WO2024090286A1 - Magnetic recording cartridge - Google Patents

Magnetic recording cartridge Download PDF

Info

Publication number
WO2024090286A1
WO2024090286A1 PCT/JP2023/037503 JP2023037503W WO2024090286A1 WO 2024090286 A1 WO2024090286 A1 WO 2024090286A1 JP 2023037503 W JP2023037503 W JP 2023037503W WO 2024090286 A1 WO2024090286 A1 WO 2024090286A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo
magnetic
magnetic recording
magnetic tape
recording medium
Prior art date
Application number
PCT/JP2023/037503
Other languages
French (fr)
Japanese (ja)
Inventor
実 山鹿
貴広 高山
太 佐々木
泰啓 榎本
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024090286A1 publication Critical patent/WO2024090286A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/037Single reels or spools
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/708Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by addition of non-magnetic particles to the layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • This technology relates to magnetic recording cartridges.
  • tape-type magnetic recording media With high total capacity are being incorporated into cloud systems.
  • Current tape-type magnetic recording media have a narrower environmental temperature range for actual operation and storage than HDDs (Hard Disk Drives) and semiconductor memory, so there is a demand for expanding the environmental temperature range for actual operation and storage of tape-type magnetic recording media. It is believed that if tape-type magnetic recording media could be used in the same temperature environment as HDDs and semiconductor memory, the range of uses for tape-type magnetic recording media would be greatly expanded.
  • Patent Document 1 proposes a tape-type magnetic recording medium that can correct width changes by adjusting the longitudinal tension of the tape-type magnetic recording medium using a recording and playback device, even if the width dimension of the tape-type magnetic recording medium changes due to environmental changes. Furthermore, in order to deal with width changes in tape-type magnetic recording media, Patent Document 2 proposes positioning the data write head at an angle relative to the width direction of the tape-type magnetic recording medium.
  • the aim of this technology is to provide a magnetic recording cartridge that does not produce adhesions even when run multiple times in a high-temperature environment, and that also reduces damage to the magnetic head.
  • This technology is A cartridge case; Reel and a magnetic recording medium wound around the reel and housed within the cartridge case; When the magnetic recording medium was stored at 65° C. for 360 hours in a wound state on the reel, the amount of change in width of the magnetic recording medium was measured over the entire length of the magnetic recording medium.
  • the sign of the width change amount ⁇ out on the outer side of the magnetic recording medium is different from the sign of the width change amount ⁇ in on the inner side of the magnetic recording medium, and
  • the amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
  • the magnetic recording medium has a base layer having a loss modulus of 0.40 GPa or less at 65° C.
  • the magnetic recording medium includes a magnetic layer,
  • the magnetic recording medium contains a fatty acid,
  • a magnetic recording cartridge is provided,
  • a magnetic recording cartridge When the total length of the magnetic recording medium in the longitudinal direction is taken as 100%, the width change ⁇ of the magnetic recording medium after storage for 360 hours at 65° C. can be 0 ppm at a position 25% to 75% from the outer end of the magnetic recording medium.
  • a magnetic recording cartridge is provided, The magnetic recording medium may have a width change amount ⁇ in of the magnetic recording medium minus (width change amount ⁇ out of the magnetic recording medium) of 800 ppm or less.
  • a magnetic recording cartridge is provided, The base layer may have a storage modulus at 65° C. of 8.0 GPa or less.
  • a magnetic recording cartridge is provided,
  • the base layer may be formed from PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PEEK (polyether ether ketone).
  • a magnetic recording cartridge is provided,
  • the magnetic recording medium may have an average thickness tT of 5.4 ⁇ m or less.
  • a magnetic recording cartridge is provided,
  • the base layer may have an average thickness tB of 4.6 ⁇ m or less.
  • a magnetic recording cartridge is provided,
  • the magnetic layer may include magnetic powder.
  • a magnetic recording cartridge is provided,
  • the magnetic layer may contain particles having an abrasive effect, and the average height of protrusions formed by the particles may be 8 nm or less.
  • a magnetic recording cartridge is provided,
  • the 5-minute extractable amount (mg/m 2 ) of fatty acids may be 3.0 mg/m 2 or more.
  • a magnetic recording cartridge is provided,
  • the total extractable amount of fatty acids (mg/m 2 ) may be 5.0 mg/m 2 or more.
  • a magnetic recording cartridge is provided,
  • the fatty acid may be stearic acid.
  • a magnetic recording cartridge is provided,
  • the magnetic recording medium may further include a fatty acid ester, and the extraction rate of the fatty acid ester defined by the following formula may be 60% or more.
  • Extraction rate of fatty acid ester (%) [amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )] ⁇ 100
  • a magnetic recording cartridge is provided,
  • the 5-minute extractable amount (mg/m 2 ) of fatty acid ester may be 10.0 mg/m 2 or more.
  • the total extractable amount (mg/ m2 ) of fatty acid esters may be 12.0 mg/ m2 or more.
  • the fatty acid ester may be butyl stearate.
  • a magnetic recording cartridge is provided, The magnetic layer may have an average thickness of 0.08 ⁇ m or less.
  • a magnetic recording cartridge is provided, The magnetic recording medium may further include a non-magnetic layer having an average thickness of 1.0 ⁇ m or less.
  • the sign of the width change amount ⁇ out on the outer side of the magnetic recording medium is different from the sign of the width change amount ⁇ in on the inner side of the magnetic recording medium, and
  • the amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and A base layer having a loss modulus of 0.40 GPa or less at 65°C,
  • the magnetic recording medium contains a fatty acid
  • FIG. 1 is an exploded perspective view showing an example of the configuration of a magnetic recording cartridge according to a first embodiment.
  • FIG. 1 is a cross-sectional view showing an example of a configuration of a magnetic tape.
  • FIG. 2 is a perspective view showing an example of a particle shape.
  • FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer.
  • FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer.
  • 1 is a diagram for explaining a method for measuring a servo band pitch using a data recording and reproducing device.
  • 11A and 11B are diagrams for explaining a method of measuring a servo trace line.
  • FIG. 2 is a schematic diagram of a magnetic tape seen from the side.
  • FIG. 1 is a schematic diagram of a magnetic tape viewed from above (magnetic layer side).
  • FIG. 1 illustrates a data recording and reproducing device.
  • FIG. 2 is a schematic diagram of a data write head as viewed from below (the back layer side).
  • 13 is a diagram showing the relationship between the angular range Ref ⁇ x° of the azimuth angle of the data write head and the azimuth loss L ⁇ (recording wavelength: 0.1 ⁇ m).
  • 13 is a diagram showing the relationship between the angle range Ref ⁇ x° at the azimuth angle ⁇ of the data write head and the amount of correction for the servo band pitch difference based on the width fluctuation of the magnetic tape.
  • FIG. 11 is a diagram showing the amount of correction for the servo band pitch difference based on the width fluctuation of the magnetic tape.
  • FIG. 13 is a diagram showing the relationship between the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head and the azimuth loss L ⁇ (recording wavelength: 0.07 ⁇ m).
  • FIG. 1 illustrates a servo recording and reproducing device.
  • 5A and 5B are diagrams showing a servo write head according to embodiment A and a pulse signal input to the servo write head.
  • 4 is an enlarged view of a servo element included in the servo write head according to embodiment A.
  • 11A and 11B are diagrams showing how a servo pattern is written onto a magnetic tape by a servo write head according to embodiment A.
  • 13 is an enlarged view of a servo write head and a servo element included in the servo write head according to embodiment B.
  • 13A and 13B are diagrams showing how a servo pattern is written onto a magnetic tape by a servo write head according to embodiment B.
  • FIG. 13 is a diagram showing a servo write head based on a coordinate system of the servo write head in embodiment B.
  • 11A and 11B are diagrams showing how servo patterns are read by a servo read portion of a data write head in the first comparative example, the second comparative example, and the first embodiment.
  • FIG. 21 is an enlarged view of the diagram on the right side of FIG. 20, showing an example of specific dimensions of the first servo element and the second servo element (based on the XYZ coordinate system).
  • FIG. 23 is an enlarged view of the diagram on the right side of FIG. 22, showing an example of specific dimensions of the first servo element and the second servo element (based on the X"Y"Z" coordinate system).
  • FIG. 11 is a diagram showing a first example of a method for checking whether a magnetic tape is a magnetic tape used in a data recording/reproducing device with a tilted data write head.
  • FIG. 11 is a diagram showing a second example of a method for checking whether a magnetic tape is a magnetic tape used in a data recording/reproducing device with a tilted data write head.
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a second embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a sputtering apparatus.
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a third embodiment.
  • FIG. 13 is an exploded perspective view showing an example of a configuration of a cartridge according to a modified example of the first embodiment.
  • FIG. 2 is a diagram showing a state in which the entire length of a magnetic tape is divided into four equal regions.
  • FIG. 1 is a schematic diagram showing a configuration of a sputtering apparatus.
  • FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a third embodiment
  • FIG. 2 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 1.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 2a.
  • FIG. 11 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 3.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Comparative Example 1a.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 2.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 2.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 3.
  • FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 4.
  • 11 is a schematic diagram for explaining a method of calculating the movement angle of a drive head that is disposed at an angle.
  • FIG. FIG. 2 is a diagram showing an example of a sample mount used for measuring the extraction rate of fatty acids or fatty acid esters.
  • 1 is an image showing an example of a surface shape captured by an AFM.
  • FIG. 13 is a diagram showing an example of a protrusion analysis result by AFM.
  • FIG. 13 is a diagram showing an example of a protrusion height distribution by AFM.
  • 1 is an example of an FE-SEM image. This is a composite image obtained by superimposing an AFM image and a FE-SEM image. This is an enlarged view of a composite image in which an AFM image and a FE-SEM image are superimposed.
  • FIG. 44 is a diagram showing an example of an analysis result of Line 1 in FIG. 43 by AFM.
  • FIG. 1 is a diagram showing a cumulative frequency distribution of the height of protrusions formed by abrasive particles (alumina particles).
  • First embodiment (example of magnetic recording cartridge including coated magnetic tape) (1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Manufacturing method of the magnetic tape (4) Description of the data band and servo band of the magnetic tape (5) Function and effect 3.
  • Second embodiment (Example of a magnetic recording cartridge including a vacuum thin film type magnetic tape) (1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Structure of the sputtering device (4) Manufacturing method of the magnetic tape (5) Function and effect 4.
  • Third embodiment (Example of a magnetic recording cartridge including a vacuum thin film type magnetic tape) (1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Function and effect 5. Modifications 6. Examples
  • magnetic tape magnetic recording medium contained in the magnetic recording cartridge
  • magnetic tape thinner (reducing the total thickness) and thereby increase the tape length per magnetic recording cartridge.
  • dimensional changes in the track width direction may occur more easily.
  • Dimensional changes in the width direction may cause undesirable phenomena in magnetic recording, such as off-track phenomena.
  • the off-track phenomenon refers to a situation in which the target track does not exist at the track position where the magnetic head should read, or the magnetic head reads the wrong track position.
  • the magnetic tape contained in a magnetic recording cartridge has a narrower usable temperature range than a HDD, and has been used in a temperature range up to 45° C.
  • a magnetic recording cartridge in a high-temperature environment of 60° C. or higher, similar to a HDD, it is expected that temperature environment management will become easier when incorporating a magnetic recording cartridge into a data storage system such as a cloud system, and the range of use of tape storage systems will be greatly expanded.
  • a data storage system such as a cloud system
  • the portion on the inside of the winding that is subjected to high winding stress expands in the width direction of the magnetic tape, while the portion on the outside of the winding that is pulled in the longitudinal direction by the tension on the magnetic tape narrows in the width direction due to the creep phenomenon, and the difference in width between the inside and outside of the winding tends to become large.
  • a layer for suppressing dimensional changes in magnetic tapes has been added.
  • the addition of such layers may increase the thickness of the magnetic tape and does not increase the tape length per cartridge product.
  • Patent Document 1 proposes a technology for correcting width changes by adjusting the longitudinal tension of a tape-like magnetic recording medium, but this technology does not assume storage or running in a high-temperature environment. Therefore, when a conventional tape-like magnetic recording medium is stored or run in a high-temperature environment, there is a risk that the width change of the tape-like magnetic recording medium will exceed the range that can be corrected by adjusting the running tension, making it difficult to correct the width change.
  • the present inventors are considering a technology for dealing with deformation in the width direction of a tape-like magnetic recording medium by tilting the head in a tape storage system.
  • the width change is particularly large due to creep characteristics, so when the magnetic head is tilted, the amount of tilt fluctuates greatly, and the tracking ability of the magnetic head may deteriorate.
  • the width change in a high-temperature environment cannot be adequately dealt with.
  • the distortion of the stretched tape is relaxed, and the winding is tightened or loosened due to creep.
  • the present inventors have studied magnetic recording cartridges with a high recording capacity per cartridge. As a result, the present inventors have found that a magnetic recording cartridge having a specific configuration has a high recording capacity, and that even when stored in a high-temperature environment of 60° C. or higher, the width in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction.
  • the magnetic tape in order to change the winding direction, for example, in a one-reel cartridge, the magnetic tape can be wound on the reel on the drive side, and in a two-reel cartridge, the magnetic tape can be changed by rewinding it on the reel opposite to the stored state.
  • the present technology provides a magnetic recording cartridge having a cartridge case, a reel, and a magnetic tape wound on the reel and housed in the cartridge case.
  • the magnetic tape has a base layer having a loss modulus of 0.40 GPa or less at 65° C. When the magnetic tape is wound on the reel and stored at 65° C.
  • the sign of the width change amount ⁇ out on the outside of the magnetic tape is different from the sign of the width change amount ⁇ in on the inside of the magnetic tape, and the width change amount is 0 ppm at any of two regions sandwiching the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal regions.
  • a method for measuring the width change amount of the magnetic tape will be described below in 2. (2).
  • the base layer of the magnetic tape included in the magnetic recording cartridge of the present technology may have a loss modulus at 65° C. of 0.40 GPa or less, preferably 0.35 GPa or less, more preferably 0.30 GPa or less, even more preferably 0.25 GPa or less, and even more preferably 0.20 GPa or less.
  • a loss modulus at 65° C. of the base layer of the magnetic tape within the above numerical range, even when stored in a high-temperature environment of 60° C. or more, the width in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction.
  • the storage modulus of the base layer of the magnetic tape included in the magnetic recording cartridge of the present technology may be preferably 8.0 GPa or less, more preferably 7.0 GPa or less, and even more preferably 6.0 GPa or less at 65° C.
  • the storage modulus of the base layer of the magnetic tape at 65° C. is within the above numerical range, it is possible to provide a magnetic recording cartridge in which the width of the magnetic tape in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction even after storage in a high-temperature environment.
  • the sign of the amount of width change ⁇ out on the outside of the magnetic tape winding is different from the sign of the amount of width change ⁇ in on the inside of the magnetic tape winding.
  • the amount of width change ⁇ can be expressed by the following formula.
  • Width change amount ⁇ (width change amount after storage at 65°C and 360°C ⁇ initial state width change amount)/(initial state width change amount)
  • width change amount ⁇ is a negative value, it indicates that the width after storage is narrower than the width in the initial state, and when the width change amount ⁇ is a positive value, it indicates that the width after storage is wider than the width in the initial state.
  • magnetic recording cartridges having one reel and two reels in the cartridge.
  • a magnetic tape is wound around a reel and housed in the magnetic cartridge.
  • the magnetic tape is stacked to form a magnetic tape stack.
  • the inner side of the magnetic tape refers to the area on the innermost layer side of the magnetic tape stack in a state where the magnetic tape is wound around one reel to form a stack on the reel before the first data is recorded in the magnetic cartridge
  • the outer side of the magnetic tape refers to the area on the outermost layer side of the magnetic tape stack.
  • the inside of a magnetic tape winding refers to the area starting from the end (hereinafter also referred to as the "inner end” (EOT)) that is attached to a reel inside a magnetic recording cartridge (the reel onto which the magnetic tape is wound before the first data is recorded onto the magnetic cartridge) and extending a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the "outer end” (BOT)).
  • EOT inner end
  • BOT outer end
  • the inside of the magnetic tape refers to the area starting from the end attached to the reel 13 before the first data recording (hereinafter also referred to as the "inner end” (EOT)) and proceeding a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the “outer end” (BOT)).
  • the outside of the magnetic tape refers to the area starting from the outer end of the two ends of the magnetic tape and proceeding a predetermined distance from that position toward the inner end.
  • the inside of the magnetic tape refers to the area starting from the end (hereinafter also referred to as the "inner end” (EOT)) attached to the reel 307 before the first data recording is performed, and proceeding a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the "outer end” (BOT)).
  • the outside of the magnetic tape refers to the area starting from the outer end of the two ends of the magnetic tape, and proceeding a predetermined distance from that position toward the inner end.
  • Figure 32 is a schematic diagram showing how the entire length of the magnetic tape is divided into four equal parts from the inner end of the roll (EOT) to the outer end of the roll (BOT). As shown in Figure 32, from EOT to BOT, the entire length of the tape is divided into four areas, namely Area D, Area C, Area B, and Area A. In this specification, Area A in Figure 32 is referred to as the outer side of the roll, and Area D is referred to as the inner side of the roll.
  • FIG. 32 is a schematic diagram showing the state in which the entire length of the magnetic tape is divided into four equal parts from the end of the inner side of the winding (EOT) to the end of the outer side of the winding (BOT).
  • EOT inner side of the winding
  • BOT outer side of the winding
  • the entire length of the tape is divided into four regions, namely, region D, region C, region B, and region A, from EOT to BOT.
  • the center line of the entire length of the magnetic tape is located between region B and region C, and is the boundary line that separates region B and region C, and the two regions that sandwich the center line are region B and region C.
  • the width change is 0 ppm in either region B or region C.
  • the amount of width change ⁇ in on the inside of the magnetic tape may be a positive value.
  • the amount of width change ⁇ in on the inside of the magnetic tape means the maximum amount of width change on the inside of the magnetic tape.
  • the amount of width change ⁇ in on the inside of the magnetic tape being a positive value means that the width of the magnetic tape on the inside of the magnetic tape after storage is wider than the width in the initial state.
  • the amount of width change ⁇ out on the outside of the magnetic tape may be a negative value.
  • the amount of width change ⁇ out on the outside of the magnetic tape means the minimum value of the amount of width change on the outside of the magnetic tape.
  • a negative value for the amount of width change ⁇ out on the outside of the magnetic tape means that the width of the magnetic tape after storage is narrower than the width in the initial state on the outside of the magnetic tape. Furthermore, when the entire length of the magnetic tape in the longitudinal direction is taken as 100%, preferably at a position 25% to 75% from the outside end (BOT), the width change ⁇ of the magnetic tape after storage for 360 hours at 65° C. may be 0 ppm. In the magnetic tape shown in FIG 32, the width change ⁇ of the magnetic tape after storage for 360 hours at 65° C. may be 0 ppm at either region B or region C, which corresponds to a position 25% to 75% from the outside end (BOT).
  • the average value of the width change ⁇ in region A which corresponds to 1/4 of the outer side of the magnetic tape, may be a negative value
  • the average value of the width change ⁇ in region D which corresponds to 1/4 of the inner side of the magnetic tape
  • (amount of width change ⁇ in on the inside of the magnetic tape roll) ⁇ (amount of width change ⁇ out on the outside of the magnetic tape roll) may be 800 ppm or less.
  • the magnetic tape contained in the magnetic recording cartridge of this technology contains a fatty acid.
  • the magnetic tape may further contain a fatty acid ester. Such fatty acid or fatty acid ester seeps onto the surface of the magnetic tape, and the surface of the abrasive particles is coated with the fatty acid or fatty acid ester, thereby reducing damage to the magnetic head.
  • the extraction rate of fatty acids defined by the following formula can be 45% or more, preferably 50% or more, more preferably 55% or more, and even more preferably 60% or more. If the extraction rate of fatty acids is less than 45%, friction increases, the magnetic head deteriorates due to frictional heat and electrification, damage to the coating increases, powder fall increases, and durability deteriorates.
  • Extraction rate of fatty acid (%) [amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )] ⁇ 100
  • the upper limit of the fatty acid extraction rate is not particularly limited, but from the viewpoint of preventing the coating film itself from plasticizing, increasing powder fall, and deteriorating durability, it is preferably 75% or less, more preferably 73% or less, and even more preferably 70% or less.
  • the method for measuring the fatty acid extraction rate is explained in 2.(2) below.
  • the 5-minute extractable amount (mg/ m2 ) of the fatty acid may be preferably 3.0 mg/ m2 or more, more preferably 3.5 mg/ m2 or more, even more preferably 4.0 mg/ m2 or more, and even more preferably 4.5 mg/ m2 or more.
  • the upper limit of the 5-minute extractable amount of fatty acids is not particularly limited, but is preferably 14.0 mg/ m2 or less, more preferably 13.0 mg/ m2 or less, even more preferably 12.0 mg/ m2 or less, and even more preferably 10.0 mg/ m2 or less.
  • the method for measuring the 5-minute extractable amount of fatty acids will be described in 2.(2) below.
  • the total extractable amount (mg/m 2 ) of the fatty acids may preferably be 5.0 mg/m 2 or more, more preferably 7.0 mg/m 2 or more, even more preferably 9.0 mg/m 2 or more, and even more preferably 10.0 mg/m 2 or more.
  • the upper limit of the total amount of fatty acid extraction is not particularly limited, but is preferably 16.0 mg/ m2 or less, more preferably 15.0 mg/ m2 or less, even more preferably 14.0 mg/ m2 or less, and even more preferably 13.0 mg/ m2 or less.
  • the method for measuring the total amount of fatty acid extraction will be described in 2.(2) below.
  • the magnetic tape included in the magnetic recording cartridge of the present technology further contains a fatty acid ester, and from the viewpoint of suppressing increased friction, deterioration of the magnetic head due to frictional heat and static electricity, increased damage to the coating, increased powder falling, and further deterioration of durability, the extraction rate of the fatty acid ester defined by the following formula can be preferably 60% or more, more preferably 65% or more, even more preferably 70% or more, and even more preferably 75% or more.
  • Extraction rate of fatty acid ester (%) [amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )] ⁇ 100
  • the upper limit of the extraction rate of the fatty acid ester is not particularly limited, but from the viewpoint of preventing the coating film itself from plasticizing, increasing powder falling, and deteriorating durability, it is preferably 90% or less, more preferably 85% or less, and even more preferably 80% or less.
  • the method for measuring the extraction rate of the fatty acid ester is explained in 2.(2) below.
  • the 5-minute extractable amount (mg/m 2 ) of the fatty acid ester may be preferably 10.0 mg/m 2 or more, more preferably 12.0 mg/m 2 or more, even more preferably 14.0 mg/m 2 or more, and even more preferably 16.0 mg/m 2 or more.
  • the upper limit of the 5-minute extractable amount of the fatty acid ester is not particularly limited, but since there is a risk that the plasticization of the coating film will progress and powder falling will worsen if it exceeds 25.0 mg/ m2 , it is preferably 20.0 mg/ m2 or less, more preferably 19.0 mg/ m2 or less, even more preferably 18.0 mg/ m2 or less, and even more preferably 17.0 mg/ m2 or less.
  • the method for measuring the 5-minute extractable amount of the fatty acid ester will be explained in 2.(2) below.
  • the total extractable amount (mg/m 2 ) of the fatty acid esters may be preferably 12.0 mg/m 2 or more, more preferably 14.0 mg/m 2 or more, even more preferably 16.0 mg/m 2 or more, and still more preferably 19.0 mg/m 2 or more.
  • the upper limit of the total amount of fatty acid ester extraction is not particularly limited, but is preferably 25.0 mg/ m2 or less, more preferably 24.0 mg/ m2 or less, even more preferably 23.0 mg/ m2 or less, and even more preferably 22.0 mg/ m2 or less.
  • the method for measuring the total amount of fatty acid ester extraction will be described in 2.(2) below.
  • the magnetic tape included in the magnetic recording cartridge of the present technology is preferably a long magnetic tape, and may be, for example, a magnetic recording tape (particularly a long magnetic recording tape).
  • the magnetic tape included in the magnetic recording cartridge of the present technology may have a magnetic layer, a base layer, and a back layer, and may include other layers in addition to these layers.
  • the other layers may be selected appropriately depending on the type of magnetic tape.
  • the magnetic tape may be, for example, a coated magnetic tape or a vacuum thin-film magnetic tape.
  • the coated magnetic tape will be described in more detail in 2. below.
  • the vacuum thin-film magnetic tape will be described in more detail in 3. below. Please refer to these descriptions for layers included in the magnetic tape other than the above three layers.
  • the magnetic tape included in the magnetic recording cartridge of the present technology may have, for example, at least one data band and at least two servo bands.
  • the number of data bands may be, for example, 2 to 10, particularly 3 to 6, and more particularly 4 or 5.
  • the number of servo bands may be, for example, 3 to 11, particularly 4 to 7, and more particularly 5 or 6.
  • These servo bands and data bands may be arranged, for example, to extend in the longitudinal direction of the long magnetic tape, particularly to be substantially parallel.
  • the data band and the servo band may be provided on the magnetic layer.
  • An example of a magnetic tape having such a data band and servo band is a magnetic recording tape conforming to the LTO (Linear Tape-Open) standard.
  • the magnetic tape may be a magnetic recording tape conforming to the LTO standard.
  • the magnetic tape may be a magnetic recording tape conforming to the LTO9 standard or a later standard (for example, LTO10, LTO11, or LTO12).
  • the width of the long magnetic tape (particularly the magnetic recording tape) may be, for example, 5 mm to 30 mm, particularly 7 mm to 25 mm, more particularly 10 mm to 20 mm, and even more particularly 11 mm to 19 mm.
  • the length of the long magnetic tape may be, for example, 500 m to 1500 m.
  • the tape width according to the LTO8 standard is 12.65 mm and the length is 960 m.
  • FIG. 1 is an exploded perspective view showing an example of a magnetic recording cartridge 10 according to the present technology.
  • a magnetic recording cartridge conforming to the LTO standard will be taken as an example of the magnetic recording cartridge 10.
  • the magnetic recording cartridge 10 is a one-reel type cartridge, and includes a cartridge case 12 composed of a lower shell 12A and an upper shell 12B, a reel 13 on which a tape-like magnetic tape MT is wound, a reel lock 14 and a reel spring 15 for locking the rotation of the reel 13, a spider 16 for unlocking the locked state of the reel 13, a slide door 17 for opening and closing a tape outlet 12C provided in the cartridge case 12 across the lower shell 12A and the upper shell 12B, a door spring 18 for biasing the slide door 17 to a closed position of the tape outlet 12C, a write protector 19 for preventing erroneous erasure, and a cartridge memory 11.
  • the reel 13 for winding the magnetic tape MT is substantially disc-shaped with an opening in the center, and is composed of a reel hub 13A and a flange 13B made of a hard material such as plastic.
  • a leader tape LT is connected to the outer peripheral end of the magnetic tape MT.
  • a leader pin 20 is provided at the tip of the leader tape LT.
  • the magnetic recording cartridge 10 may be a magnetic tape cartridge that complies with the LTO (Linear Tape-Open) standard, or it may be a magnetic tape cartridge that complies with a standard other than the LTO standard.
  • LTO Linear Tape-Open
  • the cartridge memory 11 is provided near one corner of the magnetic recording cartridge 10. When the magnetic recording cartridge 10 is loaded into the recording and playback device, the cartridge memory 11 faces the reader/writer of the recording and playback device.
  • the cartridge memory 11 communicates with the recording and playback device, specifically the reader/writer, using a wireless communication standard that complies with the LTO standard.
  • the magnetic tape MT comprises a long base layer 41, an underlayer 42 provided on one main surface (first main surface) of the base layer 41, a magnetic layer 43 provided on the underlayer 42, and a back layer 44 provided on the other main surface (second main surface) of the base layer 41.
  • the underlayer 42 and the back layer 44 are provided as necessary and may be omitted.
  • the magnetic tape MT may be a perpendicular recording type magnetic tape or a longitudinal recording type magnetic tape. From the viewpoint of improving running performance, the magnetic tape MT preferably contains a lubricant.
  • the lubricant may be included in at least one of the underlayer 42 and the magnetic layer 43.
  • the magnetic tape MT may be one that complies with the LTO standard, or one that complies with a standard other than the LTO standard.
  • the width of the magnetic tape MT may be 1/2 inch, or may be wider than 1/2 inch. If the magnetic tape MT complies with the LTO standard, the width of the magnetic tape MT is 1/2 inch.
  • the magnetic tape MT may have a configuration that allows the width of the magnetic tape MT to be kept constant or nearly constant by adjusting the tension applied to the magnetic tape MT in the longitudinal direction during running using a recording/playback device (drive).
  • the magnetic tape MT is long and runs in the longitudinal direction during recording and playback.
  • the magnetic tape MT is preferably used in a recording and playback device equipped with a ring-type head as a recording head.
  • the magnetic tape MT is preferably used in a recording and playback device configured to be able to record data with a data track width of 1200 nm or less or 1000 nm or less.
  • the base layer 41 is a non-magnetic support that supports the underlayer 42 and the magnetic layer 43.
  • the base layer 41 has a long film shape.
  • the upper limit of the average thickness of the base layer 41 is, for example, preferably 4.6 ⁇ m or less, more preferably 4.4 ⁇ m or less, 4.2 ⁇ m or less, even more preferably 4.0 ⁇ m or less, even more preferably 3.8 ⁇ m or less, particularly preferably 3.6 ⁇ m or less, and most preferably 3.4 ⁇ m or less.
  • the upper limit of the average thickness of the base layer 41 is 4.6 ⁇ m or less, the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape.
  • the lower limit of the average thickness of the base layer 41 is preferably 3.0 ⁇ m or more, more preferably 3.2 ⁇ m or more. When the lower limit of the average thickness of the base layer 41 is 3.0 ⁇ m or more, the strength reduction of the base layer 41 can be suppressed.
  • the average thickness of the base layer 41 is determined as follows. First, the magnetic tape MT contained in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into lengths of 250 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples.
  • "longitudinal direction" in the "longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT” means the direction from one end on the leader tape LT side to the other end on the opposite side.
  • each sample i.e., the undercoat layer 42, the magnetic layer 43, and the back layer 44
  • a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • the thickness of each sample (base layer 41) is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the average thickness of the base layer 41 is calculated by arithmetically averaging these measurements (a total of 15 sample thicknesses). Note that the five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • the base layer 41 contains, for example, at least one of polyesters, polyolefins, cellulose derivatives, vinyl resins, and other polymer resins.
  • the base layer 41 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
  • the base layer 41 preferably contains polyesters.
  • the storage modulus E' in the longitudinal direction of the base layer 41 can be reduced to preferably 9.0 GPa or less, more preferably 7.5 GPa or less, even more preferably 6.0 GPa or less, particularly preferably 5.5 GPa or less, and most preferably 4.5 GPa or less. Therefore, by adjusting the longitudinal tension of the magnetic tape MT during running using a recording and playback device, it is particularly easy to control the width of the magnetic tape MT to be constant or nearly constant. A method for measuring the storage modulus E' in the longitudinal direction of the base layer 41 will be described later.
  • the polyesters include, for example, at least one of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylene dimethylene terephthalate), PEB (polyethylene-p-oxybenzoate), and polyethylene bisphenoxycarboxylate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PCT polycyclohexylene dimethylene terephthalate
  • PEB polyethylene-p-oxybenzoate
  • polyethylene bisphenoxycarboxylate polyethylene bisphenoxycarboxylate.
  • PA polyamide
  • PET polyethylene terephthalate
  • polyesters in the base layer 41 can be confirmed, for example, as follows. First, the magnetic tape MT contained in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare a sample, after which all layers of the sample other than the base layer 41 are removed. Next, an IR spectrum of the sample (base layer 41) is obtained by infrared absorption spectrometry (IR). Based on this IR spectrum, it can be confirmed that the base layer 41 contains polyesters.
  • IR infrared absorption spectrometry
  • the polyolefins include, for example, at least one of PE (polyethylene) and PP (polypropylene).
  • the cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate).
  • the vinyl resins include, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
  • polymeric resins include, for example, at least one of PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, e.g.
  • Zylon (registered trademark)), polyether, PEK (polyetherketone), PEEK (polyetheretherketone), polyetherester, PES (polyethersulfone), PEI (polyetherimide), PSF (polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate) and PU (polyurethane).
  • PA polyamide, nylon
  • aromatic PA aromatic PA
  • aromatic PA aromatic PAI
  • PBO polybenzoxazole, for example Zylon (registered trademark)
  • polyether PEK (polyether ketone), and PEEK (polyether ether ketone)
  • PEK polyether ketone
  • PEEK polyether ether ketone
  • the base layer 41 may be biaxially stretched in the longitudinal and width directions.
  • the polymer resin contained in the base layer 41 is preferably oriented in a direction oblique to the width direction of the base layer 41.
  • the magnetic layer 43 is a recording layer for recording signals by magnetization patterns.
  • the magnetic layer 43 may be a coating film.
  • the magnetic layer 43 may be a perpendicular recording type recording layer or a longitudinal recording type recording layer.
  • the magnetic layer 43 includes, for example, magnetic powder, a binder, a lubricant, and carbon.
  • the magnetic layer 43 may further include at least one additive selected from antistatic agents, abrasives, hardeners, rust inhibitors, and non-magnetic reinforcing particles, as necessary.
  • the magnetic layer 43 may have a surface having an uneven shape.
  • the magnetic layer 43 has multiple data bands in which data is written, and multiple servo bands in which servo patterns are written. Details of the data bands and servo bands will be described later.
  • the magnetic layer 43 is configured so that multiple data tracks can be formed in the data band.
  • the upper limit of the average value of the data track width is preferably 1100 nm or less, more preferably 1000 nm or less, even more preferably 800 nm or less, and particularly preferably 600 nm or less.
  • the lower limit of the average value of the data track width W is preferably 20 nm or more.
  • the average data track width is obtained as follows. First, a magnetic recording cartridge 10 is prepared on which data is recorded over the entire surface of the magnetic tape MT. The magnetic tape MT is unwound from the magnetic recording cartridge 10, and the magnetic tape MT is cut into lengths of 250 mm from the longitudinal range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, the data recording pattern of the data band portion of the magnetic layer 43 of each sample is observed using a magnetic force microscope (MFM) to obtain an MFM image.
  • MFM magnetic force microscope
  • MFM measurements were performed on a 10 ⁇ m x 10 ⁇ m measurement area, meaning that three MFM images were obtained. From the three MFM images obtained, the track width was measured at 10 locations using the analysis software provided with the Dimension3100, and the average value (simple average) was calculated. This average value is the average data track width.
  • the measurement conditions for the above MFM were sweep speed: 1 Hz, chip used: MFMR-20, lift height: 20 nm, correction: Flatten order 3.
  • the upper limit of the average thickness of the magnetic layer 43 is preferably 0.08 ⁇ m or less, more preferably 0.07 ⁇ m or less, and even more preferably 0.06 ⁇ m or less, 0.05 ⁇ m or less, or 0.04 ⁇ m or less. If the upper limit of the average thickness of the magnetic layer 43 is 0.08 ⁇ m or less, when a ring-type head is used as the recording head, the effect of the demagnetizing field can be reduced, and even better electromagnetic conversion characteristics can be obtained.
  • the lower limit of the average thickness of the magnetic layer 43 is not particularly limited, but is preferably 0.03 ⁇ m or more. If the lower limit of the average thickness of the magnetic layer 43 is 0.03 ⁇ m or more, output can be ensured when an MR head is used as the reproducing head, and thus even better electromagnetic conversion characteristics can be obtained.
  • the average thickness of the magnetic layer 43 is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the longitudinal range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, each sample is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
  • the thickness of the magnetic layer 43 is measured at 10 positions on each thinned sample.
  • the 10 measurement positions on each thinned sample are randomly selected from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • the average value obtained by arithmetically averaging the measured values of each obtained thinned sample (a total of 30 thicknesses of the magnetic layer 43) is defined as the average thickness [nm] of the magnetic layer 43.
  • the magnetic powder includes a plurality of magnetic particles.
  • the magnetic particles are, for example, particles containing a metal oxide (hereinafter referred to as “metal oxide particles”).
  • the metal oxide particles are, for example, particles containing hexagonal ferrite (hereinafter referred to as “hexagonal ferrite particles”), particles containing epsilon-type iron oxide ( ⁇ iron oxide) (hereinafter referred to as “ ⁇ iron oxide particles”), or particles containing Co-containing spinel ferrite (hereinafter referred to as "cobalt ferrite particles”).
  • the magnetic powder is preferentially crystalline oriented in the perpendicular direction of the magnetic tape MT.
  • the perpendicular direction (thickness direction) of the magnetic tape MT means the thickness direction of the magnetic tape MT in a flat state.
  • the hexagonal ferrite particles have, for example, a plate shape such as a hexagonal plate shape or a column shape such as a hexagonal column shape (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface).
  • the hexagonal plate shape includes a substantially hexagonal plate shape.
  • the hexagonal ferrite preferably contains at least one of Ba, Sr, Pb, and Ca, more preferably at least one of Ba and Sr.
  • the hexagonal ferrite may specifically be, for example, barium ferrite or strontium ferrite.
  • the barium ferrite may further contain at least one of Sr, Pb, and Ca in addition to Ba.
  • the strontium ferrite may further contain at least one of Ba, Pb, and Ca in addition to Sr.
  • the hexagonal ferrite has an average composition represented by the general formula MFe 12 O 19.
  • M is, for example, at least one metal selected from Ba, Sr, Pb, and Ca, preferably at least one metal selected from Ba and Sr.
  • M may be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb, and Ca.
  • M may also be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb, and Ca.
  • a part of Fe may be substituted with another metal element.
  • the average particle size of the magnetic powder is preferably 13 nm or more and 22 nm or less, more preferably 13 nm or more and 19 nm or less, even more preferably 13 nm or more and 18 nm or less, particularly preferably 14 nm or more and 17 nm or less, and most preferably 14 nm or more and 16 nm or less.
  • the average particle size of the magnetic powder is 22 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT.
  • the average particle size of the magnetic powder is 13 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average aspect ratio of the magnetic powder is preferably 1.0 or more and 3.0 or less, more preferably 1.5 or more and 2.8 or less, and even more preferably 1.8 or more and 2.7 or less.
  • the average aspect ratio of the magnetic powder is within the range of 1.0 or more and 3.0 or less, aggregation of the magnetic powder can be suppressed.
  • the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • the average particle size and the average aspect ratio of the magnetic powder are obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed by deposition or sputtering on the surface on the magnetic layer 43 side.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
  • the cross section of the obtained thin sample is observed using a transmission electron microscope (Hitachi High-Technologies Corporation H-9500) at an acceleration voltage of 200 kV and a total magnification of 500,000 times in the thickness direction of the magnetic layer 43 so as to include the entire magnetic layer 43, and a TEM photograph is taken.
  • the TEM photographs are prepared in such a way that 50 particles can be extracted that allow the plate diameter DB and plate thickness DA (see Figure 3) shown below to be measured.
  • the thickness or height of the particle observed in the above TEM photograph is plate-like or columnar (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface) as shown in Figure 3, the major axis of the plate surface or bottom surface of the particle is taken as the plate diameter DB value.
  • the thickness or height of the particle observed in the above TEM photograph is taken as the plate thickness DA value.
  • the thickness or height of a particle is not constant within a single particle, the thickness or height of the maximum particle is taken as the plate thickness DA.
  • 50 particles are selected from the TEM photograph based on the following criteria. Particles that are partially outside the field of view of the TEM photograph are not measured, and only particles that have a clear outline and exist in isolation are measured. If there are overlapping particles, those with a clear boundary between them and whose overall shape can be determined are measured as individual particles, but particles with unclear boundaries and whose overall shape cannot be determined are not measured as their shape cannot be determined.
  • FIG. 4 and 5 show an example of a TEM photograph.
  • the particles indicated by the arrows a and d are selected because the plate thickness (thickness or height) DA of the particle can be clearly confirmed.
  • the plate thickness DA of each of the selected 50 particles is measured.
  • the plate thickness DA thus obtained is arithmetically averaged to obtain the average plate thickness DA ave .
  • the average plate thickness DA ave is the average particle plate thickness.
  • the plate diameter DB of each magnetic powder is measured.
  • 50 particles whose plate diameter DB of the particle can be clearly confirmed are selected from the TEM photograph taken. For example, in FIG. 4 and FIG.
  • the particles indicated by the arrows b and c are selected because the plate diameter DB can be clearly confirmed.
  • the plate diameter DB of each of the selected 50 particles is measured.
  • the plate diameter DB thus obtained is simply averaged (arithmetic averaged) to obtain the average plate diameter DB ave .
  • the average plate diameter DB ave is the average particle size.
  • the average aspect ratio of the particles ( DBave / DAave ) is calculated from the average plate thickness DAave and the average plate diameter DBave .
  • the average particle volume of the magnetic powder is preferably 500 nm3 or more and 2500 nm3 or less, more preferably 500 nm3 or more and 1600 nm3 or less, even more preferably 500 nm3 or more and 1500 nm3 or less, particularly preferably 600 nm3 or more and 1200 nm3 or less, and most preferably 600 nm3 or more and 1000 nm3 or less.
  • the average particle volume of the magnetic powder is 2500 nm3 or less, the same effect as when the average particle size of the magnetic powder is 22 nm or less can be obtained.
  • the average particle volume of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 13 nm or more can be obtained.
  • the average particle volume of the magnetic powder is calculated as follows. First, the average plate thickness DA ave and the average plate diameter DB ave are calculated as described above in relation to the method for calculating the average particle size of the magnetic powder. Next, the average volume V of the magnetic powder is calculated using the following formula.
  • the ⁇ -iron oxide particles are hard magnetic particles that can obtain high coercivity even in the case of fine particles.
  • the ⁇ -iron oxide particles are spherical or cubic.
  • the term “spherical” includes “approximately spherical”.
  • the term “cubic” includes “approximately cubic”. Since the ⁇ -iron oxide particles have the above-mentioned shape, when the ⁇ -iron oxide particles are used as the magnetic particles, the contact area between the particles in the thickness direction of the magnetic tape MT can be reduced and the aggregation between the particles can be suppressed compared to when hexagonal plate-shaped barium ferrite particles are used as the magnetic particles. Therefore, the dispersibility of the magnetic particles can be improved, and further excellent electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • SNR electromagnetic conversion characteristics
  • the ⁇ -iron oxide particles may have a composite particle structure. More specifically, the ⁇ -iron oxide particles include an ⁇ -iron oxide portion and a portion having soft magnetism or a portion having a higher saturation magnetization ⁇ s and a smaller coercive force Hc than ⁇ -iron oxide (hereinafter referred to as the "soft magnetic portion, etc.”).
  • the ⁇ -iron oxide portion contains ⁇ -iron oxide.
  • the ⁇ -iron oxide contained in the ⁇ -iron oxide portion preferably has ⁇ -Fe 2 O 3 crystals as a main phase, and more preferably is made of single-phase ⁇ -Fe 2 O 3 .
  • the soft magnetic portion is in contact with at least a portion of the ⁇ -iron oxide portion. Specifically, the soft magnetic portion may partially cover the ⁇ -iron oxide portion, or may cover the entire periphery of the ⁇ -iron oxide portion.
  • the soft magnetic portion (the magnetic portion having a higher saturation magnetization ⁇ s and a smaller coercive force Hc than ⁇ -iron oxide) includes, for example, a soft magnetic material such as ⁇ -Fe, a Ni-Fe alloy, or an Fe-Si-Al alloy.
  • ⁇ -Fe may be obtained by reducing the ⁇ -iron oxide contained in the ⁇ -iron oxide portion.
  • the portion having soft magnetic properties may contain, for example, Fe 3 O 4 , ⁇ -Fe 2 O 3 , or spinel ferrite.
  • the coercive force Hc of the ⁇ -iron oxide portion alone can be kept high to ensure thermal stability, while the coercive force Hc of the ⁇ -iron oxide particle (composite particle) as a whole can be adjusted to a coercive force Hc suitable for recording.
  • the ⁇ iron oxide particles may contain an additive instead of the structure of the composite particles, or may have the structure of the composite particles and contain an additive. In this case, part of the Fe in the ⁇ iron oxide particles is replaced with the additive.
  • the additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one selected from the group consisting of Al, Ga and In, and even more preferably at least one selected from the group consisting of Al and Ga.
  • the ⁇ -iron oxide containing the additive is an ⁇ -Fe2 - xMxO3 crystal (wherein M is a metal element other than iron, preferably a trivalent metal element, more preferably at least one selected from the group consisting of Al, Ga and In, and even more preferably at least one selected from the group consisting of Al and Ga; x is, for example, 0 ⁇ x ⁇ 1).
  • the average particle size of the magnetic particles is preferably 10 nm to 20 nm, more preferably 10 nm to 18 nm, even more preferably 10 nm to 16 nm, particularly preferably 10 nm to 15 nm, and most preferably 10 nm to 14 nm.
  • the area with a size of 1/2 the recording wavelength becomes the actual magnetization area. Therefore, by setting the average particle size of the magnetic particles to half or less of the shortest recording wavelength, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average particle size of the magnetic particles is 20 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT (e.g., a magnetic tape MT configured to be able to record signals at the shortest recording wavelength of 40 nm or less).
  • a high recording density magnetic tape MT e.g., a magnetic tape MT configured to be able to record signals at the shortest recording wavelength of 40 nm or less.
  • the average particle size of the magnetic particles is 10 nm or more, the dispersibility of the magnetic particles is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the average aspect ratio of the magnetic particles is preferably 1.0 to 3.0, more preferably 1.0 to 2.5, even more preferably 1.0 to 2.1, and particularly preferably 1.0 to 1.8.
  • the average aspect ratio of the magnetic particles is within the range of 1.0 to 3.0, aggregation of the magnetic particles can be suppressed.
  • the magnetic particles are vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic particles can be suppressed. Therefore, the vertical orientation of the magnetic particles can be improved.
  • the average particle size and average aspect ratio of the magnetic particles can be found as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape. Next, the magnetic tape MT to be measured is processed by the FIB (Focused Ion Beam) method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective layers as a pretreatment for observing the TEM image of the cross section described later.
  • FIB Fluorused Ion Beam
  • the carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
  • the cross section of the obtained thin sample is observed with a transmission electron microscope (H-9500 manufactured by Hitachi High-Technologies Corporation) at an acceleration voltage of 200 kV and a total magnification of 500,000 times so that the entire magnetic layer 43 is included in the thickness direction of the magnetic layer 43, and a TEM image is taken.
  • 50 particles whose particle shape can be clearly confirmed are selected from the taken TEM image, and the long axis length DL and short axis length DS of each particle are measured.
  • the long axis length DL means the maximum distance between two parallel lines drawn from all angles so as to be in contact with the contour of each particle (so-called maximum Feret diameter).
  • the short axis length DS means the maximum length of the particle in the direction perpendicular to the long axis (DL) of the particle.
  • the long axis lengths DL of the measured 50 particles are simply averaged (arithmetic average) to obtain the average long axis length DL ave .
  • the average long axis length DL ave thus obtained is the average particle size of the magnetic particles.
  • the minor axis lengths DS of the 50 particles are simply averaged (arithmetic mean) to determine the average minor axis length DSave .
  • the average aspect ratio of the particles ( DLave / DSave ) is then calculated from the average major axis length DLave and the average minor axis length DSave .
  • the average particle volume of the magnetic particles is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 500 nm3 or more and 3000 nm3 or less, even more preferably 500 nm3 or more and 2000 nm3 or less, particularly preferably 600 nm3 or more and 1600 nm3 or less, and most preferably 600 nm3 or more and 1300 nm3 or less. Since the noise of a magnetic tape MT is generally inversely proportional to the square root of the number of particles (i.e., proportional to the square root of the particle volume), by making the particle volume smaller, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR).
  • SNR electromagnetic conversion characteristics
  • the average particle volume of the magnetic particles is 4000 nm3 or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in the same way as when the average particle size of the magnetic particles is 20 nm or less.
  • the average particle volume of the magnetic particles is 500 nm3 or more, it is possible to obtain the same effect as when the average particle size of the magnetic particles is 10 nm or more.
  • the average volume of the magnetic particles is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB (Focused Ion Beam) method or the like to be thinned. When the FIB method is used, a carbon film and a tungsten thin film are formed as protective films as a pretreatment for observing the TEM image of the cross section described later.
  • FIB Fluorused Ion Beam
  • the carbon film is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten thin film is further formed by deposition or sputtering on the surface on the magnetic layer 43 side.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
  • the obtained thin sample is observed in cross section in the thickness direction of the magnetic layer 43 at an acceleration voltage of 200 kV and a total magnification of 500,000 times to include the entire magnetic layer 43, and a TEM image is obtained.
  • the magnification and acceleration voltage may be adjusted appropriately depending on the type of device.
  • 50 particles whose particle shapes are clear are selected from the TEM image taken, and the side length DC of each particle is measured.
  • the side lengths DC of the 50 particles measured are simply averaged (arithmetic average) to obtain the average side length DC ave .
  • the average volume V ave (particle volume) of the magnetic particles is calculated from the following formula using the average side length DC ave .
  • V ave DC ave 3
  • the cobalt ferrite particles preferably have uniaxial crystal anisotropy.
  • the cobalt ferrite particles have uniaxial crystal anisotropy, so that the magnetic powder can be preferentially crystal oriented in the perpendicular direction of the magnetic tape MT.
  • the cobalt ferrite particles have, for example, a cubic shape. In this specification, the cubic shape includes an almost cubic shape.
  • the Co-containing spinel ferrite may further contain at least one of Ni, Mn, Al, Cu, and Zn in addition to Co.
  • the Co-containing spinel ferrite has, for example, an average composition represented by the following formula.
  • Co x M y Fe 2 O Z (In the formula, M is, for example, at least one metal selected from Ni, Mn, Al, Cu, and Zn.
  • x is a value within the range of 0.4 ⁇ x ⁇ 1.0.
  • y is a value within the range of 0 ⁇ y ⁇ 0.3.
  • x and y satisfy the relationship of (x+y) ⁇ 1.0.
  • z is a value within the range of 3 ⁇ z ⁇ 4.
  • a part of Fe may be substituted with another metal element.
  • the average particle size of the magnetic powder is preferably 8 nm or more and 16 nm or less, more preferably 8 nm or more and 13 nm or less, and even more preferably 8 nm or more and 10 nm or less.
  • the average particle size of the magnetic powder is 16 nm or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in a high recording density magnetic tape MT.
  • the average particle size of the magnetic powder is 8 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
  • the method of calculating the average particle size of the magnetic powder is the same as the method of calculating the average particle size of the magnetic powder when the magnetic powder contains ⁇ iron oxide particles.
  • the average aspect ratio of the magnetic powder is preferably 1.0 to 2.5, more preferably 1.0 to 2.1, and even more preferably 1.0 to 1.8.
  • the average aspect ratio of the magnetic powder is within the range of 1.0 to 2.5, aggregation of the magnetic powder can be suppressed.
  • the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • the method of calculating the average aspect ratio of the magnetic powder is the same as the method of calculating the average aspect ratio of the magnetic powder when the magnetic powder contains ⁇ iron oxide particles.
  • the average particle volume of the magnetic powder is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 600 nm3 or more and 2000 nm3 or less, and even more preferably 600 nm3 or more and 1000 nm3 or less.
  • the average particle volume of the magnetic powder is 4000 nm3 or less, the same effect as when the average particle size of the magnetic powder is 16 nm or less can be obtained.
  • the average particle size of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 8 nm or more can be obtained.
  • the method for calculating the average particle volume of the magnetic component is the same as the method for calculating the average particle volume when the ⁇ iron oxide particles have a cubic shape.
  • the carbon contained in the magnetic layer 43 may function as an antistatic agent, a solid lubricant, etc.
  • As such carbon for example, at least one type selected from the group consisting of carbon particles and hybrid particles can be used, and it is preferable to use carbon particles.
  • carbon particles for example, one or more selected from the group consisting of carbon black, acetylene black, ketjen black, carbon nanotubes, and graphene can be used, and among these carbon particles, it is preferable to use carbon black.
  • carbon black for example, Seast TA manufactured by Tokai Carbon Co., Ltd., Asahi #15, #15HS, etc. manufactured by Asahi Carbon Co., Ltd. can be used.
  • the hybrid particles include carbon and a material other than carbon.
  • the material other than carbon is, for example, an organic material or an inorganic material.
  • the hybrid particles may be hybrid particles in which carbon is attached to the surface of an inorganic particle.
  • the hybrid particles may be hybrid carbon in which carbon is attached to the surface of a silica particle.
  • the carbon particles when used as the carbon contained in the magnetic layer 43, the carbon particles protrude from the surface of the magnetic layer 43 to form protrusions.
  • the data write head 60 slides over the magnetic tape MT, the protrusions formed by the carbon particles come into contact with the data write head 60.
  • abrasive particles Some particles of the abrasive contained in the magnetic layer 43 (hereinafter referred to as abrasive particles) protrude from the magnetic surface to form protrusions. When the data write head 60 slides over the magnetic tape MT, the protrusions formed by the abrasive particles come into contact with the data write head 60.
  • the abrasive particles are particles having an abrasive effect.
  • the Mohs hardness of such abrasive particles is preferably 7 or more, more preferably 7.5 or more, even more preferably 8 or more, and even more preferably 8.5 or more.
  • the Mohs hardness of the abrasive particles is preferably 9.5 or less.
  • the abrasive particles may preferably be inorganic particles, such as ⁇ -Al 2 O 3 ( ⁇ -alumina), ⁇ -Al 2 O 3 ( ⁇ -alumina), ⁇ -Al 2 O 3 ( ⁇ -alumina), silicon carbide, chromium oxide, cerium oxide, ⁇ -iron oxide, corundum, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, acicular ⁇ -iron oxide obtained by dehydrating and annealing raw materials of magnetic iron oxide, and those surface-treated with aluminum and/or silica as necessary, diamond powder, etc.
  • ⁇ -Al 2 O 3 ⁇ -alumina
  • ⁇ -Al 2 O 3 ⁇ -alumina
  • silicon carbide silicon carbide
  • chromium oxide cerium
  • the abrasive particles are preferably alumina particles such as ⁇ -Al 2 O 3 ( ⁇ -alumina), ⁇ -Al 2 O 3 ( ⁇ -alumina), ⁇ -Al 2 O 3 ( ⁇ -alumina), and silicon carbide. These abrasive particles may be of any shape, such as needle-like, spherical, or cubic, but those having corners in their shape are preferred because they have high abrasiveness.
  • the abrasive particles form protrusions on the surface of the magnetic layer.
  • the average height of the protrusions formed by the abrasive particles is preferably 8 nm or less, more preferably 7.5 nm or less, even more preferably 7.0 nm or less, even more preferably 6.5 nm or less, and even more preferably 6.0 nm or less.
  • the spacing between the data write head and the magnetic tape MT is small, the occurrence of friction increase due to multiple runs is small, and the abrasive force against the data write head can be appropriately maintained.
  • the lower limit of the average height of the protrusions formed by the abrasive particles is not particularly limited, but may be, for example, preferably 2.0 nm or more, more preferably 2.5 nm or more, and even more preferably 3.0 nm or more.
  • the lubricant contains at least one selected from, for example, a fatty acid and a fatty acid ester, and preferably both a fatty acid and a fatty acid ester.
  • a lubricant in the magnetic layer 43 and in particular the inclusion of both a fatty acid and a fatty acid ester in the magnetic layer 43, contributes to improving the running stability of the magnetic tape MT.
  • the fatty acid may preferably be a compound represented by the following general formula (1) or (2).
  • the fatty acid may contain either a compound represented by the following general formula (1) or a compound represented by the following general formula (2), or may contain both.
  • the fatty acid ester may preferably be a compound represented by the following general formula (3) or (4).
  • the fatty acid ester may contain either a compound represented by the following general formula (3) or a compound represented by the following general formula (4), or may contain both.
  • the lubricant contains either or both of the compound shown in general formula (1) and the compound shown in general formula (2), either or both of the compound shown in general formula (3) and the compound shown in general formula (4), or the compound shown in general formula (5), thereby making it possible to suppress an increase in the dynamic friction coefficient due to repeated recording or playback of the magnetic tape MT.
  • k is an integer selected from the range of 14 or more and 22 or less, more preferably from the range of 14 or more and 18 or less.
  • fatty acids and fatty acid esters include the following: Fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, elaidic acid, linoleic acid, and linolenic acid.
  • fatty acid esters include butyl caprate, octyl caprylate, ethyl laurate, butyl laurate, octyl laurate, ethyl myristate, butyl myristate, octyl myristate, 2-ethylhexyl myristate, ethyl palmitate, butyl palmitate, octyl palmitate, 2-ethylhexyl palmitate, ethyl stearate, butyl stearate, isobutyl stearate, octyl stearate, 2-ethylhexyl stearate, amyl stearate, isoamyl stearate, 2-ethylpentyl stearate, 2-hexyldecyl stearate, isotridecyl stearate, stearic acid amide, alkyl stea
  • binder examples include thermoplastic resins, thermosetting resins, and reactive resins.
  • thermoplastic resin examples include vinyl chloride, vinyl acetate, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinyl chloride-vinylidene chloride copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinyl chloride copolymers, methacrylic acid ester-ethylene copolymers, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymers, acrylonitrile-butadiene copolymers, polyamide resins, polyvinyl fluoride, vinyliden
  • thermosetting resins examples include phenolic resins, epoxy resins, polyurethane curing resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, and urea formaldehyde resins.
  • the amount of these polar functional groups introduced into the binder is preferably 10 -1 mol/g or more and 10 -8 mol/g or less, and more preferably 10 -2 mol/g or more and 10
  • antistatic agent examples include natural surfactants, nonionic surfactants, and cationic surfactants.
  • Examples of the curing agent include polyisocyanates.
  • Examples of the polyisocyanates include aromatic polyisocyanates such as an adduct of tolylene diisocyanate (TDI) and an active hydrogen compound, and aliphatic polyisocyanates such as an adduct of hexamethylene diisocyanate (HMDI) and an active hydrogen compound.
  • the weight average molecular weight of these polyisocyanates is preferably in the range of 100 to 3,000.
  • anti-rust examples include phenols, naphthols, quinones, heterocyclic compounds containing a nitrogen atom, heterocyclic compounds containing an oxygen atom, and heterocyclic compounds containing a sulfur atom.
  • Non-magnetic reinforcing particles examples include aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (rutile or anatase type titanium oxide), and the like.
  • the underlayer 42 serves to reduce the unevenness of the surface of the base layer 41 and adjust the unevenness of the surface of the magnetic layer 43.
  • the underlayer 42 is a non-magnetic layer containing non-magnetic powder, a binder, and a lubricant.
  • the underlayer 42 supplies the lubricant to the surface of the magnetic layer 43.
  • the underlayer 42 may further contain at least one additive selected from the group consisting of an antistatic agent, a hardener, and an anti-rust agent, as necessary.
  • the upper limit of the average thickness of the underlayer 42 is preferably 1.0 ⁇ m or less, more preferably 0.9 ⁇ m or less, even more preferably 0.8 ⁇ m or less, particularly preferably 0.7 ⁇ m or less, and most preferably 0.6 ⁇ m or less. If the upper limit of the average thickness of the underlayer 42 is 1.0 ⁇ m or less, the thickness of the magnetic tape MT can be reduced, so that the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape. If the average thickness of the underlayer 42 is 1.0 ⁇ m or less, the elasticity of the magnetic tape MT due to external forces is further increased, so that the width of the magnetic tape MT can be further adjusted by adjusting the tension.
  • the lower limit of the average thickness of the underlayer 42 is preferably 0.3 ⁇ m or more. If the lower limit of the average thickness of the underlayer 42 is 0.3 ⁇ m or more, the deterioration of the function as the underlayer 42 can be suppressed.
  • the average thickness of the underlayer 42 is determined in the same manner as the average thickness of the magnetic layer 43. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the underlayer 42.
  • the non-magnetic powder includes at least one of inorganic particle powder and organic particle powder.
  • the non-magnetic powder may also include carbon powder such as carbon black.
  • One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination.
  • the inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, etc.
  • the shape of the non-magnetic powder may be, for example, various shapes such as needle-like, spherical, cubic, and plate-like, but is not limited to these shapes.
  • the average particle size of the non-magnetic powder is preferably 10 nm or more and 150 nm or less, more preferably 15 nm or more and 110 nm or less.
  • the average particle size of the non-magnetic powder is determined in the same manner as the average particle size of the magnetic powder described above.
  • the non-magnetic powder may contain non-magnetic powder having two or more particle size distributions.
  • Binding agent, lubricant The binder and lubricant are the same as those in the magnetic layer 43 described above.
  • the antistatic agent, hardener and rust inhibitor are the same as those in the magnetic layer 43 described above.
  • the back layer 44 contains a binder and a non-magnetic powder.
  • the back layer 44 may further contain at least one additive selected from the group consisting of a lubricant, a hardener, and an antistatic agent, if necessary.
  • the binder and the non-magnetic powder are the same as those in the underlayer 42 described above.
  • the hardener and the antistatic agent are the same as those in the magnetic layer 43 described above.
  • the upper limit of the average thickness tb of the back layer 44 is preferably 0.6 ⁇ m or less. If the upper limit of the average thickness tb of the back layer 44 is 0.6 ⁇ m or less, the thickness of the underlayer 42 and the base layer 41 can be kept thick even when the average thickness of the magnetic tape MT is 5.3 ⁇ m or less, so that the running stability of the magnetic tape MT in a recording and reproducing device can be maintained.
  • the lower limit of the average thickness tb of the back layer 44 is not particularly limited, but is, for example, 0.2 ⁇ m or more.
  • the average thickness t b of the back layer 44 is obtained as follows. First, the average thickness t T of the magnetic tape MT is measured. The method for measuring the average thickness t T is as described in the "Average Thickness of Magnetic Tape" below. Next, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the range of 10 m to 20 m, the range of 30 m to 40 m, and the range of 50 m to 60 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples.
  • the back layer 44 of each sample is removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • the thickness of each sample is measured at five positions using a Mitutoyo laser hologram (LGH-110C), and the measured values (total thicknesses of 15 samples) are arithmetically averaged to calculate the average value t B [ ⁇ m].
  • the average thickness t b [ ⁇ m] of the back layer 44 is obtained from the following formula.
  • the five measurement positions are selected at random from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • tb [ ⁇ m] tT [ ⁇ m] ⁇ tB [ ⁇ m]
  • the width change amount ⁇ is preferably 300 ppm or less, more preferably 250 ppm or less, even more preferably 200 ppm or less, and even more preferably 150 ppm or less in any of the four regions.
  • the change in width of the magnetic tape, ⁇ is measured as follows:
  • the servo band pitch in the longitudinal direction of the magnetic tape in its initial state before storage for 360 hours at 65° C. is measured using the data recording/reproducing device 50.
  • the servo band pitch means the arrangement interval of the servo bands.
  • the magnetic tape MT is wound into the magnetic recording cartridge 10 with a tension of 0.55 N, and the magnetic tape MT housed in the magnetic recording cartridge 10 is run so as to be wound into the data recording/reproducing device 50 (running in a so-called forward direction) in an environment of 32° C. and 55% RH, and the servo band pitch is measured at each position in the longitudinal direction of the magnetic tape MT over the entire length of the magnetic tape MT.
  • the tension applied to the magnetic tape MT is 0.55 N
  • the running speed is 3 to 6 m/s.
  • the magnetic tape MT is wound into the magnetic recording cartridge 10 with a tension of 0.55 N and stored at 65°C and 40 RH% for 24 hours, then run once back and forth at a tension of 0.55 N in the data recording and reproducing device 50 in an environment of 32°C and 55 RH%, and then stored again for 24 hours in an environment of 65°C and 40 RH%, after which it is run once back and forth at a tension of 0.55 N in the data recording and reproducing device 50 in an environment of 32°C and 55 RH%, repeating this process for a total of 360 hours of storage.
  • the ratio of the servo band pitch at each position in the longitudinal direction of the magnetic tape MT after storage to the servo band pitch at the corresponding position in the longitudinal direction in the initial state is defined as the width change amount ⁇ .
  • the portion where the width change amount ⁇ is minimum and the portion where the width change amount ⁇ is maximum are identified, and the difference between the maximum width change amount ⁇ max and the minimum width change amount ⁇ min is calculated.
  • the method for measuring the servo band pitch will be described in more detail below.
  • FIG. 6 an example will be described in which the data write head 60 tracks a data band d0 sandwiched between a servo band s2 and a servo band s3.
  • the method of measuring the servo band pitch using the data recording and reproducing device 50 involves running the magnetic tape MT over its entire length using the data recording and reproducing device 50, measuring the numerical values representing the relative positions of the servo trace lines T on each servo band of the two servo read sections 62 with respect to the servo pattern 47, and calculating the servo band pitch from the measured relative positions of each servo trace line T with respect to the servo pattern 47.
  • the spacing between the servo trace lines T shown by solid lines in FIG. 6 indicates the servo band pitch when the width of the magnetic tape MT does not change (the first pitch P1, which is the spacing between the two servo read sections 62 of the data write head 60).
  • the spacing between the servo trace lines T shown by dashed lines in FIG. 6 corresponds to the servo band pitch (P2') when the width of the magnetic tape MT is expanded.
  • FIG. 7 is a diagram explaining a method for measuring the servo trace line T.
  • the data recording and reproducing device 50 outputs a servo reproduction signal having a waveform according to the position of the servo trace line T relative to the servo pattern 47.
  • the distance AC between the A burst and the C burst, which are arrays of inclination patterns of the same shape, and the distance AB between the A burst and the B burst, which are arrays of inclination patterns of different shapes are calculated, and a numerical value representing the relative position of the servo trace line T of each servo lead portion 62 with respect to the servo pattern 47 is calculated using the following formula [Equation 1].
