WO2024090480A1 - Brake system - Google Patents

Brake system Download PDF

Info

Publication number
WO2024090480A1
WO2024090480A1 PCT/JP2023/038524 JP2023038524W WO2024090480A1 WO 2024090480 A1 WO2024090480 A1 WO 2024090480A1 JP 2023038524 W JP2023038524 W JP 2023038524W WO 2024090480 A1 WO2024090480 A1 WO 2024090480A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
braking force
driver
slave
control unit
Prior art date
Application number
PCT/JP2023/038524
Other languages
French (fr)
Japanese (ja)
Inventor
賢人 橋本
太宮人 河合
光 近藤
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024090480A1 publication Critical patent/WO2024090480A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present invention relates to a brake system applied to a vehicle.
  • Patent Document 1 discloses an example of an in-vehicle system equipped with a vehicle motion integrated control ECU and four BBW driver ECUs.
  • the vehicle motion integrated control ECU calculates command values for the braking forces to be generated on multiple wheels.
  • the vehicle motion integrated control ECU outputs the calculated command values to multiple BBW driver ECUs.
  • the BBW driver ECU controls an electric motor based on the input command values to adjust the braking forces generated on the corresponding wheels.
  • the first of the two power sources can supply power to some of the four BBW driver ECUs, and the second power source can supply power to the remaining four BBW driver ECUs.
  • the object of the present invention is to suppress a decrease in the braking force of a vehicle in a brake system capable of supplying power from two power sources when the power supply from one of the two power sources is stopped.
  • a brake system for solving the above problem is a system applied to a vehicle equipped with a first power source and a second power source different from the first power source.
  • the brake system includes a first electric actuator to a fourth electric actuator that generate a braking force on each of the first to fourth wheels of the vehicle, a driver that adjusts the power supplied from the first electric actuator to one of the fourth electric actuators, a braking force calculation unit that calculates the braking force generated on the first to fourth wheels by driving the first to fourth electric actuators, and a plurality of master controllers including a driver control unit that operates the driver according to the calculation result of the braking force calculation unit, and a plurality of slave controllers including a driver that adjusts the power supplied from the first electric actuator to one of the fourth electric actuators, and a driver control unit that operates the driver according to the calculation result of the braking force calculation unit of the master controller.
  • a first master controller of the plurality of master controllers and a first slave controller and a second slave controller of the plurality of slave controllers constitute a first controller group that is not supplied with power from the second power source but is supplied with power from the first power source.
  • a second master controller of the plurality of master controllers and a third slave controller and a fourth slave controller of the plurality of slave controllers constitute a second controller group to which power is not supplied from the first power source but is supplied from the second power source.
  • a first prescribed controller of the first controller group and a second prescribed controller of the second controller group both control the first electric actuator.
  • a third prescribed controller of the first controller group different from the first prescribed controller and a fourth prescribed controller of the second controller group different from the second prescribed controller both control the second electric actuator.
  • One controller of the first controller group different from the first prescribed controller and the third prescribed controller controls the third electric actuator.
  • One controller of the second controller group different from the second prescribed controller and the fourth prescribed controller controls the fourth electric actuator.
  • the multiple controllers constituting the second controller group can operate with power supplied from the second power source. Therefore, braking force can be generated on three of the four wheels.
  • the multiple controllers constituting the first controller group can operate with power supplied from the first power source. Therefore, braking force can be generated on three of the four wheels.
  • the above brake system can suppress a decrease in braking force when power supply from either the first power source or the second power source is stopped.
  • FIG. 1 is a schematic diagram showing a vehicle to which a brake system according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing the configuration of the brake system.
  • FIG. 3 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who operates the brake control device of the brake system when the brake control device can be operated normally.
  • FIG. 4 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who operates when the power supply from one of the first power source and the second power source is stopped.
  • FIG. 5 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who will act when one of the two master controllers fails.
  • FIG. 6 is a flowchart showing a series of processes executed by the master controller.
  • FIG. 7 is a flowchart showing a series of processes executed by the slave controller.
  • FIG. 8 is a block diagram showing the configuration of a brake
  • FIGS. ⁇ General configuration of the vehicle> 1 illustrates a vehicle 10 to which a brake system is applied.
  • the vehicle 10 has a front left wheel FL, a front right wheel FR, a rear left wheel RL, and a rear right wheel RR as wheels.
  • the vehicle 10 has a first power source 11 and a second power source 12 separate from the first power source 11 as a source of power supply to the brake system.
  • the brake system 100 includes four electric brakes.
  • the four electric brakes correspond to the four wheels FL, FR, RL, and RR, respectively. That is, the four electric brakes include an electric brake 20A that generates a braking force on the left front wheel FL, an electric brake 20B that generates a braking force on the right front wheel FR, an electric brake 20C that generates a braking force on the left rear wheel RL, and an electric brake 20D that generates a braking force on the right rear wheel RR.
  • the electric brakes 20A and 20B for the front wheels may be referred to as “front wheel electric brakes 20A and 20B,” and the electric brakes 20C and 20D for the rear wheels may be referred to as “rear wheel electric brakes 20C and 20D.”
  • the front wheel electric brakes 20A, 20B each include a rotating body 21, a friction member 22, an electric motor 23, a reduction mechanism 24, and a linear motion conversion mechanism 25.
  • the rotating body 21 rotates integrally with the front wheels FL, FR.
  • the rotational motion of the electric motor 23 is reduced by the reduction mechanism 24 and output to the linear motion conversion mechanism 25.
  • the rotational motion input to the linear motion conversion mechanism 25 is then converted to linear motion by the linear motion conversion mechanism 25 and output to the friction member 22.
  • the front wheel electric brakes 20A, 20B adjust the braking force generated on the front wheels FL, FR by controlling the electric motor 23.
  • the electric motor 23 is a double-winding motor.
  • the multiple rear wheel electric brakes 20C, 20D each include a rotating body 31, a friction member 32, an electric motor 33, a reduction mechanism 34, and a linear motion conversion mechanism 35.
  • the rotating body 31 rotates integrally with the rear wheels RL, RR.
  • the rotational motion of the electric motor 33 is reduced by the reduction mechanism 34 and output to the linear motion conversion mechanism 35.
  • the rotational motion input to the linear motion conversion mechanism 35 is then converted to linear motion by the linear motion conversion mechanism 35 and output to the friction member 32.
  • the rear wheel electric brakes 20C, 20D adjust the braking force generated on the rear wheels RL, RR by controlling the electric motor 33.
  • the electric motor 33 is not a double-winding motor.
  • the electric motors 23, 33 of the electric brakes 20A to 20D correspond to the "electric actuators.”
  • the electric motor 23 of the electric brake 20A for the left front wheel corresponds to the "first electric actuator”
  • the electric motor 23 of the electric brake 20B for the right front wheel corresponds to the "second electric actuator.”
  • the electric motor 33 of the electric brake 20C for the left rear wheel corresponds to the "third electric actuator”
  • the electric motor 33 of the electric brake 20D for the right rear wheel corresponds to the "fourth electric actuator.”
  • the left front wheel FL which generates a braking force by driving the first electric actuator
  • the right front wheel FR which generates a braking force by driving the second electric actuator
  • the left rear wheel RL, which generates a braking force by driving the third electric actuator is also referred to as the "third wheel.”
  • the right rear wheel RR which generates a braking force by driving the fourth electric actuator, is also referred to
  • the brake system 100 includes a brake control device 40 that controls four electric brakes 20A to 20D.
  • the brake control device 40 includes a left front wheel control unit 41A, a right front wheel control unit 41B, a left rear wheel control unit 41C, and a right rear wheel control unit 41D.
  • the left front wheel control unit 41A controls the electric brake 20A for the left front wheel.
  • the right front wheel control unit 41B controls the electric brake 20B for the right front wheel.
  • the left rear wheel control unit 41C controls the electric brake 20C for the left rear wheel.
  • the right rear wheel control unit 41D controls the electric brake 20D for the right rear wheel.
  • the multiple control units 41A to 41D are each configured to be able to transmit and receive information via a brake control device internal communication 42.
  • the brake control device internal communication 42 is a CAN bus.
  • CAN is an abbreviation for "Controller Area Network”.
  • the left front wheel control unit 41A has a master controller 50A and a slave controller 60A.
  • the master controller 50A and the slave controller 60A are each configured to be able to send and receive information to and from each other within the left front wheel control unit 41A.
  • the right front wheel control unit 41B has a master controller 50B and a slave controller 60B.
  • the master controller 50B and the slave controller 60B are each configured to be able to send and receive information to and from each other within the right front wheel control unit 41B.
  • the left rear wheel control unit 41C has a slave controller 60C but does not have a master controller.
  • the right rear wheel control unit 41D has a slave controller 60D but does not have a master controller.
  • the multiple controllers 50A, 50B, 60A to 60D constituting the brake system 100 can be classified into a first controller group to which power is supplied from the first power source 11, and a second controller group to which power is supplied from the second power source 12.
  • the first controller group includes the master controller 50A of the multiple master controllers 50A, 50B, and also includes the slave controller 60B and slave controller 60C of the multiple slave controllers 60A to 60D.
  • the second controller group includes the master controller 50B of the multiple master controllers 50A, 50B, and also includes the slave controller 60A and slave controller 60D of the multiple slave controllers 60A to 60D. Note that power is not supplied from the second power source 12 to the multiple controllers 50A, 60B, 60C constituting the first controller group. Power is not supplied from the first power source 11 to the multiple controllers 50B, 60A, 60D constituting the second controller group.
  • the master controller 50A corresponds to the "first master controller” and the master controller 50B corresponds to the "second master controller.” Furthermore, the slave controller 60B constituting the first controller group corresponds to the "first slave controller,” and the slave controller 60C constituting the first controller group corresponds to the "second slave controller.” Furthermore, the slave controller 60A constituting the second controller group corresponds to the "third slave controller,” and the slave controller 60D constituting the second controller group corresponds to the "fourth slave controller.”
  • the master controller 50A of the first controller group and the slave controller 60A of the second controller group both control the first electric actuator.
  • the electric motor 23 of the left front wheel control unit 41A corresponds to the first electric actuator
  • the master controller 50A corresponds to the "first prescribed controller”
  • the slave controller 60A corresponds to the "second prescribed controller”.
  • the electric motor 23 is a double-winding motor. Therefore, the master controller 50A adjusts the current flowing through the first winding of the two windings of the electric motor 23, and the slave controller 60A adjusts the current flowing through the second winding of the two windings of the electric motor 23. Therefore, when at least one of the master controller 50A and the slave controller 60A is operating, the braking force generated on the left front wheel FL can be adjusted by driving the electric motor 23.
  • the master controller 50B of the second controller group and the slave controller 60B of the first controller group both control the second electric actuator.
  • the master controller 50B corresponds to the "fourth prescribed controller” and the slave controller 60B corresponds to the "third prescribed controller”.
  • the electric motor 23 is a double-winding motor. Therefore, the master controller 50B adjusts the current flowing through the first winding of the two windings of the electric motor 23, and the slave controller 60B adjusts the current flowing through the second winding of the two windings of the electric motor 23. Therefore, when at least one of the master controller 50B and the slave controller 60B is operating, the braking force generated on the right front wheel FR can be adjusted by driving the electric motor 33.
  • the slave controller 60C which is different from the master controller 50A and the slave controller 60B, controls the third electric actuator.
  • the electric motor 33 of the left rear wheel control unit 41C corresponds to the third electric actuator, so the slave controller 60C can adjust the braking force generated on the left rear wheel RL by driving the electric motor 33 of the left rear wheel control unit 41C.
  • a slave controller 60D which is different from the master controller 50B and the slave controller 60A, controls the fourth electric actuator.
  • the electric motor 33 of the right rear wheel control unit 41D corresponds to the fourth electric actuator, so the slave controller 60D can adjust the braking force generated on the right rear wheel RR by driving the electric motor 33 of the right rear wheel control unit 41D.
  • the multiple master controllers 50A, 50B each have a first driver 51 and a master microcomputer 52.
  • the master microcomputer 52 includes an execution unit and a memory unit that stores a control program executed by the execution unit.
  • the execution unit is a CPU. Since the electric motor 23 is a double-winding motor, the first driver 51 is electrically connected to only the first winding of the two windings of the electric motor 23.
  • the execution unit of the master microcomputer 52 operates the first driver 51 by executing the control program. As a result, the execution unit can drive the electric motor 23 by adjusting the current flowing through the first winding of the electric motor 23.
  • Each of the slave controllers 60A to 60D has a second driver 61 and a slave microcomputer 62.
  • the slave microcomputer 62 includes an execution unit and a memory unit that stores a control program executed by the execution unit.
  • the execution unit is a CPU. Since the electric motor 23 is a double-winding motor, the second driver 61 is electrically connected only to the second winding of the two windings of the electric motor 23.
  • the execution unit of the slave microcomputer 62 in the slave controllers 60A and 60B operates the second driver 61 by executing the control program. As a result, the execution unit can drive the electric motor 23 by adjusting the current flowing through the second winding of the electric motor 23.
  • the execution unit of the slave microcomputer 62 in the slave controllers 60C and 60D executes the control program to operate the second driver 61. This allows the execution unit to drive the electric motor 33 by adjusting the current flowing through the windings of the electric motor 33.
  • the multiple master microcomputers 52 communicate with devices installed in the vehicle in addition to the brake system 100 via the in-vehicle network 43.
  • the multiple slave microcomputers 62 are not connected to the in-vehicle network 43.
  • the in-vehicle network 43 is a CAN bus.
  • the left front wheel control unit 41A and the electric brake 20A are unitized to form a brake unit for the left front wheel.
  • the right front wheel control unit 41B and the electric brake 20B are unitized to form a brake unit for the right front wheel.
  • the left rear wheel control unit 41C and the electric brake 20C are unitized to form a brake unit for the left rear wheel.
  • the right rear wheel control unit 41D and the electric brake 20D are unitized to form a brake unit for the right rear wheel.
  • the functional configuration of the controller will be described with reference to FIG.
  • the execution units of the master controllers 50A, 50B execute a control program to function as a braking force calculation unit M11 and a driver control unit M13.
  • the braking force calculation unit M11 and the driver control unit M13 are functional units for driving the electric motor.
  • the braking force calculation unit M11 calculates the braking force to be generated at the wheels by driving the electric motor of the electric brake. For example, the braking force calculation unit M11 calculates the command braking force, which is the command value of the braking force to be generated at the wheels, for each of the wheels FL, FR, RL, and RR based on the required deceleration value of the vehicle 10. That is, the braking force calculation unit M11 calculates the command braking force FbA for the left front wheel FL, the command braking force FbB for the right front wheel FR, the command braking force FbC for the left rear wheel RL, and the command braking force FbD for the right rear wheel RR.
  • the driver control unit M13 adjusts the power supplied to the electric motor 23 of the front wheel electric brake by operating the first driver 51 according to the calculation result of the braking force calculation unit M11. Specifically, the driver control unit M13 of the left front wheel control unit 41A adjusts the power supplied to the electric motor 23 of the left front wheel electric brake 20A by operating the first driver 51 based on the command braking force FbA for the left front wheel FL. The driver control unit M13 of the right front wheel control unit 41B adjusts the power supplied to the electric motor 23 of the right front wheel electric brake 20B by operating the first driver 51 based on the command braking force FbB for the right front wheel FR.
  • the execution units of the multiple slave controllers 60A-60D each function as a driver control unit M23 by executing a control program.
  • the driver control unit M23 is a functional unit for driving the electric motor. Note that the execution units of the slave controllers 60A-60D do not function as braking force calculation units.
  • the driver control unit M23 of the slave controllers 60A, 60B for the front wheels adjusts the power supplied to the electric motor 23 of the front wheel electric brake by operating the second driver 61 according to the calculation result of the braking force calculation unit M11.
  • the driver control unit M23 of the left front wheel control unit 41A adjusts the power supplied to the electric motor 23 of the left front wheel electric brake 20A by operating the second driver 61 based on the command braking force FbA for the left front wheel FL.
  • the driver control unit M23 of the right front wheel control unit 41B adjusts the power supplied to the electric motor 23 of the right front wheel electric brake 20B by operating the second driver 61 based on the command braking force FbB for the right front wheel FR.
  • the driver control unit M23 of the slave controllers 60C, 60D for the rear wheels adjusts the power supplied to the electric motor 33 of the rear wheel electric brake by operating the second driver 61 according to the calculation result of the braking force calculation unit M11. Specifically, the driver control unit M23 of the left rear wheel control unit 41C adjusts the power supplied to the electric motor 33 of the left rear wheel electric brake 20C by operating the second driver 61 based on the command braking force FbC for the left rear wheel RL. The driver control unit M23 of the right rear wheel control unit 41D adjusts the power supplied to the electric motor 33 of the right rear wheel electric brake 20D by operating the second driver 61 based on the command braking force FbD for the right rear wheel RR.
  • Normal here refers to a state of the brake control device 40 in which power is supplied to the brake system 100 from both the first power source 11 and the second power source 12, and all of the master controllers 50A, 50B are operating normally.
  • MC1 indicates the master controller 50A
  • MC2 indicates the master controller 50B
  • SC1 indicates the slave controller 60A
  • SC2 indicates the slave controller 60B
  • SC3 indicates the slave controller 60C
  • SC4 indicates the slave controller 60D.
  • the left front wheel control unit 41A operates based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A. Also, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A.
  • the command braking force calculated by the braking force calculation unit M11 of the master controller 50A is referred to as the "command braking force calculated by the master controller 50A.”
  • the command braking force calculated by the braking force calculation unit M11 of the master controller 50B is referred to as the "command braking force calculated by the master controller 50B.”
  • the right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B. Also, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50B.
  • the left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50B.
  • the right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50A.
  • braking control when power supply from the power source to the brake system is stopped> Referring to FIG. 4, braking control will be described in a case where power is supplied to the brake system 100 from one of the first power source 11 and the second power source 12, but power supply to the brake system 100 from the other power source is stopped.
  • the left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50B.
  • the right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B.
  • the second driver 61 of the slave controller 60C does not operate.
  • the left rear wheel control unit 41C does not operate, and the slave controller 60C cannot adjust the braking force generated on the left rear wheel RL.
  • the right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50B.
  • the left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the master controller 50A.
  • the right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50A.
  • the left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50A.
  • the second driver 61 of the slave controller 60D does not operate.
  • the right rear wheel control unit 41D does not operate, and the slave controller 60D cannot adjust the braking force generated on the right rear wheel RR.
