法によって製造することができる。第1の繊維は、人工タンパク質を含むドープ液を得る工程と、ドープ液を用いて紡糸を行い、人工タンパク質を含む第1の繊維を得る工程とを含む方法によって製造することができる。
(Method of Manufacturing First Fiber)
The first fiber can be produced by a conventional spinning method, including the steps of obtaining a dope solution containing an artificial protein and spinning the dope solution to obtain the first fiber containing the artificial protein.
 ドープ液は、人工タンパク質を溶媒に溶解させることによって得ることができる。溶媒としては、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、又はヘキサフルオロイソプロノール(HFIP)等が挙げられる。人工タンパク質を溶解させるために必要に応じて溶解促進剤が用いられてよい。溶解促進剤としては無機塩が挙げられる。 The dope solution can be obtained by dissolving the artificial protein in a solvent. Examples of the solvent include dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and hexafluoroisopronol (HFIP). A dissolution promoter may be used as necessary to dissolve the artificial protein. Examples of the dissolution promoter include inorganic salts.
 紡糸方法としては、湿式紡糸、乾式紡糸、乾湿式紡糸又は溶融紡糸等が挙げられる。好ましい紡糸方法として湿式紡糸又は乾湿式紡糸を挙げることができる。 Spinning methods include wet spinning, dry spinning, dry-wet spinning, melt spinning, etc. Preferred spinning methods include wet spinning and dry-wet spinning.
 図1は、第1の繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図1に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、未延伸糸製造装置2と、湿熱延伸装置3と、乾燥装置4とを有している。 FIG. 1 is an explanatory diagram that shows a schematic diagram of an example of a spinning apparatus for producing a first fiber. The spinning apparatus 10 shown in FIG. 1 is an example of a spinning apparatus for dry/wet spinning, and includes an extrusion device 1, an undrawn yarn production device 2, a wet heat drawing device 3, and a drying device 4.
 紡糸装置10を使用した紡糸方法を説明する。まず、貯槽7に貯蔵されたドープ液6が、ギアポンプ8により口金9から押し出される。ラボスケールにおいては、ドープ液をシリンダーに充填し、シリンジポンプを用いてノズルから押し出してもよい。次いで、押し出されたドープ液6は、エアギャップ19を経て、凝固液槽20の凝固液11内に供給され、溶媒が除去されて、人工タンパク質が凝固し、繊維状凝固体が形成される。次いで、繊維状凝固体が、延伸浴槽21内の温水12中に供給されて、延伸される。延伸倍率は供給ニップローラ13と引き取りニップローラ14との速度比によって決まる。その後、延伸された繊維状凝固体が、乾燥装置4に供給され、糸道22内で乾燥されて、人工タンパク質繊維36が、巻糸体5として得られる。18a~18gは糸ガイドである。 A spinning method using a spinning device 10 will be described. First, the dope liquid 6 stored in the storage tank 7 is extruded from the nozzle 9 by the gear pump 8. In a laboratory scale, the dope liquid may be filled in a cylinder and extruded from a nozzle using a syringe pump. Next, the extruded dope liquid 6 is supplied to the coagulation liquid 11 in the coagulation liquid tank 20 through the air gap 19, the solvent is removed, the artificial protein is coagulated, and a fibrous coagulate is formed. Next, the fibrous coagulate is supplied to the warm water 12 in the drawing bath 21 and drawn. The drawing ratio is determined by the speed ratio between the supply nip roller 13 and the take-up nip roller 14. Thereafter, the drawn fibrous coagulate is supplied to the drying device 4 and dried in the yarn path 22, and the artificial protein fiber 36 is obtained as a wound yarn body 5. 18a to 18g are yarn guides.
 凝固液11としては、脱溶媒できる溶媒であればよく、例えば、メタノール、エタノール及び2-プロパノール等の炭素数1~5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0~30℃であることが好ましい。口金9として、直径0.1~0.6mmのノズルを有するシリンジポンプを使用する場合、押出し速度は1ホール当たり、0.2~6.0ml/時間が好ましく、1.4~4.0ml/時間であることがより好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える長さがあればよく、例えば、200~500mmである。未延伸糸の引き取り速度は、例えば、1~20m/分であってよく、1~3m/分であることが好ましい。凝固液11中での滞留時間は、例えば、0.01~3分であってよく、0.05~0.15分であることが好ましい。また、凝固液11中で延伸(前延伸)をしてもよい。凝固液槽20は多段設けてもよく、また延伸は必要に応じて、各段、又は特定の段で行ってもよい。 The coagulation liquid 11 may be any solvent capable of desolvation, such as lower alcohols having 1 to 5 carbon atoms, such as methanol, ethanol, and 2-propanol, and acetone. The coagulation liquid 11 may contain water as appropriate. The temperature of the coagulation liquid 11 is preferably 0 to 30°C. When a syringe pump having a nozzle with a diameter of 0.1 to 0.6 mm is used as the nozzle 9, the extrusion speed is preferably 0.2 to 6.0 ml/hour per hole, and more preferably 1.4 to 4.0 ml/hour. The distance over which the coagulated protein passes through the coagulation liquid 11 (effectively the distance from the thread guide 18a to the thread guide 18b) may be a length that allows efficient desolvation, and is, for example, 200 to 500 mm. The take-up speed of the undrawn thread may be, for example, 1 to 20 m/min, and is preferably 1 to 3 m/min. The residence time in the coagulation liquid 11 may be, for example, 0.01 to 3 minutes, and preferably 0.05 to 0.15 minutes. Also, stretching (pre-stretching) may be performed in the coagulation liquid 11. The coagulation liquid tank 20 may be provided in multiple stages, and stretching may be performed in each stage or in a specific stage as necessary.
 第1の繊維を得る際に実施される延伸は、例えば、上記した凝固液槽20内で行う前延伸、及び延伸浴槽21内で行う湿熱延伸の他、乾熱延伸も採用される。 The stretching performed to obtain the first fiber may be, for example, the pre-stretching performed in the coagulation liquid bath 20 described above, the wet heat stretching performed in the stretching bath 21, or dry heat stretching.
 湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。温度としては、例えば、50~90℃であってよく、75~85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1~10倍延伸することができ、2~8倍延伸することが好ましい。 The wet heat drawing can be carried out in hot water, in a solution of hot water with an organic solvent added, or under steam heating. The temperature may be, for example, 50 to 90°C, with 75 to 85°C being preferred. In the wet heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times, with 2 to 8 times being preferred.