  • is the azimuth angle of each of the inclination patterns, and is set to 12° in this example.
  • the distance AC may be the distance AC1 between the first slope portions of the A burst and the C burst, the distance AC2 between their second slope portions, the distance AC3 between their third slope portions, or the distance AC4 between their fourth slope portions.
  • These distances AC (AC1 to AC4) refer to the distances between the positions (upper peak positions) that indicate the maximum positive amplitude values in the servo playback waveform.
  • the distance AB may be the distance AB1 between the first inclined portions of the A burst and the B burst, the distance AB2 between their second inclined portions, the distance AB3 between their third inclined portions, or the distance AB4 between their fourth inclined portions.
  • distance AB1 when distance AC1 is adopted, distance AB1 is adopted, when distance AC2 is adopted, distance AB2 is adopted, when distance AC3 is adopted, distance AB3 is adopted, and when distance AC4 is adopted, distance AB4 is adopted.
  • the servo band pitch is calculated from the difference in the values representing the position of each servo trace line T on the servo pattern, which is calculated from the ratio of distances AB and AC, using equation 1.
  • the difference is taken between the measurement value of the servo band on the tape edge side (servo band s3) and the measurement value of the servo band on the tape center side (servo band s2).
  • the positive or negative value indicates the direction of change in the tape width, with a positive value corresponding to a narrowing of the servo band pitch and a negative value corresponding to a widening of the servo band pitch. If the difference is zero, it means that there is no change in the tape width.
  • the servo band pitch is preferably determined from the difference between a large number of servo frames, and may be, for example, the average of measured values calculated from the difference between 100 and 100,000 servo frames.
  • the tape tension during measurement is the tension during recording of the servo pattern 47 (reference tension, for example, 0.55 N), and the measurement is performed at a constant tension over the entire length of the magnetic tape MT.
  • the method of measuring the servo trace line T is not limited to the above example.
  • the distance CA between the C burst and the A burst and the distance CD between the C burst and the D burst may be calculated, and the position of the servo trace line T may be measured using the following formula [Equation 2].
  • the distance CA may be the distance CA1 between the first inclined portions of the C burst and the A burst, the distance CA2 between their second inclined portions, the distance CA3 between their third inclined portions, or the distance CA4 between their fourth inclined portions.
  • These distances CA (CA1 to CA4) refer to the distances between the positions that indicate the maximum positive amplitude values in the servo playback waveform.
  • the distance CD may be the distance CD1 between the first inclined portions of the C burst and the D burst, the distance CD2 between their second inclined portions, the distance CD3 between their third inclined portions, or the distance CD4 between their fourth inclined portions.
  • distance CD1 when distance CA1 is adopted, distance CD1 is adopted, when distance CA2 is adopted, distance CD2 is adopted, when distance CA3 is adopted, distance CD3 is adopted, and when distance CA4 is adopted, distance CD4 is adopted.
  • the servo band pitch may be measured by using the average value of the measurement value using the formula [1] and the measurement value using the formula [2].
  • the distance between the positions (lower peak positions) showing the maximum negative value of the amplitude in the servo reproduction waveform may be used as the distances AC and AB in the formula [1] and the distances CA and CD in the formula [2].
  • the average value of the distance between the positions (upper peak positions) showing the maximum positive value of the amplitude in the servo reproduction waveform and the distance between the positions (lower peak positions) showing the maximum negative value may be used as the distances AC and AB in the formula [1] and the distances CA and CD in the formula [2].
  • the distance AB is 38.5 ⁇ m and the distance AC is 76 ⁇ m in the servo band s2, and the distance AB is 37.5 ⁇ m and the distance AC is 76 ⁇ m in the servo band s3.
  • x (76/2 tan 12°) 90.5641 [ ⁇ m]
  • x (76/2 tan 12°) 88.2118 [ ⁇ m]
  • the distance AB is 38 ⁇ m and the distance AC is 76 ⁇ m for both servo band s2 and servo band s3.
  • the distance is 89.3880 [ ⁇ m] for both servo band s2 and servo band s3, and the difference between them is 0 [ ⁇ m].
  • the servo band pitch in this case is the same as the servo read head pitch P1.
  • the data recording/reproducing device 50 may control the tension of the magnetic tape MT based on the servo pattern pitch measured as described above so that the measured servo pattern pitch becomes equal to the servo read head pitch P1.
  • servo signals may be read from two servo bands sandwiching one data band for recording or reproducing data, and it may be determined from each read servo signal whether the pitch of these two servo bands is wider or narrower than the servo read head pitch P1. If the servo band pitch is wider than the servo read head pitch P1, the tension may be increased, and if the servo band pitch is narrower than the servo read head pitch P1, the tension may be decreased. In this way, by adjusting the magnitude of the tension according to the magnitude of the servo band pitch, it is possible to stably perform the desired tracking control for the data band.
  • the data recording and reproducing device 50 may obtain the relationship between the servo band pitch and tension for one data band by running the tape once back and forth, and record the obtained data in the cartridge memory 11.
  • the data recording and reproducing device 50 may similarly apply the relationship between the servo band pitch and tension measured for the one data band when recording and reproducing data for other data bands.
  • the amount of width change in the longitudinal direction of the magnetic tape MT can be adjusted, for example, as follows.
  • the material of the base layer, the longitudinal and transverse strength of the base layer (longitudinal and transverse stretching conditions), the type of magnetic layer (coated magnetic layer, vacuum thin-film magnetic layer), and in the case of a coated layer, the Tg of the binder and the amount of hardener, etc. may be appropriately selected.
  • the magnetic tape MT may be stored for a long period of time at a temperature of 65°C or higher before cutting, and further may be stored for a long period of time at a temperature of 55°C or higher before servo writing.
  • the loss modulus of the base layer 41 at 65° C. can be 0.40 GPa or less, preferably 0.35 GPa or less, more preferably 0.30 GPa or less, even more preferably 0.25 GPa or less, and preferably 0.20 GPa or less.
  • the loss modulus within this range, it is possible to provide a magnetic recording cartridge that allows the width of the magnetic tape in the longitudinal direction to be adjusted by adjusting the running tension of the tape system or changing the winding direction, even when stored in a high-temperature environment of 60° C. or more.
  • the storage modulus of the base layer 41 at 65° C. can be preferably 8.0 GPa or less, more preferably 7.0 GPa or less, and even more preferably 6.0 GPa or less. By having the storage modulus within the above numerical range, it is possible to provide a magnetic recording cartridge in which the width of the magnetic tape in the longitudinal direction can be adjusted by adjusting the running tension of the tape system or changing the winding direction even after storage in a high-temperature environment.
  • the lower limit of the storage modulus of the base layer at 65° C. is not particularly limited, but may be, for example, preferably 0.01 GPa or more, more preferably 0.02 GPa or more, and even more preferably 0.03 GPa or more.
  • the loss modulus and storage modulus are measured by dynamic viscoelasticity measurement.
  • the dynamic viscoelasticity measurement is a temperature-dependent measurement, and is specifically performed as follows.
  • the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and cut into 250 mm lengths from three positions, 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection between the magnetic tape MT and the leader tape LT, and the cut magnetic tape MT is cut into a measuring tape length of 22.0 mm and width of 4.0 mm using a punch to prepare a sample.
  • the layers other than the base layer 41 of the sample i.e., the non-magnetic layer (undercoat layer) 42, the magnetic layer 43, and the back layer 44
  • acetone or ethanol i.e., the non-magnetic layer (undercoat layer) 42, the magnetic layer 43, and the back layer 44
  • Test Type "Strain-Controlled” Measurement Type: "Dynamic" Environment in which the device is placed: Temperature 25°C, humidity 50RH% Humidity control of the measurement section: None Number of measurements: 3 More detailed settings regarding the measurement conditions of the device are as follows. That is, as described below, in the measurement, the tension is adjusted so that it does not become 0 or less, and the strain is adjusted so that it does not fall below the lower limit of the transducer. The measurement conditions for these adjustments may be appropriately set by those skilled in the art, but for example, the following settings may be adopted for the dynamic viscoelasticity measuring device.
  • Option settings Delay Before Test: OFF Auto Tension (Setting to adjust tension so that it never falls below 0) Mode Static Force Tracking Dynamic Force Auto Tension Direction Tension Initial Static Force 10.0g Static>Dynamic Force by 5.0% Minimum Static Force 1.0g Auto Tension Sensitivity 1.0g Auto Strain (Setting to adjust the strain so that it does not fall below the lower limit of the transducer) Max Applied Strain 0.1% Maximum Allowed Force 100.0g Min allowed force 2.0g Strain Adjustment 3.0% Meas Ops: Default setting
  • the loss modulus and storage modulus values at a measurement temperature of 65°C can be obtained.
  • the loss modulus and storage modulus of the base layer 41 can be adjusted, for example, by the type of material forming the base layer, the stretching state of the base layer in the longitudinal and transverse directions, and/or the coating and drying process, calendaring process, curing process, aging process, etc.
  • the loss modulus and storage modulus can be reduced compared to other materials.
  • FIG. 41 shows an example of a sample mount used to measure the extraction rate. As shown in Figure 41, an inverted triangle mark is marked 50 cm in the center of the graph paper. Place the graph paper parallel to the desk and fix both ends of the graph paper with double-sided tape. Attach double-sided tape so that it covers the two 1m marking lines and set the sample mount.
  • the type of standard reagent varies depending on the fatty acid or fatty acid ester used. The concentration is also optional. As an example, the case of using stearic acid as the fatty acid and butyl stearate as the fatty acid ester is shown below.
  • a standard reagent of stearic acid (manufactured by Junsei Chemical Co., Ltd., purity 95.0%) is prepared.
  • a standard reagent of butyl stearate (manufactured by Junsei Chemical Co., Ltd., purity 95.0%) is prepared.
  • ⁇ Preparation of standard reagents> The prepared standard reagent is placed in an ultrasonic cleaner for 15 minutes. When the ultrasonic treatment is finished, insert the syringe with the filter set into the vial and pour the standard reagent directly into the syringe. The standard reagent is packed into the vial. Press the center stem to push the liquid into the vial. When the liquid reaches the top of the vial, close the aluminum lid. The standard reagent remaining in the syringe is returned to the screw cap through the filter.
  • the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out to a length of about 5 m at a position 20 m in the longitudinal direction from the connection part between the magnetic tape MT and the leader tape LT.
  • the magnetic tape is attached to the double-sided tape of the sample mount while overlapping the Mag/Back alternately in parallel. Note that care should be taken not to apply too much tension when attaching the magnetic tape.
  • the P/C surface layer is discarded, and 5 pieces of magnetic tape 1 m long are collected.
  • a ruler is placed on the 1 m mark line of the sample mount, and 1 m of magnetic tape is cut out with a cutter.
  • the five magnetic tapes are gathered together, and the center indicated by the inverted triangle mark is picked up with tweezers, folded in half, and the curled part at the end is grasped and wrinkled.
  • the magnetic tapes are separated one by one and placed in a 120 mL round-bottom flask, and covered with aluminum foil.
  • the ultrasonic processor has a water bath (water temperature: 40-50°C), and fill the water bath with water up to the upper water level line, and set the ultrasonic output to 100%. Place the 60 mL of measured hexane into a 120 mL screw tube, put the aluminum lid on, and turn on the stopwatch and ultrasonic processor at the same time to start extraction.
  • a mixed solvent of acetonitrile and ultrapure water if the concentration is too high and the HPLC peak area is off, use 10 mL
  • Data Analysis Data analysis is carried out according to the following procedure.
  • B Calculate the area value of the measurement sample and calculate the concentration from the calibration curve (the method of drawing the peak area should be consistent with that of the standard reagent). Then, calculate the amount of fatty acid (mg) or fatty acid ester (mg) in 5 mL (or 10 mL) of acetonitrile solution.
  • C The amount of fatty acid or fatty acid ester is converted into an extractable amount (mg/m 2 ) based on the following formula.
  • the height of the protrusions formed by the abrasive particles is measured by performing shape analysis by an atomic force microscope (hereinafter referred to as AFM) and distinguishing the components by image analysis using the brightness difference due to the difference in the amount of secondary electron emission of the carbon particles and the abrasive particles from the FE-SEM images taken by a field emission scanning electron microscope (hereinafter referred to as FE-SEM) of the same location of the measurement sample, as described below.
  • AFM atomic force microscope
  • FE-SEM field emission scanning electron microscope
  • a composite image is obtained by superimposing the image obtained by the AFM of the same location and the image obtained by the FE-SEM of the certain region, and the type of particles forming each protrusion (whether it is carbon particles or abrasive particles) and the height of each protrusion can be associated from the obtained composite image.
  • a method for measuring the height of the protrusions using an AFM a method for identifying the type of particles that form the protrusions using an FE-SEM, and a method for correlating the height of the protrusions with the type of particles that form the protrusions.
  • the height of the protrusions formed by the abrasive particles is obtained as follows. First, a measurement sample is prepared by cutting out a size that fits on a sample stage for SEM observation from the magnetic tape MT in the user data area (24 m or more from the leader pin) in the LTO cartridge. Next, marking is performed on the surface of the measurement sample, avoiding the center of the measurement sample. Examples of marking methods include a method of forming linear or dot-shaped recesses on the magnetic tape MT using a manipulator or a nine denter, and a method of forming convex portions on the magnetic tape MT using silver paste or the like.
  • the AFM scans the marking portion with a probe, depending on the state of the marking portion, the tip of the probe may become dirty and an accurate shape image may not be obtained, so it is preferable to make the marking small and shallow so that the probe is not contaminated.
  • the marking portion on the surface of the measurement sample is subjected to shape analysis by AFM. Since the marked marking portion is recessed, it is measured with an AFM at a viewing angle of 5 ⁇ m ⁇ 5 ⁇ m so that the marking portion is as close to the edge of the field of view as possible. Note that protrusions on the periphery of the marking portion are not measured.
  • the measurement is performed at a viewing angle of 10 ⁇ m ⁇ 10 ⁇ m, a portion to be a mark is determined, and a portion without a marking is measured at a viewing angle of 5 ⁇ m ⁇ 5 ⁇ m in accordance with the portion to be a mark.
  • the measurement conditions for the shape analysis are as described below.
  • For abrasive particles when 20 or more particles can be identified in one AFM viewing field from one measurement sample, one viewing field is measured with the AFM.
  • multiple viewing fields e.g., 3 to 5 are measured from one measurement sample.
  • FIG. 42 is an example of an image showing an example of a surface shape captured by the AFM.
  • FIG. 43 is a diagram showing an example of a protrusion analysis result by the AFM.
  • FIG. 44 is a diagram showing an example of a protrusion height distribution. From the information obtained, data such as the number of protrusions formed and the height of the protrusions formed by the particles can be obtained.
  • FE-SEM field emission scanning electron microscope
  • Figure A in Figure 45 is an example of an FE-SEM image.
  • the type of particle forming the protrusion can be identified by utilizing the brightness difference due to the difference in the amount of secondary electron emission of the carbon particles and the abrasive particles. Image processing for this identification will be described later.
  • the positions of the protrusions formed by the carbon particles and the abrasive particles in the FE-SEM image are identified.
  • the obtained FE-SEM image ( Figure A in Figure 45) is binarized using the image processing software Image J under the two processing conditions described below. From the image obtained by the binarization process, information on the number of protrusions formed by the carbon particles and abrasive particles, the average area per protrusion, the total area of the protrusions, and the diameter of the protrusions (Feret diameter) can be obtained. Note that when performing the binarization process, the conditions are changed as follows for the abrasive particles with high brightness (white areas in Figure A in Figure 45) and the carbon particles with low brightness (black areas in Figure A in Figure 45).
  • Binarization target size 0.002 ⁇ m-infinity
  • Binarization threshold Threshold (220, 255)
  • Binarization target size 0.001 ⁇ m-infinity
  • Figure 45B shows the position distribution of protrusions formed by abrasive particles (alumina particles) after binarizing the FE-SEM image of Figure 45A under the binarization conditions for abrasive particles (alumina particles). The following information about the abrasive particles was obtained from the resulting image.
  • Figure C in Figure 45 is an image showing the position distribution of protrusions formed by carbon particles (carbon black particles) after binarizing the FE-SEM image in Figure A in Figure 45 under binarization conditions for carbon particles (carbon black particles). The following information about carbon particles was obtained from the resulting image.
  • FIG. C in FIG. 46 is a composite image in which an AFM image (FIG. B) and an FE-SEM image (FIG. A) are superimposed so that the positions of the corresponding protrusions coincide with each other.
  • FIG. B AFM image
  • FIG. A FE-SEM image
  • FIG. 47 is an enlarged view of a composite image in which an AFM image and an FE-SEM image are superimposed.
  • FIG. 48 is a diagram showing the results of AFM analysis (measurement results of protrusion height) for Line 1 (Line 1) set at an arbitrary position in FIG. 47. As shown in FIG. 48, the height of the protrusion formed by the abrasive particles (alumina particles) present on Line 1 can be identified. In this way, the height of the protrusion is identified from the composite image and the AFM analysis results.
  • Fig. 49 is a diagram showing the cumulative frequency distribution of the height of the protrusions formed by the abrasive particles (alumina particles).
  • A indicates the frequency
  • B indicates the cumulative %.
  • Fig. 49 shows that the average height of the protrusions formed by the abrasive particles (alumina particles) is 5.1 nm.
  • the arithmetic mean roughness Ra of the magnetic surface is preferably 2.5 nm or less, and more preferably 2.0 nm or less. If Ra is 2.5 nm or less, a better SNR can be obtained.
  • the arithmetic mean roughness Ra is determined as follows. First, an AFM (Atomic Force Microscope) (Dimension Icon, manufactured by Bruker) is used to observe the surface on which the magnetic layer 43 is provided, and a cross-sectional profile is obtained. Next, the arithmetic mean roughness Ra is determined from the obtained cross-sectional profile in accordance with JIS B0601:2001.
  • AFM Anamic Force Microscope
  • the average thickness tT of the magnetic tape MT is preferably 5.6 ⁇ m or less, more preferably 5.4 ⁇ m or less, even more preferably 5.0 ⁇ m or less, and particularly preferably 4.6 ⁇ m or less.
  • the lower limit of the average thickness tT of the magnetic tape MT is not particularly limited, but is, for example, 3.5 ⁇ m ⁇ tT .
  • the average thickness tT of the magnetic tape MT is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and samples are cut out to a length of 250 mm from three positions, 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection between the magnetic tape MT and the leader tape LT, to prepare samples. Next, the thickness of each sample is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the measured values (15 points in total) are simply averaged (arithmetic average) to calculate the average thickness tT [ ⁇ m]. The five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
  • LGH-110C Mitutoyo Laser Hologram
  • a method for manufacturing the magnetic tape MT having the above-mentioned configuration will be described.
  • a paint for forming the base layer is prepared by kneading and/or dispersing non-magnetic powder, binder, etc. in a solvent.
  • a paint for forming the magnetic layer is prepared by kneading and/or dispersing magnetic powder, binder, etc. in a solvent.
  • the following solvents, dispersing devices, and kneading devices can be used, for example, to prepare the paint for forming the magnetic layer and the paint for forming the base layer.
  • Solvents used in the preparation of the above-mentioned paints include, for example, ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohol-based solvents such as methanol, ethanol, and propanol; ester-based solvents such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, ethyl lactate, and ethylene glycol acetate; ether-based solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran, and dioxane; aromatic hydrocarbon-based solvents such as benzene, toluene, and xylene; and halogenated hydrocarbon-based solvents such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, and chlorobenzene.
  • the kneading device used in the above-mentioned paint preparation may be, for example, a continuous twin-screw kneader, a continuous twin-screw kneader capable of dilution in multiple stages, a kneader, a pressure kneader, a roll kneader, or other kneading device, but is not limited to these devices.
  • the dispersing device used in the above-mentioned paint preparation may be, for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (such as the "DCP Mill” manufactured by Eirich), a homogenizer, or an ultrasonic dispersing machine, but is not limited to these devices.
  • a paint for forming a base layer is applied to one main surface of the base layer 41 and dried to form a non-magnetic layer (hereinafter also referred to as a base layer) 42.
  • a paint for forming a magnetic layer is applied to this base layer 42 and dried to form a magnetic layer 43 on the base layer 42.
  • the magnetic powder is magnetically oriented in the thickness direction of the base layer 41, for example, by a solenoid coil.
  • the magnetic powder may be magnetically oriented in the longitudinal direction (running direction) of the base layer 41, for example, by a solenoid coil, and then magnetically oriented in the thickness direction of the base layer 41.
  • a back layer 44 is formed on the other main surface of the base layer 41. This results in a magnetic tape MT.
  • the resulting magnetic tape MT is rewound around a large diameter core and undergoes a hardening process. Finally, the magnetic tape MT is calendered and then cut to a specified width (e.g., 1/2 inch width). This results in the desired long, thin magnetic recording tape MT.
  • a servo recording and reproducing device 70 (servo recording device) (see FIG. 16) is configured to write a servo pattern 47 onto the servo band s of the magnetic tape MT (see FIG. 9) that can be accurately read by a data write head 60 of a data recording and reproducing device 50 (data recording device) (see FIG. 10).
  • the data write head 60 of the data recording and reproducing device 50 is positioned at an angle with respect to the width direction of the magnetic tape MT (see FIG. 11). Therefore, in this embodiment, a first servo pattern 47a ("/") and a second servo pattern 47b (" ⁇ ") that are asymmetric with respect to the width direction of the magnetic tape are written in the servo band s (see FIG. 9).
  • the following describes the configuration of the data recording and reproducing device 50, followed by the configuration of the servo recording and reproducing device 70.
  • FIG. 8 is a schematic diagram of the magnetic tape MT as viewed from the side
  • Fig. 9 is a schematic diagram of the magnetic tape MT as viewed from above (the magnetic layer 43 side).
  • the magnetic tape MT is configured in the shape of a tape that is long in the longitudinal direction (X-axis direction), short in the width direction (Y-axis direction), and thin in the thickness direction (Z-axis direction).
  • the magnetic layer 43 has a number of data bands d (data bands d0 to d3) in which data is written, and a number of servo bands s (servo bands s0 to s4) in which servo patterns 47 are written.
  • Each of the multiple data bands d and the multiple servo bands s is long in the longitudinal direction (X-axis direction) and short in the width direction (Y-axis direction).
  • the servo bands s are positioned so as to sandwich each data band d in the width direction (Y-axis direction).
  • the number of data bands d is four and the number of servo bands s is five.
  • the number of data bands d and the number of servo bands s are 5+4n or more (where n is an integer equal to or greater than 0), preferably 5 or more, and more preferably 9 or more. If the number of servo bands s is 5 or more, the effect of dimensional changes in the width direction of the magnetic tape MT on the servo signal can be suppressed, ensuring stable recording and playback characteristics with less off-track.
  • the upper limit of the number of servo bands SB is not particularly limited, but is, for example, 33 or less.
  • the upper limit of the average value of the servo band width is preferably 98 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the lower limit of the average value of the servo band width WSB is preferably 10 ⁇ m or more. It is difficult to manufacture a head unit 56 that can read a servo signal with a servo band width of less than 10 ⁇ m.
  • the ratio of the area of the servo band s to the total surface area of the magnetic layer 43 is, for example, 4.0% or less.
  • the width of the servo band s is, for example, 96 ⁇ m or less for a 1/2 inch tape width.
  • the ratio of the area of the servo band s to the total surface area of the magnetic layer 43 can be measured, for example, by developing the magnetic tape MT using a developer such as a ferricolloid developer, and then observing the developed magnetic tape MT with an optical microscope.
  • the data band d includes a plurality of recording tracks 46 that are long in the longitudinal direction and aligned in the width direction.
  • the number of recording tracks 46 included in one data band d is, for example, about 1000 to 2500. Data is recorded along and within these recording tracks 46.
  • the length of one bit in the longitudinal direction of the data recorded in the data band d is, for example, 48 nm or less.
  • the width of the recording track 46 (track pitch: Y-axis direction) is, for example, 2.0 ⁇ m or less. Note that such a recording track width can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developing solution such as a ferric colloid developing solution, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
  • a method using the data write head 60 may be used as a method for measuring the recording track width.
  • the data write head 60 in order to ignore fluctuations during the running of the magnetic tape MT, the data write head 60 is in a recording and reproducing state, and the recording track width can be measured from the change in output when the azimuth angle ⁇ of the data write head 60 is changed.
  • the servo band s includes a servo pattern 47 of a predetermined shape that is recorded by a servo recording and reproducing device 70 (see FIG. 16) described later.
  • the servo pattern 47 includes a first servo pattern 47a ("/") and a second servo pattern 47b (" ⁇ ").
  • the symbols "/" and “ ⁇ ” in the first servo pattern 47a and the second servo pattern 47b are used as symbols indicating the inclination direction of the servo pattern when the magnetic tape MT is viewed from below (the back layer side). Therefore, the symbols “/” and “ ⁇ ” in the first servo pattern 47a and the second servo pattern 47b are reversed from the magnetic layer side in FIG. 9.
  • the first servo element 82a (“/") that writes the first servo pattern 47a (“/")
  • the second servo element 82b (“ ⁇ ") that writes the second servo pattern 47b (“ ⁇ ")
  • the servo patterns 47a and 47b recorded on the magnetic layer by the servo elements 82a and 82b are shown as viewed from the back layer side on the head sliding surface.
  • the first servo pattern 47a ("/") and the second servo pattern 47b (“ ⁇ ") are written in the servo band s so as to be asymmetric with respect to the width direction (Y-axis direction) of the magnetic tape MT. Note that in the case of a typical servo pattern, the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ ") are written in the servo band s so as to be symmetric (line symmetric) with respect to the width direction of the magnetic tape MT.
  • the first servo pattern 47a (“/") is inclined at a first angle ⁇ s1 with respect to the width direction of the magnetic tape MT
  • the second servo pattern 47b (“ ⁇ ") is inclined at a second angle ⁇ s2 different from the first angle ⁇ s1 in the opposite direction with respect to the width direction of the magnetic tape MT (see Figures 18 and 20 described below).
  • a group of first servo patterns 47a (“/") and a group of second servo patterns 47b (“ ⁇ ") are arranged alternately in the longitudinal direction of the magnetic tape MT.
  • the number of first servo patterns 47a (“/") included in a group of first servo patterns 47a (“/”) is typically four or five, and similarly, the number of second servo patterns 47b (“ ⁇ ") included in a group of second servo patterns 47b (“ ⁇ ”) is typically four or five.
  • the shape of the servo pattern 47 can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developer such as a ferric colloid developer, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
  • a developer such as a ferric colloid developer
  • the number of recording tracks 46 increases with each generation of LTO-standard magnetic tape MT, dramatically improving recording capacity.
  • the original LTO-1 had 384 recording tracks 46, but the numbers of recording tracks 46 in LTO-2 to LTO-9 are 512, 704, 896, 1280, 2176, 3584, 6656, and 8960, respectively.
  • data recording capacity was 100GB (gigabytes) in LTO-1, but is 200GB, 400GB, 800GB, 1.5TB (terabytes), 2.5TB, 6.0TB, 12TB, and 18TB, respectively, in LTO-2 to LTO-9.
  • the number of recording tracks 46 and the recording capacity are not particularly limited and can be changed as appropriate. However, it is advantageous to apply this technology to a magnetic tape MT that has a large number of recording tracks 46 and a large recording capacity (e.g., 6,656 tracks or more, 12 TB or more: LTO8 and later) and is susceptible to variations in the width of the magnetic tape MT.
  • a large number of recording tracks 46 and a large recording capacity e.g., 6,656 tracks or more, 12 TB or more: LTO8 and later
  • [Data recording and reproducing device] 10 is a diagram showing a data recording/reproducing device 50.
  • the data recording/reproducing device 50 is capable of recording data on a magnetic tape MT, and is also capable of reproducing the data recorded on the magnetic tape MT.
  • the data recording and reproducing device 50 is configured so that a magnetic recording cartridge 10 can be loaded into it.
  • the magnetic recording cartridge 10 is configured so that a wound magnetic tape MT can be rotatably accommodated inside it.
  • the data recording and reproducing device 50 may be configured so that one magnetic recording cartridge 10 can be loaded into it, or it may be configured so that multiple magnetic recording cartridges 10 can be loaded into it simultaneously.
  • the data recording and reproducing device 50 includes a spindle 51, a take-up reel 52, a spindle drive unit 53, a reel drive unit 54, a data write head 60, a control unit 55, a width measuring unit 56, an angle adjustment unit 57, and a number of guide rollers 58.
  • the spindle 51 is configured so that its rotation can rotate the magnetic tape MT housed inside the magnetic recording cartridge 10.
  • the spindle drive unit 53 rotates the spindle 51 in response to commands from the control unit 55.
  • the take-up reel 52 is configured to be able to fix the tip of the magnetic tape MT that is pulled out from the magnetic recording cartridge 10 via a tape loading mechanism (not shown).
  • the reel drive device 54 rotates the take-up reel 52 in response to commands from the control device 55.
  • the multiple guide rollers 58 guide the magnetic tape MT so that the transport path formed between the magnetic recording cartridge 10 and the take-up reel 52 has a predetermined relative positional relationship with the data write head 60.
  • the data write head 60 is configured to be able to record data to the data band d (recording track 46) of the magnetic tape MT in response to a command from the control device 55 when the magnetic tape MT passes underneath the data write head 60, and is also configured to be able to play back the recorded data.
  • the spindle 51 and take-up reel 52 are rotated by the spindle drive unit 53 and reel drive unit 54, causing the magnetic tape MT to run.
  • the magnetic tape MT can run back and forth in the forward direction (the direction in which it unwinds from the spindle 51 side to the take-up reel 52 side) indicated by the arrow A1 in FIG. 10, and in the reverse direction (the direction in which it rewinds from the take-up reel 52 side to the spindle 51 side) indicated by the arrow A2.
  • the data write head 60 is capable of recording/playing back data in both the forward and reverse directions of the magnetic tape MT.
  • the data write head 60 is positioned such that the longitudinal direction (Y'-axis direction) of the data write head 60 is inclined at a predetermined angle ⁇ (first head azimuth angle ⁇ ) with respect to the width direction (Y-axis direction) of the magnetic tape MT (see FIG. 11 described below).
  • the angle at which the longitudinal direction (Y'-axis direction) of the data write head 60 is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is referred to as the azimuth angle ⁇ of the data write head 60. Details of the configuration of the data write head 60 will be described later with reference to FIG. 11 etc.
  • the width measurement unit 56 is configured to be capable of measuring the width of the magnetic tape MT when the magnetic tape MT passes below the width measurement unit 56. In other words, the width measurement unit 56 is configured to be capable of measuring the width of the magnetic tape MT when the data write head 60 records/plays data on the magnetic tape MT. The width measurement unit 56 measures the width of the magnetic tape MT and transmits it to the control device 55.
  • the width measurement unit 56 is composed of various sensors, such as an optical sensor. Any sensor capable of measuring the width of the magnetic tape MT may be used as the width measurement unit 56.
  • the width of the magnetic tape MT can also be predicted by reading adjacent servo patterns 47 and determining the difference in position signals. In this case, the width measurement unit 56 can be omitted.
  • the angle adjustment unit 57 is configured to be able to hold the data write head 60 rotatably around an axis (Z-axis) in the vertical direction.
  • the angle adjustment unit 57 is configured to be able to adjust the azimuth angle ⁇ of the data write head 60 in response to a command from the control device 55.
  • the control device 55 includes, for example, a control unit, a memory unit, a communication unit, etc.
  • the control unit is composed of, for example, a CPU (Central Processing Unit), etc., and performs overall control of each part of the data recording and playback device 50 according to a program stored in the memory unit.
  • CPU Central Processing Unit
  • the storage unit includes a non-volatile memory in which various data and programs are recorded, and a volatile memory used as a working area for the control unit.
  • the above-mentioned various programs may be read from a portable recording medium such as an optical disk or semiconductor memory, or may be downloaded from a server device on a network.
  • the communication unit is configured to be capable of communicating with other devices such as a PC (Personal Computer) or a server device.
  • control device 55 acquires information on the width of the magnetic tape MT from the width measurement unit 56 (or predicts the width of the magnetic tape from the servo signal), and adjusts the azimuth angle ⁇ (see FIG. 11) of the data write head 60 using the angle adjustment unit 57 based on the information on the width of the magnetic tape MT.
  • the azimuth angle ⁇ of the data write head 60 is adjusted to accommodate variations in the width of the magnetic tape MT.
  • the azimuth angle ⁇ of the data write head 60 is made smaller, and conversely, when the width of the magnetic tape MT becomes relatively narrower, the azimuth angle ⁇ of the data write head 60 is made larger.
  • the width of the magnetic tape MT may vary for various reasons, such as temperature, humidity, and tension applied to the magnetic tape MT in the longitudinal direction.
  • FIG. 11 is a schematic diagram of the data write head 60 as viewed from below (the back layer side).
  • the longitudinal direction of the data write head 60 is defined as the Y'-axis direction, the width direction of the data write head 60 as the X'-axis direction, and the up-down direction of the data write head 60 as the Z'-axis direction.
  • the longitudinal direction (running direction) of the magnetic tape MT is defined as the X-axis direction, the width direction of the magnetic tape MT as the Y-axis direction, and the thickness direction of the magnetic tape MT as the Z-axis direction. Note that the direction of the magnetic tape MT is based on the direction of the magnetic tape MT as it passes under the data write head 60.
  • the data write head 60 includes a first data write head 60a and a second data write head 60b.
  • the two data write heads 60 are not particularly distinguished from each other, they are collectively referred to simply as data write heads 60, and when the two data write heads 60 are particularly distinguished from each other, they are referred to as the first data write head 60a and the second data write head 60b.
  • the first data write head 60a and the second data write head 60b are configured symmetrically in the width direction (Y' axis direction) of the data write head 60, but are basically configured the same.
  • the first data write head 60a and the second data write head 60b are movable together in the width direction (Y axis direction) of the magnetic tape MT, which allows data to be written to any one of the data bands d out of all data bands d0 to d3.
  • the first data write head 60a is a head used when the magnetic tape MT is running in the forward direction (direction A1 in FIG. 10).
  • the second data write head 60b is a head used when the magnetic tape MT is running in the reverse direction (direction A2 in FIG. 10).
  • the data write head 60 has a facing surface 61 that faces the magnetic tape MT.
  • the facing surface 61 is long in the longitudinal direction (Y'-axis direction) of the data write head 60 and short in the width direction (X'-axis direction) of the data write head 60.
  • the facing surface 61 is provided with two servo read sections 62 and multiple data write/read sections 63.
  • the servo read sections 62 are provided on both ends of the data write head 60 in the longitudinal direction (Y'-axis direction).
  • the servo read sections 62 are configured to be able to reproduce servo signals by reading the magnetic field generated by the servo pattern 47 recorded on the servo band s of the magnetic tape MT using an MR element (MR: Magneto Resistive effect) or the like.
  • MR Magneto Resistive effect
  • MR elements examples include anisotropic magnetoresistive effect elements (AMR: Anisotropic Magneto Resistive effect), giant magnetoresistive effect elements (GMR: Giant Magneto Resistive effect), and tunnel magnetoresistive effect elements (TMR: Tunnel Magneto Resistive effect).
  • AMR Anisotropic Magnetoresistive effect elements
  • GMR giant magnetoresistive effect elements
  • TMR tunnel magnetoresistive effect elements
  • the data write/read sections 63 are arranged at equal intervals along the longitudinal direction (Y'-axis direction) of the data write head 60. Furthermore, the data write/read sections 63 are arranged at a position sandwiched between two servo read sections 62.
  • the number of data write/read sections 63 is, for example, about 20 to 40, but there is no particular limit to this number.
  • the data write/read section 63 includes a data write section 64 and a data read section 65.
  • the data write section 64 is configured to be able to record data onto the data band d of the magnetic tape MT by the magnetic field generated from the magnetic gap.
  • the data read section 65 is also configured to be able to reproduce data signals by reading the magnetic field caused by the data recorded on the data band d of the magnetic tape MT using an MR element or the like.
  • an MR element an anisotropic magnetoresistance effect element (AMR), a giant magnetoresistance effect element (GMR), a tunnel magnetoresistance effect element (TMR), or the like is used.
  • the data write section 64 is located to the left of the data read section 65 (upstream when the magnetic tape MT flows in the forward direction).
  • the data write section 64 is located to the right of the data read section 65 (upstream when the magnetic tape MT flows in the reverse direction).
  • the data read section 65 is capable of reproducing the data signal immediately after the data write section 64 paired with the data read section 65 writes the data to the magnetic tape MT.
  • data written by the data write section 64 of one of the data write heads 60, the first data write head 60a and the second data write head 60b, may be reproduced by the data read section 65 of the other data write head 60.
  • the magnetic tape MT travels back and forth multiple times, forward and reverse, while data is recorded on the recording track 46 by the first data write head 60a and the second data write head 60b.
  • the angle adjustment unit 57 (see FIG. 10) is capable of holding the first data write head 60a and the second data write head 60b rotatably around an axis (Z' axis) in the vertical direction.
  • the angle adjustment unit 57 is also capable of rotating the first data write head 60a and the second data write head 60b individually around the axis in the vertical direction.
  • the angle adjustment unit 57 adjusts the angles of the first data write head 60a and the second data write head 60b so that the longitudinal directions of the first data write head 60a and the second data write head 60b are inclined by the azimuth angle ⁇ with respect to the width direction of the magnetic tape MT.
  • the positions of the servo read section 62 and data write/read section 63 of the first data write head 60a in the Y-axis direction are the same as the positions of the servo read section 62 and data write/read section 63 of the second data write head 60b in the Y-axis direction. This positional relationship does not change even if the first data write head 60a and the second data write head 60b rotate around the Z-axis.
  • the angle adjustment unit 57 can rotate the first data write head 60a and the second data write head 60b individually so that the positions of the servo read section 62 and data write/read section 63 of the first data write head 60a in the Y-axis direction (the width direction of the magnetic tape MT) are the same as the positions of the servo read section 62 and data write/read section 63 of the second data write head 60b in the Y-axis direction.
  • a reference angle Ref ⁇ is set as a standard for the azimuth angle ⁇ of the data write head 60, and the azimuth angle ⁇ of the data write head 60 is set to an angle range represented by the reference angle Ref ⁇ x°.
  • FIG. 11 shows an example in which the reference angle Ref ⁇ is set in a clockwise direction (as viewed from the bottom side of the magnetic tape MT) relative to the width direction of the magnetic tape MT.
  • the reference angle Ref ⁇ may be set in a counterclockwise direction (as viewed from the bottom side of the magnetic tape MT) relative to the width direction of the magnetic tape MT.
  • FIG. 12 is a diagram showing the relationship between the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60 and the azimuth loss L ⁇ (recording wavelength: 0.1 ⁇ m).
  • the horizontal axis indicates the value of x in the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60
  • the vertical axis indicates the azimuth loss L ⁇ .
  • L ⁇ [dB] The azimuth loss L ⁇ [dB] is expressed by the following formula.
  • L ⁇ ⁇ 20 Log 10 [sin ⁇ ( ⁇ W/ ⁇ ) tan ⁇ /( ⁇ W/ ⁇ ) tan ⁇ ]
  • W is the reproducing track width
  • is the recording wavelength of data
  • is the azimuth angle of the data write head 60 .
  • the reproduction track width W is set to 0.8 ⁇ m, 0.5 ⁇ m, 0.4 ⁇ m, 0.3 ⁇ m, and 0.2 ⁇ m.
  • the recording wavelength ⁇ is set to 0.1 ⁇ m.
  • the graph where the reproduction track width W is 0.8 ⁇ m corresponds to LTO-9
  • the graphs where the reproduction track width W is 0.5 ⁇ m, 0.4 ⁇ m, 0.3 ⁇ m, and 0.2 ⁇ m correspond to LTO-10 and later (estimated values).
  • the azimuth loss L ⁇ is smaller when the reproducing track width W is narrower.
  • the allowable value of the azimuth loss L ⁇ is 0.05 [dB] or less, and that the reproducing track width W of the magnetic tape MT is 0.5 ⁇ m or less (LTO-10 or later (estimated value)).
  • the angular range of the azimuth angle ⁇ of the data write head 60 is a maximum of Ref ⁇ 0.7°. Therefore, in this embodiment, in the angular range of the azimuth angle ⁇ of the data write head 60, the value of x in Ref ⁇ x° is typically set to 0.7° or less.
  • Figure 13 shows the relationship between the angle range Ref ⁇ x° at the azimuth angle ⁇ of the data write head 60 and the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT.
  • the horizontal axis indicates the value of x in the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60, and the vertical axis indicates the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT.
  • Figure 14 shows the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT. As shown in Figure 14, this amount of correction is expressed as a-b.
  • the value of a is the distance between the two servo read sections 62 in the width direction (Y-axis direction) of the magnetic tape MT when the azimuth angle ⁇ of the data write head 60 is Ref ⁇ -x°.
  • the value of b is the distance between the two servo read sections 62 in the width direction (Y-axis direction) of the magnetic tape MT when the azimuth angle ⁇ of the data write head 60 is Ref ⁇ +x°.
  • the angular range of the azimuth angle ⁇ of the data write head 60 is Ref ⁇ 0.7° at maximum (see the vertical dashed line in FIG. 13).
  • the correction amount is 10 ⁇ m or more (see the horizontal dashed line in FIG. 13).
  • a reference angle Ref ⁇ of the data write head 60 of 7.5° is slightly insufficient, and a reference angle Ref ⁇ of 10° is sufficient.
  • the reference angle Ref ⁇ should be 8° or more.
  • the explanation here does not mean that the reference angle Ref ⁇ must be 8° or more in this embodiment.
  • the reference angle Ref ⁇ can be set appropriately to 2.5° or more, 5° or more, 7.5° or more, 8° or more, 10° or more, 12.5° or more, 15° or more, etc.
  • Fig. 15 is a diagram showing the relationship between the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60 and the azimuth loss L ⁇ (recording wavelength: 0.07 ⁇ m).
  • the horizontal axis indicates the value of x in the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60, and the vertical axis indicates the azimuth loss L ⁇ .
  • the recording wavelength ⁇ of the data is set to 0.07 ⁇ m.
  • the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60 becomes smaller as the data recording wavelength ⁇ becomes smaller. Also, the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60 becomes larger as the reproduction track width W becomes smaller (see Figures 12 and 15).
  • the reference angle Ref ⁇ at the azimuth angle ⁇ of the data write head 60 becomes larger as the data recording wavelength ⁇ becomes smaller.Furthermore, the reference angle Ref ⁇ at the azimuth angle ⁇ of the data write head 60 becomes smaller as the reproduction track width W becomes smaller (see FIG. 13).
  • the value of x in the angle range Ref ⁇ x° of the azimuth angle ⁇ of the data write head 60 can be set to an appropriate value (e.g., 0.7° or less, 0.6° or less, 0.5° or less, 0.4° or less, etc.), and the reference angle Ref ⁇ of the azimuth angle ⁇ of the data write head 60 can be set to an appropriate value (e.g., 2.5° or more, 5° or more, 7.5° or more, 8° or more, 10° or more, 12.5° or more, 15° or more, etc.).
  • the servo recording and reproducing device 70 includes a feed roller 71, a degaussing unit 72, a servo write head 80, a servo read head 75, a take-up roller 76, and four pairs of capstan rollers 77.
  • the feed roller 71 is capable of rotatably supporting the rolled magnetic tape MT.
  • the feed roller 71 is rotated in response to the drive of a motor or the like, and feeds out the magnetic tape MT downstream in response to the rotation.
  • the winding roller 76 is capable of rotatably supporting the rolled magnetic tape MT.
  • the winding roller 76 rotates in response to the drive of a motor or the like, and winds up the magnetic tape MT as it rotates.
  • the four pairs of capstan rollers 77 are each capable of clamping the magnetic tape MT from both the top and bottom sides.
  • the four pairs of capstan rollers 77 rotate in response to the drive of a motor or the like, and transport the magnetic tape MT along the transport path in response to the rotation.
  • the feed roller 71, take-up roller 76, and four pairs of capstan rollers 77 are capable of transporting the magnetic tape MT at a constant speed within the transport path.
  • the servo write head 80 is disposed, for example, on the upper side (magnetic layer 43 side) of the magnetic tape MT.
  • the servo write head 80 applies a magnetic field to the servo band s at a predetermined timing in response to a square wave pulse signal, and records the servo pattern 47 on the servo band s.
  • the servo write head 80 is capable of recording servo patterns 47 for each of the servo bands s (s0 to s4) when the magnetic tape MT passes underneath the servo write head 80. Details of the configuration of the servo write head 80 will be described later with reference to Figures 17 to 22.
  • the demagnetizing unit 72 is disposed, for example, upstream of the servo write head 80 and below the magnetic tape MT (toward the base layer 41).
  • the demagnetizing unit 72 is composed, for example, of two permanent magnets 73 and 74.
  • the permanent magnets 73 and 74 apply a magnetic field to the entire magnetic layer 43 using a DC magnetic field, thereby demagnetizing the entire magnetic layer 43 before the servo pattern 47 is recorded by the servo write head 80.
  • the servo read head 75 is positioned downstream of the servo write head 80 and above the magnetic tape MT (on the magnetic layer 43 side).
  • the servo read head 75 is configured to be able to reproduce the information of the servo pattern 47 by reading the magnetic field generated from the servo pattern 47 recorded on the magnetic tape MT.
  • the servo read head 75 is capable of reading the servo patterns 47 from all servo bands s (s0 to s4) when the magnetic tape MT passes underneath the servo read head 75.
  • the information on the servo pattern 47 read by the servo read head 75 is used to confirm whether the servo pattern 47 has been recorded accurately.
  • the types of servo read head 75 include, for example, inductive type, MR type (Magneto Resistive), GMR type (Giant Magneto Resistive), TMR type (Tunnel Magneto Resistive), etc.
  • the servo recording and reproducing device 70 is equipped with a control device that comprehensively controls each part of the servo recording and reproducing device 70.
  • the control device includes, for example, a control unit, a memory unit, a communication unit, etc.
  • the control unit is composed of, for example, a CPU (Central Processing Unit), etc., and performs overall control of each part of the servo recording and reproduction device 70 according to the program stored in the memory unit.
  • a CPU Central Processing Unit
  • the storage unit includes a non-volatile memory in which various data and programs are recorded, and a volatile memory used as a working area for the control unit.
  • the above-mentioned various programs may be read from a portable recording medium such as an optical disk or semiconductor memory, or may be downloaded from a server device on a network.
  • the communication unit is configured to be capable of communicating with other devices such as a PC or server device.
  • the configuration of the servo write head 80 will be described in detail.
  • the data write head 60 in the data recording and reproducing device 50 is disposed at an angle with respect to the width direction of the magnetic tape MT. Therefore, the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ ") are written asymmetrically with respect to the width direction of the magnetic tape MT so that the data write head 60 can accurately read the servo patterns 47.
  • the writing of the asymmetric servo patterns 47 is performed by the servo write head 80.
  • servo write head 80 configurations There are two types of servo write head 80 configurations: embodiment A and embodiment B.
  • embodiment A the longitudinal direction (Y" axis direction) of servo write head 80a is arranged parallel to the width direction (Y axis direction) of magnetic tape MT (see Figures 17 to 19 described below).
  • embodiment B the longitudinal direction (Y" axis direction) of servo write head 80b is arranged at a predetermined angle inclined to the width direction (Y axis direction) of magnetic tape MT (see Figures 20 to 22 described below).
  • Fig. 17 is a diagram showing the servo write head 80a and a pulse signal input to the servo write head 80a.
  • Fig. 18 is an enlarged view of a servo element 82 of the servo write head 80a.
  • Fig. 19 is a diagram showing a state when the servo write head 80a writes a servo pattern 47 onto the magnetic tape MT. Note that Figs. 17 to 19 show the surface of the servo write head 80a that faces the magnetic tape MT.
  • the servo write head 80a is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
  • the longitudinal direction of the servo write head 80a is the Y" axis direction
  • the width direction of the servo write head 80a is the X" axis direction
  • the up-down direction of the servo write head 80a is the Z" axis direction.
  • the longitudinal direction (transport direction) of the magnetic tape MT is the X axis direction
  • the width direction of the magnetic tape MT is the Y axis direction
  • the thickness direction of the magnetic tape MT is the Z axis direction. This is also true in Figures 20 to 22.
  • the longitudinal direction (Y" axis direction) of the servo write head 80a coincides with the direction of the magnetic tape MT (Y axis direction), and the width direction (X" axis direction) of the servo write head 80a coincides with the longitudinal direction (X axis direction) of the magnetic tape MT.
  • the servo write head 80a has a facing surface 81 that faces the magnetic tape MT.
  • the facing surface 81 is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
  • the servo write head 80a has five pairs of servo elements 82 (magnetic gaps) on the opposing surface 80a.
  • the five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP) in the longitudinal direction (Y" axis direction) of the servo write head 80a.
  • the distance (servo element pitch) between two pairs of adjacent servo elements 82 is, for example, 2858.8 ⁇ 4.6 ⁇ m. Note that this value corresponds to the distance (servo band pitch: SP) between two adjacent servo bands s in the width direction (Y axis direction) of the magnetic tape MT.
  • the pair of servo elements 82 includes a first servo element 82a ("/") and a second servo element 82b (" ⁇ ") that are configured asymmetrically with respect to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction) (see FIG. 18 in particular).
  • the first servo element 82a (“/") is inclined at a first angle ⁇ s1 relative to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction).
  • the second servo element 82b (“ ⁇ ") is inclined at a second angle ⁇ s2 in the opposite direction to the first angle ⁇ s1 relative to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction).
  • the first angle ⁇ s1 and the second angle ⁇ s2 are related to the reference angle Ref ⁇ of the data write head 60, and are expressed by the following equations, respectively.
  • ⁇ s1 Ref ⁇ + ⁇ a
  • ⁇ s2 Ref ⁇ a
  • Ref ⁇ is the reference angle Ref ⁇ of the data write head 60
  • ⁇ a is the servo azimuth angle.
  • the reference angle Ref ⁇ of the data write head 60 is set to 10° and the servo azimuth angle ⁇ a is set to 12°
  • the first angle ⁇ s1 of the first servo element 82a ("/") is set to 22°
  • the second angle ⁇ s2 of the second servo element 82b (“ ⁇ ") is set to 2°.
  • the distance between the first servo element 82a ("/") and the second servo element 82b (“ ⁇ ") is, for example, 38 ⁇ m at a position that is 1/2 the width direction component SL of the length of the servo element.
  • the direction along the first angle ⁇ s1 (a direction at 22° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the first servo element 82a ("/").
  • the direction along the second angle ⁇ s2 (a direction at -2° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the second servo element 82b (“ ⁇ ").
  • the length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b (" ⁇ ") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b (" ⁇ ").
  • the width component SL (Y-axis direction) of the magnetic tape MT in the longitudinal length of the first servo element 82a is the same as the width component SL (Y-axis direction) of the magnetic tape MT in the longitudinal length of the second servo element 82b (" ⁇ ").
  • the width component SL of the length of the servo element 82 is, for example, 96 ⁇ 3 ⁇ m.
  • FIG. 17 shows the pulse signals input to each of the five pairs of servo elements 82.
  • FIG. 19 shows the servo pattern 47 written in the servo band s of the magnetic tape MT by inputting the pulse signals to the five pairs of servo elements 82.
  • the data write head 60 is positioned at an inclination of the azimuth angle ⁇ with respect to the width direction of the magnetic tape MT.
  • pulse signals of the same phase are input to five pairs of servo elements 82 at the same time, and servo patterns 47 of the same phase are written at positions parallel to the width direction of the magnetic tape MT.
  • the phases of the servo patterns 47 read at the same time by the two servo read portions 62 of the data write head 60 positioned at an angle will be different.
  • the phases of the pulse signals input to five pairs of servo elements 82 at the same time are made different, so that servo patterns 47 of the same phase are written non-parallel to the width direction of the magnetic tape MT.
  • phase difference between the pulse signals input to two pairs of servo elements 82 adjacent to each other in the longitudinal direction of the servo write head 80a corresponds to SP x tan(Ref ⁇ ).
  • Ref ⁇ is the reference angle in the data write head 60.
  • phase differences of the input pulses of the servo elements 82 of servo bands s3, s2, s1, and s0 based on the input pulse of the servo element 82 of servo band s4 correspond to phases of 504.08 ⁇ m, 1008.17 ⁇ m, 1512.25 ⁇ m, and 2016.33 ⁇ m, respectively.
  • the servo element 82 in servo band s0 receives the input pulse with the most advanced phase of the pulse signal input at the same time.
  • the order of the input pulse phase is then the servo element 82 in servo band s1, the servo element 82 in servo band s2, the servo element 82 in servo band s3, and the servo element 82 in servo band s4.
  • a pulse signal with a phase that is 504.08 ⁇ m ahead of the servo element 82 of servo band s1 is input to the servo element 82 of servo band s0.
  • phase difference in the width direction (Y-axis direction) of the magnetic tape MT between the servo patterns 47 written in two servo bands s adjacent to each other in the width direction of the magnetic tape MT is expressed as SP x tan(Ref ⁇ ).
  • phase differences of the servo patterns 47 of servo bands s3, s2, s1, and s2 based on the servo pattern 47 of servo band s4 correspond to 504.08 ⁇ m, 1008.17 ⁇ m, 1512.25 ⁇ m, and 2016.33 ⁇ m, respectively.
  • the servo pattern 47 in servo band s0 is the one that has the most advanced phase in the width direction (Y-axis direction) of the magnetic tape MT.
  • the order of phases is the servo pattern 47 in servo band s1, the servo pattern 47 in servo band s2, the servo pattern 47 in servo band s3, and the servo pattern 47 in servo band s4.
  • the phase of the servo pattern 47 of servo band s0 is set to be ahead of the servo pattern 47 of servo band s1 by a phase corresponding to 504.08 ⁇ m.
  • the phases of the servo patterns 47 written in the five servo bands s are in phase.
  • FIG. 20 is an enlarged view of a servo write head 80b according to embodiment B and a servo element 82 that the servo write head 80b has.
  • Fig. 21 is a view showing a state in which a servo pattern 47 is written on a magnetic tape MT by the servo write head 80b according to embodiment B.
  • Figs. 20 and 21 show the surface of the servo write head 80b that faces the magnetic tape MT.
  • Figs. 22 to 25 described later also show the surface of the servo write head 80 that faces the magnetic tape MT.
  • the servo write head 80b has a shape that is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
  • the longitudinal direction (Y" axis direction) of the servo write head 80b is inclined at a predetermined angle (second head azimuth angle) with respect to the width direction of the magnetic tape MT.
  • the angle at which the longitudinal direction (Y" axis direction) of the servo write head 80b is inclined with respect to the width direction (Y axis direction) of the magnetic tape MT is It is related to the reference angle Ref ⁇ of the data write head 60 and coincides with the reference angle Ref ⁇ of the data write head 60 (for example, 10°).
  • the servo write head 80b has a facing surface 81 that faces the magnetic tape MT.
  • the facing surface 81 is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
  • the servo write head 80b has five pairs of servo elements 82 (magnetic gaps) on the opposing surface 81.
  • the five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP1) in the width direction (Y-axis direction) of the magnetic tape MT.
  • the spacing (servo element pitch: SP1) between two pairs of adjacent servo elements 82 in the width direction (Y-axis direction) of the magnetic tape MT is, for example, 2858.8 ⁇ 4.6 ⁇ m. This value corresponds to the spacing (servo band pitch: SP1) between two servo bands s that are adjacent to each other in the width direction (Y-axis direction) of the magnetic tape MT.
  • SP1 x tan(Ref ⁇ ) The difference in position between two pairs of adjacent servo elements 82 in the longitudinal direction (X-axis direction) of the magnetic tape MT.
  • Ref ⁇ is the reference angle in the data write head 60.
  • the pair of servo elements 82 includes a first servo element 82a ("/") and a second servo element 82b (" ⁇ ") that are configured asymmetrically with respect to the width direction (Y-axis direction) of the magnetic tape MT (see particularly the right side of Figure 20).
  • the first servo element 82a (“/") is inclined at a first angle ⁇ s1 relative to the width direction (Y-axis direction) of the magnetic tape MT.
  • the second servo element 82b (“ ⁇ ") is inclined at a second angle ⁇ s2 in the opposite direction to the first angle ⁇ s1 relative to the width direction (Y-axis direction) of the magnetic tape MT.
  • the first angle ⁇ s1 and the second angle ⁇ s2 are related to the reference angle Ref ⁇ of the data write head 60, and are expressed by the following equations, respectively.
  • ⁇ s1 Ref ⁇ + ⁇ a
  • ⁇ s2 Ref ⁇ a
  • Ref ⁇ is the reference angle Ref ⁇ of the data write head 60
  • ⁇ a is the servo azimuth angle.
  • the reference angle Ref ⁇ of the data write head 60 is set to 10° and the servo azimuth angle ⁇ a is set to 12°
  • the first angle ⁇ s1 of the first servo element 82a ("/") is set to 22°
  • the second angle ⁇ s2 of the second servo element 82b (“ ⁇ ") is set to 2°.
  • the distance between the first servo element 82a ("/") and the second servo element 82b (“ ⁇ ") is, for example, 38 ⁇ m at a position that is 1/2 the width component SL of the length of the servo element 82.
  • the direction along the first angle ⁇ s1 (a direction at 22° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the first servo element 82a ("/").
  • the direction along the second angle ⁇ s2 (a direction at -2° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the second servo element 82b (“ ⁇ ").
  • the length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b (" ⁇ ") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b (" ⁇ ").
  • the width component (Y-axis direction) SL1 of the magnetic tape MT in the longitudinal length of the first servo element 82a is the same as the width component (Y-axis direction) SL1 of the magnetic tape MT in the longitudinal length of the second servo element 82b (" ⁇ ").
  • the width component SL1 of the length of the servo element 82 is, for example, 96 ⁇ 3 ⁇ m.
  • FIG. 24 is an enlarged view of the right side of FIG. 20, showing an example of specific dimensions of the first servo element 82a ("/") and the second servo element 82b (" ⁇ ") (based on the XYZ coordinate system).
  • FIG. 21 shows a servo pattern 47 written in five servo bands s by five pairs of servo elements 82.
  • phase difference in the width direction of the magnetic tape MT between the servo patterns 47 written in two servo bands s adjacent to each other in the width direction (Y-axis direction) of the magnetic tape MT is expressed as SP1 x tan(Ref ⁇ ).
  • phase differences of the servo patterns 47 of servo bands s3, s2, s1, and s2, based on the servo pattern 47 of servo band s4, correspond to 504.08 ⁇ m, 1008.17 ⁇ m, 1512.25 ⁇ m, and 2016.33 ⁇ m, respectively.
  • the servo pattern 47 in servo band s0 is the one that has the most advanced phase in the width direction (Y-axis direction) of the magnetic tape MT.
  • the order of phases is the servo pattern 47 in servo band s1, the servo pattern 47 in servo band s2, the servo pattern 47 in servo band s3, and the servo pattern 47 in servo band s4.
  • the phase of the servo pattern 47 of servo band s0 is set to be ahead of the servo pattern 47 of servo band s1 by a phase corresponding to 504.08 ⁇ m.
  • the phases of the servo patterns 47 written in the five servo bands s are in phase.
  • FIG. 22 shows the servo write head 80b in embodiment B, based on the coordinate system of the servo write head 80b.
  • the five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP2) in the longitudinal direction (Y" axis direction) of the servo write head 80b.
  • the interval (servo element pitch: SP2) between two adjacent pairs of -1 servo elements 82 in the longitudinal direction (Y" axis direction) of the servo write head 80b is expressed as SP1 x cos(Ref ⁇ ).
  • the spacing (servo element pitch: SP1) between two adjacent pairs of servo elements 82 in the width direction (Y-axis direction) of the magnetic tape MT is 2858.8 ⁇ m, and the reference angle Ref ⁇ of the data write head 60 is 10°.
  • the spacing (servo element pitch: SP2) between two adjacent pairs of servo elements 82 in the longitudinal direction (Y"-axis direction) of the servo write head 80b is 2902.9 ⁇ m.
  • the axis of symmetry of the first servo element 82a ("/") and the second servo element 82b (“ ⁇ ") is non-parallel to the width direction (Y-axis direction) of the magnetic tape MT, and is also non-parallel to the longitudinal direction (Y"-axis direction) of the servo write head 80b.
  • the axis of symmetry of the first servo element 82a ("/") and the second servo element 82b (“ ⁇ ") is non-parallel to the width direction (Y-axis direction) of the magnetic tape MT, but is parallel to the longitudinal direction (Y"-axis direction) of the servo write head 80b.
  • the first servo element 82a (“/") is inclined at a servo azimuth angle ⁇ a relative to the longitudinal direction (Y" axis direction) of the servo write head 80b.
  • the second servo element 82b (“ ⁇ ") is inclined in the opposite direction to the first servo element 82a ("/") at the same servo azimuth angle ⁇ a as the first servo element 82a ("/") relative to the longitudinal direction (Y" axis direction) of the servo write head 80b.
  • the direction along the servo azimuth angle ⁇ a (a direction at +12° relative to the longitudinal direction of the servo write head 80b) is defined as the longitudinal direction of the first servo element 82a ("/").
  • the direction along the servo azimuth angle ⁇ a (a direction at -12° relative to the longitudinal direction of the servo write head 80b) is defined as the longitudinal direction of the second servo element 82b (" ⁇ ").
  • the length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b (" ⁇ ") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b (" ⁇ ").
  • the longitudinal component SL21 (Y" axis direction) of the servo write head 80b in the longitudinal length of the first servo element 82a ("/") and the longitudinal component SL22 (Y" axis direction) of the servo write head 80b in the longitudinal length of the second servo element 82b (“ ⁇ ") are also different.
  • FIG. 25 is an enlarged view of the right side of FIG. 22, showing an example of specific dimensions of the first servo element 82a ("/") and the second servo element 82b (" ⁇ ") (based on the X"Y"Z" coordinate system).
  • the width direction component SL1 (Y-axis direction) of the magnetic tape MT in the length of the servo element 82 is 96 ⁇ m
  • the reference angle Ref ⁇ of the data write head 60 is 10°
  • the servo azimuth angle ⁇ a is 12°.
  • FIG. 19 The right side of Figure 19 shows the servo pattern 47 written by the servo write head 80a in embodiment A being read by the two servo read portions 62 of the data write head 60.
  • the servo write head 80a of embodiment A is positioned without being tilted in the width direction of the magnetic tape MT, and the servo pattern 47 is written by adjusting the phase of the pulse signal input to the servo element 82.
  • the magnetic tape MT may move slightly in the width direction (Y-axis direction).
  • the servo element 82 of servo band s0 writes a servo pattern 47 of a phase ph1 to servo band s0 at a certain time t1. Then, at a later time t2 (the time when the magnetic tape MT has been transported 504.08 ⁇ m in the transport direction), the servo element 82 of servo band s1 writes a servo pattern 47 of phase ph1 to servo band s1.
  • the distance (in the direction of the reference angle Ref ⁇ (10°)) between the position of the servo pattern 47 of phase ph1 in servo band s0 and the position of the servo pattern 47 of phase ph1 in servo band s1 will differ from the default value (the distance between the two servo lead portions 62: in the direction of the reference angle Ref ⁇ (10°)).
  • Figure 21 shows the servo pattern 47 written by the servo write head 80b in embodiment B being read by the two servo read portions 62 of the data write head 60.
  • the servo write head 80b of embodiment B is positioned at an angle to the width direction of the magnetic tape MT, and the servo pattern 47 is written with the same phase of the pulse signal input to the servo element 82.
  • the servo element 82 of servo band s0 and the servo element 82 of servo band s1 write servo patterns 47 of the same phase ph1 to servo band s0 and servo band s1 at the same time t1.
  • the servo element 82 of servo band s0 and the servo element 82 of servo band s1 write servo patterns 47 of the same phase ph2 to servo bands s0 and s1 at the same time t2.
  • the distance (in the direction of reference angle Ref ⁇ (10°)) between the position of servo pattern 47 of phase ph1 in servo band s0 and the position of servo pattern 47 of phase ph1 in servo band s1 is the same as the distance between the position of servo pattern 47 of phase ph2 in servo band s0 and the position of servo pattern 47 of phase ph2 in servo band s1.
  • These distances are the same as the default value (distance between two servo lead portions 62: in the direction of reference angle Ref ⁇ (10°)), and are constant.
  • the spacing (in the direction of the reference angle Ref ⁇ ) between servo patterns 47 of the same phase in adjacent servo bands s can be made constant, regardless of slight movement in the width direction of the magnetic tape MT when writing the servo patterns 47. This allows the data write head 60 to accurately servo trace the servo patterns 47.
  • embodiment B is more advantageous than embodiment A.
  • this is not intended to mean that the method of embodiment A cannot be adopted, and embodiment A is also included as an example of the present technology.
  • the method of embodiment A may be adopted.
  • the servo write head 80 can write the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ ") that are asymmetric with respect to the width direction of the magnetic tape MT to each of the servo bands s0 to s4. This allows the data write head 60 to accurately read the servo pattern 47 when the data write head 60 is disposed at an angle with respect to the width direction of the magnetic tape MT.
  • FIG. 23 is a diagram showing the state when the servo pattern 47 is read by the servo read portion 62 of the data write head 60 in the first comparative example, the second comparative example, and the first embodiment.
  • the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ ") are symmetrical with respect to the width direction of the magnetic tape MT.
  • the longitudinal direction of the data write head 60 is parallel to the width direction of the magnetic tape MT.
  • the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read portion 62 of the servo write head 80, the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
  • the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ ") are symmetrical with respect to the width direction of the magnetic tape MT.