  • the left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50B. That is, the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50B. At this time, since the master controller 50A has failed, the first driver 51 of the left front wheel control unit 41A cannot operate.
  • the right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B. Also, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50B.
  • the left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50B.
  • the right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50B.
  • the left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the master controller 50A. Also, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50A.
  • the right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50A. That is, the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50A. At this time, because the master controller 50B has failed, the first driver 51 of the right front wheel control unit 41B cannot operate.
  • the left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50A.
  • the right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50A.
  • a master side process which is a series of processes executed by the master microcomputer 52 of the master controllers 50A and 50B, will be described with reference to Fig. 6.
  • the master microcomputer 52 repeatedly executes the master side process at each predetermined control cycle.
  • step S11 the master microcomputer 52 functions as a braking force calculation unit M11 to calculate command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR. That is, the master microcomputer 52 of the master controller 50A and the master microcomputer 52 of the master controller 50B each calculate the command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR.
  • step S13 the master microcomputer 52 transmits the command braking force calculated in step S11.
  • the master microcomputer 52 of the master controller 50A transmits the command braking forces FbB, FbC, and FbD for the wheels FR, RL, and RR other than the left front wheel FL to the brake control device internal communication 42.
  • the master microcomputer 52 of the master controller 50A also transmits the command braking force FbA for the left front wheel FL to the slave controller 60A.
  • the master microcomputer 52 of the master controller 50B transmits the command braking forces FbA, FbC, and FbD for the wheels FL, RL, and RR other than the right front wheel FR to the brake control device internal communication 42.
  • the master microcomputer 52 of the master controller 50B also transmits the command braking force FbB for the right front wheel FR to the slave controller 60B.
  • step S15 the master microcomputer 52 functions as the driver control unit M13 to operate the first driver 51 based on the command braking force.
  • the master microcomputer 52 of the master controller 50A operates the first driver 51 of the electric brake 20A based on the command braking force FbA for the left front wheel FL that it has calculated.
  • the master microcomputer 52 of the master controller 50B operates the first driver 51 of the electric brake 20B based on the command braking force FbB for the right front wheel FR that it has calculated.
  • the master microcomputer 52 temporarily ends the master-side processing.
  • Slave-side processing which is a series of processing executed by the slave microcomputer 62 of each of the slave controllers 60A to 60D, will be described with reference to Fig. 7.
  • the slave microcomputer 62 repeatedly executes the slave-side processing for each predetermined control cycle.
  • step S21 the slave microcomputer 62 obtains a command braking force for operating the second driver 61. Specifically, when the slave microcomputer 62 of the slave controller 60A of the left front wheel control unit 41A receives the command braking force FbA from the master controller 50A, it acquires the command braking force FbA calculated by the master controller 50A. When the slave microcomputer 62 of the slave controller 60A cannot receive the command braking force FbA from the master controller 50A but can receive the command braking force FbA calculated by the master controller 50B from the brake control device internal communication 42, it acquires the command braking force FbA calculated by the master controller 50B.
  • the slave microcomputer 62 of the slave controller 60B of the right front wheel control unit 41B receives the command braking force FbB from the master controller 50B, it acquires the command braking force FbB calculated by the master controller 50B. If the slave microcomputer 62 of the slave controller 60B cannot receive the command braking force FbB from the master controller 50B but can receive the command braking force FbB calculated by the master controller 50A from the brake control device internal communication 42, it acquires the command braking force FbB calculated by the master controller 50A.
  • the slave microcomputer 62 of the slave controller 60C of the left rear wheel control unit 41C acquires the command braking force FbC calculated by the master controller 50B if the command braking force FbC calculated by the master controller 50B can be acquired from the braking control device internal communication 42. Even if the slave microcomputer 62 of the slave controller 60C cannot receive the command braking force FbC calculated by the master controller 50B, if the slave microcomputer 62 of the slave controller 60C can receive the command braking force FbC calculated by the master controller 50A from the braking control device internal communication 42, the slave microcomputer 62 acquires the command braking force FbC calculated by the master controller 50A.
  • the slave microcomputer 62 of the slave controller 60D of the right rear wheel control unit 41D acquires the command braking force FbD calculated by the master controller 50A if the command braking force FbD calculated by the master controller 50A can be acquired from the braking control device internal communication 42. Even if the slave microcomputer 62 of the slave controller 60D cannot receive the command braking force FbD calculated by the master controller 50A, if the slave microcomputer 62 of the slave controller 60D can receive the command braking force FbD calculated by the master controller 50B from the braking control device internal communication 42, the slave microcomputer 62 acquires the command braking force FbD calculated by the master controller 50B.
  • step S23 the slave microcomputer 62 operates the second driver 61 based on the command braking force acquired in step S21.
  • the slave microcomputer 62 of the slave controller 60A of the left front wheel control unit 41A operates the second driver 61 of the electric brake 20A based on the command braking force FbA.
  • the slave microcomputer 62 of the slave controller 60B of the right front wheel control unit 41B operates the second driver 61 of the electric brake 20B based on the command braking force FbB.
  • the slave microcomputer 62 of the slave controller 60C of the left rear wheel control unit 41C operates the second driver 61 of the electric brake 20C based on the command braking force FbC.
  • the slave microcomputer 62 of the slave controller 60D of the right rear wheel control unit 41D operates the second driver 61 of the electric brake 20D based on the command braking force FbD.
  • the slave microcomputer 62 temporarily ends the slave side processing.
  • braking force can be generated on the wheels FL, FR, RL other than the right rear wheel RR.
  • the controllers in the second controller group are operable but the controllers in the first controller group are inoperable, braking force can be generated on the wheels FL, FR, RR other than the left rear wheel RL.
  • the first controller group is supplied with power from the first power source 11, but not from the second power source 12.
  • the second controller group is supplied with power from the first power source 11, but not from the first power source 11. This prevents a situation in which a controller in the first controller group or a controller in the second controller group has a ground fault, causing the potentials of the first power source 11 and the second power source 12 to drop simultaneously, resulting in an inability to supply power to the brake system 100.
  • the electric motor 23 of the front wheel control unit is a double-winding motor.
  • the first winding is electrically connected to the first driver 51 of the master controller
  • the second winding is electrically connected to the second driver 61 of the slave controller.
  • the electric motor 23 of the front wheel control unit is a double-winding motor, and the front wheel control unit includes both a master controller and a slave controller. Furthermore, one of the master controller and the slave controller constitutes a first controller group, and the other constitutes a second controller group. Therefore, even if the power supply from one of the first power source 11 and the second power source 12 to the brake system 100 is stopped, braking force can be generated at the multiple front wheels FL, FR.
  • the multiple master controllers 50A, 50B calculate the command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR, respectively. Therefore, even if only one of the multiple master controllers 50A, 50B fails, the multiple control units 41A to 41D can obtain the command braking forces, and the multiple control units 41A to 41D can drive the electric motors, respectively. Therefore, even if only one of the multiple master controllers 50A, 50B fails, braking forces can be generated for the multiple wheels FL, FR, RL, and RR.
  • the slave controllers 60A to 60D do not have the function of calculating the command braking forces FbA to FbD. Therefore, a microcomputer with lower functionality than the master microcomputer 52 of the master controllers 50A and 50B can be used as the slave microcomputer 62 of the slave controllers 60A to 60D.
  • the brake system 100 can suppress a decrease in the braking force of the vehicle 10 when the power supply from one of the two power sources 11 and 12 is stopped, while suppressing an increase in cost.
  • a "low-performance microcomputer” includes a microcomputer with a lower operating frequency and a smaller number of CPU cores compared to a microcomputer that is not low-performance.
  • the electric brake 20A for the front wheels and the master controller 50A are integrated into a unit, so the driver control unit M13 and the first driver 51 are located near the electric motor 23.
  • the effects of this arrangement are described below.
  • the driver control unit M13 needs to give precise instructions to the driver who operates the electric motor 23, so it needs to perform calculations at a control cycle that is faster than the communication within the brake control device 42. Therefore, if the signal of the driver control unit M13 is transmitted and received via the communication within the brake control device 42, the control accuracy of the electric motor 23 may decrease.
  • the braking force calculation unit M11 does not need to perform calculations at a calculation cycle that is faster than the communication within the brake control device 42, so the control accuracy of the electric motor 23 does not decrease even if the signal of the braking force calculation unit M11 is transmitted and received via the communication within the brake control device 42.
  • the signal of the driver control unit M13 of the master controller 50A can be transmitted to the first driver 51 without being sent or received via the braking control device internal communication 42.
  • the master controller 50A and the electric brake 20A are unitized, the first driver 51 can directly supply power to the electric motor 23 of the electric brake 20A. Therefore, by making use of the driver control unit M13 of the master controller 50A and transmitting the signal of the braking force calculation unit M11 to other control units via the braking control device internal communication 42, a redundant configuration can be achieved without increasing the number of microcomputers, and an inexpensive brake system can be configured.
  • the driver control unit of the master controller cannot be utilized.
  • the communication 42 in the brake control device cannot transmit signals at a cycle faster than the calculation cycle of the driver control unit M13. Therefore, if the front wheels are configured redundantly as in this embodiment, it is necessary to add a slave microcomputer to each of the control units of the front wheels that are united with the electric brake, and the number of microcomputers in the brake system increases by two. It is possible to utilize the driver control unit of the master controller even if the master controller is not united with the electric brake, but in that case, the physical distance between the driver and the electric motor will be increased.
  • the left front wheel control unit 41A and the right front wheel control unit 41B have the same configuration
  • the left rear wheel control unit 41C and the right rear wheel control unit 41D have the same configuration, so the units can be standardized, resulting in a cheaper brake system.
  • An electric motor with one winding is used as the electric motor equipped in the front wheel electric brakes 20A, 20B, and the front wheel control units 41A, 41B are configured to have only the slave controller out of the master controller and slave controller.
  • a double-winding motor is used as the electric motor equipped in the rear wheel electric brakes 20C, 20D, and the rear wheel control units 41C, 41D are configured to have both a master controller and a slave controller.
  • the left rear wheel RL corresponds to the first wheel
  • the right rear wheel RR corresponds to the second wheel
  • the left front wheel FL corresponds to the third wheel
  • the right front wheel FR corresponds to the fourth wheel.
  • the electric motor of the electric brake 20C for the left rear wheel corresponds to the first electric actuator
  • the electric motor of the electric brake 20D for the right rear wheel corresponds to the second electric actuator
  • the electric motor of the electric brake 20A for the left front wheel corresponds to the third electric actuator
  • the electric motor of the electric brake 20B for the right front wheel corresponds to the fourth electric actuator.
  • the master controller of the left rear wheel control unit, the slave controller of the right rear wheel control unit, and the slave controller of the left front wheel control unit constitute a first controller group.
  • the master controller of the right rear wheel control unit, the slave controller of the left rear wheel control unit, and the slave controller of the right front wheel control unit constitute a second controller group.
  • the master controller of the left rear wheel control unit corresponds to the first prescribed controller
  • the slave controller of the left rear wheel control unit corresponds to the second prescribed controller.
  • the slave controller of the right rear wheel control unit corresponds to the third prescribed controller
  • the master controller of the right rear wheel control unit corresponds to the fourth prescribed controller.
  • braking force can be generated on the three wheels even if the power supply to the brake system from one of the first power source 11 and the second power source 12 is stopped. Furthermore, even if the power supply from the first power source 11 is stopped, or the power supply from the second power source 12 is stopped, braking force can be generated on the two rear wheels RL and RR.
  • the electric motor controlled by the control unit having both a master controller and a slave controller does not have to be a double-winding motor.
  • a brake system 1000 shown in FIG. 8 may be used as the brake system.
  • the brake control device 400 of the brake system 1000 will be described with reference to Fig. 8.
  • the brake control device 400 includes a left front wheel control unit 41A1, a right front wheel control unit 41B1, a left rear wheel control unit 41C, and a right rear wheel control unit 41D.
  • the left front wheel control unit 41A1 includes a master controller 50A1 and a master controller 50A2.
  • Each of the master controllers 50A1 and 50A2 includes a first driver 51 and a master microcomputer 52.
  • the first winding is electrically connected to the first driver 51 of the master controller 50A1
  • the second winding is electrically connected to the first driver 51 of the master controller 50A2.
  • the right front wheel control unit 41B1 has a slave controller 60B1 and a slave controller 60B2. These two slave controllers 60B1, 60B2 each have a second driver 61 and a slave microcomputer 62. Of the two windings of the electric motor 23 of the electric brake 20B for the right front wheel, the first winding is electrically connected to the second driver 61 of the slave controller 60B1, and the second winding is electrically connected to the second driver 61 of the slave controller 60B2.
  • the master controller 50A1 and the slave controller 60B1 are classified into a first controller group, and the master controller 50A2 and the slave controller 60B2 are classified into a second controller group.
  • the master controller 50A1 of the first controller group corresponds to the "first prescribed controller”
  • the master controller 50A2 of the second controller group corresponds to the "second prescribed controller”.
  • the slave controller 60B1 of the first controller group corresponds to the "third prescribed controller”
  • the slave controller 60B2 of the second controller group corresponds to the "fourth prescribed controller”. Therefore, in the brake system 1000, braking force can be generated at the three wheels even if the power supply from the first power source 11 is stopped or even if the power supply from the second power source 12 is stopped.
  • a left rear wheel control unit having a master controller, a right rear wheel control unit having a master controller, a left front wheel control unit having a first slave controller and a second slave controller, and a right front wheel control unit having a first slave controller and a second slave controller may be used.
  • brake system 1000 of this configuration braking force can be generated at three wheels even when power supply from first power source 11 is stopped or when power supply from second power source 12 is stopped.
  • the master controller since the master controller is located at the rear of the vehicle, it is possible to reduce the occurrence of an event in which both master controllers fail due to an impact at the front of the vehicle, and it is also possible to standardize the units.
  • two master controllers may be placed in the front wheel control unit and one in the rear wheel control unit. In this arrangement, it is possible to reduce the likelihood of both master controllers failing due to an impact to the front or rear of the vehicle.
  • the master controller 50A may calculate the command braking force FbB for the right front wheel FR and the command braking force FbC for the left rear wheel RL only when the master controller 50B is unable to calculate the command braking force. Scenario where the master controller 50B is unable to calculate the command braking force includes when the power supply to the master controller 50B is stopped and when an abnormality such as a breakdown occurs in the master controller 50B.
  • the master controller 50B may calculate the command braking force FbA for the left front wheel FL and the command braking force FbD for the right rear wheel RR only when the master controller 50A is unable to calculate the command braking force.
  • Scenario where the master controller 50A is unable to calculate the command braking force includes when the power supply to the master controller 50A is stopped and when an abnormality such as a breakdown occurs in the master controller 50A.
  • both the left rear wheel control unit 41C and the right rear wheel control unit 41D may operate the second driver 61 based on the command braking force calculated by the master controller 50A. Also, both the left rear wheel control unit 41C and the right rear wheel control unit 41D may operate the second driver 61 based on the command braking force calculated by the master controller 50B.
  • the electric actuator may be an actuator other than an electric motor, so long as the electric actuator is driven to cause the electric brake to generate a braking force on the wheels.
  • the electric brakes do not have to be dry electric brakes as shown in FIG. 1, as long as they are brakes that can generate a braking force on the wheels according to the drive amount of the electric actuator.
  • the electric brakes may be wet electric brakes equipped with an electric cylinder powered by an electric motor.
  • some of the electric brakes may be dry electric brakes, and the remaining electric brakes may be wet electric brakes.
  • the vehicle has four wheels, but the number of wheels is not limited to four.
  • the number of wheels is six
  • a brake unit can be provided for the additional two wheels, combining a control unit with the same configuration as the rear wheel control unit and an electric brake with the same configuration as the rear wheel electric brake.
  • a microcomputer may be configured as a circuit including one or more processors that operate according to a computer program, one or more dedicated hardware circuits such as dedicated hardware that executes at least some of the various processes, or a combination of these.
  • An example of dedicated hardware is an ASIC, which is an application specific integrated circuit.
  • the processor includes a CPU and memory such as RAM and ROM, and the memory stores program code or instructions configured to cause the CPU to execute processes.
  • Memory i.e., storage media, includes any available media that can be accessed by a general-purpose or dedicated computer.
  • the expression “at least one” used in this specification means “one or more” of the desired options.
  • the expression “at least one” used in this specification means “only one option” or “both of two options” if the number of options is two.
  • the expression “at least one” used in this specification means “only one option” or “any combination of two or more options” if the number of options is three or more.
  • the first electric actuator is an actuator that is driven to generate a braking force on the first wheel
  • the second electric actuator is an actuator that is driven to generate a braking force on the second wheel
  • the third electric actuator is an actuator that is driven to generate a braking force on the third wheel
  • the fourth electric actuator is an actuator that is driven to generate a braking force on the fourth wheel
  • the first defining controller is the first master controller
  • the third defining controller is preferably the second master controller.
  • the braking force calculation unit of the first master controller calculating a braking force to be generated on the first wheel by driving the first electric actuator; It is preferable that a braking force to be generated on the fourth wheel by driving the fourth electric actuator is calculated.
  • the braking force calculation unit of the second master controller calculating a braking force to be generated on the second wheel by driving the second electric actuator; It is preferable that a braking force to be generated on the third wheel by driving the third electric actuator is calculated.
  • the second defining controller is the third slave controller,
  • the fourth defining controller is preferably the first slave controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

This brake system comprises a plurality of master controllers 50A, 50B, and a plurality of slave controllers 60A to 60D. Power is supplied to the master controller 50A, the slave controller 60B, and the slave controller 60C from a first power supply 11. Power is supplied to the master controller 50B, the slave controller 60A, and the slave controller 60D from a second power supply 12. The master controller 50A and the slave controller 60A are capable of controlling an electric brake 20A. The master controller 50B and the slave controller 60B are capable of controlling an electric brake 20B. The slave controller 60C is capable of controlling an electric brake 20C. The slave controller 60D is capable of controlling an electric brake 20D.