 乾熱延伸は、電気管状炉、又は乾熱板等を使用して行うことができる。温度としては、例えば、140℃~270℃であってよく、160℃~230℃が好ましい。乾熱延伸では、未延伸糸(又は前延伸糸)を、例えば、0.5~8倍延伸することができ、1~4倍延伸することが好ましい。 Dry heat drawing can be carried out using an electric tubular furnace or a dry heat plate. The temperature may be, for example, 140°C to 270°C, with 160°C to 230°C being preferred. In dry heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 0.5 to 8 times, with 1 to 4 times being preferred.
 湿熱延伸及び乾熱延伸はそれぞれ単独で行ってもよく、またこれらを多段で、又は組み合わせて行ってもよい。すなわち、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸行い、二段目延伸を湿熱延伸行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。  Wet heat stretching and dry heat stretching may be performed alone, or they may be performed in multiple stages or in combination. That is, wet heat stretching may be performed in the first stage and dry heat stretching in the second stage, or wet heat stretching may be performed in the first stage, wet heat stretching in the second stage, and dry heat stretching in the third stage, etc., and wet heat stretching and dry heat stretching may be performed in an appropriate combination.
 最終的な延伸倍率は、その下限値が、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍超、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、又は9倍以上であり、上限値が、未延伸糸(又は前延伸糸)に対して、好ましくは40倍以下、30倍以下、20倍以下、15倍以下、14倍以下、13倍以下、12倍以下、11倍以下、又は10倍以下である。第1の繊維が2倍以上の延伸倍率で紡糸された繊維であると、第1の繊維の水との接触による収縮率がより高くなる傾向がある。 The lower limit of the final draw ratio is preferably more than 1, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more relative to the undrawn yarn (or pre-drawn yarn), and the upper limit is preferably 40 or less, 30 or less, 20 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, or 10 or less relative to the undrawn yarn (or pre-drawn yarn). If the first fiber is a fiber spun at a draw ratio of 2 or more, the shrinkage rate of the first fiber due to contact with water tends to be higher.
<第2の繊維>
 第2の繊維は、水との接触による収縮率が第1の繊維よりも低い繊維である。第2の繊維は、例えば、合成繊維(化学繊維及び半合成繊維を含む)、天然繊維、再生繊維及び人工タンパク質繊維からなる群より選択される少なくとも1種を含んでいてよい。第2の繊維は、例えば、ウール、カシミヤ、モヘヤ、アンゴラ、アルパカ等の獣毛繊維、シルク(再生シルクを含む)、コットン、麻等の天然セルロース繊維、リヨセルやレーヨン等の再生セルロース繊維、人工タンパク質繊維、ナイロン繊維やポリエステル繊維、アクリル繊維等の合成繊維が挙げられる。合成繊維、天然繊維、再生繊維及び人工タンパク質繊維は、水との接触による収縮率が第1の繊維よりも低い繊維が選択される。なお、第2の繊維が人工タンパク質繊維である場合には、第2の繊維として、第1の繊維に含まれる人工タンパク質と同一種類の人工タンパク質を含むものの、水との接触による収縮率が第1の繊維よりも小さい人工タンパク質繊維が選択され、第1の繊維に含まれる人工タンパク質とは異なる種類の人工タンパク質を含む人工タンパク質繊維が選択される。
<Second Fiber>
The second fiber is a fiber having a shrinkage rate lower than that of the first fiber when contacted with water. The second fiber may include at least one selected from the group consisting of synthetic fibers (including chemical fibers and semi-synthetic fibers), natural fibers, regenerated fibers, and artificial protein fibers. Examples of the second fiber include animal hair fibers such as wool, cashmere, mohair, angora, and alpaca, natural cellulose fibers such as silk (including regenerated silk), cotton, and hemp, regenerated cellulose fibers such as lyocell and rayon, artificial protein fibers, and synthetic fibers such as nylon fibers, polyester fibers, and acrylic fibers. Among the synthetic fibers, natural fibers, regenerated fibers, and artificial protein fibers, fibers having a shrinkage rate lower than that of the first fiber when contacted with water are selected. In addition, when the second fiber is an artificial protein fiber, an artificial protein fiber containing the same type of artificial protein as the artificial protein contained in the first fiber but having a shrinkage rate lower than that of the first fiber when contacted with water is selected as the second fiber, and an artificial protein fiber containing a type of artificial protein different from that of the artificial protein contained in the first fiber is selected.
(水との接触による収縮率)
 第2の繊維の水との接触による収縮率は、例えば、0%以上、5%以上、10%以上、15%以上、20%以上、25%以上、又は30%以上であってよい。第2の繊維の水との接触による収縮率は、例えば、45%以下、又は40%以下であってよい。第2の繊維は、水との接触によって全く収縮しない繊維でもよい。なお、上記した上限値と下限値を組み合わせた、第2の繊維の水との接触による収縮率の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば0~45%及び5~40%等)が何れも含まれる。
(Shrinkage upon contact with water)
The shrinkage rate of the second fiber upon contact with water may be, for example, 0% or more, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more. The shrinkage rate of the second fiber upon contact with water may be, for example, 45% or less, or 40% or less. The second fiber may be a fiber that does not shrink at all upon contact with water. The range of the shrinkage rate of the second fiber upon contact with water, which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 0 to 45% and 5 to 40%) determined by arbitrarily selecting the above upper limit value and lower limit value, respectively.
 第1の繊維の水との接触による収縮率X1と、第2の繊維の水との接触による収縮率X2との差(X1-X2)は、例えば、5%以上、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、又は40%以上であってよく、50%以下、又は45%以下であってよい。収縮率X1と収縮率X2との差(X1-X2)が大きい程、混紡糸の嵩高性が向上し、嵩高混紡糸の柔軟性、保温性、ピリング性、吸水性、及び抗ピリング性等が高まる傾向がある。なお、上記した上限値と下限値を組み合わせた、収縮率X1と収縮率X2との差(X1-X2)の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば5~50%、及び10~45%等)が何れも含まれる。 The difference (X1-X2) between the shrinkage rate X1 of the first fiber due to contact with water and the shrinkage rate X2 of the second fiber due to contact with water may be, for example, 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, or 40% or more, and may be 50% or less, or 45% or less. The larger the difference (X1-X2) between the shrinkage rate X1 and the shrinkage rate X2, the more the bulkiness of the blended yarn improves, and the softness, heat retention, pilling resistance, water absorption, and anti-pilling properties of the bulky blended yarn tend to increase. The range of the difference (X1-X2) between the shrinkage rate X1 and the shrinkage rate X2, which is a combination of the upper and lower limits described above, includes any range (e.g., 5 to 50% and 10 to 45%, etc.) determined by arbitrarily selecting the upper and lower limits described above.