  • the longitudinal direction of the data write head 60 is arranged at an angle with respect to the width direction of the magnetic tape MT.
  • the azimuth loss of the servo patterns 47 relative to the servo read section 62 of the data write head 60 differs for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read section 62 of the servo write head 80, the output of the servo burst in the servo signal corresponding to the group of servo patterns 47 with less azimuth loss is large, while the output of the servo burst corresponding to the group of servo patterns 47 with more azimuth loss is small. This can cause an error in the tracking reference position.
  • the first servo pattern 47a (“/") and the second servo pattern 47b (" ⁇ ") on the magnetic tape MT are asymmetric with respect to the width direction of the magnetic tape MT.
  • the longitudinal direction of the data write head 60 is non-parallel to the width direction of the magnetic tape MT.
  • the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read portion 62 of the servo write head 80, the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
  • the first servo pattern 47a (“/") and the second servo pattern 47b (“ ⁇ ") are asymmetric with respect to the width direction of the magnetic tape MT, so that when the data write head 60 is positioned at an angle with respect to the width direction of the magnetic tape MT, the data write head 60 can accurately read the servo pattern 47.
  • the longitudinal direction of the data write head 60 in the data recording and reproducing device 50 is inclined at an azimuth angle ⁇ with respect to the width direction of the magnetic tape MT, and the azimuth angle ⁇ is adjusted. This makes it possible to accommodate variations in the width of the magnetic tape MT.
  • the azimuth angle ⁇ of the data write head 60 in the data recording and reproducing device 50 is adjusted within the range of the reference angle Ref ⁇ x°.
  • the value of x is set to 0.7° or less, it is possible to reduce the azimuth loss L ⁇ while accommodating magnetic tapes MT with small playback track widths W (e.g., 0.5 ⁇ m or less). Also, by setting the reference angle Ref ⁇ to 8° or more, the above correction amount can be increased (e.g., 10 ⁇ m or more).
  • the first servo element 82a ("/") and the second servo element 82b (“ ⁇ ") are provided in the servo write head 80 so as to be asymmetric with respect to the width direction of the magnetic tape MT. This makes it possible to properly write a servo pattern 47 that is asymmetric with respect to the width direction of the magnetic tape MT by the first servo element 82a ("/") and the second servo element 82b (" ⁇ ").
  • the first servo element 82a (“/") is inclined at a first angle ⁇ s1 with respect to the width direction of the magnetic tape MT
  • the second servo element 82b (“ ⁇ ") is inclined at a second angle ⁇ s2, which is different from the first angle ⁇ s1, in the opposite direction to the first angle ⁇ s1 with respect to the width direction of the magnetic tape MT.
  • the first angle ⁇ s1 and the second angle ⁇ s2 are related to the reference angle Ref ⁇ of the data write head 60. This allows the first servo element 82a ("/") and the second servo element 82b (" ⁇ ") to properly write an asymmetric servo pattern 47 that can be accurately read by the data write head 60.
  • the length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the first servo element 82a ("/") in the longitudinal direction, but the component of the length of the first servo element 82a ("/") in the width direction of the magnetic tape MT is the same as the component of the length of the second servo element 82b (" ⁇ ") in the width direction of the magnetic tape MT.
  • the longitudinal direction of the servo write head 80 may be arranged so as to be inclined at a predetermined angle with respect to the width direction of the magnetic tape MT (see embodiment B). In this case, it is possible to appropriately respond to slight movements in the width direction of the magnetic tape MT when writing the servo pattern 47.
  • the angle at which the longitudinal direction of the servo write head 80 is tilted with respect to the width direction of the magnetic tape MT may be related to the reference angle Ref ⁇ of the data write head 60, and this angle may coincide with the reference angle Ref ⁇ of the data write head 60. This makes it possible to properly write an asymmetric servo pattern 47 that can be accurately read by the tilted data write head 60.
  • the phase difference in the width direction of the magnetic tape MT between the servo patterns 47 in adjacent servo bands s is related to the reference angle Ref ⁇ of the servo write head 80 and is expressed as SP ⁇ tan(Ref ⁇ ). This allows the servo patterns 47 to be accurately read by the data write head 60, which is positioned at an angle.
  • FIG. 26 is a diagram showing a first example of a method for checking whether or not a magnetic tape MT is a magnetic tape MT used in a data write head tilt type data recording and reproducing device 50.
  • the following check is performed based on the angle (first angle ⁇ s1) at which the first servo pattern 47a ("/") is tilted with respect to the width direction (Y-axis direction) of the magnetic tape MT, and the angle (second angle ⁇ s2) at which the second servo pattern 47b (" ⁇ ") is tilted with respect to the width direction of the magnetic tape.
  • Figure 26 shows the magnetic tape MT as seen from the top (magnetic layer side) (therefore, in the first servo pattern 47a ("/") and the second servo pattern 47b (" ⁇ "), the signs "/" and " ⁇ " are reversed from appearance).
  • a developer such as a ferricolloid developer (e.g., Sigmarca Q (registered trademark) manufactured by Sigma High Chemical Co.) is applied to the magnetic layer 43 of the magnetic tape MT to perform development. After that, the developed magnetic layer 43 of the magnetic tape MT is observed with an optical microscope to confirm the shape of the servo pattern 47.
  • a ferricolloid developer e.g., Sigmarca Q (registered trademark) manufactured by Sigma High Chemical Co.
  • the upper and lower ends of the first servo pattern 47a ("/") and the upper and lower ends of the second servo pattern 47b (“ ⁇ ") are measured as measurement points. Then, the distance a (corresponding to the servo band width) between the upper and lower ends of the servo pattern 47 in the width direction (Y-axis direction) of the magnetic tape MT is measured.
  • the distance b between the upper end and the lower end of the first servo pattern 47a (“/") is measured.
  • the distance c between the upper end and the lower end of the second servo pattern 47b is measured.
  • the angle (first angle ⁇ s1) at which the first servo pattern 47a ("/") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is calculated by tan -1 (b/a).
  • the angle (second angle ⁇ s2) at which the second servo pattern 47b (" ⁇ ") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is calculated by tan -1 (c/a).
  • the angle calculated at this time corresponds to the angle at which the symmetry axes of the first servo pattern 47a and the second servo pattern 47b are inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT.
  • the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47.
  • the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
  • this magnetic tape MT can be considered to be a magnetic tape MT used in a data recording and playback device 50 of a type in which the data write head 60 is positioned at an angle with respect to the width direction (Y-axis direction) of the magnetic tape MT.
  • [Confirmation method: second example] 27 is a diagram showing a second example of a method for checking whether a magnetic tape MT is a magnetic tape MT used in a data recording/reproducing device 50 with a tilted data write head.
  • the above checking is performed based on a phase difference between the servo patterns 47 in adjacent servo bands.
  • a data recording and reproducing device in which the data write head 60 is positioned parallel to the width direction (Y-axis direction) of the magnetic tape MT.
  • the two servo read sections 62 of the data write head 60 read the servo patterns 47 in the adjacent servo bands, and reproduce the servo signals.
  • the phase of the servo signal reproduced by the lower servo read section 62 is ahead of the phase of the servo signal reproduced by the upper servo read section 62, resulting in a phase difference.
  • the difference in time at which the same LPOS (Longitudinal Position) information is read between the servo signal reproduced by the lower servo read section 62 and the servo signal reproduced by the upper servo read section 62 is found. This time difference is then converted into distance to find the phase difference d in the longitudinal direction of the magnetic tape (for example, 0.505 ⁇ m).
  • phase difference d eg, 0.505 ⁇ m
  • servo band pitch SP known
  • the angle found in this case corresponds to the angle that a straight line connecting the positions where in-phase information is written in the servo pattern 47 of one servo band and the servo pattern 47 of the other servo band makes with respect to the width direction of the magnetic tape.
  • the magnetic tape MT can be regarded as a magnetic tape MT used in a data recording/reproducing device 50 of the type in which the data write head 60 is disposed at an angle with respect to the width direction (Y-axis direction) of the magnetic tape MT.
  • the sign of the width change ⁇ out on the outer side of the magnetic tape MT is different from the sign of the width change ⁇ in on the inner side of the magnetic tape MT. Since the sign of the width change ⁇ out on the outer side of the magnetic tape MT is different from the sign of the width change ⁇ in on the inner side of the magnetic tape MT, excellent running stability can be obtained even when stored in a high-temperature environment.
  • the width change ⁇ is 0 ppm in either of the two regions that sandwich the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal regions. This allows excellent running stability to be obtained even when stored in a high-temperature environment. Furthermore, in the longitudinal direction of the magnetic tape, the width change ⁇ is 300 ppm or less in any of the four regions. This allows the azimuth angle ⁇ of the data write head to be adjusted to accommodate changes in shape due to changes in temperature and humidity, even if the width of the magnetic tape MT1 changes in a high-temperature environment.
  • the magnetic tape MT according to the first embodiment has a plurality of servo bands s in which servo patterns 47 including a first servo pattern 47a and a second servo pattern 47b asymmetrical with respect to the width direction are written, and the servo patterns 47 in the servo bands s adjacent to each other have a phase difference. Therefore, the magnetic tape MT according to the first embodiment can be used in a data recording and reproducing device 50 that can respond to a change in the width of the magnetic tape MT by adjusting the azimuth angle ⁇ of the data write head 60.
  • the azimuth angle ⁇ of the data write head 60 is made small, and conversely, when the width of the magnetic tape MT becomes relatively narrow, the azimuth angle ⁇ of the data write head 60 is made large.
  • the servo patterns 47 of the magnetic tape MT can be accurately read even when the width of the magnetic tape MT changes. Therefore, even if the temperature of the magnetic tape MT changes in a high temperature environment, the azimuth angle ⁇ of the data write head 60 can be adjusted to accommodate the change in width.
  • the magnetic tape MT according to the first embodiment is capable of dealing with width changes that may occur in high-temperature environments. Therefore, the magnetic tape MT according to the first embodiment is suitable for storage and running in high-temperature environments.
  • the magnetic recording cartridge of this embodiment is the same as the magnetic recording cartridge 10 described in 2. "(1) Configuration of the magnetic cartridge" above, except that it includes a vacuum thin-film type magnetic tape MT1 instead of a coating type magnetic tape MT.
  • the vacuum thin-film type magnetic tape MT1 is described below.
  • the magnetic tape MT is a coated magnetic tape in which the underlayer and magnetic layer are produced by a coating process (wet process), but the magnetic tape may be a vacuum thin-film type magnetic tape in which the underlayer and magnetic layer are produced by a vacuum thin-film production technique (dry process) such as sputtering.
  • dry process a vacuum thin-film production technique
  • FIG 28 is a cross-sectional view showing an example of the configuration of a vacuum thin-film type magnetic tape MT1 according to a second embodiment of the present technology.
  • the magnetic tape MT1 is a perpendicular recording type magnetic recording medium, and includes a film-like base layer 111, a soft magnetic underlayer (hereinafter referred to as "SUL") 112, a first seed layer 113A, a second seed layer 113B, a first underlayer 114A, a second underlayer 114B, and a magnetic layer 115 as a recording layer.
  • the SUL 112, the first and second seed layers 113A and 113B, the first and second underlayers 114A and 114B, and the magnetic layer 115 are vacuum thin films such as sputtered films.
  • the SUL 112, the first and second seed layers 113A, 113B, and the first and second underlayers 114A, 114B are provided between one major surface (hereinafter referred to as the "surface") of the base layer 111 and the magnetic layer 115, and are stacked in the following order from the base layer 111 toward the magnetic layer 115: SUL 112, first seed layer 113A, second seed layer 113B, first underlayer 114A, second underlayer 114B.
  • the magnetic tape MT1 may further include a protective layer 116 provided on the magnetic layer 115 and a lubricating layer 117 provided on the protective layer 116, if necessary.
  • the magnetic tape MT1 may further include a back layer 118 provided on the other main surface (hereinafter referred to as the "back surface") of the base layer 111, if necessary.
  • the longitudinal direction of the magnetic tape MT1 (the longitudinal direction of the base layer 111) is referred to as the MD (machine direction).
  • the MD direction refers to the relative movement direction of the recording and reproducing heads with respect to the magnetic tape MT1, i.e., the direction in which the magnetic tape MT1 runs during recording and reproducing.
  • the magnetic tape MT1 according to the second embodiment is suitable for use as a storage medium for data archives, the demand of which is expected to increase in the future.
  • This magnetic tape MT1 can achieve an areal recording density of 50 Gb/ in2 or more, which is 10 times or more than that of current coating-type magnetic recording media for storage.
  • a general linear recording type data cartridge is configured using the magnetic tape MT1 having such an areal recording density, a large capacity recording capacity of 100 TB or more can be achieved per data cartridge.
  • the magnetic tape MT1 according to the second embodiment is suitable for use in a recording and reproducing device (a recording and reproducing device for recording and reproducing data) having a ring-type recording head and a Giant Magnetoresistive (GMR) type or Tunneling Magnetoresistive (TMR) type reproducing head.
  • the magnetic tape MT1 according to the second embodiment preferably uses a ring-type recording head as a servo signal writing head.
  • a data signal is recorded perpendicularly on the magnetic layer 115, for example, by a ring-type recording head.
  • a servo signal is recorded perpendicularly on the magnetic layer 115, for example, by a ring-type recording head.
  • the average thickness t T , width change, storage modulus, loss modulus, etc. of the magnetic tape MT1 in the second embodiment are similar to those in the first embodiment.
  • the base layer 111 is similar to the base layer 41 in the first embodiment.
  • the SUL 112 includes a soft magnetic material in an amorphous state.
  • the soft magnetic material includes at least one of a Co-based material and an Fe-based material.
  • the Co-based material includes, for example, CoZrNb, CoZrTa, or CoZrTaNb.
  • the Fe-based material includes, for example, FeCoB, FeCoZr, or FeCoTa.
  • SUL 112 is a single layer SUL and is provided directly on base layer 111.
  • the average thickness of SUL 112 is preferably 10 nm or more and 50 nm or less, and more preferably 20 nm or more and 30 nm or less.
  • the average thickness of the SUL 112 is determined in the same manner as the magnetic layer 43 in the first embodiment.
  • the average thicknesses of the layers other than the SUL 112 i.e., the average thicknesses of the first and second seed layers 113A, 113B, the first and second underlayers 114A, 114B, and the magnetic layer 115), which will be described later, are also determined in the same manner as the magnetic layer 43 in the first embodiment.
  • the magnification of the TEM image is appropriately adjusted according to the thickness of each layer.
  • the first seed layer 113A includes an alloy containing Ti and Cr, and is in an amorphous state.
  • the alloy may further include O (oxygen).
  • the oxygen may be impurity oxygen contained in a small amount in the first seed layer 113A when the first seed layer 113A is formed by a film forming method such as a sputtering method.
  • alloy refers to at least one of a solid solution, a eutectic, and an intermetallic compound containing Ti and Cr.
  • Amorphous state means that a halo is observed by X-ray diffraction or electron beam diffraction, etc., and the crystal structure cannot be identified.
  • the atomic ratio of Ti to the total amount of Ti and Cr contained in the first seed layer 113A is preferably in the range of 30 atomic % or more and less than 100 atomic %, and more preferably 50 atomic % or more and less than 100 atomic %. If the atomic ratio of Ti is less than 30%, the (100) plane of the body-centered cubic lattice (bcc) structure of Cr will become oriented, and there is a risk that the orientation of the first and second underlayers 114A and 114B formed on the first seed layer 113A will decrease.
  • the atomic ratio of Ti is determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 115 side, a depth profile analysis (depth profile measurement) of the first seed layer 113A is performed by Auger Electron Spectroscopy (AES). Next, the average composition (average atomic ratio) of Ti and Cr in the film thickness direction is determined from the obtained depth profile. Next, the atomic ratio of Ti is determined using the obtained average composition of Ti and Cr.
  • the atomic ratio of O to the total amount of Ti, Cr and O contained in the first seed layer 113A is preferably 15 atomic % or less, more preferably 10 atomic % or less. If the atomic ratio of O exceeds 15 atomic %, TiO2 crystals are generated, which may affect the crystal nucleation of the first and second underlayers 114A and 114B formed on the first seed layer 113A, and may reduce the orientation of the first and second underlayers 114A and 114B.
  • the atomic ratio of O is determined using the same analytical method as the atomic ratio of Ti.
  • the alloy contained in the first seed layer 113A may further contain an element other than Ti and Cr as an additive element.
  • the additive element may be, for example, one or more elements selected from the group consisting of Nb, Ni, Mo, Al, W, etc.
  • the average thickness of the first seed layer 113A is preferably 2 nm or more and 15 nm or less, and more preferably 3 nm or more and 10 nm or less.
  • the second seed layer 113B contains, for example, NiW or Ta, and has a crystalline state.
  • the average thickness of the second seed layer 113B is preferably 3 nm or more and 20 nm or less, more preferably 5 nm or more and 15 nm or less.
  • the first and second seed layers 113A and 113B have a crystal structure similar to that of the first and second underlayers 114A and 114B, and are not seed layers provided for the purpose of crystal growth, but are seed layers that improve the vertical orientation of the first and second underlayers 114A and 114B due to the amorphous state of the first and second seed layers 113A and 113B.
  • the first and second underlayers 114A and 114B preferably have the same crystal structure as the magnetic layer 115.
  • the first and second underlayers 114A and 114B preferably contain a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it enhances the orientation of the magnetic layer 115 and can relatively well match the lattice constants of the second underlayer 114B and the magnetic layer 115.
  • the material having the hexagonal close-packed (hcp) structure it is preferable to use a material containing Ru, and specifically, Ru alone or a Ru alloy is preferable.
  • Ru alloy for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 or Ru-ZrO 2 can be mentioned.
  • the first and second underlayers 114A and 114B can be made of similar materials. However, the intended effects of the first and second underlayers 114A and 114B are different. Specifically, the second underlayer 114B has a film structure that promotes the granular structure of the magnetic layer 115 that is the layer above it, and the first underlayer 114A has a film structure with high crystal orientation. To obtain such a film structure, it is preferable to use different film formation conditions, such as sputtering conditions, for the first and second underlayers 114A and 114B.
  • different film formation conditions such as sputtering conditions
  • the average thickness of the first underlayer 114A is preferably 3 nm to 15 nm, more preferably 5 nm to 10 nm.
  • the average thickness of the second underlayer 114B is preferably 7 nm to 40 nm, more preferably 10 nm to 25 nm.
  • the magnetic layer 115 is a perpendicular magnetic recording layer in which the magnetic material is oriented perpendicularly.
  • the magnetic layer 115 may be a vacuum thin film such as a sputtered film.
  • the magnetic layer 115 is preferably a granular magnetic layer containing a Co-based alloy. This granular magnetic layer is composed of ferromagnetic crystal grains containing a Co-based alloy and non-magnetic grain boundaries (non-magnetic material) surrounding the ferromagnetic crystal grains.
  • this granular magnetic layer is composed of columns (columnar crystals) containing a Co-based alloy and non-magnetic grain boundaries (e.g., oxides such as SiO2 ) surrounding the columns and magnetically separating each column.
  • the magnetic layer 115 can be formed with a structure in which each column is magnetically separated.
  • the Co-based alloy has a hexagonal close-packed (hcp) structure, with its c-axis oriented perpendicular to the film surface (film thickness direction).
  • hcp hexagonal close-packed
  • the CoCrPt-based alloy is not particularly limited, and the CoCrPt alloy may further contain an additive element.
  • the additive element include one or more elements selected from the group consisting of Ni, Ta, etc.
  • the non-magnetic grain boundaries surrounding the ferromagnetic crystal grains contain a non-magnetic metal material.
  • the metal includes a semi-metal.
  • at least one of a metal oxide and a metal nitride can be used as the non-magnetic metal material, and from the viewpoint of maintaining the granular structure more stably, it is preferable to use a metal oxide.
  • the metal oxide there is a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf, and a metal oxide containing at least Si oxide (i.e., SiO 2 ) is preferable.
  • the metal oxide examples include SiO 2 , Cr 2 O 3 , CoO, Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , or HfO 2 .
  • the metal nitride there is a metal nitride containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf.
  • metal nitrides include SiN, TiN, and AlN.
  • the CoCrPt alloy contained in the ferromagnetic crystal grains and the Si oxide contained in the non-magnetic grain boundaries have an average composition shown in the following formula (5), because this can suppress the influence of the demagnetizing field and realize a saturation magnetization Ms that can ensure sufficient reproduction output, thereby achieving further improvement in the recording and reproduction characteristics.
  • x, y, and z are values within the ranges of 69 ⁇ X ⁇ 75, 10 ⁇ y ⁇ 16, and 9 ⁇ Z ⁇ 12, respectively.
  • the above composition can be determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 115 side, AES is used to perform a depth direction analysis of the magnetic layer 115, and the average composition (average atomic ratio) of Co, Pt, Cr, Si, and O in the film thickness direction is determined.
  • the upper limit of the average thickness of the magnetic layer 115 is, for example, 90 nm or less, preferably 80 nm or less, more preferably 70 nm or less, even more preferably 60 nm or less, and particularly preferably 50 nm or less, 20 nm or less, or 15 nm or less.
  • the lower limit of the average thickness of the magnetic layer 115 is preferably 9 nm or more. When the average thickness of the magnetic layer 115 is 9 nm or more and 90 nm or less, the electromagnetic conversion characteristics can be improved.
  • the magnetic layer 115 has multiple data bands in which data is written, and multiple servo bands in which servo patterns are written.
  • the explanation of the data bands and servo bands in the first embodiment described in 1. (2) above applies. Therefore, the explanation of the data bands and servo bands of the magnetic layer 115 is omitted.
  • the protective layer 116 contains, for example, a carbon material or silicon dioxide (SiO 2 ), and preferably contains a carbon material from the viewpoint of the film strength of the protective layer 116.
  • the carbon material include graphite, diamond-like carbon (DLC), diamond, and the like.
  • the lubricating layer 117 includes at least one lubricant.
  • the lubricating layer 117 may further include various additives, such as a rust inhibitor, as necessary.
  • the lubricant include the same lubricant as that used in the magnetic layer 43 in the first embodiment.
  • the lubricant may not only be held as a lubricating layer 117 on the surface of the magnetic tape MT1 as described above, but may also be contained and held in layers such as the magnetic layer 115 and protective layer 116 that make up the magnetic tape MT1.
  • the back layer 118 is similar to the back layer 44 in the first embodiment.
  • the sputtering device 120 is a continuous winding type sputtering device used to deposit the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115, and includes a deposition chamber 121, a drum 122 which is a metal can (rotating body), cathodes 123a to 123f, a supply reel 124, a take-up reel 125, and a number of guide rolls 127a to 127c, 128a to 128c.
  • the sputtering device 120 is, for example, a DC (direct current) magnetron sputtering type device, but the sputtering type is not limited to this type.
  • the film-forming chamber 121 is connected to a vacuum pump (not shown) via an exhaust port 126, and the atmosphere in the film-forming chamber 121 is set to a predetermined vacuum level by the vacuum pump.
  • a rotatable drum 122, a supply reel 124, and a take-up reel 125 are arranged inside the film-forming chamber 121.
  • a plurality of guide rolls 127a-127c are provided for guiding the transport of the base layer 111 between the supply reel 124 and the drum 122, and a plurality of guide rolls 128a-128c are provided for guiding the transport of the base layer 111 between the drum 122 and the take-up reel 125.
  • the base layer 111 unwound from the supply reel 124 is wound onto the take-up reel 125 via the guide rolls 127a-127c, the drum 122, and the guide rolls 128a-128c.
  • the drum 122 has a cylindrical shape, and the long base layer 111 is transported along the cylindrical peripheral surface of the drum 122.
  • the drum 122 is provided with a cooling mechanism (not shown), and is cooled to, for example, about ⁇ 20° C. during sputtering.
  • a plurality of cathodes 123a to 123f are arranged facing the peripheral surface of the drum 122. Targets are set on each of these cathodes 123a to 123f.
  • targets for forming the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115 are set on the cathodes 123a, 123b, 123c, 123d, 123e, and 123f, respectively.
  • These cathodes 123a-123f simultaneously deposit multiple types of films, namely, SUL 112, first seed layer 113A, second seed layer 113B, first underlayer 114A, second underlayer 114B, and magnetic layer 115.
  • the SUL 112 the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B and the magnetic layer 115 can be continuously formed by the roll-to-roll method.
  • the magnetic tape MT1 according to the second embodiment can be manufactured, for example, as follows.
  • the deposition is performed as follows. First, the deposition chamber 121 is evacuated to a predetermined pressure. Then, while introducing a process gas such as Ar gas into the deposition chamber 121, the targets set on the cathodes 123a to 123f are sputtered.
  • a process gas such as Ar gas
  • the SUL 112 the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115 are sequentially deposited on the surface of the running base layer 111.
  • the atmosphere in the film formation chamber 121 during sputtering is set to, for example, about 1 ⁇ 10 ⁇ 5 Pa to 5 ⁇ 10 ⁇ 5 Pa.
  • the film thickness and characteristics of the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B and the magnetic layer 115 can be controlled by adjusting the tape line speed for winding up the base layer 111, the pressure of the process gas such as Ar gas introduced during sputtering (sputtering gas pressure), the input power, and the like.
  • the protective layer 116 is formed on the magnetic layer 115.
  • the protective layer 116 can be formed by, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • a paint for forming the back layer is prepared by kneading and dispersing a binder, inorganic particles, a lubricant, etc. in a solvent.
  • the paint for forming the back layer is applied to the back surface of the base layer 111 and dried, thereby forming the back layer 118 on the back surface of the base layer 111.
  • a lubricant is applied onto the protective layer 116 to form the lubricant layer 117.
  • various application methods such as gravure coating and dip coating can be used.
  • the magnetic tape MT1 is cut to a predetermined width. In this manner, the magnetic tape MT1 shown in FIG. 28 is obtained.
  • the magnetic recording cartridge of this embodiment is the same as the magnetic recording cartridge 10 described in "(1) Configuration of the magnetic cartridge" in 2. above, except that it includes a vacuum thin-film type magnetic tape MT2 instead of the coated magnetic tape MT.
  • the vacuum thin-film type magnetic tape MT2 is described below.
  • FIG. 30 is a cross-sectional view showing an example of the configuration of a vacuum thin-film magnetic tape MT2 according to a third embodiment of the present technology.
  • the magnetic tape MT2 includes a base layer 111, an SUL 112, a seed layer 131, a first underlayer 132A, a second underlayer 132B, and a magnetic layer 115. Note that in the third embodiment, parts that are the same as those in the second embodiment are given the same reference numerals and will not be described.
  • the SUL 112, seed layer 131, first and second underlayers 132A and 132B are provided between one major surface of the base layer 111 and the magnetic layer 115, and are stacked in the order of SUL 112, seed layer 131, first underlayer 132A, and second underlayer 132B from the base layer 111 toward the magnetic layer 115.
  • the seed layer 131 contains Cr, Ni, and Fe, has a face-centered cubic lattice (fcc) structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the base layer 111.
  • the preferential orientation means a state in which the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is greater than the diffraction peaks from other crystal planes in a ⁇ -2 ⁇ scan of an X-ray diffraction method, or a state in which only the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is observed in a ⁇ -2 ⁇ scan of an X-ray diffraction method.
  • the intensity ratio of the X-ray diffraction of the seed layer 131 is preferably 60 cps/nm or more, more preferably 70 cps/nm or more, and even more preferably 80 cps/nm or more.
  • the intensity ratio of the X-ray diffraction of the seed layer 131 is a value (I/D (cps/nm)) obtained by dividing the intensity I (cps) of the X-ray diffraction of the seed layer 131 by the average thickness D (nm) of the seed layer 131.
  • the Cr, Ni, and Fe contained in the seed layer 131 preferably have an average composition represented by the following formula (6).
  • CrX NiYFe100 -Y ) 100-X ... (6)
  • X is within the range of 10 ⁇ X ⁇ 45
  • Y is within the range of 60 ⁇ Y ⁇ 90.
  • X is within the above range
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained.
  • Y is within the above range
  • the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained.
  • the average thickness of the seed layer 131 is preferably 5 nm or more and 40 nm or less. By setting the average thickness of the seed layer 131 within this range, the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe can be improved, and a better SNR can be obtained.
  • the average thickness of the seed layer 131 is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the seed layer 131.
  • the first underlayer 132A contains Co and O having a face-centered cubic lattice structure, and has a columnar (columnar crystal) structure.
  • the first underlayer 132A containing Co and O has substantially the same effect (function) as the second underlayer 132B containing Ru.
  • the concentration ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more. When the concentration ratio is 1 or more, the effect of providing the first underlayer 132A is improved, and a better SNR can be obtained.
  • the direction of the inclination is preferably the longitudinal direction of the long magnetic tape MT2.
  • the longitudinal direction is preferable for the following reasons.
  • the magnetic tape MT2 according to this embodiment is a magnetic recording medium for so-called linear recording, and the recording tracks are parallel to the longitudinal direction of the magnetic tape MT2.
  • the magnetic tape MT2 according to this embodiment is also a so-called perpendicular magnetic recording medium, and from the viewpoint of recording characteristics, it is preferable that the crystal orientation axis of the magnetic layer 115 is vertical, but the influence of the inclination of the column structure of the first underlayer 132A may cause the crystal orientation axis of the magnetic layer 115 to be inclined.
  • a configuration in which the crystal orientation axis of the magnetic layer 115 is inclined in the longitudinal direction of the magnetic tape MT2 can reduce the influence of the inclination of the crystal orientation axis on the recording characteristics compared to a configuration in which the crystal orientation axis of the magnetic layer 115 is inclined in the width direction of the magnetic tape MT2.
  • the inclination angle of the column structure is preferably greater than 0° and equal to or less than 60°.
  • the change in the tip shape of the columns contained in the first underlayer 132A is large and becomes approximately triangular, which tends to enhance the effect of the granular structure, reduce noise, and improve the SNR.
  • the inclination angle exceeds 60°, the change in the tip shape of the columns contained in the first underlayer 132A is small and it is difficult to obtain an approximately triangular shape, which tends to weaken the low-noise effect.
  • the average grain size of the columnar structure is 3 nm or more and 13 nm or less. If the average grain size is less than 3 nm, the average grain size of the columnar structure contained in the magnetic layer 115 will be small, and there is a risk that the ability of current magnetic materials to retain records will decrease. On the other hand, if the average grain size is 13 nm or less, noise can be suppressed and a better SNR can be obtained.
  • the average thickness of the first underlayer 132A is preferably 10 nm or more and 150 nm or less. If the average thickness of the first underlayer 132A is 10 nm or more, the (111) orientation of the face-centered cubic lattice structure of the first underlayer 132A is improved, and a better SNR can be obtained. On the other hand, if the average thickness of the first underlayer 132A is 150 nm or less, the column particle size can be prevented from increasing. Therefore, noise can be suppressed and a better SNR can be obtained.
  • the average thickness of the first underlayer 132A is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the first underlayer 132A.
  • the second underlayer 132B preferably has the same crystal structure as the magnetic layer 115.
  • the second underlayer 132B preferably contains a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it can increase the orientation of the magnetic layer 115 and relatively well match the lattice constants of the second underlayer 132B and the magnetic layer 115.
  • a material having a hexagonal close-packed structure it is preferable to use a material containing Ru, and specifically, Ru alone or a Ru alloy is preferable.
  • Ru alloy for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 , or Ru-ZrO 2 can be mentioned.
  • the average thickness of the second underlayer 132B may be thinner than that of an underlayer in a typical magnetic recording medium (e.g., an underlayer containing Ru), and can be, for example, 1 nm or more and 5 nm or less. Since the seed layer 131 and the first underlayer 132A having the above-mentioned configuration are provided under the second underlayer 132B, a good SNR can be obtained even if the average thickness of the second underlayer 132B is as thin as described above.
  • the average thickness of the second underlayer 132B is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the second underlayer 132B.
  • the average thickness t T , the width change, and the loss modulus of the base layer 111 of the magnetic tape MT2 in the third embodiment are similar to those in the first embodiment.
  • the data band and servo band of the magnetic layer 115 in the third embodiment are the same as those in the first embodiment. That is, the details of the data band and servo band of the magnetic layer 115 in the third embodiment are as described in 2. (2) above.
  • the explanation of the effects described in (5) of 2 above also applies to the third embodiment. That is, in the magnetic tape MT2 according to the third embodiment, as in the first embodiment, even if the magnetic tape MT2 is stored or run in a high-temperature environment for a long period of time (for example, 10 years), the width change of the magnetic tape MT2 can be corrected by adjusting the running tension of the magnetic tape MT2. Also, even if the width of the magnetic tape MT2 changes in a high-temperature environment, the width change can be accommodated by adjusting the azimuth angle ⁇ of the data write head. Thus, the magnetic tape MT2 according to the third embodiment can accommodate width changes that may occur in a high-temperature environment, and therefore the magnetic tape MT2 according to the third embodiment is suitable for storage and running in a high-temperature environment.
  • the magnetic tape MT2 includes a seed layer 131 and a first underlayer 132A between a base layer 111 and a second underlayer 132B.
  • the seed layer 131 contains Cr, Ni, and Fe, has a face-centered cubic lattice structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the base layer 111.
  • the first underlayer 132A contains Co and O, and has a columnar structure in which the ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more, and the average grain size is 3 nm or more and 13 nm or less. This makes it possible to realize a magnetic layer 115 with good crystal orientation and high coercivity by reducing the thickness of the second underlayer 132B and using as little Ru, which is an expensive material, as possible.
  • the Ru contained in the second underlayer 132B has the same hexagonal close-packed lattice structure as Co, the main component of the magnetic layer 115. Therefore, Ru has the effect of improving the crystal orientation of the magnetic layer 115 and promoting granularity at the same time.
  • the first underlayer 132A and the seed layer 131 are provided under the second underlayer 132B.
  • the first underlayer 132A containing inexpensive CoO with a face-centered cubic lattice structure achieves almost the same effect (function) as the second underlayer 132B containing Ru. Therefore, the thickness of the second underlayer 132B can be made thin.
  • the seed layer 131 containing Cr, Ni and Fe is provided.
  • the magnetic tape cartridge 10 is a one-reel type cartridge, but it may be a two-reel type cartridge.
  • FIG 31 is an exploded perspective view showing an example of the configuration of a two-reel type cartridge 321.
  • the cartridge 321 comprises an upper half 302 made of synthetic resin, a transparent window member 323 that fits into and is fixed to a window portion 302a opened on the upper surface of the upper half 302, a reel holder 322 that is fixed to the inside of the upper half 302 and prevents the reels 306 and 307 from floating up, a lower half 305 that corresponds to the upper half 302, the reels 306 and 307 that are stored in the space formed by combining the upper half 302 and the lower half 305, the magnetic tape MT wound on the reels 306 and 307, a front lid 309 that closes the front opening formed by combining the upper half 302 and the lower half 305, and a back lid 309A that protects the magnetic tape MT exposed at this front opening.
  • Reels 306 and 307 are used to wind magnetic tape MT.
  • Reel 306 comprises a lower flange 306b having a cylindrical hub portion 306a in the center around which magnetic tape MT is wound, an upper flange 306c of approximately the same size as lower flange 306b, and a reel plate 311 sandwiched between hub portion 306a and upper flange 306c.
  • Reel 307 has the same configuration as reel 306.
  • the window member 323 has mounting holes 323a at positions corresponding to the reels 306 and 307 for attaching reel holders 322, which are reel holding means for preventing the reels from floating up.
  • the magnetic tape MT is the same as the magnetic tape MT in the first embodiment.
  • the magnetic tape MT1 according to the second embodiment may further include an underlayer between the base layer 111 and the SUL 112. Since the SUL 112 has an amorphous state, it does not play a role in promoting epitaxial growth of the layer formed on the SUL 112, but it is required not to disturb the crystal orientation of the first and second underlayers 114A and 114B formed on the SUL 112.
  • the soft magnetic material has a fine structure that does not form columns, but if the influence of degassing such as moisture from the base layer 111 is large, the soft magnetic material may become coarse and disturb the crystal orientation of the first and second underlayers 114A and 114B formed on the SUL 112.
  • an underlayer having an amorphous state which contains an alloy containing Ti and Cr, between the base layer 111 and the SUL 112, as described above.
  • this underlayer a configuration similar to that of the first seed layer 113A of the second embodiment can be adopted.
  • the magnetic tape MT1 does not have to include at least one of the second seed layer 113B and the second underlayer 114B. However, from the viewpoint of improving the SNR, it is more preferable to include both the second seed layer 113B and the second underlayer 114B.
  • the magnetic tape MT1 may be provided with an APC-SUL (Antiparallel Coupled SUL) instead of a single-layer SUL.
  • APC-SUL Antiparallel Coupled SUL
  • the loss modulus of the base layer of the magnetic tape is a value determined by the measurement method described in the first embodiment.
  • FIG. 40 is a schematic diagram for explaining a method for calculating the movement angle of a tilted drive head, which is the movement angle of the drive head required to deal with width changes assumed when the disk is stored in a high-temperature environment.
  • the left side of Fig. 40 shows the distance (h) between the two servo read heads of the drive head, the servo band pitch (SP), and the tilt angle (10°) of the drive head for the initial (before width change) magnetic tape.
  • Cos10° SP/h.
  • the right side of Figure 40 shows the servo band pitch (SP- ⁇ SP), the drive head movement angle ( ⁇ ), and the tilt angle (10°+ ⁇ ) after the drive head moves on the magnetic tape after the servo band pitch has narrowed (after the width has changed).
  • Cos(10°+ ⁇ ) (SP- ⁇ SP)/h.
  • Example 1 (Preparation process of paint for forming magnetic layer)
  • the magnetic layer coating material was prepared as follows. First, the first composition having the following composition was mixed with an extruder. Next, the mixed first composition and the second composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, the mixture was further mixed with a sand mill and filtered to prepare the magnetic layer coating material.
  • Aluminum oxide powder 7.5 parts by mass ( ⁇ -Al 2 O 3 , average particle size 80 ⁇ m)
  • the paint for forming the undercoat layer was prepared as follows. First, the third composition having the following composition was mixed with an extruder. Next, the mixed third composition and the fourth composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, further mixing was performed with a dyno mill and filtering was performed to prepare the paint for forming the undercoat layer.
  • Carbon black 30 parts by weight (manufactured by Asahi Carbon Co., Ltd., product name: #80)
  • n-Butyl stearate 2 parts by mass Methyl ethyl ketone: 108.2 parts by mass Toluene: 108.2 parts by mass
  • Cyclohexanone 100.0 parts by mass
  • the paint for forming the back layer was prepared as follows. The following raw materials were mixed in a stirring tank equipped with a disperser and filtered to prepare the paint for forming the back layer.
  • Carbon black manufactured by Asahi Carbon Co., Ltd., product name: #80
  • Polyester polyurethane 100 parts by mass (manufactured by Nippon Polyurethane Co., Ltd., product name: N-2304)
  • Methyl ethyl ketone 500 parts by weight
  • Toluene 400 parts by weight
  • Cyclohexanone 100 parts by weight
  • Polyisocyanate product name: Coronate L, manufactured by Tosoh Corporation
  • the base layer was formed by applying the paint for forming the base layer onto the polymer film that would become the base layer and drying it.
  • the application conditions were adjusted so that the average thickness of the base layer after calendaring would be 0.82 ⁇ m.
  • the polymer film used was reinforced PET (trade name "SPALTAN” (registered trademark), manufactured by Toray Industries, Inc.) with an average thickness of 4.0 ⁇ m.
  • the magnetic layer-forming paint was applied onto the underlayer and dried to form a magnetic layer on the underlayer.
  • the application conditions were adjusted so that the average thickness of the magnetic layer after calendaring would be 0.08 ⁇ m.
  • the magnetic layer-forming paint was dried, the magnetic powder was magnetically oriented in the thickness direction of the polymer film by a neodymium magnet.
  • the drying conditions (drying temperature and drying time) of the magnetic layer-forming paint were adjusted, and the squareness ratio in the longitudinal direction was set to 34%.
  • a back layer was formed by applying a paint for forming a back layer to the other main surface of the reinforced PET film on which the undercoat layer and magnetic layer were formed, and then drying it. At this time, the application conditions were adjusted so that the average thickness of the back layer after calendaring was 0.3 ⁇ m. In this way, a magnetic tape was obtained.
  • the magnetic tape was wound into a roll, and then subjected to a heat treatment in this state to harden the underlayer and the magnetic layer.
  • the magnetic tape obtained as described above was cut to a width of 1/2 inch (12.65 mm). As a result, the desired long magnetic tape (average thickness 5.2 ⁇ m) was obtained.
  • the magnetic tape obtained as described above had the properties shown in Tables 1 and 2. For example, the loss modulus of the base layer of the magnetic tape at 65° C. was 0.07 GPa.
  • the 1/2 inch wide magnetic tape was wound around a reel provided in a cartridge case to obtain a magnetic recording cartridge. After demagnetizing the magnetic tape, a servo pattern was written on the magnetic tape.
  • the servo pattern included a first servo pattern and a second servo pattern that were asymmetric with respect to the width direction of the magnetic tape.
  • the servo patterns in the adjacent servo bands had a phase difference.
  • the magnetic tape housed in the magnetic recording cartridge was run so as to be wound into a magnetic recording and reproducing device (running in the so-called forward direction) and the servo band pitch was measured.
  • the servo band pitch in the longitudinal direction was also measured for the magnetic tape housed in the magnetic recording cartridge in the initial state before storage, and the width change amount represented by the ratio of the servo band pitch after storage to the servo band pitch in the initial state was calculated.
  • FIG. 33 the horizontal axis indicates the position in the longitudinal direction of the magnetic tape.
  • the position of the end (BOT) on the outer periphery side (outside of the winding) of the magnetic tape wound on the tape reel is set to 0, and the position of the end (hereinafter also referred to as EOT) on the inner periphery side (inside of the winding) of the magnetic tape wound on the tape reel is set to 84, and the total length of the magnetic tape is divided into 84 equal parts.
  • the vertical axis indicates the amount of width change after storage at 65° C., 40 RH%, and 360 hours, and indicates width after storage/width before storage.
  • Example 2a A magnetic tape was obtained in the same manner as in Example 1, except that a polyethylene naphthalate film (hereinafter referred to as "PEN film”) was used as the base layer material, the average thickness of the magnetic layer was 0.06 ⁇ m, and the average thickness of the underlayer was 0.84 ⁇ m.
  • PEN film polyethylene naphthalate film
  • a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
  • the results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 34. As shown in FIG. 34, the width change on the outside of the winding at positions 0 to 20 was a negative value, the width change on the inside of the winding at positions 60 to 84 was a positive value, and the width change was 0 ppm between positions 59 and 60.
  • Example 2b A magnetic tape was obtained in the same manner as in Example 2, except that the calendering temperature was low, the average thickness of the magnetic layer was 0.07 ⁇ m, and the average thickness of the underlayer was 0.83 ⁇ m. In the same manner as in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
  • Example 2c A magnetic tape was obtained in the same manner as in Example 2, except that the drying temperature during coating was lowered by 5° C., the average thickness of the magnetic layer was 0.07 ⁇ m, and the average thickness of the underlayer was 0.83 ⁇ m. In the same manner as in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
  • Example 2d A magnetic tape was obtained in the same manner as in Example 2, except that the drying temperature during coating was lowered by 10° C., the average thickness of the magnetic layer was 0.05 ⁇ m, the average thickness of the underlayer was 0.45 ⁇ m, and the average thickness of the base layer was 4.40 ⁇ m.
  • a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
  • Example 3 A magnetic tape was obtained in the same manner as in Example 1, except that a polyether ether ketone film (hereinafter referred to as "PEEK film”) was used as the base layer material, the average thickness of the back layer was 0.4 ⁇ m, the average thickness of the magnetic layer was 0.07 ⁇ m, the average thickness of the underlayer was 0.83 ⁇ m, and the average total thickness was 5.3 ⁇ m.
  • PEEK film a polyether ether ketone film
  • the average thickness of the back layer was 0.4 ⁇ m
  • the average thickness of the magnetic layer was 0.07 ⁇ m
  • the average thickness of the underlayer was 0.83 ⁇ m
  • the average total thickness was 5.3 ⁇ m.
  • a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 35. As shown in FIG.
  • the width change on the outer side of the winding at positions 0 to 20 was a negative value
  • the width change on the inner side of the winding at positions 60 to 84 was a positive value
  • the width change was 0 ppm between positions 37 and 38.
  • Example 1a A magnetic tape was obtained in the same manner as in Example 2, except that a polyurethane resin with a Tg of 70°C was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, the amount of n-butyl stearate added to the magnetic layer was 1.5 parts by mass, and no polyisocyanate was added as a hardener to the paint for forming the undercoat layer.
  • a magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape.
  • the results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 36. As shown in FIG. 36, the width change on the outer side of the winding at positions 0 to 20 was a positive value, and the width change on the inner side of the winding at positions 60 to 84 was also a positive value.
  • Comparative Example 1b A tape was obtained in the same manner as in Comparative Example 1, except that the calendering temperature was 10° C. lower than that in Comparative Example 1.
  • the average thickness of the base layer was 4.0 ⁇ m
  • the average thickness of the magnetic layer and the undercoat layer was 1.2 ⁇ m
  • the average thickness of the back layer was 0.4 ⁇ m
  • the average total thickness was 5.6 ⁇ m
  • a magnetic tape was manufactured in the same manner as in Example 1.
  • a magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 1, and a servo pattern was recorded on the magnetic tape.
  • the results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 37. As shown in FIG. 37, the width change on the outer side of the winding at positions 0 to 20 was a positive value, and the width change on the inner side of the winding at positions 60 to 84 was also a positive value.
  • Example 3 A magnetic tape was obtained in the same manner as in Example 2, except that a polyurethane resin with a Tg of 70° C. was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, and polyisocyanate was not added as a curing agent to the paint for forming the undercoat layer.
  • a magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape.
  • the results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 38. As shown in FIG. 38, the width change on the outer side of the winding at positions 0 to 20 was a negative value, and the width change on the inner side of the winding at positions 60 to 84 was also a negative value.
  • a magnetic tape was obtained in the same manner as in Example 2, except that an aramid film (hereinafter referred to as "ARAMID film”) was used as the base layer, a polyurethane resin with a Tg of 70°C was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, and no polyisocyanate was added as a hardener to the paint for forming the undercoat layer.
  • a magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in Figure 39.
  • a magnetic tape was obtained in the same manner as in Example 2, except that the average thickness of the base layer was 4.0 ⁇ m, the average thickness of the magnetic layer and the undercoat layer was 1.2 ⁇ m, the average thickness of the back layer was 0.4 ⁇ m, the average total thickness was 5.6 ⁇ m, a polyurethane resin with a Tg of 70° C. was used for the coating material for forming the magnetic layer and the coating material for forming the undercoat layer, and no polyisocyanate was added as a curing agent to the coating material for forming the undercoat layer.
  • a magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape.
  • Tables 1 and 2 show the configurations and evaluation results of the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 5. Also, Figures 33 to 41 show the amount of width change in the longitudinal direction of each of the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 4.
  • Example 2b and Comparative Example 3 show that the sign of the width change ⁇ out on the outside of the magnetic tape roll is different from the sign of the width change ⁇ in on the inside of the magnetic tape roll, and therefore the magnetic recording tape can improve its running characteristics when rewound and stored for a long period of time.
  • Comparing Example 2b with Comparative Example 4 it can be seen that by having a base layer with a loss modulus of 0.40 GPa or less at 65°C, the running characteristics can be improved after rewinding and long-term storage.
  • the configurations, methods, steps, shapes, materials, and values given in the above-mentioned embodiments and examples are merely examples, and different configurations, methods, steps, shapes, materials, and values may be used as necessary.
  • the chemical formulas of compounds, etc. are representative, and are not limited to the valences, etc. given as long as they are general names of the same compounds.
  • a numerical range indicated using “ ⁇ ” indicates a range that includes the numerical values before and after " ⁇ " as the minimum and maximum values, respectively.
  • the upper or lower limit of a numerical range of a certain stage may be replaced with the upper or lower limit of a numerical range of another stage.
  • the materials exemplified in this specification may be used alone or in combination of two or more types.
  • the present technology can also be configured as follows. [1] A cartridge case; Reel and a magnetic recording medium wound around the reel and housed within the cartridge case; When the magnetic recording medium was stored wound on the reel at 65° C. for 360 hours, the amount of change in width of the magnetic recording medium was measured over the entire length.
  • the sign of the width change amount ⁇ out on the outer side of the magnetic recording medium is different from the sign of the width change amount ⁇ in on the inner side of the magnetic recording medium, and
  • the amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
  • the magnetic recording medium has a base layer having a loss modulus of 0.40 GPa or less at 65° C.
  • the magnetic recording medium includes a magnetic layer,
  • the magnetic recording medium contains a fatty acid,
  • the fatty acid is stearic acid.
  • [17] 17 17.
  • the sign of the width change amount ⁇ out on the outer side of the magnetic recording medium is different from the sign of the width change amount ⁇ in on the inner side of the magnetic recording medium, and
  • the amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and A base layer having a loss modulus of 0.40 GPa or less at 65°C,
  • a magnetic recording medium having a magnetic layer contains a fatty acid,

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

The purpose of the present invention is to provide a magnetic recording cartridge with which, even when driving is performed a plurality of times in high-temperature environments, adhesion of matter does not occur, and damage to a magnetic head is mitigated. This magnetic recording cartridge comprises a cartridge case, a reel, and a magnetic recording medium accommodated in the cartridge case while being wound on the reel, wherein, when a change in the width of the magnetic recording medium is measured over the entire length after being stored at 65℃ for 360 hours, a symbol Δout representing a change in the width on a winding outer side of the magnetic recording medium is different from a symbol Δin representing a change in the width on a winding inner side of the magnetic recording medium, and the change in the width is 0 ppm at any position in two areas on both sides of a center line of the entire length of the magnetic recording medium when the entire length is divided into four areas, and wherein the magnetic recording medium comprises a magnetic layer, the magnetic recording medium contains a fatty acid, and an extraction rate of the fatty acid defined by a specific formula is 45% or more.

Description

磁気記録カートリッジMagnetic Recording Cartridge
 本技術は、磁気記録カートリッジに関する。 This technology relates to magnetic recording cartridges.
 アーカイブの需要が高まり、総容量の高いテープ状の磁気記録媒体がクラウドシステムに組み込まれるようになっている。現在のテープ状の磁気記録媒体は、実走行や保管の環境温度範囲がHDD(Hard Disk Drive)や半導体メモリ等より狭いため、テープ状の磁気記録媒体の実走行や保管の環境温度範囲を拡張することが望まれている。テープ状の磁気記録媒体がHDDや半導体メモリ等と同様の温度環境で使用できるようになると、テープ状の磁気記録媒体の使用範囲が大きく広がると考えられている。 As demand for archiving increases, tape-type magnetic recording media with high total capacity are being incorporated into cloud systems. Current tape-type magnetic recording media have a narrower environmental temperature range for actual operation and storage than HDDs (Hard Disk Drives) and semiconductor memory, so there is a demand for expanding the environmental temperature range for actual operation and storage of tape-type magnetic recording media. It is believed that if tape-type magnetic recording media could be used in the same temperature environment as HDDs and semiconductor memory, the range of uses for tape-type magnetic recording media would be greatly expanded.
 テープ状の磁気記録媒体では、環境変化により磁気記録媒体の幅方向の寸法が大きく変化すると、オフトラックが発生し、安定した記録再生特性を確保することが困難になる。特許文献1では、環境変化によりテープ状の磁気記録媒体の幅方向の寸法が変化しても、記録再生装置によりテープ状の磁気記録媒体の長手方向のテンションを調整することで、幅変化を補正可能なテープ状の磁気記録媒体が提案されている。また、テープ状の磁気記録媒体における幅変化に対処するため、特許文献2では、データライドヘッドをテープ状の磁気記録媒体の幅方向に対して傾けて配置することが提案されている。 In tape-type magnetic recording media, if the width dimension of the magnetic recording medium changes significantly due to environmental changes, off-track occurs, making it difficult to ensure stable recording and playback characteristics. Patent Document 1 proposes a tape-type magnetic recording medium that can correct width changes by adjusting the longitudinal tension of the tape-type magnetic recording medium using a recording and playback device, even if the width dimension of the tape-type magnetic recording medium changes due to environmental changes. Furthermore, in order to deal with width changes in tape-type magnetic recording media, Patent Document 2 proposes positioning the data write head at an angle relative to the width direction of the tape-type magnetic recording medium.
特開2020-173882号公報JP 2020-173882 A 特開2005-259198号公報JP 2005-259198 A
 本技術は、高温環境で多数回の走行が行われた場合においても付着物の発生がなく、さらに磁気ヘッドに対するダメージを緩和させる磁気記録カートリッジを提供することを目的とする。 The aim of this technology is to provide a magnetic recording cartridge that does not produce adhesions even when run multiple times in a high-temperature environment, and that also reduces damage to the magnetic head.
 本技術は、
 カートリッジケースと、
リールと、
 前記リールに巻かれた状態で前記カートリッジケース内に収容された磁気記録媒体と、を有し、
 前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
 前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
 前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
 前記磁気記録媒体は、65℃における損失弾性率が0.40GPa以下であるベース層を備え、
 前記磁気記録媒体は、磁性層を備え、
 前記磁気記録媒体は、脂肪酸を含み、
 下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録カートリッジを提供する。
 脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体の前記幅変化量Δinが正の値であり、且つ、前記磁気記録媒体の前記幅変化量Δoutが負の値でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体の長手方向の全長を100%としたときに、前記磁気記録媒体の巻外側端部から25%~75%の位置において、65℃で360時間保存後における前記磁気記録媒体の幅変化量Δが0ppmでありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体は、(前記磁気記録媒体の前記幅変化量Δin)-(前記磁気記録媒体の前記幅変化量Δout)が、800ppm以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記ベース層の65℃における貯蔵弾性率が8.0GPa以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記ベース層がPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、又はPEEK(ポリエーテルエーテルケトン)から形成されうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体の平均厚みtが5.4μm以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記ベース層の平均厚みtが4.6μm以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁性層が磁性粉を含みうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁性層は、研磨効果のある粒子を含有し、前記粒子により形成された突起の平均高さが8nm以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 脂肪酸の5分間抽出量(mg/m)が3.0mg/m以上でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 脂肪酸の全量抽出量(mg/m)が5.0mg/m以上でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記脂肪酸は、ステアリン酸でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体は、さらに脂肪酸エステルを含み、下記式で定義する脂肪酸エステルの抽出率が60%以上でありうる。
 脂肪酸エステルの抽出率(%)=[脂肪酸エステルの5分間抽出量(mg/m)/脂肪酸エステルの全量抽出量(mg/m)]×100
 本技術に従う、磁気記録カートリッジにおいて、
 脂肪酸エステルの5分間抽出量(mg/m)が10.0mg/m以上でありうる。 本技術に従う、磁気記録カートリッジにおいて、
 脂肪酸エステルの全量抽出量(mg/m)が12.0mg/m以上でありうる。 本技術に従う、磁気記録カートリッジにおいて、
 前記脂肪酸エステルは、ステアリン酸ブチルでありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁性層の平均厚みが0.08μm以下でありうる。
 本技術に従う、磁気記録カートリッジにおいて、
 前記磁気記録媒体は、さらに、平均厚みが1.0μm以下である非磁性層を有しうる。 本技術は、磁気記録カートリッジのリールに巻かれた状態で当該磁気記録カートリッジのカートリッジケース内に収容された磁気記録媒体であって、
 前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
 前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
 前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
 65℃における損失弾性率が0.40GPa以下であるベース層を備え、
 磁性層を備える磁気記録媒体であって、
 前記磁気記録媒体は、脂肪酸を含み、
 下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録媒体を提供する。
 脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
This technology is
A cartridge case;
Reel and
a magnetic recording medium wound around the reel and housed within the cartridge case;
When the magnetic recording medium was stored at 65° C. for 360 hours in a wound state on the reel, the amount of change in width of the magnetic recording medium was measured over the entire length of the magnetic recording medium.
The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
The magnetic recording medium has a base layer having a loss modulus of 0.40 GPa or less at 65° C.,
The magnetic recording medium includes a magnetic layer,
The magnetic recording medium contains a fatty acid,
The present invention provides a magnetic recording cartridge having an extractability of 45% or more of a fatty acid defined by the following formula:
Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
In accordance with the present technology, a magnetic recording cartridge is provided,
The amount of width change Δin of the magnetic recording medium may be a positive value, and the amount of width change Δout of the magnetic recording medium may be a negative value.
In accordance with the present technology, a magnetic recording cartridge is provided,
When the total length of the magnetic recording medium in the longitudinal direction is taken as 100%, the width change Δ of the magnetic recording medium after storage for 360 hours at 65° C. can be 0 ppm at a position 25% to 75% from the outer end of the magnetic recording medium.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic recording medium may have a width change amount Δin of the magnetic recording medium minus (width change amount Δout of the magnetic recording medium) of 800 ppm or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The base layer may have a storage modulus at 65° C. of 8.0 GPa or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The base layer may be formed from PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PEEK (polyether ether ketone).
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic recording medium may have an average thickness tT of 5.4 μm or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The base layer may have an average thickness tB of 4.6 μm or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic layer may include magnetic powder.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic layer may contain particles having an abrasive effect, and the average height of protrusions formed by the particles may be 8 nm or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The 5-minute extractable amount (mg/m 2 ) of fatty acids may be 3.0 mg/m 2 or more.
In accordance with the present technology, a magnetic recording cartridge is provided,
The total extractable amount of fatty acids (mg/m 2 ) may be 5.0 mg/m 2 or more.
In accordance with the present technology, a magnetic recording cartridge is provided,
The fatty acid may be stearic acid.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic recording medium may further include a fatty acid ester, and the extraction rate of the fatty acid ester defined by the following formula may be 60% or more.
Extraction rate of fatty acid ester (%)=[amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )]×100
In accordance with the present technology, a magnetic recording cartridge is provided,
The 5-minute extractable amount (mg/m 2 ) of fatty acid ester may be 10.0 mg/m 2 or more.
The total extractable amount (mg/ m2 ) of fatty acid esters may be 12.0 mg/ m2 or more.
The fatty acid ester may be butyl stearate.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic layer may have an average thickness of 0.08 μm or less.
In accordance with the present technology, a magnetic recording cartridge is provided,
The magnetic recording medium may further include a non-magnetic layer having an average thickness of 1.0 μm or less.
When the magnetic recording medium was stored at 65° C. for 360 hours in a wound state on the reel, the amount of change in width of the magnetic recording medium was measured over the entire length of the magnetic recording medium.
The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
A base layer having a loss modulus of 0.40 GPa or less at 65°C,
A magnetic recording medium having a magnetic layer,
The magnetic recording medium contains a fatty acid,
The present invention provides a magnetic recording medium having an extractability of fatty acids defined by the following formula of 45% or more.
Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
第1の実施形態に係る磁気記録カートリッジの構成の一例を示す分解斜視図である。1 is an exploded perspective view showing an example of the configuration of a magnetic recording cartridge according to a first embodiment. 磁気テープの構成の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a configuration of a magnetic tape. 粒子の形状の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a particle shape. 磁性層のTEM写真の一例を示す図である。FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer. 磁性層のTEM写真の一例を示す図である。FIG. 2 is a diagram showing an example of a TEM photograph of a magnetic layer. データ記録再生装置を用いたサーボバンドピッチの測定方法を説明する図である。1 is a diagram for explaining a method for measuring a servo band pitch using a data recording and reproducing device. サーボトレースラインの測定方法を説明する図である。11A and 11B are diagrams for explaining a method of measuring a servo trace line. 磁気テープを側方から見た模式図である。FIG. 2 is a schematic diagram of a magnetic tape seen from the side. 磁気テープを上方(磁性層側)から見た模式図である。1 is a schematic diagram of a magnetic tape viewed from above (magnetic layer side). データ記録再生装置を示す図である。FIG. 1 illustrates a data recording and reproducing device. データライトヘッドを下方(バック層側)から見た概略図である。FIG. 2 is a schematic diagram of a data write head as viewed from below (the back layer side). データライトヘッドのアジマス角の角度範囲Refθ±x°と、アジマス損失Lθとの関係を示す図である(記録波長:0.1μm)。13 is a diagram showing the relationship between the angular range Refθ±x° of the azimuth angle of the data write head and the azimuth loss Lθ (recording wavelength: 0.1 μm). データライトヘッドのアジマス角θにおける角度範囲Refθ±x°と、磁気テープの幅変動に基づくサーボバンドピッチ差に対する補正量との関係を示す図である。13 is a diagram showing the relationship between the angle range Refθ±x° at the azimuth angle θ of the data write head and the amount of correction for the servo band pitch difference based on the width fluctuation of the magnetic tape. 磁気テープの幅変動に基づくサーボバンドピッチ差に対する補正量を示す図である。11 is a diagram showing the amount of correction for the servo band pitch difference based on the width fluctuation of the magnetic tape. FIG. データライトヘッドのアジマス角θの角度範囲Refθ±x°と、アジマス損失Lθとの関係を示す図である(記録波長:0.07μm)。13 is a diagram showing the relationship between the angle range Refθ±x° of the azimuth angle θ of the data write head and the azimuth loss Lθ (recording wavelength: 0.07 μm). サーボ記録再生装置を示す図である。FIG. 1 illustrates a servo recording and reproducing device. 実施形態Aに係るサーボライトヘッド及びサーボライトヘッドに入力されるパルス信号を示す図である。5A and 5B are diagrams showing a servo write head according to embodiment A and a pulse signal input to the servo write head. 実施形態Aに係るサーボライトヘッドが有するサーボ素子の拡大図である。4 is an enlarged view of a servo element included in the servo write head according to embodiment A. 実施形態Aに係るサーボライトヘッドにより磁気テープにサーボパターンが書き込まれるときの様子を示す図である。11A and 11B are diagrams showing how a servo pattern is written onto a magnetic tape by a servo write head according to embodiment A. 実施形態Bに係るサーボライトヘッド及びサーボライトヘッドが有するサーボ素子の拡大図である。13 is an enlarged view of a servo write head and a servo element included in the servo write head according to embodiment B. 実施形態Bに係るサーボライトヘッドにより磁気テープにサーボパターンが書き込まれるときの様子を示す図である。13A and 13B are diagrams showing how a servo pattern is written onto a magnetic tape by a servo write head according to embodiment B. 実施形態Bにおいて、サーボライトヘッドの座標系を基準としてサーボライトヘッドを表した図である。FIG. 13 is a diagram showing a servo write head based on a coordinate system of the servo write head in embodiment B. 第1対照例、第2対照例及び第1の実施形態において、データライトヘッドのサーボリード部によりサーボパターンを読み取ったときの様子を示す図である。11A and 11B are diagrams showing how servo patterns are read by a servo read portion of a data write head in the first comparative example, the second comparative example, and the first embodiment. 図20の右側の図の拡大図であって、第1のサーボ素子及び第2のサーボ素子における具体的な寸法の一例を示す図である(XYZ座標系基準)。FIG. 21 is an enlarged view of the diagram on the right side of FIG. 20, showing an example of specific dimensions of the first servo element and the second servo element (based on the XYZ coordinate system). 図22の右側の図の拡大図であって、第1のサーボ素子及び第2のサーボ素子における具体的な寸法の一例を示す図である(X"Y"Z"座標系基準)。FIG. 23 is an enlarged view of the diagram on the right side of FIG. 22, showing an example of specific dimensions of the first servo element and the second servo element (based on the X"Y"Z" coordinate system). 磁気テープがデータライトヘッド傾斜タイプのデータ記録再生装置に用いられる磁気テープであるかどうかを確認する方法における第1の例を示す図である。FIG. 11 is a diagram showing a first example of a method for checking whether a magnetic tape is a magnetic tape used in a data recording/reproducing device with a tilted data write head. 磁気テープがデータライトヘッド傾斜タイプのデータ記録再生装置に用いられる磁気テープであるかどうかを確認する方法における第2の例を示す図である。FIG. 11 is a diagram showing a second example of a method for checking whether a magnetic tape is a magnetic tape used in a data recording/reproducing device with a tilted data write head. 第2の実施形態に係る磁気テープの構成の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a second embodiment. スパッタ装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of a sputtering apparatus. 第3の実施形態に係る磁気テープの構成の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a configuration of a magnetic tape according to a third embodiment. 第1の実施形態の変形例に係るカートリッジの構成の一例を示す分解斜視図である。FIG. 13 is an exploded perspective view showing an example of a configuration of a cartridge according to a modified example of the first embodiment. 磁気テープ全長を4等分して4つの領域に分割した様子を示す図である。FIG. 2 is a diagram showing a state in which the entire length of a magnetic tape is divided into four equal regions. 実施例1に関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 2 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 1. 実施例2aに関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 2a. 実施例3に関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 11 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Example 3. 比較例1aに関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of the magnetic tape after storage at 65° C. for 360 hours in Comparative Example 1a. 比較例2に関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 2. 比較例3に関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 3. 比較例4に関する、65℃、360時間保存後の磁気テープの長手方向における幅変化量を示す図である。FIG. 13 is a graph showing the amount of change in width in the longitudinal direction of a magnetic tape after storage at 65° C. for 360 hours in Comparative Example 4. 傾斜して配置されたドライブヘッドの移動角度の算出方法を説明するための模式図である。11 is a schematic diagram for explaining a method of calculating the movement angle of a drive head that is disposed at an angle. FIG. 脂肪酸または脂肪酸エステルの抽出率測定に使用するサンプル台紙の一例を示す図である。FIG. 2 is a diagram showing an example of a sample mount used for measuring the extraction rate of fatty acids or fatty acid esters. AFMによって撮像された表面形状の一例を示す画像である。1 is an image showing an example of a surface shape captured by an AFM. AFMによる突起解析結果の一例を示す図である。FIG. 13 is a diagram showing an example of a protrusion analysis result by AFM. AFMによる突起高さ分布の一例を示す図である。FIG. 13 is a diagram showing an example of a protrusion height distribution by AFM. FE-SEM画像の一例である。1 is an example of an FE-SEM image. AFM画像とFE-SEM画像を重ね合わせた合成画像である。This is a composite image obtained by superimposing an AFM image and a FE-SEM image. AFM画像とFE-SEM画像を重ね合わせた合成画像の拡大図である。This is an enlarged view of a composite image in which an AFM image and a FE-SEM image are superimposed. 図43中のライン1(Line1)についてのAFMによる分析結果の一例を示す図である。FIG. 44 is a diagram showing an example of an analysis result of Line 1 in FIG. 43 by AFM. 研磨剤粒子(アルミナ粒子)によって形成された突起の高さの累積度数分布を示す図である。FIG. 1 is a diagram showing a cumulative frequency distribution of the height of protrusions formed by abrasive particles (alumina particles).