Description

ブレーキシステムBrake system
 本発明は、車両に適用されるブレーキシステムに関する。 The present invention relates to a brake system applied to a vehicle.
 特許文献1は、車両運動統合制御ECUと、4つのBBWドライバECUとを備えた車載システムの一例を開示している。車両運動統合制御ECUは、車両制動時には、複数の車輪に発生させる制動力の指示値を演算する。車両運動統合制御ECUは、演算した指示値を複数のBBWドライバECUに出力する。BBWドライバECUは、入力された指示値に基づいて電気モータを制御することにより、対応する車輪で発生する制動力を調整する。 Patent Document 1 discloses an example of an in-vehicle system equipped with a vehicle motion integrated control ECU and four BBW driver ECUs. When braking the vehicle, the vehicle motion integrated control ECU calculates command values for the braking forces to be generated on multiple wheels. The vehicle motion integrated control ECU outputs the calculated command values to multiple BBW driver ECUs. The BBW driver ECU controls an electric motor based on the input command values to adjust the braking forces generated on the corresponding wheels.
特許第6214730号公報Patent No. 6214730
 車両に2つの電源を設けた場合、2つの電源のうちの第1電源が、4つのBBWドライバECUのうちの一部に給電を行い、第2電源が、4つのBBWドライバECUのうちの残りに給電を行うことが可能となる。本発明の目的は、2つの電源から給電を行うことのできるブレーキシステムにおいて、2つの電源のうち一方からの給電が停止された場合における車両の制動力の低下を抑制することである。 When two power sources are provided in a vehicle, the first of the two power sources can supply power to some of the four BBW driver ECUs, and the second power source can supply power to the remaining four BBW driver ECUs. The object of the present invention is to suppress a decrease in the braking force of a vehicle in a brake system capable of supplying power from two power sources when the power supply from one of the two power sources is stopped.
 上記課題を解決するためのブレーキシステムは、第1電源および前記第1電源とは別の第2電源を備える車両に適用されるシステムである。当該ブレーキシステムは、前記車両の第1車輪から第4車輪の各々に制動力を発生させる第1電動アクチュエータから第4電動アクチュエータと、前記第1電動アクチュエータから前記第4電動アクチュエータの何れか一つに供給する電力を調整するドライバ、前記第1電動アクチュエータから前記第4電動アクチュエータの駆動によって前記第1車輪から前記第4車輪に発生させる制動力を演算する制動力演算部、および、前記制動力演算部の演算結果に応じて当該ドライバを作動させるドライバ制御部を含む複数のマスタコントローラと、前記第1電動アクチュエータから前記第4電動アクチュエータの何れか一つに供給する電力を調整するドライバ、および、前記マスタコントローラの前記制動力演算部の演算結果に応じて当該ドライバを作動させるドライバ制御部を含む複数のスレーブコントローラと、を備えている。前記複数のマスタコントローラのうちの第1マスタコントローラ、および、前記複数のスレーブコントローラのうち、第1スレーブコントローラおよび第2スレーブコントローラは、前記第2電源から電力が供給されない一方で前記第1電源から電力が供給される第1コントローラ群を構成する。前記複数のマスタコントローラのうちの第2マスタコントローラ、および、前記複数のスレーブコントローラのうち、第3スレーブコントローラおよび第4スレーブコントローラは、前記第1電源から電力が供給されない一方で前記第2電源から電力が供給される第2コントローラ群を構成する。前記第1コントローラ群のうちの第1規定コントローラと、前記第2コントローラ群のうちの第2規定コントローラとはどちらも前記第1電動アクチュエータを制御する。前記第1コントローラ群のうち、前記第1規定コントローラとは異なる第3規定コントローラと、前記第2コントローラ群のうち、前記第2規定コントローラとは異なる第4規定コントローラとはどちらも前記第2電動アクチュエータを制御する。前記第1コントローラ群のうち、前記第1規定コントローラおよび前記第3規定コントローラとは異なる1つのコントローラが、前記第3電動アクチュエータを制御する。前記第2コントローラ群のうち、前記第2規定コントローラおよび前記第4規定コントローラとは異なる1つのコントローラが、前記第4電動アクチュエータを制御する。 A brake system for solving the above problem is a system applied to a vehicle equipped with a first power source and a second power source different from the first power source. The brake system includes a first electric actuator to a fourth electric actuator that generate a braking force on each of the first to fourth wheels of the vehicle, a driver that adjusts the power supplied from the first electric actuator to one of the fourth electric actuators, a braking force calculation unit that calculates the braking force generated on the first to fourth wheels by driving the first to fourth electric actuators, and a plurality of master controllers including a driver control unit that operates the driver according to the calculation result of the braking force calculation unit, and a plurality of slave controllers including a driver that adjusts the power supplied from the first electric actuator to one of the fourth electric actuators, and a driver control unit that operates the driver according to the calculation result of the braking force calculation unit of the master controller. A first master controller of the plurality of master controllers and a first slave controller and a second slave controller of the plurality of slave controllers constitute a first controller group that is not supplied with power from the second power source but is supplied with power from the first power source. A second master controller of the plurality of master controllers and a third slave controller and a fourth slave controller of the plurality of slave controllers constitute a second controller group to which power is not supplied from the first power source but is supplied from the second power source. A first prescribed controller of the first controller group and a second prescribed controller of the second controller group both control the first electric actuator. A third prescribed controller of the first controller group different from the first prescribed controller and a fourth prescribed controller of the second controller group different from the second prescribed controller both control the second electric actuator. One controller of the first controller group different from the first prescribed controller and the third prescribed controller controls the third electric actuator. One controller of the second controller group different from the second prescribed controller and the fourth prescribed controller controls the fourth electric actuator.
 上記ブレーキシステムでは、第1電源からの給電が停止されたとしても、第2電源から電力が供給される場合には、第2コントローラ群を構成する複数のコントローラは、第2電源からの給電によって動作できる。そのため、4つの車輪のうち、3つの車輪で制動力を発生させることができる。反対に、第2電源からの給電が停止されたとしても、第1電源から電力が供給される場合には、第1コントローラ群を構成する複数のコントローラは、第1電源からの給電によって動作できる。そのため、4つの車輪のうち、3つの車輪で制動力を発生させることができる。 In the above brake system, even if the power supply from the first power source is stopped, if power is supplied from the second power source, the multiple controllers constituting the second controller group can operate with power supplied from the second power source. Therefore, braking force can be generated on three of the four wheels. Conversely, even if the power supply from the second power source is stopped, if power is supplied from the first power source, the multiple controllers constituting the first controller group can operate with power supplied from the first power source. Therefore, braking force can be generated on three of the four wheels.
 したがって、上記ブレーキシステムによれば、第1電源および第2電源のうち一方からの給電が停止された場合における制動力の低下を抑制できる。 Therefore, the above brake system can suppress a decrease in braking force when power supply from either the first power source or the second power source is stopped.
図1は、実施形態のブレーキシステムが適用される車両の概略を示す構成図である。FIG. 1 is a schematic diagram showing a vehicle to which a brake system according to an embodiment of the present invention is applied. 図2は、同ブレーキシステムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the brake system. 図3は、同ブレーキシステムの制動制御装置を正常に作動させることができる場合に、採用する指示制動力を演算したマスタコントローラと、作動するドライバとの関係を示す表である。FIG. 3 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who operates the brake control device of the brake system when the brake control device can be operated normally. 図4は、第1電源および第2電源のうちの一方からの給電が停止された場合に、採用する指示制動力を演算したマスタコントローラと、作動するドライバとの関係を示す表である。FIG. 4 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who operates when the power supply from one of the first power source and the second power source is stopped. 図5は、2つのマスタコントローラのうちの一方が失陥した場合に、採用する指示制動力を演算したマスタコントローラと、作動するドライバとの関係を示す表である。FIG. 5 is a table showing the relationship between the master controller that calculates the command braking force to be adopted and the driver who will act when one of the two master controllers fails. 図6は、マスタコントローラで実行される一連の処理を示すフローチャートである。FIG. 6 is a flowchart showing a series of processes executed by the master controller. 図7は、スレーブコントローラで実行される一連の処理を示すフローチャートである。FIG. 7 is a flowchart showing a series of processes executed by the slave controller. 図8は、変更例のブレーキシステムの構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of a brake system according to a modified example.
 以下、ブレーキシステムの一実施形態を図1から図7に従って説明する。
 <車両の概略構成>
 図1は、ブレーキシステムが適用される車両10を図示している。車両10は、車輪として、左前輪FLと右前輪FRと左後輪RLと右後輪RRとを備えている。車両10は、ブレーキシステムへの電力の供給源として、第1電源11と、第1電源11とは別の第2電源12とを備えている。
Hereinafter, an embodiment of a brake system will be described with reference to FIGS.
<General configuration of the vehicle>
1 illustrates a vehicle 10 to which a brake system is applied. The vehicle 10 has a front left wheel FL, a front right wheel FR, a rear left wheel RL, and a rear right wheel RR as wheels. The vehicle 10 has a first power source 11 and a second power source 12 separate from the first power source 11 as a source of power supply to the brake system.
 <ブレーキシステムの電動ブレーキ>
 図1および図2に示すように、ブレーキシステム100は、4つの電動ブレーキを備えている。4つの電動ブレーキは、4つの車輪FL,FR,RL,RRにそれぞれ対応している。すなわち、4つの電動ブレーキは、左前輪FLに制動力を発生させる電動ブレーキ20Aと、右前輪FRに制動力を発生させる電動ブレーキ20Bと、左後輪RLに制動力を発生させる電動ブレーキ20Cと、右後輪RRに制動力を発生させる電動ブレーキ20Dとを含んでいる。以降では、前輪用の電動ブレーキ20A,20Bを「前輪電動ブレーキ20A,20B」といい、後輪用の電動ブレーキ20C,20Dを「後輪電動ブレーキ20C,20D」ということもある。
<Electric brakes for brake system>
1 and 2, the brake system 100 includes four electric brakes. The four electric brakes correspond to the four wheels FL, FR, RL, and RR, respectively. That is, the four electric brakes include an electric brake 20A that generates a braking force on the left front wheel FL, an electric brake 20B that generates a braking force on the right front wheel FR, an electric brake 20C that generates a braking force on the left rear wheel RL, and an electric brake 20D that generates a braking force on the right rear wheel RR. Hereinafter, the electric brakes 20A and 20B for the front wheels may be referred to as "front wheel electric brakes 20A and 20B," and the electric brakes 20C and 20D for the rear wheels may be referred to as "rear wheel electric brakes 20C and 20D."
 複数の前輪電動ブレーキ20A,20Bは、回転体21と、摩擦部材22と、電気モータ23と、減速機構24と、直動変換機構25とをそれぞれ備えている。回転体21は前輪FL,FRと一体に回転する。前輪電動ブレーキ20A,20Bでは、電気モータ23の回転運動が減速機構24によって減速されて直動変換機構25に出力される。そして、直動変換機構25に入力された回転運動が、直動変換機構25によって直線運動に変換されて摩擦部材22に出力される。すなわち、前輪電動ブレーキ20A,20Bは、電気モータ23を制御することによって前輪FL,FRに発生させる制動力を調整する。なお、電気モータ23は、2重巻線モータである。 The front wheel electric brakes 20A, 20B each include a rotating body 21, a friction member 22, an electric motor 23, a reduction mechanism 24, and a linear motion conversion mechanism 25. The rotating body 21 rotates integrally with the front wheels FL, FR. In the front wheel electric brakes 20A, 20B, the rotational motion of the electric motor 23 is reduced by the reduction mechanism 24 and output to the linear motion conversion mechanism 25. The rotational motion input to the linear motion conversion mechanism 25 is then converted to linear motion by the linear motion conversion mechanism 25 and output to the friction member 22. In other words, the front wheel electric brakes 20A, 20B adjust the braking force generated on the front wheels FL, FR by controlling the electric motor 23. The electric motor 23 is a double-winding motor.
 複数の後輪電動ブレーキ20C,20Dは、回転体31と、摩擦部材32と、電気モータ33と、減速機構34と、直動変換機構35とをそれぞれ備えている。回転体31は後輪RL,RRと一体に回転する。電動ブレーキ20C,20Dでは、電気モータ33の回転運動が減速機構34によって減速されて直動変換機構35に出力される。そして、直動変換機構35に入力された回転運動が、直動変換機構35によって直線運動に変換されて摩擦部材32に出力される。すなわち、後輪電動ブレーキ20C,20Dは、電気モータ33を制御することによって後輪RL,RRに発生させる制動力を調整する。なお、電気モータ33は、電気モータ23とは異なり、2重巻線モータではない。 The multiple rear wheel electric brakes 20C, 20D each include a rotating body 31, a friction member 32, an electric motor 33, a reduction mechanism 34, and a linear motion conversion mechanism 35. The rotating body 31 rotates integrally with the rear wheels RL, RR. In the electric brakes 20C, 20D, the rotational motion of the electric motor 33 is reduced by the reduction mechanism 34 and output to the linear motion conversion mechanism 35. The rotational motion input to the linear motion conversion mechanism 35 is then converted to linear motion by the linear motion conversion mechanism 35 and output to the friction member 32. In other words, the rear wheel electric brakes 20C, 20D adjust the braking force generated on the rear wheels RL, RR by controlling the electric motor 33. Note that unlike the electric motor 23, the electric motor 33 is not a double-winding motor.
 本実施形態では、複数の電動ブレーキ20A~20Dの電気モータ23,33が「電動アクチュエータ」に対応する。特に、左前輪用の電動ブレーキ20Aの電気モータ23が「第1電動アクチュエータ」に対応し、右前輪用の電動ブレーキ20Bの電気モータ23が「第2電動アクチュエータ」に対応する。左後輪用の電動ブレーキ20Cの電気モータ33が「第3電動アクチュエータ」に対応し、右後輪用の電動ブレーキ20Dの電気モータ33が「第4電動アクチュエータ」に対応する。なお、第1電動アクチュエータの駆動によって制動力を発生する左前輪FLを「第1車輪」ともいう。第2電動アクチュエータの駆動によって制動力を発生する右前輪FRを「第2車輪」ともいう。第3電動アクチュエータの駆動によって制動力を発生する左後輪RLを「第3車輪」ともいう。第4電動アクチュエータの駆動によって制動力を発生する右後輪RRを「第4車輪」ともいう。 In this embodiment, the electric motors 23, 33 of the electric brakes 20A to 20D correspond to the "electric actuators." In particular, the electric motor 23 of the electric brake 20A for the left front wheel corresponds to the "first electric actuator," and the electric motor 23 of the electric brake 20B for the right front wheel corresponds to the "second electric actuator." The electric motor 33 of the electric brake 20C for the left rear wheel corresponds to the "third electric actuator," and the electric motor 33 of the electric brake 20D for the right rear wheel corresponds to the "fourth electric actuator." The left front wheel FL, which generates a braking force by driving the first electric actuator, is also referred to as the "first wheel." The right front wheel FR, which generates a braking force by driving the second electric actuator, is also referred to as the "second wheel." The left rear wheel RL, which generates a braking force by driving the third electric actuator, is also referred to as the "third wheel." The right rear wheel RR, which generates a braking force by driving the fourth electric actuator, is also referred to as the "fourth wheel."
 <ブレーキシステムの制動制御装置>
 ブレーキシステム100は、4つの電動ブレーキ20A~20Dを制御する制動制御装置40を備えている。制動制御装置40は、左前輪制御ユニット41Aと、右前輪制御ユニット41Bと、左後輪制御ユニット41Cと、右後輪制御ユニット41Dとを有している。左前輪制御ユニット41Aは左前輪用の電動ブレーキ20Aを制御する。右前輪制御ユニット41Bは右前輪用の電動ブレーキ20Bを制御する。左後輪制御ユニット41Cは左後輪用の電動ブレーキ20Cを制御する。右後輪制御ユニット41Dは右後輪用の電動ブレーキ20Dを制御する。複数の制御ユニット41A~41Dは、制動制御装置内通信42を介して情報の送受信が可能にそれぞれ構成されている。例えば、制動制御装置内通信42はCANバスである。「CAN」は「Controller Area Network」の略記である。
<Brake control device for brake system>
The brake system 100 includes a brake control device 40 that controls four electric brakes 20A to 20D. The brake control device 40 includes a left front wheel control unit 41A, a right front wheel control unit 41B, a left rear wheel control unit 41C, and a right rear wheel control unit 41D. The left front wheel control unit 41A controls the electric brake 20A for the left front wheel. The right front wheel control unit 41B controls the electric brake 20B for the right front wheel. The left rear wheel control unit 41C controls the electric brake 20C for the left rear wheel. The right rear wheel control unit 41D controls the electric brake 20D for the right rear wheel. The multiple control units 41A to 41D are each configured to be able to transmit and receive information via a brake control device internal communication 42. For example, the brake control device internal communication 42 is a CAN bus. "CAN" is an abbreviation for "Controller Area Network".
 左前輪制御ユニット41Aは、マスタコントローラ50Aとスレーブコントローラ60Aとを有している。マスタコントローラ50Aとスレーブコントローラ60Aとは、左前輪制御ユニット41A内で互いに情報の送受信ができるようにそれぞれ構成されている。 The left front wheel control unit 41A has a master controller 50A and a slave controller 60A. The master controller 50A and the slave controller 60A are each configured to be able to send and receive information to and from each other within the left front wheel control unit 41A.
 右前輪制御ユニット41Bは、マスタコントローラ50Bとスレーブコントローラ60Bとを有している。マスタコントローラ50Bとスレーブコントローラ60Bとは、右前輪制御ユニット41B内で互いに情報の送受信ができるようにそれぞれ構成されている。 The right front wheel control unit 41B has a master controller 50B and a slave controller 60B. The master controller 50B and the slave controller 60B are each configured to be able to send and receive information to and from each other within the right front wheel control unit 41B.
 左後輪制御ユニット41Cは、スレーブコントローラ60Cを有している一方で、マスタコントローラを有していない。右後輪制御ユニット41Dは、スレーブコントローラ60Dを有している一方で、マスタコントローラを有していない。 The left rear wheel control unit 41C has a slave controller 60C but does not have a master controller. The right rear wheel control unit 41D has a slave controller 60D but does not have a master controller.