(捲縮数)
 第2の繊維の捲縮数は、例えば、5個以上、7個以上、9個以上、11個以上、13個以上、15個以上、17個以上、19個以上、又は20個以上であってよい。第2の繊維の捲縮数は、例えば、25個以下、23個以下、又は21個以下であってよい。なお、上記した上限値と下限値を組み合わせた、第2の繊維の捲縮数の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば5~25個、及び7~23個等)が何れも含まれる。
(Number of crimps)
The number of crimps of the second fiber may be, for example, 5 or more, 7 or more, 9 or more, 11 or more, 13 or more, 15 or more, 17 or more, 19 or more, or 20 or more. The number of crimps of the second fiber may be, for example, 25 or less, 23 or less, or 21 or less. The range of the number of crimps of the second fiber, which is a combination of the above upper limit and lower limit, includes any range determined by arbitrarily selecting the above upper limit and lower limit, respectively (for example, 5 to 25, 7 to 23, etc.).
(第2の繊維の平均長さ)
 第2の繊維の平均長さは、例えば、48mm以上、50mm以上、60mm以上、70mm以上、80mm以上、90mm以上、100mm以上、110mm以上、120mm以上、130mm以上、140mm以上、150mm以上、又は160mm以上であってよく、200mm以下、190mm以下、180mm以下、又は170mm以下であってよい。なお、上記した上限値と下限値を組み合わせた、第2の繊維の平均長さの範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば48~200mm、及び60~190mm等)が何れも含まれる。
(Average length of second fiber)
The average length of the second fibers may be, for example, 48 mm or more, 50 mm or more, 60 mm or more, 70 mm or more, 80 mm or more, 90 mm or more, 100 mm or more, 110 mm or more, 120 mm or more, 130 mm or more, 140 mm or more, 150 mm or more, or 160 mm or more, and may be 200 mm or less, 190 mm or less, 180 mm or less, or 170 mm or less. Note that the range of the average length of the second fibers, which is a combination of the above upper and lower limits, includes any range (e.g., 48 to 200 mm, 60 to 190 mm, etc.) determined by arbitrarily selecting the above upper and lower limits, respectively.
(第2の繊維の含有量)
 第2の繊維の含有量は、嵩高混紡糸の全質量を基準として、10質量%以上、20質量%以上、30質量%以上、40質量%以上、又は50質量%以上であってよく、95質量%以下、90質量%以下、80質量%以下、70質量%以下、又は60質量%以下であってよい。なお、上記した上限値と下限値を組み合わせた、第2の繊維の含有量の範囲には、上記した上限値と下限値とをそれぞれ任意に選択して決定される範囲(例えば5~50%、及び10~45%等)が何れも含まれる。
(Content of second fiber)
The content of the second fiber may be 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, or 50% by mass or more, and may be 95% by mass or less, 90% by mass or less, 80% by mass or less, 70% by mass or less, or 60% by mass or less, based on the total mass of the bulky blended yarn. The range of the content of the second fiber, which is a combination of the above upper limit value and lower limit value, includes any range (e.g., 5 to 50%, 10 to 45%, etc.) determined by arbitrarily selecting each of the above upper limit value and lower limit value.
(第2の繊維の入手方法)
 第2の繊維は市販品をそのまま用いることができるし、公知の一般的な方法を用いて製造してもよく、或いは第1の繊維と同様の方法を用いて紡糸することによって製造してもよい。
(Method of obtaining the second fiber)
The second fiber may be a commercially available product as is, may be produced by a known general method, or may be produced by spinning using the same method as the first fiber.
<用途>
 嵩高混紡糸は、例えば、衣料用の生地、及び寝具等に用いることができる。
<Applications>
The bulky blended yarn can be used, for example, in fabrics for clothing, bedding, and the like.
[嵩高混紡糸を製造する方法]
 本実施形態に係る嵩高混紡糸を製造する方法は、人工タンパク質を含有し、水との接触により収縮可能な第1の繊維を含む第1のスライバーと、水との接触による収縮率が第1の繊維よりも低い第2の繊維を含む第2のスライバーとを混紡して原料混紡糸を得る工程(混紡工程)と、原料混紡糸を水と接触させて、少なくとも第1の繊維を収縮させて嵩高混紡糸を得る工程(収縮工程)と、を含む。当該方法は、上述した嵩高混紡糸を好適に製造することができる。人工タンパク質、第1の繊維及び第2の繊維の詳細は、上述したとおりであってよい。当該製造方法によれば、上述した嵩高性を有する嵩高混紡糸を製造することが可能である。なお、原料混紡糸を得る際に用いられる紡績方法としては、例えば、梳毛紡績(2インチ紡績を含む)、紡毛紡績、綿紡績、及び絹紡績等の公知の紡績方法が採用可能である。より高い嵩高性を有する嵩高混紡糸を得る観点から、これらの紡績方法の中でも、例えば、梳毛紡績が有利に採用され得る。梳毛紡績で得られる原料紡績糸を用いることで、より高い嵩高性を有する嵩高混紡糸が得られる理由は、以下が考えられる。梳毛紡績によって得られる混紡糸は、他の紡績法によって得られた混紡糸よりも撚り数が少ないため、混紡糸全体が柔らかくなる。それによって、第1の水収縮による得られる嵩高効果が増すと考えられる。また、梳毛紡績では、使用するステープルの繊維長が、紡毛紡績や綿紡績で使用するステープルの繊維長よりも大きい(梳毛紡績では、例えば、50~170mmの長さの繊維が使用される)ため、スライバーを引き揃える際のドラフトに要する力が大きくなる。それ故、梳毛紡績では、第1の繊維においてより大きな残留応力が生じて、水との接触による収縮率が大きくなる。その結果、嵩高混紡糸において、より高い嵩高性が得られるものと考えられる。加えて、梳毛紡績では、スライバーを引き揃える際に、スライバーを櫛状体で梳く工程が行われるが、このとき、繊維に対して大きな抵抗が加わる。これによっても、第1の繊維においてより大きな残留応力が生ずるようになり、以て、最終的に得られる嵩高混紡糸において、更に高い嵩高性が得られると推定される。
[Method for producing bulky blended yarn]
The method for producing the bulky blended yarn according to the present embodiment includes a step of blending a first sliver containing an artificial protein and a first fiber that can shrink when contacted with water with a second sliver containing a second fiber whose shrinkage rate when contacted with water is lower than that of the first fiber to obtain a raw blended yarn (blending step), and a step of contacting the raw blended yarn with water to shrink at least the first fiber to obtain a bulky blended yarn (shrinking step). This method can suitably produce the above-mentioned bulky blended yarn. Details of the artificial protein, the first fiber, and the second fiber may be as described above. According to this production method, it is possible to produce a bulky blended yarn having the above-mentioned bulkiness. In addition, as the spinning method used to obtain the raw blended yarn, for example, known spinning methods such as worsted spinning (including 2-inch spinning), woolen spinning, cotton spinning, and silk spinning can be adopted. From the viewpoint of obtaining a bulky blended yarn having a higher bulkiness, among these spinning methods, for example, worsted spinning can be advantageously adopted. The reason why a bulky blended yarn having a higher bulkiness can be obtained by using a raw spun yarn obtained by worsted spinning is considered to be as follows. The blended yarn obtained by worsted spinning has a smaller number of twists than blended yarns obtained by other spinning methods, so that the whole blended yarn becomes soft. It is considered that this increases the bulkiness effect obtained by the first water shrinkage. In addition, in worsted spinning, the fiber length of the staple used is longer than that of the staple used in woolen spinning and cotton spinning (for example, fibers with a length of 50 to 170 mm are used in worsted spinning), so the force required for drafting when aligning the slivers is larger. Therefore, in worsted spinning, a larger residual stress is generated in the first fiber, and the shrinkage rate due to contact with water is larger. As a result, it is believed that the bulky blended yarn has a higher bulkiness. In addition, in worsted spinning, when the sliver is drawn together, a comb-like body is used to comb the sliver, and this combing process exerts a large resistance on the fibers. This also generates a larger residual stress in the first fibers, and it is believed that the final bulky blended yarn has a higher bulkiness.