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。 Below, we will explain preferred embodiments for implementing this technology. Note that the embodiments described below are representative embodiments of this technology, and the scope of this technology is not limited to these embodiments.
 本技術について、以下の順序で説明を行う。
1.本技術の説明
2.第1の実施形態(塗布型の磁気テープを含む磁気記録カートリッジの例)
(1)磁気記録カートリッジの構成
(2)磁気テープの構成
(3)磁気テープの製造方法
(4)磁気テープのデータバンドおよびサーボバンドの説明
(5)作用効果
3.第2の実施形態(真空薄膜型の磁気テープを含む磁気記録カートリッジの例)
(1)磁気記録カートリッジの構成
(2)磁気テープの構成
(3)スパッタ装置の構成
(4)磁気テープの製造方法
(5)作用効果
4.第3の実施形態(真空薄膜型の磁気テープを含む磁気記録カートリッジの例)
(1)磁気記録カートリッジの構成
(2)磁気テープの構成
(3)作用効果
5.変形例
6.実施例
This technology will be described in the following order.
1. Description of the present technology 2. First embodiment (example of magnetic recording cartridge including coated magnetic tape)
(1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Manufacturing method of the magnetic tape (4) Description of the data band and servo band of the magnetic tape (5) Function and effect 3. Second embodiment (Example of a magnetic recording cartridge including a vacuum thin film type magnetic tape)
(1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Structure of the sputtering device (4) Manufacturing method of the magnetic tape (5) Function and effect 4. Third embodiment (Example of a magnetic recording cartridge including a vacuum thin film type magnetic tape)
(1) Structure of the magnetic recording cartridge (2) Structure of the magnetic tape (3) Function and effect 5. Modifications 6. Examples
1.本技術の説明 1. Description of this technology
 磁気記録カートリッジ1つ当たりの記録容量をさらに増やすことが求められている。例えば、記録容量を増やすために、磁気記録カートリッジに含まれる磁気記録媒体(以下、「磁気テープ」という)をより薄くして(全厚を低減して)、磁気記録カートリッジ1つ当たりのテープ長を増加させることが考えられる。
 しかしながら、磁気記録媒体がより薄くなることによって、トラック幅方向の寸法変化が起こり易くなりうる。幅方向の寸法変化は、例えばオフトラック現象など、磁気記録にとって望ましくない現象を引き起こしうる。オフトラック現象は、磁気ヘッドが読み取るべきトラック位置に対象のトラックが存在しないこと、又は、磁気ヘッドが間違ったトラック位置を読み取ることをいう。
 磁気記録カートリッジに含まれる磁気テープはHDDより使用可能な温度範囲が狭く、45℃までの温度領域で使用されてきた。磁気記録カートリッジをHDDと同様の60℃以上の高温環境で使用可能とすることで、クラウドシステム等のデータストレージシステムに磁気記録カートリッジを組み込むに際しての温度環境管理が容易になり、テープストレージシステムの使用範囲が大きく広がることが期待される。
 しかしながら、磁気記録カートリッジのリールに巻かれている磁気テープは、60℃以上の高温環境下での保存により、巻内側の高い巻き応力を受ける部分は、磁気テープの幅方向に広がり、磁気テープにかかる張力で長手方向に引っ張られる巻外側の部分は、クリープ現象により幅方向に狭くなり、巻内側と巻外側での幅の差が大きくなる傾向がある。
There is a demand for a further increase in the recording capacity per magnetic recording cartridge. For example, in order to increase the recording capacity, it is conceivable to make the magnetic recording medium (hereinafter referred to as "magnetic tape") contained in the magnetic recording cartridge thinner (reducing the total thickness) and thereby increase the tape length per magnetic recording cartridge.
However, as the magnetic recording medium becomes thinner, dimensional changes in the track width direction may occur more easily. Dimensional changes in the width direction may cause undesirable phenomena in magnetic recording, such as off-track phenomena. The off-track phenomenon refers to a situation in which the target track does not exist at the track position where the magnetic head should read, or the magnetic head reads the wrong track position.
The magnetic tape contained in a magnetic recording cartridge has a narrower usable temperature range than a HDD, and has been used in a temperature range up to 45° C. By making it possible to use a magnetic recording cartridge in a high-temperature environment of 60° C. or higher, similar to a HDD, it is expected that temperature environment management will become easier when incorporating a magnetic recording cartridge into a data storage system such as a cloud system, and the range of use of tape storage systems will be greatly expanded.
However, when the magnetic tape wound on the reel of a magnetic recording cartridge is stored in a high temperature environment of 60° C. or higher, the portion on the inside of the winding that is subjected to high winding stress expands in the width direction of the magnetic tape, while the portion on the outside of the winding that is pulled in the longitudinal direction by the tension on the magnetic tape narrows in the width direction due to the creep phenomenon, and the difference in width between the inside and outside of the winding tends to become large.
 従来は、磁気テープの寸法変化抑制のために、例えば磁気テープの寸法変化抑制のための層を追加するなどの手法が行われていた。
 しかしながら、当該層の追加は磁気テープの厚みを高める場合があり、前記カートリッジ製品1つ当たりのテープ長を増加させない。
Conventionally, in order to suppress dimensional changes in magnetic tapes, for example, a layer for suppressing dimensional changes in magnetic tapes has been added.
However, the addition of such layers may increase the thickness of the magnetic tape and does not increase the tape length per cartridge product.
 上記特許文献1において、テープ状の磁気記録媒体の長手方向のテンションを調整することにより幅変化を補正する技術が提案されているが、当該技術は高温環境下での保存や走行を想定していない。そのため、従来のテープ状の磁気記録媒体を高温環境下で保存や走行した場合、テープ状の磁気記録媒体の幅変化が走行テンションの調整により補正可能な範囲を超え、幅変化の補正が困難になる虞がある。 Patent Document 1 above proposes a technology for correcting width changes by adjusting the longitudinal tension of a tape-like magnetic recording medium, but this technology does not assume storage or running in a high-temperature environment. Therefore, when a conventional tape-like magnetic recording medium is stored or run in a high-temperature environment, there is a risk that the width change of the tape-like magnetic recording medium will exceed the range that can be corrected by adjusting the running tension, making it difficult to correct the width change.
 一方、本発明者らは、テープストレージシステムにおいては、ヘッドを傾斜させることによりテープ状の磁気記録媒体の幅方向の変形に対処する技術を検討している。しかしながら、高温環境下では、特にクリープ特性による幅変化が大きいため、磁気ヘッドを傾斜させると、傾斜量の変動が大きくなり、磁気ヘッドの追従性が悪化する可能性がある。その結果、高温環境下における幅変化に十分に対処できない虞がある。また、高温での走行や保存では、伸びたテープのひずみの緩和や、クリープにより巻きしまり巻きゆるみが発生する。それによる巻ずれなどでテープエッジがダメージを受けないように、例えば固体潤滑剤成分(カーボン粒子など)を用いて層間の滑り性を改善することが考えられている。また、磁気ヘッドクリーニングのために、研磨効果に加えアンカー効果を有する成分を(例えばモース硬度の高い粒子、特にはアルミナなど)を用いることも考えられている。これら2つの成分の組合せで、摩擦力上昇の防止及び磁気ヘッドのクリーニングを行うことが考えられる。しかし、固体潤滑剤成分で磁気ヘッドダメージの軽減を図ると、固体潤滑剤成分の脱落などで付着物が発生し、記録再生に支障をきたす。付着物を取り去るために研磨力を高めると磁気ヘッド自体を傷つけたり、摩擦によって発生する熱や帯電量が増えたりするため磁気ヘッドへのダメージが大きくなることもある。 On the other hand, the present inventors are considering a technology for dealing with deformation in the width direction of a tape-like magnetic recording medium by tilting the head in a tape storage system. However, in a high-temperature environment, the width change is particularly large due to creep characteristics, so when the magnetic head is tilted, the amount of tilt fluctuates greatly, and the tracking ability of the magnetic head may deteriorate. As a result, there is a risk that the width change in a high-temperature environment cannot be adequately dealt with. In addition, when running or storing at high temperatures, the distortion of the stretched tape is relaxed, and the winding is tightened or loosened due to creep. In order to prevent the tape edge from being damaged by the winding slippage caused by this, it is considered to improve the slippage between layers by using, for example, solid lubricant components (carbon particles, etc.). In addition, it is also considered to use components that have an anchor effect in addition to an abrasive effect for magnetic head cleaning (for example, particles with high Mohs hardness, especially alumina, etc.). It is considered that a combination of these two components can prevent an increase in friction force and clean the magnetic head. However, when trying to reduce magnetic head damage using solid lubricant components, adhesion occurs due to the solid lubricant components falling off, which interferes with recording and playback. Increasing the polishing power to remove the deposits can damage the magnetic head itself, or increase the amount of heat and static electricity generated by friction, causing greater damage to the magnetic head.
 以上の状況を踏まえ、本発明者らは、カートリッジ1つ当たりの記録容量が高い磁気記録カートリッジについて検討した。その結果、本発明者らは、特定の構成を有する磁気記録カートリッジが、記録容量が高く、且つ、60℃以上の高温環境下で保存してもテープシステムの走行張力調整や巻き方向を変更することで長手方向における幅修正が可能であることを見出した。なお、巻き方向を変更するためには、例えば、1リールのカートリッジでは、磁気テープをドライブ側のリールに巻き込んでおくことにより実現され、2リールのカートリッジでは、保存された状態と反対のリールに巻き替えることにより実現され得る。例えば、左リールに巻かれた状態で保存されていたものであれば、右リールに巻き替えることにより実現され得る。
 すなわち、本技術は、カートリッジケースと、リールと、前記リールに巻かれた状態で前記カートリッジケース内に収容された磁気テープと、を有する磁気記録カートリッジを提供する。前記磁気テープは、65℃における損失弾性率が0.40GPa以下であるベース層を備える。前記磁気テープは、前記リールに巻き取られた状態で、65℃で360時間保存後に前記磁気テープの全長にわたって前記磁気テープの幅変化量を測定したときに、前記磁気テープの巻外側の幅変化量Δoutの符号が前記磁気テープの巻内側の幅変化量Δinの符号と異なり、且つ前記幅変化量が、前記磁気テープの全長を4等分して4つの領域に分割した場合の前記磁気テープの全長の中心線を挟む2つの領域のいずれかの位置において、0ppmである。前記磁気テープの幅変化量の測定方法は、以下2.の(2)において説明する。
In light of the above circumstances, the present inventors have studied magnetic recording cartridges with a high recording capacity per cartridge. As a result, the present inventors have found that a magnetic recording cartridge having a specific configuration has a high recording capacity, and that even when stored in a high-temperature environment of 60° C. or higher, the width in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction. In addition, in order to change the winding direction, for example, in a one-reel cartridge, the magnetic tape can be wound on the reel on the drive side, and in a two-reel cartridge, the magnetic tape can be changed by rewinding it on the reel opposite to the stored state. For example, if the magnetic tape has been stored in a state where it is wound on the left reel, it can be changed by rewinding it on the right reel.
That is, the present technology provides a magnetic recording cartridge having a cartridge case, a reel, and a magnetic tape wound on the reel and housed in the cartridge case. The magnetic tape has a base layer having a loss modulus of 0.40 GPa or less at 65° C. When the magnetic tape is wound on the reel and stored at 65° C. for 360 hours, the sign of the width change amount Δout on the outside of the magnetic tape is different from the sign of the width change amount Δin on the inside of the magnetic tape, and the width change amount is 0 ppm at any of two regions sandwiching the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal regions. A method for measuring the width change amount of the magnetic tape will be described below in 2. (2).
 本技術の磁気記録カートリッジに含まれる磁気テープのベース層の65℃における損失弾性率が0.40GPa以下、好ましくは0.35GPa以下、より好ましくは0.30GPa以下、さらに好ましくは0.25GPa以下、さらにより好ましくは0.20GPa以下であってもよい。前記磁気テープのベース層の65℃における損失弾性率が上記数値範囲内にあることによって、60℃以上の高温環境下で保存してもテープシステムの走行張力調整や巻き方向を変えることで長手方向における幅修正が可能である。
 また、前記ベース層の65℃における損失弾性率の下限は、特に限定されるものではないが、例えば、好ましくは0.01GPa以上、より好ましくは0.02GPa以上、さらに好ましくは0.03GPa以上であってよい。前記ベース層の65℃における損失弾性率の測定方法は、以下2.の(2)において説明する。
The base layer of the magnetic tape included in the magnetic recording cartridge of the present technology may have a loss modulus at 65° C. of 0.40 GPa or less, preferably 0.35 GPa or less, more preferably 0.30 GPa or less, even more preferably 0.25 GPa or less, and even more preferably 0.20 GPa or less. By having the loss modulus at 65° C. of the base layer of the magnetic tape within the above numerical range, even when stored in a high-temperature environment of 60° C. or more, the width in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction.
The lower limit of the loss modulus of the base layer at 65° C. is not particularly limited, but may be, for example, preferably 0.01 GPa or more, more preferably 0.02 GPa or more, and even more preferably 0.03 GPa or more. A method for measuring the loss modulus of the base layer at 65° C. will be described in 2.(2) below.
 本技術の磁気記録カートリッジに含まれる磁気テープのベース層の65℃における貯蔵弾性率が好ましくは8.0GPa以下、より好ましくは7.0GPa以下、さらに好ましくは6.0GPa以下であってもよい。前記磁気テープのベース層の65℃における貯蔵弾性率が上記数値範囲内にあることによって高温環境下で保存後もテープシステムの走行張力調整や巻き方向を変更することで磁気テープの長手方向における幅修正が可能な磁気記録カートリッジを提供することができる。
 また、前記ベース層の65℃における貯蔵弾性率の下限は、特に限定されるものではないが、例えば、好ましくは0.01GPa以上、より好ましくは0.02GPa以上、さらに好ましくは0.03GPa以上であってよい。前記ベース層の65℃における貯蔵弾性率の測定方法は、以下2.の(2)において説明する。
The storage modulus of the base layer of the magnetic tape included in the magnetic recording cartridge of the present technology may be preferably 8.0 GPa or less, more preferably 7.0 GPa or less, and even more preferably 6.0 GPa or less at 65° C. When the storage modulus of the base layer of the magnetic tape at 65° C. is within the above numerical range, it is possible to provide a magnetic recording cartridge in which the width of the magnetic tape in the longitudinal direction can be corrected by adjusting the running tension of the tape system or changing the winding direction even after storage in a high-temperature environment.
The lower limit of the storage modulus of the base layer at 65° C. is not particularly limited, but may be, for example, preferably 0.01 GPa or more, more preferably 0.02 GPa or more, and further preferably 0.03 GPa or more. A method for measuring the storage modulus of the base layer at 65° C. will be described in 2.(2) below.
 本技術の磁気記録カートリッジは、前記磁気テープが、リールに巻き取られており、且つ、65℃で360時間保存後に前記磁気テープの全長にわたって幅変化量を測定したときに、磁気テープの巻外側の幅変化量Δoutの符号が磁気テープの巻内側の幅変化量Δinの符号と異なる。なお、幅変化量Δは、下記式で表現され得る。
 幅変化量Δ=(65℃360℃保存後幅変化量-初期状態幅変化量)/(初期状態幅変化量)
 幅変化量Δが負の値の場合、初期状態の幅よりも保存後の幅が狭くなっていることを示し、幅変化量Δが正の値の場合、初期状態の幅よりも保存後の幅が広くなっていることを示す。
In the magnetic recording cartridge of the present technology, when the magnetic tape is wound on a reel and the amount of width change is measured over the entire length of the magnetic tape after storage at 65° C. for 360 hours, the sign of the amount of width change Δout on the outside of the magnetic tape winding is different from the sign of the amount of width change Δin on the inside of the magnetic tape winding. The amount of width change Δ can be expressed by the following formula.
Width change amount Δ=(width change amount after storage at 65°C and 360°C−initial state width change amount)/(initial state width change amount)
When the width change amount Δ is a negative value, it indicates that the width after storage is narrower than the width in the initial state, and when the width change amount Δ is a positive value, it indicates that the width after storage is wider than the width in the initial state.
 磁気記録カートリッジはカートリッジ内に1つのリールを有するものと、2つのリールを有するものがある。いずれのタイプの磁気記録カートリッジにおいても、リールに磁気テープが巻き取られて、当該磁気テープが前記磁気カートリッジ内に収容されている。磁気カートリッジ製造時に磁気テープがリールに巻き取られるにつれて、前記磁気テープが積層され、当該磁気テープの積層体が形成される。本明細書において、磁気テープの巻内側とは、磁気カートリッジに最初のデータ記録が行われる前の、一つのリールに巻き取られて一つのリール上で積層体を形成している状態における、前記磁気テープの積層体の最内層側の領域をいい、磁気テープの巻外側とは、前記磁気テープの積層体の最外層側の領域をいう。より具体的には、磁気テープの巻内側とは、前記磁気テープの2つの端部のうち、磁気記録カートリッジ内のリール(磁気カートリッジに最初のデータ記録が行われる前に磁気テープが巻き取られるリール)に取り付けられる端部(以下「内側端部」(EOT)ともいう)を起点として、当該位置から、当該内側端部と反対側の端部(以下「外側端部」(BOT)ともいう)の方向へ所定距離進んだ位置までの領域をいう。
 図1に示す1つのリールを有する磁気記録カートリッジでは、磁気テープの巻内側とは、最初のデータ記録が行われる前のリール13に取り付けられる端部(以下「内側端部」(EOT)ともいう)を起点として、当該位置から、当該内側端部と反対側の端部(以下「外側端部」(BOT)ともいう)の方向へ所定距離進んだ位置までの領域をいう。磁気テープの巻外側とは、前記磁気テープの2つの端部のうち、当該外側端部を起点として、当該位置から当該内側端部の方向へ所定距離進んだ位置までの領域をいう。
 図17に示す2つのリールを有する磁気記録カートリッジでは、磁気テープの巻内側とは、最初のデータ記録が行われる前のリール307に取り付けられる端部(以下「内側端部」(EOT)ともいう)を起点として、当該位置から、当該内側端部と反対側の端部(以下「外側端部」(BOT)ともいう)の方向へ所定距離進んだ位置までの領域をいう。磁気テープの巻外側とは、前記磁気テープの2つの端部のうち、当該外側端部を起点として、当該位置から当該内側端部の方向へ所定距離進んだ位置までの領域をいう。
There are magnetic recording cartridges having one reel and two reels in the cartridge. In either type of magnetic recording cartridge, a magnetic tape is wound around a reel and housed in the magnetic cartridge. As the magnetic tape is wound around the reel during the manufacture of the magnetic cartridge, the magnetic tape is stacked to form a magnetic tape stack. In this specification, the inner side of the magnetic tape refers to the area on the innermost layer side of the magnetic tape stack in a state where the magnetic tape is wound around one reel to form a stack on the reel before the first data is recorded in the magnetic cartridge, and the outer side of the magnetic tape refers to the area on the outermost layer side of the magnetic tape stack. More specifically, the inside of a magnetic tape winding refers to the area starting from the end (hereinafter also referred to as the "inner end" (EOT)) that is attached to a reel inside a magnetic recording cartridge (the reel onto which the magnetic tape is wound before the first data is recorded onto the magnetic cartridge) and extending a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the "outer end" (BOT)).
1, the inside of the magnetic tape refers to the area starting from the end attached to the reel 13 before the first data recording (hereinafter also referred to as the "inner end" (EOT)) and proceeding a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the "outer end" (BOT)). The outside of the magnetic tape refers to the area starting from the outer end of the two ends of the magnetic tape and proceeding a predetermined distance from that position toward the inner end.
17, the inside of the magnetic tape refers to the area starting from the end (hereinafter also referred to as the "inner end" (EOT)) attached to the reel 307 before the first data recording is performed, and proceeding a predetermined distance from that position toward the end opposite the inner end (hereinafter also referred to as the "outer end" (BOT)). The outside of the magnetic tape refers to the area starting from the outer end of the two ends of the magnetic tape, and proceeding a predetermined distance from that position toward the inner end.
 図32を参照して磁気テープの巻内側及び磁気テープの巻外側についてより具体的に説明する。図32は、磁気テープ全長を巻内側端部(EOT)から巻外側端部(BOT)まで均等に4等分して4つの領域に分割した様子を示す摸式図である。図32に示すように、EOTからBOTに向けて、順にD領域、C領域、B領域、A領域の4つの領域にテープ全長が分割されている。本明細書では、図32におけるA領域を巻外側とし、D領域を巻内側とする。 The inner side and outer side of the magnetic tape will be described in more detail with reference to Figure 32. Figure 32 is a schematic diagram showing how the entire length of the magnetic tape is divided into four equal parts from the inner end of the roll (EOT) to the outer end of the roll (BOT). As shown in Figure 32, from EOT to BOT, the entire length of the tape is divided into four areas, namely Area D, Area C, Area B, and Area A. In this specification, Area A in Figure 32 is referred to as the outer side of the roll, and Area D is referred to as the inner side of the roll.
 本技術の磁気記録カートリッジは、前記幅変化量が、前記磁気テープの全長を4等分して4つの領域に分割した場合の前記磁気テープの全長の中心線を挟む2つの領域のいずれかの位置において、0ppmである。これについて図32を参照して説明する。図32は、磁気テープ全長を巻内側端部(EOT)から巻外側端部(BOT)まで均等に4等分して4つの領域に分割した様子を示す摸式図である。図32に示すように、EOTからBOTに向けて、順にD領域、C領域、B領域、A領域の4つの領域にテープ全長が分割されている。図32に示すように、磁気テープの全長の中心線はB領域とC領域の間に位置して、当該B領域とC領域を区切る境界線であり、当該中心線を挟む2つの領域は、B領域とC領域である。本技術の磁気記録カートリッジは、前記幅変化量がB領域又はC領域のいずれかの位置において0ppmとなる。 In the magnetic recording cartridge of the present technology, the width change is 0 ppm in either of the two regions that sandwich the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal parts. This will be explained with reference to FIG. 32. FIG. 32 is a schematic diagram showing the state in which the entire length of the magnetic tape is divided into four equal parts from the end of the inner side of the winding (EOT) to the end of the outer side of the winding (BOT). As shown in FIG. 32, the entire length of the tape is divided into four regions, namely, region D, region C, region B, and region A, from EOT to BOT. As shown in FIG. 32, the center line of the entire length of the magnetic tape is located between region B and region C, and is the boundary line that separates region B and region C, and the two regions that sandwich the center line are region B and region C. In the magnetic recording cartridge of the present technology, the width change is 0 ppm in either region B or region C.
 本技術の磁気記録カートリッジは磁気テープの巻内側の幅変化量Δinが正の値であってもよい。ここで磁気テープの巻内側の幅変化量Δinとは、磁気テープの巻内側の幅変化量の最大値を意味する。磁気テープの巻内側の幅変化量Δinが正の値であるとは、磁気テープの巻内側では初期状態の幅よりも保存後の幅が広くなっていることを示す。
 本技術の磁気記録カートリッジは磁気テープの巻外側の幅変化量Δoutが負の値であってもよい。ここで磁気テープの巻外側の幅変化量Δoutとは、磁気テープの巻外側の幅変化量の最小値を意味する。磁気テープの巻外側の幅変化量Δoutが負の値であるとは、磁気テープ巻外側では初期状態の幅よりも保存後の幅が狭くなっていることを示す。
 また、前記磁気テープの長手方向の全長を100%としたときに、好ましくは巻外側端部(BOT)から25%~75%の位置において、65℃で360時間保存後における前記磁気テープの幅変化量Δは0ppmであってもよい。図32に示す磁気テープにおいては、巻外側端部(BOT)から25%~75%の位置に相当するB領域、C領域のいずれかの位置において65℃で360時間保存後における前記磁気テープの幅変化量Δは0ppmであってよい。
 また、図32に示すように全長を4等分して4つの領域に分割した磁気テープにおいて、好ましくは磁気テープの巻外側の1/4部分に相当するA領域における幅変化量Δの平均値が負の値であり、磁気テープの巻内側の1/4部分に相当するD領域における幅変化量Δの平均値が正の値であってもよい。
 また、前記磁気テープにおいて、(磁気テープの巻内側の幅変化量Δin)-(磁気テープの巻外側の幅変化量Δout)は、800ppm以下であってもよい。
In the magnetic recording cartridge of the present technology, the amount of width change Δin on the inside of the magnetic tape may be a positive value. Here, the amount of width change Δin on the inside of the magnetic tape means the maximum amount of width change on the inside of the magnetic tape. The amount of width change Δin on the inside of the magnetic tape being a positive value means that the width of the magnetic tape on the inside of the magnetic tape after storage is wider than the width in the initial state.
In the magnetic recording cartridge of the present technology, the amount of width change Δout on the outside of the magnetic tape may be a negative value. Here, the amount of width change Δout on the outside of the magnetic tape means the minimum value of the amount of width change on the outside of the magnetic tape. A negative value for the amount of width change Δout on the outside of the magnetic tape means that the width of the magnetic tape after storage is narrower than the width in the initial state on the outside of the magnetic tape.
Furthermore, when the entire length of the magnetic tape in the longitudinal direction is taken as 100%, preferably at a position 25% to 75% from the outside end (BOT), the width change Δ of the magnetic tape after storage for 360 hours at 65° C. may be 0 ppm. In the magnetic tape shown in FIG 32, the width change Δ of the magnetic tape after storage for 360 hours at 65° C. may be 0 ppm at either region B or region C, which corresponds to a position 25% to 75% from the outside end (BOT).
In addition, in a magnetic tape whose total length is divided into four equal parts as shown in FIG. 32, the average value of the width change Δ in region A, which corresponds to 1/4 of the outer side of the magnetic tape, may be a negative value, and the average value of the width change Δ in region D, which corresponds to 1/4 of the inner side of the magnetic tape, may be a positive value.
In the magnetic tape, (amount of width change Δin on the inside of the magnetic tape roll)−(amount of width change Δout on the outside of the magnetic tape roll) may be 800 ppm or less.
 本技術の磁気記録カートリッジに含まれる磁気テープは、脂肪酸を含むものである。また、前記磁気テープは、さらに脂肪酸エステルを含んでもよい。このような脂肪酸又は脂肪酸エステルが磁気テープの表面に滲みでて研磨効果のある粒子表面が脂肪酸又は脂肪酸エステルによって被覆されることにより磁気ヘッドの損傷を少なくできる。 The magnetic tape contained in the magnetic recording cartridge of this technology contains a fatty acid. The magnetic tape may further contain a fatty acid ester. Such fatty acid or fatty acid ester seeps onto the surface of the magnetic tape, and the surface of the abrasive particles is coated with the fatty acid or fatty acid ester, thereby reducing damage to the magnetic head.
 本技術においては、下記式で定義する脂肪酸の抽出率が45%以上、好ましくは50%以上、より好ましくは55%以上、さらに好ましくは60%以上でありうる。脂肪酸の抽出率が45%に満たない場合、摩擦が上昇し、摩擦熱および帯電により磁気ヘッドが劣化し、また、塗膜へのダメージも増加し、粉落ちが増大し、さらに耐久性が悪化する。
 脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量(mg/m)]×100
In the present technology, the extraction rate of fatty acids defined by the following formula can be 45% or more, preferably 50% or more, more preferably 55% or more, and even more preferably 60% or more. If the extraction rate of fatty acids is less than 45%, friction increases, the magnetic head deteriorates due to frictional heat and electrification, damage to the coating increases, powder fall increases, and durability deteriorates.
Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
 また、前記脂肪酸の抽出率の上限は、特に限定されるものではないが、塗膜自体が可塑化して、粉落ちが増大し、耐久性が悪化することを抑制する観点から、好ましくは75%以下、より好ましくは73%以下、さらに好ましくは70%以下でありうる。脂肪酸の抽出率の測定方法は、以下2.の(2)で説明する。 The upper limit of the fatty acid extraction rate is not particularly limited, but from the viewpoint of preventing the coating film itself from plasticizing, increasing powder fall, and deteriorating durability, it is preferably 75% or less, more preferably 73% or less, and even more preferably 70% or less. The method for measuring the fatty acid extraction rate is explained in 2.(2) below.
 また、前記脂肪酸の5分間抽出量(mg/m)は好ましくは3.0mg/m以上、より好ましくは3.5mg/m以上、さらに好ましくは4.0mg/m以上、さらにより好ましくは4.5mg/m以上でありうる。 Furthermore, the 5-minute extractable amount (mg/ m2 ) of the fatty acid may be preferably 3.0 mg/ m2 or more, more preferably 3.5 mg/ m2 or more, even more preferably 4.0 mg/ m2 or more, and even more preferably 4.5 mg/ m2 or more.
 また、前記脂肪酸の5分間抽出量の上限は、特に限定されるものではないが、好ましくは14.0mg/m以下、より好ましくは13.0mg/m以下、さらに好ましくは12.0mg/m以下、さらにより好ましくは10.0mg/m以下でありうる。脂肪酸の5分間抽出量の測定方法は、以下2.の(2)で説明する。 The upper limit of the 5-minute extractable amount of fatty acids is not particularly limited, but is preferably 14.0 mg/ m2 or less, more preferably 13.0 mg/ m2 or less, even more preferably 12.0 mg/ m2 or less, and even more preferably 10.0 mg/ m2 or less. The method for measuring the 5-minute extractable amount of fatty acids will be described in 2.(2) below.
 また、前記脂肪酸の全量抽出量(mg/m)は好ましくは5.0mg/m以上、より好ましくは7.0mg/m以上、さらに好ましくは9.0mg/m以上、さらにより好ましくは10.0mg/m以上でありうる。 The total extractable amount (mg/m 2 ) of the fatty acids may preferably be 5.0 mg/m 2 or more, more preferably 7.0 mg/m 2 or more, even more preferably 9.0 mg/m 2 or more, and even more preferably 10.0 mg/m 2 or more.
 また、前記脂肪酸の全量抽出量の上限は、特に限定されるものではないが、好ましくは16.0mg/m以下、より好ましくは15.0mg/m以下、さらに好ましくは14.0mg/m以下、さらにより好ましくは13.0mg/m以下でありうる。脂肪酸の全量抽出量の測定方法は、以下2.の(2)で説明する。 The upper limit of the total amount of fatty acid extraction is not particularly limited, but is preferably 16.0 mg/ m2 or less, more preferably 15.0 mg/ m2 or less, even more preferably 14.0 mg/ m2 or less, and even more preferably 13.0 mg/ m2 or less. The method for measuring the total amount of fatty acid extraction will be described in 2.(2) below.
 本技術の磁気記録カートリッジに含まれる磁気テープは、さらに脂肪酸エステルを含み、摩擦が上昇し、摩擦熱および帯電により磁気ヘッドが劣化し、また、塗膜へのダメージも増加し、粉落ちが増大し、さらに耐久性が悪化することを抑制する観点から下記式で定義する脂肪酸エステルの抽出率が好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上、さらにより好ましくは75%以上でありうる。
 脂肪酸エステルの抽出率(%)=[脂肪酸エステルの5分間抽出量(mg/m)/脂肪酸エステルの全量抽出量(mg/m)]×100
The magnetic tape included in the magnetic recording cartridge of the present technology further contains a fatty acid ester, and from the viewpoint of suppressing increased friction, deterioration of the magnetic head due to frictional heat and static electricity, increased damage to the coating, increased powder falling, and further deterioration of durability, the extraction rate of the fatty acid ester defined by the following formula can be preferably 60% or more, more preferably 65% or more, even more preferably 70% or more, and even more preferably 75% or more.
Extraction rate of fatty acid ester (%)=[amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )]×100
 また、前記脂肪酸エステルの抽出率の上限は、特に限定されるものではないが、塗膜自体が可塑化して、粉落ちが増大し、耐久性が悪化することを抑制する観点から、好ましくは90%以下、より好ましくは85%以下、さらに好ましくは80%以下でありうる。脂肪酸エステルの抽出率の測定方法は、以下2.の(2)で説明する。 The upper limit of the extraction rate of the fatty acid ester is not particularly limited, but from the viewpoint of preventing the coating film itself from plasticizing, increasing powder falling, and deteriorating durability, it is preferably 90% or less, more preferably 85% or less, and even more preferably 80% or less. The method for measuring the extraction rate of the fatty acid ester is explained in 2.(2) below.
 また、前記脂肪酸エステルの5分間抽出量(mg/m)は好ましくは10.0mg/m以上、より好ましくは12.0mg/m以上、さらに好ましくは14.0mg/m以上、さらにより好ましくは16.0mg/m以上でありうる。 Furthermore, the 5-minute extractable amount (mg/m 2 ) of the fatty acid ester may be preferably 10.0 mg/m 2 or more, more preferably 12.0 mg/m 2 or more, even more preferably 14.0 mg/m 2 or more, and even more preferably 16.0 mg/m 2 or more.
 また、前記脂肪酸エステルの5分間抽出量の上限は、特に限定されるものではないが、25.0mg/mを超えると塗膜の可塑化が進行し、粉落ちが悪化するおそれがあることから、好ましくは20.0mg/m以下、より好ましくは19.0mg/m以下、さらに好ましくは18.0mg/m以下、さらにより好ましくは17.0mg/m以下でありうる。脂肪酸エステルの5分間抽出量の測定方法は、以下2.の(2)で説明する。 The upper limit of the 5-minute extractable amount of the fatty acid ester is not particularly limited, but since there is a risk that the plasticization of the coating film will progress and powder falling will worsen if it exceeds 25.0 mg/ m2 , it is preferably 20.0 mg/ m2 or less, more preferably 19.0 mg/ m2 or less, even more preferably 18.0 mg/ m2 or less, and even more preferably 17.0 mg/ m2 or less. The method for measuring the 5-minute extractable amount of the fatty acid ester will be explained in 2.(2) below.
 また、前記脂肪酸エステルの全量抽出量(mg/m)は好ましくは12.0mg/m以上、より好ましくは14.0mg/m以上、さらに好ましくは16.0mg/m以上、さらにより好ましくは19.0mg/m以上でありうる。 The total extractable amount (mg/m 2 ) of the fatty acid esters may be preferably 12.0 mg/m 2 or more, more preferably 14.0 mg/m 2 or more, even more preferably 16.0 mg/m 2 or more, and still more preferably 19.0 mg/m 2 or more.
 また、前記脂肪酸エステルの全量抽出量の上限は、特に限定されるものではないが、好ましくは25.0mg/m以下、より好ましくは24.0mg/m以下、さらに好ましくは23.0mg/m以下、さらにより好ましくは22.0mg/m以下でありうる。脂肪酸エステルの全量抽出量の測定方法は、以下2.の(2)で説明する。 The upper limit of the total amount of fatty acid ester extraction is not particularly limited, but is preferably 25.0 mg/ m2 or less, more preferably 24.0 mg/ m2 or less, even more preferably 23.0 mg/ m2 or less, and even more preferably 22.0 mg/ m2 or less. The method for measuring the total amount of fatty acid ester extraction will be described in 2.(2) below.
 本技術の磁気記録カートリッジに含まれる磁気テープは、好ましくは長尺状の磁気テープであり、例えば磁気記録テープ(特には長尺状の磁気記録テープ)でありうる。 The magnetic tape included in the magnetic recording cartridge of the present technology is preferably a long magnetic tape, and may be, for example, a magnetic recording tape (particularly a long magnetic recording tape).
 本技術の磁気記録カートリッジに含まれる磁気テープは、磁性層、ベース層、及びバック層を備えていてもよく、これらの層に加えて、他の層を含んでいてよい。当該他の層は、磁気テープの種類に応じて適宜選択されてよい。前記磁気テープは、例えば塗布型の磁気テープであってよく又は真空薄膜型の磁気テープであってよい。前記塗布型の磁気テープについて、以下2.においてより詳細に説明する。真空薄膜型の磁気テープについて、以下3.においてより詳細に説明する。上記3つの層以外に前記磁気テープに含まれる層については、これらの説明を参照されたい。 The magnetic tape included in the magnetic recording cartridge of the present technology may have a magnetic layer, a base layer, and a back layer, and may include other layers in addition to these layers. The other layers may be selected appropriately depending on the type of magnetic tape. The magnetic tape may be, for example, a coated magnetic tape or a vacuum thin-film magnetic tape. The coated magnetic tape will be described in more detail in 2. below. The vacuum thin-film magnetic tape will be described in more detail in 3. below. Please refer to these descriptions for layers included in the magnetic tape other than the above three layers.
 本技術の磁気記録カートリッジに含まれる磁気テープは、例えば少なくとも一つのデータバンドと少なくとも二つのサーボバンドとを有しうる。データバンドの数は例えば2~10であり、特には3~6、より特には4又は5でありうる。サーボバンドの数は、例えば3~11であり、特には4~7であり、より特には5又は6でありうる。これらサーボバンド及びデータバンドは、例えば長尺状の磁気テープの長手方向に延びるように、特には略平行となるように配置されていてよい。前記データバンド及び前記サーボバンドは、前記磁性層に設けられうる。このようにデータバンド及びサーボバンドを有する磁気テープとして、LTO(Linear Tape-Open)規格に従う磁気記録テープを挙げることができる。すなわち、前記磁気テープは、LTO規格に従う磁気記録テープであってよい。例えば、前記磁気テープは、LTO9又はそれ以降の規格(例えばLTO10、LTO11、又はLTO12など)に従う磁気記録テープであってよい。
 前記長尺状の磁気テープ(特には磁気記録テープ)の幅は、例えば5mm~30mmであり、特には7mm~25mmであり、より特には10mm~20mm、さらにより特には11mm~19mmでありうる。長尺状の磁気テープの長さは、例えば500m~1500mでありうる。例えばLTO8規格に従うテープ幅は12.65mmであり、長さは960mである。
The magnetic tape included in the magnetic recording cartridge of the present technology may have, for example, at least one data band and at least two servo bands. The number of data bands may be, for example, 2 to 10, particularly 3 to 6, and more particularly 4 or 5. The number of servo bands may be, for example, 3 to 11, particularly 4 to 7, and more particularly 5 or 6. These servo bands and data bands may be arranged, for example, to extend in the longitudinal direction of the long magnetic tape, particularly to be substantially parallel. The data band and the servo band may be provided on the magnetic layer. An example of a magnetic tape having such a data band and servo band is a magnetic recording tape conforming to the LTO (Linear Tape-Open) standard. That is, the magnetic tape may be a magnetic recording tape conforming to the LTO standard. For example, the magnetic tape may be a magnetic recording tape conforming to the LTO9 standard or a later standard (for example, LTO10, LTO11, or LTO12).
The width of the long magnetic tape (particularly the magnetic recording tape) may be, for example, 5 mm to 30 mm, particularly 7 mm to 25 mm, more particularly 10 mm to 20 mm, and even more particularly 11 mm to 19 mm. The length of the long magnetic tape may be, for example, 500 m to 1500 m. For example, the tape width according to the LTO8 standard is 12.65 mm and the length is 960 m.
2.第1の実施形態(塗布型の磁気テープを含む磁気記録カートリッジの例) 2. First embodiment (example of magnetic recording cartridge including coated magnetic tape)
(1)磁気記録カートリッジの構成 (1) Structure of magnetic recording cartridge
[磁気記録カートリッジ]
 まず図1を参照して、本技術に従う磁気記録カートリッジの構成を説明する。図1は、本技術の従う磁気記録カートリッジ10の一例を示す分解斜視図である。本技術の説明では、磁気記録カートリッジ10として、LTO規格に準拠する磁気記録カートリッジを例に挙げて説明する。
[Magnetic Recording Cartridge]
First, the configuration of a magnetic recording cartridge according to the present technology will be described with reference to Fig. 1. Fig. 1 is an exploded perspective view showing an example of a magnetic recording cartridge 10 according to the present technology. In the description of the present technology, a magnetic recording cartridge conforming to the LTO standard will be taken as an example of the magnetic recording cartridge 10.
 磁気記録カートリッジ10は、1リールタイプのカートリッジであり、下シェル12Aと上シェル12Bとで構成されるカートリッジケース12の内部に、テープ状の磁気テープMTが巻かれた1つのリール13と、リール13の回転をロックするためのリールロック14およびリールスプリング15と、リール13のロック状態を解除するためのスパイダ16と、下
シェル12Aと上シェル12Bに跨ってカートリッジケース12に設けられたテープ引出口12Cを開閉するスライドドア17と、スライドドア17をテープ引出口12Cの閉位置に付勢するドアスプリング18と、誤消去を防止するためのライトプロテクト19と、カートリッジメモリ11とを備える。磁気テープMTを巻くためのリール13は、中心部に開口を有する略円盤状であって、プラスチック等の硬質の材料からなるリールハブ13Aとフランジ13Bとにより構成される。磁気テープMTの外周側の端部には、リーダーテープLTが接続されている。リーダーテープLTの先端には、リーダーピン20が設けられている。
The magnetic recording cartridge 10 is a one-reel type cartridge, and includes a cartridge case 12 composed of a lower shell 12A and an upper shell 12B, a reel 13 on which a tape-like magnetic tape MT is wound, a reel lock 14 and a reel spring 15 for locking the rotation of the reel 13, a spider 16 for unlocking the locked state of the reel 13, a slide door 17 for opening and closing a tape outlet 12C provided in the cartridge case 12 across the lower shell 12A and the upper shell 12B, a door spring 18 for biasing the slide door 17 to a closed position of the tape outlet 12C, a write protector 19 for preventing erroneous erasure, and a cartridge memory 11. The reel 13 for winding the magnetic tape MT is substantially disc-shaped with an opening in the center, and is composed of a reel hub 13A and a flange 13B made of a hard material such as plastic. A leader tape LT is connected to the outer peripheral end of the magnetic tape MT. A leader pin 20 is provided at the tip of the leader tape LT.
 磁気記録カートリッジ10は、LTO(Linear Tape-Open)規格に準拠した磁気テープカートリッジであってもよいし、LTO規格とは別の規格に準拠した磁気テープカートリッジであってもよい。 The magnetic recording cartridge 10 may be a magnetic tape cartridge that complies with the LTO (Linear Tape-Open) standard, or it may be a magnetic tape cartridge that complies with a standard other than the LTO standard.
 カートリッジメモリ11は、磁気記録カートリッジ10の1つの角部の近傍に設けられている。磁気記録カートリッジ10が記録再生装置にロードされた状態において、カートリッジメモリ11は、記録再生装置のリーダライタと対向するようになっている。カートリッジメモリ11は、LTO規格に準拠した無線通信規格で記録再生装置、具体的にはリーダライタと通信を行う。 The cartridge memory 11 is provided near one corner of the magnetic recording cartridge 10. When the magnetic recording cartridge 10 is loaded into the recording and playback device, the cartridge memory 11 faces the reader/writer of the recording and playback device. The cartridge memory 11 communicates with the recording and playback device, specifically the reader/writer, using a wireless communication standard that complies with the LTO standard.
(2)磁気テープの構成 (2) Structure of magnetic tape
 図2は、磁気テープMTの構成の一例を示す断面図である。磁気テープMTは、長尺状のベース層41と、ベース層41の一方の主面(第1の主面)上に設けられた下地層42と、下地層42上に設けられた磁性層43と、ベース層41の他方の主面(第2の主面)上に設けられたバック層44とを備える。なお、下地層42およびバック層44は、必要に応じて備えられるものであり、無くてもよい。磁気テープMTは、垂直記録型の磁気テープであってもよいし、長手記録型の磁気テープであってもよい。磁気テープMTは、走行性の向上の観点から、潤滑剤を含むことが好ましい。潤滑剤は、下地層42および磁性層43のうちの少なくとも1層に含まれていてもよい。 2 is a cross-sectional view showing an example of the configuration of the magnetic tape MT. The magnetic tape MT comprises a long base layer 41, an underlayer 42 provided on one main surface (first main surface) of the base layer 41, a magnetic layer 43 provided on the underlayer 42, and a back layer 44 provided on the other main surface (second main surface) of the base layer 41. The underlayer 42 and the back layer 44 are provided as necessary and may be omitted. The magnetic tape MT may be a perpendicular recording type magnetic tape or a longitudinal recording type magnetic tape. From the viewpoint of improving running performance, the magnetic tape MT preferably contains a lubricant. The lubricant may be included in at least one of the underlayer 42 and the magnetic layer 43.
 磁気テープMTはLTO規格に準拠するものであってもよいし、LTO規格とは別の規格に準拠するものであってもよい。磁気テープMTの幅は、1/2インチであってもよいし、1/2インチよりも広くてもよい。磁気テープMTがLTO規格に準拠するものである場合には、磁気テープMTの幅は、1/2インチである。磁気テープMTは、走行時に磁気テープMTの長手方向に加わるテンションを記録再生装置(ドライブ)により調整することで、磁気テープMTの幅を一定またはほぼ一定に保つことが可能な構成を有していてもよい。 The magnetic tape MT may be one that complies with the LTO standard, or one that complies with a standard other than the LTO standard. The width of the magnetic tape MT may be 1/2 inch, or may be wider than 1/2 inch. If the magnetic tape MT complies with the LTO standard, the width of the magnetic tape MT is 1/2 inch. The magnetic tape MT may have a configuration that allows the width of the magnetic tape MT to be kept constant or nearly constant by adjusting the tension applied to the magnetic tape MT in the longitudinal direction during running using a recording/playback device (drive).
 磁気テープMTは長尺状を有し、記録再生の際には長手方向に走行される。磁気テープMTは、記録用ヘッドとしてリング型ヘッドを備える記録再生装置で用いられることが好ましい。磁気テープMTは、1200nm以下または1000nm以下のデータトラック幅でデータを記録可能に構成された記録再生装置に用いられることが好ましい。 The magnetic tape MT is long and runs in the longitudinal direction during recording and playback. The magnetic tape MT is preferably used in a recording and playback device equipped with a ring-type head as a recording head. The magnetic tape MT is preferably used in a recording and playback device configured to be able to record data with a data track width of 1200 nm or less or 1000 nm or less.
[ベース層]
 ベース層41は、下地層42および磁性層43を支持する非磁性支持体である。ベース層41は、長尺のフィルム状を有する。ベース層41の平均厚みの上限値は、例えば、好ましくは4.6μm以下、より好ましくは4.4μm以下、4.2μm以下、さらに好ましくは4.0μm以下、さらにより好ましくは3.8μm以下、特に好ましくは3.6μm以下、最も好ましくは3.4μm以下である。ベース層41の平均厚みの上限値が4.6μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気テープよりも高めることができる。ベース層41の平均厚みの下限値は、好ましくは3.0μm以上、より好ましくは3.2μm以上である。ベース層41の平均厚みの下限値が3.0μm以上であると、ベース層41の強度低下を抑制することができる。
[Base layer]
The base layer 41 is a non-magnetic support that supports the underlayer 42 and the magnetic layer 43. The base layer 41 has a long film shape. The upper limit of the average thickness of the base layer 41 is, for example, preferably 4.6 μm or less, more preferably 4.4 μm or less, 4.2 μm or less, even more preferably 4.0 μm or less, even more preferably 3.8 μm or less, particularly preferably 3.6 μm or less, and most preferably 3.4 μm or less. When the upper limit of the average thickness of the base layer 41 is 4.6 μm or less, the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape. The lower limit of the average thickness of the base layer 41 is preferably 3.0 μm or more, more preferably 3.2 μm or more. When the lower limit of the average thickness of the base layer 41 is 3.0 μm or more, the strength reduction of the base layer 41 can be suppressed.
 ベース層41の平均厚みは以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。本明細書において、“磁気テープMTとリーダーテープLTとの接続部21から長手方向”という場合の“長手方向”とは、リーダーテープLT側の一端からそれとは反対側の他端に向かう方向を意味する。 The average thickness of the base layer 41 is determined as follows. First, the magnetic tape MT contained in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into lengths of 250 mm from each of the ranges of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. In this specification, "longitudinal direction" in the "longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT" means the direction from one end on the leader tape LT side to the other end on the opposite side.
 続いて、各サンプルのベース層41以外の層(すなわち下地層42、磁性層43およびバック層44)をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、測定装置としてMitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプル(ベース層41)の厚みを5点の位置で測定し、それらの測定値(合計で15点のサンプルの厚み)を算術平均して、ベース層41の平均厚みを算出する。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。 Then, the layers other than the base layer 41 of each sample (i.e., the undercoat layer 42, the magnetic layer 43, and the back layer 44) are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, the thickness of each sample (base layer 41) is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the average thickness of the base layer 41 is calculated by arithmetically averaging these measurements (a total of 15 sample thicknesses). Note that the five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
 ベース層41は、例えば、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、およびその他の高分子樹脂のうちの少なくとも1種を含む。ベース層41が上記材料のうちの2種以上を含む場合、それらの2種以上の材料は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。 The base layer 41 contains, for example, at least one of polyesters, polyolefins, cellulose derivatives, vinyl resins, and other polymer resins. When the base layer 41 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
 ベース層41は、上記の高分子樹脂のうち、ポリエステル類を含むことが好ましい。ベース層41がポリエステル類を含むことで、ベース層41の長手方向の貯蔵弾性率E’を、好ましくは9.0GPa以下、より好ましくは7.5GPa以下、さらにより好ましくは6.0GPa以下、特に好ましくは5.5GPa以下、最も好ましくは4.5GPa以下に低減することができる。したがって、走行時における磁気テープMTの長手方向のテンションを記録再生装置により調整することで、磁気テープMTの幅を一定またはほぼ一定に保つ制御を特に行いやすい。ベース層41の長手方向の貯蔵弾性率E’の測定方法については後述する。 Of the above polymer resins, the base layer 41 preferably contains polyesters. By including polyesters in the base layer 41, the storage modulus E' in the longitudinal direction of the base layer 41 can be reduced to preferably 9.0 GPa or less, more preferably 7.5 GPa or less, even more preferably 6.0 GPa or less, particularly preferably 5.5 GPa or less, and most preferably 4.5 GPa or less. Therefore, by adjusting the longitudinal tension of the magnetic tape MT during running using a recording and playback device, it is particularly easy to control the width of the magnetic tape MT to be constant or nearly constant. A method for measuring the storage modulus E' in the longitudinal direction of the base layer 41 will be described later.
 ポリエステル類は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PCT(ポリシクロヘキシレンジメチレンテレフタレート)、PEB(ポリエチレン-p-オキシベンゾエート)およびポリエチレンビスフェノキシカルボキシレートのうちの少なくとも1種を含む。ベース層41が2種以上のポリエステル類を含む場合、それらの2種以上のポリエステル類は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。ポリエステル類の末端および側鎖の少なくとも一方が変性されていてもよい。ベース層41の強度を向上するために、PET(ポリエチレンテレフタレート)にPA(ポリアミド)が添加されていてもよい。 The polyesters include, for example, at least one of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylene dimethylene terephthalate), PEB (polyethylene-p-oxybenzoate), and polyethylene bisphenoxycarboxylate. When the base layer 41 includes two or more types of polyesters, the two or more types of polyesters may be mixed, copolymerized, or laminated. At least one of the ends and side chains of the polyesters may be modified. PA (polyamide) may be added to PET (polyethylene terephthalate) to improve the strength of the base layer 41.
 ベース層41にポリエステル類が含まれていることは、例えば、次のようにして確認される。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に30mから40mの範囲から磁気テープMTを切り出し、サンプルを作製した後、サンプルのベース層41以外の層を除去する。次に、赤外吸収分光法(Infrared Absorption Spectrometry:IR)によりサンプル(ベース層41)のIRスペクトルを取得する。このIRスペクトルに基づき、ベース層41にポリエステル類が含まれていることを確認することができる。 The inclusion of polyesters in the base layer 41 can be confirmed, for example, as follows. First, the magnetic tape MT contained in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection 21 between the magnetic tape MT and the leader tape LT to prepare a sample, after which all layers of the sample other than the base layer 41 are removed. Next, an IR spectrum of the sample (base layer 41) is obtained by infrared absorption spectrometry (IR). Based on this IR spectrum, it can be confirmed that the base layer 41 contains polyesters.
 ポリオレフィン類は、例えば、PE(ポリエチレン)およびPP(ポリプロピレン)のうちの少なくとも1種を含む。セルロース誘導体は、例えば、セルロースジアセテート、セルローストリアセテート、CAB(セルロースアセテートブチレート)およびCAP(セルロースアセテートプロピオネート)のうちの少なくとも1種を含む。ビニル系樹脂は、例えば、PVC(ポリ塩化ビニル)およびPVDC(ポリ塩化ビニリデン)のうちの少なくとも1種を含む。 The polyolefins include, for example, at least one of PE (polyethylene) and PP (polypropylene). The cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate). The vinyl resins include, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
 その他の高分子樹脂は、例えば、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、PEEK(ポリエーテルエーテルケトン)、ポリエーテルエステル、PES(ポリエーテルサルフォン)、PEI(ポリエーテルイミド)、PSF(ポリスルフォン)、PPS(ポリフェニレンスルフィド)、PC(ポリカーボネート)、PAR(ポリアリレート)およびPU(ポリウレタン)のうちの少なくとも1種を含む。なお、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、PEEK(ポリエーテルエーテルケトン)は、単独でベース層41用フィルムとして用いることができる。 Other polymeric resins include, for example, at least one of PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, e.g. Zylon (registered trademark)), polyether, PEK (polyetherketone), PEEK (polyetheretherketone), polyetherester, PES (polyethersulfone), PEI (polyetherimide), PSF (polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate) and PU (polyurethane). In addition, PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, for example Zylon (registered trademark)), polyether, PEK (polyether ketone), and PEEK (polyether ether ketone) can be used alone as a film for the base layer 41.
 ベース層41は、長手方向および幅方向に二軸延伸されていてもよい。ベース層41に含まれる高分子樹脂は、ベース層41の幅方向に対して斜め方向に配向されていることが好ましい。 The base layer 41 may be biaxially stretched in the longitudinal and width directions. The polymer resin contained in the base layer 41 is preferably oriented in a direction oblique to the width direction of the base layer 41.
[磁性層]
 磁性層43は、信号を磁化パターンにより記録するための記録層である。磁性層43は、塗布膜であってもよい。磁性層43は、垂直記録型の記録層であってもよいし、長手記録型の記録層であってもよい。磁性層43は、例えば、磁性粉、結着剤、潤滑剤およびカーボンを含む。磁性層43が、必要に応じて、帯電防止剤、研磨剤、硬化剤、防錆剤および非磁性補強粒子等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。磁性層43は、凹凸形状を有する表面を有していてもよい。
[Magnetic Layer]
The magnetic layer 43 is a recording layer for recording signals by magnetization patterns. The magnetic layer 43 may be a coating film. The magnetic layer 43 may be a perpendicular recording type recording layer or a longitudinal recording type recording layer. The magnetic layer 43 includes, for example, magnetic powder, a binder, a lubricant, and carbon. The magnetic layer 43 may further include at least one additive selected from antistatic agents, abrasives, hardeners, rust inhibitors, and non-magnetic reinforcing particles, as necessary. The magnetic layer 43 may have a surface having an uneven shape.
 磁性層43は、データが書き込まれる複数のデータバンドと、サーボパターンが書き込まれる複数のサーボバンドと、を有している。データバンドおよびサーボバンドの詳細については後述する。 The magnetic layer 43 has multiple data bands in which data is written, and multiple servo bands in which servo patterns are written. Details of the data bands and servo bands will be described later.
 磁性層43は、データバンドに複数のデータトラックを形成可能に構成されている。データトラック幅の平均値の上限値は、トラック記録密度を向上し、高記録容量を確保する観点から、好ましくは1100nm以下、より好ましくは1000nm以下、さらにより好ましくは800nm以下、特に好ましくは600nm以下ある。データトラック幅Wの平均値の下限値は、磁性粒子サイズを考慮すると、好ましくは20nm以上である。 The magnetic layer 43 is configured so that multiple data tracks can be formed in the data band. From the viewpoint of improving the track recording density and ensuring high recording capacity, the upper limit of the average value of the data track width is preferably 1100 nm or less, more preferably 1000 nm or less, even more preferably 800 nm or less, and particularly preferably 600 nm or less. Taking into account the magnetic particle size, the lower limit of the average value of the data track width W is preferably 20 nm or more.
 データトラック幅の平均値は以下のようにして求められる。まず、データが磁気テープMTの全面に記録された磁気記録カートリッジ10を準備し、この磁気記録カートリッジ10から磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。続いて、各サンプルの磁性層43のデータバンド部分のデータ記録パターンを磁気力顕微鏡(Magnetic Force Microscope:MFM)を用いて観察し、MFM像を得る。MFMとしてはDigital Instruments社製Dimension3100とその解析ソフトが用いられる。当該MFM像の測定領域は10μm×10μmとし、当該10μm×10μmの測定領域は512×512(=262,144)個の測定点に分割される。各サンプルにおいて10μm×10μm測定領域についてMFMによる測定が行われ、すなわち3つのMFM像が得られる。得られた3つのMFM像から、Dimension3100に付属の解析ソフトを用いて、トラック幅を10ヶ所測定し平均値(単純平均である)をとる。当該平均値が、データトラック幅の平均値である。なお、上記MFMの測定条件は掃引速度:1Hz、使用チップ:MFMR-20、リフトハイト:20nm、補正:Flatten order 3である。 The average data track width is obtained as follows. First, a magnetic recording cartridge 10 is prepared on which data is recorded over the entire surface of the magnetic tape MT. The magnetic tape MT is unwound from the magnetic recording cartridge 10, and the magnetic tape MT is cut into lengths of 250 mm from the longitudinal range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, the data recording pattern of the data band portion of the magnetic layer 43 of each sample is observed using a magnetic force microscope (MFM) to obtain an MFM image. The MFM used is a Dimension3100 manufactured by Digital Instruments and its analysis software. The measurement area of the MFM image is 10 μm x 10 μm, and the measurement area of 10 μm x 10 μm is divided into 512 x 512 (= 262,144) measurement points. For each sample, MFM measurements were performed on a 10 μm x 10 μm measurement area, meaning that three MFM images were obtained. From the three MFM images obtained, the track width was measured at 10 locations using the analysis software provided with the Dimension3100, and the average value (simple average) was calculated. This average value is the average data track width. The measurement conditions for the above MFM were sweep speed: 1 Hz, chip used: MFMR-20, lift height: 20 nm, correction: Flatten order 3.
 磁性層43の平均厚みの上限値は、好ましくは0.08μm以下、より好ましくは0.07μm以下、さらに好ましくは0.06μm以下、0.05μm以下、0.04μm以下でありうる。磁性層43の平均厚みの上限値が0.08μm以下であると、記録ヘッドとしてはリング型ヘッドを用いた場合に、反磁界の影響を軽減できるため、さらに優れた電磁変換特性を得ることができる。 The upper limit of the average thickness of the magnetic layer 43 is preferably 0.08 μm or less, more preferably 0.07 μm or less, and even more preferably 0.06 μm or less, 0.05 μm or less, or 0.04 μm or less. If the upper limit of the average thickness of the magnetic layer 43 is 0.08 μm or less, when a ring-type head is used as the recording head, the effect of the demagnetizing field can be reduced, and even better electromagnetic conversion characteristics can be obtained.
 磁性層43の平均厚みの下限値は特に限定されないが、好ましくは0.03μm以上でありうる。磁性層43の平均厚みの下限値が0.03μm以上であると、再生ヘッドとしてはMR型ヘッドを用いた場合に、出力を確保できるため、さらに優れた電磁変換特性を得ることができる。 The lower limit of the average thickness of the magnetic layer 43 is not particularly limited, but is preferably 0.03 μm or more. If the lower limit of the average thickness of the magnetic layer 43 is 0.03 μm or more, output can be ensured when an MR head is used as the reproducing head, and thus even better electromagnetic conversion characteristics can be obtained.
 磁性層43の平均厚みは、以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。続いて、各サンプルをFIB法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。 The average thickness of the magnetic layer 43 is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the longitudinal range of 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection 21 between the magnetic tape MT and the leader tape LT to prepare three samples. Next, each sample is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later. The carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
 得られた各薄片化サンプルの上記断面を、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により、下記の条件で観察し、各薄片化サンプルのTEM像を得る。なお、装置の種類に応じて、倍率および加速電圧は適宜調整されてよい。
装置:TEM(日立製作所製H9000NAR)
加速電圧:300kV
倍率:100,000倍
The cross section of each of the obtained sliced samples is observed under the following conditions using a transmission electron microscope (TEM) to obtain a TEM image of each sliced sample. Note that the magnification and acceleration voltage may be appropriately adjusted depending on the type of device.
Apparatus: TEM (Hitachi H9000NAR)
Acceleration voltage: 300 kV
Magnification: 100,000 times
 次に、得られた各薄片化サンプルのTEM像を用い、各薄片化サンプルの10点の位置で磁性層43の厚みを測定する。なお、各薄片化サンプルの10点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれる。得られた各薄片化サンプルの測定値(合計で30点の磁性層43の厚み)を算術平均して得られた平均値を磁性層43の平均厚み[nm]とする。 Next, using the TEM images of each of the obtained thinned samples, the thickness of the magnetic layer 43 is measured at 10 positions on each thinned sample. The 10 measurement positions on each thinned sample are randomly selected from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT. The average value obtained by arithmetically averaging the measured values of each obtained thinned sample (a total of 30 thicknesses of the magnetic layer 43) is defined as the average thickness [nm] of the magnetic layer 43.
[磁性粉]
 磁性粉は、複数の磁性粒子を含む。磁性粒子は、例えば、金属酸化物を含む粒子(以下「金属酸化物粒子」という。)である。金属酸化物粒子は、例えば、六方晶フェライトを含む粒子(以下「六方晶フェライト粒子」という。)、イプシロン型酸化鉄(ε酸化鉄)を含む粒子(以下「ε酸化鉄粒子」という。)またはCo含有スピネルフェライトを含む粒子(以下「コバルトフェライト粒子」という。)である。磁性粉は、磁気テープMTの垂直方向に優先的に結晶配向していることが好ましい。本明細書において、磁気テープMTの垂直方向(厚み方向)とは、平面状態にある磁気テープMTの厚み方向を意味する。
[Magnetic powder]
The magnetic powder includes a plurality of magnetic particles. The magnetic particles are, for example, particles containing a metal oxide (hereinafter referred to as "metal oxide particles"). The metal oxide particles are, for example, particles containing hexagonal ferrite (hereinafter referred to as "hexagonal ferrite particles"), particles containing epsilon-type iron oxide (ε iron oxide) (hereinafter referred to as "ε iron oxide particles"), or particles containing Co-containing spinel ferrite (hereinafter referred to as "cobalt ferrite particles"). It is preferable that the magnetic powder is preferentially crystalline oriented in the perpendicular direction of the magnetic tape MT. In this specification, the perpendicular direction (thickness direction) of the magnetic tape MT means the thickness direction of the magnetic tape MT in a flat state.
[六方晶フェライト粒子]
 六方晶フェライト粒子は、例えば、六角板状等の板状または六角柱状等の柱状(但し、厚さまたは高さが板面または底面の長径より小さい。)を有する。本明細書において、六角板状は、ほぼ六角板状を含むものとする。六方晶フェライトは、好ましくはBa、Sr、PbおよびCaのうちの少なくとも1種、より好ましくはBaおよびSrのうちの少なくとも1種を含む。六方晶フェライトは、具体的には例えばバリウムフェライトまたはストロンチウムフェライトであってもよい。バリウムフェライトは、Ba以外にSr、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。ストロンチウムフェライトは、Sr以外にBa、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。
[Hexagonal ferrite particles]
The hexagonal ferrite particles have, for example, a plate shape such as a hexagonal plate shape or a column shape such as a hexagonal column shape (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface). In this specification, the hexagonal plate shape includes a substantially hexagonal plate shape. The hexagonal ferrite preferably contains at least one of Ba, Sr, Pb, and Ca, more preferably at least one of Ba and Sr. The hexagonal ferrite may specifically be, for example, barium ferrite or strontium ferrite. The barium ferrite may further contain at least one of Sr, Pb, and Ca in addition to Ba. The strontium ferrite may further contain at least one of Ba, Pb, and Ca in addition to Sr.
 より具体的には、六方晶フェライトは、一般式MFe1219で表される平均組成を有する。但し、Mは、例えばBa、Sr、PbおよびCaのうちの少なくとも1種の金属、好ましくはBaおよびSrのうちの少なくとも1種の金属である。Mが、Baと、Sr、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。また、Mが、Srと、Ba、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。上記一般式においてFeの一部が他の金属元素で置換されていてもよい。 More specifically, the hexagonal ferrite has an average composition represented by the general formula MFe 12 O 19. However, M is, for example, at least one metal selected from Ba, Sr, Pb, and Ca, preferably at least one metal selected from Ba and Sr. M may be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb, and Ca. M may also be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb, and Ca. In the above general formula, a part of Fe may be substituted with another metal element.