 ブレーキシステム100を構成する複数のコントローラ50A,50B,60A~60Dは、第1電源11から電力が供給される第1コントローラ群と、第2電源12から電力が供給される第2コントローラ群とに分類できる。第1コントローラ群は、複数のマスタコントローラ50A,50Bのうちのマスタコントローラ50Aを含むとともに、複数のスレーブコントローラ60A~60Dのうちのスレーブコントローラ60Bおよびスレーブコントローラ60Cを含んでいる。一方、第2コントローラ群は、複数のマスタコントローラ50A,50Bのうちのマスタコントローラ50Bを含むとともに、複数のスレーブコントローラ60A~60Dのうちのスレーブコントローラ60Aおよびスレーブコントローラ60Dを含んでいる。なお、第1コントローラ群を構成する複数のコントローラ50A,60B,60Cには第2電源12から電力が供給されない。第2コントローラ群を構成する複数のコントローラ50B,60A,60Dには第1電源11から電力が供給されない。 The multiple controllers 50A, 50B, 60A to 60D constituting the brake system 100 can be classified into a first controller group to which power is supplied from the first power source 11, and a second controller group to which power is supplied from the second power source 12. The first controller group includes the master controller 50A of the multiple master controllers 50A, 50B, and also includes the slave controller 60B and slave controller 60C of the multiple slave controllers 60A to 60D. On the other hand, the second controller group includes the master controller 50B of the multiple master controllers 50A, 50B, and also includes the slave controller 60A and slave controller 60D of the multiple slave controllers 60A to 60D. Note that power is not supplied from the second power source 12 to the multiple controllers 50A, 60B, 60C constituting the first controller group. Power is not supplied from the first power source 11 to the multiple controllers 50B, 60A, 60D constituting the second controller group.
 本実施形態では、マスタコントローラ50Aが「第1マスタコントローラ」に対応し、マスタコントローラ50Bが「第2マスタコントローラ」に対応する。また、第1コントローラ群を構成するスレーブコントローラ60Bが「第1スレーブコントローラ」に対応し、第1コントローラ群を構成するスレーブコントローラ60Cが「第2スレーブコントローラ」に対応する。また、第2コントローラ群を構成するスレーブコントローラ60Aが「第3スレーブコントローラ」に対応し、第2コントローラ群を構成するスレーブコントローラ60Dが「第4スレーブコントローラ」に対応する。 In this embodiment, the master controller 50A corresponds to the "first master controller" and the master controller 50B corresponds to the "second master controller." Furthermore, the slave controller 60B constituting the first controller group corresponds to the "first slave controller," and the slave controller 60C constituting the first controller group corresponds to the "second slave controller." Furthermore, the slave controller 60A constituting the second controller group corresponds to the "third slave controller," and the slave controller 60D constituting the second controller group corresponds to the "fourth slave controller."
 第1コントローラ群のマスタコントローラ50A、および、第2コントローラ群のスレーブコントローラ60Aはどちらも第1電動アクチュエータを制御する。本実施形態では、左前輪制御ユニット41Aの電気モータ23が第1電動アクチュエータに対応するため、マスタコントローラ50Aが「第1規定コントローラ」に対応し、スレーブコントローラ60Aが「第2規定コントローラ」に対応する。上述したように電気モータ23は2重巻線モータである。そのため、マスタコントローラ50Aは、電気モータ23の2つの巻線のうちの第1巻線に流れる電流を調整し、スレーブコントローラ60Aは、電気モータ23の2つの巻線のうちの第2巻線に流れる電流を調整する。したがって、マスタコントローラ50Aとスレーブコントローラ60Aとのうち少なくとも一方が動作する場合には、電気モータ23を駆動させることによって、左前輪FLに発生させる制動力を調整できる。 The master controller 50A of the first controller group and the slave controller 60A of the second controller group both control the first electric actuator. In this embodiment, the electric motor 23 of the left front wheel control unit 41A corresponds to the first electric actuator, so the master controller 50A corresponds to the "first prescribed controller" and the slave controller 60A corresponds to the "second prescribed controller". As described above, the electric motor 23 is a double-winding motor. Therefore, the master controller 50A adjusts the current flowing through the first winding of the two windings of the electric motor 23, and the slave controller 60A adjusts the current flowing through the second winding of the two windings of the electric motor 23. Therefore, when at least one of the master controller 50A and the slave controller 60A is operating, the braking force generated on the left front wheel FL can be adjusted by driving the electric motor 23.
 第2コントローラ群のうちのマスタコントローラ50B、および、第1コントローラ群のうちのスレーブコントローラ60Bはどちらも第2電動アクチュエータを制御する。本実施形態では、右前輪制御ユニット41Bの電気モータ23が第2電動アクチュエータに対応するため、マスタコントローラ50Bが「第4規定コントローラ」に対応し、スレーブコントローラ60Bが「第3規定コントローラ」に対応する。上述したように電気モータ23は2重巻線モータである。そのため、マスタコントローラ50Bは、電気モータ23の2つの巻線のうちの第1巻線に流れる電流を調整し、スレーブコントローラ60Bは、電気モータ23の2つの巻線のうちの第2巻線に流れる電流を調整する。したがって、マスタコントローラ50Bとスレーブコントローラ60Bとのうち少なくとも一方が動作する場合には、電気モータ33を駆動させることによって、右前輪FRに発生させる制動力を調整できる。 The master controller 50B of the second controller group and the slave controller 60B of the first controller group both control the second electric actuator. In this embodiment, since the electric motor 23 of the right front wheel control unit 41B corresponds to the second electric actuator, the master controller 50B corresponds to the "fourth prescribed controller" and the slave controller 60B corresponds to the "third prescribed controller". As described above, the electric motor 23 is a double-winding motor. Therefore, the master controller 50B adjusts the current flowing through the first winding of the two windings of the electric motor 23, and the slave controller 60B adjusts the current flowing through the second winding of the two windings of the electric motor 23. Therefore, when at least one of the master controller 50B and the slave controller 60B is operating, the braking force generated on the right front wheel FR can be adjusted by driving the electric motor 33.
 第1コントローラ群のうち、マスタコントローラ50Aおよびスレーブコントローラ60Bとは異なるスレーブコントローラ60Cが、第3電動アクチュエータを制御する。本実施形態では、左後輪制御ユニット41Cの電気モータ33が第3電動アクチュエータに対応するため、スレーブコントローラ60Cは、左後輪制御ユニット41Cの電気モータ33を駆動させることによって左後輪RLに発生させる制動力を調整できる。 Of the first controller group, the slave controller 60C, which is different from the master controller 50A and the slave controller 60B, controls the third electric actuator. In this embodiment, the electric motor 33 of the left rear wheel control unit 41C corresponds to the third electric actuator, so the slave controller 60C can adjust the braking force generated on the left rear wheel RL by driving the electric motor 33 of the left rear wheel control unit 41C.
 第2コントローラ群のうち、マスタコントローラ50Bおよびスレーブコントローラ60Aとは異なるスレーブコントローラ60Dが、第4電動アクチュエータを制御する。本実施形態では、右後輪制御ユニット41Dの電気モータ33が第4電動アクチュエータに対応するため、スレーブコントローラ60Dは、右後輪制御ユニット41Dの電気モータ33を駆動させることによって右後輪RRに発生させる制動力を調整できる。 Of the second controller group, a slave controller 60D, which is different from the master controller 50B and the slave controller 60A, controls the fourth electric actuator. In this embodiment, the electric motor 33 of the right rear wheel control unit 41D corresponds to the fourth electric actuator, so the slave controller 60D can adjust the braking force generated on the right rear wheel RR by driving the electric motor 33 of the right rear wheel control unit 41D.
 複数のマスタコントローラ50A,50Bは、第1ドライバ51とマスタマイコン52とをそれぞれ有している。マスタマイコン52は、実行部と、当該実行部によって実行される制御プログラムを記憶する記憶部とを含んでいる。例えば、実行部はCPUである。電気モータ23は2重巻線モータであるため、第1ドライバ51は、電気モータ23の2つの巻線のうちの第1巻線のみに電気的に接続されている。マスタマイコン52の実行部は、制御プログラムを実行することによって第1ドライバ51を作動させる。これにより、実行部は、電気モータ23の第1巻線に流れる電流を調整することによって電気モータ23を駆動させることができる。 The multiple master controllers 50A, 50B each have a first driver 51 and a master microcomputer 52. The master microcomputer 52 includes an execution unit and a memory unit that stores a control program executed by the execution unit. For example, the execution unit is a CPU. Since the electric motor 23 is a double-winding motor, the first driver 51 is electrically connected to only the first winding of the two windings of the electric motor 23. The execution unit of the master microcomputer 52 operates the first driver 51 by executing the control program. As a result, the execution unit can drive the electric motor 23 by adjusting the current flowing through the first winding of the electric motor 23.
 複数のスレーブコントローラ60A~60Dは、第2ドライバ61とスレーブマイコン62とをそれぞれ有している。スレーブマイコン62は、実行部と、当該実行部によって実行される制御プログラムを記憶する記憶部とを含んでいる。例えば、実行部はCPUである。電気モータ23は2重巻線モータであるため、第2ドライバ61は、電気モータ23の2つの巻線のうちの第2巻線のみに電気的に接続されている。スレーブコントローラ60A,60Bにおけるスレーブマイコン62の実行部は、制御プログラムを実行することによって第2ドライバ61を作動させる。これにより、実行部は、電気モータ23の第2巻線に流れる電流を調整することによって電気モータ23を駆動させることができる。 Each of the slave controllers 60A to 60D has a second driver 61 and a slave microcomputer 62. The slave microcomputer 62 includes an execution unit and a memory unit that stores a control program executed by the execution unit. For example, the execution unit is a CPU. Since the electric motor 23 is a double-winding motor, the second driver 61 is electrically connected only to the second winding of the two windings of the electric motor 23. The execution unit of the slave microcomputer 62 in the slave controllers 60A and 60B operates the second driver 61 by executing the control program. As a result, the execution unit can drive the electric motor 23 by adjusting the current flowing through the second winding of the electric motor 23.
 また、スレーブコントローラ60C,60Dにおけるスレーブマイコン62の実行部は、制御プログラムを実行することによって第2ドライバ61を作動させる。これにより、実行部は、電気モータ33の巻線に流れる電流を調整することによって電気モータ33を駆動させることができる。 The execution unit of the slave microcomputer 62 in the slave controllers 60C and 60D executes the control program to operate the second driver 61. This allows the execution unit to drive the electric motor 33 by adjusting the current flowing through the windings of the electric motor 33.
 ここで、複数のマスタマイコン52は、車内ネットワーク43を介してブレーキシステム100の他に車両に搭載された装置との通信を行う。一方、複数のスレーブマイコン62は、車内ネットワーク43に接続されていない。例えば、車内ネットワーク43はCANバスである。マスタマイコン52を車内ネットワーク43に接続する一方で、スレーブマイコン62を車内ネットワーク43に接続しないことにより、スレーブマイコン62をセキュリティ対応マイコンにする必要がない。その結果、ブレーキシステム100を安価に構成することが可能になる。なお、スレーブマイコン62は、制動制御装置内通信42を用いてブレーキシステム100内のみで情報の送受信を行う。 Here, the multiple master microcomputers 52 communicate with devices installed in the vehicle in addition to the brake system 100 via the in-vehicle network 43. On the other hand, the multiple slave microcomputers 62 are not connected to the in-vehicle network 43. For example, the in-vehicle network 43 is a CAN bus. By connecting the master microcomputer 52 to the in-vehicle network 43 while not connecting the slave microcomputer 62 to the in-vehicle network 43, there is no need to make the slave microcomputer 62 a security-enabled microcomputer. As a result, it is possible to configure the brake system 100 at low cost. Note that the slave microcomputer 62 transmits and receives information only within the brake system 100 using the brake control device internal communication 42.
 ちなみに、ブレーキシステム100では、左前輪制御ユニット41Aと電動ブレーキ20Aとがユニット化されて、左前輪用のブレーキユニットが構成されている。右前輪制御ユニット41Bと電動ブレーキ20Bとがユニット化されて、右前輪用のブレーキユニットが構成されている。左後輪制御ユニット41Cと電動ブレーキ20Cとがユニット化されて、左後輪用のブレーキユニットが構成されている。右後輪制御ユニット41Dと電動ブレーキ20Dとがユニット化されて、右後輪用のブレーキユニットが構成されている。 Incidentally, in the brake system 100, the left front wheel control unit 41A and the electric brake 20A are unitized to form a brake unit for the left front wheel. The right front wheel control unit 41B and the electric brake 20B are unitized to form a brake unit for the right front wheel. The left rear wheel control unit 41C and the electric brake 20C are unitized to form a brake unit for the left rear wheel. The right rear wheel control unit 41D and the electric brake 20D are unitized to form a brake unit for the right rear wheel.
 <コントローラの機能構成>
 図2を参照し、コントローラの機能構成について説明する。
 複数のマスタコントローラ50A,50Bの実行部は、制御プログラムを実行することにより、制動力演算部M11およびドライバ制御部M13としてそれぞれ機能する。制動力演算部M11およびドライバ制御部M13は、電気モータを駆動させるための機能部である。
<Controller functional configuration>
The functional configuration of the controller will be described with reference to FIG.
The execution units of the master controllers 50A, 50B execute a control program to function as a braking force calculation unit M11 and a driver control unit M13. The braking force calculation unit M11 and the driver control unit M13 are functional units for driving the electric motor.
 制動力演算部M11は、電動ブレーキの電気モータの駆動によって車輪に発生させる制動力を演算する。例えば、制動力演算部M11は、車両10の減速度の要求値を基に、車輪に発生させる制動力の指示値である指示制動力を車輪FL,FR,RL,RR毎に演算する。すなわち、制動力演算部M11は、左前輪FLに対する指示制動力FbA、右前輪FRに対する指示制動力FbB、左後輪RLに対する指示制動力FbCおよび右後輪RRに対する指示制動力FbDを演算する。 The braking force calculation unit M11 calculates the braking force to be generated at the wheels by driving the electric motor of the electric brake. For example, the braking force calculation unit M11 calculates the command braking force, which is the command value of the braking force to be generated at the wheels, for each of the wheels FL, FR, RL, and RR based on the required deceleration value of the vehicle 10. That is, the braking force calculation unit M11 calculates the command braking force FbA for the left front wheel FL, the command braking force FbB for the right front wheel FR, the command braking force FbC for the left rear wheel RL, and the command braking force FbD for the right rear wheel RR.
 ドライバ制御部M13は、制動力演算部M11の演算結果に応じて第1ドライバ51を作動させることにより、前輪電動ブレーキの電気モータ23に供給する電力を調整する。具体的には、左前輪制御ユニット41Aのドライバ制御部M13は、左前輪FLに対する指示制動力FbAに基づいて第1ドライバ51を作動させることにより、左前輪用の電動ブレーキ20Aの電気モータ23に供給する電力を調整する。右前輪制御ユニット41Bのドライバ制御部M13は、右前輪FRに対する指示制動力FbBに基づいて第1ドライバ51を作動させることにより、右前輪用の電動ブレーキ20Bの電気モータ23に供給する電力を調整する。 The driver control unit M13 adjusts the power supplied to the electric motor 23 of the front wheel electric brake by operating the first driver 51 according to the calculation result of the braking force calculation unit M11. Specifically, the driver control unit M13 of the left front wheel control unit 41A adjusts the power supplied to the electric motor 23 of the left front wheel electric brake 20A by operating the first driver 51 based on the command braking force FbA for the left front wheel FL. The driver control unit M13 of the right front wheel control unit 41B adjusts the power supplied to the electric motor 23 of the right front wheel electric brake 20B by operating the first driver 51 based on the command braking force FbB for the right front wheel FR.
 複数のスレーブコントローラ60A~60Dの実行部は、制御プログラムを実行することにより、ドライバ制御部M23としてそれぞれ機能する。ドライバ制御部M23は、電気モータを駆動させるための機能部である。なお、スレーブコントローラ60A~60Dの実行部は、制動力演算部として機能しない。 The execution units of the multiple slave controllers 60A-60D each function as a driver control unit M23 by executing a control program. The driver control unit M23 is a functional unit for driving the electric motor. Note that the execution units of the slave controllers 60A-60D do not function as braking force calculation units.
 前輪用のスレーブコントローラ60A,60Bのドライバ制御部M23は、制動力演算部M11の演算結果に応じて第2ドライバ61を作動させることにより、前輪電動ブレーキの電気モータ23に供給する電力を調整する。具体的には、左前輪制御ユニット41Aのドライバ制御部M23は、左前輪FLに対する指示制動力FbAに基づいて第2ドライバ61を作動させることにより、左前輪用の電動ブレーキ20Aの電気モータ23に供給する電力を調整する。右前輪制御ユニット41Bのドライバ制御部M23は、右前輪FRに対する指示制動力FbBに基づいて第2ドライバ61を作動させることにより、右前輪用の電動ブレーキ20Bの電気モータ23に供給する電力を調整する。 The driver control unit M23 of the slave controllers 60A, 60B for the front wheels adjusts the power supplied to the electric motor 23 of the front wheel electric brake by operating the second driver 61 according to the calculation result of the braking force calculation unit M11. Specifically, the driver control unit M23 of the left front wheel control unit 41A adjusts the power supplied to the electric motor 23 of the left front wheel electric brake 20A by operating the second driver 61 based on the command braking force FbA for the left front wheel FL. The driver control unit M23 of the right front wheel control unit 41B adjusts the power supplied to the electric motor 23 of the right front wheel electric brake 20B by operating the second driver 61 based on the command braking force FbB for the right front wheel FR.
 後輪用のスレーブコントローラ60C,60Dのドライバ制御部M23は、制動力演算部M11の演算結果に応じて第2ドライバ61を作動させることにより、後輪電動ブレーキの電気モータ33に供給する電力を調整する。具体的には、左後輪制御ユニット41Cのドライバ制御部M23は、左後輪RLに対する指示制動力FbCに基づいて第2ドライバ61を作動させることにより、左後輪用の電動ブレーキ20Cの電気モータ33に供給する電力を調整する。右後輪制御ユニット41Dのドライバ制御部M23は、右後輪RRに対する指示制動力FbDに基づいて第2ドライバ61を作動させることにより、右後輪用の電動ブレーキ20Dの電気モータ33に供給する電力を調整する。 The driver control unit M23 of the slave controllers 60C, 60D for the rear wheels adjusts the power supplied to the electric motor 33 of the rear wheel electric brake by operating the second driver 61 according to the calculation result of the braking force calculation unit M11. Specifically, the driver control unit M23 of the left rear wheel control unit 41C adjusts the power supplied to the electric motor 33 of the left rear wheel electric brake 20C by operating the second driver 61 based on the command braking force FbC for the left rear wheel RL. The driver control unit M23 of the right rear wheel control unit 41D adjusts the power supplied to the electric motor 33 of the right rear wheel electric brake 20D by operating the second driver 61 based on the command braking force FbD for the right rear wheel RR.
 <正常時における制動制御>
 図3を参照し、正常時における制動制御について説明する。ここでいう「正常」とは、第1電源11および第2電源12の双方からブレーキシステム100に電力が供給されているとともに、複数のマスタコントローラ50A,50Bの何れもが正常に動作している制動制御装置40の状態である。なお、図3から図5では、「MC1」はマスタコントローラ50Aを示し、「MC2」はマスタコントローラ50Bを示している。また、「SC1」はスレーブコントローラ60Aを示し、「SC2」はスレーブコントローラ60Bを示し、「SC3」はスレーブコントローラ60Cを示し、「SC4」はスレーブコントローラ60Dを示している。
<Braking control during normal operation>