 第1のスライバーは、予め準備された(既に作製された)ものを使用してもよく、或いは第1の繊維を含むトウを用いて作製する工程(第1のスライバー取得工程)により得たものを用いてもよい。また、第2のスライバーも、予め準備された(既に作製された)ものを使用してもよく、或いは第2の繊維を用いて公知の方法で作製する工程(第2のスライバー取得工程)により得たものを用いてもよい。 The first sliver may be one that has been prepared in advance (already made), or one that has been obtained by a process of making the first sliver using a tow that contains the first fiber (first sliver obtaining process). The second sliver may also be one that has been prepared in advance (already made), or one that has been obtained by a process of making the second sliver using a known method using the second fiber (second sliver obtaining process).
 第1のスライバー取得工程では、例えば、第1の繊維のトウを前後2組のローラ間に供給し、後のローラの表面速度を前のローラの表面速度よりも大きくしてトウをドラフトカットする(延伸切断する)、すなわちトウをけん切することによって第1のスライバーを得る通常の方法を用いて行うことができる。 The first sliver obtaining process can be carried out, for example, by supplying a tow of the first fiber between two sets of rollers, one before and one after, and draft-cutting (stretch-cutting) the tow by making the surface speed of the latter roller faster than that of the former roller, i.e., by stretch-cutting the tow, a conventional method of obtaining the first sliver can be used.
 第1のスライバー取得工程において、第1の繊維を含むトウをドラフトカットする方法を採用することによって、第1の繊維が未収縮及び未捲縮の状態で第1のスライバーを得ることができる。これによって、嵩高性が上述した範囲内にある嵩高混紡糸がより得られ易くなる。また、トウをドラフトカットする場合、第1の繊維が引張られることで、残留応力が更に高められる。そのために、第1の繊維の水収縮率(水と接触した際の収縮率)が、より高められると考えられる。それによって、より十分な嵩高性を備えた嵩高混紡糸が得られることが期待される。 By adopting a method of draft cutting a tow containing the first fiber in the first sliver obtaining process, the first sliver can be obtained with the first fiber in an unshrunk and uncrimped state. This makes it easier to obtain a bulky blended yarn whose bulkiness is within the above-mentioned range. In addition, when the tow is draft cut, the first fiber is pulled, which further increases the residual stress. This is thought to further increase the water shrinkage rate (shrinkage rate when in contact with water) of the first fiber. It is expected that this will result in a bulky blended yarn with sufficient bulkiness.
 混紡工程では、第1のスライバーと、第2のスライバーとを混紡して原料混紡糸を得る。第2のスライバーは、第2の繊維を含む。第2のスライバーは市販品をそのまま用いることができるし、水との接触による収縮率が第1の繊維よりも低い第2の繊維を用いて作製してもよい。第2の繊維を用いて第2のスライバーを得る方法としては、公知の方法が何れも採用可能である。 In the blending process, the first sliver and the second sliver are blended to obtain a raw blended yarn. The second sliver contains a second fiber. A commercially available product can be used as is for the second sliver, or the second sliver may be produced using a second fiber that has a lower shrinkage rate upon contact with water than the first fiber. Any known method can be used to obtain the second sliver using the second fiber.
 第1のスライバーと、第2のスライバーとを混紡する方法は、スライバーを混紡する通常の方法を用いて行うことができる。混紡は、例えば、繊維の平行度を上げること、及び均一に混ぜること等を目的として、第1のスライバー及び第2のスライバーから粗糸を形成する工程と、粗糸にドラフトをかけながら撚りをかける工程とを含む方法によって行うことができる。このような撚り工程でのドラフトによっても、第1の繊維の残留応力が更に高められて水収縮率が更に向上する。その結果として、より十分な嵩高性を備えた嵩高混紡糸が得られることも期待される。 The first sliver and the second sliver can be blended using a normal method for blending slivers. Blending can be performed, for example, by a method including a step of forming a roving from the first sliver and the second sliver, and a step of twisting the roving while applying a draft, with the aim of increasing the parallelism of the fibers and mixing them uniformly. Drafting in such a twisting process also further increases the residual stress of the first fiber, further improving the water shrinkage rate. As a result, it is expected that a bulky blended yarn with more sufficient bulkiness can be obtained.
 上述した混紡工程を採用することで、嵩高性に加えて、伸度、保温性、吸水性及び抗ピリング性も向上する傾向がある。 By adopting the above-mentioned blending process, in addition to bulkiness, there is a tendency for elongation, heat retention, water absorption and anti-pilling properties to be improved.
 収縮工程では、原料混紡糸を水性媒体と接触させて、少なくとも第1の繊維を収縮させて嵩高混紡糸を得る。 In the shrinkage process, the raw blended yarn is brought into contact with an aqueous medium to shrink at least the first fiber to obtain a bulky blended yarn.
 水性媒体とは、水(水蒸気を含む。)を含む液体又は気体(スチーム)の媒体である。水性媒体は水であってもよいし、水と親水性媒体との混合液であってもよい。親水性媒体としては、例えば、エタノール及びメタノール等の揮発性溶媒又はその蒸気を用いることも可能である。水性媒体は、水とエタノール、メタノールなどの揮発性溶媒との混合液体であってよく、水又は水とエタノールとの混合液体であることが好ましい。水と揮発性溶媒又はその蒸気との比率は、特に限定されず、例えば、水:揮発性溶媒又はその蒸気は、質量比で10:90~90:10であってもよい。水の割合が30質量%以上であることが好ましく、40質量%又は50質量%以上であってもよい。 An aqueous medium is a liquid or gas (steam) medium that contains water (including water vapor). The aqueous medium may be water or a mixture of water and a hydrophilic medium. For example, a volatile solvent such as ethanol or methanol or its vapor can be used as the hydrophilic medium. The aqueous medium may be a mixture of water and a volatile solvent such as ethanol or methanol, and is preferably water or a mixture of water and ethanol. The ratio of water to the volatile solvent or its vapor is not particularly limited, and may be, for example, 10:90 to 90:10 by mass. The proportion of water is preferably 30% by mass or more, and may be 40% by mass or 50% by mass or more.