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子サイズは、好ましくは13nm以上22nm以下、より好ましくは13nm以上19nm以下、さらにより好ましくは13nm以上18nm以下、特に好ましくは14nm以上17nm以下、最も好ましくは14nm以上16nm以下である。磁性粉の平均粒子サイズが22nm以下であると、高記録密度の磁気テープMTにおいて、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが13nm以上であると、磁性粉の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。 When the magnetic powder contains hexagonal ferrite particles, the average particle size of the magnetic powder is preferably 13 nm or more and 22 nm or less, more preferably 13 nm or more and 19 nm or less, even more preferably 13 nm or more and 18 nm or less, particularly preferably 14 nm or more and 17 nm or less, and most preferably 14 nm or more and 16 nm or less. When the average particle size of the magnetic powder is 22 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT. On the other hand, when the average particle size of the magnetic powder is 13 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均アスペクト比が、好ましくは1.0以上3.0以下、より好ましくは1.5以上2.8以下、さらにより好ましくは1.8以上2.7以下である。磁性粉の平均アスペクト比が1.0以上3.0以下の範囲内であると、磁性粉の凝集を抑制することができる。また、磁性層43の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上することができる。 When the magnetic powder contains hexagonal ferrite particle powder, the average aspect ratio of the magnetic powder is preferably 1.0 or more and 3.0 or less, more preferably 1.5 or more and 2.8 or less, and even more preferably 1.8 or more and 2.7 or less. When the average aspect ratio of the magnetic powder is within the range of 1.0 or more and 3.0 or less, aggregation of the magnetic powder can be suppressed. In addition, when the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子サイズおよび平均アスペクト比は以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に30mから40mの範囲から磁気テープMTを切り出す。続いて、切り出された磁気テープMTをFIB法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。 When the magnetic powder contains hexagonal ferrite particles, the average particle size and the average aspect ratio of the magnetic powder are obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out from a range of 30 to 40 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective films as a pretreatment for observing the TEM image of the cross section described later. The carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed by deposition or sputtering on the surface on the magnetic layer 43 side. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
 得られた薄片サンプルの上記断面を、透過電子顕微鏡(日立ハイテクノロジーズ社製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM写真を撮影する。TEM写真は、下記で示す板径DBおよび板厚DA(図3参照)を測定できる粒子を50個抽出できる枚数準備する。 The cross section of the obtained thin sample is observed using a transmission electron microscope (Hitachi High-Technologies Corporation H-9500) at an acceleration voltage of 200 kV and a total magnification of 500,000 times in the thickness direction of the magnetic layer 43 so as to include the entire magnetic layer 43, and a TEM photograph is taken. The TEM photographs are prepared in such a way that 50 particles can be extracted that allow the plate diameter DB and plate thickness DA (see Figure 3) shown below to be measured.
 本明細書では、上記のTEM写真において観察される粒子の形状が、図3に示すように、板状または柱状(但し、厚さまたは高さが板面または底面の長径より小さい。)である場合には、粒子の板面または底面の長径を板径DBの値とする。上記のTEM写真において観察される粒子の厚さまたは高さを板厚DAの値とする。一粒子内にて粒子の厚さまたは高さが一定でない場合には、最大の粒子の厚さまたは高さを板厚DAとする。 In this specification, when the shape of the particle observed in the above TEM photograph is plate-like or columnar (however, the thickness or height is smaller than the major axis of the plate surface or bottom surface) as shown in Figure 3, the major axis of the plate surface or bottom surface of the particle is taken as the plate diameter DB value. The thickness or height of the particle observed in the above TEM photograph is taken as the plate thickness DA value. When the thickness or height of a particle is not constant within a single particle, the thickness or height of the maximum particle is taken as the plate thickness DA.
 次に、撮影したTEM写真から抽出する50個の粒子を、下記の基準に基づき選び出す。粒子の一部がTEM写真の視野の外にはみだしている粒子は測定せず、輪郭がはっきりしており、孤立して存在している粒子を測定する。粒子同士に重なりがある場合は、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定するが、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。 Next, 50 particles are selected from the TEM photograph based on the following criteria. Particles that are partially outside the field of view of the TEM photograph are not measured, and only particles that have a clear outline and exist in isolation are measured. If there are overlapping particles, those with a clear boundary between them and whose overall shape can be determined are measured as individual particles, but particles with unclear boundaries and whose overall shape cannot be determined are not measured as their shape cannot be determined.
 図4、図5にTEM写真の一例を示す。図4、図5において、例えば矢印aおよびdで示される粒子が、その粒子の板厚(その粒子の厚さまたは高さ)DAを明らかに確認できるので、選択される。選択された50個の粒子それぞれの板厚DAを測定する。このようにして求めた板厚DAを算術平均して平均板厚DAaveを求める。平均板厚DAaveが平均粒子板厚である。続いて、各磁性粉の板径DBを測定する。粒子の板径DBを測定するために、撮影したTEM写真から、粒子の板径DBを明らかに確認できる粒子を50個選び出す。例えば、図4、図5において、例えば矢印bおよびcで示される粒子が、その板径DBを明らかに確認できるので、選択される。選択された50個の粒子それぞれの板径DBを測定する。このようにして求めた板径DBを単純平均(算術平均)して平均板径DBaveを求める。平均板径DBaveが、平均粒子サイズである。そして、平均板厚DAaveおよび平均板径DBaveから粒子の平均アスペクト比(DBave/DAave)を求める。 4 and 5 show an example of a TEM photograph. In FIG. 4 and FIG. 5, for example, the particles indicated by the arrows a and d are selected because the plate thickness (thickness or height) DA of the particle can be clearly confirmed. The plate thickness DA of each of the selected 50 particles is measured. The plate thickness DA thus obtained is arithmetically averaged to obtain the average plate thickness DA ave . The average plate thickness DA ave is the average particle plate thickness. Next, the plate diameter DB of each magnetic powder is measured. In order to measure the plate diameter DB of the particle, 50 particles whose plate diameter DB of the particle can be clearly confirmed are selected from the TEM photograph taken. For example, in FIG. 4 and FIG. 5, for example, the particles indicated by the arrows b and c are selected because the plate diameter DB can be clearly confirmed. The plate diameter DB of each of the selected 50 particles is measured. The plate diameter DB thus obtained is simply averaged (arithmetic averaged) to obtain the average plate diameter DB ave . The average plate diameter DB ave is the average particle size. Then, the average aspect ratio of the particles ( DBave / DAave ) is calculated from the average plate thickness DAave and the average plate diameter DBave .
 磁性粉が六方晶フェライト粒子粉を含む場合、磁性粉の平均粒子体積は、好ましくは500nm以上2500nm以下、より好ましくは500nm以上1600nm以下、さらに好ましくは500nm以上1500nm以下、特に好ましくは600nm以上1200nm以下、最も好ましくは600nm以上1000nm以下である。磁性粉の平均粒子体積が2500nm以下であると、磁性粉の平均粒子サイズを22nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体積が500nm以上であると、磁性粉の平均粒子サイズを13nm以上とする場合と同様の効果が得られる。 When the magnetic powder contains hexagonal ferrite particles, the average particle volume of the magnetic powder is preferably 500 nm3 or more and 2500 nm3 or less, more preferably 500 nm3 or more and 1600 nm3 or less, even more preferably 500 nm3 or more and 1500 nm3 or less, particularly preferably 600 nm3 or more and 1200 nm3 or less, and most preferably 600 nm3 or more and 1000 nm3 or less. When the average particle volume of the magnetic powder is 2500 nm3 or less, the same effect as when the average particle size of the magnetic powder is 22 nm or less can be obtained. On the other hand, when the average particle volume of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 13 nm or more can be obtained.
 磁性粉の平均粒子体積は以下のようにして求められる。まず、上記の磁性粉の平均粒子サイズの算出方法に関して述べた通り、平均板厚DAaveおよび平均板径DBaveを求める。次に、以下の式により、磁性粉の平均体積Vを求める。 The average particle volume of the magnetic powder is calculated as follows. First, the average plate thickness DA ave and the average plate diameter DB ave are calculated as described above in relation to the method for calculating the average particle size of the magnetic powder. Next, the average volume V of the magnetic powder is calculated using the following formula.
   
[ε酸化鉄粒子]
 ε酸化鉄粒子は、微粒子でも高保磁力を得ることができる硬磁性粒子である。ε酸化鉄粒子は、球状を有しているか、または立方体状を有している。本明細書において、球状は、ほぼ球状を含むものとする。また、立方体状には、ほぼ立方体状を含むものとする。ε酸化鉄粒子が上記のような形状を有しているため、磁性粒子としてε酸化鉄粒子を用いた場合、磁性粒子として六角板状のバリウムフェライト粒子を用いた場合に比べて、磁気テープMTの厚み方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制することができる。したがって、磁性粒子の分散性を高め、さらに優れた電磁変換特性(例えばSNR)を得ることができる。
[ε-iron oxide particles]
The ε-iron oxide particles are hard magnetic particles that can obtain high coercivity even in the case of fine particles. The ε-iron oxide particles are spherical or cubic. In this specification, the term "spherical" includes "approximately spherical". Furthermore, the term "cubic" includes "approximately cubic". Since the ε-iron oxide particles have the above-mentioned shape, when the ε-iron oxide particles are used as the magnetic particles, the contact area between the particles in the thickness direction of the magnetic tape MT can be reduced and the aggregation between the particles can be suppressed compared to when hexagonal plate-shaped barium ferrite particles are used as the magnetic particles. Therefore, the dispersibility of the magnetic particles can be improved, and further excellent electromagnetic conversion characteristics (e.g., SNR) can be obtained.
 ε酸化鉄粒子は、複合粒子の構造を有していてもよい。より具体的には、ε酸化鉄粒子は、ε酸化鉄部と、軟磁性を有する部分もしくは、ε酸化鉄より飽和磁化量σsが高く、保磁力Hcが小さい磁性を有する部分(以下「軟磁性を有する部分等」という。)とを備える。 The ε-iron oxide particles may have a composite particle structure. More specifically, the ε-iron oxide particles include an ε-iron oxide portion and a portion having soft magnetism or a portion having a higher saturation magnetization σs and a smaller coercive force Hc than ε-iron oxide (hereinafter referred to as the "soft magnetic portion, etc.").
 ε酸化鉄部は、ε酸化鉄を含む。ε酸化鉄部に含まれるε酸化鉄は、ε-Fe結晶を主相とするものが好ましく、単相のε-Feからなるものがより好ましい。 The ε-iron oxide portion contains ε-iron oxide. The ε-iron oxide contained in the ε-iron oxide portion preferably has ε-Fe 2 O 3 crystals as a main phase, and more preferably is made of single-phase ε-Fe 2 O 3 .
 軟磁性を有する部分等は、少なくともε酸化鉄部と一部で接している。具体的には、軟磁性を有する部分等は、ε酸化鉄部を部分的に覆っていてもよいし、ε酸化鉄部の周囲全体を覆っていてもよい。 The soft magnetic portion is in contact with at least a portion of the ε-iron oxide portion. Specifically, the soft magnetic portion may partially cover the ε-iron oxide portion, or may cover the entire periphery of the ε-iron oxide portion.
 軟磁性を有する部分(ε酸化鉄より飽和磁化量σsが高く、保磁力Hcが小さい磁性を有する部分)は、例えば、α-Fe、Ni-Fe合金またはFe-Si-Al合金等の軟磁性体を含む。α-Feは、ε酸化鉄部に含まれるε酸化鉄を還元することにより得られるものであってもよい。 The soft magnetic portion (the magnetic portion having a higher saturation magnetization σs and a smaller coercive force Hc than ε-iron oxide) includes, for example, a soft magnetic material such as α-Fe, a Ni-Fe alloy, or an Fe-Si-Al alloy. α-Fe may be obtained by reducing the ε-iron oxide contained in the ε-iron oxide portion.
 また、軟磁性を有する部分は、例えば、Fe、γ-Fe、またはスピネルフェライト等を含んでいてもよい。 The portion having soft magnetic properties may contain, for example, Fe 3 O 4 , γ-Fe 2 O 3 , or spinel ferrite.
 ε酸化鉄粒子が、上記のように軟磁性を有する部分等を備えることで、熱安定性を確保するためにε酸化鉄部単体の保磁力Hcを大きな値に保ちつつ、ε酸化鉄粒子(複合粒子)全体としての保磁力Hcを記録に適した保磁力Hcに調整できる。 By providing the ε-iron oxide particles with a portion having soft magnetic properties as described above, the coercive force Hc of the ε-iron oxide portion alone can be kept high to ensure thermal stability, while the coercive force Hc of the ε-iron oxide particle (composite particle) as a whole can be adjusted to a coercive force Hc suitable for recording.
 ε酸化鉄粒子が、上記複合粒子の構造に代えて添加剤を含んでいてもよいし、上記複合粒子の構造を有すると共に添加剤を含んでいてもよい。この場合、ε酸化鉄粒子のFeの一部が添加剤で置換される。ε酸化鉄粒子が添加剤を含むことによっても、ε酸化鉄粒子全体としての保磁力Hcを記録に適した保磁力Hcに調整できるため、記録容易性を向上することができる。添加剤は、鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInからなる群より選ばれた少なくとも1種、さらにより好ましくはAlおよびGaからなる群より選ばれた少なくとも1種である。 The ε iron oxide particles may contain an additive instead of the structure of the composite particles, or may have the structure of the composite particles and contain an additive. In this case, part of the Fe in the ε iron oxide particles is replaced with the additive. By containing an additive in the ε iron oxide particles, the coercive force Hc of the ε iron oxide particles as a whole can be adjusted to a coercive force Hc suitable for recording, improving ease of recording. The additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one selected from the group consisting of Al, Ga and In, and even more preferably at least one selected from the group consisting of Al and Ga.
 具体的には、添加剤を含むε酸化鉄は、ε-Fe2-x結晶(但し、Mは鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInからなる群より選ばれた少なくとも1種、さらにより好ましくはAlおよびGaからなる群より選ばれた少なくとも1種である。xは、例えば0<x<1である。)である。 Specifically, the ε-iron oxide containing the additive is an ε-Fe2 - xMxO3 crystal (wherein M is a metal element other than iron, preferably a trivalent metal element, more preferably at least one selected from the group consisting of Al, Ga and In, and even more preferably at least one selected from the group consisting of Al and Ga; x is, for example, 0<x<1).
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子サイズは、好ましくは10nm以上20nm以下、より好ましくは10nm以上18nm以下、さらにより好ましくは10nm以上16nm以下、特に好ましくは10nm以上15nm以下、最も好ましくは10nm以上14nm以下である。磁気テープMTでは、記録波長の1/2のサイズの領域が実際の磁化領域となる。このため、磁性粒子の平均粒子サイズを最短記録波長の半分以下に設定することで、さらに優れた電磁変換特性(例えばSNR)を得ることができる。したがって、磁性粒子の平均粒子サイズが20nm以下であると、高記録密度の磁気テープMT(例えば40nm以下の最短記録波長で信号を記録可能に構成された磁気テープMT)において、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粒子の平均粒子サイズが10nm以上であると、磁性粒子の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。 When the magnetic particles are ε iron oxide particles, the average particle size of the magnetic particles is preferably 10 nm to 20 nm, more preferably 10 nm to 18 nm, even more preferably 10 nm to 16 nm, particularly preferably 10 nm to 15 nm, and most preferably 10 nm to 14 nm. In magnetic tape MT, the area with a size of 1/2 the recording wavelength becomes the actual magnetization area. Therefore, by setting the average particle size of the magnetic particles to half or less of the shortest recording wavelength, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained. Therefore, when the average particle size of the magnetic particles is 20 nm or less, even better electromagnetic conversion characteristics (e.g., SNR) can be obtained in a high recording density magnetic tape MT (e.g., a magnetic tape MT configured to be able to record signals at the shortest recording wavelength of 40 nm or less). On the other hand, when the average particle size of the magnetic particles is 10 nm or more, the dispersibility of the magnetic particles is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained.
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均アスペクト比が、好ましくは1.0以上3.0以下、より好ましくは1.0以上2.5以下、さらにより好ましくは1.0以上2.1以下、特に好ましくは1.0以上1.8以下である。磁性粒子の平均アスペクト比が1.0以上3.0以下の範囲内であると、磁性粒子の凝集を抑制することができる。また、磁性層43の形成工程において磁性粒子を垂直配向させる際に、磁性粒子に加わる抵抗を抑制することができる。したがって、磁性粒子の垂直配向性を向上することができる。 When the magnetic particles are ε iron oxide particles, the average aspect ratio of the magnetic particles is preferably 1.0 to 3.0, more preferably 1.0 to 2.5, even more preferably 1.0 to 2.1, and particularly preferably 1.0 to 1.8. When the average aspect ratio of the magnetic particles is within the range of 1.0 to 3.0, aggregation of the magnetic particles can be suppressed. Furthermore, when the magnetic particles are vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic particles can be suppressed. Therefore, the vertical orientation of the magnetic particles can be improved.
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子サイズおよび平均アスペクト比は、以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープとの接続部から長手方向に30mから40mの位置で磁気テープMTを切り出す。続いて、測定対象となる磁気テープMTをFIB(Focused Ion Beam)法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護層としてカーボン層およびタングステン層を形成する。当該カーボン層は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン層は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。薄片化は磁気テープMTの長さ方向(長手方向)に沿うかたちで行って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。 When the magnetic particles are ε iron oxide particles, the average particle size and average aspect ratio of the magnetic particles can be found as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape. Next, the magnetic tape MT to be measured is processed by the FIB (Focused Ion Beam) method or the like to be thinned. When the FIB method is used, a carbon layer and a tungsten layer are formed as protective layers as a pretreatment for observing the TEM image of the cross section described later. The carbon layer is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten layer is further formed on the surface on the magnetic layer 43 side by deposition or sputtering. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. That is, this slicing creates a cross section that is parallel to both the longitudinal and thickness directions of the magnetic tape MT.
 得られた薄片サンプルの上記断面を、透過電子顕微鏡(日立ハイテクノロジーズ社製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM像を撮影する。次に、撮影したTEM像から、粒子の形状を明らかに確認することができる50個の粒子を選び出し、各粒子の長軸長DLと短軸長DSを測定する。ここで、長軸長DLとは、各粒子の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。一方、短軸長DSとは、粒子の長軸(DL)と直交する方向における粒子の長さのうち最大のものを意味する。続いて、測定した50個の粒子の長軸長DLを単純に平均(算術平均)して平均長軸長DLaveを求める。このようにして求めた平均長軸長DLaveを磁性粒子の平均粒子サイズとする。また、測定した50個の粒子の短軸長DSを単純に平均(算術平均)して平均短軸長DSaveを求める。そして、平均長軸長DLaveおよび平均短軸長DSaveから粒子の平均アスペクト比(DLave/DSave)を求める。 The cross section of the obtained thin sample is observed with a transmission electron microscope (H-9500 manufactured by Hitachi High-Technologies Corporation) at an acceleration voltage of 200 kV and a total magnification of 500,000 times so that the entire magnetic layer 43 is included in the thickness direction of the magnetic layer 43, and a TEM image is taken. Next, 50 particles whose particle shape can be clearly confirmed are selected from the taken TEM image, and the long axis length DL and short axis length DS of each particle are measured. Here, the long axis length DL means the maximum distance between two parallel lines drawn from all angles so as to be in contact with the contour of each particle (so-called maximum Feret diameter). On the other hand, the short axis length DS means the maximum length of the particle in the direction perpendicular to the long axis (DL) of the particle. Next, the long axis lengths DL of the measured 50 particles are simply averaged (arithmetic average) to obtain the average long axis length DL ave . The average long axis length DL ave thus obtained is the average particle size of the magnetic particles. The minor axis lengths DS of the 50 particles are simply averaged (arithmetic mean) to determine the average minor axis length DSave . The average aspect ratio of the particles ( DLave / DSave ) is then calculated from the average major axis length DLave and the average minor axis length DSave .
 磁性粒子がε酸化鉄粒子である場合、磁性粒子の平均粒子体積は、好ましくは500nm以上4000nm以下、より好ましくは500nm以上3000nm以下、さらにより好ましくは500nm以上2000nm以下、特に好ましくは600nm以上1600nm以下、最も好ましくは600nm以上1300nm以下である。一般的に磁気テープMTのノイズは粒子個数の平方根に反比例(すなわち粒子体積の平方根に比例)するため、粒子体積をより小さくすることで、さらに優れた電磁変換特性(例えばSNR)を得ることができる。したがって、磁性粒子の平均粒子体積が4000nm以下であると、磁性粒子の平均粒子サイズを20nm以下とする場合と同様に、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粒子の平均粒子体積が500nm以上であると、磁性粒子の平均粒子サイズを10nm以上とする場合と同様の効果が得られる。 When the magnetic particles are ε iron oxide particles, the average particle volume of the magnetic particles is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 500 nm3 or more and 3000 nm3 or less, even more preferably 500 nm3 or more and 2000 nm3 or less, particularly preferably 600 nm3 or more and 1600 nm3 or less, and most preferably 600 nm3 or more and 1300 nm3 or less. Since the noise of a magnetic tape MT is generally inversely proportional to the square root of the number of particles (i.e., proportional to the square root of the particle volume), by making the particle volume smaller, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR). Therefore, when the average particle volume of the magnetic particles is 4000 nm3 or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in the same way as when the average particle size of the magnetic particles is 20 nm or less. On the other hand, when the average particle volume of the magnetic particles is 500 nm3 or more, it is possible to obtain the same effect as when the average particle size of the magnetic particles is 10 nm or more.
 ε酸化鉄粒子が球状を有している場合には、磁性粒子の平均粒子体積は以下のようにして求められる。まず、上記の磁性粒子の平均粒子サイズの算出方法と同様にして、平均長軸長DLaveを求める。次に、以下の式により、磁性粒子の平均体積Vを求める。
 V=(π/6)×DLave
When the ε iron oxide particles are spherical, the average particle volume of the magnetic particles is calculated as follows: First, the average major axis length DL ave is calculated in the same manner as in the above-mentioned method for calculating the average particle size of the magnetic particles. Next, the average volume V of the magnetic particles is calculated by the following formula.
V = (π/6) × DL ave 3
 ε酸化鉄粒子が立方体状を有している場合、磁性粒子の平均体積は以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から長手方向に30mから40mの位置で磁気テープMTを切り出す。続いて、切り出された磁気テープMTをFIB(Focused Ion Beam)法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン膜およびタングステン薄膜を形成する。当該カーボン膜は蒸着法により磁気テープMTの磁性層43側の表面およびバック層44側の表面に形成され、そして、当該タングステン薄膜は蒸着法またはスパッタリング法により磁性層43側の表面にさらに形成される。当該薄片化は磁気テープMTの長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気テープMTの長手方向および厚み方向の両方に平行な断面が形成される。 When the ε iron oxide particles have a cubic shape, the average volume of the magnetic particles is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out at a position 30 to 40 m in the longitudinal direction from the connection between the magnetic tape MT and the leader tape LT. Next, the cut magnetic tape MT is processed by the FIB (Focused Ion Beam) method or the like to be thinned. When the FIB method is used, a carbon film and a tungsten thin film are formed as protective films as a pretreatment for observing the TEM image of the cross section described later. The carbon film is formed by deposition on the surface of the magnetic tape MT on the magnetic layer 43 side and the surface on the back layer 44 side, and the tungsten thin film is further formed by deposition or sputtering on the surface on the magnetic layer 43 side. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape MT. In other words, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic tape MT.
 得られた薄片サンプルを透過電子顕微鏡(日立ハイテクノロジーズ社製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層43の厚み方向に対して磁性層43全体が含まれるように断面観察を行い、TEM像を得る。なお、装置の種類に応じて、倍率および加速電圧は適宜調整されてよい。次に、撮影したTEM像から粒子の形状が明らかである50個の粒子を選び出し、各粒子の辺の長さDCを測定する。続いて、測定した50個の粒子の辺の長さDCを単純に平均(算術平均)して平均辺長DCaveを求める。次に、平均辺長DCaveを用いて以下の式から磁性粒子の平均体積Vave(粒子体積)を求める。
 Vave=DCave
The obtained thin sample is observed in cross section in the thickness direction of the magnetic layer 43 at an acceleration voltage of 200 kV and a total magnification of 500,000 times to include the entire magnetic layer 43, and a TEM image is obtained. The magnification and acceleration voltage may be adjusted appropriately depending on the type of device. Next, 50 particles whose particle shapes are clear are selected from the TEM image taken, and the side length DC of each particle is measured. Next, the side lengths DC of the 50 particles measured are simply averaged (arithmetic average) to obtain the average side length DC ave . Next, the average volume V ave (particle volume) of the magnetic particles is calculated from the following formula using the average side length DC ave .
V ave = DC ave 3
[コバルトフェライト粒子]
 コバルトフェライト粒子は、一軸結晶異方性を有することが好ましい。コバルトフェライト粒子が一軸結晶異方性を有することで、磁性粉を磁気テープMTの垂直方向に優先的に結晶配向させることができる。コバルトフェライト粒子は、例えば、立方体状を有している。本明細書において、立方体状は、ほぼ立方体状を含むものとする。Co含有スピネルフェライトが、Co以外にNi、Mn、Al、CuおよびZnのうちの少なくとも1種をさらに含んでいてもよい。
[Cobalt ferrite particles]
The cobalt ferrite particles preferably have uniaxial crystal anisotropy. The cobalt ferrite particles have uniaxial crystal anisotropy, so that the magnetic powder can be preferentially crystal oriented in the perpendicular direction of the magnetic tape MT. The cobalt ferrite particles have, for example, a cubic shape. In this specification, the cubic shape includes an almost cubic shape. The Co-containing spinel ferrite may further contain at least one of Ni, Mn, Al, Cu, and Zn in addition to Co.
 Co含有スピネルフェライトは、例えば以下の式で表される平均組成を有する。
 CoFe
(但し、式中、Mは、例えば、Ni、Mn、Al、CuおよびZnのうちの少なくとも1種の金属である。xは、0.4≦x≦1.0の範囲内の値である。yは、0≦y≦0.3の範囲内の値である。但し、x、yは(x+y)≦1.0の関係を満たす。zは3≦z≦4の範囲内の値である。Feの一部が他の金属元素で置換されていてもよい。)
The Co-containing spinel ferrite has, for example, an average composition represented by the following formula.
Co x M y Fe 2 O Z
(In the formula, M is, for example, at least one metal selected from Ni, Mn, Al, Cu, and Zn. x is a value within the range of 0.4≦x≦1.0. y is a value within the range of 0≦y≦0.3. However, x and y satisfy the relationship of (x+y)≦1.0. z is a value within the range of 3≦z≦4. A part of Fe may be substituted with another metal element.)
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均粒子サイズは、好ましくは8nm以上16nm以下、より好ましくは8nm以上13nm以下、さらにより好ましくは8nm以上10nm以下である。磁性粉の平均粒子サイズが16nm以下であると、高記録密度の磁気テープMTにおいて、さらに優れた電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが8nm以上であると、磁性粉の分散性がより向上し、さらに優れた電磁変換特性(例えばSNR)を得ることができる。磁性粉の平均粒子サイズの算出方法は、磁性粉がε酸化鉄粒子粉を含む場合における磁性粉の平均粒子サイズの算出方法と同様である。 When the magnetic powder contains cobalt ferrite particles, the average particle size of the magnetic powder is preferably 8 nm or more and 16 nm or less, more preferably 8 nm or more and 13 nm or less, and even more preferably 8 nm or more and 10 nm or less. When the average particle size of the magnetic powder is 16 nm or less, it is possible to obtain even better electromagnetic conversion characteristics (e.g., SNR) in a high recording density magnetic tape MT. On the other hand, when the average particle size of the magnetic powder is 8 nm or more, the dispersibility of the magnetic powder is further improved, and even better electromagnetic conversion characteristics (e.g., SNR) can be obtained. The method of calculating the average particle size of the magnetic powder is the same as the method of calculating the average particle size of the magnetic powder when the magnetic powder contains ε iron oxide particles.
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均アスペクト比が、好ましくは1.0以上2.5以下、より好ましくは1.0以上2.1以下、さらにより好ましくは1.0以上1.8以下である。磁性粉の平均アスペクト比が1.0以上2.5以下の範囲内であると、磁性粉の凝集を抑制することができる。また、磁性層43の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上することができる。磁性粉の平均アスペクト比の算出方法は、磁性粉がε酸化鉄粒子粉を含む場合における磁性粉の平均アスペクト比の算出方法と同様である。 When the magnetic powder contains cobalt ferrite particles, the average aspect ratio of the magnetic powder is preferably 1.0 to 2.5, more preferably 1.0 to 2.1, and even more preferably 1.0 to 1.8. When the average aspect ratio of the magnetic powder is within the range of 1.0 to 2.5, aggregation of the magnetic powder can be suppressed. In addition, when the magnetic powder is vertically oriented in the process of forming the magnetic layer 43, the resistance applied to the magnetic powder can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved. The method of calculating the average aspect ratio of the magnetic powder is the same as the method of calculating the average aspect ratio of the magnetic powder when the magnetic powder contains ε iron oxide particles.
 磁性粉がコバルトフェライト粒子粉を含む場合、磁性粉の平均粒子体積は、好ましくは500nm以上4000nm以下、より好ましくは600nm以上2000nm以下、さらにより好ましくは600nm以上1000nm以下である。磁性粉の平均粒子体積が4000nm以下であると、磁性粉の平均粒子サイズを16nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体・BR>マが500nm以上であると、磁性粉の平均粒子サイズを8nm以上とする場合と同様の効果が得られる。磁性分の平均粒子体積の算出方法は、ε酸化鉄粒子が立方体状を有している場合の平均粒子体積の算出方法と同様である。 When the magnetic powder contains cobalt ferrite particles, the average particle volume of the magnetic powder is preferably 500 nm3 or more and 4000 nm3 or less, more preferably 600 nm3 or more and 2000 nm3 or less, and even more preferably 600 nm3 or more and 1000 nm3 or less. When the average particle volume of the magnetic powder is 4000 nm3 or less, the same effect as when the average particle size of the magnetic powder is 16 nm or less can be obtained. On the other hand, when the average particle size of the magnetic powder is 500 nm3 or more, the same effect as when the average particle size of the magnetic powder is 8 nm or more can be obtained. The method for calculating the average particle volume of the magnetic component is the same as the method for calculating the average particle volume when the ε iron oxide particles have a cubic shape.
[カーボン]
 磁性層43に含まれるカーボンは、帯電防止剤および固体潤滑剤等として機能してもよい。このようなカーボンとして、例えば、カーボン粒子、およびハイブリッド粒子からなる群より選ばれた少なくとも1種を用いることができ、カーボン粒子を用いることが好ましい。
[carbon]
The carbon contained in the magnetic layer 43 may function as an antistatic agent, a solid lubricant, etc. As such carbon, for example, at least one type selected from the group consisting of carbon particles and hybrid particles can be used, and it is preferable to use carbon particles.
 カーボン粒子としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェンからなる群より選ばれる1種以上を用いることができ、これらのカーボン粒子のうちでもカーボンブラックを用いることが好ましい。カーボンブラックとしては、例えば、東海カーボン社製のシーストTA、旭カーボン社の旭#15、#15HS等を用いることができる。 As the carbon particles, for example, one or more selected from the group consisting of carbon black, acetylene black, ketjen black, carbon nanotubes, and graphene can be used, and among these carbon particles, it is preferable to use carbon black. As the carbon black, for example, Seast TA manufactured by Tokai Carbon Co., Ltd., Asahi #15, #15HS, etc. manufactured by Asahi Carbon Co., Ltd. can be used.
 ハイブリッド粒子は、カーボンとカーボン以外の材料とを含む。カーボン以外の材料は、例えば、有機材料または無機材料である。ハイブリッド粒子は、無機粒子表面にカーボンが付着されたハイブリッド粒子であってもよい。具体的には例えば、シリカ粒子表面にカーボンが付着されたハイブリッドカーボンであってもよい。 The hybrid particles include carbon and a material other than carbon. The material other than carbon is, for example, an organic material or an inorganic material. The hybrid particles may be hybrid particles in which carbon is attached to the surface of an inorganic particle. Specifically, for example, the hybrid particles may be hybrid carbon in which carbon is attached to the surface of a silica particle.
 例えば、磁性層43に含まれるカーボンとしてカーボン粒子が使用される場合、カーボン粒子は、磁性層43の表面から突出し突起を形成している。データライトヘッド60と磁気テープMTの摺動時に、カーボン粒子によって形成された突起は、データライトヘッド60と接触する。 For example, when carbon particles are used as the carbon contained in the magnetic layer 43, the carbon particles protrude from the surface of the magnetic layer 43 to form protrusions. When the data write head 60 slides over the magnetic tape MT, the protrusions formed by the carbon particles come into contact with the data write head 60.
[研磨剤]
 磁性層43に含まれる研磨剤の一部の粒子(以下、研磨剤粒子と称する)は、磁性面から突出し、突起を形成している。データライトヘッド60と磁気テープMTの摺動時に、研磨剤粒子によって形成された突起は、データライトヘッド60と接触する。
[Abrasive]
Some particles of the abrasive contained in the magnetic layer 43 (hereinafter referred to as abrasive particles) protrude from the magnetic surface to form protrusions. When the data write head 60 slides over the magnetic tape MT, the protrusions formed by the abrasive particles come into contact with the data write head 60.
 研磨剤粒子は、研磨効果のある粒子である。このような研磨剤粒子は、磁気ヘッドとの接触による変形を抑制する観点から、モース硬度が好ましくは7以上、より好ましくは7.5以上、さらに好ましくは8以上、さらにより好ましくは8.5以上でありうる。ヘッド摩耗を抑制する観点から前記研磨剤粒子のモース硬度は、好ましくは9.5以下でありうる。前記研磨剤粒子は好ましくは無機粒子であってよく、例えば、α化率90%以上のα-Al(α-アルミナ)、β-Al(β-アルミナ)、γ-Al(γ-アルミナ)、炭化ケイ素、酸化クロム、酸化セリウム、α-酸化鉄、コランダム、窒化珪素、チタンカ-バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、2硫化モリブデン、磁性酸化鉄の原料を脱水、アニール処理した針状α酸化鉄、必要によりそれらをアルミおよび/またはシリカで表面処理したもの、ダイヤモンド粉末等が挙げられる。前記研磨剤粒子は、α-Al(α-アルミナ)、β-Al(β-アルミナ)、γ-Al(γ-アルミナ)等のアルミナ粒子、炭化ケイ素が好ましく用いられる。これら研磨剤粒子は針状、球状、サイコロ状等のいずれの形状でもよいが、形状の一部に角を有するものが高いアブラシビティを有するので好ましい。 The abrasive particles are particles having an abrasive effect. From the viewpoint of suppressing deformation due to contact with a magnetic head, the Mohs hardness of such abrasive particles is preferably 7 or more, more preferably 7.5 or more, even more preferably 8 or more, and even more preferably 8.5 or more. From the viewpoint of suppressing head wear, the Mohs hardness of the abrasive particles is preferably 9.5 or less. The abrasive particles may preferably be inorganic particles, such as α-Al 2 O 3 (α-alumina), β-Al 2 O 3 (β-alumina), γ-Al 2 O 3 (γ-alumina), silicon carbide, chromium oxide, cerium oxide, α-iron oxide, corundum, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, acicular α-iron oxide obtained by dehydrating and annealing raw materials of magnetic iron oxide, and those surface-treated with aluminum and/or silica as necessary, diamond powder, etc. The abrasive particles are preferably alumina particles such as α-Al 2 O 3 (α-alumina), β-Al 2 O 3 (β-alumina), γ-Al 2 O 3 (γ-alumina), and silicon carbide. These abrasive particles may be of any shape, such as needle-like, spherical, or cubic, but those having corners in their shape are preferred because they have high abrasiveness.
[研磨剤粒子によって形成された突起の平均高さ]
 前記研磨剤粒子によって前記磁性層側の表面に突起が形成される。前記研磨剤粒子によって形成された突起の平均高さが好ましくは8nm以下、より好ましくは7.5nm以下、さらに好ましくは7.0nm以下、さらにより好ましくは6.5nm以下、さらにより好ましくは6.0nm以下でありうる。前記磁気テープMTが上記数値範囲内の研磨剤粒子によって形成された突起の平均高さを有することで、データライトヘッドと磁気テープMTとの間のスペーシング量を小とし、多数回走行による摩擦上昇の発生が少なく、データライトヘッドに対する研磨力を適正に維持することを可能とすることに貢献する。
[Average height of protrusions formed by abrasive particles]
The abrasive particles form protrusions on the surface of the magnetic layer. The average height of the protrusions formed by the abrasive particles is preferably 8 nm or less, more preferably 7.5 nm or less, even more preferably 7.0 nm or less, even more preferably 6.5 nm or less, and even more preferably 6.0 nm or less. By having the average height of the protrusions formed by the abrasive particles of the magnetic tape MT within the above numerical range, the spacing between the data write head and the magnetic tape MT is small, the occurrence of friction increase due to multiple runs is small, and the abrasive force against the data write head can be appropriately maintained.
 また、前記研磨剤粒子によって形成された突起の平均高さの下限は、特に限定されるものではないが、例えば、好ましくは2.0nm以上、より好ましくは2.5nm以上、さらに好ましくは3.0nm以上でありうる。 In addition, the lower limit of the average height of the protrusions formed by the abrasive particles is not particularly limited, but may be, for example, preferably 2.0 nm or more, more preferably 2.5 nm or more, and even more preferably 3.0 nm or more.
[潤滑剤]
 潤滑剤は、例えば脂肪酸および脂肪酸エステルから選ばれる少なくとも1種、好ましくは脂肪酸および脂肪酸エステルの両方を含む。磁性層43が潤滑剤を含むことが、特には磁性層43が脂肪酸および脂肪酸エステルの両方を含むことが、磁気テープMTの走行安定性の向上に貢献する。
[lubricant]
The lubricant contains at least one selected from, for example, a fatty acid and a fatty acid ester, and preferably both a fatty acid and a fatty acid ester. The inclusion of a lubricant in the magnetic layer 43, and in particular the inclusion of both a fatty acid and a fatty acid ester in the magnetic layer 43, contributes to improving the running stability of the magnetic tape MT.
 脂肪酸は、好ましくは下記の一般式(1)または(2)により示される化合物であってよい。例えば、脂肪酸として下記の一般式(1)により示される化合物および一般式(2)により示される化合物の一方が含まれていてよく、または両方が含まれていてもよい。 The fatty acid may preferably be a compound represented by the following general formula (1) or (2). For example, the fatty acid may contain either a compound represented by the following general formula (1) or a compound represented by the following general formula (2), or may contain both.
 また、脂肪酸エステルは、好ましくは下記一般式(3)または(4)により示される化合物であってよい。例えば、脂肪酸エステルとして下記の一般式(3)により示される化合物および一般式(4)により示される化合物の一方が含まれていてよく、または両方が含まれていてもよい。 The fatty acid ester may preferably be a compound represented by the following general formula (3) or (4). For example, the fatty acid ester may contain either a compound represented by the following general formula (3) or a compound represented by the following general formula (4), or may contain both.
 潤滑剤が、一般式(1)に示される化合物および一般式(2)に示される化合物のいずれか一方若しくは両方と、一般式(3)に示される化合物および一般式(4)に示される化合物のいずれか一方若しくは両方と、又は一般式(5)に示される化合物を含むことによって、磁気テープMTを繰り返しの記録または再生による動摩擦係数の増加を抑制することができる。 The lubricant contains either or both of the compound shown in general formula (1) and the compound shown in general formula (2), either or both of the compound shown in general formula (3) and the compound shown in general formula (4), or the compound shown in general formula (5), thereby making it possible to suppress an increase in the dynamic friction coefficient due to repeated recording or playback of the magnetic tape MT.
 CH3(CH2kCOOH ・・・(1)
(但し、一般式(1)において、kは14以上22以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3 ( CH2 ) kCOOH ... (1)
(However, in general formula (1), k is an integer selected from the range of 14 or more and 22 or less, more preferably from the range of 14 or more and 18 or less.)
 CH(CHCH=CH(CHCOOH ・・・(2)
(但し、一般式(2)において、nとmとの和は12以上20以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3 ( CH2 ) nCH =CH( CH2 ) mCOOH ... (2)
(However, in general formula (2), the sum of n and m is an integer selected from the range of 12 to 20, more preferably from the range of 14 to 18.)
 CH(CHCOO(CHCH・・・(3)
(但し、一般式(3)において、pは14以上22以下、より好ましくは14以上18以下の範囲から選ばれる整数であり、且つ、qは2以上5以下の範囲、より好ましくは2以上4以下の範囲から選ばれる整数である。)
CH3 ( CH2 ) pCOO ( CH2 ) qCH3 ... (3)
(However, in general formula (3), p is an integer selected from the range of 14 or more and 22 or less, more preferably 14 or more and 18 or less, and q is an integer selected from the range of 2 or more and 5 or less, more preferably 2 or more and 4 or less.)
 CH(CHCOO-(CHCH(CH・・・(4)
(但し、一般式(4)において、rは14以上22以下の範囲から選ばれる整数であり、sは1以上3以下の範囲から選ばれる整数である。)
CH3 ( CH2 ) rCOO- ( CH2 ) sCH ( CH3 ) 2 ... (4)
(In the general formula (4), r is an integer selected from the range of 14 or more and 22 or less, and s is an integer selected from the range of 1 or more and 3 or less.)
 CH(CHCOO-(CH)(CH)CH(CH・・・(5)
(但し、一般式(5)において、tは14以上22以下の範囲から選ばれる整数であり、uは1以上3以下の範囲から選ばれる整数である。)
CH 3 (CH 2 ) t COO-(CH) (CH 3 ) CH 2 (CH 3 ) u ... (5)
(In the general formula (5), t is an integer selected from the range of 14 or more and 22 or less, and u is an integer selected from the range of 1 or more and 3 or less.)
 脂肪酸および脂肪酸エステルの具体的な例としては、以下のようなものがある。脂肪酸としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸等が挙げられる。 Specific examples of fatty acids and fatty acid esters include the following: Fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, elaidic acid, linoleic acid, and linolenic acid.
 また、脂肪酸エステルとしては、カプリン酸ブチル、カプリル酸オクチル、ラウリル酸エチル、ラウリル酸ブチル、ラウリル酸オクチル、ミリスチン酸エチル、ミリスチン酸ブチル、ミリスチン酸オクチル、ミリスチン酸2エチルヘキシル、パルミチン酸エチル、パルミチン酸ブチル、パルミチン酸オクチル、パルミチン酸2エチルヘキシル、ステアリン酸エチル、ステアリン酸ブチル、ステアリン酸イソブチル、ステアリン酸オクチル、ステアリン酸2エチルヘキシル、ステアリン酸アミル、ステアリン酸イソアミル、ステアリン酸2エチルペンチル、ステアリン酸2ヘキシルデシル、ステアリン酸イソトリデシル、ステアリン酸アミド、ステアリン酸アリキルアミド、ステアリン酸ブトキシエチル等が挙げられる。 Furthermore, examples of fatty acid esters include butyl caprate, octyl caprylate, ethyl laurate, butyl laurate, octyl laurate, ethyl myristate, butyl myristate, octyl myristate, 2-ethylhexyl myristate, ethyl palmitate, butyl palmitate, octyl palmitate, 2-ethylhexyl palmitate, ethyl stearate, butyl stearate, isobutyl stearate, octyl stearate, 2-ethylhexyl stearate, amyl stearate, isoamyl stearate, 2-ethylpentyl stearate, 2-hexyldecyl stearate, isotridecyl stearate, stearic acid amide, alkyl stearate amide, and butoxyethyl stearate.
[結着剤]
 結着剤としては、例えば、熱可塑性樹脂、熱硬化性樹脂、反応型樹脂等が挙げられる。熱可塑性樹脂としては、例えば、塩化ビニル、酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリフッ化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリウレタン樹脂、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
[Binding agent]
Examples of the binder include thermoplastic resins, thermosetting resins, and reactive resins. Examples of the thermoplastic resin include vinyl chloride, vinyl acetate, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinyl chloride-vinylidene chloride copolymers, acrylic acid ester-acrylonitrile copolymers, acrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinylidene chloride copolymers, methacrylic acid ester-vinyl chloride copolymers, methacrylic acid ester-ethylene copolymers, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymers, acrylonitrile-butadiene copolymers, polyamide resins, polyvinyl butyral, cellulose derivatives (cellulose acetate butyrate, cellulose diacetate, cellulose triacetate, cellulose propionate, nitrocellulose), styrene-butadiene copolymers, polyurethane resins, polyester resins, amino resins, and synthetic rubbers.
 熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。 Examples of thermosetting resins include phenolic resins, epoxy resins, polyurethane curing resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, and urea formaldehyde resins.
 上記の全ての結着剤には、磁性粉の分散性を向上させる目的で、-SOM、-OSOM、-COOM、P=O(OM)(但し、式中Mは水素原子またはリチウム、カリウム、ナトリウム等のアルカリ金属を表す)や、-NR1R2、-NR1R2R3で表される末端基を有する側鎖型アミン、>NR1R2で表される主鎖型アミン(但し、式中R1、R2、R3は水素原子または炭化水素基を表し、X-はフッ素、塩素、臭素、ヨウ素等のハロゲン元素イオン、無機イオンまたは有機イオンを表す。)、さらに-OH、-SH、-CN、エポキシ基等の極性官能基が導入されていてもよい。これら極性官能基の結着剤への導入量は、10-1モル/g以上10-8モル/g以下であるのが好ましく、10-2モル/g以上10-6モル/g以下であるのがより好ましい。 In order to improve the dispersibility of the magnetic powder, all of the above-mentioned binders may contain polar functional groups such as -SO 3 M, -OSO 3 M, -COOM, P=O(OM) 2 (wherein M represents a hydrogen atom or an alkali metal such as lithium, potassium, or sodium), -NR1R2, -NR1R2R3 + X- having an end group, or >NR1R2 + X- (wherein R1, R2, and R3 represent a hydrogen atom or a hydrocarbon group, and X- represents a halogen element ion such as fluorine, chlorine, bromine, or iodine, an inorganic ion, or an organic ion), -OH, -SH, -CN, or an epoxy group. The amount of these polar functional groups introduced into the binder is preferably 10 -1 mol/g or more and 10 -8 mol/g or less, and more preferably 10 -2 mol/g or more and 10 -6 mol/g or less.
[帯電防止剤]
 帯電防止剤としては、例えば、天然界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤等が挙げられる。
[Antistatic Agent]
Examples of the antistatic agent include natural surfactants, nonionic surfactants, and cationic surfactants.
[硬化剤]
 硬化剤としては、例えば、ポリイソシアネート等が挙げられる。ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)と活性水素化合物との付加体等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HMDI)と活性水素化合物との付加体等の脂肪族ポリイソシアネート等が挙げられる。これらポリイソシアネートの重量平均分子量は、100以上3000以下の範囲であることが望ましい。
[Curing agent]
Examples of the curing agent include polyisocyanates. Examples of the polyisocyanates include aromatic polyisocyanates such as an adduct of tolylene diisocyanate (TDI) and an active hydrogen compound, and aliphatic polyisocyanates such as an adduct of hexamethylene diisocyanate (HMDI) and an active hydrogen compound. The weight average molecular weight of these polyisocyanates is preferably in the range of 100 to 3,000.
[防錆剤]
 防錆剤としては、例えばフェノール類、ナフトール類、キノン類、窒素原子を含む複素環化合物、酸素原子を含む複素環化合物、硫黄原子を含む複素環化合物等が挙げられる。
[anti-rust]
Examples of the rust inhibitor include phenols, naphthols, quinones, heterocyclic compounds containing a nitrogen atom, heterocyclic compounds containing an oxygen atom, and heterocyclic compounds containing a sulfur atom.
[非磁性補強粒子]
 非磁性補強粒子として、例えば、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等が挙げられる。
[Non-magnetic reinforcing particles]
Examples of non-magnetic reinforcing particles include aluminum oxide (α, β or γ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (rutile or anatase type titanium oxide), and the like.
[下地層]
 下地層42は、ベース層41の表面の凹凸を緩和し、磁性層43の表面の凹凸を調整するためのものである。下地層42は、非磁性粉、結着剤および潤滑剤を含む非磁性層である。下地層42は、磁性層43の表面に潤滑剤を供給する。下地層42が、必要に応じて、帯電防止剤、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。
[Base layer]
The underlayer 42 serves to reduce the unevenness of the surface of the base layer 41 and adjust the unevenness of the surface of the magnetic layer 43. The underlayer 42 is a non-magnetic layer containing non-magnetic powder, a binder, and a lubricant. The underlayer 42 supplies the lubricant to the surface of the magnetic layer 43. The underlayer 42 may further contain at least one additive selected from the group consisting of an antistatic agent, a hardener, and an anti-rust agent, as necessary.
 下地層42の平均厚みの上限値は、好ましくは1.0μm以下、より好ましくは0.9μm以下、さらにより好ましくは0.8μm以下、特により好ましくは0.7μm以下、最も好ましくは0.6μm以下である。下地層42の平均厚みの上限値が1.0μm以下であると、磁気テープMTの厚みを低減することができるので、1データカートリッジ内に記録できる記録容量を一般的な磁気テープよりも高めることができる。また、下地層42の平均厚みが1.0μm以下であると、外力による磁気テープMTの伸縮性がさらに高くなるため、テンション調整による磁気テープMTの幅の調整がさらに容易となる。下地層42の平均厚みの下限値は、好ましくは0.3μm以上である。下地層42の平均厚みの下限値が0.3μm以上であると、下地層42としての機能低下を抑制することができる。なお、下地層42の平均厚みは、磁性層43の平均厚みと同様にして求められる。但し、TEM像の倍率は、下地層42の厚みに応じて適宜調整される。 The upper limit of the average thickness of the underlayer 42 is preferably 1.0 μm or less, more preferably 0.9 μm or less, even more preferably 0.8 μm or less, particularly preferably 0.7 μm or less, and most preferably 0.6 μm or less. If the upper limit of the average thickness of the underlayer 42 is 1.0 μm or less, the thickness of the magnetic tape MT can be reduced, so that the recording capacity that can be recorded in one data cartridge can be increased compared to that of a general magnetic tape. If the average thickness of the underlayer 42 is 1.0 μm or less, the elasticity of the magnetic tape MT due to external forces is further increased, so that the width of the magnetic tape MT can be further adjusted by adjusting the tension. The lower limit of the average thickness of the underlayer 42 is preferably 0.3 μm or more. If the lower limit of the average thickness of the underlayer 42 is 0.3 μm or more, the deterioration of the function as the underlayer 42 can be suppressed. The average thickness of the underlayer 42 is determined in the same manner as the average thickness of the magnetic layer 43. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the underlayer 42.
[非磁性粉]
 非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素粉を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これらの形状に限定されるものではない。
[Non-magnetic powder]
The non-magnetic powder includes at least one of inorganic particle powder and organic particle powder. The non-magnetic powder may also include carbon powder such as carbon black. One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination. The inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, etc. The shape of the non-magnetic powder may be, for example, various shapes such as needle-like, spherical, cubic, and plate-like, but is not limited to these shapes.
 非磁性粉の平均粒子サイズは、好ましくは10nm以上150nm以下、より好ましくは15nm以上110nm以下である。非磁性粉の平均粒子サイズは、上記の磁性粉の平均粒子サイズと同様にして求められる。非磁性粉が、2以上の粒度分布を有する非磁性粉を含んでいてもよい。 The average particle size of the non-magnetic powder is preferably 10 nm or more and 150 nm or less, more preferably 15 nm or more and 110 nm or less. The average particle size of the non-magnetic powder is determined in the same manner as the average particle size of the magnetic powder described above. The non-magnetic powder may contain non-magnetic powder having two or more particle size distributions.
[結着剤、潤滑剤]
 結着剤および潤滑剤は、上記の磁性層43と同様である。
[Binding agent, lubricant]
The binder and lubricant are the same as those in the magnetic layer 43 described above.
[添加剤]
 帯電防止剤、硬化剤および防錆剤はそれぞれ、上記の磁性層43と同様である。
[Additive]
The antistatic agent, hardener and rust inhibitor are the same as those in the magnetic layer 43 described above.
[バック層]
 バック層44は、結着剤および非磁性粉を含む。バック層44が、必要に応じて潤滑剤、硬化剤および帯電防止剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。結着剤および非磁性粉は、上記の下地層42と同様である。硬化剤および帯電防止剤は、上記の磁性層43と同様である。
[Back layer]
The back layer 44 contains a binder and a non-magnetic powder. The back layer 44 may further contain at least one additive selected from the group consisting of a lubricant, a hardener, and an antistatic agent, if necessary. The binder and the non-magnetic powder are the same as those in the underlayer 42 described above. The hardener and the antistatic agent are the same as those in the magnetic layer 43 described above.
 バック層44の平均厚みtの上限値は、好ましくは0.6μm以下である。バック層44の平均厚みtの上限値が0.6μm以下であると、磁気テープMTの平均厚みが5.3μm以下である場合でも、下地層42やベース層41の厚みを厚く保つことができるので、磁気テープMTの記録再生装置内での走行安定性を保つことができる。バック層44の平均厚みtの下限値は特に限定されるものではないが、例えば0.2μm以上である。 The upper limit of the average thickness tb of the back layer 44 is preferably 0.6 μm or less. If the upper limit of the average thickness tb of the back layer 44 is 0.6 μm or less, the thickness of the underlayer 42 and the base layer 41 can be kept thick even when the average thickness of the magnetic tape MT is 5.3 μm or less, so that the running stability of the magnetic tape MT in a recording and reproducing device can be maintained. The lower limit of the average thickness tb of the back layer 44 is not particularly limited, but is, for example, 0.2 μm or more.
 バック層44の平均厚みtは以下のようにして求められる。まず、磁気テープMTの平均厚みtを測定する。平均厚みtの測定方法は、以下の「磁気テープの平均厚み」に記載されている通りである。続いて、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部21から長手方向に10mから20mの範囲、30mから40mの範囲、50mから60mの範囲それぞれから磁気テープMTを250mmの長さに切り出し、3つのサンプルを作製する。次に、各サンプルのバック層44をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、Mitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプルの厚みを5点の位置で測定し、それらの測定値(合計で15点のサンプルの厚み)を算術平均して、平均値t[μm]を算出する。その後、以下の式よりバック層44の平均厚みt[μm]を求める。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。
 t[μm]=t[μm]-t[μm]
The average thickness t b of the back layer 44 is obtained as follows. First, the average thickness t T of the magnetic tape MT is measured. The method for measuring the average thickness t T is as described in the "Average Thickness of Magnetic Tape" below. Next, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut into 250 mm lengths from the range of 10 m to 20 m, the range of 30 m to 40 m, and the range of 50 m to 60 m in the longitudinal direction from the connection part 21 between the magnetic tape MT and the leader tape LT, respectively, to prepare three samples. Next, the back layer 44 of each sample is removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, the thickness of each sample is measured at five positions using a Mitutoyo laser hologram (LGH-110C), and the measured values (total thicknesses of 15 samples) are arithmetically averaged to calculate the average value t B [μm]. After that, the average thickness t b [μm] of the back layer 44 is obtained from the following formula. The five measurement positions are selected at random from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
tb [μm]= tT [μm] −tB [μm]
[磁気テープの幅変化量Δ]
 65℃で360時間保存後に前記磁気テープの全長にわたって前記磁気テープの幅変化量Δを測定したときに、磁気テープの巻外側の幅変化量Δoutの符号が磁気テープの巻内側の幅変化量Δinの符号と異なる。磁気テープの巻外側の幅変化量Δoutの符号が磁気テープの巻内側の幅変化量Δinの符号と異なることにより、高温環境下で保存を行っても優れた走行安定性を得ることができる。また、前記幅変化量Δが、前記磁気テープの全長を4等分して4つの領域に分割した場合の前記磁気テープの全長の中心線を挟む2つの領域のいずれかの位置において、0ppmである。このように磁気テープの長手方向における特定の領域で幅変化量Δが0ppmとなることにより、高温環境下で保存を行っても優れた走行安定性を得ることができる。さらに、磁気テープの長手方向において、4つの領域のうちのいずれの領域においても幅変化量Δが好ましくは300ppm以下であり、より好ましくは250ppm以下、さらに好ましくは200ppm以下、さらにより好ましくは150ppm以下である。
[Magnetic tape width change amount Δ]
When the width change amount Δ of the magnetic tape is measured over the entire length of the magnetic tape after storage at 65° C. for 360 hours, the sign of the width change amount Δout on the outer side of the magnetic tape is different from the sign of the width change amount Δin on the inner side of the magnetic tape. By the sign of the width change amount Δout on the outer side of the magnetic tape being different from the sign of the width change amount Δin on the inner side of the magnetic tape, excellent running stability can be obtained even when stored in a high-temperature environment. Furthermore, the width change amount Δ is 0 ppm in any of the two regions sandwiching the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal regions. In this way, by the width change amount Δ being 0 ppm in a specific region in the longitudinal direction of the magnetic tape, excellent running stability can be obtained even when stored in a high-temperature environment. Furthermore, in the longitudinal direction of the magnetic tape, the width change amount Δ is preferably 300 ppm or less, more preferably 250 ppm or less, even more preferably 200 ppm or less, and even more preferably 150 ppm or less in any of the four regions.
 磁気テープの幅変化量Δは、以下のようにして測定される。 The change in width of the magnetic tape, Δ, is measured as follows:
 まず、データ記録再生装置50を用いて、65℃で360時間保存前の初期状態にある磁気テープの長手方向におけるサーボバンドピッチを測定する。なお、サーボバンドピッチとは、サーボバンドの配列間隔を意味する。
 なお、サーボバンドピッチの測定に際し、磁気テープMTを0.55Nのテンションで磁気記録カートリッジ10に巻き込んだ状態で、32℃、55RH%の環境下、磁気記録カートリッジ10内に収容されている磁気テープMTを、データ記録再生装置50へと巻き込むように走行させながら(いわゆる順方向に走行させながら)、磁気テープMTの全長にわたって磁気テープMTの長手方向の各位置におけるサーボバンドピッチの測定が行われる。当該測定において、磁気テープMTにかかるテンションは0.55Nであり、且つ、走行速度は3~6m/sである。
First, the servo band pitch in the longitudinal direction of the magnetic tape in its initial state before storage for 360 hours at 65° C. is measured using the data recording/reproducing device 50. The servo band pitch means the arrangement interval of the servo bands.
In measuring the servo band pitch, the magnetic tape MT is wound into the magnetic recording cartridge 10 with a tension of 0.55 N, and the magnetic tape MT housed in the magnetic recording cartridge 10 is run so as to be wound into the data recording/reproducing device 50 (running in a so-called forward direction) in an environment of 32° C. and 55% RH, and the servo band pitch is measured at each position in the longitudinal direction of the magnetic tape MT over the entire length of the magnetic tape MT. In this measurement, the tension applied to the magnetic tape MT is 0.55 N, and the running speed is 3 to 6 m/s.
 次に、磁気テープMTを0.55Nのテンションで磁気記録カートリッジ10に巻き込んだ状態で、65℃、40RH%で24時間保存後、32℃、55RH%の環境下で、データ記録再生装置50において0.55Nのテンションで1往復走行させ、再び65℃、40RH%環境で24時間保存した後に32℃、55RH%の環境下で、データ記録再生装置50において0.55Nのテンションで1往復走行することを繰り返し、合計360時間保存する。 Next, the magnetic tape MT is wound into the magnetic recording cartridge 10 with a tension of 0.55 N and stored at 65°C and 40 RH% for 24 hours, then run once back and forth at a tension of 0.55 N in the data recording and reproducing device 50 in an environment of 32°C and 55 RH%, and then stored again for 24 hours in an environment of 65°C and 40 RH%, after which it is run once back and forth at a tension of 0.55 N in the data recording and reproducing device 50 in an environment of 32°C and 55 RH%, repeating this process for a total of 360 hours of storage.
 磁気テープMTの長手方向の各位置における保存後のサーボバンドピッチと初期状態の長手方向における対応する位置(長手方向における対応する位置は、全長における同じ長さ比率となる位置を意味する。)のサーボバンドピッチの比を幅変化量Δとする。幅変化量Δが最小になる部分と幅変化量Δが最大になる部分を特定し、さらに幅変化量最大値Δmaxと幅変化量最小値Δminとの差を求める。 The ratio of the servo band pitch at each position in the longitudinal direction of the magnetic tape MT after storage to the servo band pitch at the corresponding position in the longitudinal direction in the initial state (corresponding positions in the longitudinal direction mean positions having the same length ratio in the entire length) is defined as the width change amount Δ. The portion where the width change amount Δ is minimum and the portion where the width change amount Δ is maximum are identified, and the difference between the maximum width change amount Δmax and the minimum width change amount Δmin is calculated.
 サーボバンドピッチの測定方法について、以下により具体的に説明する。
 ここでは、図6に示すように、サーボバンドs2とサーボバンドs3との間に挟まれたデータバンドd0をデータライトヘッド60がトラッキングする例について説明する。
The method for measuring the servo band pitch will be described in more detail below.
Here, as shown in FIG. 6, an example will be described in which the data write head 60 tracks a data band d0 sandwiched between a servo band s2 and a servo band s3.
 データ記録再生装置50を用いたサーボバンドピッチの測定方法は、上述のように、データ記録再生装置50によって磁気テープMTを全長にわたって走行させ、2つのサーボリード部62の各サーボバンド上でのサーボトレースラインTのサーボパターン47に対する相対位置を表す数値をそれぞれ測定し、測定した各サーボトレースラインTのサーボパターン47に対する相対位置からサーボバンドピッチを算出する。図6において実線で示すサーボトレースラインTの間隔は、磁気テープMTの幅が変化していないときのサーボバンドピッチ(データライトヘッド60の2つのサーボリード部62の配置間隔である第1のピッチP1)を示している。また、図6において破線で示すサーボトレースラインTの間隔は、磁気テープMTの幅が広がったときのサーボバンドピッチ(P2’)に相当する。 As described above, the method of measuring the servo band pitch using the data recording and reproducing device 50 involves running the magnetic tape MT over its entire length using the data recording and reproducing device 50, measuring the numerical values representing the relative positions of the servo trace lines T on each servo band of the two servo read sections 62 with respect to the servo pattern 47, and calculating the servo band pitch from the measured relative positions of each servo trace line T with respect to the servo pattern 47. The spacing between the servo trace lines T shown by solid lines in FIG. 6 indicates the servo band pitch when the width of the magnetic tape MT does not change (the first pitch P1, which is the spacing between the two servo read sections 62 of the data write head 60). The spacing between the servo trace lines T shown by dashed lines in FIG. 6 corresponds to the servo band pitch (P2') when the width of the magnetic tape MT is expanded.
 図7は、サーボトレースラインTの測定方法を説明する図である。データ記録再生装置50は、サーボパターン47に対するサーボトレースラインTの位置に応じた波形のサーボ再生信号を出力する。典型的には、互いに同種形状の傾斜パターンの配列体であるAバースト及びCバースト間の距離ACと、互いに異種形状の傾斜パターンの配列体であるAバースト及びBバースト間の距離ABとを算出し、下記[数1]式で各サーボリード部62のサーボトレースラインTのサーボパターン47に対する相対位置を表す数値を算出する。なお、θは、上記各傾斜パターンのアジマス角であり、本例では、12°とする。 FIG. 7 is a diagram explaining a method for measuring the servo trace line T. The data recording and reproducing device 50 outputs a servo reproduction signal having a waveform according to the position of the servo trace line T relative to the servo pattern 47. Typically, the distance AC between the A burst and the C burst, which are arrays of inclination patterns of the same shape, and the distance AB between the A burst and the B burst, which are arrays of inclination patterns of different shapes, are calculated, and a numerical value representing the relative position of the servo trace line T of each servo lead portion 62 with respect to the servo pattern 47 is calculated using the following formula [Equation 1]. Note that θ is the azimuth angle of each of the inclination patterns, and is set to 12° in this example.
   
 ここで、距離ACは、AバーストおよびCバーストの第1傾斜部同士の間の距離AC1でもよいし、それらの第2傾斜部同士の間の距離AC2でもよいし、それらの第3傾斜部同士の間の距離AC3でもよいし、それらの第4傾斜部同士の間の距離AC4でもよい。これらの距離AC(AC1~AC4)は、サーボ再生波形における振幅の正の最大値を示す位置(上ピーク位置)間の距離をいう。 Here, the distance AC may be the distance AC1 between the first slope portions of the A burst and the C burst, the distance AC2 between their second slope portions, the distance AC3 between their third slope portions, or the distance AC4 between their fourth slope portions. These distances AC (AC1 to AC4) refer to the distances between the positions (upper peak positions) that indicate the maximum positive amplitude values in the servo playback waveform.
 距離ABについても同様に、AバーストおよびBバーストの第1傾斜部同士の間の距離AB1でもよいし、それらの第2傾斜部同士の間の距離AB2でもよいし、それらの第3傾斜部同士の間の距離AB3でもよいし、それらの第4傾斜部同士の間の距離AB4でもよい。典型的には、距離AC1が採用される場合は距離AB1が採用され、距離AC2が採用される場合は距離AB2が採用され、距離AC3が採用される場合は距離AB3が採用され、距離AC4が採用される場合は距離AB4が採用される。 Similarly, the distance AB may be the distance AB1 between the first inclined portions of the A burst and the B burst, the distance AB2 between their second inclined portions, the distance AB3 between their third inclined portions, or the distance AB4 between their fourth inclined portions. Typically, when distance AC1 is adopted, distance AB1 is adopted, when distance AC2 is adopted, distance AB2 is adopted, when distance AC3 is adopted, distance AB3 is adopted, and when distance AC4 is adopted, distance AB4 is adopted.