Brake control in normal operation will be described with reference to Fig. 3. "Normal" here refers to a state of the brake control device 40 in which power is supplied to the brake system 100 from both the first power source 11 and the second power source 12, and all of the master controllers 50A, 50B are operating normally. In Figs. 3 to 5, "MC1" indicates the master controller 50A, and "MC2" indicates the master controller 50B. Also, "SC1" indicates the slave controller 60A, "SC2" indicates the slave controller 60B, "SC3" indicates the slave controller 60C, and "SC4" indicates the slave controller 60D.
 左前輪制御ユニット41Aは、マスタコントローラ50Aの制動力演算部M11で演算された指示制動力FbAに基づいて作動する。すなわち、マスタコントローラ50Aのドライバ制御部M13は、マスタコントローラ50Aの制動力演算部M11で演算された指示制動力FbAに基づいて第1ドライバ51を作動させる。また、スレーブコントローラ60Aのドライバ制御部M23は、マスタコントローラ50Aの制動力演算部M11で演算された指示制動力FbAに基づいて第2ドライバ61を作動させる。 The left front wheel control unit 41A operates based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A. Also, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the braking force calculation unit M11 of the master controller 50A.
 なお、以降の記載において、マスタコントローラ50Aの制動力演算部M11で演算された指示制動力を「マスタコントローラ50Aで演算された指示制動力」という。また、マスタコントローラ50Bの制動力演算部M11で演算された指示制動力を「マスタコントローラ50Bで演算された指示制動力」という。 In the following description, the command braking force calculated by the braking force calculation unit M11 of the master controller 50A is referred to as the "command braking force calculated by the master controller 50A." Also, the command braking force calculated by the braking force calculation unit M11 of the master controller 50B is referred to as the "command braking force calculated by the master controller 50B."
 右前輪制御ユニット41Bは、マスタコントローラ50Bで演算された指示制動力FbBに基づいて作動する。すなわち、マスタコントローラ50Bのドライバ制御部M13は、マスタコントローラ50Bで演算された指示制動力FbBに基づいて第1ドライバ51を作動させる。また、スレーブコントローラ60Bのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbBに基づいて第2ドライバ61を作動させる。 The right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B. Also, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50B.
 左後輪制御ユニット41Cは、マスタコントローラ50Bで演算された指示制動力FbCに基づいて作動する。すなわち、スレーブコントローラ60Cのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbCに基づいて第2ドライバ61を作動させる。 The left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50B.
 右後輪制御ユニット41Dは、マスタコントローラ50Aで演算された指示制動力FbDに基づいて作動する。すなわち、スレーブコントローラ60Dのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbDに基づいて第2ドライバ61を作動させる。 The right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50A.
 <電源からブレーキシステムへの給電が停止した場合の制動制御>
 図4を参照し、第1電源11および第2電源12のうち、一方からブレーキシステム100に電力が供給されているものの、他方からブレーキシステム100への給電が停止した場合における制動制御について説明する。
<Braking control when power supply from the power source to the brake system is stopped>
Referring to FIG. 4, braking control will be described in a case where power is supplied to the brake system 100 from one of the first power source 11 and the second power source 12, but power supply to the brake system 100 from the other power source is stopped.
 はじめに、第1電源11からブレーキシステム100への給電が停止した場合について説明する。この場合、第1コントローラ群を構成するコントローラ50A,60B,60Cは動作しない。 First, a case where power supply from the first power source 11 to the brake system 100 is stopped will be described. In this case, the controllers 50A, 60B, and 60C that make up the first controller group do not operate.
 左前輪制御ユニット41Aは、マスタコントローラ50Bで演算された指示制動力FbAに基づいて作動する。すなわち、スレーブコントローラ60Aのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbAに基づいて第2ドライバ61を作動させる。 The left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50B.
 右前輪制御ユニット41Bは、マスタコントローラ50Bで演算された指示制動力FbBに基づいて作動する。すなわち、マスタコントローラ50Bのドライバ制御部M13は、マスタコントローラ50Bで演算された指示制動力FbBに基づいて第1ドライバ51を作動させる。 The right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B.
 スレーブコントローラ60Cへの給電が停止されている場合、スレーブコントローラ60Cの第2ドライバ61が作動しない。そのため、左後輪制御ユニット41Cが作動しないため、スレーブコントローラ60Cは左後輪RLに発生させる制動力を調整できない。 When power supply to the slave controller 60C is stopped, the second driver 61 of the slave controller 60C does not operate. As a result, the left rear wheel control unit 41C does not operate, and the slave controller 60C cannot adjust the braking force generated on the left rear wheel RL.
 右後輪制御ユニット41Dは、マスタコントローラ50Bで演算された指示制動力FbDに基づいて作動する。すなわち、スレーブコントローラ60Dのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbDに基づいて第2ドライバ61を作動させる。 The right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50B.
 反対に、第2電源12からブレーキシステム100への給電が停止した場合について説明する。この場合、第2コントローラ群を構成するコントローラ50B,60A,60Dは動作しない。 On the other hand, a case where power supply from the second power source 12 to the brake system 100 is stopped will be described. In this case, the controllers 50B, 60A, and 60D constituting the second controller group do not operate.
 左前輪制御ユニット41Aは、マスタコントローラ50Aで演算された指示制動力FbAに基づいて作動する。すなわち、マスタコントローラ50Aのドライバ制御部M13は、マスタコントローラ50Aで演算された指示制動力FbAに基づいて第1ドライバ51を作動させる。 The left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the master controller 50A.
 右前輪制御ユニット41Bは、マスタコントローラ50Aで演算された指示制動力FbBに基づいて作動する。すなわち、スレーブコントローラ60Bのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbBに基づいて第2ドライバ61を作動させる。 The right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50A.
 左後輪制御ユニット41Cは、マスタコントローラ50Aで演算された指示制動力FbCに基づいて作動する。すなわち、スレーブコントローラ60Cのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbCに基づいて第2ドライバ61を作動させる。 The left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50A.
 スレーブコントローラ60Dへの給電が停止されている場合、スレーブコントローラ60Dの第2ドライバ61が作動しない。そのため、右後輪制御ユニット41Dが作動しないため、スレーブコントローラ60Dは右後輪RRに発生させる制動力を調整できない。 When power supply to the slave controller 60D is stopped, the second driver 61 of the slave controller 60D does not operate. As a result, the right rear wheel control unit 41D does not operate, and the slave controller 60D cannot adjust the braking force generated on the right rear wheel RR.
 <マスタコントローラが失陥した場合の制動制御>
 図5を参照し、複数のマスタコントローラ50A,50Bのうち、一方は正常に動作するものの、他方が失陥した場合の制動制御について説明する。ここでは、第1電源11および第2電源12の何れをもからブレーキシステム100に電力が供給されているものとして説明する。
<Braking control when the master controller fails>
5, a braking control in a case where one of the multiple master controllers 50A, 50B operates normally while the other fails will be described. Here, the description will be given on the assumption that power is supplied to the brake system 100 from both the first power source 11 and the second power source 12.
 はじめに、マスタコントローラ50Aが失陥した場合について説明する。
 左前輪制御ユニット41Aは、マスタコントローラ50Bで演算された指示制動力FbAに基づいて作動する。すなわち、スレーブコントローラ60Aは、マスタコントローラ50Bで演算された指示制動力FbAに基づいて第2ドライバ61を作動させる。この際、マスタコントローラ50Aが失陥しているため、左前輪制御ユニット41Aの第1ドライバ51は作動できない。
First, a case where the master controller 50A fails will be described.
The left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50B. That is, the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50B. At this time, since the master controller 50A has failed, the first driver 51 of the left front wheel control unit 41A cannot operate.
 右前輪制御ユニット41Bは、マスタコントローラ50Bで演算された指示制動力FbBに基づいて作動する。すなわち、マスタコントローラ50Bのドライバ制御部M13は、マスタコントローラ50Bで演算された指示制動力FbBに基づいて第1ドライバ51を作動させる。また、スレーブコントローラ60Bのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbBに基づいて第2ドライバ61を作動させる。 The right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50B. That is, the driver control unit M13 of the master controller 50B operates the first driver 51 based on the command braking force FbB calculated by the master controller 50B. Also, the driver control unit M23 of the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50B.
 左後輪制御ユニット41Cは、マスタコントローラ50Bで演算された指示制動力FbCに基づいて作動する。すなわち、スレーブコントローラ60Cのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbCに基づいて第2ドライバ61を作動させる。 The left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50B.
 右後輪制御ユニット41Dは、マスタコントローラ50Bで演算された指示制動力FbDに基づいて作動する。すなわち、スレーブコントローラ60Dのドライバ制御部M23は、マスタコントローラ50Bで演算された指示制動力FbDに基づいて第2ドライバ61を作動させる。 The right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50B. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50B.
 次に、マスタコントローラ50Bが失陥した場合について説明する。
 左前輪制御ユニット41Aは、マスタコントローラ50Aで演算された指示制動力FbAに基づいて作動する。すなわち、マスタコントローラ50Aのドライバ制御部M13は、マスタコントローラ50Aで演算された指示制動力FbAに基づいて第1ドライバ51を作動させる。また、スレーブコントローラ60Aのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbAに基づいて第2ドライバ61を作動させる。
Next, a case where the master controller 50B fails will be described.
The left front wheel control unit 41A operates based on the command braking force FbA calculated by the master controller 50A. That is, the driver control unit M13 of the master controller 50A operates the first driver 51 based on the command braking force FbA calculated by the master controller 50A. Also, the driver control unit M23 of the slave controller 60A operates the second driver 61 based on the command braking force FbA calculated by the master controller 50A.
 右前輪制御ユニット41Bは、マスタコントローラ50Aで演算された指示制動力FbBに基づいて作動する。すなわち、スレーブコントローラ60Bは、マスタコントローラ50Aで演算された指示制動力FbBに基づいて第2ドライバ61を作動させる。この際、マスタコントローラ50Bが失陥しているため、右前輪制御ユニット41Bの第1ドライバ51は作動できない。 The right front wheel control unit 41B operates based on the command braking force FbB calculated by the master controller 50A. That is, the slave controller 60B operates the second driver 61 based on the command braking force FbB calculated by the master controller 50A. At this time, because the master controller 50B has failed, the first driver 51 of the right front wheel control unit 41B cannot operate.
 左後輪制御ユニット41Cは、マスタコントローラ50Aで演算された指示制動力FbCに基づいて作動する。すなわち、スレーブコントローラ60Cのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbCに基づいて第2ドライバ61を作動させる。 The left rear wheel control unit 41C operates based on the command braking force FbC calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60C operates the second driver 61 based on the command braking force FbC calculated by the master controller 50A.
 右後輪制御ユニット41Dは、マスタコントローラ50Aで演算された指示制動力FbDに基づいて作動する。すなわち、スレーブコントローラ60Dのドライバ制御部M23は、マスタコントローラ50Aで演算された指示制動力FbDに基づいて第2ドライバ61を作動させる。 The right rear wheel control unit 41D operates based on the command braking force FbD calculated by the master controller 50A. That is, the driver control unit M23 of the slave controller 60D operates the second driver 61 based on the command braking force FbD calculated by the master controller 50A.
 <マスタコントローラのマスタマイコンが実行する処理の流れ>
 図6を参照し、マスタコントローラ50A,50Bのマスタマイコン52で実行される一連の処理であるマスタ側処理を説明する。マスタマイコン52は、マスタ側処理を所定の制御サイクル毎に繰り返し実行する。
<Processing flow executed by the master microcomputer of the master controller>
A master side process, which is a series of processes executed by the master microcomputer 52 of the master controllers 50A and 50B, will be described with reference to Fig. 6. The master microcomputer 52 repeatedly executes the master side process at each predetermined control cycle.
 ステップS11において、マスタマイコン52は、制動力演算部M11として機能することにより、複数の車輪FL,FR,RL,RRに対する指示制動力FbA~FbDを演算する。すなわち、マスタコントローラ50Aのマスタマイコン52およびマスタコントローラ50Bのマスタマイコン52の何れにおいても、複数の車輪FL,FR,RL,RRに対する指示制動力FbA~FbDをそれぞれ演算する。 In step S11, the master microcomputer 52 functions as a braking force calculation unit M11 to calculate command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR. That is, the master microcomputer 52 of the master controller 50A and the master microcomputer 52 of the master controller 50B each calculate the command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR.
 ステップS13において、マスタマイコン52は、ステップS11で演算した指示制動力を送信する。具体的には、マスタコントローラ50Aのマスタマイコン52は、左前輪FL以外の他の車輪FR,RL,RRに対する指示制動力FbB,FbC,FbDを制動制御装置内通信42に送信する。また、マスタコントローラ50Aのマスタマイコン52は、左前輪FLに対する指示制動力FbAをスレーブコントローラ60Aに送信する。一方、マスタコントローラ50Bのマスタマイコン52は、右前輪FR以外の他の車輪FL,RL,RRに対する指示制動力FbA,FbC,FbDを制動制御装置内通信42に送信する。また、マスタコントローラ50Bのマスタマイコン52は、右前輪FRに対する指示制動力FbBをスレーブコントローラ60Bに送信する。 In step S13, the master microcomputer 52 transmits the command braking force calculated in step S11. Specifically, the master microcomputer 52 of the master controller 50A transmits the command braking forces FbB, FbC, and FbD for the wheels FR, RL, and RR other than the left front wheel FL to the brake control device internal communication 42. The master microcomputer 52 of the master controller 50A also transmits the command braking force FbA for the left front wheel FL to the slave controller 60A. Meanwhile, the master microcomputer 52 of the master controller 50B transmits the command braking forces FbA, FbC, and FbD for the wheels FL, RL, and RR other than the right front wheel FR to the brake control device internal communication 42. The master microcomputer 52 of the master controller 50B also transmits the command braking force FbB for the right front wheel FR to the slave controller 60B.
 ステップS15において、マスタマイコン52は、ドライバ制御部M13として機能することにより、指示制動力に基づいて第1ドライバ51を作動させる。具体的には、マスタコントローラ50Aのマスタマイコン52は、自身で演算した左前輪FLに対する指示制動力FbAに基づいて、電動ブレーキ20Aの第1ドライバ51を作動させる。一方、マスタコントローラ50Bのマスタマイコン52は、自身で演算した右前輪FRに対する指示制動力FbBに基づいて、電動ブレーキ20Bの第1ドライバ51を作動させる。その後、マスタマイコン52はマスタ側処理を一旦終了する。 In step S15, the master microcomputer 52 functions as the driver control unit M13 to operate the first driver 51 based on the command braking force. Specifically, the master microcomputer 52 of the master controller 50A operates the first driver 51 of the electric brake 20A based on the command braking force FbA for the left front wheel FL that it has calculated. Meanwhile, the master microcomputer 52 of the master controller 50B operates the first driver 51 of the electric brake 20B based on the command braking force FbB for the right front wheel FR that it has calculated. After that, the master microcomputer 52 temporarily ends the master-side processing.
 <スレーブコントローラのスレーブマイコンが実行する処理の流れ>
 図7を参照し、スレーブコントローラ60A~60Dのスレーブマイコン62で実行される一連の処理であるスレーブ側処理を説明する。スレーブマイコン62は、スレーブ側処理を所定の制御サイクル毎に繰り返し実行する。
<Processing flow executed by the slave microcomputer of the slave controller>
Slave-side processing, which is a series of processing executed by the slave microcomputer 62 of each of the slave controllers 60A to 60D, will be described with reference to Fig. 7. The slave microcomputer 62 repeatedly executes the slave-side processing for each predetermined control cycle.
 ステップS21において、スレーブマイコン62は、第2ドライバ61を作動させるための指示制動力を取得する。
 具体的には、左前輪制御ユニット41Aのスレーブコントローラ60Aのスレーブマイコン62は、マスタコントローラ50Aから指示制動力FbAを受信した場合、マスタコントローラ50Aで演算された指示制動力FbAを取得する。スレーブコントローラ60Aのスレーブマイコン62は、マスタコントローラ50Aから指示制動力FbAを受信できなくても、マスタコントローラ50Bで演算された指示制動力FbAを制動制御装置内通信42から受信できた場合、マスタコントローラ50Bで演算された指示制動力FbAを取得する。
In step S21, the slave microcomputer 62 obtains a command braking force for operating the second driver 61.
Specifically, when the slave microcomputer 62 of the slave controller 60A of the left front wheel control unit 41A receives the command braking force FbA from the master controller 50A, it acquires the command braking force FbA calculated by the master controller 50A. When the slave microcomputer 62 of the slave controller 60A cannot receive the command braking force FbA from the master controller 50A but can receive the command braking force FbA calculated by the master controller 50B from the brake control device internal communication 42, it acquires the command braking force FbA calculated by the master controller 50B.
 右前輪制御ユニット41Bのスレーブコントローラ60Bのスレーブマイコン62は、マスタコントローラ50Bから指示制動力FbBを受信した場合、マスタコントローラ50Bで演算された指示制動力FbBを取得する。スレーブコントローラ60Bのスレーブマイコン62は、マスタコントローラ50Bから指示制動力FbBを受信できなくても、マスタコントローラ50Aで演算された指示制動力FbBを制動制御装置内通信42から受信できた場合、マスタコントローラ50Aで演算された指示制動力FbBを取得する。 When the slave microcomputer 62 of the slave controller 60B of the right front wheel control unit 41B receives the command braking force FbB from the master controller 50B, it acquires the command braking force FbB calculated by the master controller 50B. If the slave microcomputer 62 of the slave controller 60B cannot receive the command braking force FbB from the master controller 50B but can receive the command braking force FbB calculated by the master controller 50A from the brake control device internal communication 42, it acquires the command braking force FbB calculated by the master controller 50A.
 左後輪制御ユニット41Cのスレーブコントローラ60Cのスレーブマイコン62は、マスタコントローラ50Bで演算された指示制動力FbCを制動制御装置内通信42から取得できる場合には、マスタコントローラ50Bで演算された指示制動力FbCを取得する。スレーブコントローラ60Cのスレーブマイコン62は、マスタコントローラ50Bで演算された指示制動力FbCを受信できなくても、マスタコントローラ50Aで演算された指示制動力FbCを制動制御装置内通信42から受信できた場合、マスタコントローラ50Aで演算された指示制動力FbCを取得する。 The slave microcomputer 62 of the slave controller 60C of the left rear wheel control unit 41C acquires the command braking force FbC calculated by the master controller 50B if the command braking force FbC calculated by the master controller 50B can be acquired from the braking control device internal communication 42. Even if the slave microcomputer 62 of the slave controller 60C cannot receive the command braking force FbC calculated by the master controller 50B, if the slave microcomputer 62 of the slave controller 60C can receive the command braking force FbC calculated by the master controller 50A from the braking control device internal communication 42, the slave microcomputer 62 acquires the command braking force FbC calculated by the master controller 50A.