 水性媒体は、水(水蒸気を含む)を含む10~230℃の液体又は気体であることが好ましい。水性媒体の温度は、10℃以上、25℃以上、40℃以上、60℃以上、又は100℃以上であってよく、230℃以下、120℃以下、100℃以下、又は90℃以下であってよい。より具体的には、水性媒体が気体(スチーム)である場合、水性媒体の温度は100~230℃が好ましく、100~120℃がより好ましい。 The aqueous medium is preferably a liquid or gas containing water (including water vapor) at 10 to 230°C. The temperature of the aqueous medium may be 10°C or higher, 25°C or higher, 40°C or higher, 60°C or higher, or 100°C or higher, and may be 230°C or lower, 120°C or lower, 100°C or lower, or 90°C or lower. More specifically, when the aqueous medium is a gas (steam), the temperature of the aqueous medium is preferably 100 to 230°C, more preferably 100 to 120°C.
 水性媒体と接触させる方法としては、原料混紡糸に対して水性媒体を噴霧する方法、原料混紡糸を水性媒体に浸漬する方法、及び水性媒体のスチームが充満した環境に原料混紡糸を暴露する方法等が挙げられる。 Methods for contacting the raw blended yarn with the aqueous medium include spraying the aqueous medium onto the raw blended yarn, immersing the raw blended yarn in the aqueous medium, and exposing the raw blended yarn to an environment filled with the steam of the aqueous medium.
 水性媒体と接触する時間は、原料混紡糸の種類、水性媒体の温度、及び水性媒体と接触させる方法等に応じて適宜調整される。水性媒体と接触する時間は、例えば、1分以上、5分以上、10分以上、又は15分以上であってよく、30分以下、20分以下、又は15分以下であってよい。水性媒体との接触は、常圧下で行ってもよく、減圧下(例えば、真空)で行ってもよい。 The time of contact with the aqueous medium is adjusted appropriately depending on the type of raw material blended yarn, the temperature of the aqueous medium, the method of contact with the aqueous medium, etc. The time of contact with the aqueous medium may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 15 minutes or more, and may be 30 minutes or less, 20 minutes or less, or 15 minutes or less. The contact with the aqueous medium may be performed under normal pressure or under reduced pressure (e.g., vacuum).
 水性媒体と接触させた原料混紡糸は、必要に応じて洗浄してよい。洗浄は、例えば、上述した水性媒体を用いて行うことができる。洗浄する際の水性媒体の温度は、例えば、10℃以上、20℃以上、又は30℃以上であってよく、50℃以下、45℃以下、又は40℃以下であってよい。 The raw material blended yarn that has been brought into contact with the aqueous medium may be washed as necessary. Washing can be carried out, for example, using the aqueous medium described above. The temperature of the aqueous medium during washing may be, for example, 10°C or higher, 20°C or higher, or 30°C or higher, and may be 50°C or lower, 45°C or lower, or 40°C or lower.
 水性媒体と接触させた原料混紡糸は乾燥させてよい。乾燥方法は、特に限定されず、乾燥は、自然乾燥でもよく、熱風又はホットローラーで乾燥してもよい。乾燥温度としては、特に限定されず、例えば、20~150℃であってよく、40~120℃であることが好ましく、60~100℃であることがより好ましい。乾燥時間は、例えば、5分以上、又は10分以上であってよく、30分以下、又は20分以下であってよい。 The raw blended yarn that has been brought into contact with the aqueous medium may be dried. There are no particular limitations on the drying method, and the drying may be natural drying or drying with hot air or hot rollers. There are no particular limitations on the drying temperature, and it may be, for example, 20 to 150°C, preferably 40 to 120°C, and more preferably 60 to 100°C. The drying time may be, for example, 5 minutes or more, or 10 minutes or more, and may be 30 minutes or less, or 20 minutes or less.
 本実施形態に係る嵩高混紡糸を含む生地は、嵩高混紡糸のみからなるものであってもよく、或いはその他の糸(例えば、紡績糸や撚糸等)を含んでいてもよい。また、生地は、編地と織地の何れであってもよく、或いはそれらが組み合わされたものであってもよい。なお、生地を構成する編地や織地の製造方法(編み方や織り方)は公知の方法が何れも採用可能である。 The fabric containing the bulky blended yarn of this embodiment may consist only of the bulky blended yarn, or may contain other yarns (e.g., spun yarn, twisted yarn, etc.). The fabric may be either a knitted fabric or a woven fabric, or a combination of both. Any known method can be used for manufacturing the knitted fabric or woven fabric that constitutes the fabric (knitting method or weaving method).
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below based on examples. However, the present invention is not limited to the following examples.
<人工タンパク質の製造>
(1)プラスミド発現株の作製
 配列番号2(PRT966)で示されるアミノ酸配列を有する人工タンパク質(人工フィブロイン)を設計した。
<Manufacturing artificial proteins>
(1) Preparation of Plasmid Expression Strain An artificial protein (artificial fibroin) having the amino acid sequence shown in SEQ ID NO: 2 (PRT966) was designed.
 次に、設計した人工タンパク質をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイトを、終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。 Next, a nucleic acid encoding the designed artificial protein was synthesized. An NdeI site was added to the 5' end of the nucleic acid, and an EcoRI site was added downstream of the stop codon. The nucleic acid was cloned into a cloning vector (pUC118). The nucleic acid was then excised by restriction enzyme treatment with NdeI and EcoRI, and then recombined into the protein expression vector pET-22b(+) to obtain an expression vector.