 そして、[数1]式を用いて算出された、距離ABおよび距離ACの割合から求められるサーボパターン上の各サーボトレースラインTの位置を表す数値の差分から、サーボバンドピッチを求める。ここでは、測定する2つのサーボバンドのうち、テープエッジ側のサーボバンド(サーボバンドs3)の測定値からの、テープ中央側のサーボバンド(サーボバンドs2)の測定値の差分をとる。その値の正負は、テープ幅の変化の方向を意味し、正の場合はサーボバンドピッチが狭まったことに相当し、負の場合はサーボバンドピッチが広がったことに相当する。上記差分がゼロの場合は、テープ幅の変動が無いことを意味する。 Then, the servo band pitch is calculated from the difference in the values representing the position of each servo trace line T on the servo pattern, which is calculated from the ratio of distances AB and AC, using equation 1. Here, of the two servo bands being measured, the difference is taken between the measurement value of the servo band on the tape edge side (servo band s3) and the measurement value of the servo band on the tape center side (servo band s2). The positive or negative value indicates the direction of change in the tape width, with a positive value corresponding to a narrowing of the servo band pitch and a negative value corresponding to a widening of the servo band pitch. If the difference is zero, it means that there is no change in the tape width.
 サーボバンドピッチは、多数のサーボフレームの差分から求めることが好ましく、例えば、100~100000個のサーボフレームの差分から計算される測定値の平均値であってもよい。測定時におけるテープテンションは、サーボパターン47の記録時のテンション(基準テンション、例えば、0.55N)とし、磁気テープMTの全長にわたって一定のテンションで測定を行う。 The servo band pitch is preferably determined from the difference between a large number of servo frames, and may be, for example, the average of measured values calculated from the difference between 100 and 100,000 servo frames. The tape tension during measurement is the tension during recording of the servo pattern 47 (reference tension, for example, 0.55 N), and the measurement is performed at a constant tension over the entire length of the magnetic tape MT.
 なお、サーボトレースラインTの測定方法は上記の例に限られず、例えば、CバーストおよびAバースト間の距離CAと、CバーストおよびDバースト間の距離CDとを算出し、下記[数2]式でサーボトレースラインTの位置を測定してもよい。 The method of measuring the servo trace line T is not limited to the above example. For example, the distance CA between the C burst and the A burst and the distance CD between the C burst and the D burst may be calculated, and the position of the servo trace line T may be measured using the following formula [Equation 2].
   
 ここで、距離CAは、CバーストおよびAバーストの第1傾斜部同士の間の距離CA1でもよいし、それらの第2傾斜部同士の間の距離CA2でもよいし、それらの第3傾斜部同士の間の距離CA3でもよいし、それらの第4傾斜部同士の間の距離CA4でもよい。これらの距離CA(CA1~CA4)は、サーボ再生波形における振幅の正の最大値を示す位置間の距離をいう。 Here, the distance CA may be the distance CA1 between the first inclined portions of the C burst and the A burst, the distance CA2 between their second inclined portions, the distance CA3 between their third inclined portions, or the distance CA4 between their fourth inclined portions. These distances CA (CA1 to CA4) refer to the distances between the positions that indicate the maximum positive amplitude values in the servo playback waveform.
 距離CDについても同様に、CバーストおよびDバーストの第1傾斜部同士の間の距離CD1でもよいし、それらの第2傾斜部同士の間の距離CD2でもよいし、それらの第3傾斜部同士の間の距離CD3でもよいし、それらの第4傾斜部同士の間の距離CD4でもよい。典型的には、距離CA1が採用される場合は距離CD1が採用され、距離CA2が採用される場合は距離CD2が採用され、距離CA3が採用される場合は距離CD3が採用され、距離CA4が採用される場合は距離CD4が採用される。 Similarly, the distance CD may be the distance CD1 between the first inclined portions of the C burst and the D burst, the distance CD2 between their second inclined portions, the distance CD3 between their third inclined portions, or the distance CD4 between their fourth inclined portions. Typically, when distance CA1 is adopted, distance CD1 is adopted, when distance CA2 is adopted, distance CD2 is adopted, when distance CA3 is adopted, distance CD3 is adopted, and when distance CA4 is adopted, distance CD4 is adopted.
 さらに、サーボバンドピッチの測定には、[数1]式を用いた測定値と[数2]式を用いた測定値との平均値が用いられてもよい。さらに、[数1]式における距離AC,ABおよび[数2]式における距離CA,CDとして、サーボ再生波形における振幅の負の最大値を示す位置(下ピーク位置)間の距離が採用されてもよい。あるいは、[数1]式における距離AC,ABおよび[数2]式における距離CA,CDとして、サーボ再生波形における振幅の正の最大値を示す位置(上ピーク位置)間の距離と負の最大値を示す位置(下ピーク位置)間の距離との平均値が採用されてもよい。 Furthermore, the servo band pitch may be measured by using the average value of the measurement value using the formula [1] and the measurement value using the formula [2]. Furthermore, the distance between the positions (lower peak positions) showing the maximum negative value of the amplitude in the servo reproduction waveform may be used as the distances AC and AB in the formula [1] and the distances CA and CD in the formula [2]. Alternatively, the average value of the distance between the positions (upper peak positions) showing the maximum positive value of the amplitude in the servo reproduction waveform and the distance between the positions (lower peak positions) showing the maximum negative value may be used as the distances AC and AB in the formula [1] and the distances CA and CD in the formula [2].
 図6に示すように、サーボトレースラインTが破線で示す位置にある場合、サーボバンドs2においては距離ABが38.5μm、距離ACが76μm、サーボバンドs3においては距離ABが37.5μm、距離ACが76μmであるとする。
 サーボバンドs2においては、
 (38.5/76)×(76/2tan12°)=90.5641[μm]
 サーボバンドs3においては、
 (37.5/76)×(76/2tan12°)=88.2118[μm]
となる。これらの値の差分は、
 88.2118-90.5641=-2.3523[μm]
となる。
 したがって、この場合におけるサーボバンドピッチP2は、サーボリードヘッドピッチP1より、2.3523μmだけ広い値として求められる。
As shown in FIG. 6, when the servo trace line T is located at the position indicated by the dashed line, the distance AB is 38.5 μm and the distance AC is 76 μm in the servo band s2, and the distance AB is 37.5 μm and the distance AC is 76 μm in the servo band s3.
In the servo band s2,
(38.5/76) x (76/2 tan 12°) = 90.5641 [μm]
In the servo band s3,
(37.5/76) x (76/2 tan 12°) = 88.2118 [μm]
The difference between these values is
88.2118-90.5641=-2.3523 [μm]
It becomes.
Therefore, the servo band pitch P2 in this case is determined to be a value 2.3523 μm wider than the servo read head pitch P1.
 なお、図6に示すように、サーボトレースラインTが実線で示す位置にある場合、サーボバンドs2およびサーボバンドs3のいずれにおいても距離ABが38μm、距離ACが76μmとなる。この場合、サーボバンドs2およびサーボバンドs3のいずれにおいても89.3880[μm]であり、それらの差分は0[μm]となる。つまり、この場合のサーボバンドピッチは、サーボリードヘッドピッチP1と同一を意味する。 As shown in FIG. 6, when the servo trace line T is at the position indicated by the solid line, the distance AB is 38 μm and the distance AC is 76 μm for both servo band s2 and servo band s3. In this case, the distance is 89.3880 [μm] for both servo band s2 and servo band s3, and the difference between them is 0 [μm]. In other words, the servo band pitch in this case is the same as the servo read head pitch P1.
[テンション制御]
 データ記録再生装置50は、上述のようにして測定されたサーボパターンピッチに基づき、測定されたサーボパターンピッチがサーボリードヘッドピッチP1と同一となるように磁気テープMTのテンションを制御してもよい。
[Tension control]
The data recording/reproducing device 50 may control the tension of the magnetic tape MT based on the servo pattern pitch measured as described above so that the measured servo pattern pitch becomes equal to the servo read head pitch P1.
 本実施形態では、磁気テープMTへのデータの記録あるいは磁気テープMTからのデータの再生に先立って、データを記録あるいは再生する1つのデータバンドを挟む2つのサーボバンドからサーボ信号を読み取り、読み取った各サーボ信号からこれら2つのサーボバンドピッチがサーボリードヘッドピッチP1よりも広いか狭いかを判定してもよい。サーバンドピッチがサーボリードヘッドピッチP1よりも広い場合にはテンションを高くし、サーボバンドピッチがサーボリードヘッドピッチP1よりも狭い場合にはテンションを低くしてもよい。このようにサーボバンドピッチの大きさに応じてテンションの大きさを調整することで、当該データバンドについて所望とするトラッキング制御を安定に行うことができる。 In this embodiment, prior to recording data to the magnetic tape MT or reproducing data from the magnetic tape MT, servo signals may be read from two servo bands sandwiching one data band for recording or reproducing data, and it may be determined from each read servo signal whether the pitch of these two servo bands is wider or narrower than the servo read head pitch P1. If the servo band pitch is wider than the servo read head pitch P1, the tension may be increased, and if the servo band pitch is narrower than the servo read head pitch P1, the tension may be decreased. In this way, by adjusting the magnitude of the tension according to the magnitude of the servo band pitch, it is possible to stably perform the desired tracking control for the data band.
 データ記録再生装置50は、1つのデータバンドについてのサーボバンドピッチとテンションとの関係を1往復のテープ走行により取得し、その取得データをカートリッジメモリ11へ記録してもよい。データ記録再生装置50は、上記1つのデータバンドについて測定したサーボバンドピッチとテンションとの関係を、他のデータバンドに対するデータの記録再生時にも同様に適用してもよい。 The data recording and reproducing device 50 may obtain the relationship between the servo band pitch and tension for one data band by running the tape once back and forth, and record the obtained data in the cartridge memory 11. The data recording and reproducing device 50 may similarly apply the relationship between the servo band pitch and tension measured for the one data band when recording and reproducing data for other data bands.
 なお、磁気テープMTの長手方向における幅変化量は、例えば、以下のとおりに調整することができる。磁気テープMTに生じるひずみやクリープを減少させるために、ベース層の材質と、ベース層の縦横強度(縦横延伸条件)、磁性層種類(塗布型磁性層、真空薄膜型磁性層)、塗布層の場合は、結合剤のTg、硬化剤の量などを適宜選択してもよい。また、ひずみ緩和のために磁気テープMTの裁断前に、65℃以上の温度で長時間保管してもよく、さらにサーボライト前に、55℃以上の温度で長時間保管してもよい。 The amount of width change in the longitudinal direction of the magnetic tape MT can be adjusted, for example, as follows. In order to reduce distortion and creep that occurs in the magnetic tape MT, the material of the base layer, the longitudinal and transverse strength of the base layer (longitudinal and transverse stretching conditions), the type of magnetic layer (coated magnetic layer, vacuum thin-film magnetic layer), and in the case of a coated layer, the Tg of the binder and the amount of hardener, etc. may be appropriately selected. In addition, to relieve distortion, the magnetic tape MT may be stored for a long period of time at a temperature of 65°C or higher before cutting, and further may be stored for a long period of time at a temperature of 55°C or higher before servo writing.
[損失弾性率、貯蔵弾性率]
 ベース層41の65℃における損失弾性率が0.40GPa以下、好ましくは0.35GPa以下、より好ましくは0.30GPa以下、さらに好ましくは0.25GPa以下、好ましくは0.20GPa以下でありうる。損失弾性率が当該範囲内であることにより、60℃以上の高温環境下で保存を行っても、テープシステムの走行張力の調整や巻き方向を変更することで磁気テープの長手方向における幅修正が可能な磁気記録カートリッジを提供することができる。
[Loss modulus, storage modulus]
The loss modulus of the base layer 41 at 65° C. can be 0.40 GPa or less, preferably 0.35 GPa or less, more preferably 0.30 GPa or less, even more preferably 0.25 GPa or less, and preferably 0.20 GPa or less. By having the loss modulus within this range, it is possible to provide a magnetic recording cartridge that allows the width of the magnetic tape in the longitudinal direction to be adjusted by adjusting the running tension of the tape system or changing the winding direction, even when stored in a high-temperature environment of 60° C. or more.
 ベース層41の65℃における貯蔵弾性率が好ましくは8.0GPa以下、より好ましくは7.0GPa以下、さらに好ましくは6.0GPa以下でありうる。貯蔵弾性率が上記数値範囲内にあることによって高温環境下で保存後もテープシステムの走行張力調整や巻き方向を変更することで磁気テープの長手方向における幅修正が可能な磁気記録カートリッジを提供することができる。
 また、前記ベース層の65℃における貯蔵弾性率の下限は、特に限定されるものではないが、例えば、好ましくは0.01GPa以上、より好ましくは0.02GPa以上、さらに好ましくは0.03GPa以上でありうる。
The storage modulus of the base layer 41 at 65° C. can be preferably 8.0 GPa or less, more preferably 7.0 GPa or less, and even more preferably 6.0 GPa or less. By having the storage modulus within the above numerical range, it is possible to provide a magnetic recording cartridge in which the width of the magnetic tape in the longitudinal direction can be adjusted by adjusting the running tension of the tape system or changing the winding direction even after storage in a high-temperature environment.
The lower limit of the storage modulus of the base layer at 65° C. is not particularly limited, but may be, for example, preferably 0.01 GPa or more, more preferably 0.02 GPa or more, and even more preferably 0.03 GPa or more.
 損失弾性率及び貯蔵弾性率は、動的粘弾性測定によって測定される。前記動的粘弾性測定は温度依存性測定であり、具体的には以下のとおりにして行われる。 The loss modulus and storage modulus are measured by dynamic viscoelasticity measurement. The dynamic viscoelasticity measurement is a temperature-dependent measurement, and is specifically performed as follows.
 磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から10mから20m、30mから40m、及び50mから60mの3か所の位置からそれぞれ250mmの長さに切り出し、切り出された磁気テープMTを打ち抜き器にて測定テープ長22.0mm、幅4.0mmに切り出し、サンプルを作製する。サンプルのベース層41以外の層(すなわち非磁性層(下地層)42、磁性層43およびバック層44)をアセトンまたはエタノール等で除去する。当該サンプルの長手方向の両端が、動的粘弾性測定装置(RSA II、TAインスツルメンツ社製)の測定部にクランプされる。そして、以下の測定条件で、動的粘弾性測定を行う。n数3で各サンプルについて5点の位置で測定し、それらの測定値(合計15点)を単純に平均(算術平均)して、損失弾性率及び貯蔵弾性率を算出する。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。
測定温度範囲:-10℃~180℃
昇温速度:2℃/分
振幅:テープ初期長に対して0.1%の振幅で伸び縮みさせる
測定周波数:10Hz
Test Type:「Strain-Controlled」
Measurment Type:「Dynamic」
装置が置かれる環境:温度25℃、湿度50RH%
測定部の湿度コントロール:無し
測定N数:3
 前記装置の測定条件に関するより詳細な設定は以下のとおりである。すなわち、以下に記載されるとおり、前記測定において、張力が0以下になることがないように張力が調整され、且つ、ひずみがトランスデューサーの下限値を下回らないように調整される。これらの調整のための測定条件は当業者により適宜設定されてよいが、上記動的粘弾性測定装置について例えば以下のとおりの設定が採用されてよい。
Option設定
Delay Before Test : OFF
Auto Tension(張力が0以下になることがないように張力を調整するための設定)
Mode Static Force Tracking Dynamic Force
   Auto Tension Direction Tension
   Initial Static Force 10.0g
   Static>Dynamic Force by 5.0%
   Minimum Static Force 1.0g
   Auto Tension Sensitivity 1.0g
Auto Strain(ひずみがトランスデューサーの下限を下回らないように調整するための設定)
   Max Applied Strain 0.1%
   Max Allowed Force 100.0g
   Min allowed Force 2.0g
   Strain Adjustment 3.0%
Meas Ops: Default setting
The magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and cut into 250 mm lengths from three positions, 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection between the magnetic tape MT and the leader tape LT, and the cut magnetic tape MT is cut into a measuring tape length of 22.0 mm and width of 4.0 mm using a punch to prepare a sample. The layers other than the base layer 41 of the sample (i.e., the non-magnetic layer (undercoat layer) 42, the magnetic layer 43, and the back layer 44) are removed with acetone or ethanol. Both ends of the longitudinal direction of the sample are clamped to the measuring part of a dynamic viscoelasticity measuring device (RSA II, manufactured by TA Instruments). Then, dynamic viscoelasticity measurement is performed under the following measurement conditions. Measurements are performed at five positions for each sample, with n being 3, and the measured values (total of 15 points) are simply averaged (arithmetic average) to calculate the loss modulus and storage modulus. The five measurement positions are selected at random from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
Measurement temperature range: -10℃ to 180℃
Temperature rise rate: 2° C./min. Amplitude: Tape is stretched and contracted with an amplitude of 0.1% of the initial length. Measurement frequency: 10 Hz.
Test Type: "Strain-Controlled"
Measurement Type: "Dynamic"
Environment in which the device is placed: Temperature 25°C, humidity 50RH%
Humidity control of the measurement section: None Number of measurements: 3
More detailed settings regarding the measurement conditions of the device are as follows. That is, as described below, in the measurement, the tension is adjusted so that it does not become 0 or less, and the strain is adjusted so that it does not fall below the lower limit of the transducer. The measurement conditions for these adjustments may be appropriately set by those skilled in the art, but for example, the following settings may be adopted for the dynamic viscoelasticity measuring device.
Option settings
Delay Before Test: OFF
Auto Tension (Setting to adjust tension so that it never falls below 0)
Mode Static Force Tracking Dynamic Force
Auto Tension Direction Tension
Initial Static Force 10.0g
Static>Dynamic Force by 5.0%
Minimum Static Force 1.0g
Auto Tension Sensitivity 1.0g
Auto Strain (Setting to adjust the strain so that it does not fall below the lower limit of the transducer)
Max Applied Strain 0.1%
Maximum Allowed Force 100.0g
Min allowed force 2.0g
Strain Adjustment 3.0%
Meas Ops: Default setting
 以上で説明した前記動的粘弾性測定をベース層41に対して行うことによって、測定温度65℃における損失弾性率及び貯蔵弾性率の値が得られる。 By performing the dynamic viscoelasticity measurement described above on the base layer 41, the loss modulus and storage modulus values at a measurement temperature of 65°C can be obtained.
 ベース層41の損失弾性率及び貯蔵弾性率は、例えばベース層を形成する材料の種類及びベース層の長手方向と幅方向の延伸状態及び/又は塗布乾燥工程、カレンダー工程、硬化工程、Aging工程などによって調整することができる。 The loss modulus and storage modulus of the base layer 41 can be adjusted, for example, by the type of material forming the base layer, the stretching state of the base layer in the longitudinal and transverse directions, and/or the coating and drying process, calendaring process, curing process, aging process, etc.
 例えば、ベース層を形成する材料としてPEN、PET、又はPEEKを用いることによって、他の材料と比べて損失弾性率及び貯蔵弾性率を小さくすることができる。 For example, by using PEN, PET, or PEEK as the material forming the base layer, the loss modulus and storage modulus can be reduced compared to other materials.
[脂肪酸及び/又は脂肪酸エステルの抽出率] [Extraction rate of fatty acids and/or fatty acid esters]
<事前準備>
(A)サンプル台紙のセット
 グラフ用紙を4枚分切り取り、中央が1mサイズとなるように両端6マス内側の位置に1m目印線を引く。図41は抽出率測定に使用するサンプル台紙の一例を示す図である。図41に示すように、グラフ用紙の真中50cmに、逆三角形マークをマーキングする。机に対し、平行にグラフ用紙を配置し、グラフ用紙両端を両面テープで固定する。2箇所の1m目印線にかぶせるように両面テープを貼り付けてサンプル台紙をセットする。
<Advance preparations>
(A) Setting the sample mount Cut out four sheets of graph paper and draw 1m marking lines six squares inside both ends so that the center is 1m in size. Figure 41 shows an example of a sample mount used to measure the extraction rate. As shown in Figure 41, an inverted triangle mark is marked 50 cm in the center of the graph paper. Place the graph paper parallel to the desk and fix both ends of the graph paper with double-sided tape. Attach double-sided tape so that it covers the two 1m marking lines and set the sample mount.
(B)アセトニトリルと超純水の混合溶媒(アセトニトリル:超純水=100:3)の調製
 アセトニトリル1000mLに超純水30mLを注ぎ入れる。蓋を閉めた後、上下に軽く振り、蓋を緩めた状態で超音波洗浄機に15分かけて脱気する。
(B) Preparation of a mixed solvent of acetonitrile and ultrapure water (acetonitrile:ultrapure water=100:3) Pour 30 mL of ultrapure water into 1000 mL of acetonitrile. After closing the lid, shake gently up and down, and with the lid loosened, degas in an ultrasonic cleaner for 15 minutes.
(C)アルミ蓋の準備
 黒い蓋、白いゴム、アルミシートをセットする。
(C) Preparing the aluminum lid. Set the black lid, white rubber, and aluminum sheet in place.
(D)シリンジの準備
 シリンジ外軸にフィルターをセットする。中軸も併せて出しておく。
(E)標準試薬の調製
 標準試薬の種類は、使用する脂肪酸または脂肪酸エステルによって異なる。また、濃度は任意である。一例として、脂肪酸にステアリン酸、脂肪酸エステルにステアリン酸ブチルを使用する場合を示す。ステアリン酸の標準試薬は、以下のようにして調製する。ステアリン酸を4.0mg、10.0mg、30.0mgはかりとり、アセトニトリル/水=100/3の溶媒をはかりとり、それぞれ200mLになるようメスアップする。ステアリン酸ブチルの標準試薬は、以下のようにして調製する。ステアリン酸ブチルを10.0mg、30.0mg、40.0mgはかりとり、アセトニトリル/水=100/3の溶媒をはかりとり、それぞれ200mLになるようメスアップする。ステアリン酸の標準試薬(純正化学製、純度95.0%)を調製する。ステアリン酸ブチルの標準試薬(純正化学製、純度95.0%)を調製する。
(D) Preparing the syringe Set the filter on the outer shaft of the syringe. Leave the inner shaft out as well.
(E) Preparation of standard reagent The type of standard reagent varies depending on the fatty acid or fatty acid ester used. The concentration is also optional. As an example, the case of using stearic acid as the fatty acid and butyl stearate as the fatty acid ester is shown below. The standard reagent of stearic acid is prepared as follows. 4.0 mg, 10.0 mg, and 30.0 mg of stearic acid are weighed out, and a solvent of acetonitrile/water = 100/3 is weighed out, and each is diluted to 200 mL. The standard reagent of butyl stearate is prepared as follows. 10.0 mg, 30.0 mg, and 40.0 mg of butyl stearate are weighed out, and a solvent of acetonitrile/water = 100/3 is weighed out, and each is diluted to 200 mL. A standard reagent of stearic acid (manufactured by Junsei Chemical Co., Ltd., purity 95.0%) is prepared. A standard reagent of butyl stearate (manufactured by Junsei Chemical Co., Ltd., purity 95.0%) is prepared.
<逆相液体クロマトグラフィ
ーの立ち上げ>
 逆相液体クロマトグラフィー(HPLC)として、Ultimate 3000(Thermo社製)(カラム:ODS-2 5um 4.6×150mm (GL Sciences))を使用する。ポンプ、オートサンプラー、示差屈折率計(Shodex RI-101、昭和電工製、設定温度;30℃)、PCにある電源をそれぞれ入れる。ポンプのパージを5分間実施する。オートサンプラーのWashを実施する。ソフトを起動させる。流量/圧力を2mLに上げると液が流れ始めるので、安定するまで1時間以上待つ。なお、移動相アセトニトリル/水=100/3(体積比)、溶媒アセトニトリル/水=100/3、カラム温度40℃、測定時間10分、流量毎分2mL、インジェクション注入量200μLとなるように測定条件を設定する。
<Start-up of reversed-phase liquid chromatography>
As a reversed-phase liquid chromatography (HPLC), an Ultimate 3000 (Thermo) (column: ODS-2 5um 4.6×150mm (GL Sciences)) is used. The pump, autosampler, differential refractometer (Shodex RI-101, Showa Denko, set temperature: 30°C), and PC are turned on. The pump is purged for 5 minutes. The autosampler is washed. The software is started. When the flow rate/pressure is increased to 2mL, the liquid starts to flow, so wait for 1 hour or more until it stabilizes. The measurement conditions are set to mobile phase acetonitrile/water = 100/3 (volume ratio), solvent acetonitrile/water = 100/3, column temperature 40°C, measurement time 10 minutes, flow rate 2mL per minute, and injection injection volume 200μL.
<標準試薬準備>
 調製済みの標準試薬を超音波洗浄機に15分かける。超音波が終了したら、バイアル瓶にフィルターセット済みシリンジを差し込み、標準試薬を直接シリンジ内に注ぎ入れる。標準試薬をバイアル瓶に詰めていく。中軸を押し込み、液をバイアル瓶内へ押し出す。バイアル瓶の肩くらいまで入ったら、アルミ蓋を閉める。シリンジ内に残った標準試薬は、フィルターを通してスクリュー管瓶に戻す。
<Preparation of standard reagents>
The prepared standard reagent is placed in an ultrasonic cleaner for 15 minutes. When the ultrasonic treatment is finished, insert the syringe with the filter set into the vial and pour the standard reagent directly into the syringe. The standard reagent is packed into the vial. Press the center stem to push the liquid into the vial. When the liquid reaches the top of the vial, close the aluminum lid. The standard reagent remaining in the syringe is returned to the screw cap through the filter.
<サンプル採取>
 磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から長手方向に20mの位置で磁気テープMTを約5mの長さに切り出す。グラフ用紙の線を利用し、磁気テープをMag/Back交互に平行に重ねながらサンプル台紙の両面テープに貼り付ける。なお、磁気テープ貼り付け時にテンションをかけすぎないように留意する。P/C表層を捨て、磁気テープ1m×5本を採取する。サンプル台紙の1m目印線に合せて定規を置き、カッターで磁気テープを1m切り取る。5本の磁気テープをまとめて、逆三角形マークで示される中央をピンセットでつまみあげ二つ折にし、端のカール部を握ってしわ付けをする。磁気テープを1本ずつばらしながら、120mL丸底フラスコへ入れ、アルミホイルで蓋をする。
<Sample collection>
The magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and the magnetic tape MT is cut out to a length of about 5 m at a position 20 m in the longitudinal direction from the connection part between the magnetic tape MT and the leader tape LT. Using the lines on the graph paper, the magnetic tape is attached to the double-sided tape of the sample mount while overlapping the Mag/Back alternately in parallel. Note that care should be taken not to apply too much tension when attaching the magnetic tape. The P/C surface layer is discarded, and 5 pieces of magnetic tape 1 m long are collected. A ruler is placed on the 1 m mark line of the sample mount, and 1 m of magnetic tape is cut out with a cutter. The five magnetic tapes are gathered together, and the center indicated by the inverted triangle mark is picked up with tweezers, folded in half, and the curled part at the end is grasped and wrinkled. The magnetic tapes are separated one by one and placed in a 120 mL round-bottom flask, and covered with aluminum foil.
(A)5分間抽出
 100mLメスシリンダーに60mLヘキサンを量り取る。ストップウォッチを5分に設定する。25℃環境下におかれた自動振とう機にサンプル入り120mLスクリュー管を設置し、アルミ蓋をあけておく。量り取ったヘキサン60mLを120mL丸底フラスコに入れ、アルミ蓋をし、ストップウォッチと自動振とう機の電源を同時にオンにして振とうを開始する(自動振とう機の回転数を300rpmに設定する)。振とう開始から5分後に100mLメスシリンダーに試料50mLを量り取りうつす。メスシリンダー内の試料をナスフラスコへうつす。エバポレーターのナスフラスコ取付口に試料の入ったナスフラスコをはめこみ、固定する。エバポレーターをスタートさせ、ナスフラスコの回転数を50rpmに設定し、ナスフラスコを回転させる。160hPaまで真空引きを開始する。ナスフラスコを湯浴へ沈める。約4分でヘキサンが飛び、ナスフラスコには脂肪酸又は脂肪酸エステルのみが残る。完全にヘキサンが無くなったら、ナスフラスコを湯浴から引き上げる。減圧を解除し、大気圧解放とする(1013hPa前後)。エバポレーターの回転を止める。ナスフラスコを外して、乾燥させる。
(A) 5-minute extraction Measure out 60 mL of hexane into a 100 mL graduated cylinder. Set the stopwatch to 5 minutes. Place the 120 mL screw tube containing the sample in an automatic shaker placed in a 25°C environment, and leave the aluminum lid open. Put the measured 60 mL of hexane into a 120 mL round-bottom flask, put the aluminum lid on, and turn on the stopwatch and the automatic shaker at the same time to start shaking (set the rotation speed of the automatic shaker to 300 rpm). Five minutes after the start of shaking, measure out 50 mL of the sample and transfer it to a 100 mL graduated cylinder. Transfer the sample in the graduated cylinder to an eggplant flask. Insert the eggplant flask containing the sample into the eggplant flask attachment port of the evaporator and fix it. Start the evaporator, set the rotation speed of the eggplant flask to 50 rpm, and rotate the eggplant flask. Start drawing a vacuum to 160 hPa. Submerge the eggplant flask in a hot water bath. The hexane evaporates in about 4 minutes, and only fatty acids or fatty acid esters remain in the eggplant flask. When the hexane is completely gone, remove the recovery flask from the water bath. Release the reduced pressure and release the pressure to atmospheric pressure (approximately 1013 hPa). Stop the evaporator from rotating. Remove the recovery flask and dry it.
(B)溶媒置換
 エバポレーターによってヘキサンが飛ばされた後の乾燥済みナスフラスコに、アセトニトリルと超純水の混合溶媒5mLをピペットで量り取り、首から注ぎ回し入れる。アルミ蓋をし、ナスフラスコの首を持ちながら振り混ぜる。超音波に15分間かける。超音波処理後、再びナスフラスコを振り混ぜ、バイアル瓶に0.5μmフィルター付きシリンジをセットした状態で液を全て入れる。中軸を押し込み、バイアル瓶の肩まで液を入れて蓋をし、シリンジ内に残った液は捨てる。
(B) Solvent replacement After the hexane has been removed by the evaporator, 5 mL of a mixed solvent of acetonitrile and ultrapure water is pipetted into the dried eggplant flask and poured into the neck. Cover with an aluminum lid and shake while holding the neck of the eggplant flask. Apply ultrasonic waves for 15 minutes. After ultrasonic treatment, shake the eggplant flask again and add all the liquid to the vial with a syringe with a 0.5 μm filter attached. Push in the center shaft, fill the vial with liquid up to the shoulder, close the lid, and discard the liquid remaining in the syringe.
(C)HPLC測定
 逆相液体クロマトグラフィー(HPLC)の立ち上げ完了後、測定を開始する。
(C) HPLC Measurement After the start-up of reverse phase liquid chromatography (HPLC) is completed, the measurement is started.
<全量抽出>
 事前準備、標準試料準備、及びサンプル採取は、5分間抽出と同じ手順なので説明を省略する。
<Total Extraction>
The procedures for advance preparation, standard sample preparation, and sample collection are the same as those for the 5-minute extraction, so a detailed explanation is omitted.
 100mLメスシリンダーに60mLヘキサンを量り取る。ストップウォッチを1時間に設定する。サンプル入り110mLスクリュー管を超音波処理機(UT-105HS、SHARP社製)に設置し、アルミ蓋をあけておく。超音波処理機は、水浴(水温:40~50℃)を有し、水浴には上限線の水位となるように水を入れ、超音波出力を100%に設定する。量り取ったヘキサン60mLを120mLスクリュー管に入れ、アルミ蓋をし、ストップウォッチと超音波処理機の電源を同時にオンにして抽出を開始する。超音波処理機の電源をオンにしてから1時間後に、5分間抽出と同じ方法によりエバポレーターを使用して110mLスクリュー管内の試料からヘキサンを飛ばす。その後、アセトニトリルと超純水の混合溶媒5mL(濃度が高すぎてHPLCのピーク面積が振りきれた場合は、10mLで行う)をナスフラスコ内の試料に加える以外は5分間抽出と同じ手順で溶媒置換を行い、測定を行う。 Measure out 60 mL of hexane into a 100 mL graduated cylinder. Set the stopwatch to 1 hour. Place the 110 mL screw tube containing the sample in an ultrasonic processor (UT-105HS, SHARP) and leave the aluminum lid open. The ultrasonic processor has a water bath (water temperature: 40-50°C), and fill the water bath with water up to the upper water level line, and set the ultrasonic output to 100%. Place the 60 mL of measured hexane into a 120 mL screw tube, put the aluminum lid on, and turn on the stopwatch and ultrasonic processor at the same time to start extraction. One hour after turning on the ultrasonic processor, use an evaporator to remove hexane from the sample in the 110 mL screw tube using the same method as for the 5-minute extraction. After that, perform solvent replacement in the same manner as for the 5-minute extraction, except that 5 mL of a mixed solvent of acetonitrile and ultrapure water (if the concentration is too high and the HPLC peak area is off, use 10 mL) is added to the sample in the eggplant flask, and then perform measurement.
<データ解析>
 以下の手順によりデータ解析を実施する。
(A)標準試薬の面積値を求め、検量線を作成する(y=axの形にする)。
(B)測定試料の面積値を求め、検量線から濃度を計算する(ピーク面積の引き方は標準試薬と統一する。)。その後、アセトニトリル溶液5mL(または10mL)中の脂肪酸量(mg)または脂肪酸エステル量(mg)を求める。
(C)脂肪酸量または脂肪酸エステル量を下記式に基づいて抽出量(mg/m)に換算する。
抽出量=(脂肪酸量または脂肪酸エステル量*(60/50))/テープ面積脂肪酸量または脂肪酸エステル量=上記(2)で求めた数値テープ面積5m=0.06325m
(1/2インチ×長さ[m])
※ヘキサン60mLで抽出したうち、50mL分の脂肪酸量または脂肪酸エステル量を測定したため、補正する。
Data Analysis
Data analysis is carried out according to the following procedure.
(A) Determine the area value of the standard reagent and create a calibration curve (in the form y = ax).
(B) Calculate the area value of the measurement sample and calculate the concentration from the calibration curve (the method of drawing the peak area should be consistent with that of the standard reagent). Then, calculate the amount of fatty acid (mg) or fatty acid ester (mg) in 5 mL (or 10 mL) of acetonitrile solution.
(C) The amount of fatty acid or fatty acid ester is converted into an extractable amount (mg/m 2 ) based on the following formula.
Extraction amount = (amount of fatty acid or amount of fatty acid ester * (60/50)) / tape area Amount of fatty acid or amount of fatty acid ester = the value obtained in (2) above Tape area 5m = 0.06325m2
(1/2 inch x length [m])
*Amount of fatty acids or fatty acid esters was measured in 50 mL of the 60 mL extracted with hexane, so a correction was required.
[突起の高さ]
 研磨剤粒子によって形成された突起の高さは、以下に説明するとおり、測定サンプルの同一箇所について原子間力顕微鏡(以下、AFMと称す)による形状解析及び電界放射型走査電子顕微鏡(以下、FE-SEMと称す)によって撮像されたFE-SEM画像から、カーボン粒子及び研磨剤粒子のそれぞれの2次電子放出量の差異による輝度差を利用して画像解析した成分の判別を行うことによって測定される。前記AFMにより、突起の高さを測定することができ、且つ、前記FE-SEMにより、各突起がカーボン粒子及び研磨剤粒子のいずれによって形成されたものであるかを特定することができる。同一箇所についての前記AFMにより得られた画像と前記或る領域について前記FE-SEMにより得られた画像とを重ね合わせて合成画像を得て、得られた合成画像から、各突起を形成する粒子の種類(カーボン粒子及び研磨剤粒子のいずれであるか)と各突起の高さとを対応付けることができる。
 以下で、AFMを用いた突起の高さの測定方法、FE-SEMを用いた突起を形成する粒子の種類の特定方法、及び、突起の高さと突起を形成する粒子の種類との対応付け方法についてそれぞれ説明する。
[Protrusion height]
The height of the protrusions formed by the abrasive particles is measured by performing shape analysis by an atomic force microscope (hereinafter referred to as AFM) and distinguishing the components by image analysis using the brightness difference due to the difference in the amount of secondary electron emission of the carbon particles and the abrasive particles from the FE-SEM images taken by a field emission scanning electron microscope (hereinafter referred to as FE-SEM) of the same location of the measurement sample, as described below. The height of the protrusions can be measured by the AFM, and it is possible to identify whether each protrusion is formed by carbon particles or abrasive particles by the FE-SEM. A composite image is obtained by superimposing the image obtained by the AFM of the same location and the image obtained by the FE-SEM of the certain region, and the type of particles forming each protrusion (whether it is carbon particles or abrasive particles) and the height of each protrusion can be associated from the obtained composite image.
Below, we will explain a method for measuring the height of the protrusions using an AFM, a method for identifying the type of particles that form the protrusions using an FE-SEM, and a method for correlating the height of the protrusions with the type of particles that form the protrusions.
[原子間力顕微鏡(AFM)を用いた突起の高さの測定方法]
 本技術においては、研磨剤粒子によって形成された突起の高さは、以下のようにして求められる。まず、LTOカートリッジ内のユーザーデータエリア(リーダーピンから24m以降)の磁気テープMTから、SEM観察用試料台に乗るサイズを切り出し、測定サンプルを作製する。次に、測定サンプルの中央部を避けて、測定サンプル表面にマーキングする。マーキング法としては、マニュピレーターやナインデンター等にて線状、点状に磁気テープMT上に凹みを形成する方法、銀ペースト等で磁気テープMT上に凸部を形成する方法等が挙げられる。なお、AFMでは、マーキング部をプローブで走査するため、マーキング部の状態によってはプローブ先端が汚れて正確な形状像が得られない場合があるので、プローブが汚染されないようにマーキングは小さく、浅くするのが好ましい。次に、測定サンプル表面のマーキング部をAFMによって形状解析する。マーキングされたマーキング部は凹んでいるので、マーキング部が視野のできるだけ端となるようにAFMにて5μm×5μmの視野角で測定する。なお、マーキング部の周辺部の突起は測定対象外とする。次に10μm×10μmの視野角で測定し、目印となる部分を決定し、その目印となる部分に合せて、マーキングのない部分を5μm×5μmの視野角で測定する。前記形状解析のための測定条件は以下に記載されたとおりである。研磨剤粒子について、1つの測定サンプルからAFMの1視野で20個以上の粒子を特定できる場合には、AFMにて1視野を測定する。研磨剤粒子について、AFMの1視野で特定できる粒子が20個に満たない場合、1つの測定サンプルから複数(例えば、3~5)の視野を測定する。研磨剤粒子について、二値化処理によって粒子と特定されるポイントを20個確保し、その20個のAFMによる測定値を平均し、得られた平均値を突起の高さとする。前記形状解析により、表面形状、突起解析、及び突起の高さ分布に関する情報を得ることができる。図42は、AFMによって撮像された表面形状の一例を示す画像の一例である。図43は、AFMによる突起解析結果の一例を示す図である。図44は、突起の高さ分布の一例を示す図である。得られた情報から形成された突起の個数及び前記粒子によって形成された突起の高さなどのデータを得ることができる。
[Method of measuring protrusion height using an atomic force microscope (AFM)]
In this technique, the height of the protrusions formed by the abrasive particles is obtained as follows. First, a measurement sample is prepared by cutting out a size that fits on a sample stage for SEM observation from the magnetic tape MT in the user data area (24 m or more from the leader pin) in the LTO cartridge. Next, marking is performed on the surface of the measurement sample, avoiding the center of the measurement sample. Examples of marking methods include a method of forming linear or dot-shaped recesses on the magnetic tape MT using a manipulator or a nine denter, and a method of forming convex portions on the magnetic tape MT using silver paste or the like. In addition, since the AFM scans the marking portion with a probe, depending on the state of the marking portion, the tip of the probe may become dirty and an accurate shape image may not be obtained, so it is preferable to make the marking small and shallow so that the probe is not contaminated. Next, the marking portion on the surface of the measurement sample is subjected to shape analysis by AFM. Since the marked marking portion is recessed, it is measured with an AFM at a viewing angle of 5 μm × 5 μm so that the marking portion is as close to the edge of the field of view as possible. Note that protrusions on the periphery of the marking portion are not measured. Next, the measurement is performed at a viewing angle of 10 μm×10 μm, a portion to be a mark is determined, and a portion without a marking is measured at a viewing angle of 5 μm×5 μm in accordance with the portion to be a mark. The measurement conditions for the shape analysis are as described below. For abrasive particles, when 20 or more particles can be identified in one AFM viewing field from one measurement sample, one viewing field is measured with the AFM. For abrasive particles, when the number of particles that can be identified in one AFM viewing field is less than 20, multiple viewing fields (e.g., 3 to 5) are measured from one measurement sample. For abrasive particles, 20 points that are identified as particles by binarization processing are secured, and the measured values of the 20 AFM are averaged, and the obtained average value is the height of the protrusions. The shape analysis can provide information on the surface shape, protrusion analysis, and protrusion height distribution. FIG. 42 is an example of an image showing an example of a surface shape captured by the AFM. FIG. 43 is a diagram showing an example of a protrusion analysis result by the AFM. FIG. 44 is a diagram showing an example of a protrusion height distribution. From the information obtained, data such as the number of protrusions formed and the height of the protrusions formed by the particles can be obtained.
<AFM測定条件>
装置:AFM Dimension 3100 顕微鏡(NanoscopeIV コントローラを有する)(Digital Instruments,USA)
測定モード:タッピング
チューニング時のタッピング周波数:200~400kHz
カンチレバー:SNL-10(Bruker社製)
Scan size:5μm×5μm
Scan rate:1Hz
Scan line:256
<AFM measurement conditions>
Equipment: AFM Dimension 3100 microscope with Nanoscope IV controller (Digital Instruments, USA)
Measurement mode: Tapping frequency during tapping tuning: 200 to 400 kHz
Cantilever: SNL-10 (manufactured by Bruker)
Scan size: 5 μm × 5 μm
Scan rate: 1Hz
Scan lines: 256
<突起高さを算出する際の基準面の算出方法>
 AFM像を256×256(=65,536)個の測定点に分割し、各測定点にて高さZ(i)(i:測定点番号、i=1~65,536)を測定し、測定した各測定点の高さZ(i)を単純に平均(算術平均)して平均高さ(基準面)Zave(=(Z(1)+Z(2)+・・・+Z(65,536))/65,536 )を求める。
<Method of calculating the reference plane when calculating the protrusion height>
The AFM image is divided into 256 × 256 (= 65,536) measurement points, and the height Z(i) (i: measurement point number, i = 1 to 65,536) is measured at each measurement point. The heights Z(i) at each measurement point are simply averaged (arithmetic mean) to determine the average height (reference plane) Z ave (= (Z(1) + Z(2) + ... + Z(65,536))/65,536).
[FE-SEMを用いた突起を形成する粒子の種類の特定方法]
 前記測定サンプルの前記マーキング部を、電界放射型走査電子顕微鏡(FE-SEM)を用いて、以下に記載されたFE-SEM測定条件で撮像して、FE-SEM画像を得る。図45中のA図はFE-SEM画像の一例である。得られたFE-SEM画像から、カーボン粒子及び研磨剤粒子のそれぞれの2次電子放出量の差異による輝度差を利用し、突起を形成する粒子の種類を特定することができる。当該特定のための画像処理については後述する。また、FE-SEM画像中のカーボン粒子と研磨剤粒子のそれぞれによって形成された突起の位置を識別する。
[Method of identifying the type of particles that form protrusions using FE-SEM]
The marking portion of the measurement sample is imaged using a field emission scanning electron microscope (FE-SEM) under the FE-SEM measurement conditions described below to obtain an FE-SEM image. Figure A in Figure 45 is an example of an FE-SEM image. From the obtained FE-SEM image, the type of particle forming the protrusion can be identified by utilizing the brightness difference due to the difference in the amount of secondary electron emission of the carbon particles and the abrasive particles. Image processing for this identification will be described later. In addition, the positions of the protrusions formed by the carbon particles and the abrasive particles in the FE-SEM image are identified.
<FE-SEM測定条件>
装置:HITACHI S-4800(株式会社日立ハイテクノロジーズ製)
視野角:5.1μm×3.8μm
加速電圧:5kV
測定倍率:25000倍
<FE-SEM measurement conditions>
Apparatus: HITACHI S-4800 (Hitachi High-Technologies Corporation)
Viewing angle: 5.1 μm x 3.8 μm
Acceleration voltage: 5 kV
Measurement magnification: 25,000 times
 得られたFE-SEM画像(図45中のA図)を、画像処理ソフトImage Jを用いて、以下に記載した2つの処理条件のそれぞれで二値化処理を行う。二値化処理によって得られた画像から、カーボン粒子及び研磨剤粒子のそれぞれによって形成された突起の個数、突起一個当たりの平均面積、突起の総面積、及び突起の径(Feret径)の情報が得られる。なお、二値化処理に際しては、輝度の高い研磨剤粒子(図45中のA図における白色箇所)と輝度の低いカーボン粒子(図45中のA図における黒色箇所)とで下記のとおり条件を変更する。 The obtained FE-SEM image (Figure A in Figure 45) is binarized using the image processing software Image J under the two processing conditions described below. From the image obtained by the binarization process, information on the number of protrusions formed by the carbon particles and abrasive particles, the average area per protrusion, the total area of the protrusions, and the diameter of the protrusions (Feret diameter) can be obtained. Note that when performing the binarization process, the conditions are changed as follows for the abrasive particles with high brightness (white areas in Figure A in Figure 45) and the carbon particles with low brightness (black areas in Figure A in Figure 45).
<カーボン粒子に関する情報を得るための二値化処理条件> <Binarization processing conditions for obtaining information about carbon particles>
ソフトウェア:Image J Ver 1.44p
二値化閾値:Threshold(0.65)
二値化対象サイズ:0.002μm-infinity
Software: Image J Ver 1.44p
Binarization threshold: Threshold (0.65)
Binarization target size: 0.002 μm-infinity
<研磨剤粒子に関する情報を得るための二値化処理条件> <Binarization processing conditions for obtaining information about abrasive particles>
ソフトウェア:Image J Ver 1.44p
二値化閾値:Threshold(220,255)
二値化対象サイズ:0.001μm-infinity
Software: Image J Ver 1.44p
Binarization threshold: Threshold (220, 255)
Binarization target size: 0.001 μm-infinity
 図45中のB図は図45中のA図のFE-SEM画像を研磨剤粒子(アルミナ粒子)の二値化処理条件で二値化処理し、研磨剤粒子(アルミナ粒子)によって形成された突起の位置分布を示す画像である。得られた画像から研磨剤粒子に関する以下の情報が得られた。 Figure 45B shows the position distribution of protrusions formed by abrasive particles (alumina particles) after binarizing the FE-SEM image of Figure 45A under the binarization conditions for abrasive particles (alumina particles). The following information about the abrasive particles was obtained from the resulting image.
<得られた研磨剤粒子に関する情報> <Information about the abrasive particles obtained>
個数:58個
平均面積:0.003μm
総面積:0.198μm
Feret径:0.091μm
Number: 58 Average area: 0.003 μm2
Total area: 0.198 μm2
Feret diameter: 0.091 μm
 図45中のC図は図45中のA図のFE-SEM画像をカーボン粒子(カーボンブラック粒子)の二値化処理条件で二値化処理し、カーボン粒子(カーボンブラック粒子)によって形成された突起の位置分布を示す画像である。得られた画像からカーボン粒子に関する以下の情報が得られた。 Figure C in Figure 45 is an image showing the position distribution of protrusions formed by carbon particles (carbon black particles) after binarizing the FE-SEM image in Figure A in Figure 45 under binarization conditions for carbon particles (carbon black particles). The following information about carbon particles was obtained from the resulting image.
<得られたカーボン粒子に関する情報> <Information about the carbon particles obtained>
個数:55個
平均面積:0.005μm
総面積:0.262μm
Feret径:0.013μm
Number: 55 Average area: 0.005 μm2
Total area: 0.262 μm2
Feret diameter: 0.013 μm
[突起の高さと突起を形成する粒子の種類との対応付け方法]
 得られたAFM画像と二値化処理前のFE-SEM画像を重ね合わせて合成画像を得る。合成された画像を用いて、各突起を形成する粒子が、カーボン粒子及び研磨剤粒子のいずれかであるかを特定する。例えば図46中のC図は、AFM画像(B図)とFE-SEM画像(A図)とを、それぞれの対応する突起の位置が一致するように重ね合わせた合成画像である。図46において、画像合成前のFE-SEM画像(A図)中に存在する、前記二値化処理によって判別されたカーボン粒子P1によって形成された突起の位置と、研磨剤粒子P2によって形成された突起の位置とを、判別できるように、それぞれの位置において異なる印がつけられている。同様に画像合成前のAFM画像(B図)中に存在する、前記二値化処理によって判別されたカーボン粒子(カーボンブラック粒子)P1によって形成された突起の位置と、研磨剤粒子(アルミナ粒子)P2によって形成された突起の位置とを、判別できるように、それぞれの位置において異なる印がつけられている。AFM画像(B図)とFE-SEM画像(A図)とを、それぞれの対応する突起の位置が一致するように重ね合わせた合成画像から、各突起がカーボン粒子P1又は研磨剤粒子P2のいずれの粒子から形成されたかを判別する。なお、図46(B図)は、マーキング部をAFMにて10μm×10μmの視野角で測定し、その後、マーキングのない部分を5μm×5μmの視野角で測定しているので、マーキングが画像内に存在しない。
[Method of Corresponding Protrusion Height to Type of Particles Forming the Protrusions]
The obtained AFM image and the FE-SEM image before the binarization process are superimposed to obtain a composite image. Using the composite image, it is determined whether the particles forming each protrusion are carbon particles or abrasive particles. For example, FIG. C in FIG. 46 is a composite image in which an AFM image (FIG. B) and an FE-SEM image (FIG. A) are superimposed so that the positions of the corresponding protrusions coincide with each other. In FIG. 46, different marks are attached at the positions of the protrusions formed by the carbon particles P1 and the abrasive particles P2, which exist in the FE-SEM image (FIG. A) before the image synthesis, so that the positions of the protrusions formed by the carbon particles (carbon black particles) P1 and the abrasive particles P2, which exist in the AFM image (FIG. B) before the image synthesis, can be distinguished. Similarly, different marks are attached at the positions of the protrusions formed by the carbon particles (carbon black particles) P1 and the abrasive particles (alumina particles) P2, which exist in the AFM image (FIG. B) before the image synthesis, so that the positions of the protrusions formed by the abrasive particles P2, which exist in the AFM image (FIG. B) before the image synthesis, can be distinguished. From the composite image in which the AFM image (B) and the FE-SEM image (A) are superimposed so that the positions of the corresponding protrusions coincide, it is possible to determine whether each protrusion is formed from carbon particles P1 or abrasive particles P2. Note that in Fig. 46 (B), the marked portion is measured with an AFM at a viewing angle of 10 μm x 10 μm, and then the portion without the marking is measured at a viewing angle of 5 μm x 5 μm, so no markings are present in the image.
 次に、AFM解析ソフト(Dimension 3100用Software version 5.12 Rev.B Veeco社製)を用いて、合成画像中の各突起の高さを計測する。各突起は、上記のとおり当該突起を形成する粒子の種類(カーボン粒子及び研磨剤粒子のいずれかであるか)が特定されているので、特定された粒子の種類が、計測された高さと対応付けられる。例えば図47は、AFM画像とFE-SEM画像を重ね合わせた合成画像の拡大図である。図48は、図47中において任意の位置に設定されたライン1(Line1)についてのAFMによる分析結果(突起高さの測定結果)を示す図である。図48に示されるとおり、ライン1上に存在する研磨剤粒子(アルミナ粒子)によって形成された突起の高さを特定することができる。このように、合成画像とAFM分析結果とから、突起の高さが特定される。 Next, the height of each protrusion in the composite image is measured using AFM analysis software (Dimension 3100 Software version 5.12 Rev. B, Veeco). As described above, the type of particles that form each protrusion (whether it is carbon particles or abrasive particles) is identified, so the identified particle type is associated with the measured height. For example, FIG. 47 is an enlarged view of a composite image in which an AFM image and an FE-SEM image are superimposed. FIG. 48 is a diagram showing the results of AFM analysis (measurement results of protrusion height) for Line 1 (Line 1) set at an arbitrary position in FIG. 47. As shown in FIG. 48, the height of the protrusion formed by the abrasive particles (alumina particles) present on Line 1 can be identified. In this way, the height of the protrusion is identified from the composite image and the AFM analysis results.
[突起の平均高さ]
 上記のとおりに得られた突起の高さに関する情報から、研磨剤粒子によって形成された突起の平均高さを求める。前記突起の平均高さは、例えば、研磨剤粒子によって形成された突起の累積度数分布から求めることができる。例えばまた、図49は、研磨剤粒子(アルミナ粒子)によって形成された突起の高さの累積度数分布を示す図である。図49において、Aは頻度を示し、Bは累積%を示す。図49より、研磨剤粒子(アルミナ粒子)によって形成された突起の平均高さが5.1nmであることが示される。
[Average height of protrusions]
From the information on the height of the protrusions obtained as described above, the average height of the protrusions formed by the abrasive particles is obtained. The average height of the protrusions can be obtained, for example, from the cumulative frequency distribution of the protrusions formed by the abrasive particles. For example, Fig. 49 is a diagram showing the cumulative frequency distribution of the height of the protrusions formed by the abrasive particles (alumina particles). In Fig. 49, A indicates the frequency and B indicates the cumulative %. Fig. 49 shows that the average height of the protrusions formed by the abrasive particles (alumina particles) is 5.1 nm.
[付着物]
 磁気テープ全面にデータを記録し、再生する、いわゆるフルボリュームテスト(全長全面走行テスト)を実施する。その後、光学顕微鏡によりドライブの磁気ヘッドを観察し、磁気ヘッドに磁性層の構成材料が付着しているか否かを確認する。次に、以下の3段階の基準により、全長全面走行後における磁気ヘッドに対する磁性層の構成材料の付着を評価する。
[基準]
A:ヘッドに対する磁性層の構成材料の付着が観察されない。
B:ヘッドのテープ走行面のうち、テープエッジが走行する端の部分にのみ磁性層の構成材料の付着が観察される。
C:ヘッドのテープ走行面のどの部分にも磁性層の構成材料の付着が観察される。
 評価結果が“A”または“B”であると、磁気テープの信頼性上の問題は発生しない。評価結果が“C”であると、短時間のヘッドクロッギングが発生してしまい、カートリッジの総容量が不足する。
[Attachment]
A so-called full volume test (full length running test) is carried out, in which data is recorded and played back over the entire surface of the magnetic tape. After that, the magnetic head of the drive is observed with an optical microscope to check whether the constituent material of the magnetic layer is attached to the magnetic head. Next, the adhesion of the constituent material of the magnetic layer to the magnetic head after the full length running is evaluated according to the following three-stage criteria.
[standard]
A: No adhesion of the constituent materials of the magnetic layer to the head was observed.
B: Adhesion of the constituent material of the magnetic layer was observed only on the end portion of the head tape running surface where the tape edge runs.
C: Adhesion of the constituent material of the magnetic layer was observed anywhere on the tape running surface of the head.
If the evaluation result is "A" or "B", there will be no problem with the reliability of the magnetic tape. If the evaluation result is "C", short-term head clogging will occur, and the total capacity of the cartridge will be insufficient.
[出力劣化(ヘッドダメージ)]
 以下の手順に従って磁気ヘッドダメージによる出力劣化を評価する。
(A)評価前のドライブの出力(2T、8T)とヘッド抵抗を測定する。
(B)Ambient環境下、テスト開始する。1巻で全面全長記録を実施し、終了したら新しいカートリッジに交換する。
(C)25巻毎に、ドライブ出力とヘッド抵抗を測定し、出力変化とヘッド抵抗変化を確認する。評価前のドライブ出力を基準にして、どの程度劣化したか(dB)を確認する。(D)上記(C)の操作を50巻まで繰りかえす。
 次に、以下の4段階の基準により、50巻走行後のドライブ出力劣化を評価する。
[基準]
S:2.5dB以内
A:3dB以内
B:3dB超
C:4dB以上
評価結果が“B” であるとCapacityロス、Rewrite、Error Rateが悪化する。“C”は実害が発生する。
[Output deterioration (head damage)]
The output degradation due to magnetic head damage is evaluated according to the following procedure.
(A) Measure the output (2T, 8T) and head resistance of the drive before evaluation.
(B) Testing is started in an ambient environment. Full-length recording is performed on one cartridge, and when this is complete, the cartridge is replaced with a new one.
(C) Measure the drive output and head resistance every 25 turns to confirm the change in output and head resistance. Check the degree of deterioration (dB) based on the drive output before evaluation. (D) Repeat the above (C) operation up to 50 turns.
Next, the drive output deterioration after 50 windings is evaluated according to the following four-stage criteria.
[standard]
S: Within 2.5 dB A: Within 3 dB B: Over 3 dB C: Over 4 dB If the evaluation result is "B", the capacity loss, rewrite and error rate will worsen. "C" will cause actual damage.
[算術平均粗さRa]
 磁性面の算術平均粗さRaは、好ましくは2.5nm以下、より好ましくは2.0nm以下である。Raが2.5nm以下であると、より優れたSNRを得ることができる。
[Arithmetic mean roughness Ra]
The arithmetic mean roughness Ra of the magnetic surface is preferably 2.5 nm or less, and more preferably 2.0 nm or less. If Ra is 2.5 nm or less, a better SNR can be obtained.
 上記の算術平均粗さRaは以下のようにして求められる。まず、AFM(Atomic ForceMicroscope)(ブルカー製、Dimension Icon)を用いて磁性層43が設けられている側の表面を観察して、断面プロファイルを取得する。次に、取得した断面プロファイルから、JIS B0601:2001に準拠して算術平均粗さRaを求める。 The arithmetic mean roughness Ra is determined as follows. First, an AFM (Atomic Force Microscope) (Dimension Icon, manufactured by Bruker) is used to observe the surface on which the magnetic layer 43 is provided, and a cross-sectional profile is obtained. Next, the arithmetic mean roughness Ra is determined from the obtained cross-sectional profile in accordance with JIS B0601:2001.
[磁気テープの平均厚みt
 磁気テープMTの平均厚みtは、好ましくは5.6μm以下、より好ましくは5.4μm以下、さらに好ましくは5.0μm以下、特に好ましくは4.6μm以下でありうる。磁気テープMTの平均厚みtがt≦5.6μmであると、1データカートリッジ内に記録できる記録容量を従来よりも高めることができる。磁気テープMTの平均厚みtの下限値は特に限定されるものではないが、例えば、3.5μm≦tである。
[Average thickness of magnetic tape t T ]
The average thickness tT of the magnetic tape MT is preferably 5.6 μm or less, more preferably 5.4 μm or less, even more preferably 5.0 μm or less, and particularly preferably 4.6 μm or less. When the average thickness tT of the magnetic tape MT is tT ≦5.6 μm, the recording capacity that can be recorded in one data cartridge can be increased compared to the conventional case. The lower limit of the average thickness tT of the magnetic tape MT is not particularly limited, but is, for example, 3.5 μm≦ tT .
 磁気テープMTの平均厚みtは以下のようにして求められる。まず、磁気記録カートリッジ10に収容された磁気テープMTを巻き出し、磁気テープMTとリーダーテープLTとの接続部から10mから20m、30mから40m、及び50mから60mの3か所の位置からそれぞれ250mmの長さに切り出し、サンプルを作製する。次に、測定装置としてMitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、各サンプルの厚みを5点の位置で測定し、それらの測定値(合計15点)を単純に平均(算術平均)して、平均厚みt[μm]を算出する。なお、上記5点の測定位置は、磁気テープMTの長手方向においてそれぞれ異なる位置となるように、各サンプルから無作為に選ばれるものとする。 The average thickness tT of the magnetic tape MT is obtained as follows. First, the magnetic tape MT housed in the magnetic recording cartridge 10 is unwound, and samples are cut out to a length of 250 mm from three positions, 10 m to 20 m, 30 m to 40 m, and 50 m to 60 m from the connection between the magnetic tape MT and the leader tape LT, to prepare samples. Next, the thickness of each sample is measured at five positions using a Mitutoyo Laser Hologram (LGH-110C) as a measuring device, and the measured values (15 points in total) are simply averaged (arithmetic average) to calculate the average thickness tT [μm]. The five measurement positions are selected randomly from each sample so that they are different positions in the longitudinal direction of the magnetic tape MT.
(3)磁気テープの製造方法 (3) Manufacturing method of magnetic tape
 次に、上述の構成を有する磁気テープMTの製造方法について説明する。まず、非磁性粉及び結着剤などを溶剤に混練及び/又は分散させることにより、下地層形成用塗料を調製する。次に、磁性粉及び結着剤などを溶剤に混練及び/又は分散させることにより、磁性層形成用塗料を調製する。磁性層形成用塗料及び下地層形成用塗料の調製には、例えば、以下の溶剤、分散装置、及び混練装置を用いることができる。 Next, a method for manufacturing the magnetic tape MT having the above-mentioned configuration will be described. First, a paint for forming the base layer is prepared by kneading and/or dispersing non-magnetic powder, binder, etc. in a solvent. Next, a paint for forming the magnetic layer is prepared by kneading and/or dispersing magnetic powder, binder, etc. in a solvent. The following solvents, dispersing devices, and kneading devices can be used, for example, to prepare the paint for forming the magnetic layer and the paint for forming the base layer.
 上述の塗料調製に用いられる溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンなどのケトン系溶媒;例えばメタノール、エタノール、及びプロパノールなどのアルコール系溶媒;例えば酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、及びエチレングリコールアセテートなどのエステル系溶媒;ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、及びジオキサンなどのエーテル系溶媒;ベンゼン、トルエン、及びキシレンなどの芳香族炭化水素系溶媒;並びに、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、及びクロロベンゼンなどのハロゲン化炭化水素系溶媒などが挙げられる。これらのうちの1つが用いられてもよく、又は、2以上の混合物が用いられてもよい。 Solvents used in the preparation of the above-mentioned paints include, for example, ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohol-based solvents such as methanol, ethanol, and propanol; ester-based solvents such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, ethyl lactate, and ethylene glycol acetate; ether-based solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran, and dioxane; aromatic hydrocarbon-based solvents such as benzene, toluene, and xylene; and halogenated hydrocarbon-based solvents such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, and chlorobenzene. One of these may be used, or a mixture of two or more may be used.
 上述の塗料調製に用いられる混練装置としては、例えば連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、及びロールニーダーなどの混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えばロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」など)、ホモジナイザー、及び超音波分散機などの分散装置を用いることができるが、特にこれらの装置に限定されるものではない。  The kneading device used in the above-mentioned paint preparation may be, for example, a continuous twin-screw kneader, a continuous twin-screw kneader capable of dilution in multiple stages, a kneader, a pressure kneader, a roll kneader, or other kneading device, but is not limited to these devices. In addition, the dispersing device used in the above-mentioned paint preparation may be, for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (such as the "DCP Mill" manufactured by Eirich), a homogenizer, or an ultrasonic dispersing machine, but is not limited to these devices.
 次に、下地層形成用塗料をベース層41の一方の主面に塗布して乾燥させることにより、非磁性層(以下、下地層ともいう)42を形成する。続いて、この下地層42上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層43を下地層42上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉をベース層41の厚み方向に磁場配向させる。また、乾燥の際に、例えばソレノイドコイルにより、磁性粉をベース層41の長手方向(走行方向)に磁場配向させたのちに、ベース層41の厚み方向に磁場配向させるようにしてもよい。磁性層43の形成後、ベース層41の他方の主面にバック層44を形成する。これにより、磁気テープMTが得られる。 Next, a paint for forming a base layer is applied to one main surface of the base layer 41 and dried to form a non-magnetic layer (hereinafter also referred to as a base layer) 42. Next, a paint for forming a magnetic layer is applied to this base layer 42 and dried to form a magnetic layer 43 on the base layer 42. During drying, the magnetic powder is magnetically oriented in the thickness direction of the base layer 41, for example, by a solenoid coil. Also, during drying, the magnetic powder may be magnetically oriented in the longitudinal direction (running direction) of the base layer 41, for example, by a solenoid coil, and then magnetically oriented in the thickness direction of the base layer 41. After the magnetic layer 43 is formed, a back layer 44 is formed on the other main surface of the base layer 41. This results in a magnetic tape MT.
 その後、得られた磁気テープMTを大径コアに巻き直し、硬化処理を行う。最後に、磁気テープMTに対してカレンダー処理を行った後、所定の幅(例えば1/2インチ幅)に裁断する。以上により、目的とする細長い長尺状の磁気記録テープMTが得られる。 Then, the resulting magnetic tape MT is rewound around a large diameter core and undergoes a hardening process. Finally, the magnetic tape MT is calendered and then cut to a specified width (e.g., 1/2 inch width). This results in the desired long, thin magnetic recording tape MT.
(4)磁気テープのデータバンドおよびサーボバンドの説明 (4) Description of data bands and servo bands on magnetic tape
 磁気テープMTにおいては、サーボ記録再生装置70(サーボ記録装置)(図16参照)が、データ記録再生装置50(データ記録装置)(図10参照)のデータライトヘッド60により正確に読み取ることが可能なサーボパターン47を磁気テープMT(図9参照)のサーボバンドs上に書き込むように構成されている。 In the magnetic tape MT, a servo recording and reproducing device 70 (servo recording device) (see FIG. 16) is configured to write a servo pattern 47 onto the servo band s of the magnetic tape MT (see FIG. 9) that can be accurately read by a data write head 60 of a data recording and reproducing device 50 (data recording device) (see FIG. 10).