 右後輪制御ユニット41Dのスレーブコントローラ60Dのスレーブマイコン62は、マスタコントローラ50Aで演算された指示制動力FbDを制動制御装置内通信42から取得できる場合には、マスタコントローラ50Aで演算された指示制動力FbDを取得する。スレーブコントローラ60Dのスレーブマイコン62は、マスタコントローラ50Aで演算された指示制動力FbDを受信できなくても、マスタコントローラ50Bで演算された指示制動力FbDを制動制御装置内通信42から受信できた場合、マスタコントローラ50Bで演算された指示制動力FbDを取得する。 The slave microcomputer 62 of the slave controller 60D of the right rear wheel control unit 41D acquires the command braking force FbD calculated by the master controller 50A if the command braking force FbD calculated by the master controller 50A can be acquired from the braking control device internal communication 42. Even if the slave microcomputer 62 of the slave controller 60D cannot receive the command braking force FbD calculated by the master controller 50A, if the slave microcomputer 62 of the slave controller 60D can receive the command braking force FbD calculated by the master controller 50B from the braking control device internal communication 42, the slave microcomputer 62 acquires the command braking force FbD calculated by the master controller 50B.
 ステップS23において、スレーブマイコン62は、ステップS21で取得した指示制動力に基づいて第2ドライバ61を作動させる。具体的には、左前輪制御ユニット41Aのスレーブコントローラ60Aのスレーブマイコン62は、指示制動力FbAに基づいて電動ブレーキ20Aの第2ドライバ61を作動させる。右前輪制御ユニット41Bのスレーブコントローラ60Bのスレーブマイコン62は、指示制動力FbBに基づいて電動ブレーキ20Bの第2ドライバ61を作動させる。左後輪制御ユニット41Cのスレーブコントローラ60Cのスレーブマイコン62は、指示制動力FbCに基づいて電動ブレーキ20Cの第2ドライバ61を作動させる。右後輪制御ユニット41Dのスレーブコントローラ60Dのスレーブマイコン62は、指示制動力FbDに基づいて電動ブレーキ20Dの第2ドライバ61を作動させる。その後、スレーブマイコン62はスレーブ側処理を一旦終了する。 In step S23, the slave microcomputer 62 operates the second driver 61 based on the command braking force acquired in step S21. Specifically, the slave microcomputer 62 of the slave controller 60A of the left front wheel control unit 41A operates the second driver 61 of the electric brake 20A based on the command braking force FbA. The slave microcomputer 62 of the slave controller 60B of the right front wheel control unit 41B operates the second driver 61 of the electric brake 20B based on the command braking force FbB. The slave microcomputer 62 of the slave controller 60C of the left rear wheel control unit 41C operates the second driver 61 of the electric brake 20C based on the command braking force FbC. The slave microcomputer 62 of the slave controller 60D of the right rear wheel control unit 41D operates the second driver 61 of the electric brake 20D based on the command braking force FbD. After that, the slave microcomputer 62 temporarily ends the slave side processing.
 <本実施形態の作用および効果>
 (1)第1電源11からブレーキシステム100への給電が停止しても、第2電源12からブレーキシステム100に電力が供給されている場合には、第2コントローラ群のコントローラが動作する。そのため、4つの車輪FL,FR,RL,RRのうち、3つの車輪に制動力を発生させることができる。反対に、第2電源12からブレーキシステム100への給電が停止しても、第1電源11からブレーキシステム100に電力が供給されている場合には、第1コントローラ群のコントローラが動作する。そのため、4つの車輪FL,FR,RL,RRのうち、3つの車輪に制動力を発生させることができる。したがって、ブレーキシステム100は、第1電源11および第2電源12のうち一方からの給電が停止された場合における車両10の制動力の低下を抑制できる。
<Actions and Effects of the Present Embodiment>
(1) Even if the power supply from the first power source 11 to the brake system 100 is stopped, if the power is supplied from the second power source 12 to the brake system 100, the controllers of the second controller group operate. Therefore, braking force can be generated on three of the four wheels FL, FR, RL, and RR. On the other hand, even if the power supply from the second power source 12 to the brake system 100 is stopped, if the power is supplied from the first power source 11 to the brake system 100, the controllers of the first controller group operate. Therefore, braking force can be generated on three of the four wheels FL, FR, RL, and RR. Therefore, the brake system 100 can suppress a decrease in the braking force of the vehicle 10 when the power supply from one of the first power source 11 and the second power source 12 is stopped.
 なお、第1コントローラ群のコントローラが動作できる一方で、第2コントローラ群のコントローラが動作できない場合では、右後輪RR以外の他の車輪FL,FR,RLに制動力を発生させることができる。一方、第2コントローラ群のコントローラが動作できる一方で、第1コントローラ群のコントローラが動作できない場合では、左後輪RL以外の他の車輪FL,FR,RRに制動力を発生させることができる。 Note that, if the controllers in the first controller group are operable but the controllers in the second controller group are inoperable, braking force can be generated on the wheels FL, FR, RL other than the right rear wheel RR. On the other hand, if the controllers in the second controller group are operable but the controllers in the first controller group are inoperable, braking force can be generated on the wheels FL, FR, RR other than the left rear wheel RL.
 加えて、第1コントローラ群は、第2電源12から電力が供給されず第1電源11から電力が供給されている。第2コントローラ群は、第1電源11から電力が供給されず第1電源11から電力が供給されている。これにより、第1コントローラ群のコントローラまたは第2コントローラ群のコントローラが地絡することで第1電源11と第2電源12の電位が同時に低下し、ブレーキシステム100に電力を供給できなくなることを防止できる。 In addition, the first controller group is supplied with power from the first power source 11, but not from the second power source 12. The second controller group is supplied with power from the first power source 11, but not from the first power source 11. This prevents a situation in which a controller in the first controller group or a controller in the second controller group has a ground fault, causing the potentials of the first power source 11 and the second power source 12 to drop simultaneously, resulting in an inability to supply power to the brake system 100.
 (2)前輪制御ユニットの電気モータ23の巻線が1つのみである場合を考える。この場合、前輪制御ユニットのマスタコントローラおよびスレーブコントローラの何れでも電気モータ23のドライバを作動させることができるようにするために、ドライバを制御するコントローラを、マスタコントローラとスレーブコントローラとで切り替えるためのスイッチング回路を前輪制御ユニットに設けることがある。ドライバを制御するコントローラを、マスタコントローラおよびスレーブコントローラの一方から他方に切り替える際にはスイッチング回路を作動させる必要が生じ、切り替え途中で電気モータ23の制御が一時的に中断されるおそれがある。 (2) Consider a case where the electric motor 23 of the front wheel control unit has only one winding. In this case, in order to enable either the master controller or the slave controller of the front wheel control unit to operate the driver of the electric motor 23, a switching circuit may be provided in the front wheel control unit to switch the controller that controls the driver between the master controller and the slave controller. When switching the controller that controls the driver from one of the master controller and the slave controller to the other, it becomes necessary to operate the switching circuit, and there is a risk that control of the electric motor 23 may be temporarily interrupted during the switchover.
 この点、ブレーキシステム100では、前輪制御ユニットの電気モータ23は2重巻線モータである。そして、2つの巻線のうち、第1巻線がマスタコントローラの第1ドライバ51に電気的に接続され、第2巻線がスレーブコントローラの第2ドライバ61に電気的に接続されている。その上で、マスタコントローラおよびスレーブコントローラの双方が動作している場合、第1ドライバ51および第2ドライバ61の双方が作動する。そのため、電気モータ23の駆動中にマスタコントローラおよびスレーブコントローラのうちの一方の動作が停止したとしても、電気モータ23の制御を継続させることができる。すなわち、電気モータ23の制御が一時的に中断されることを防止できる。 In this regard, in the brake system 100, the electric motor 23 of the front wheel control unit is a double-winding motor. Of the two windings, the first winding is electrically connected to the first driver 51 of the master controller, and the second winding is electrically connected to the second driver 61 of the slave controller. When both the master controller and the slave controller are operating, both the first driver 51 and the second driver 61 operate. Therefore, even if the operation of one of the master controller and the slave controller stops while the electric motor 23 is being driven, it is possible to continue control of the electric motor 23. In other words, it is possible to prevent the control of the electric motor 23 from being temporarily interrupted.
 (3)前輪制御ユニットの電気モータ23は2重巻線モータであり、前輪制御ユニットは、マスタコントローラおよびスレーブコントローラの双方を備えている。さらに、マスタコントローラおよびスレーブコントローラのうち、一方は第1コントローラ群を構成し、他方は第2コントローラ群を構成している。そのため、第1電源11および第2電源12のうちの一方からブレーキシステム100への給電が停止されたとしても、複数の前輪FL,FRでは制動力を発生させることができる。 (3) The electric motor 23 of the front wheel control unit is a double-winding motor, and the front wheel control unit includes both a master controller and a slave controller. Furthermore, one of the master controller and the slave controller constitutes a first controller group, and the other constitutes a second controller group. Therefore, even if the power supply from one of the first power source 11 and the second power source 12 to the brake system 100 is stopped, braking force can be generated at the multiple front wheels FL, FR.
 (4)複数のマスタコントローラ50A,50Bが、複数の車輪FL,FR,RL,RRに対する指示制動力FbA~FbDをそれぞれ演算している。そのため、複数のマスタコントローラ50A,50Bのうちの一方のみが失陥した場合であっても、複数の制御ユニット41A~41Dは指示制動力をそれぞれ取得できるため、複数の制御ユニット41A~41Dは電気モータをそれぞれ駆動させることができる。したがって、複数のマスタコントローラ50A,50Bのうちの一方のみが失陥した場合であっても、複数の車輪FL,FR,RL,RRに制動力を発生させることができる。 (4) The multiple master controllers 50A, 50B calculate the command braking forces FbA to FbD for the multiple wheels FL, FR, RL, and RR, respectively. Therefore, even if only one of the multiple master controllers 50A, 50B fails, the multiple control units 41A to 41D can obtain the command braking forces, and the multiple control units 41A to 41D can drive the electric motors, respectively. Therefore, even if only one of the multiple master controllers 50A, 50B fails, braking forces can be generated for the multiple wheels FL, FR, RL, and RR.
 (5)スレーブコントローラ60A~60Dは、マスタコントローラ50A,50Bとは異なって指示制動力FbA~FbDを演算する機能を有していない。そのため、スレーブコントローラ60A~60Dのスレーブマイコン62として、マスタコントローラ50A,50Bのマスタマイコン52よりも低機能のマイコンを採用できる。すなわち、ブレーキシステム100は、コストの増大を抑制しつつも、2つの電源11,12のうちの一方からの給電が停止した場合における車両10の制動力の低下を抑制できる。ここでいう「低機能のマイコン」とは、低機能ではないマイコンと比較して、動作周波数が低かったり、CPUのコア数が少なかったりすることを含んでいる。 (5) Unlike the master controllers 50A and 50B, the slave controllers 60A to 60D do not have the function of calculating the command braking forces FbA to FbD. Therefore, a microcomputer with lower functionality than the master microcomputer 52 of the master controllers 50A and 50B can be used as the slave microcomputer 62 of the slave controllers 60A to 60D. In other words, the brake system 100 can suppress a decrease in the braking force of the vehicle 10 when the power supply from one of the two power sources 11 and 12 is stopped, while suppressing an increase in cost. Here, a "low-performance microcomputer" includes a microcomputer with a lower operating frequency and a smaller number of CPU cores compared to a microcomputer that is not low-performance.
 (6)本実施形態において、前輪用の電動ブレーキ20Aとマスタコントローラ50Aとがユニット化されているために、ドライバ制御部M13および第1ドライバ51が電気モータ23の近傍に存在する。この配置による作用効果を以下に記載する。ドライバ制御部M13は、電気モータ23を作動させるドライバに対して細やかに指令する必要があるため、制動制御装置内通信42よりも早い制御周期で演算する必要がある。そのため、ドライバ制御部M13の信号を制動制御装置内通信42にて送受信すると電気モータ23の制御精度が低下するおそれがある。一方、制動力演算部M11は制動制御装置内通信42よりも早い演算周期で演算する必要がないため、制動力演算部M11の信号を制動制御装置内通信42にて送受信しても電気モータ23の制御精度が低下しない。 (6) In this embodiment, the electric brake 20A for the front wheels and the master controller 50A are integrated into a unit, so the driver control unit M13 and the first driver 51 are located near the electric motor 23. The effects of this arrangement are described below. The driver control unit M13 needs to give precise instructions to the driver who operates the electric motor 23, so it needs to perform calculations at a control cycle that is faster than the communication within the brake control device 42. Therefore, if the signal of the driver control unit M13 is transmitted and received via the communication within the brake control device 42, the control accuracy of the electric motor 23 may decrease. On the other hand, the braking force calculation unit M11 does not need to perform calculations at a calculation cycle that is faster than the communication within the brake control device 42, so the control accuracy of the electric motor 23 does not decrease even if the signal of the braking force calculation unit M11 is transmitted and received via the communication within the brake control device 42.
 上記より、制動力演算部M11、ドライバ制御部M13および第1ドライバ51を含むマスタコントローラ50Aと電動ブレーキ20Aとをユニット化することで、マスタコントローラ50Aがもつドライバ制御部M13の信号を制動制御装置内通信42にて送受信することなく第1ドライバ51に伝達できる。そして、マスタコントローラ50Aと電動ブレーキ20Aとをユニット化しているため、第1ドライバ51は電動ブレーキ20Aの電気モータ23に電力を直接供給できる。したがって、マスタコントローラ50Aがもつドライバ制御部M13を活かしつつ、制動力演算部M11の信号を制動制御装置内通信42にて他の制御ユニットに送信することで、マイコンの数を増やすことなく冗長構成とすることができ安価なブレーキシステムを構成することができる。一方、マスタコントローラを電動ブレーキとユニット化しなかった場合、マスタコントローラが持つドライバ制御部を活用できないため、すなわち上述したように、制動制御装置内通信42はドライバ制御部M13の演算周期よりも早い周期で信号を送信できないため、本実施形態と同様に前輪を冗長構成とする場合、電動ブレーキとユニット化される前輪の制御ユニットに対し、スレーブマイコンを1つずつ追加する必要があり、ブレーキシステムとしてのマイコン数が2つ増加する。なお、マスタコントローラを電動ブレーキとユニット化しなかった場合においても、マスタコントローラが持つドライバ制御部を活用することは可能だが、その場合、ドライバと電気モータとの物理的距離が離れてしまう。すなわち、ドライバ制御部M13からドライバへの信号は制動制御装置内通信42で送受信できないため、ドライバ制御部M13を活用する場合、ドライバ制御部M13とドライバの物理的配置は近傍にある必要がある。これにより、大電流が流れるドライバと電気モータとの間の経路が長くなることで、ワイヤーハーネスのコストが増加したり、配線抵抗の増加による電気モータの駆動効率が低下したりというデメリットがあり、本実施形態の構成が有利である。 As described above, by unitizing the master controller 50A including the braking force calculation unit M11, driver control unit M13, and first driver 51 with the electric brake 20A, the signal of the driver control unit M13 of the master controller 50A can be transmitted to the first driver 51 without being sent or received via the braking control device internal communication 42. And because the master controller 50A and the electric brake 20A are unitized, the first driver 51 can directly supply power to the electric motor 23 of the electric brake 20A. Therefore, by making use of the driver control unit M13 of the master controller 50A and transmitting the signal of the braking force calculation unit M11 to other control units via the braking control device internal communication 42, a redundant configuration can be achieved without increasing the number of microcomputers, and an inexpensive brake system can be configured. On the other hand, if the master controller is not united with the electric brake, the driver control unit of the master controller cannot be utilized. In other words, as described above, the communication 42 in the brake control device cannot transmit signals at a cycle faster than the calculation cycle of the driver control unit M13. Therefore, if the front wheels are configured redundantly as in this embodiment, it is necessary to add a slave microcomputer to each of the control units of the front wheels that are united with the electric brake, and the number of microcomputers in the brake system increases by two. It is possible to utilize the driver control unit of the master controller even if the master controller is not united with the electric brake, but in that case, the physical distance between the driver and the electric motor will be increased. In other words, since signals from the driver control unit M13 to the driver cannot be transmitted and received by the communication 42 in the brake control device, when the driver control unit M13 is utilized, the driver control unit M13 and the driver must be physically located in close proximity. This results in a longer path between the driver and the electric motor through which a large current flows, which has the disadvantages of increasing the cost of the wire harness and decreasing the driving efficiency of the electric motor due to increased wiring resistance, and the configuration of this embodiment is advantageous.
 加えて、本実施形態では左前輪制御ユニット41Aと右前輪制御ユニット41Bとが同一の構成であり、左後輪制御ユニット41Cと右後輪制御ユニット41Dとが同一の構成であるため、ユニットの共通化を図ることができ、より安価なブレーキシステムとすることができる。 In addition, in this embodiment, the left front wheel control unit 41A and the right front wheel control unit 41B have the same configuration, and the left rear wheel control unit 41C and the right rear wheel control unit 41D have the same configuration, so the units can be standardized, resulting in a cheaper brake system.
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Example of change>
The above embodiment can be modified as follows: The above embodiment and the following modifications can be combined with each other to the extent that no technical contradiction occurs.
 ・前輪電動ブレーキ20A,20Bが備える電気モータとして、1つの巻線を有する電気モータを採用し、前輪用の制御ユニット41A,41Bは、マスタコントローラおよびスレーブコントローラのうち、スレーブコントローラのみを有する構成とする。この場合、後輪電動ブレーキ20C,20Dが備える電気モータとして2重巻線モータを採用し、後輪用の制御ユニット41C,41Dを、マスタコントローラおよびスレーブコントローラの双方を備える構成とする。 - An electric motor with one winding is used as the electric motor equipped in the front wheel electric brakes 20A, 20B, and the front wheel control units 41A, 41B are configured to have only the slave controller out of the master controller and slave controller. In this case, a double-winding motor is used as the electric motor equipped in the rear wheel electric brakes 20C, 20D, and the rear wheel control units 41C, 41D are configured to have both a master controller and a slave controller.