(2)タンパク質の発現
 設計した人工タンパク質をコードする核酸を含むpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表3)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
(2) Protein Expression E. coli BLR (DE3) was transformed with a pET22b(+) expression vector containing a nucleic acid encoding the designed artificial protein. The transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours. The culture solution was added to 100 mL of seed culture medium (Table 3) containing ampicillin so that the OD 600 was 0.005. The culture solution temperature was kept at 30° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours), to obtain a seed culture solution.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 当該シード培養液を500mLの生産培地(表4)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。 The seed culture was added to a jar fermenter containing 500 mL of production medium (Table 4) so that the OD 600 was 0.05. The culture temperature was kept at 37° C., and the pH was controlled to be constant at 6.9. The dissolved oxygen concentration in the culture was maintained at 20% of the dissolved oxygen saturation concentration.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、人工タンパク質を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする人工タンパク質サイズのバンドの出現により、目的とする人工タンパク質の発現を確認した。 Immediately after the glucose in the production medium was completely consumed, the feed solution (glucose 455 g/1 L, yeast extract 120 g/1 L) was added at a rate of 1 mL/min. The culture temperature was kept at 37°C, and the culture was controlled to a constant pH of 6.9. The dissolved oxygen concentration in the culture was maintained at 20% of the dissolved oxygen saturation concentration, and the culture was continued for 20 hours. After that, 1 M isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce the expression of the artificial protein. 20 hours after the addition of IPTG, the culture solution was centrifuged and the bacterial cells were collected. SDS-PAGE was performed using the bacterial cells prepared from the culture solution before and after the addition of IPTG, and the expression of the target artificial protein was confirmed by the appearance of a band of the target artificial protein size depending on the addition of IPTG.
(3)タンパク質の精製
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのフェニルメチルスルホニルフルオリド(PMSF)を含む20mMTris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mMTris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mMNaCl、1mMTris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、PRT966を人工タンパク質として含む凍結乾燥粉末を回収した。
(3) Protein purification The cells harvested 2 hours after the addition of IPTG were washed with 20 mM Tris-HCl buffer (pH 7.4). The washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM phenylmethylsulfonyl fluoride (PMSF), and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi). The disrupted cells were centrifuged to obtain a precipitate. The resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until it reached a high purity. The washed precipitate was suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg/mL, and stirred with a stirrer at 60 ° C. for 30 minutes to dissolve. After dissolution, the solution was dialyzed against water using a dialysis tube (Cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.) The white aggregated protein obtained after dialysis was collected by centrifugation, and the water was removed using a freeze-dryer to collect a freeze-dried powder containing PRT966 as an artificial protein.
<第1の繊維(人工タンパク質繊維)の製造>
(1)ドープ液の調製
 ジメチルスルホキシド(DMSO)に、人工タンパク質の凍結乾燥粉末を濃度24質量%となるよう添加した後、溶解促進剤としてLiClを濃度4.0質量%となるように添加した。その後、シェーカーを使用して、人工タンパク質の凍結乾燥粉末を3時間かけて溶解させ、人工タンパク質のDMSO溶液を得た。得られたDMSO溶液中の不溶物と泡を取り除き、ドープ液とした。ドープ液の溶液粘度は90℃において5000cP(センチポアズ)であった。
<Production of first fiber (artificial protein fiber)>
(1) Preparation of dope solution The freeze-dried powder of the artificial protein was added to dimethyl sulfoxide (DMSO) to a concentration of 24% by mass, and then LiCl was added as a dissolution promoter to a concentration of 4.0% by mass. The freeze-dried powder of the artificial protein was then dissolved using a shaker for 3 hours to obtain a DMSO solution of the artificial protein. Insoluble matter and bubbles in the obtained DMSO solution were removed to obtain a dope solution. The solution viscosity of the dope solution was 5000 cP (centipoise) at 90°C.
(2)紡糸
 上記のようにして得られたドープ液と図1に示される紡糸装置10を用いて公知の乾湿式紡糸を行い、人工タンパク質繊維を得た。得られた人工タンパク質繊維はボビンに巻きとった。乾湿式紡糸を下記の条件で行った。
凝固液(メタノール)の温度:5~10℃
延伸倍率:4.52倍
乾燥温度:80℃
(2) Spinning The dope solution obtained as described above was used with the spinning apparatus 10 shown in Fig. 1 to perform known dry-wet spinning to obtain an artificial protein fiber. The obtained artificial protein fiber was wound around a bobbin. Dry-wet spinning was performed under the following conditions.
Temperature of coagulation liquid (methanol): 5 to 10°C
Stretching ratio: 4.52 times Drying temperature: 80°C
<混紡糸の製造>
 人工タンパク質繊維をトウカットして、人工タンパク質繊維を含む第1のスライバーを作製した。このときカットされる人工タンパク質繊維のカット長は150mm~250mm程度とした。混紡糸の製造には梳毛紡績法を利用した。
<Production of blended yarn>
The artificial protein fiber was tow-cut to produce a first sliver containing the artificial protein fiber. The cut length of the artificial protein fiber was about 150 mm to 250 mm. The worsted spinning method was used to produce the blended yarn.
<実施例1>
 第1のスライバー及び第2のスライバーを用いて前紡工程を実施した。当該工程は、第1のスライバー及び第2のスライバーを後紡するための粗糸にする工程である。繊維の平行度を上げる、均一に混ぜる等が当該工程の目的である。第2のスライバーとして、ウールスライバーを使用した。ウールスライバーは市販品を使用し、繊維長は約75mm程度であった。前紡工程では、例えば10本のスライバーのうちウールが6~8本、人工タンパク質繊維が2本~4本をドラフト倍率2倍~6倍で引き揃えていく。これは例えば5回繰り返す。
Example 1
A pre-spinning process was carried out using the first sliver and the second sliver. This process is a process for turning the first sliver and the second sliver into rovings for post-spinning. The purpose of this process is to increase the parallelism of the fibers and mix them uniformly. A wool sliver was used as the second sliver. A commercially available wool sliver was used, and the fiber length was about 75 mm. In the pre-spinning process, for example, of the 10 slivers, 6 to 8 wool fibers and 2 to 4 artificial protein fibers are drawn together at a draft ratio of 2 to 6 times. This is repeated, for example, 5 times.
 粗糸を用いて後紡工程を実施した。当該工程は、具体的には、粗糸にドラフトをかけながら撚りをかけていく工程である。当該工程において、撚り数は約300回/m、ドラフト倍率は25~30倍とした。撚り方向はZ方向に撚りをかけていく。双糸にする場合が約230回/mで、撚り方向はS方向に撚りをかけていく。 The post-spinning process was carried out using the roving yarn. Specifically, this process involves twisting the roving yarn while applying a draft. In this process, the number of twists was approximately 300 times/m, and the draft ratio was 25 to 30 times. The twist was applied in the Z direction. In the case of making a two-ply yarn, the number of twists was approximately 230 times/m, and the twist was applied in the S direction.
 上記の方法によって得た原料混紡糸の綛を作成した(2m40cm)。綛染色機に綛をセットした。綛染色機内で100℃の水を綛に15~20分間噴射した。得られた綛を30~40℃の水で洗浄し、脱水した後、90℃前後の温風で15分間乾燥させた。これにより、人工タンパク質繊維とウールとを用いてなる嵩高混紡糸を得た。 A skein of raw blended yarn obtained by the above method was created (2m40cm). The skein was set in a skein dyeing machine. Inside the skein dyeing machine, 100°C water was sprayed onto the skein for 15-20 minutes. The resulting skein was washed with 30-40°C water, dehydrated, and then dried with hot air at around 90°C for 15 minutes. This resulted in a bulky blended yarn made from artificial protein fiber and wool.