 データ記録再生装置50のデータライトヘッド60は、磁気テープMTの幅方向に対して傾斜して配置される(図11参照)。このため、本実施形態では、磁気テープの幅方向に対して非対称な第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)がサーボバンドsに書き込まれる(図9参照)。 The data write head 60 of the data recording and reproducing device 50 is positioned at an angle with respect to the width direction of the magnetic tape MT (see FIG. 11). Therefore, in this embodiment, a first servo pattern 47a ("/") and a second servo pattern 47b ("\") that are asymmetric with respect to the width direction of the magnetic tape are written in the servo band s (see FIG. 9).
 以下、データ記録再生装置50の構成、サーボ記録再生装置70の構成の順番で説明する。 The following describes the configuration of the data recording and reproducing device 50, followed by the configuration of the servo recording and reproducing device 70.
[データバンドおよびサーボバンドの概要]
 図8は、磁気テープMTを側方から見た模式図であり、図9は、磁気テープMTを上方(磁性層43側)からみた模式図である。図8及び図9に示すように、磁気テープMTは、長手方向(X軸方向)に長く、幅方向(Y軸方向)に短く、厚さ方向(Z軸方向)に薄いテープ状に構成されている。
[Data band and servo band overview]
Fig. 8 is a schematic diagram of the magnetic tape MT as viewed from the side, and Fig. 9 is a schematic diagram of the magnetic tape MT as viewed from above (the magnetic layer 43 side). As shown in Fig. 8 and Fig. 9, the magnetic tape MT is configured in the shape of a tape that is long in the longitudinal direction (X-axis direction), short in the width direction (Y-axis direction), and thin in the thickness direction (Z-axis direction).
 図9に示すように、磁性層43は、データが書き込まれる複数のデータバンドd(データバンドd0~d3)と、サーボパターン47が書き込まれる複数のサーボバンドs(サーボバンドs0~s4)とを有している。複数のデータバンドd及び複数のサーボバンドsは、それぞれ、長手方向(X軸方向)に長く、幅方向(Y軸方向)に短い形状を有している。サーボバンドsは、幅方向(Y軸方向)で各データバンドdを挟み込む位置に配置される。 As shown in FIG. 9, the magnetic layer 43 has a number of data bands d (data bands d0 to d3) in which data is written, and a number of servo bands s (servo bands s0 to s4) in which servo patterns 47 are written. Each of the multiple data bands d and the multiple servo bands s is long in the longitudinal direction (X-axis direction) and short in the width direction (Y-axis direction). The servo bands s are positioned so as to sandwich each data band d in the width direction (Y-axis direction).
 図9に示す例では、データバンドdの本数が4本とされ、サーボバンドsの本数が5本とされた場合の例が示されている。なお、データバンドdの本数、サーボバンドsの本数は、5+4n(但し、nは0以上の整数である。)以上であり、好ましくは5以上、より好ましくは9以上である。サーボバンドsの本数が5以上であると、磁気テープMTの幅方向の寸法変化によるサーボ信号への影響を抑制し、よりオフトラックが少ない安定した記録再生特性を確保できる。サーボバンドSBの本数の上限値は特に限定されるものではないが、例えば33以下である。 In the example shown in FIG. 9, the number of data bands d is four and the number of servo bands s is five. The number of data bands d and the number of servo bands s are 5+4n or more (where n is an integer equal to or greater than 0), preferably 5 or more, and more preferably 9 or more. If the number of servo bands s is 5 or more, the effect of dimensional changes in the width direction of the magnetic tape MT on the servo signal can be suppressed, ensuring stable recording and playback characteristics with less off-track. The upper limit of the number of servo bands SB is not particularly limited, but is, for example, 33 or less.
 サーボバンド幅の平均値の上限値は、高記録容量を確保する観点から、好ましくは98μm以下、より好ましくは60μm以下、さらにより好ましくは30μm以下である。サーボバンド幅WSBの平均値の下限値は、好ましくは10μm以上である。10μm未満のサーボバンド幅のサーボ信号を読み取り可能なヘッドユニット56は製造が困難である。 From the viewpoint of ensuring a high recording capacity, the upper limit of the average value of the servo band width is preferably 98 μm or less, more preferably 60 μm or less, and even more preferably 30 μm or less. The lower limit of the average value of the servo band width WSB is preferably 10 μm or more. It is difficult to manufacture a head unit 56 that can read a servo signal with a servo band width of less than 10 μm.
 磁性層43の表面全体の面積に対するサーボバンドsの面積の比率は、例えば、4.0%以下とされる。なお、サーボバンドsの幅は、1/2インチのテープ幅で、例えば96μm以下とされる。磁性層43の表面全体の面積に対するサーボバンドsの面積の比率は、例えば、磁気テープMTを、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTを光学顕微鏡で観察することで測定することができる。 The ratio of the area of the servo band s to the total surface area of the magnetic layer 43 is, for example, 4.0% or less. The width of the servo band s is, for example, 96 μm or less for a 1/2 inch tape width. The ratio of the area of the servo band s to the total surface area of the magnetic layer 43 can be measured, for example, by developing the magnetic tape MT using a developer such as a ferricolloid developer, and then observing the developed magnetic tape MT with an optical microscope.
 データバンドdは、長手方向に長く、幅方向に整列された複数の記録トラック46を含む。1本のデータバンドdに含まれる記録トラック46の本数は、例えば、1000本から2500本程度とされる。データは、この記録トラック46に沿って、記録トラック46内に記録される。データバンドdに記録されるデータにおける長手方向の1ビット長は、例えば、48nm以下とされる。 The data band d includes a plurality of recording tracks 46 that are long in the longitudinal direction and aligned in the width direction. The number of recording tracks 46 included in one data band d is, for example, about 1000 to 2500. Data is recorded along and within these recording tracks 46. The length of one bit in the longitudinal direction of the data recorded in the data band d is, for example, 48 nm or less.
 また、記録トラック46の幅(トラックピッチ:Y軸方向)は、例えば、2.0μm以下とされる。なお、このような記録トラック幅は、例えば、磁気テープMTの磁性層43を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTの磁性層43を光学顕微鏡で観察することで測定することができる。 The width of the recording track 46 (track pitch: Y-axis direction) is, for example, 2.0 μm or less. Note that such a recording track width can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developing solution such as a ferric colloid developing solution, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
 若しくは、記録トラック幅の測定方法として、データライトヘッド60(後述の図11参照)を利用した方法が用いられてもよい。この場合、磁気テープMT走行時の変動を無視するため、データライトヘッド60を記録及び再生状態とし、データライトヘッド60のアジマス角θを変化させた場合の出力変化から記録トラック幅を測定することができる。(IEEE_Sept1996_Crosstrack Profiles of Thin Film MR Tape Heads Using the Azimuth Displacement Method) Alternatively, a method using the data write head 60 (see FIG. 11 described later) may be used as a method for measuring the recording track width. In this case, in order to ignore fluctuations during the running of the magnetic tape MT, the data write head 60 is in a recording and reproducing state, and the recording track width can be measured from the change in output when the azimuth angle θ of the data write head 60 is changed. (IEEE_Sept1996_Crosstrack Profiles of Thin Film MR Tape Heads Using the Azimuth Displacement Method)
 サーボバンドsは、後述するサーボ記録再生装置70(図16参照)によって記録される所定形状のサーボパターン47を含む。サーボパターン47は、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)を含む。 The servo band s includes a servo pattern 47 of a predetermined shape that is recorded by a servo recording and reproducing device 70 (see FIG. 16) described later. The servo pattern 47 includes a first servo pattern 47a ("/") and a second servo pattern 47b ("\").
 なお、本明細書中において、第1のサーボパターン47a及び第2のサーボパターン47bにおける、「/」、「\」の符号は、磁気テープMTを下方(バック層側)から見た場合のサーボパターンの傾斜方向を示す符号として用いられる。従って、第1のサーボパターン47a及び第2のサーボパターン47bにおける、「/」、「\」の符号は、図9において、磁性層側から見た場合とは逆になる。一方、後述の図17~図25等では、ヘッド摺動面において、第1のサーボパターン47a(「/」)を書き込む第1のサーボ素子82a(「/」)、第2のサーボパターン47b(「\」)を書き込む第2のサーボ素子82b(「\」)と、前記サーボ素子82a、82bによって磁性層に記録されるサーボパターン47a、47bとを、バック層側から見た様子として示している。 In this specification, the symbols "/" and "\" in the first servo pattern 47a and the second servo pattern 47b are used as symbols indicating the inclination direction of the servo pattern when the magnetic tape MT is viewed from below (the back layer side). Therefore, the symbols "/" and "\" in the first servo pattern 47a and the second servo pattern 47b are reversed from the magnetic layer side in FIG. 9. On the other hand, in FIG. 17 to FIG. 25 described later, the first servo element 82a ("/") that writes the first servo pattern 47a ("/"), the second servo element 82b ("\") that writes the second servo pattern 47b ("\"), and the servo patterns 47a and 47b recorded on the magnetic layer by the servo elements 82a and 82b are shown as viewed from the back layer side on the head sliding surface.
 本実施形態において、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向(Y軸方向)に対して非対称となるようにサーボバンドsに書き込まれている。なお、一般的なサーボパターンの場合、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して対称(線対称)となるようにサーボバンドsに書き込まれている。 In this embodiment, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are written in the servo band s so as to be asymmetric with respect to the width direction (Y-axis direction) of the magnetic tape MT. Note that in the case of a typical servo pattern, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are written in the servo band s so as to be symmetric (line symmetric) with respect to the width direction of the magnetic tape MT.
 第1のサーボパターン47a(「/」)は、磁気テープMTの幅方向に対して第1の角度θs1で傾斜し、第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して、第1の角度θs1とは逆向きに、第1の角度θs1とは異なる第2の角度θs2で傾斜する(後述の図18、図20を参照)。 The first servo pattern 47a ("/") is inclined at a first angle θs1 with respect to the width direction of the magnetic tape MT, and the second servo pattern 47b ("\") is inclined at a second angle θs2 different from the first angle θs1 in the opposite direction with respect to the width direction of the magnetic tape MT (see Figures 18 and 20 described below).
 1群の第1のサーボパターン47a(「/」)及び1群の第2サーボパターン47b(「\」)は、磁気テープMTの長手方向で交互に配置される。1群の第1のサーボパターン47a(「/」)に含まれる第1のサーボパターン47a(「/」)の数は、典型的には、4本又は5本とされ、同様に、1群の第2のサーボパターン47b(「\」)に含まれる第2のサーボパターン47b(「\」)の数は、典型的には、4本又は5本とされる。 A group of first servo patterns 47a ("/") and a group of second servo patterns 47b ("\") are arranged alternately in the longitudinal direction of the magnetic tape MT. The number of first servo patterns 47a ("/") included in a group of first servo patterns 47a ("/") is typically four or five, and similarly, the number of second servo patterns 47b ("\") included in a group of second servo patterns 47b ("\") is typically four or five.
 サーボパターン47の形状については、例えば、磁気テープMTの磁性層43を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気テープMTの磁性層43を光学顕微鏡で観察することで測定することができる。 The shape of the servo pattern 47 can be measured, for example, by developing the magnetic layer 43 of the magnetic tape MT using a developer such as a ferric colloid developer, and then observing the developed magnetic layer 43 of the magnetic tape MT with an optical microscope.
 なお、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)の詳細については、このサーボパターン47を書き込むサーボ記録再生装置70のサーボライトヘッド80の説明箇所において説明する。 Details about the first servo pattern 47a ("/") and the second servo pattern 47b ("\") will be explained in the section explaining the servo write head 80 of the servo recording and reproducing device 70 that writes this servo pattern 47.
 ここで、LTO規格の磁気テープMTは、世代ごとに記録トラック46の数が増加して記録容量が飛躍的に向上している。一例を挙げると、初代のLTO-1では記録トラック46の数が384本であったが、LTO-2からLTO-9では記録トラック46の数がそれぞれ順に、512本、704本、896本、1280本、2176本、3584本及び6656本、8960本である。データの記録容量についても同様に、LTO-1では100GB(ギガバイト)であったのが、LTO-2からLTO-9ではそれぞれ順に、200GB、400GB、800GB、1.5TB(テラバイト)、2.5TB、6.0TB、12TB、18TBである。 Here, the number of recording tracks 46 increases with each generation of LTO-standard magnetic tape MT, dramatically improving recording capacity. As an example, the original LTO-1 had 384 recording tracks 46, but the numbers of recording tracks 46 in LTO-2 to LTO-9 are 512, 704, 896, 1280, 2176, 3584, 6656, and 8960, respectively. Similarly, data recording capacity was 100GB (gigabytes) in LTO-1, but is 200GB, 400GB, 800GB, 1.5TB (terabytes), 2.5TB, 6.0TB, 12TB, and 18TB, respectively, in LTO-2 to LTO-9.
 本実施形態では、記録トラック46の本数や記録容量は、特に限定されず、適宜変更可能である。但し、例えば、記録トラック46の本数や記録容量が多く(例えば、6656本以上、12TB以上:LTO8以降)、磁気テープMTの幅の変動の影響を受けやすいような磁気テープMTに本技術が適用されると有利である。 In this embodiment, the number of recording tracks 46 and the recording capacity are not particularly limited and can be changed as appropriate. However, it is advantageous to apply this technology to a magnetic tape MT that has a large number of recording tracks 46 and a large recording capacity (e.g., 6,656 tracks or more, 12 TB or more: LTO8 and later) and is susceptible to variations in the width of the magnetic tape MT.
[データ記録再生装置]
 図10は、データ記録再生装置50を示す図である。データ記録再生装置50は、磁気テープMTにデータを記録することが可能とされており、また、磁気テープMTに記録されたデータを再生することが可能とされている。
[Data recording and reproducing device]
10 is a diagram showing a data recording/reproducing device 50. The data recording/reproducing device 50 is capable of recording data on a magnetic tape MT, and is also capable of reproducing the data recorded on the magnetic tape MT.
 データ記録再生装置50は、磁気記録カートリッジ10を装填可能に構成されている。磁気記録カートリッジ10は、巻回された磁気テープMTをその内部において回転可能に収容可能に構成されている。データ記録再生装置50は、1つの磁気記録カートリッジ10を装填可能に構成されていてもよいし、複数の磁気記録カートリッジ10を同時に装填可能に成されてもよい。 The data recording and reproducing device 50 is configured so that a magnetic recording cartridge 10 can be loaded into it. The magnetic recording cartridge 10 is configured so that a wound magnetic tape MT can be rotatably accommodated inside it. The data recording and reproducing device 50 may be configured so that one magnetic recording cartridge 10 can be loaded into it, or it may be configured so that multiple magnetic recording cartridges 10 can be loaded into it simultaneously.
 データ記録再生装置50は、スピンドル51と、巻取りリール52と、スピンドル駆動装置53と、リール駆動装置54と、データライトヘッド60と、制御装置55と、幅測定部56と、角度調整部57と、複数のガイドローラ58とを備えている。 The data recording and reproducing device 50 includes a spindle 51, a take-up reel 52, a spindle drive unit 53, a reel drive unit 54, a data write head 60, a control unit 55, a width measuring unit 56, an angle adjustment unit 57, and a number of guide rollers 58.
 スピンドル51は、その回転により、磁気記録カートリッジ10内部に収容された磁気テープMTを回転させることが可能に構成されている。スピンドル駆動装置53は、制御装置55からの指令に応じて、スピンドル51を回転させる。 The spindle 51 is configured so that its rotation can rotate the magnetic tape MT housed inside the magnetic recording cartridge 10. The spindle drive unit 53 rotates the spindle 51 in response to commands from the control unit 55.
 巻取りリール52は、テープローディング機構(不図示)を介して磁気記録カートリッジ10から引き出された磁気テープMTの先端を固定可能に構成されている。リール駆動装置54は、制御装置55からの指令に応じて、巻取りリール52を回転させる。 The take-up reel 52 is configured to be able to fix the tip of the magnetic tape MT that is pulled out from the magnetic recording cartridge 10 via a tape loading mechanism (not shown). The reel drive device 54 rotates the take-up reel 52 in response to commands from the control device 55.
 複数のガイドローラ58は、磁気記録カートリッジ10と巻取りリール52との間に形成される搬送経路がデータライトヘッド60に対して所定の相対位置関係となるように磁気テープMTの走行をガイドする。 The multiple guide rollers 58 guide the magnetic tape MT so that the transport path formed between the magnetic recording cartridge 10 and the take-up reel 52 has a predetermined relative positional relationship with the data write head 60.
 データライトヘッド60は、磁気テープMTがデータライトヘッド60の下側を通過するときに、制御装置55からの指令に応じて、磁気テープMTのデータバンドd(記録トラック46)に対して、データを記録することが可能に構成されており、また、記録したデータを再生することが可能に構成されている。 The data write head 60 is configured to be able to record data to the data band d (recording track 46) of the magnetic tape MT in response to a command from the control device 55 when the magnetic tape MT passes underneath the data write head 60, and is also configured to be able to play back the recorded data.
 データライトヘッド60により磁気テープMTに対してデータの記録/再生が行われるとき、スピンドル駆動装置53及びリール駆動装置54により、スピンドル51及び巻取りリール52が回転し、磁気テープMTが走行する。磁気テープMTの走行方向は、図10において矢印A1で示す順方向(スピンドル51側から巻取りリール52側へ巻き出す方向)、及び、矢印A2で示す逆方向(巻取りリール52側からスピンドル51側へ巻き戻す方向)での往復が可能とされている。 When data is recorded/played back from the magnetic tape MT by the data write head 60, the spindle 51 and take-up reel 52 are rotated by the spindle drive unit 53 and reel drive unit 54, causing the magnetic tape MT to run. The magnetic tape MT can run back and forth in the forward direction (the direction in which it unwinds from the spindle 51 side to the take-up reel 52 side) indicated by the arrow A1 in FIG. 10, and in the reverse direction (the direction in which it rewinds from the take-up reel 52 side to the spindle 51 side) indicated by the arrow A2.
 データライトヘッド60は、磁気テープMTの順方向での走行及び逆方向での走行の両方向において、データの記録/再生が可能とされている。 The data write head 60 is capable of recording/playing back data in both the forward and reverse directions of the magnetic tape MT.
 特に、本実施形態では、データライトヘッド60は、データライトヘッド60の長手方向(Y'軸方向)が、磁気テープMTの幅方向(Y軸方向)に対して、所定の角度θ(第1のヘッドアジマス角θ)傾斜して配置される(後述の図11参照)。 In particular, in this embodiment, the data write head 60 is positioned such that the longitudinal direction (Y'-axis direction) of the data write head 60 is inclined at a predetermined angle θ (first head azimuth angle θ) with respect to the width direction (Y-axis direction) of the magnetic tape MT (see FIG. 11 described below).
 本実施形態の説明において、データライトヘッド60の長手方向(Y'軸方向)が、磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度を、データライトヘッド60のアジマス角θと呼ぶ。なお、データライトヘッド60の構成についての詳細は、図11等を参照して後述する。 In the description of this embodiment, the angle at which the longitudinal direction (Y'-axis direction) of the data write head 60 is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is referred to as the azimuth angle θ of the data write head 60. Details of the configuration of the data write head 60 will be described later with reference to FIG. 11 etc.
 幅測定部56は、幅測定部56の下側を磁気テープMTが通過するときの磁気テープMTの幅を測定することが可能に構成されている。つまり、幅測定部56は、データライトヘッド60が磁気テープMTに対してデータの記録/再生を行うときの磁気テープMTの幅を測定することが可能に構成されている。幅測定部56は、磁気テー・BR>VMTの幅を測定して制御装置55へと送信する。 The width measurement unit 56 is configured to be capable of measuring the width of the magnetic tape MT when the magnetic tape MT passes below the width measurement unit 56. In other words, the width measurement unit 56 is configured to be capable of measuring the width of the magnetic tape MT when the data write head 60 records/plays data on the magnetic tape MT. The width measurement unit 56 measures the width of the magnetic tape MT and transmits it to the control device 55.
 幅測定部56は、例えば、光センサ等のような各種のセンサにより構成される。幅測定部56は、磁気テープMTの幅を測定可能なセンサであればどのようなセンサが用いられてもよい。なお、磁気テープMTの幅は、それぞれ隣接するサーボパターン47を読み取り、位置信号の差分を求めることで、予測することもできる。この場合、幅測定部56は省略することができる。 The width measurement unit 56 is composed of various sensors, such as an optical sensor. Any sensor capable of measuring the width of the magnetic tape MT may be used as the width measurement unit 56. The width of the magnetic tape MT can also be predicted by reading adjacent servo patterns 47 and determining the difference in position signals. In this case, the width measurement unit 56 can be omitted.
 角度調整部57は、データライトヘッド60を上下方向の軸(Z軸)周りに回動可能に保持することが可能に構成されている。角度調整部57は、制御装置55からの指令に応じて、データライトヘッド60のアジマス角θを調整することが可能に構成されている。 The angle adjustment unit 57 is configured to be able to hold the data write head 60 rotatably around an axis (Z-axis) in the vertical direction. The angle adjustment unit 57 is configured to be able to adjust the azimuth angle θ of the data write head 60 in response to a command from the control device 55.
 制御装置55は、例えば、制御部、記憶部、通信部などを含む。制御部は、例えば、CPU(Central Processing Unit)等により構成されており、記憶部に記憶されたプログラムに従い、データ記録再生装置50の各部を統括的に制御する。 The control device 55 includes, for example, a control unit, a memory unit, a communication unit, etc. The control unit is composed of, for example, a CPU (Central Processing Unit), etc., and performs overall control of each part of the data recording and playback device 50 according to a program stored in the memory unit.
 記憶部は、各種のデータや各種のプログラムが記録される不揮発性のメモリと、制御部の作業領域として用いられる揮発性のメモリとを含む。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。通信部は、PC(Personal Computer)、サーバ装置等の他の装置との間で互いに通信可能に構成されている。 The storage unit includes a non-volatile memory in which various data and programs are recorded, and a volatile memory used as a working area for the control unit. The above-mentioned various programs may be read from a portable recording medium such as an optical disk or semiconductor memory, or may be downloaded from a server device on a network. The communication unit is configured to be capable of communicating with other devices such as a PC (Personal Computer) or a server device.
 特に、本実施形態では、制御装置55(制御部)は、幅測定部56から磁気テープMTの幅の情報を取得し(あるいは、サーボ信号から磁気テープの幅を予測し)、磁気テープMTの幅の情報に基づいて、角度調整部57によりデータライトヘッド60のアジマス角θ(図11参照)を調整する。 In particular, in this embodiment, the control device 55 (control unit) acquires information on the width of the magnetic tape MT from the width measurement unit 56 (or predicts the width of the magnetic tape from the servo signal), and adjusts the azimuth angle θ (see FIG. 11) of the data write head 60 using the angle adjustment unit 57 based on the information on the width of the magnetic tape MT.
 本実施形態では、データライトヘッド60のアジマス角θを調整することで、磁気テープMTの幅の変動に対応している。典型的には、磁気テープMTの幅が相対的に広くなったとき、データライトヘッド60のアジマス角θは小さくされ、逆に、磁気テープMTの幅が相対的に狭くなったとき、データライトヘッド60のアジマス角θは大きくされる。 In this embodiment, the azimuth angle θ of the data write head 60 is adjusted to accommodate variations in the width of the magnetic tape MT. Typically, when the width of the magnetic tape MT becomes relatively wider, the azimuth angle θ of the data write head 60 is made smaller, and conversely, when the width of the magnetic tape MT becomes relatively narrower, the azimuth angle θ of the data write head 60 is made larger.
 磁気テープMTの幅は、例えば、温度、湿度、磁気テープMTの長手方向に加えられるテンション等、様々な理由で変動する場合がある。 The width of the magnetic tape MT may vary for various reasons, such as temperature, humidity, and tension applied to the magnetic tape MT in the longitudinal direction.
[データライトヘッド]
 次に、データライトヘッド60の構成について詳細に説明する。図11は、データライトヘッド60を下方(バック層側)から見た概略図である。
[Data Light Head]
Next, a detailed description will be given of the configuration of the data write head 60. Fig. 11 is a schematic diagram of the data write head 60 as viewed from below (the back layer side).
 データライトヘッド60の説明では、データライトヘッド60の長手方向をY'軸方向とし、データライトヘッド60の幅方向をX'軸方向とし、データライトヘッド60の上下方向をZ'軸方向とする。また、磁気テープMTの長手方向(走行方向)をX軸方向とし、磁気テープMTの幅方向をY軸方向とし、磁気テープMTの厚さ方向をZ軸方向とする。なお、磁気テープMTの方向は、データライトヘッド60の下側を通過するときの磁気テープMTの方向が基準である。 In describing the data write head 60, the longitudinal direction of the data write head 60 is defined as the Y'-axis direction, the width direction of the data write head 60 as the X'-axis direction, and the up-down direction of the data write head 60 as the Z'-axis direction. Additionally, the longitudinal direction (running direction) of the magnetic tape MT is defined as the X-axis direction, the width direction of the magnetic tape MT as the Y-axis direction, and the thickness direction of the magnetic tape MT as the Z-axis direction. Note that the direction of the magnetic tape MT is based on the direction of the magnetic tape MT as it passes under the data write head 60.
 図11に示すように、データライトヘッド60は、第1のデータライトヘッド60aと、第2のデータライトヘッド60bとを含む。なお、本明細書中の説明において、2つのデータライトヘッド60を特に区別しない場合には、これらをまとめて単にデータライトヘッド60と呼び、2つのデータライトヘッド60を特に区別する場合に、これらを第1のデータライトヘッド60a及び第2のデータライトヘッド60bと呼ぶ。 As shown in FIG. 11, the data write head 60 includes a first data write head 60a and a second data write head 60b. In the description of this specification, when the two data write heads 60 are not particularly distinguished from each other, they are collectively referred to simply as data write heads 60, and when the two data write heads 60 are particularly distinguished from each other, they are referred to as the first data write head 60a and the second data write head 60b.
 第1のデータライトヘッド60a及び第2のデータライトヘッド60bは、データライトヘッド60の幅方向(Y'軸方向)で対称に構成されているが、基本的に同様の構成である。第1のデータライトヘッド60a及び第2のデータライトヘッド60bは、磁気テープMTの幅方向(Y軸方向)に一体的に移動可能とされており、これにより、全てのデータバンドd0~d3のうちいずれかのデータバンドdに対してデータを書き込むことができる。 The first data write head 60a and the second data write head 60b are configured symmetrically in the width direction (Y' axis direction) of the data write head 60, but are basically configured the same. The first data write head 60a and the second data write head 60b are movable together in the width direction (Y axis direction) of the magnetic tape MT, which allows data to be written to any one of the data bands d out of all data bands d0 to d3.
 第1のデータライトヘッド60aは、磁気テープMTが順方向(図10においてA1方向)に走行しているときに使用されるヘッドである。一方、第2のデータライトヘッド60bは、磁気テープMTが逆方向(図10においてA2方向)に走行しているときに使用されるヘッドである。 The first data write head 60a is a head used when the magnetic tape MT is running in the forward direction (direction A1 in FIG. 10). On the other hand, the second data write head 60b is a head used when the magnetic tape MT is running in the reverse direction (direction A2 in FIG. 10).
 データライトヘッド60は、磁気テープMTに対向する対向面61を有している。対向面61は、データライトヘッド60の長手方向(Y'軸方向)に長くデータライトヘッド60の幅方向(X'軸方向)に短い形状を有している。対向面61には、2つのサーボリード部62と、複数のデータライト/リード部63が設けられている。 The data write head 60 has a facing surface 61 that faces the magnetic tape MT. The facing surface 61 is long in the longitudinal direction (Y'-axis direction) of the data write head 60 and short in the width direction (X'-axis direction) of the data write head 60. The facing surface 61 is provided with two servo read sections 62 and multiple data write/read sections 63.
 サーボリード部62は、データライトヘッド60の長手方向(Y'軸方向)の両端側にそれぞれ1つずつ設けられる。サーボリード部62は、磁気テープMTのサーボバンドsに記録されたサーボパターン47による磁界をMR素子(MR:Magneto Resistive effect)などにより読み取ることで、サーボ信号を再生可能に構成されている。 The servo read sections 62 are provided on both ends of the data write head 60 in the longitudinal direction (Y'-axis direction). The servo read sections 62 are configured to be able to reproduce servo signals by reading the magnetic field generated by the servo pattern 47 recorded on the servo band s of the magnetic tape MT using an MR element (MR: Magneto Resistive effect) or the like.
 MR素子としては、例えば、異方性磁気抵抗効果素子(AMR:Anisotropic Magneto Resistive effect)、巨大磁気抵抗効果素子(GMR:Giant Magneto Resistive effect)、トンネル磁気抵抗効果素子(TMR:Tunnel Magneto Resistive effect)などが用いられる。 Examples of MR elements that can be used include anisotropic magnetoresistive effect elements (AMR: Anisotropic Magneto Resistive effect), giant magnetoresistive effect elements (GMR: Giant Magneto Resistive effect), and tunnel magnetoresistive effect elements (TMR: Tunnel Magneto Resistive effect).
 データライト/リード部63は、データライトヘッド60の長手方向(Y'軸方向)に沿って、等間隔に配置されている。また、データライト/リード部63は、2つのサーボリード部62に挟み込まれる位置に配置されている。データライト/リード部63の数は、例えば、20個~40個程度とされるが、この個数ついては特に限定されない。 The data write/read sections 63 are arranged at equal intervals along the longitudinal direction (Y'-axis direction) of the data write head 60. Furthermore, the data write/read sections 63 are arranged at a position sandwiched between two servo read sections 62. The number of data write/read sections 63 is, for example, about 20 to 40, but there is no particular limit to this number.
 データライト/リード部63は、データライト部64と、データリード部65とを含む。データライト部64は、磁気ギャップから発生する磁界によって、磁気テープMTのデータバンドdに対してデータを記録することが可能に構成されている。 The data write/read section 63 includes a data write section 64 and a data read section 65. The data write section 64 is configured to be able to record data onto the data band d of the magnetic tape MT by the magnetic field generated from the magnetic gap.
 また、データリード部65は、磁気テープMTのデータバンドdに記録されたデータによる磁界をMR素子などにより読み取ることで、データ信号を再生可能に構成されている。MR素子としては、異方性磁気抵抗効果素子(AMR)、巨大磁気抵抗効果素子(GMR)、トンネル磁気抵抗効果素子(TMR)などが用いられる。 The data read section 65 is also configured to be able to reproduce data signals by reading the magnetic field caused by the data recorded on the data band d of the magnetic tape MT using an MR element or the like. As the MR element, an anisotropic magnetoresistance effect element (AMR), a giant magnetoresistance effect element (GMR), a tunnel magnetoresistance effect element (TMR), or the like is used.
 第1のデータライトヘッド60aにおいては、データライト部64が、データリード部65の左側(磁気テープMTが順方向に流れる場合の上流側)に配置される。一方、第2のデータライトヘッド60bにおいては、データライト部64が、データリード部65の右側(磁気テープMTが逆方向に流れる場合の上流側)に配置される。 In the first data write head 60a, the data write section 64 is located to the left of the data read section 65 (upstream when the magnetic tape MT flows in the forward direction). On the other hand, in the second data write head 60b, the data write section 64 is located to the right of the data read section 65 (upstream when the magnetic tape MT flows in the reverse direction).
 データリード部65は、そのデータリード部65と組とされるデータライト部64が磁気テープMTにデータを書き込んだ直後に、そのデータ信号を再生可能とされている。なお、上記に代えて、第1のデータライトヘッド60a及び第2のデータライトヘッド60bのうち、一方のデータライトヘッド60のデータライト部64で書き込まれたデータが他方のデータライトヘッド60のデータリード部65で再生されてもよい。 The data read section 65 is capable of reproducing the data signal immediately after the data write section 64 paired with the data read section 65 writes the data to the magnetic tape MT. Alternatively, data written by the data write section 64 of one of the data write heads 60, the first data write head 60a and the second data write head 60b, may be reproduced by the data read section 65 of the other data write head 60.
 磁気テープMTは、順方向及び逆方向に走行方向が変えられて何往復もされながら、第1のデータライトヘッド60a及び第2のデータライトヘッド60bにより、記録トラック46に対してデータが記録される。 The magnetic tape MT travels back and forth multiple times, forward and reverse, while data is recorded on the recording track 46 by the first data write head 60a and the second data write head 60b.
 角度調整部57(図10参照)は、第1のデータライトヘッド60a及び第2のデータライトヘッド60bを上下方向の軸(Z'軸)回りに回動可能に保持することが可能とされている。また、角度調整部57は、第1のデータライトヘッド60a及び第2のデータライトヘッド60bを、上下方向の軸回りに個別に回動させることが可能とされている。 The angle adjustment unit 57 (see FIG. 10) is capable of holding the first data write head 60a and the second data write head 60b rotatably around an axis (Z' axis) in the vertical direction. The angle adjustment unit 57 is also capable of rotating the first data write head 60a and the second data write head 60b individually around the axis in the vertical direction.
 角度調整部57は、第1のデータライトヘッド60a及び第2のデータライトヘッド60bの長手方向が、磁気テープMTの幅方向に対して、アジマス角θ傾斜して配置されるように、第1のデータライトヘッド60a及び第2のデータライトヘッド60bの角度を調整する。 The angle adjustment unit 57 adjusts the angles of the first data write head 60a and the second data write head 60b so that the longitudinal directions of the first data write head 60a and the second data write head 60b are inclined by the azimuth angle θ with respect to the width direction of the magnetic tape MT.
 ここで、第1のデータライトヘッド60aのサーボリード部62及びデータライト/リード部63におけるY軸方向(磁気テープMTの幅方向)の位置と、第2のデータライトヘッド60bのサーボリード部62及びデータライト/リード部63のY軸方向の位置は、同じである。これらの位置関係は、第1のデータライトヘッド60a及び第2のデータライトヘッド60bがZ軸回りに回動しても変わらない。 Here, the positions of the servo read section 62 and data write/read section 63 of the first data write head 60a in the Y-axis direction (width direction of the magnetic tape MT) are the same as the positions of the servo read section 62 and data write/read section 63 of the second data write head 60b in the Y-axis direction. This positional relationship does not change even if the first data write head 60a and the second data write head 60b rotate around the Z-axis.
 つまり、角度調整部57は、第1のデータライトヘッド60aのサーボリード部62及びデータライト/リード部63におけるY軸方向(磁気テープMTの幅方向)の位置と、第2のデータライトヘッド60bのサーボリード部62及びデータライト/リード部63のY軸方向の位置とが同じとなるように、第1のデータライトヘッド60a及び第2のデータライトヘッド60bを個別に回動可能とされる。 In other words, the angle adjustment unit 57 can rotate the first data write head 60a and the second data write head 60b individually so that the positions of the servo read section 62 and data write/read section 63 of the first data write head 60a in the Y-axis direction (the width direction of the magnetic tape MT) are the same as the positions of the servo read section 62 and data write/read section 63 of the second data write head 60b in the Y-axis direction.
 本実施形態では、データライトヘッド60のアジマス角θに対して、基準となる基準角Refθが設定されており、また、データライトヘッド60のアジマス角θは、基準角Refθ±x°で表される角度範囲が設定されている。 In this embodiment, a reference angle Refθ is set as a standard for the azimuth angle θ of the data write head 60, and the azimuth angle θ of the data write head 60 is set to an angle range represented by the reference angle Refθ±x°.
 図11に示す例では、基準角Refθが、磁気テープMTの幅方向に対して時計回り(下側:磁気テープMT側から見て)の方向に設定されている場合の一例が示されている。一方、基準角Refθは、磁気テープMTの幅方向に対して反時計回り(下側:磁気テープMT側から見て)の方向に設定されていてもよい。 The example shown in FIG. 11 shows an example in which the reference angle Refθ is set in a clockwise direction (as viewed from the bottom side of the magnetic tape MT) relative to the width direction of the magnetic tape MT. On the other hand, the reference angle Refθ may be set in a counterclockwise direction (as viewed from the bottom side of the magnetic tape MT) relative to the width direction of the magnetic tape MT.
[基準角Refθ及び角度範囲Refθ±x°等]
 次に、データライトヘッド60のアジマス角θにおける基準角Refθ、並びに、データライトヘッド60のアジマス角θにおける角度範囲Refθ±x°について説明する。
[Reference angle Refθ and angle range Refθ±x°, etc.]
Next, the reference angle Refθ at the azimuth angle θ of the data write head 60 and the angle range Refθ±x° at the azimuth angle θ of the data write head 60 will be described.
 図12は、データライトヘッド60のアジマス角θの角度範囲Refθ±x°と、アジマス損失Lθとの関係を示す図である(記録波長:0.1μm)。図12において、横軸は、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を示しており、縦軸は、アジマス損失Lθを示している。 12 is a diagram showing the relationship between the angle range Refθ±x° of the azimuth angle θ of the data write head 60 and the azimuth loss (recording wavelength: 0.1 μm). In FIG. 12, the horizontal axis indicates the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60, and the vertical axis indicates the azimuth loss .
 アジマス損失Lθ[dB]は、以下の式により表される。
 Lθ=-20Log10[sin{(πW/λ)tanθ}/(πW/λ)tanθ] 式中、Wは、再生トラック幅であり、λは、データの記録波長であり、θは、データライトヘッド60のアジマス角である。
The azimuth loss L θ [dB] is expressed by the following formula.
L θ =−20 Log 10 [sin{(πW/λ) tan θ}/(πW/λ) tan θ] In the formula, W is the reproducing track width, λ is the recording wavelength of data, and θ is the azimuth angle of the data write head 60 .
 図12では、再生トラック幅Wが、それぞれ、0.8μm、0.5μm、0.4μm、0.3μm、0.2μmとされた場合の5つのグラフが示されている。図12では、記録波長λは、0.1μmとされた。ここで、再生トラック幅Wが0.8μmとされたグラフは、LTO-9に対応しており、再生トラック幅Wが0.5μm、0.4μm、0.3μm、0.2μmとされたグラフは、LTO-10以降(推定値)に対応している。 In Figure 12, five graphs are shown where the reproduction track width W is set to 0.8 μm, 0.5 μm, 0.4 μm, 0.3 μm, and 0.2 μm. In Figure 12, the recording wavelength λ is set to 0.1 μm. Here, the graph where the reproduction track width W is 0.8 μm corresponds to LTO-9, and the graphs where the reproduction track width W is 0.5 μm, 0.4 μm, 0.3 μm, and 0.2 μm correspond to LTO-10 and later (estimated values).
 図12から理解されるように、データライトヘッド60のアジマス角θにおける角度範囲Refθ±x°が同じ場合、再生トラック幅Wが狭い方がアジマス損失Lθが小さいことが分かる。 As can be seen from FIG. 12, when the angular range Refθ±x° at the azimuth angle θ of the data write head 60 is the same, the azimuth loss is smaller when the reproducing track width W is narrower.
 これは、つまり、本実施形態のように、データライトヘッド60のアジマス角θの調整により、磁気テープMTの幅の変動に対処する形態の場合、アジマス損失Lθの観点からは記録トラック46の数が多く、再生トラック幅Wが狭い磁気テープMT(例えば、LTO-10以降)であるほど有利であることを意味している。 This means that in the case of a configuration in which the azimuth angle θ of the data write head 60 is adjusted to accommodate variations in the width of the magnetic tape MT, as in this embodiment, the greater the number of recording tracks 46 and the narrower the reproduction track width W of the magnetic tape MT (for example, LTO-10 or later) from the viewpoint of the azimuth loss Lθ, the more advantageous it is.
 ここで、アジマス損失Lθを許容することができる値が、0.05[dB]以下であると仮定する。また、磁気テープMTにおける再生トラック幅Wが0.5μm以下であると仮定する(LTO-10以降(推定値))。 Here, it is assumed that the allowable value of the azimuth loss is 0.05 [dB] or less, and that the reproducing track width W of the magnetic tape MT is 0.5 μm or less (LTO-10 or later (estimated value)).
 この場合、図12の点線で示されているように、データライトヘッド60のアジマス角θにおける角度範囲は、最大でRefθ±0.7°とされる。このため、本実施形態では、データライトヘッド60のアジマス角θにおける角度範囲において、Refθ±x°のxの値は、典型的には0.7°以下とされる。 In this case, as shown by the dotted line in FIG. 12, the angular range of the azimuth angle θ of the data write head 60 is a maximum of Refθ±0.7°. Therefore, in this embodiment, in the angular range of the azimuth angle θ of the data write head 60, the value of x in Refθ±x° is typically set to 0.7° or less.
 図13は、データライトヘッド60のアジマス角θにおける角度範囲Refθ±x°と、磁気テープMTの幅変動に基づくサーボバンドピッチ差に対する補正量との関係を示す図である。 Figure 13 shows the relationship between the angle range Refθ±x° at the azimuth angle θ of the data write head 60 and the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT.
 図13において、横軸は、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を示しており、縦軸は、磁気テープMTの幅変動に基づくサーボバンドピッチ差に対する補正量を示している。 In FIG. 13, the horizontal axis indicates the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60, and the vertical axis indicates the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT.
 図14は、磁気テープMTの幅変動に基づくサーボバンドピッチ差に対する補正量を示す図である。図14に示すように、この補正量は、a-bで表される。 Figure 14 shows the amount of correction for the servo band pitch difference based on the width variation of the magnetic tape MT. As shown in Figure 14, this amount of correction is expressed as a-b.
 ここで、aの値は、データライトヘッド60のアジマス角θがRefθ-x°とされた場合における、磁気テープMTの幅方向(Y軸方向)での2つのサーボリード部62間の距離である。一方、bの値は、データライトヘッド60のアジマス角θがRefθ+x°とされた場合における、磁気テープMTの幅方向(Y軸方向)での2つのサーボリード部62間の距離である。 Here, the value of a is the distance between the two servo read sections 62 in the width direction (Y-axis direction) of the magnetic tape MT when the azimuth angle θ of the data write head 60 is Refθ-x°. On the other hand, the value of b is the distance between the two servo read sections 62 in the width direction (Y-axis direction) of the magnetic tape MT when the azimuth angle θ of the data write head 60 is Refθ+x°.
 図13に戻り、図13では、データライトヘッド60のアジマス角θにおける基準角Refθが、2.5°、5°、7.5°、10°、12.5°、15°で変化された場合における6つのグラフが示されている。 Returning to Figure 13, six graphs are shown in which the reference angle Refθ at the azimuth angle θ of the data write head 60 is changed to 2.5°, 5°, 7.5°, 10°, 12.5°, and 15°.
 図13から、角度範囲Refθ±x°が同じであれば、基準角Refθが大きくなるほど補正量が大きくなることが分かる。 From Figure 13, it can be seen that if the angle range Refθ±x° is the same, the amount of correction increases as the reference angle Refθ increases.
 ここで、上述のように、アジマス損失Lθが0.05[dB]以下であり、再生トラック幅Wが0.5μm以下であるとすると、データライトヘッド60のアジマス角θにおける角度範囲は、最大でRefθ±0.7°である(図13の縦の破線参照)。この条件に加えて、さらに、上記補正量が10μm以上であるとする(図13の横の破線参照)。 As described above, if the azimuth loss is 0.05 dB or less and the reproduction track width W is 0.5 μm or less, the angular range of the azimuth angle θ of the data write head 60 is Refθ±0.7° at maximum (see the vertical dashed line in FIG. 13). In addition to this condition, it is further assumed that the correction amount is 10 μm or more (see the horizontal dashed line in FIG. 13).
 図13から理解されるように、これらの条件を満たすためには、データライトヘッド60の基準角Refθが7.5°では若干不足であり、基準角Refθが10°であれば十分であることが分かる。つまり、上記条件を満たすためには、基準角Refθは、8°以上とされる。 As can be seen from FIG. 13, in order to satisfy these conditions, a reference angle Refθ of the data write head 60 of 7.5° is slightly insufficient, and a reference angle Refθ of 10° is sufficient. In other words, in order to satisfy the above conditions, the reference angle Refθ should be 8° or more.
 なお、ここでの説明は、本実施形態において、基準角Refθを8°以上にしなければならないといった趣旨ではない。つまり、本実施形態においては、基準角Refθは、2.5°以上、5°以上、7.5°以上、8°以上、10°以上、12.5°以上、15°以上等、適宜設定することができる。 Note that the explanation here does not mean that the reference angle Refθ must be 8° or more in this embodiment. In other words, in this embodiment, the reference angle Refθ can be set appropriately to 2.5° or more, 5° or more, 7.5° or more, 8° or more, 10° or more, 12.5° or more, 15° or more, etc.
 図15は、データライトヘッド60のアジマス角θの角度範囲Refθ±x°と、アジマス損失Lθとの関係を示す図である(記録波長:0.07μm)。図15において、横軸は、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を示しており、縦軸は、アジマス損失Lθを示している。図15では、データの記録波長λが、0.07μmとされた。 Fig. 15 is a diagram showing the relationship between the angle range Refθ±x° of the azimuth angle θ of the data write head 60 and the azimuth loss (recording wavelength: 0.07 μm). In Fig. 15, the horizontal axis indicates the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60, and the vertical axis indicates the azimuth loss . In Fig. 15, the recording wavelength λ of the data is set to 0.07 μm.
 図12及び図15の違いは、図12では、データの記録波長λが0.1μmとされていたのに対して、図15では、データの記録波長λが0.07μmとされている点である。なお、LTO-10以降では、データの記録波長λは、0.1μm以下、0.07μm以下等とされることが推定される。 The difference between Figure 12 and Figure 15 is that in Figure 12, the data recording wavelength λ is 0.1 μm, whereas in Figure 15, the data recording wavelength λ is 0.07 μm. Note that in LTO-10 and later, it is estimated that the data recording wavelength λ will be 0.1 μm or less, 0.07 μm or less, etc.
 図12及び図15の比較から理解されるように、データの記録波長λが小さくなるほどアジマス損失は増加することが分かる。 As can be seen from a comparison of Figures 12 and 15, the smaller the data recording wavelength λ, the greater the azimuth loss.
 図15において、再生トラック幅Wが0.5μmであるグラフに着目する。データの記録波長λが0.07μmであり、かつ、再生トラック幅Wが0.5μmである場合において、アジマス損失を0.05[dB]以下とするためには、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を0.48°以下とすればよい。 In FIG. 15, let us look at the graph where the reproduction track width W is 0.5 μm. When the data recording wavelength λ is 0.07 μm and the reproduction track width W is 0.5 μm, in order to keep the azimuth loss below 0.05 [dB], the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60 should be set to 0.48° or less.
 図13において、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値が0.48°である箇所に着目する(図13の横軸参照)。データライトヘッド60のアジマス角θの角度範囲が、Refθ±0.48°である場合において、上記補正量を10μm以上とする場合、基準角Refθを12.5°以上とすればよいことが分かる。 In Figure 13, focus is placed on the point where the x value in the angular range Refθ±x° of the azimuth angle θ of the data write head 60 is 0.48° (see the horizontal axis in Figure 13). When the angular range of the azimuth angle θ of the data write head 60 is Refθ±0.48°, it can be seen that if the above correction amount is 10 μm or more, the reference angle Refθ should be set to 12.5° or more.
 また、図15において、再生トラック幅Wが0.4μmであるグラフに着目する。データの記録波長λが0.07μmであり、かつ、再生トラック幅Wが0.4μmである場合において、アジマス損失を0.05[dB]以下とするためには、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を0.6°以下とすればよい。 Furthermore, in FIG. 15, let us focus on the graph where the reproduction track width W is 0.4 μm. When the data recording wavelength λ is 0.07 μm and the reproduction track width W is 0.4 μm, in order to keep the azimuth loss below 0.05 [dB], the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60 should be set to 0.6° or less.
 図13において、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値が0.6°である箇所に着目する(図13の横軸参照)。データライトヘッド60のアジマス角θの角度範囲が、Refθ±0.6°である場合において、上記補正量を10μm以上とする場合、基準角Refθを10°以上とすればよいことが分かる。 In Figure 13, focus is placed on the point where the value of x in the angular range Refθ±x° of the azimuth angle θ of the data write head 60 is 0.6° (see the horizontal axis in Figure 13). When the angular range of the azimuth angle θ of the data write head 60 is Refθ±0.6°, it can be seen that if the above correction amount is to be 10 μm or more, the reference angle Refθ should be set to 10° or more.
 なお、ここでの説明から理解されるように、データライトヘッド60のアジマス角θの角度範囲Refθ±x°は、データの記録波長λが小さくなるほど小さくなる。また、データライトヘッド60のアジマス角θの角度範囲Refθ±x°は、再生トラック幅Wが小さくなるほど大きくなる(図12、図15参照)。 As will be understood from the explanation here, the angle range Refθ±x° of the azimuth angle θ of the data write head 60 becomes smaller as the data recording wavelength λ becomes smaller. Also, the angle range Refθ±x° of the azimuth angle θ of the data write head 60 becomes larger as the reproduction track width W becomes smaller (see Figures 12 and 15).
 また、データライトヘッド60のアジマス角θにおける基準角Refθは、データの記録波長λが小さくなるほど大きくなる。また、データライトヘッド60のアジマス角θにおける基準角Refθは、再生トラック幅Wが小さくなるほど小さくなる(図13参照)。 Furthermore, the reference angle Refθ at the azimuth angle θ of the data write head 60 becomes larger as the data recording wavelength λ becomes smaller.Furthermore, the reference angle Refθ at the azimuth angle θ of the data write head 60 becomes smaller as the reproduction track width W becomes smaller (see FIG. 13).
 ここで、LTOの規格が、LTO-9からLTO-10、LTO-11、・・・と世代が進むに従って、データの記録波長λが順次小さくなることが予測され、また、再生トラック幅Wも順次小さくなることが予測される。これに応じて、データライトヘッド60のアジマス角θの角度範囲Refθ±x°におけるxの値を適切な値に設定し(例えば、0.7°以下、0.6°以下、0.5°以下、0.4°以下・・・等)、また、データライトヘッド60のアジマス角θの基準角Refθを適切な値に設定すればよい(例えば、2.5°以上、5°以上、7.5°以上、8°以上、10°以上、12.5°以上、15°以上・・・等)。 As the LTO standard progresses from LTO-9 to LTO-10, LTO-11, etc., it is predicted that the data recording wavelength λ will become smaller and the playback track width W will also become smaller. In response to this, the value of x in the angle range Refθ±x° of the azimuth angle θ of the data write head 60 can be set to an appropriate value (e.g., 0.7° or less, 0.6° or less, 0.5° or less, 0.4° or less, etc.), and the reference angle Refθ of the azimuth angle θ of the data write head 60 can be set to an appropriate value (e.g., 2.5° or more, 5° or more, 7.5° or more, 8° or more, 10° or more, 12.5° or more, 15° or more, etc.).
[サーボ記録再生装置]
 次に、サーボ記録再生装置70について説明する。図16は、サーボ記録再生装置70を示す図である。
[Servo recording and reproducing device]
Next, a description will be given of the servo recording and reproducing device 70. FIG.
 図16に示すように、サーボ記録再生装置70は、送り出しローラ71、消磁部72、サーボライトヘッド80、サーボリードヘッド75、巻き取りローラ76及び4対のキャプスタンローラ77を備えている。 As shown in FIG. 16, the servo recording and reproducing device 70 includes a feed roller 71, a degaussing unit 72, a servo write head 80, a servo read head 75, a take-up roller 76, and four pairs of capstan rollers 77.
 送り出しローラ71は、ロール状の磁気テープMTを回転可能に支持することが可能とされている。送り出しローラ71は、モータ等の駆動に応じて回転され、回転に応じて磁気テープMTを下流側に向けて送り出す。 The feed roller 71 is capable of rotatably supporting the rolled magnetic tape MT. The feed roller 71 is rotated in response to the drive of a motor or the like, and feeds out the magnetic tape MT downstream in response to the rotation.
 巻き取りローラ76は、ロール状の磁気テープMTを回転可能に支持することが可能とされている。巻き取りローラ76は、モータ等の駆動に応じて回転し、回転に応じて磁気テープMTを巻き取っていく。 The winding roller 76 is capable of rotatably supporting the rolled magnetic tape MT. The winding roller 76 rotates in response to the drive of a motor or the like, and winds up the magnetic tape MT as it rotates.
 4対のキャプスタンローラ77は、それぞれ、磁気テープMTを上下方向の両側から挟み込むことが可能とされている。4対のキャプスタンローラ77は、モータ等の駆動に応じて回転し、回転に応じて磁気テープMTを搬送経路において搬送する。 The four pairs of capstan rollers 77 are each capable of clamping the magnetic tape MT from both the top and bottom sides. The four pairs of capstan rollers 77 rotate in response to the drive of a motor or the like, and transport the magnetic tape MT along the transport path in response to the rotation.
 送り出しローラ71、巻き取りローラ76及び4対のキャプスタンローラ77は、搬送経路内において磁気テープMTを一定の速度で搬送させることが可能とされている。 The feed roller 71, take-up roller 76, and four pairs of capstan rollers 77 are capable of transporting the magnetic tape MT at a constant speed within the transport path.
 サーボライトヘッド80は、例えば、磁気テープMTの上方側(磁性層43側)に配置される。サーボライトヘッド80は、矩形波のパルス信号に応じて所定のタイミングでサーボバンドsに磁場を印加し、サーボバンドsにサーボパターン47を記録する。 The servo write head 80 is disposed, for example, on the upper side (magnetic layer 43 side) of the magnetic tape MT. The servo write head 80 applies a magnetic field to the servo band s at a predetermined timing in response to a square wave pulse signal, and records the servo pattern 47 on the servo band s.
 サーボライトヘッド80は、サーボライトヘッド80の下側を磁気テープMTが通過するときに、全てのサーボバンドs(s0~s4)に対してそれぞれサーボパターン47を記録することが可能とされている。なお、サーボライトヘッド80の構成についての詳細は、図17~図22を参照して後述する。 The servo write head 80 is capable of recording servo patterns 47 for each of the servo bands s (s0 to s4) when the magnetic tape MT passes underneath the servo write head 80. Details of the configuration of the servo write head 80 will be described later with reference to Figures 17 to 22.
 消磁部72は、例えば、サーボライトヘッド80よりも上流側において、磁気テープMTの下側(ベース層41側)に配置される。消磁部72は、例えば、2つの永久磁石73、74により構成される。永久磁石73、74は、サーボライトヘッド80によってサーボパターン47が記録される前に、直流磁界によって磁性層43の全体に対して磁場を印加して、磁性層43の全体を消磁する。 The demagnetizing unit 72 is disposed, for example, upstream of the servo write head 80 and below the magnetic tape MT (toward the base layer 41). The demagnetizing unit 72 is composed, for example, of two permanent magnets 73 and 74. The permanent magnets 73 and 74 apply a magnetic field to the entire magnetic layer 43 using a DC magnetic field, thereby demagnetizing the entire magnetic layer 43 before the servo pattern 47 is recorded by the servo write head 80.
 サーボリードヘッド75は、サーボライトヘッド80よりも下流側において、磁気テープMTの上側(磁性層43側)に配置される。サーボリードヘッド75は、磁気テープMTに記録されたサーボパターン47から発生する磁界を読み取ることで、サーボパターン47の情報を再生可能に構成されている。 The servo read head 75 is positioned downstream of the servo write head 80 and above the magnetic tape MT (on the magnetic layer 43 side). The servo read head 75 is configured to be able to reproduce the information of the servo pattern 47 by reading the magnetic field generated from the servo pattern 47 recorded on the magnetic tape MT.
 サーボリードヘッド75は、サーボリードヘッド75の下側を磁気テープMTが通過するときに、全てのサーボバンドs(s0~s4)からサーボパターン47を読み取ることが可能とされている。サーボリードヘッド75によって読み取られたサーボパターン47の情報は、サーボパターン47が正確に記録されたかどうかの確認のために用いられる。 The servo read head 75 is capable of reading the servo patterns 47 from all servo bands s (s0 to s4) when the magnetic tape MT passes underneath the servo read head 75. The information on the servo pattern 47 read by the servo read head 75 is used to confirm whether the servo pattern 47 has been recorded accurately.
 サーボリードヘッド75のタイプは、例えば、インダクティブ型、MR型(Magneto Resistive)、GMR型(Giant Magneto Resistive)、TMR型(Tunnel Magneto Resistive)等である。 The types of servo read head 75 include, for example, inductive type, MR type (Magneto Resistive), GMR type (Giant Magneto Resistive), TMR type (Tunnel Magneto Resistive), etc.
 図示は省略しているが、サーボ記録再生装置70は、サーボ記録再生装置70の各部を統括的に制御する制御装置を備えている。 Although not shown in the figure, the servo recording and reproducing device 70 is equipped with a control device that comprehensively controls each part of the servo recording and reproducing device 70.
 制御装置は、例えば、制御部、記憶部、通信部などを含む。制御部は、例えば、CPU(Central Processing Unit)等により構成されており、記憶部に記憶されたプログラムに従い、サーボ記録再生装置70の各部を統括的に制御する。 The control device includes, for example, a control unit, a memory unit, a communication unit, etc. The control unit is composed of, for example, a CPU (Central Processing Unit), etc., and performs overall control of each part of the servo recording and reproduction device 70 according to the program stored in the memory unit.
 記憶部は、各種のデータや各種のプログラムが記録される不揮発性のメモリと、制御部の作業領域として用いられる揮発性のメモリとを含む。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。通信部は、例えば、PCやサーバ装置等の他の装置との間で互いに通信可能に構成されている。 The storage unit includes a non-volatile memory in which various data and programs are recorded, and a volatile memory used as a working area for the control unit. The above-mentioned various programs may be read from a portable recording medium such as an optical disk or semiconductor memory, or may be downloaded from a server device on a network. The communication unit is configured to be capable of communicating with other devices such as a PC or server device.
[サーボライトヘッド]
 次に、サーボライトヘッド80の構成について詳細に説明する。上述のように、データ記録再生装置50におけるデータライトヘッド60は、磁気テープMTの幅方向に対して傾いて配置される。従って、データライトヘッド60が正確にサーボパターン47を読み取ることができるように、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して非対称となるように書き込まれる。この非対称のサーボパターン47の書き込みは、サーボライヘッド80により実行される。
[Servo write head]
Next, the configuration of the servo write head 80 will be described in detail. As described above, the data write head 60 in the data recording and reproducing device 50 is disposed at an angle with respect to the width direction of the magnetic tape MT. Therefore, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are written asymmetrically with respect to the width direction of the magnetic tape MT so that the data write head 60 can accurately read the servo patterns 47. The writing of the asymmetric servo patterns 47 is performed by the servo write head 80.
 サーボライトヘッド80の形態について、実施形態A及び実施形態Bの2種類が存在する。実施形態Aでは、サーボライトヘッド80aの長手方向(Y"軸方向)が、磁気テープMTの幅方向(Y軸方向)に対して平行に配置される(後述の図17~図19参照)。一方、実施形態Bでは、サーボライトヘッド80bの長手方向(Y"軸方向)が、磁気テープMTの幅方向(Y軸方向)に対して所定の角度傾斜して配置される(後述の図20~図22参照)。 There are two types of servo write head 80 configurations: embodiment A and embodiment B. In embodiment A, the longitudinal direction (Y" axis direction) of servo write head 80a is arranged parallel to the width direction (Y axis direction) of magnetic tape MT (see Figures 17 to 19 described below). On the other hand, in embodiment B, the longitudinal direction (Y" axis direction) of servo write head 80b is arranged at a predetermined angle inclined to the width direction (Y axis direction) of magnetic tape MT (see Figures 20 to 22 described below).
(実施形態A)
 まず、サーボライトヘッド80の実施形態Aについて説明する。図17は、サーボライトヘッド80aと、サーボライトヘッド80aに入力されるパルス信号とを示す図である。図18は、サーボライトヘッド80aが有するサーボ素子82の拡大図である。図19は、サーボライトヘッド80aにより磁気テープMTにサーボパターン47が書き込まれるときの様子を示す図である。なお、図17~図19では、サーボライトヘッド80aの磁気テープMTと対向する面が示されている。
(Embodiment A)
First, an embodiment A of the servo write head 80 will be described. Fig. 17 is a diagram showing the servo write head 80a and a pulse signal input to the servo write head 80a. Fig. 18 is an enlarged view of a servo element 82 of the servo write head 80a. Fig. 19 is a diagram showing a state when the servo write head 80a writes a servo pattern 47 onto the magnetic tape MT. Note that Figs. 17 to 19 show the surface of the servo write head 80a that faces the magnetic tape MT.
 これらの図に示すように、サーボライトヘッド80aは、長手方向(Y"軸方向)に長く、幅方向(X"軸方向)に短い形状を有している。なお、図17~図19では、サーボライトヘッド80aの長手方向がY"軸方向とされ、サーボライトヘッド80aの幅方向がX"軸方向とされ、サーボライトヘッド80aの上下方向がZ"軸方向とされている。また、磁気テープMTの長手方向(搬送方向)がX軸方向とされ、磁気テープMTの幅方向がY軸方向とされ、磁気テープMTの厚さ方向がZ軸方向とされている。なお、これについては、図20~図22においても同様である。 As shown in these figures, the servo write head 80a is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction). In Figures 17 to 19, the longitudinal direction of the servo write head 80a is the Y" axis direction, the width direction of the servo write head 80a is the X" axis direction, and the up-down direction of the servo write head 80a is the Z" axis direction. The longitudinal direction (transport direction) of the magnetic tape MT is the X axis direction, the width direction of the magnetic tape MT is the Y axis direction, and the thickness direction of the magnetic tape MT is the Z axis direction. This is also true in Figures 20 to 22.
 実施形態Aでは、サーボライトヘッド80aの長手方向(Y"軸方向)が磁気テープMTの方向(Y軸方向)に一致しており、サーボライトヘッド80aの幅方向(X"軸方向)が磁気テープMTの長手方向(X軸方向)に一致している。 In embodiment A, the longitudinal direction (Y" axis direction) of the servo write head 80a coincides with the direction of the magnetic tape MT (Y axis direction), and the width direction (X" axis direction) of the servo write head 80a coincides with the longitudinal direction (X axis direction) of the magnetic tape MT.
 サーボライトヘッド80aは、磁気テープMTに対向する対向面81を有している。対向面81は、長手方向(Y"軸方向)に長く、幅方向(X"軸方向)に短い形状を有している。 The servo write head 80a has a facing surface 81 that faces the magnetic tape MT. The facing surface 81 is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
 サーボライトヘッド80aは、対向面80a上において、5対のサーボ素子82(磁気ギャップ)を有している。5対のサーボ素子82は、サーボライトヘッド80aの長手方向(Y"軸方向)において、所定の間隔(サーボ素子ピッチ:SP)を開けて配置される。 The servo write head 80a has five pairs of servo elements 82 (magnetic gaps) on the opposing surface 80a. The five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP) in the longitudinal direction (Y" axis direction) of the servo write head 80a.
 サーボライトヘッド80aの長手方向(Y"軸方向)(磁気テープMTの幅方向:Y軸方向)において、互いに隣接する2対のサーボ素子82の間隔(サーボ素子ピッチ)は、例えば、2858.8±4.6μmとされる。なお、この値は、磁気テープMTにおいて、磁気テープMTの幅方向(Y軸方向)で互いに隣接する2本のサーボバンドsの間隔(サーボバンドピッチ:SP)に対応する。 In the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction), the distance (servo element pitch) between two pairs of adjacent servo elements 82 is, for example, 2858.8 ± 4.6 μm. Note that this value corresponds to the distance (servo band pitch: SP) between two adjacent servo bands s in the width direction (Y axis direction) of the magnetic tape MT.
 一対のサーボ素子82は、サーボライトヘッド80aの長手方向(Y"軸方向)(磁気テープMTの幅方向:Y軸方向)に対して非対称に構成された第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)を含む(特に、図18参照)。 The pair of servo elements 82 includes a first servo element 82a ("/") and a second servo element 82b ("\") that are configured asymmetrically with respect to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction) (see FIG. 18 in particular).
 第1のサーボ素子82a(「/」)は、サーボライトヘッド80aの長手方向(Y"軸方向)(磁気テープMTの幅方向:Y軸方向)に対して、第1の角度θs1で傾斜する。第2のサーボ素子82b(「\」)は、サーボライトヘッド80aの長手方向(Y"軸方向)(磁気テープMTの幅方向:Y軸方向)に対して、第1の角度θs1とは逆向きに第2の角度θs2で傾斜する。 The first servo element 82a ("/") is inclined at a first angle θs1 relative to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction).The second servo element 82b ("\") is inclined at a second angle θs2 in the opposite direction to the first angle θs1 relative to the longitudinal direction (Y" axis direction) of the servo write head 80a (width direction of the magnetic tape MT: Y axis direction).
 第1の角度θs1及び第2の角度θs2は、データライトヘッド60の基準角Refθと関連しており、それぞれ以下の式により表される。
  θs1=Refθ+θa
  θs2=Refθ-θa
 ここで、Refθは、データライトヘッド60の基準角Refθであり、θaは、サーボアジマス角である。
The first angle θs1 and the second angle θs2 are related to the reference angle Refθ of the data write head 60, and are expressed by the following equations, respectively.
θs1=Refθ+θa
θs2=Refθ−θa
Here, Refθ is the reference angle Refθ of the data write head 60, and θa is the servo azimuth angle.
 仮に、データライトヘッド60の基準角Refθが10°とされ、サーボアジマス角θaが12°とされた場合、第1のサーボ素子82a(「/」)の第1の角度θs1は、22°とされ、第2のサーボ素子82b(「\」)の第2の角度θs2は、2°とされる。 If the reference angle Refθ of the data write head 60 is set to 10° and the servo azimuth angle θa is set to 12°, the first angle θs1 of the first servo element 82a ("/") is set to 22°, and the second angle θs2 of the second servo element 82b ("\") is set to 2°.