 この変更例の場合、左後輪RLが第1車輪に対応し、右後輪RRが第2車輪に対応し、左前輪FLが第3車輪に対応し、右前輪FRが第4車輪に対応する。また、左後輪用の電動ブレーキ20Cの電気モータが第1電動アクチュエータに対応し、右後輪用の電動ブレーキ20Dの電気モータが第2電動アクチュエータに対応し、左前輪用の電動ブレーキ20Aの電気モータが第3電動アクチュエータに対応し、右前輪用の電動ブレーキ20Bの電気モータが第4電動アクチュエータに対応する。そして、左後輪制御ユニットのマスタコントローラ、右後輪制御ユニットのスレーブコントローラおよび左前輪制御ユニットのスレーブコントローラが、第1コントローラ群を構成する。右後輪制御ユニットのマスタコントローラ、左後輪制御ユニットのスレーブコントローラおよび右前輪制御ユニットのスレーブコントローラが、第2コントローラ群を構成する。この場合、左後輪制御ユニットのマスタコントローラが第1規定コントローラに対応し、左後輪制御ユニットのスレーブコントローラが第2規定コントローラに対応する。また、右後輪制御ユニットのスレーブコントローラが第3規定コントローラに対応し、右後輪制御ユニットのマスタコントローラが第4規定コントローラに対応する。 In this modified example, the left rear wheel RL corresponds to the first wheel, the right rear wheel RR corresponds to the second wheel, the left front wheel FL corresponds to the third wheel, and the right front wheel FR corresponds to the fourth wheel. Also, the electric motor of the electric brake 20C for the left rear wheel corresponds to the first electric actuator, the electric motor of the electric brake 20D for the right rear wheel corresponds to the second electric actuator, the electric motor of the electric brake 20A for the left front wheel corresponds to the third electric actuator, and the electric motor of the electric brake 20B for the right front wheel corresponds to the fourth electric actuator. The master controller of the left rear wheel control unit, the slave controller of the right rear wheel control unit, and the slave controller of the left front wheel control unit constitute a first controller group. The master controller of the right rear wheel control unit, the slave controller of the left rear wheel control unit, and the slave controller of the right front wheel control unit constitute a second controller group. In this case, the master controller of the left rear wheel control unit corresponds to the first prescribed controller, and the slave controller of the left rear wheel control unit corresponds to the second prescribed controller. Additionally, the slave controller of the right rear wheel control unit corresponds to the third prescribed controller, and the master controller of the right rear wheel control unit corresponds to the fourth prescribed controller.
 このような構成であっても、第1電源11および第2電源12のうち一方からブレーキシステムへの給電が停止されたとしても、3つの車輪に制動力を発生させることができる。さらに、第1電源11および第2電源12のうち、第1電源11からの給電が停止された場合であっても、第2電源12からの給電が停止された場合であっても、2つの後輪RL,RRに制動力を発生させることができる。 Even with this configuration, braking force can be generated on the three wheels even if the power supply to the brake system from one of the first power source 11 and the second power source 12 is stopped. Furthermore, even if the power supply from the first power source 11 is stopped, or the power supply from the second power source 12 is stopped, braking force can be generated on the two rear wheels RL and RR.
 ・マスタコントローラおよびスレーブコントローラの双方を備える制御ユニットによって制御される電気モータは、2重巻線モータでなくてもよい。この場合、ドライバを制御するコントローラを、マスタコントローラとスレーブコントローラとで切り替えるためのスイッチング回路を制御ユニットに設けるとよい。この構成によれば、マスタコントローラおよびスレーブコントローラのうちの一方のコントローラの動作が停止した場合には、スイッチング回路の作動によって、他方のコントローラによってドライバを作動させることにより、電気モータを駆動させることができる。 - The electric motor controlled by the control unit having both a master controller and a slave controller does not have to be a double-winding motor. In this case, it is preferable to provide the control unit with a switching circuit for switching the controller that controls the driver between the master controller and the slave controller. With this configuration, if the operation of one of the master controller and the slave controller stops, the electric motor can be driven by operating the driver using the other controller through the operation of the switching circuit.
 ・ブレーキシステムとして、図8に示すブレーキシステム1000を採用することもできる。
 図8を参照し、ブレーキシステム1000の制動制御装置400を説明する。制動制御装置400は、左前輪制御ユニット41A1と、右前輪制御ユニット41B1と、左後輪制御ユニット41Cと、右後輪制御ユニット41Dとを備えている。左前輪制御ユニット41A1は、マスタコントローラ50A1とマスタコントローラ50A2とを有している。複数のマスタコントローラ50A1,50A2は、第1ドライバ51とマスタマイコン52とをそれぞれ有している。左前輪用の電動ブレーキ20Aの電気モータ23の2つの巻線のうち、第1巻線にマスタコントローラ50A1の第1ドライバ51が電気的に接続され、第2巻線にマスタコントローラ50A2の第1ドライバ51が電気的に接続されている。
A brake system 1000 shown in FIG. 8 may be used as the brake system.
The brake control device 400 of the brake system 1000 will be described with reference to Fig. 8. The brake control device 400 includes a left front wheel control unit 41A1, a right front wheel control unit 41B1, a left rear wheel control unit 41C, and a right rear wheel control unit 41D. The left front wheel control unit 41A1 includes a master controller 50A1 and a master controller 50A2. Each of the master controllers 50A1 and 50A2 includes a first driver 51 and a master microcomputer 52. Of the two windings of the electric motor 23 of the electric brake 20A for the left front wheel, the first winding is electrically connected to the first driver 51 of the master controller 50A1, and the second winding is electrically connected to the first driver 51 of the master controller 50A2.
 右前輪制御ユニット41B1は、スレーブコントローラ60B1とスレーブコントローラ60B2とを有している。これら2つのスレーブコントローラ60B1,60B2は、第2ドライバ61とスレーブマイコン62とをそれぞれ有している。右前輪用の電動ブレーキ20Bの電気モータ23の2つの巻線のうち、第1巻線にスレーブコントローラ60B1の第2ドライバ61が電気的に接続され、第2巻線にスレーブコントローラ60B2の第2ドライバ61が電気的に接続されている。 The right front wheel control unit 41B1 has a slave controller 60B1 and a slave controller 60B2. These two slave controllers 60B1, 60B2 each have a second driver 61 and a slave microcomputer 62. Of the two windings of the electric motor 23 of the electric brake 20B for the right front wheel, the first winding is electrically connected to the second driver 61 of the slave controller 60B1, and the second winding is electrically connected to the second driver 61 of the slave controller 60B2.
 制動制御装置400では、マスタコントローラ50A1およびスレーブコントローラ60B1を第1コントローラ群に分類し、マスタコントローラ50A2およびスレーブコントローラ60B2を第2コントローラ群に分類する。この場合、第1コントローラ群のマスタコントローラ50A1が「第1規定コントローラ」に対応し、第2コントローラ群のマスタコントローラ50A2が「第2規定コントローラ」に対応する。また、第1コントローラ群のスレーブコントローラ60B1が「第3規定コントローラ」に対応し、第2コントローラ群のスレーブコントローラ60B2が「第4規定コントローラ」に対応する。そのため、ブレーキシステム1000では、第1電源11からの給電が停止された場合であっても、第2電源12からの給電が停止された場合であっても、3つの車輪で制動力を発生させることができる。 In the braking control device 400, the master controller 50A1 and the slave controller 60B1 are classified into a first controller group, and the master controller 50A2 and the slave controller 60B2 are classified into a second controller group. In this case, the master controller 50A1 of the first controller group corresponds to the "first prescribed controller", and the master controller 50A2 of the second controller group corresponds to the "second prescribed controller". In addition, the slave controller 60B1 of the first controller group corresponds to the "third prescribed controller", and the slave controller 60B2 of the second controller group corresponds to the "fourth prescribed controller". Therefore, in the brake system 1000, braking force can be generated at the three wheels even if the power supply from the first power source 11 is stopped or even if the power supply from the second power source 12 is stopped.
 また、図8とは異なる更なる構成として、マスタコントローラを有する左後輪制御ユニット、マスタコントローラを有する右後輪制御ユニット、第1スレーブコントローラと第2スレーブコントローラとを有する左前輪制御ユニット、第1スレーブコントローラと第2スレーブコントローラとを有する右前輪制御ユニットとしてもよい。この構成のブレーキシステム1000においても第1電源11からの給電が停止された場合であっても、第2電源12からの給電が停止された場合であっても、3つの車輪で制動力を発生させることができる。この構成においては、車両後方にマスタコントローラが配置されるため、車両前方の衝撃に対して2つのマスタコントローラが両方とも故障するという事象を起こりにくくすることができる上、ユニットの共通化も図ることができる。 Furthermore, as further configurations different from that of FIG. 8, a left rear wheel control unit having a master controller, a right rear wheel control unit having a master controller, a left front wheel control unit having a first slave controller and a second slave controller, and a right front wheel control unit having a first slave controller and a second slave controller may be used. In brake system 1000 of this configuration, braking force can be generated at three wheels even when power supply from first power source 11 is stopped or when power supply from second power source 12 is stopped. In this configuration, since the master controller is located at the rear of the vehicle, it is possible to reduce the occurrence of an event in which both master controllers fail due to an impact at the front of the vehicle, and it is also possible to standardize the units.
 なお、同様に2つのマスタコントローラを前輪制御ユニットと後輪制御ユニットとにそれぞれ一つずつ配置してもよい。この配置において、車両前方の衝撃、車両後方の衝撃に対して2つのマスタコントローラが両方とも故障するという事象を起こりにくくすることができる。 Similarly, two master controllers may be placed in the front wheel control unit and one in the rear wheel control unit. In this arrangement, it is possible to reduce the likelihood of both master controllers failing due to an impact to the front or rear of the vehicle.
 ・マスタコントローラ50Aは、マスタコントローラ50Bが指示制動力を演算できない場合に限り、右前輪FRに対する指示制動力FbBと、左後輪RLに対する指示制動力FbCとを演算するようにしてもよい。マスタコントローラ50Bが指示制動力を演算できない場合は、マスタコントローラ50Bへの給電が停止した場合と、マスタコントローラ50Bに故障などの異常が発生した場合とを含んでいる。 - The master controller 50A may calculate the command braking force FbB for the right front wheel FR and the command braking force FbC for the left rear wheel RL only when the master controller 50B is unable to calculate the command braking force. Scenario where the master controller 50B is unable to calculate the command braking force includes when the power supply to the master controller 50B is stopped and when an abnormality such as a breakdown occurs in the master controller 50B.
 同様に、マスタコントローラ50Bは、マスタコントローラ50Aが指示制動力を演算できない場合に限り、左前輪FLに対する指示制動力FbAと、右後輪RRに対する指示制動力FbDとを演算するようにしてもよい。マスタコントローラ50Aが指示制動力を演算できない場合は、マスタコントローラ50Aへの給電が停止した場合と、マスタコントローラ50Aに故障などの異常が発生した場合とを含んでいる。 Similarly, the master controller 50B may calculate the command braking force FbA for the left front wheel FL and the command braking force FbD for the right rear wheel RR only when the master controller 50A is unable to calculate the command braking force. Scenario where the master controller 50A is unable to calculate the command braking force includes when the power supply to the master controller 50A is stopped and when an abnormality such as a breakdown occurs in the master controller 50A.
 ・ブレーキシステム100が正常である場合には、左後輪制御ユニット41Cおよび右後輪制御ユニット41Dの双方では、マスタコントローラ50Aで演算された指示制動力に基づいて第2ドライバ61をそれぞれ作動させるようにしてもよい。また、左後輪制御ユニット41Cおよび右後輪制御ユニット41Dの双方では、マスタコントローラ50Bで演算された指示制動力に基づいて第2ドライバ61をそれぞれ作動させるようにしてもよい。 - When the brake system 100 is normal, both the left rear wheel control unit 41C and the right rear wheel control unit 41D may operate the second driver 61 based on the command braking force calculated by the master controller 50A. Also, both the left rear wheel control unit 41C and the right rear wheel control unit 41D may operate the second driver 61 based on the command braking force calculated by the master controller 50B.
 ・電動アクチュエータは、当該電動アクチュエータの駆動によって電動ブレーキが車輪に制動力を発生させることができるのであれば、電気モータ以外のアクチュエータであってもよい。 - The electric actuator may be an actuator other than an electric motor, so long as the electric actuator is driven to cause the electric brake to generate a braking force on the wheels.
 ・電動ブレーキは、電動アクチュエータの駆動量に応じた制動力を車輪に発生させることのできるブレーキであれば、図1に示したような乾式の電動ブレーキではなくてもよい。例えば、電動ブレーキは、電気モータを動力源とする電動シリンダを備えた湿式の電動ブレーキであってもよい。また例えば、複数の電動ブレーキのうち、一部の電動ブレーキとして乾式の電動ブレーキを採用し、残りの電動ブレーキとして湿式の電動ブレーキを採用してもよい。 - The electric brakes do not have to be dry electric brakes as shown in FIG. 1, as long as they are brakes that can generate a braking force on the wheels according to the drive amount of the electric actuator. For example, the electric brakes may be wet electric brakes equipped with an electric cylinder powered by an electric motor. Also, for example, among the multiple electric brakes, some of the electric brakes may be dry electric brakes, and the remaining electric brakes may be wet electric brakes.
 ・上記実施形態では車両の車輪が4つである場合を記載しているが、車輪数は4つに限らない。例えば、車輪数が6つになった場合、追加の2輪に対し、後輪制御ユニットと同一構成の制御ユニットと後輪電動ブレーキと同一構成の電動ブレーキとをユニット化したブレーキユニットを設けるとよい。この際、追加の2輪のブレーキユニットにおいてはそれぞれ異なる電源から電力を供給することが好ましい。このような構成とすることで、一方の電源が失陥しても6輪中4輪の制動力を担保できる。 - In the above embodiment, the vehicle has four wheels, but the number of wheels is not limited to four. For example, if the number of wheels is six, a brake unit can be provided for the additional two wheels, combining a control unit with the same configuration as the rear wheel control unit and an electric brake with the same configuration as the rear wheel electric brake. In this case, it is preferable to supply power from different power sources to the brake units for the additional two wheels. With this configuration, braking force for four of the six wheels can be guaranteed even if one of the power sources fails.
 ・マイコンは、コンピュータプログラムに従って動作する1つ以上のプロセッサ、各種処理のうち少なくとも一部の処理を実行する専用のハードウェアなどの1つ以上の専用のハードウェア回路またはこれらの組み合わせを含む回路として構成し得る。専用のハードウェアとしては、例えば、特定用途向け集積回路であるASICを挙げることができる。プロセッサは、CPU並びに、RAMおよびROMなどのメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリ、すなわち記憶媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 - A microcomputer may be configured as a circuit including one or more processors that operate according to a computer program, one or more dedicated hardware circuits such as dedicated hardware that executes at least some of the various processes, or a combination of these. An example of dedicated hardware is an ASIC, which is an application specific integrated circuit. The processor includes a CPU and memory such as RAM and ROM, and the memory stores program code or instructions configured to cause the CPU to execute processes. Memory, i.e., storage media, includes any available media that can be accessed by a general-purpose or dedicated computer.
 なお、本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」または「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」または「2つ以上の任意の選択肢の組み合わせ」を意味する。 The expression "at least one" used in this specification means "one or more" of the desired options. As an example, the expression "at least one" used in this specification means "only one option" or "both of two options" if the number of options is two. As another example, the expression "at least one" used in this specification means "only one option" or "any combination of two or more options" if the number of options is three or more.
 <他の技術的思想>
 上記実施形態および変更例から把握できる技術的思想を付記として記載する。
 [付記1]前記第1電動アクチュエータおよび前記第2電動アクチュエータは、前記車両の左右の前輪に制動力を発生させるべくそれぞれ駆動することが好ましい。
<Other technical ideas>
The technical ideas that can be understood from the above-described embodiment and modified examples will be described as supplementary notes.
[Supplementary Note 1] It is preferable that the first electric actuator and the second electric actuator are driven so as to generate braking forces on left and right front wheels of the vehicle, respectively.
 [付記2]前記第1電動アクチュエータは、前記第1車輪に制動力を発生させるべく駆動するアクチュエータであり、
 前記第2電動アクチュエータは、前記第2車輪に制動力を発生させるべく駆動するアクチュエータであり、
 前記第3電動アクチュエータは、前記第3車輪に制動力を発生させるべく駆動するアクチュエータであり、
 前記第4電動アクチュエータは、前記第4車輪に制動力を発生させるべく駆動するアクチュエータであり、
 前記第1規定コントローラは、前記第1マスタコントローラであり、
 前記第3規定コントローラは、前記第2マスタコントローラであることが好ましい。
[Additional Note 2] The first electric actuator is an actuator that is driven to generate a braking force on the first wheel,
the second electric actuator is an actuator that is driven to generate a braking force on the second wheel,
the third electric actuator is an actuator that is driven to generate a braking force on the third wheel,
the fourth electric actuator is an actuator that is driven to generate a braking force on the fourth wheel,
the first defining controller is the first master controller;
The third defining controller is preferably the second master controller.
 [付記3]前記第1マスタコントローラの前記制動力演算部は、
 前記第1電動アクチュエータの駆動によって前記第1車輪に発生させる制動力を演算し、
 前記第4電動アクチュエータの駆動によって前記第4車輪に発生させる制動力を演算することが好ましい。
[Additional Note 3] The braking force calculation unit of the first master controller
calculating a braking force to be generated on the first wheel by driving the first electric actuator;
It is preferable that a braking force to be generated on the fourth wheel by driving the fourth electric actuator is calculated.
 [付記4]前記第2マスタコントローラの前記制動力演算部は、
 前記第2電動アクチュエータの駆動によって前記第2車輪に発生させる制動力を演算し、
 前記第3電動アクチュエータの駆動によって前記第3車輪に発生させる制動力を演算することが好ましい。
[Additional Note 4] The braking force calculation unit of the second master controller
calculating a braking force to be generated on the second wheel by driving the second electric actuator;
It is preferable that a braking force to be generated on the third wheel by driving the third electric actuator is calculated.
 [付記5]前記第2規定コントローラは、前記第3スレーブコントローラであり、
 前記第4規定コントローラは、前記第1スレーブコントローラであることが好ましい。
 