<第1の繊維の含有量>
 第1の繊維の含有量は、混紡糸の全質量を基準として、30質量%であった。
<Content of First Fiber>
The content of the first fiber was 30% by mass, based on the total mass of the blended yarn.
<繊維の平均長さ>
 第1の繊維の平均長さは、72.4mmであった。第2の繊維の平均長さは、74.2mmであった。繊維の平均長さはJIS L 1015Cに従って測定される平均長さである。
<Average fiber length>
The average length of the first fibers was 72.4 mm. The average length of the second fibers was 74.2 mm. The average length of the fibers is the average length measured according to JIS L 1015C.
<水との接触による収縮率>
 第1の繊維の水との接触による収縮率は、45%であった。第2の繊維の水との接触による収縮率は、10%であった。第1の繊維と第2の繊維の「水との接触による収縮率」は、それぞれ次の方法に従って同様に測定した。先ず、同一長さを有する複数本の繊維を束ねて繊維束を得た。得られた繊維束に0.8gの鉛錘を取り付けて95℃の水に10分間浸漬した。その後、繊維束を水中から取り出した後、取り出した繊維束を、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させ、乾燥後に繊維束の長さを測定した。次いで、繊維の「水との接触による収縮率(%)」を、下記式Iに従って算出した。式I中、L0は水と接触する前の繊維束の長さを示し、Ldは水との接触により収縮した後、乾燥状態にした繊維束の長さを示す。
 式I:収縮率={1-(Ld/L0)}×100(%)
<Shrinkage rate due to contact with water>
The shrinkage rate of the first fiber due to contact with water was 45%. The shrinkage rate of the second fiber due to contact with water was 10%. The "shrinkage rate due to contact with water" of the first fiber and the second fiber was measured in the same manner according to the following method. First, a plurality of fibers having the same length were bundled to obtain a fiber bundle. The obtained fiber bundle was attached with a 0.8 g lead weight and immersed in 95 ° C water for 10 minutes. After that, the fiber bundle was taken out of the water, and the fiber bundle was dried at room temperature for 2 hours with the 0.8 g lead weight still attached, and the length of the fiber bundle after drying was measured. Next, the "shrinkage rate due to contact with water (%)" of the fiber was calculated according to the following formula I. In formula I, L0 indicates the length of the fiber bundle before contact with water, and Ld indicates the length of the fiber bundle after shrinkage due to contact with water and then dried.
Formula I: Shrinkage rate = {1 - (Ld/L0)} x 100 (%)
<捲縮数>
 第1の繊維の捲縮数は、8.0個であった。第2の繊維の捲縮数は、11.8個であった。捲縮数はJIS L 1015法に従って測定した。
<Number of crimps>
The crimp number of the first fiber was 8.0. The crimp number of the second fiber was 11.8. The crimp numbers were measured according to JIS L 1015.
<嵩高性>
 上述した方法によって得た混紡糸の嵩高性は36.1cm/gであった。嵩高性はJIS L 1095A法に従って測定した。
<Bulkiness>
The bulkiness of the blended yarn obtained by the above method was 36.1 cm 3 /g. The bulkiness was measured according to JIS L 1095A method.
<実施例2>
 第2のスライバーとして、シルクスライバーを使用した以外は実施例1と同様の方法で人工タンパク質繊維とシルクとを用いてなる嵩高混紡糸を得た。原料混紡糸の製造には梳毛紡績法を利用した。
Example 2
A bulky blended yarn made of artificial protein fiber and silk was obtained in the same manner as in Example 1, except that a silk sliver was used as the second sliver. The raw blended yarn was produced by worsted spinning.
<第1の繊維の含有量>
 第1の繊維の含有量は、混紡糸の全質量を基準として、30質量%であった。
<Content of First Fiber>
The content of the first fiber was 30% by mass, based on the total mass of the blended yarn.
<繊維の平均長さ>
 第1の繊維の平均長さは、68.0mmであった。第2の繊維の平均長さは、86.2mmであった。
<Average fiber length>
The average length of the first fibers was 68.0 mm. The average length of the second fibers was 86.2 mm.
<水との接触による収縮率>
 第1の繊維の水との接触による収縮率は、45%であった。第2の繊維の水との接触による収縮率は、10%であった。
<Shrinkage rate due to contact with water>
The first fiber had a shrinkage of 45% when exposed to water, and the second fiber had a shrinkage of 10% when exposed to water.
<水との接触による捲縮数>
 第1の繊維の捲縮数は、8.0個であった。第2の繊維の捲縮数は、19.1個であった。なお、第1及び第2の繊維の平均長さと、水との接触による収縮率と、捲縮数は実施例1と同様の方法で測定した。
<Number of crimps due to contact with water>
The number of crimps of the first fiber was 8.0. The number of crimps of the second fiber was 19.1. The average length of the first and second fibers, the shrinkage rate due to contact with water, and the number of crimps were measured in the same manner as in Example 1.
<嵩高性>
 上述した方法によって得た混紡糸の嵩高性は22.0cm/gであった。なお、嵩高性は、実施例1と同様の方法で測定した。
<Bulkiness>
The bulkiness of the blended yarn obtained by the above-mentioned method was 22.0 cm 3 /g. The bulkiness was measured in the same manner as in Example 1.
 1…押出し装置、2…未延伸糸製造装置、3…湿熱延伸装置、4…乾燥装置、6…ドープ液、10…紡糸装置、20…凝固液槽、21…延伸浴槽、36…人工タンパク質繊維。 1...Extrusion device, 2...Undrawn yarn manufacturing device, 3...Wet heat drawing device, 4...Drying device, 6...Dope solution, 10...Spinning device, 20...Coagulation liquid tank, 21...Drawing bath, 36...Artificial protein fiber.

Claims (9)

  1.  人工タンパク質を含み、水との接触により収縮可能な第1の繊維と、
     水との接触による収縮率が前記第1の繊維よりも低い第2の繊維とを含み、
     嵩高性が10cm/g以上である、嵩高混紡糸。
    a first fiber comprising an artificial protein and capable of shrinking upon contact with water;
    and a second fiber having a lower shrinkage rate upon contact with water than the first fiber.
    A bulky blended yarn having a bulkiness of 10 cm 3 /g or more.
  2.  前記嵩高性が50cm/g以下である、請求項1に記載の嵩高混紡糸。 2. The bulky blended yarn of claim 1, wherein the bulkiness is 50 cm 3 /g or less.