[Supplementary Note 5] The second defining controller is the third slave controller,
The fourth defining controller is preferably the first slave controller.

Claims (3)

  1.  第1電源および前記第1電源とは別の第2電源を備える車両に適用されるブレーキシステムであって、
     前記車両の第1車輪から第4車輪の各々に制動力を発生させる第1電動アクチュエータから第4電動アクチュエータと、
     前記第1電動アクチュエータから前記第4電動アクチュエータの何れか一つに供給する電力を調整するドライバ、前記第1電動アクチュエータから前記第4電動アクチュエータの駆動によって前記第1車輪から前記第4車輪に発生させる制動力を演算する制動力演算部、および、前記制動力演算部の演算結果に応じて当該ドライバを作動させるドライバ制御部を含む複数のマスタコントローラと、
     前記第1電動アクチュエータから前記第4電動アクチュエータの何れか一つに供給する電力を調整するドライバ、および、前記マスタコントローラの前記制動力演算部の演算結果に応じて当該ドライバを作動させるドライバ制御部を含む複数のスレーブコントローラと、を備え、
     前記複数のマスタコントローラのうちの第1マスタコントローラ、および、前記複数のスレーブコントローラのうち、第1スレーブコントローラおよび第2スレーブコントローラは、前記第2電源から電力が供給されない一方で前記第1電源から電力が供給される第1コントローラ群を構成し、
     前記複数のマスタコントローラのうちの第2マスタコントローラ、および、前記複数のスレーブコントローラのうち、第3スレーブコントローラおよび第4スレーブコントローラは、前記第1電源から電力が供給されない一方で前記第2電源から電力が供給される第2コントローラ群を構成し、
     前記第1コントローラ群のうちの第1規定コントローラと、前記第2コントローラ群のうちの第2規定コントローラとはどちらも前記第1電動アクチュエータを制御し、
     前記第1コントローラ群のうち、前記第1規定コントローラとは異なる第3規定コントローラと、前記第2コントローラ群のうち、前記第2規定コントローラとは異なる第4規定コントローラとはどちらも前記第2電動アクチュエータを制御し、
     前記第1コントローラ群のうち、前記第1規定コントローラおよび前記第3規定コントローラとは異なる1つのコントローラが、前記第3電動アクチュエータを制御し、
     前記第2コントローラ群のうち、前記第2規定コントローラおよび前記第4規定コントローラとは異なる1つのコントローラが、前記第4電動アクチュエータを制御する
     ブレーキシステム。
    A brake system applied to a vehicle having a first power source and a second power source separate from the first power source,
    a first electric actuator to a fourth electric actuator for generating a braking force on each of a first wheel to a fourth wheel of the vehicle;
    a plurality of master controllers including a driver that adjusts the power supplied to any one of the first electric actuator to the fourth electric actuator, a braking force calculation unit that calculates a braking force to be generated from the first wheel to the fourth wheel by driving the first electric actuator to the fourth electric actuator, and a driver control unit that operates the driver in accordance with a calculation result of the braking force calculation unit;
    a driver that adjusts the power supplied to any one of the first electric actuator to the fourth electric actuator, and a plurality of slave controllers including a driver control unit that operates the driver in accordance with a calculation result of the braking force calculation unit of the master controller,
    a first master controller among the plurality of master controllers, and a first slave controller and a second slave controller among the plurality of slave controllers, constitute a first controller group to which power is supplied from the first power source while not supplied from the second power source;
    a second master controller among the plurality of master controllers, and a third slave controller and a fourth slave controller among the plurality of slave controllers constitute a second controller group to which power is not supplied from the first power source but is supplied from the second power source;
    a first defining controller of the first controller group and a second defining controller of the second controller group both control the first electric actuator;
    a third definition controller of the first controller group different from the first definition controller, and a fourth definition controller of the second controller group different from the second definition controller, both of which control the second electric actuator;
    one controller of the first controller group, which is different from the first defining controller and the third defining controller, controls the third electric actuator;
    A brake system in which one controller of the second controller group, which is different from the second definition controller and the fourth definition controller, controls the fourth electric actuator.
  2.  前記第1電動アクチュエータは、前記第1規定コントローラの前記ドライバに電気的に接続された巻線および、前記第2規定コントローラの前記ドライバに電気的に接続された巻線が個別に設けられた2重巻線モータであり、
     前記第2電動アクチュエータは、前記第3規定コントローラの前記ドライバに電気的に接続された巻線および、前記第4規定コントローラの前記ドライバに電気的に接続された巻線が個別に設けられた2重巻線モータである
     請求項1に記載のブレーキシステム。
    the first electric actuator is a double-winding motor having a winding electrically connected to the driver of the first specified controller and a winding electrically connected to the driver of the second specified controller,
    2. The brake system according to claim 1, wherein the second electric actuator is a double-winding motor having a winding electrically connected to the driver of the third specification controller and a winding electrically connected to the driver of the fourth specification controller, separately provided.
  3.  前記第1マスタコントローラと前記第2マスタコントローラとの少なくとも一方は、前記第1電動アクチュエータから前記第4電動アクチュエータの何れかとユニット化されている
     請求項1または請求項2に記載のブレーキシステム。
    3. The brake system according to claim 1, wherein at least one of the first master controller and the second master controller is unitized with any one of the first electric actuator to the fourth electric actuator.
PCT/JP2023/038524 2022-10-27 2023-10-25 Brake system WO2024090480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172465A JP2024064114A (en) 2022-10-27 2022-10-27 Brake system
JP2022-172465 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090480A1 true WO2024090480A1 (en) 2024-05-02

Family

ID=90830830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038524 WO2024090480A1 (en) 2022-10-27 2023-10-25 Brake system

Country Status (2)

Country Link
JP (1) JP2024064114A (en)
WO (1) WO2024090480A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296106A1 (en) * 2007-05-30 2008-12-04 Peter Nilsson Redundant Brake Actuators For Fail Safe Brake System
JP2020534206A (en) * 2017-09-21 2020-11-26 フレニ・ブレンボ エス・ピー・エー Vehicle brake-by-wire braking system with electrical activation and electrical backup
JP2022527357A (en) * 2019-04-05 2022-06-01 ブレンボ・ソチエタ・ペル・アツィオーニ Brake-by-wire brake system for vehicles with electrical actuation and electrical backup

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080296106A1 (en) * 2007-05-30 2008-12-04 Peter Nilsson Redundant Brake Actuators For Fail Safe Brake System
JP2020534206A (en) * 2017-09-21 2020-11-26 フレニ・ブレンボ エス・ピー・エー Vehicle brake-by-wire braking system with electrical activation and electrical backup
JP2022527357A (en) * 2019-04-05 2022-06-01 ブレンボ・ソチエタ・ペル・アツィオーニ Brake-by-wire brake system for vehicles with electrical actuation and electrical backup

Also Published As

Publication number Publication date
JP2024064114A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
JP4723706B2 (en) Electric control system for vehicles
CN110494333B (en) Motor vehicle control unit for an electric parking brake
EP2284054B1 (en) Decentralized electric brake system
US6424900B2 (en) Multi-module control-by-wire architecture
EP1832482B1 (en) Braking system having switching device for supplying energy to electrically controlled brake through brake controller upon operation of brake operating member
US6580991B2 (en) Electric caliper hardware topologies for a safety system
CN109733460B (en) Redundant electronic steering brake system
CN111634330A (en) Steer-by-wire system, control method and storage medium
US20080021623A1 (en) Redundant Brake Control System for a Vehicle
GB2316726A (en) Electronic brake system
US20050165531A1 (en) Brake system with distributed electronic control units incorporating failsafe mode
AU2008282015A1 (en) Brake system for a vehicle and a method for the operation of a brake system for a vehicle
JP2004518583A (en) Electronic control system for vehicle braking system
JP6921183B2 (en) Vehicle braking system
JP2002347602A (en) Electric brake device for automobile
CN112061104B (en) Brake control system
JP4598245B2 (en) Electrically controlled brake device
CN114771429A (en) Drive-by-wire chassis system, control method thereof and control method of chassis assembly
CN105799682B (en) Brake system and method for operating same
KR102507676B1 (en) Automotive brake system
WO2024090480A1 (en) Brake system
CN105523025A (en) Control system for at least one electric motor, usable as a generator, of a vehicle; and braking system for a vehicle
CN207955769U (en) Vehicle redundant electronic steering
WO2018181806A1 (en) Vehicular brake system
JP6902955B2 (en) Vehicle braking system