  3.  前記第1の繊維の水との接触による収縮率が15%以上である、請求項1又は2に記載の嵩高混紡糸。 The bulky blended yarn according to claim 1 or 2, wherein the shrinkage rate of the first fiber upon contact with water is 15% or more.
  4.  前記第1の繊維の捲縮数が5個以上である、請求項1又は2に記載の嵩高混紡糸。 The bulky blended yarn according to claim 1 or 2, wherein the number of crimps of the first fiber is 5 or more.
  5.  前記第1の繊維の含有量が、嵩高混紡糸の全質量を基準として、5質量%以上である、請求項1又は2に記載の嵩高混紡糸。 The bulky blended yarn according to claim 1 or 2, wherein the content of the first fiber is 5% by mass or more based on the total mass of the bulky blended yarn.
  6.  前記第1の繊維の平均長さが48mm以上170mm以下である、請求項1又は2に記載の嵩高混紡糸。 The bulky blended yarn according to claim 1 or 2, wherein the average length of the first fibers is 48 mm or more and 170 mm or less.
  7.  前記第2の繊維が、獣毛繊維とシルクのうちの少なくとも何れか一方である、請求項1又は2に記載の嵩高混紡糸。 The bulky blended yarn according to claim 1 or 2, wherein the second fiber is at least one of animal hair fiber and silk.
  8.  人工タンパク質を含有し、水との接触により収縮可能な第1の繊維を含む第1のスライバーと、水との接触による収縮率が前記第1の繊維よりも低い第2の繊維を含む第2のスライバーとを混紡して原料混紡糸を得る工程と、
     前記原料混紡糸を水性媒体と接触させて、少なくとも前記第1の繊維を収縮させて嵩高混紡糸を得る工程と、を含む、嵩高混紡糸を製造する方法。
    A step of blending a first sliver containing a first fiber that contains an artificial protein and can shrink when contacted with water with a second sliver containing a second fiber that has a shrinkage rate when contacted with water lower than that of the first fiber to obtain a raw blended yarn;
    and a step of contacting the raw blended yarn with an aqueous medium to shrink at least the first fiber to obtain a bulky blended yarn.
  9.  請求項1又は2に記載の嵩高混紡糸を含む生地。

     
    A fabric comprising the bulky blended yarn according to claim 1 or 2.

PCT/JP2023/038721 2022-10-26 2023-10-26 Lofty blended yarn and method for producing same WO2024090523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-171704 2022-10-26
JP2022171704 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090523A1 true WO2024090523A1 (en) 2024-05-02

Family

ID=90830935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038721 WO2024090523A1 (en) 2022-10-26 2023-10-26 Lofty blended yarn and method for producing same

Country Status (1)

Country Link
WO (1) WO2024090523A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219527A (en) * 1988-07-04 1990-01-23 Kanebo Ltd Blended yarn of acrylic fiber and natural fiber produced by air false-twisting method
JPH0253924A (en) * 1988-08-15 1990-02-22 Tokyo Teoriki:Kk Hybrid wool and production thereof
JP2007321265A (en) * 2006-05-31 2007-12-13 Toray Ind Inc Fiber mix-using soybean protein fiber and polyamide fiber, and method for producing the same
JP2018521239A (en) * 2015-06-11 2018-08-02 ボルト スレッズ インコーポレイテッド Recombinant protein fiber yarn with improved properties
WO2019194258A1 (en) * 2018-04-03 2019-10-10 長谷虎紡績株式会社 Blended yarn, knitted/woven body of same, and method for manufacturing said knitted/woven body
JP2022024192A (en) * 2018-09-28 2022-02-09 Spiber株式会社 Bicomponent yarn, production method thereof, and fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219527A (en) * 1988-07-04 1990-01-23 Kanebo Ltd Blended yarn of acrylic fiber and natural fiber produced by air false-twisting method
JPH0253924A (en) * 1988-08-15 1990-02-22 Tokyo Teoriki:Kk Hybrid wool and production thereof
JP2007321265A (en) * 2006-05-31 2007-12-13 Toray Ind Inc Fiber mix-using soybean protein fiber and polyamide fiber, and method for producing the same
JP2018521239A (en) * 2015-06-11 2018-08-02 ボルト スレッズ インコーポレイテッド Recombinant protein fiber yarn with improved properties
WO2019194258A1 (en) * 2018-04-03 2019-10-10 長谷虎紡績株式会社 Blended yarn, knitted/woven body of same, and method for manufacturing said knitted/woven body
JP2022024192A (en) * 2018-09-28 2022-02-09 Spiber株式会社 Bicomponent yarn, production method thereof, and fabric

Similar Documents

Publication Publication Date Title
JP7330468B2 (en) Blended yarn, knitted fabric thereof and method for producing knitted fabric
WO2019194224A1 (en) Method for recovering dimensions of plastic deformation body of modified fibroin molded body
JP7340262B2 (en) High-shrinkage artificial fibroin spun yarn and its manufacturing method, and artificial fibroin spun yarn and its shrinkage method
WO2020162626A1 (en) Recombinant-structure protein multifilament and method for manufacturing same
WO2024090523A1 (en) Lofty blended yarn and method for producing same
JP7223984B2 (en) Method for producing protein spun yarn
JP7466872B2 (en) Method for producing protein spun yarn
JP2022024192A (en) Bicomponent yarn, production method thereof, and fabric
JP7483263B2 (en) Composite fiber and its manufacturing method
US20220074077A1 (en) Modified Fibroin Fibers
WO2020067514A1 (en) Modified spider silk fibroin fiber and method for producing same
JP2021054819A (en) Artificial structure protein fiber and method for producing the same
WO2019194263A1 (en) Highly contracted synthetic fibroin twisted yarn and production method therefor, and synthetic fibroin twisted yarn and method for contracting same
WO2019194261A1 (en) Artificial fibroin fibers
JP2022024194A (en) Bicomponent yarn, production method thereof, and fabric
WO2023038153A1 (en) Deodorant material, agent for imparting deodorant properties, and method for imparting deodorant properties
JP7475683B2 (en) Composite fiber and its manufacturing method
JPWO2019151436A1 (en) Method for manufacturing protein crimped staples
JP2020122249A (en) Method for producing fibroin fiber and fibroin solution
JP2021152224A (en) High-density unwoven fabric and method for manufacturing the same
WO2019151433A1 (en) Opened tow of protein filament and method for manufacturing same
JP2021031811A (en) Process for producing dyed fabric and method for dyeing fabric, and process for producing dyed blended yarn and method for dyeing blended yarn
JP2021031809A (en) Method for producing fabric
JP2021055191A (en) Protein fiber yarn and woven or knitted fabric, and production method of protein fiber yarn and production method of woven or knitted fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882725

Country of ref document: EP

Kind code of ref document: A1