 サーボライトヘッド80aの幅方向(X"軸方向)(磁気テープMTの長手方向:X軸方向)において、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)の間隔は、例えば、サーボ素子の長さの幅方向成分SLの1/2の位置において38μmとされる。 In the width direction (X" axis direction) of the servo write head 80a (longitudinal direction of the magnetic tape MT: X axis direction), the distance between the first servo element 82a ("/") and the second servo element 82b ("\") is, for example, 38 μm at a position that is 1/2 the width direction component SL of the length of the servo element.
 ここで、第1のサーボ素子82a(「/」)において、第1の角度θs1に沿う方向(磁気テープMTの幅方向に対して22°の方向)を第1のサーボ素子82a(「/」)の長手方向とする。また、第2のサーボ素子82b(「\」)において、第2の角度θs2に沿う方向(磁気テープMTの幅方向に対して-2°の方向)を第2のサーボ素子82b(「\」)の長手方向とする。 Here, for the first servo element 82a ("/"), the direction along the first angle θs1 (a direction at 22° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the first servo element 82a ("/"). Also, for the second servo element 82b ("\"), the direction along the second angle θs2 (a direction at -2° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the second servo element 82b ("\").
 第1のサーボ素子82a(「/」)の長手方向における長さは、第2のサーボ素子82b(「\」)の長手方向における長さとは異なっており、ここでの例では、第1のサーボ素子82a(「/」)の長手方向での長さは、第2のサーボ素子82b(「\」)の長手方向での長さよりも長い。 The length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b ("\") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b ("\").
 一方、第1のサーボ素子82a(「/」)の長手方向の長さにおける、磁気テープMTの幅方向の成分SL(Y軸方向)と、第2のサーボ素子82b(「\」)の長手方向の長さにおける、磁気テープMTの幅方向の成分SL(Y軸方向)とは同じである。サーボ素子82の長さの幅方向成分SLは、例えば、96±3μmとされる。 On the other hand, the width component SL (Y-axis direction) of the magnetic tape MT in the longitudinal length of the first servo element 82a ("/") is the same as the width component SL (Y-axis direction) of the magnetic tape MT in the longitudinal length of the second servo element 82b ("\"). The width component SL of the length of the servo element 82 is, for example, 96±3 μm.
 図17には、5対のサーボ素子82に対してそれぞれ入力されるパルス信号が示されている。また、図19には、そのパルス信号が5対のサーボ素子82に入力されることにより、磁気テープMTのサーボバンドsに書き込まれたサーボパターン47が示されている。 FIG. 17 shows the pulse signals input to each of the five pairs of servo elements 82. FIG. 19 shows the servo pattern 47 written in the servo band s of the magnetic tape MT by inputting the pulse signals to the five pairs of servo elements 82.
 ここで、上述のように、データライトヘッド60は、磁気テープMTの幅方向に対して、アジマス角θ傾斜して配置される。この場合において、5対のサーボ素子82に対して、同時刻に同位相のパルス信号が入力され、磁気テープMTの幅方向に平行な位置に同位相のサーボパターン47が書き込まれた場合を想定する。この場合、傾斜して配置されたデータライトヘッド60の2つのサーボリード部62により同時刻に読み取られるサーボパターン47の位相が異なってしまうことになる。 As described above, the data write head 60 is positioned at an inclination of the azimuth angle θ with respect to the width direction of the magnetic tape MT. In this case, assume that pulse signals of the same phase are input to five pairs of servo elements 82 at the same time, and servo patterns 47 of the same phase are written at positions parallel to the width direction of the magnetic tape MT. In this case, the phases of the servo patterns 47 read at the same time by the two servo read portions 62 of the data write head 60 positioned at an angle will be different.
 そこで、実施形態Aでは、5対のサーボ素子82に同時刻に入力されるパルス信号の位相を異ならせることで、同位相のサーボパターン47を磁気テープMTの幅方向に対して非平行に書き込むこととしている。 In this embodiment, the phases of the pulse signals input to five pairs of servo elements 82 at the same time are made different, so that servo patterns 47 of the same phase are written non-parallel to the width direction of the magnetic tape MT.
 サーボライトヘッド80aの長手方向(Y"軸方向:磁気テープMTの幅方向)で互いに隣接する2対のサーボ素子82に対して入力されるパルス信号の位相差は、SP×tan(Refθ)に対応する。ここで、SP(サーボバンドピッチ=サーボ素子ピッチ)は、互いに隣接する2つのサーボバンドsにおける磁気テープMTの幅方向での間隔、または、互いに隣接する2対のサーボ素子82における磁気テープMTの幅方向での間隔である。また、Refθは、データライトヘッド60における基準角である。 The phase difference between the pulse signals input to two pairs of servo elements 82 adjacent to each other in the longitudinal direction of the servo write head 80a (Y" axis direction: width direction of the magnetic tape MT) corresponds to SP x tan(Refθ). Here, SP (servo band pitch = servo element pitch) is the distance between two adjacent servo bands s in the width direction of the magnetic tape MT, or the distance between two adjacent pairs of servo elements 82 in the width direction of the magnetic tape MT. In addition, Refθ is the reference angle in the data write head 60.
 仮に、SPの値が2858.8μmであるとし、データライトヘッド60における基準角Refθが10°であるとする。この場合、互いに隣接する2対のサーボ素子82に対して入力されるパルス信号の位相差は、2858.8μm×tan10°=504.08μmに対応する。 Assume that the value of SP is 2858.8 μm and the reference angle Refθ in the data write head 60 is 10°. In this case, the phase difference between the pulse signals input to two pairs of adjacent servo elements 82 corresponds to 2858.8 μm × tan 10° = 504.08 μm.
 ここで、サーボバンドs4のサーボ素子82の入力パルスを基準としたサーボバンドs3、サーボバンドs2、サーボバンドs1、サーボバンドs0のサーボ素子82の入力パルスの位相差は、順番に、504.08μm、1008.17μm、1512.25μm、2016.33μmに対応する位相とされる。 Here, the phase differences of the input pulses of the servo elements 82 of servo bands s3, s2, s1, and s0 based on the input pulse of the servo element 82 of servo band s4 correspond to phases of 504.08 μm, 1008.17 μm, 1512.25 μm, and 2016.33 μm, respectively.
 5本のサーボバンドsに対応する5対のサーボ素子82に対して、同時刻に入力されるパルス信号の位相について、最も先に進んだ位相の入力パルスが入力されるのは、サーボバンドs0のサーボ素子82である。入力パルスの位相の順番は、次いで、サーボバンドs1のサーボ素子82、サーボバンドs2のサーボ素子82、サーボバンドs3のサーボ素子82、サーボバンドs4のサーボ素子82の順番である。 For the five pairs of servo elements 82 corresponding to the five servo bands s, the servo element 82 in servo band s0 receives the input pulse with the most advanced phase of the pulse signal input at the same time. The order of the input pulse phase is then the servo element 82 in servo band s1, the servo element 82 in servo band s2, the servo element 82 in servo band s3, and the servo element 82 in servo band s4.
 例えば、サーボバンドs0のサーボ素子82及びサーボバンドs1のサーボ素子82で説明すると、同時刻において、サーボバンドs0のサーボ素子82には、サーボバンドs1のサーボ素子82よりも504.08μmに対応する位相分、先の位相のパルス信号が入力される。 For example, taking the servo element 82 of servo band s0 and the servo element 82 of servo band s1 as an example, at the same time, a pulse signal with a phase that is 504.08 μm ahead of the servo element 82 of servo band s1 is input to the servo element 82 of servo band s0.
 同様に、磁気テープMTの幅方向で互いに隣接する2つのサーボバンドsに書き込まれるサーボパターン47の、磁気テープMTの幅方向(Y軸方向)での位相差は、SP×tan(Refθ)で表される。 Similarly, the phase difference in the width direction (Y-axis direction) of the magnetic tape MT between the servo patterns 47 written in two servo bands s adjacent to each other in the width direction of the magnetic tape MT is expressed as SP x tan(Refθ).
 仮に、SPの値が2858.8μmであるとし、データライトヘッド60における基準角Refθが10°であるとする。この場合、互いに隣接する2つのサーボバンドsに書きこまれるサーボパターン47における、磁気テープMTの幅方向(Y軸方向)での位相差は、2858.8μm×tan10°=504.08μmに対応する。 Assume that the value of SP is 2858.8 μm, and the reference angle Refθ in the data write head 60 is 10°. In this case, the phase difference in the width direction (Y-axis direction) of the magnetic tape MT in the servo patterns 47 written to two adjacent servo bands s corresponds to 2858.8 μm × tan 10° = 504.08 μm.
 サーボバンドs4のサーボパターン47を基準としたサーボバンドs3、サーボバンドs2、サーボバンドs1、サーボバンドs2のサーボパターン47の位相差は、順番に、504.08μm、1008.17μm、1512.25μm、2016.33μmに対応する位相とされる。 The phase differences of the servo patterns 47 of servo bands s3, s2, s1, and s2 based on the servo pattern 47 of servo band s4 correspond to 504.08 μm, 1008.17 μm, 1512.25 μm, and 2016.33 μm, respectively.
 5本のサーボバンドsにそれぞれ書き込まれたサーボパターン47について、磁気テープMTの幅方向(Y軸方向)で、最も先に進んだ位相となるのは、サーボバンドs0のサーボパターン47である。位相の順番は、次いで、サーボバンドs1のサーボパターン47、サーボバンドs2、のサーボパターン47、サーボバンドs3のサーボパターン47、サーボバンドs4のサーボパターン47の順番である。 Of the servo patterns 47 written in each of the five servo bands s, the servo pattern 47 in servo band s0 is the one that has the most advanced phase in the width direction (Y-axis direction) of the magnetic tape MT. The order of phases is the servo pattern 47 in servo band s1, the servo pattern 47 in servo band s2, the servo pattern 47 in servo band s3, and the servo pattern 47 in servo band s4.
 例えば、サーボバンドs0のサーボパターン47及びサーボバンドs1のサーボパターン47で説明すると、磁気テープMTの幅方向で、サーボバンドs0のサーボパターン47の位相は、サーボバンドs1のサーボパターン47よりも504.08μmに対応する位相分、先の位相とされる。 For example, taking the servo pattern 47 of servo band s0 and the servo pattern 47 of servo band s1 as an example, in the width direction of the magnetic tape MT, the phase of the servo pattern 47 of servo band s0 is set to be ahead of the servo pattern 47 of servo band s1 by a phase corresponding to 504.08 μm.
 磁気テープMTにおいて、磁気テープMTの幅方向(Y軸方向)に対してデータライトヘッド60の基準角Refθ(10°)の方向では、5本のサーボバンドsに書きこまれたサーボパターン47の位相は、同位相とされる。 In the magnetic tape MT, in the direction of the reference angle Refθ (10°) of the data write head 60 relative to the width direction (Y-axis direction) of the magnetic tape MT, the phases of the servo patterns 47 written in the five servo bands s are in phase.
(実施形態B)
 次に、サーボライトヘッド80の実施形態Bについて説明する。図20は、実施形態Bに係るサーボライトヘッド80b及びサーボライトヘッド80bが有するサーボ素子82の拡大図である。図21は、実施形態Bに係るサーボライトヘッド80bにより磁気テープMTにサーボパターン47が書き込まれるときの様子を示す図である。図20及び図21では、サーボライトヘッド80bの磁気テープMTと対向する面が示されている。なお、後述の図22~図25についても同様に、サーボライトヘッド80の磁気テープMTと対向する面が示されている。
(Embodiment B)
Next, embodiment B of the servo write head 80 will be described. Fig. 20 is an enlarged view of a servo write head 80b according to embodiment B and a servo element 82 that the servo write head 80b has. Fig. 21 is a view showing a state in which a servo pattern 47 is written on a magnetic tape MT by the servo write head 80b according to embodiment B. Figs. 20 and 21 show the surface of the servo write head 80b that faces the magnetic tape MT. Similarly, Figs. 22 to 25 described later also show the surface of the servo write head 80 that faces the magnetic tape MT.
 これらの図に示すように、サーボライトヘッド80bは、長手方向(Y"軸方向)に長く、幅方向(X"軸方向)に短い形状を有している。 As shown in these figures, the servo write head 80b has a shape that is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
 実施形態Bでは、サーボライトヘッド80bの長手方向(Y"軸方向)が磁気テープMTの幅方向に対して所定の角度(第2のヘッドアジマス角)傾斜して配置される。サーボライトヘッド80bの長手方向(Y"軸方向)が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度は、
データライトヘッド60の基準角Refθと関連しており、データライトヘッド60の基準角Refθと一致している(例えば、10°)。
In embodiment B, the longitudinal direction (Y" axis direction) of the servo write head 80b is inclined at a predetermined angle (second head azimuth angle) with respect to the width direction of the magnetic tape MT. The angle at which the longitudinal direction (Y" axis direction) of the servo write head 80b is inclined with respect to the width direction (Y axis direction) of the magnetic tape MT is
It is related to the reference angle Ref θ of the data write head 60 and coincides with the reference angle Ref θ of the data write head 60 (for example, 10°).
 サーボライトヘッド80bは、磁気テープMTに対向する対向面81を有している。対向面81は、長手方向(Y"軸方向)に長く、幅方向(X"軸方向)に短い形状を有している。 The servo write head 80b has a facing surface 81 that faces the magnetic tape MT. The facing surface 81 is long in the longitudinal direction (Y" axis direction) and short in the width direction (X" axis direction).
 サーボライトヘッド80bは、対向面81上において、5対のサーボ素子82(磁気ギャップ)を有している。5対のサーボ素子82は、磁気テープMTの幅方向(Y軸方向)において、所定の間隔(サーボ素子ピッチ:SP1)を開けて配置される。 The servo write head 80b has five pairs of servo elements 82 (magnetic gaps) on the opposing surface 81. The five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP1) in the width direction (Y-axis direction) of the magnetic tape MT.
 互いに隣接する2対のサーボ素子82における、磁気テープMTの幅方向(Y軸方向)での間隔(サーボ素子ピッチ:SP1)は、例えば、2858.8±4.6μmとされる。なお、この値は、磁気テープMTにおいて、磁気テープMTの幅方向(Y軸方向)で互いに隣接する2本のサーボバンドsの間隔(サーボバンドピッチ:SP1)に対応する。 The spacing (servo element pitch: SP1) between two pairs of adjacent servo elements 82 in the width direction (Y-axis direction) of the magnetic tape MT is, for example, 2858.8±4.6 μm. This value corresponds to the spacing (servo band pitch: SP1) between two servo bands s that are adjacent to each other in the width direction (Y-axis direction) of the magnetic tape MT.
 また、互いに隣接する2対のサーボ素子82において、磁気テープMTの長手方向(X軸方向)での位置の差は、SP1×tan(Refθ)で表される。ここで、SP1(サーボバンドピッチ=サーボ素子ピッチ)は、互いに隣接する2つのサーボバンドsにおける磁気テープMTの幅方向での間隔、または、互いに隣接する2対のサーボ素子82における磁気テープMTの幅方向での間隔である。また、Refθは、データライトヘッド60における基準角である。 The difference in position between two pairs of adjacent servo elements 82 in the longitudinal direction (X-axis direction) of the magnetic tape MT is expressed as SP1 x tan(Refθ). Here, SP1 (servo band pitch = servo element pitch) is the distance between two adjacent servo bands s in the width direction of the magnetic tape MT, or the distance between two adjacent pairs of servo elements 82 in the width direction of the magnetic tape MT. Refθ is the reference angle in the data write head 60.
 仮に、SP1の値が2858.8μmであるとし、データライトヘッド60における基準角Refθが10°であるとする。この場合、互いに隣接する2対のサーボ素子82において、磁気テープの長手方向(X軸方向)での位置の差は、2858.8μm×tan10°=504.08μmである。 Assume that the value of SP1 is 2858.8 μm, and the reference angle Refθ in the data write head 60 is 10°. In this case, the difference in position between two pairs of adjacent servo elements 82 in the longitudinal direction of the magnetic tape (X-axis direction) is 2858.8 μm × tan 10° = 504.08 μm.
 一対のサーボ素子82は、磁気テープMTの幅方向(Y軸方向)に対して非対称に構成された第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)を含む(特に、図20の右側参照)。 The pair of servo elements 82 includes a first servo element 82a ("/") and a second servo element 82b ("\") that are configured asymmetrically with respect to the width direction (Y-axis direction) of the magnetic tape MT (see particularly the right side of Figure 20).
 第1のサーボ素子82a(「/」)は、磁気テープMTの幅方向(Y軸方向)に対して、第1の角度θs1で傾斜する。第2のサーボ素子82b(「\」)は、磁気テープMTの幅方向(Y軸方向)に対して、第1の角度θs1とは逆向きに第2の角度θs2で傾斜する。 The first servo element 82a ("/") is inclined at a first angle θs1 relative to the width direction (Y-axis direction) of the magnetic tape MT. The second servo element 82b ("\") is inclined at a second angle θs2 in the opposite direction to the first angle θs1 relative to the width direction (Y-axis direction) of the magnetic tape MT.
 第1の角度θs1及び第2の角度θs2は、データライトヘッド60の基準角Refθと関連しており、それぞれ以下の式により表される。
  θs1=Refθ+θa
  θs2=Refθ-θa
 ここで、Refθは、データライトヘッド60の基準角Refθであり、θaは、サーボアジマス角である。
The first angle θs1 and the second angle θs2 are related to the reference angle Refθ of the data write head 60, and are expressed by the following equations, respectively.
θs1=Refθ+θa
θs2=Refθ−θa
Here, Refθ is the reference angle Refθ of the data write head 60, and θa is the servo azimuth angle.
 仮に、データライトヘッド60の基準角Refθが10°とされ、サーボアジマス角θaが12°とされた場合、第1のサーボ素子82a(「/」)の第1の角度θs1は、22°とされ、第2のサーボ素子82b(「\」)の第2の角度θs2は、2°とされる。 If the reference angle Refθ of the data write head 60 is set to 10° and the servo azimuth angle θa is set to 12°, the first angle θs1 of the first servo element 82a ("/") is set to 22°, and the second angle θs2 of the second servo element 82b ("\") is set to 2°.
 磁気テープMTの長手方向(X軸方向)において、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)の間隔は、例えば、サーボ素子82の長さの幅方向成分SLの1/2の位置において、38μmとされる。 In the longitudinal direction (X-axis direction) of the magnetic tape MT, the distance between the first servo element 82a ("/") and the second servo element 82b ("\") is, for example, 38 μm at a position that is 1/2 the width component SL of the length of the servo element 82.
 ここで、第1のサーボ素子82a(「/」)において、第1の角度θs1に沿う方向(磁気テープMTの幅方向に対して22°の方向)を第1のサーボ素子82a(「/」)の長手方向とする。また、第2のサーボ素子82b(「\」)において、第2の角度θs2に沿う方向(磁気テープMTの幅方向に対して-2°の方向)を第2のサーボ素子82b(「\」)の長手方向とする。 Here, for the first servo element 82a ("/"), the direction along the first angle θs1 (a direction at 22° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the first servo element 82a ("/"). Also, for the second servo element 82b ("\"), the direction along the second angle θs2 (a direction at -2° relative to the width direction of the magnetic tape MT) is defined as the longitudinal direction of the second servo element 82b ("\").
 第1のサーボ素子82a(「/」)の長手方向における長さは、第2のサーボ素子82b(「\」)の長手方向における長さとは異なっており、ここでの例では、第1のサーボ素子82a(「/」)の長手方向での長さは、第2のサーボ素子82b(「\」)の長手方向での長さよりも長い。 The length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b ("\") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b ("\").
 一方、第1のサーボ素子82a(「/」)の長手方向の長さにおける、磁気テープMTの幅方向の成分(Y軸方向)SL1と、第2のサーボ素子82b(「\」)の長手方向の長さにおける、磁気テープMTの幅方向の成分(Y軸方向)SL1とは同じである。サーボ素子82の長さの幅方向成分SL1は、例えば、96±3μmとされる。 On the other hand, the width component (Y-axis direction) SL1 of the magnetic tape MT in the longitudinal length of the first servo element 82a ("/") is the same as the width component (Y-axis direction) SL1 of the magnetic tape MT in the longitudinal length of the second servo element 82b ("\"). The width component SL1 of the length of the servo element 82 is, for example, 96±3 μm.
 図24は、図20の右側の図の拡大図であって、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)における具体的な寸法の一例を示す図である(XYZ座標系基準)。 FIG. 24 is an enlarged view of the right side of FIG. 20, showing an example of specific dimensions of the first servo element 82a ("/") and the second servo element 82b ("\") (based on the XYZ coordinate system).
 図24に示すように、第1のサーボ素子82a(「/」)の長手方向における長さは、103.5393μm(=96μm/cos22°)とされる。また、第2のサーボ素子82b(「\」)の長手方向における長さは、96.0585μm(=96μm/cos2°)とされる。 As shown in FIG. 24, the length of the first servo element 82a ("/") in the longitudinal direction is 103.5393 μm (= 96 μm/cos 22°). The length of the second servo element 82b ("\") in the longitudinal direction is 96.0585 μm (= 96 μm/cos 2°).
 また、第1のサーボ素子82aの上端部と、第2のサーボ素子82bの上端部との間の間隔(X軸方向)は、16.9306μm(=38μm-48μm×tan22°-48μm×tan2°=38μm-19.3932μm-1.6762μm)である。 Furthermore, the distance (in the X-axis direction) between the upper end of the first servo element 82a and the upper end of the second servo element 82b is 16.9306 μm (= 38 μm - 48 μm x tan 22° - 48 μm x tan 2° = 38 μm - 19.3932 μm - 1.6762 μm).
 また、第1のサーボ素子82aの下端部と、第2のサーボ素子82bの下端部との間の間隔(X軸方向)は、59.0695μm(=96μm×tan22°+16.9306μm+96μm×tan2°=38.7865μm+16.9306μm+3.3524μm)である。 Furthermore, the distance (in the X-axis direction) between the bottom end of the first servo element 82a and the bottom end of the second servo element 82b is 59.0695 μm (= 96 μm × tan 22° + 16.9306 μm + 96 μm × tan 2° = 38.7865 μm + 16.9306 μm + 3.3524 μm).
 ここで、上述の実施形態Aでは、5対のサーボ素子82に対してそれぞれ入力されるパルス信号に位相差が設定されていた。一方、実施形態Bにおいては、サーボライトヘッド80bが傾けて配置されているので、パルス信号に対して位相差を設定する必要はない。つまり、5対のサーボ素子82に対しては、同時刻に同位相に対応するパルス信号がそれぞれ入力される。 In the above-mentioned embodiment A, a phase difference was set for the pulse signals input to each of the five pairs of servo elements 82. On the other hand, in embodiment B, since the servo write head 80b is arranged at an angle, it is not necessary to set a phase difference for the pulse signals. In other words, pulse signals corresponding to the same phase are input to each of the five pairs of servo elements 82 at the same time.
 図21には、5対のサーボ素子82によって5本のサーボバンドsにそれぞれ書き込まれたサーボパターン47が示されている。 FIG. 21 shows a servo pattern 47 written in five servo bands s by five pairs of servo elements 82.
 磁気テープMTの幅方向(Y軸方向)で互いに隣接する2つのサーボバンドsに書き込まれるサーボパターン47の、磁気テープMTの幅方向での位相差は、SP1×tan(Refθ)で表される。 The phase difference in the width direction of the magnetic tape MT between the servo patterns 47 written in two servo bands s adjacent to each other in the width direction (Y-axis direction) of the magnetic tape MT is expressed as SP1 x tan(Refθ).
 仮に、SP1の値が2858.8μmであるとし、データライトヘッド60における基準角Refθが10°であるとする。この場合、互いに隣接する2つのサーボバンドsに書きこまれるサーボパターン47の位相差は、2858.8μm×tan10°=504.08μmとされる。 Assume that the value of SP1 is 2858.8 μm, and the reference angle Refθ in the data write head 60 is 10°. In this case, the phase difference between the servo patterns 47 written to two adjacent servo bands s is 2858.8 μm × tan 10° = 504.08 μm.
 なお、サーボバンドs4のサーボパターン47を基準としたサーボバンドs3、サーボバンドs2、サーボバンドs1、サーボバンドs1のサーボパターン47の位相差は、順番に、504.08μm、1008.17μm、1512.25μm、2016.33μmに対応する位相とされる。 Note that the phase differences of the servo patterns 47 of servo bands s3, s2, s1, and s2, based on the servo pattern 47 of servo band s4, correspond to 504.08 μm, 1008.17 μm, 1512.25 μm, and 2016.33 μm, respectively.
 5本のサーボバンドsにそれぞれ書き込まれたサーボパターン47について、磁気テープMTの幅方向(Y軸方向)で、最も先に進んだ位相となるのは、サーボバンドs0のサーボパターン47である。位相の順番は、次いで、サーボバンドs1のサーボパターン47、サーボバンドs2、のサーボパターン47、サーボバンドs3のサーボパターン47、サーボバンドs4のサーボパターン47の順番である。 Of the servo patterns 47 written in each of the five servo bands s, the servo pattern 47 in servo band s0 is the one that has the most advanced phase in the width direction (Y-axis direction) of the magnetic tape MT. The order of phases is the servo pattern 47 in servo band s1, the servo pattern 47 in servo band s2, the servo pattern 47 in servo band s3, and the servo pattern 47 in servo band s4.
 例えば、サーボバンドs0のサーボパターン47及びサーボバンドs1のサーボパターン47で説明すると、磁気テープMTの幅方向で、サーボバンドs0のサーボパターン47の位相は、サーボバンドs1のサーボパターン47よりも504.08μmに対応する位相分、先の位相とされる。 For example, taking the servo pattern 47 of servo band s0 and the servo pattern 47 of servo band s1 as an example, in the width direction of the magnetic tape MT, the phase of the servo pattern 47 of servo band s0 is set to be ahead of the servo pattern 47 of servo band s1 by a phase corresponding to 504.08 μm.
 磁気テープMTにおいて、磁気テープMTの幅方向(Y軸方向)に対してデータライトヘッド60の基準角Refθ(10°)の方向では、5本のサーボバンドsに書きこまれたサーボパターン47の位相は、同位相とされる。 In the magnetic tape MT, in the direction of the reference angle Refθ (10°) of the data write head 60 relative to the width direction (Y-axis direction) of the magnetic tape MT, the phases of the servo patterns 47 written in the five servo bands s are in phase.
 以上の説明では、磁気テープMTの座標系(XYZ座標系)を基準したサーボライトヘッド80bの構成について説明した。以降では、サーボライトヘッド80bの座標系(X"Y"Z"座標系)を基準したサーボライトヘッド80bの構成について説明する。 The above explanation describes the configuration of the servo write head 80b based on the coordinate system of the magnetic tape MT (XYZ coordinate system). In the following, we will explain the configuration of the servo write head 80b based on the coordinate system of the servo write head 80b (X"Y"Z" coordinate system).
 図22は、実施形態Bにおいて、サーボライトヘッド80bの座標系を基準としてサーボライトヘッド80bを表した図である。 FIG. 22 shows the servo write head 80b in embodiment B, based on the coordinate system of the servo write head 80b.
 図22に示すように、5対のサーボ素子82は、サーボライトヘッド80bの長手方向(Y"軸方向)において、所定の間隔(サーボ素子ピッチ:SP2)を開けて配置される。サーボライトヘッド80bの長手方向(Y"軸方向)において、互いに隣接する2対の-1サーボ素子82の間隔(サーボ素子ピッチ:SP2)は、SP1×cos(Refθ)で表される。 As shown in FIG. 22, the five pairs of servo elements 82 are arranged at a predetermined interval (servo element pitch: SP2) in the longitudinal direction (Y" axis direction) of the servo write head 80b. The interval (servo element pitch: SP2) between two adjacent pairs of -1 servo elements 82 in the longitudinal direction (Y" axis direction) of the servo write head 80b is expressed as SP1 x cos(Refθ).
 例えば、磁気テープMTの幅方向(Y軸方向)において、互いに隣接する2対のサーボ素子82の間隔(サーボ素子ピッチ:SP1)が、2858.8μmであり、データライトヘッド60の基準角Refθが10°であるとする。この場合、サーボライトヘッド80bの長手方向(Y"軸方向)において、互いに隣接する2対のサーボ素子82の間隔(サーボ素子ピッチ:SP2)は、2902.9μmとなる。 For example, suppose that the spacing (servo element pitch: SP1) between two adjacent pairs of servo elements 82 in the width direction (Y-axis direction) of the magnetic tape MT is 2858.8 μm, and the reference angle Refθ of the data write head 60 is 10°. In this case, the spacing (servo element pitch: SP2) between two adjacent pairs of servo elements 82 in the longitudinal direction (Y"-axis direction) of the servo write head 80b is 2902.9 μm.
 ここで、上述の実施形態Aでは、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)の対称軸は、磁気テープMTの幅方向(Y軸方向)に非平行とされており、サーボライトヘッド80bの長手方向(Y"軸方向)に対しても非平行とされていた。一方、実施形態Bでは、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)の対称軸は、磁気テープMTの幅方向(Y軸方向)に対して非平行とされ、一方でサーボライトヘッド80bの長手方向(Y"軸方向)に対しては平行とされている。 Here, in the above-mentioned embodiment A, the axis of symmetry of the first servo element 82a ("/") and the second servo element 82b ("\") is non-parallel to the width direction (Y-axis direction) of the magnetic tape MT, and is also non-parallel to the longitudinal direction (Y"-axis direction) of the servo write head 80b. On the other hand, in embodiment B, the axis of symmetry of the first servo element 82a ("/") and the second servo element 82b ("\") is non-parallel to the width direction (Y-axis direction) of the magnetic tape MT, but is parallel to the longitudinal direction (Y"-axis direction) of the servo write head 80b.
 第1のサーボ素子82a(「/」)は、サーボライトヘッド80bの長手方向(Y"軸方向)に対して、サーボアジマス角θaで傾斜する。一方、第2のサーボ素子82b(「\」)は、サーボライトヘッド80bの長手方向(Y"軸方向)に対して、第1のサーボ素子82a(「/」)とは逆向きに、第1のサーボ素子82a(「/」)と同じサーボアジマス角θaで傾斜する。 The first servo element 82a ("/") is inclined at a servo azimuth angle θa relative to the longitudinal direction (Y" axis direction) of the servo write head 80b. On the other hand, the second servo element 82b ("\") is inclined in the opposite direction to the first servo element 82a ("/") at the same servo azimuth angle θa as the first servo element 82a ("/") relative to the longitudinal direction (Y" axis direction) of the servo write head 80b.
 ここで、第1のサーボ素子82a(「/」)において、サーボアジマス角θaに沿う方向(サーボライトヘッド80bの長手方向に対して+12°の方向)を第1のサーボ素子82a(「/」)の長手方向とする。また、第2のサーボ素子82b(「\」)において、サーボアジマス角θaに沿う方向(サーボライトヘッド80bの長手方向に対して-12°の方向)を第2のサーボ素子82b(「\」)の長手方向とする。 Here, for the first servo element 82a ("/"), the direction along the servo azimuth angle θa (a direction at +12° relative to the longitudinal direction of the servo write head 80b) is defined as the longitudinal direction of the first servo element 82a ("/"). Also, for the second servo element 82b ("\"), the direction along the servo azimuth angle θa (a direction at -12° relative to the longitudinal direction of the servo write head 80b) is defined as the longitudinal direction of the second servo element 82b ("\").
 第1のサーボ素子82a(「/」)の長手方向における長さは、第2のサーボ素子82b(「\」)の長手方向における長さとは異なっており、ここでの例では、第1のサーボ素子82a(「/」)の長手方向での長さは、第2のサーボ素子82b(「\」)の長手方向での長さよりも長い。 The length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the second servo element 82b ("\") in the longitudinal direction, and in this example, the length of the first servo element 82a ("/") in the longitudinal direction is longer than the length of the second servo element 82b ("\").
 さらに、第1のサーボ素子82a(「/」)の長手方向の長さにおける、サーボライトヘッド80bの長手方向成分SL21(Y"軸方向)、及び、第2のサーボ素子82b(「\」)の長手方向の長さにおける、サーボライトヘッド80b長手方向成分SL22(Y"軸方向)も異なっている。 Furthermore, the longitudinal component SL21 (Y" axis direction) of the servo write head 80b in the longitudinal length of the first servo element 82a ("/") and the longitudinal component SL22 (Y" axis direction) of the servo write head 80b in the longitudinal length of the second servo element 82b ("\") are also different.
 図25は、図22の右側の図の拡大図であって、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)における具体的な寸法の一例を示す図である(X"Y"Z"座標系基準)。 FIG. 25 is an enlarged view of the right side of FIG. 22, showing an example of specific dimensions of the first servo element 82a ("/") and the second servo element 82b ("\") (based on the X"Y"Z" coordinate system).
 仮に、サーボ素子82の長さにおける、磁気テープMTの幅方向成分SL1(Y軸方向)が、96μmであり、データライトヘッド60の基準角Refθが10°であり、サーボアジマス角θaが12°であるとする。この場合、第1のサーボ素子82a(「/」)の長さにおける、サーボライトヘッド80bの長手方向成分SL21(Y"軸方向)は、101.2767μm(=103.5093μm×cos12°)である。また、この場合、第2のサーボ素子82b(「\」)の長さにおける、サーボライトヘッド80bの長手方向成分SL22(Y"軸方向)は、93.959μm(=96.0585μm×cos12°)である。 Let us assume that the width direction component SL1 (Y-axis direction) of the magnetic tape MT in the length of the servo element 82 is 96 μm, the reference angle Refθ of the data write head 60 is 10°, and the servo azimuth angle θa is 12°. In this case, the longitudinal direction component SL21 (Y"-axis direction) of the servo write head 80b in the length of the first servo element 82a ("/") is 101.2767 μm (= 103.5093 μm × cos 12°). Also, in this case, the longitudinal direction component SL22 (Y"-axis direction) of the servo write head 80b in the length of the second servo element 82b ("\") is 93.959 μm (= 96.0585 μm × cos 12°).
 また、サーボライトヘッド80bの幅方向(X"軸方向)において、第1のサーボ素子82aの上端部と、第2のサーボ素子82bの上端部との間の間隔は、16.673μm(=16.9306μm×cos10°)である。また、サーボライトヘッド80bの長手方向(Y"軸方向)において、第1のサーボ素子82a(「/」)の上端部の位置と、第2のサーボ素子82b(「\」)の上端部の位置との差は、2.94μm(=16.9306μm×sin10°)である。 In addition, in the width direction (X" axis direction) of the servo write head 80b, the distance between the upper end of the first servo element 82a and the upper end of the second servo element 82b is 16.673 μm (= 16.9306 μm × cos 10°).In addition, in the longitudinal direction (Y" axis direction) of the servo write head 80b, the difference between the position of the upper end of the first servo element 82a ("/") and the position of the upper end of the second servo element 82b ("\") is 2.94 μm (= 16.9306 μm × sin 10°).
 また、サーボライトヘッド80bの幅方向(X"軸方向)において、第1のサーボ素子82aの下端部と、第2のサーボ素子82bの下端部との間の間隔は、58.1721μm(=59.0695μm×cos10°)である。また、サーボライトヘッド80bの長手方向(Y"軸方向)において、第1のサーボ素子82a(「/」)の下端部の位置と、第2のサーボ素子82b(「\」)の下端部の位置との差は、10.2573μm(=59.0695μm×sin10°)である。 In addition, in the width direction (X" axis direction) of the servo write head 80b, the distance between the bottom end of the first servo element 82a and the bottom end of the second servo element 82b is 58.1721 μm (= 59.0695 μm × cos 10°).In addition, in the longitudinal direction (Y" axis direction) of the servo write head 80b, the difference between the position of the bottom end of the first servo element 82a ("/") and the position of the bottom end of the second servo element 82b ("\") is 10.2573 μm (= 59.0695 μm × sin 10°).
 また、サーボライトヘッド80bの幅方向(X"軸方向)において、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)の間隔(中央)は、例えば、38.58628253μm(38μm×cos10°+(38μm×sin10°)×tan102°=37.4227μm+6.5986μm×tan102°  =37.4227μm+1.16354026μm)である。 In addition, in the width direction (X" axis direction) of the servo write head 80b, the distance (center) between the first servo element 82a ("/") and the second servo element 82b ("\") is, for example, 38.58628253 μm (38 μm x cos10° + (38 μm x sin10°) x tan102° = 37.4227 μm + 6.5986 μm x tan102° = 37.4227 μm + 1.16354026 μm).
(実施形態A及び実施形態Bの比較)
 次に、実施形態A及び実施形態Bの比較について説明する。
Comparison of embodiment A and embodiment B
Next, a comparison between embodiment A and embodiment B will be described.
 図19の右側には、実施形態Aに係るサーボライトヘッド80aにより書き込まれたサーボパターン47を、データライトヘッド60の2つのサーボリード部62により読み取っているときの様子が示されている。 The right side of Figure 19 shows the servo pattern 47 written by the servo write head 80a in embodiment A being read by the two servo read portions 62 of the data write head 60.
 上述のように、実施形態Aに係るサーボライトヘッド80aでは、サーボライトヘッド80aを磁気テープMTの幅方向に対して傾けずに配置し、サーボ素子82に入力されるパルス信号の位相を調整することでサーボパターン47を書き込むといった方法が用いられている。 As described above, in the servo write head 80a of embodiment A, the servo write head 80a is positioned without being tilted in the width direction of the magnetic tape MT, and the servo pattern 47 is written by adjusting the phase of the pulse signal input to the servo element 82.
 ここで、サーボライトヘッド80aによって磁気テープMTに対してサーボパターン47を書き込むとき、磁気テープMTが幅方向(Y軸方向に)に微動する場合がある。 When the servo write head 80a writes the servo pattern 47 onto the magnetic tape MT, the magnetic tape MT may move slightly in the width direction (Y-axis direction).
 仮に、実施形態Aのサーボライトヘッド80aにおいて、サーボバンドs0のサーボ素子82が、サーボバンドs0に対して、或る時刻t1に或る位相ph1のサーボパターン47を書き込んだとする。その後の時刻t2(磁気テープMTが搬送方向に504.08μm搬送された時刻)に、サーボバンドs1のサーボ素子82が、サーボバンドs1に対して、その位相ph1のサーボパターン47を書き込んだとする。 Let us suppose that in the servo write head 80a of embodiment A, the servo element 82 of servo band s0 writes a servo pattern 47 of a phase ph1 to servo band s0 at a certain time t1. Then, at a later time t2 (the time when the magnetic tape MT has been transported 504.08 μm in the transport direction), the servo element 82 of servo band s1 writes a servo pattern 47 of phase ph1 to servo band s1.
 この場合において、時刻t1から時刻t2の間に、磁気テープMTが幅方向に微動してしまった場合を想定する。この場合、サーボバンドs0での位相ph1のサーボパターン47の位置と、サーボバンドs1での位相ph1のサーボパターン47の位置との間隔(基準角Refθ(10°)の方向)が、既定の値(2つのサーボリード部62の間隔:基準角Refθ(10°)の方向)とは異なってしまうことになる。 In this case, assume that the magnetic tape MT moves slightly in the width direction between time t1 and time t2. In this case, the distance (in the direction of the reference angle Refθ (10°)) between the position of the servo pattern 47 of phase ph1 in servo band s0 and the position of the servo pattern 47 of phase ph1 in servo band s1 will differ from the default value (the distance between the two servo lead portions 62: in the direction of the reference angle Refθ (10°)).
 これが原因で誤差が生じ、データライトヘッド60がサーボパターン47を正確にサーボトレースできない場合がある。 This can cause errors and prevent the data write head 60 from accurately servo tracing the servo pattern 47.
 一方、図21の右側には、実施形態Bに係るサーボライトヘッド80bにより書き込まれたサーボパターン47を、データライトヘッド60の2つのサーボリード部62により読み取っているときの様子が示されている。 On the other hand, the right side of Figure 21 shows the servo pattern 47 written by the servo write head 80b in embodiment B being read by the two servo read portions 62 of the data write head 60.
 実施形態Bに係るサーボライトヘッド80bでは、サーボライトヘッド80bを磁気テープMTの幅方向に対して傾けて配置し、サーボ素子82に入力されるパルス信号の位相を同位相としてサーボパターン47を書き込むといった方法が用いられている。 In the servo write head 80b of embodiment B, the servo write head 80b is positioned at an angle to the width direction of the magnetic tape MT, and the servo pattern 47 is written with the same phase of the pulse signal input to the servo element 82.
 仮に、実施形態Bのサーボライトヘッド80bにおいて、サーボバンドs0のサーボ素子82及びサーボバンドs1のサーボ素子82が、サーボバンドs0及びサーボバンドs1に対して、同時刻t1に同位相ph1のサーボパターン47を書き込んだとする。 Assume that in the servo write head 80b of embodiment B, the servo element 82 of servo band s0 and the servo element 82 of servo band s1 write servo patterns 47 of the same phase ph1 to servo band s0 and servo band s1 at the same time t1.
 その後、サーボバンドs0のサーボ素子82及びサーボバンドs1のサーボ素子82が、サーボバンドs0及びサーボバンドs1に対して、同時刻t2に同位相ph2のサーボパターン47を書き込んだとする。 Then, the servo element 82 of servo band s0 and the servo element 82 of servo band s1 write servo patterns 47 of the same phase ph2 to servo bands s0 and s1 at the same time t2.
 この場合において、時刻t1から時刻t2の間に、磁気テープMTが幅方向に微動してしまった場合を想定する。この場合、サーボバンドs0での位相ph1のサーボパターン47の位置と、サーボバンドs1での位相ph1のサーボパターン47の位置との間隔(基準角Refθ(10°)の方向)は、サーボバンドs0での位相ph2のサーボパターン47の位置と、サーボバンドs1での位相ph2のサーボパターン47の位置との間隔と同じである。これらの間隔は、既定の値(2つのサーボリード部62の間隔:基準角Refθ(10°)の方向)と同じであり、一定である。 In this case, assume that the magnetic tape MT moves slightly in the width direction between time t1 and time t2. In this case, the distance (in the direction of reference angle Refθ (10°)) between the position of servo pattern 47 of phase ph1 in servo band s0 and the position of servo pattern 47 of phase ph1 in servo band s1 is the same as the distance between the position of servo pattern 47 of phase ph2 in servo band s0 and the position of servo pattern 47 of phase ph2 in servo band s1. These distances are the same as the default value (distance between two servo lead portions 62: in the direction of reference angle Refθ (10°)), and are constant.
 つまり、実施形態Bでは、サーボパターン47書き込み時の磁気テープMTの幅方向への微動によらず、互いに隣接するサーボバンドsにおける同位相のサーボパターン47の間隔(基準角Refθの方向)を一定にすることができる。これにより、データライトヘッド60がサーボパターン47を正確にサーボトレースすることができる。 In other words, in embodiment B, the spacing (in the direction of the reference angle Refθ) between servo patterns 47 of the same phase in adjacent servo bands s can be made constant, regardless of slight movement in the width direction of the magnetic tape MT when writing the servo patterns 47. This allows the data write head 60 to accurately servo trace the servo patterns 47.
 ここでの説明から理解されるように、サーボパターン47書き込み時の磁気テープMTの幅方向への微動の観点からは、実施形態Aよりも実施形態Bの方が有利である。但し、これは、実施形態Aによる方法を採用することができないといった趣旨ではなく、実施形態Aについても本技術の一例として含まれる。例えば、サーボパターン47書き込み時の磁気テープMTの幅方向への微動が無視できるレベルであったり、あるいは、サーボパターン47書き込み時の磁気テープMTの幅方向への微動を無視できる程度に抑制することができたりするのであれば、実施形態Aによる方法が採用されてもよい。 As will be understood from the explanation here, in terms of slight movement in the width direction of the magnetic tape MT when writing the servo pattern 47, embodiment B is more advantageous than embodiment A. However, this is not intended to mean that the method of embodiment A cannot be adopted, and embodiment A is also included as an example of the present technology. For example, if the slight movement in the width direction of the magnetic tape MT when writing the servo pattern 47 is at a negligible level, or if the slight movement in the width direction of the magnetic tape MT when writing the servo pattern 47 can be suppressed to a negligible level, the method of embodiment A may be adopted.
[作用等]
 以上説明したように、第1の実施形態では、サーボライトヘッド80により、各サーボバンドs0~s4に対して、磁気テープMTの幅方向に対して非対称な第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)をそれぞれ書き込むことができる。これにより、データライトヘッド60が磁気テープMTの幅方向に対して傾いて配置された場合に、そのデータライトヘッド60により、サーボパターン47を正確に読み取ることができる。
[Effects, etc.]
As described above, in the first embodiment, the servo write head 80 can write the first servo pattern 47a ("/") and the second servo pattern 47b ("\") that are asymmetric with respect to the width direction of the magnetic tape MT to each of the servo bands s0 to s4. This allows the data write head 60 to accurately read the servo pattern 47 when the data write head 60 is disposed at an angle with respect to the width direction of the magnetic tape MT.
 図23は、第1対照例、第2対照例及び第1の実施形態において、データライトヘッド60のサーボリード部62によりサーボパターン47を読み取ったときの様子を示す図である。 FIG. 23 is a diagram showing the state when the servo pattern 47 is read by the servo read portion 62 of the data write head 60 in the first comparative example, the second comparative example, and the first embodiment.
 図23の左側を参照して、第1対照例では、磁気テープMTにおいて、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して対称とされている。また、データライトヘッド60の長手方向は、磁気テープMTの幅方向に対して平行とされている。 Referring to the left side of FIG. 23, in the first comparative example, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are symmetrical with respect to the width direction of the magnetic tape MT. In addition, the longitudinal direction of the data write head 60 is parallel to the width direction of the magnetic tape MT.
 第1対照例では、データライトヘッド60のサーボリード部62に対するサーボパターン47のアジマス損失は、サーボパターン47群毎に同じである。従って、サーボライトヘッド80のサーボリード部62によりそのサーボパターン47を読み取ったとき、そのサーボ信号の出力は、サーボパターン47群に対応するサーボバースト毎に同じとなる。 In the first comparative example, the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read portion 62 of the servo write head 80, the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
 図23の中央を参照して、第2対照例では、磁気テープMTにおいて、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して対称とされている。一方、データライトヘッド60の長手方向は、磁気テープMTの幅方向に対して傾斜して配置されている。 Referring to the center of FIG. 23, in the second comparative example, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are symmetrical with respect to the width direction of the magnetic tape MT. On the other hand, the longitudinal direction of the data write head 60 is arranged at an angle with respect to the width direction of the magnetic tape MT.
 第2対照例では、データライトヘッド60のサーボリード部62に対するサーボパターン47のアジマス損失は、サーボパターン47群毎に異なる。従って、サーボライトヘッド80のサーボリード部62によりそのサーボパターン47を読み取ったとき、そのサーボ信号において、アジマス損失が少ないサーボパターン47群に対応するサーボバーストの出力は大きくなり、一方で、アジマス損失が大きいサーボパターン47群に対応するサーボバーストの出力は小さくなる。このため、トラッキング基準位置に誤差が生じてしまう可能性がある。 In the second comparative example, the azimuth loss of the servo patterns 47 relative to the servo read section 62 of the data write head 60 differs for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read section 62 of the servo write head 80, the output of the servo burst in the servo signal corresponding to the group of servo patterns 47 with less azimuth loss is large, while the output of the servo burst corresponding to the group of servo patterns 47 with more azimuth loss is small. This can cause an error in the tracking reference position.
 図23の右側を参照して、第1の実施形態では、磁気テープMTにおいて、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)は、磁気テープMTの幅方向に対して非対称とされている。また、データライトヘッド60の長手方向は、磁気テープMTの幅方向に対して非平行とされている。 Referring to the right side of FIG. 23, in the first embodiment, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") on the magnetic tape MT are asymmetric with respect to the width direction of the magnetic tape MT. In addition, the longitudinal direction of the data write head 60 is non-parallel to the width direction of the magnetic tape MT.
 第1の実施形態では、データライトヘッド60のサーボリード部62に対するサーボパターン47のアジマス損失は、サーボパターン47群毎に同じである。従って、サーボライトヘッド80のサーボリード部62によりそのサーボパターン47を読み取ったとき、そのサーボ信号の出力は、サーボパターン47群に対応するサーボバースト毎に同じとなる。 In the first embodiment, the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47. Therefore, when the servo patterns 47 are read by the servo read portion 62 of the servo write head 80, the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
 このように、第1の実施形態では、第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)が磁気テープMTの幅方向に対して非対称とされているので、データライトヘッド60が磁気テープMTの幅方向に対して傾いて配置された場合に、そのデータライトヘッド60により、サーボパターン47を正確に読み取ることができる。 In this way, in the first embodiment, the first servo pattern 47a ("/") and the second servo pattern 47b ("\") are asymmetric with respect to the width direction of the magnetic tape MT, so that when the data write head 60 is positioned at an angle with respect to the width direction of the magnetic tape MT, the data write head 60 can accurately read the servo pattern 47.
 また、第1の実施形態では、データ記録再生装置50におけるデータライトヘッド60の長手方向が、磁気テープMTの幅方向に対してアジマス角θ傾斜して配置され、そのアジマス角θが調整される。これにより、磁気テープMTの幅の変動に対応することができる。 In the first embodiment, the longitudinal direction of the data write head 60 in the data recording and reproducing device 50 is inclined at an azimuth angle θ with respect to the width direction of the magnetic tape MT, and the azimuth angle θ is adjusted. This makes it possible to accommodate variations in the width of the magnetic tape MT.
 また、第1の実施形態では、データ記録再生装置50におけるデータライトヘッド60において、データライトヘッド60のアジマス角θは、基準角Refθ±x°の範囲で調整される。 In the first embodiment, the azimuth angle θ of the data write head 60 in the data recording and reproducing device 50 is adjusted within the range of the reference angle Refθ±x°.
 このとき、xの値を0.7°以下とすることで、再生トラック幅Wが小さな磁気テープMT(例えば、0.5μm以下)に対応しつつ、アジマス損失Lθを小さくすることができる。また、このとき、基準角Refθを8°以上とすることで、上記補正量を大きくすることができる(例えば、10μm以上)。 In this case, by setting the value of x to 0.7° or less, it is possible to reduce the azimuth loss Lθ while accommodating magnetic tapes MT with small playback track widths W (e.g., 0.5 μm or less). Also, by setting the reference angle Refθ to 8° or more, the above correction amount can be increased (e.g., 10 μm or more).
 また、第1の実施形態では、サーボ記録再生装置70において、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)は、磁気テープMTの幅方向に対して非対称となるようにサーボライトヘッド80に設けられる。これにより、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)により、磁気テープMTの幅方向に対して非対称なサーボパターン47を適切に書き込むことができる。 Also, in the first embodiment, in the servo recording and reproducing device 70, the first servo element 82a ("/") and the second servo element 82b ("\") are provided in the servo write head 80 so as to be asymmetric with respect to the width direction of the magnetic tape MT. This makes it possible to properly write a servo pattern 47 that is asymmetric with respect to the width direction of the magnetic tape MT by the first servo element 82a ("/") and the second servo element 82b ("\").
 また、第1の実施形態では、第1のサーボ素子82a(「/」)は、磁気テープMTの幅方向に対して第1の角度θs1で傾斜し、第2のサーボ素子82b(「\」)は、磁気テープMTの幅方向に対して、第1の角度θs1とは逆向きに、第1の角度θs1とは異なる第2の角度θs2で傾斜する。 In addition, in the first embodiment, the first servo element 82a ("/") is inclined at a first angle θs1 with respect to the width direction of the magnetic tape MT, and the second servo element 82b ("\") is inclined at a second angle θs2, which is different from the first angle θs1, in the opposite direction to the first angle θs1 with respect to the width direction of the magnetic tape MT.
 そして、第1の実施形態では、この第1の角度θs1及び第2の角度θs2が、データライトヘッド60の基準角Refθと関連している。これにより、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)により、データライトヘッド60が正確に読み取ることが可能な非対称なサーボパターン47を適切に書き込むことができる。 In the first embodiment, the first angle θs1 and the second angle θs2 are related to the reference angle Refθ of the data write head 60. This allows the first servo element 82a ("/") and the second servo element 82b ("\") to properly write an asymmetric servo pattern 47 that can be accurately read by the data write head 60.
 また、第1の実施形態では、第1のサーボ素子82a(「/」)の長手方向における長さと、第1のサーボ素子82a(「/」)の長手方向における長さとは異なっているが、第1のサーボ素子82a(「/」)の長さにおける磁気テープMTの幅方向の成分と、第2のサーボ素子82b(「\」)の長さにおける磁気テープMTの幅方向の成分とは同じである。これにより、第1のサーボ素子82a(「/」)及び第2のサーボ素子82b(「\」)により書き込まれる第1のサーボパターン47a(「/」)及び第2のサーボパターン47b(「\」)について、磁気テープMTの幅方向の長さを揃えることができる。 In addition, in the first embodiment, the length of the first servo element 82a ("/") in the longitudinal direction is different from the length of the first servo element 82a ("/") in the longitudinal direction, but the component of the length of the first servo element 82a ("/") in the width direction of the magnetic tape MT is the same as the component of the length of the second servo element 82b ("\") in the width direction of the magnetic tape MT. This makes it possible to align the lengths of the first servo pattern 47a ("/") and the second servo pattern 47b ("\") written by the first servo element 82a ("/") and the second servo element 82b ("\") in the width direction of the magnetic tape MT.
 また、第1の実施形態おいて、サーボライトヘッド80の長手方向が、磁気テープMTの幅方向に対して所定の角度傾斜するように配置されてもよく(実施形態B参照)、この場合、サーボパターン47書き込み時における磁気テープMTの幅方向への微動に適切に対応することができる。 Furthermore, in the first embodiment, the longitudinal direction of the servo write head 80 may be arranged so as to be inclined at a predetermined angle with respect to the width direction of the magnetic tape MT (see embodiment B). In this case, it is possible to appropriately respond to slight movements in the width direction of the magnetic tape MT when writing the servo pattern 47.
 また、第1の実施形態において、サーボライトヘッド80の長手方向が、磁気テープMTの幅方向に対して傾斜する角度は、データライトヘッド60の基準角Refθと関連していてもよく、また、この角度は、データライトヘッド60の基準角Refθと一致していてもよい。これにより、傾斜して配置されたデータライトヘッド60が正確に読み取ることが可能な非対称なサーボパターン47を適切に書き込むことができる。 Also, in the first embodiment, the angle at which the longitudinal direction of the servo write head 80 is tilted with respect to the width direction of the magnetic tape MT may be related to the reference angle Refθ of the data write head 60, and this angle may coincide with the reference angle Refθ of the data write head 60. This makes it possible to properly write an asymmetric servo pattern 47 that can be accurately read by the tilted data write head 60.
 また、第1の実施形態に係る磁気テープMTでは、互いに隣接するサーボバンドsにおけるサーボパターン47の、磁気テープMTの幅方向での位相差が、サーボライトヘッド80の基準角Refθと関連しており、SP×tan(Refθ)で表される。これにより、傾斜して配置されたデータライトヘッド60により、サーボパターン47を正確に読み取ることができる。 Furthermore, in the magnetic tape MT according to the first embodiment, the phase difference in the width direction of the magnetic tape MT between the servo patterns 47 in adjacent servo bands s is related to the reference angle Refθ of the servo write head 80 and is expressed as SP×tan(Refθ). This allows the servo patterns 47 to be accurately read by the data write head 60, which is positioned at an angle.
[磁気テープがデータライトヘッド傾斜タイプのデータ記録再生装置に用いられる磁気テープであるかどうかの確認方法]
 次に、磁気テープMTが、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜して配置されるタイプのデータ記録再生装置50に用いられる磁気テープMTであるかどうかを確認するための方法について説明する。
[Method of checking whether a magnetic tape is a magnetic tape used in a data recording/reproducing device with a tilted data write head]
Next, a method for checking whether the magnetic tape MT is a magnetic tape MT used in a data recording/reproducing device 50 of the type in which the data write head 60 is positioned at an angle with respect to the width direction (Y-axis direction) of the magnetic tape MT will be described.
[確認方法:第1の例]
 図26は、磁気テープMTがデータライトヘッド傾斜タイプのデータ記録再生装置50に用いられる磁気テープMTであるかどうかを確認する方法における第1の例を示す図である。第1の例では、第1のサーボパターン47a(「/」)が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(第1の角度θs1)、及び、第2のサーボパターン47b(「\」)が磁気テープの幅方向に対して傾斜する角度(第2の角度θs2)等に基づいて、下記確認が行われる。
[Confirmation method: First example]
26 is a diagram showing a first example of a method for checking whether or not a magnetic tape MT is a magnetic tape MT used in a data write head tilt type data recording and reproducing device 50. In the first example, the following check is performed based on the angle (first angle θs1) at which the first servo pattern 47a ("/") is tilted with respect to the width direction (Y-axis direction) of the magnetic tape MT, and the angle (second angle θs2) at which the second servo pattern 47b ("\") is tilted with respect to the width direction of the magnetic tape.
 なお、図26では、磁気テープMTを上側(磁性層側)から見た様子が示されている(従って、第1のサーボパターン47a(「/」)、第2のサーボパターン47b(「\」)において、「/」「\」の符号は、見た目とは逆になる)。 Note that Figure 26 shows the magnetic tape MT as seen from the top (magnetic layer side) (therefore, in the first servo pattern 47a ("/") and the second servo pattern 47b ("\"), the signs "/" and "\" are reversed from appearance).
 図26に示すように、まず、磁気テープMTの磁性層43に対して、フェリコロイド現像液(例えば、シグマハイケミカル社製のシグマーカQ(登録商標))等の現像液を塗布して現像を行う。その後、現像した磁気テープMTの磁性層43を光学顕微鏡で観察することで、サーボパターン47の形状を確認する。 As shown in FIG. 26, first, a developer such as a ferricolloid developer (e.g., Sigmarca Q (registered trademark) manufactured by Sigma High Chemical Co.) is applied to the magnetic layer 43 of the magnetic tape MT to perform development. After that, the developed magnetic layer 43 of the magnetic tape MT is observed with an optical microscope to confirm the shape of the servo pattern 47.
 このとき、まず、第1のサーボパターン47a(「/」)の上端部及び下端部、並びに、第2のサーボパターン47b(「\」)の上端部及び下端部が測定点として測定される。そして、磁気テープMTの幅方向(Y軸方向)において、サーボパターン47の上端部と、下端部との間の距離a(サーボバンド幅に対応)が測定される。 At this time, first, the upper and lower ends of the first servo pattern 47a ("/") and the upper and lower ends of the second servo pattern 47b ("\") are measured as measurement points. Then, the distance a (corresponding to the servo band width) between the upper and lower ends of the servo pattern 47 in the width direction (Y-axis direction) of the magnetic tape MT is measured.
 また、磁気テープMTの長手方向(X軸方向)において、第1のサーボパターン47a(「/」)の上端部と、下端部との間の距離bが測定される。また、磁気テープMTの長手方向(X軸方向)において、第2のサーボパターン47b(「\」)の上端部と、下端部との間の距離cが測定される。 Furthermore, in the longitudinal direction (X-axis direction) of the magnetic tape MT, the distance b between the upper end and the lower end of the first servo pattern 47a ("/") is measured. Further, in the longitudinal direction (X-axis direction) of the magnetic tape MT, the distance c between the upper end and the lower end of the second servo pattern 47b ("\") is measured.
 この場合、第1のサーボパターン47a(「/」)が、磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(第1の角度θs1)は、tan-1(b/a)により求められる。また、第2のサーボパターン47b(「\」)が、磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(第2の角度θs2)は、tan-1(c/a)により求められる。 In this case, the angle (first angle θs1) at which the first servo pattern 47a ("/") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is calculated by tan -1 (b/a). Also, the angle (second angle θs2) at which the second servo pattern 47b ("\") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is calculated by tan -1 (c/a).
 例えば、aの値が96μmであり、bの値が39μmであり、cの値が3μmであったとする。この場合、第1のサーボパターン47a(「/」)が、磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(第1の角度θs1)は、tan-1(39/96)=21.59°で、約22°である。また、第2のサーボパターン47b(「\」)が、磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(第2の角度θs2)は、tan-1(3/96)=1.79°で、約2°である。 For example, suppose that the value of a is 96 μm, the value of b is 39 μm, and the value of c is 3 μm. In this case, the angle (first angle θs1) at which the first servo pattern 47a ("/") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is tan -1 (39/96) = 21.59°, which is approximately 22°. Also, the angle (second angle θs2) at which the second servo pattern 47b ("\") is inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT is tan -1 (3/96) = 1.79°, which is approximately 2°.
 次に、(第1のサーボパターン47a(「/」)の傾斜角(第1の角度θs1)-第2のサーボパターン47b(「\」)の傾斜角(第2の角度θs2))/2により、所定の角度を求める((22-2)/2=10°)。このとき求められる角度は、第1のサーボパターン47a及び第2のサーボパターン47bの対称軸が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度に対応する。 Next, the predetermined angle is calculated by (the inclination angle (first angle θs1) of the first servo pattern 47a ("/") - the inclination angle (second angle θs2) of the second servo pattern 47b ("\"))/2 ((22-2)/2 = 10°). The angle calculated at this time corresponds to the angle at which the symmetry axes of the first servo pattern 47a and the second servo pattern 47b are inclined with respect to the width direction (Y-axis direction) of the magnetic tape MT.
 (第1の角度θs1-第2の角度θs2)/2により求められた角度が、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(基準角)と一致したとする(θs1-θs2)/2=refθ)(ある程度の誤差を含んでいてもよい)。 Let us assume that the angle calculated by (first angle θs1 - second angle θs2)/2 coincides with the angle (reference angle) at which the data write head 60 is tilted with respect to the width direction (Y-axis direction) of the magnetic tape MT (θs1 - θs2)/2 = refθ) (this may include a certain degree of error).
 この場合、図23の右側を参照して既に説明したように、データライトヘッド60のサーボリード部62に対するサーボパターン47のアジマス損失が、サーボパターン47群毎に同じとなる。これにより、サーボライトヘッド80のサーボリード部62によりそのサーボパターン47を読み取ったとき、そのサーボ信号の出力は、サーボパターン47群に対応するサーボバースト毎に同じとなる。 In this case, as already explained with reference to the right side of FIG. 23, the azimuth loss of the servo patterns 47 relative to the servo read portion 62 of the data write head 60 is the same for each group of servo patterns 47. As a result, when the servo patterns 47 are read by the servo read portion 62 of the servo write head 80, the output of the servo signal is the same for each servo burst corresponding to the group of servo patterns 47.
 従って、(θs1-θs2)/2により求められた角度が、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(基準角)と一致した場合、この磁気テープMTは、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜して配置されるタイプのデータ記録再生装置50に用いられる磁気テープMTであると見做すことができる。 Therefore, if the angle calculated by (θs1-θs2)/2 coincides with the angle (reference angle) at which the data write head 60 is tilted with respect to the width direction (Y-axis direction) of the magnetic tape MT, this magnetic tape MT can be considered to be a magnetic tape MT used in a data recording and playback device 50 of a type in which the data write head 60 is positioned at an angle with respect to the width direction (Y-axis direction) of the magnetic tape MT.
[確認方法:第2の例]
 図27は、磁気テープMTがデータライトヘッド傾斜タイプのデータ記録再生装置50に用いられる磁気テープMTであるかどうかを確認する方法における第2の例を示す図である。第2の例では、互いに隣接するサーボバンドにおけるサーボパターン47における位相差に基づいて、上記確認が行われる。
[Confirmation method: second example]
27 is a diagram showing a second example of a method for checking whether a magnetic tape MT is a magnetic tape MT used in a data recording/reproducing device 50 with a tilted data write head. In the second example, the above checking is performed based on a phase difference between the servo patterns 47 in adjacent servo bands.
 この第2の例では、データ記録再生装置が用いられるが、このデータ記録再生装置では、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して平行に配置される。 In this second example, a data recording and reproducing device is used, in which the data write head 60 is positioned parallel to the width direction (Y-axis direction) of the magnetic tape MT.
 まず、データライトヘッド60の2つのサーボリード部62により、互いに隣接するサーボバンドにおけるサーボパターン47がそれぞれ読み取られ、サーボ信号がそれぞれ再生される。 First, the two servo read sections 62 of the data write head 60 read the servo patterns 47 in the adjacent servo bands, and reproduce the servo signals.
 下側のサーボリード部62により再生されるサーボ信号の位相は、上側のサーボリード部62により再生されるサーボ信号の位相よりも先であり、位相差が生じる。このとき、下側のサーボリード部62により再生されるサーボ信号と、上側のサーボリード部62により再生されるサーボ信号との間で、同じLPOS(Longitudinal Position)情報を読み取った時刻の差が求められる。そして、この時刻の差が、距離に換算されて、磁気テープの長さ方向における位相差dが求められる(例えば、0.505μm)。 The phase of the servo signal reproduced by the lower servo read section 62 is ahead of the phase of the servo signal reproduced by the upper servo read section 62, resulting in a phase difference. At this time, the difference in time at which the same LPOS (Longitudinal Position) information is read between the servo signal reproduced by the lower servo read section 62 and the servo signal reproduced by the upper servo read section 62 is found. This time difference is then converted into distance to find the phase difference d in the longitudinal direction of the magnetic tape (for example, 0.505 μm).
 次に、求められた位相差d(例えば、0.505μm)と、サーボバンドピッチSP(既知)(例えば、2.8588μm)とに基づいて、tan-1(d/SP)により、所定の角度が求められる(tan-1(0.505/2.8588)=10.017°)。 Next, based on the obtained phase difference d (eg, 0.505 μm) and the servo band pitch SP (known) (eg, 2.8588 μm), a predetermined angle is obtained by tan −1 (d/SP) (tan −1 (0.505/2.8588)=10.017°).
 このとき求められる角度は、一方のサーボバンドのサーボパターン47と、他方のサーボバンドのサーボパターン47とで同位相の情報が書き込まれた位置を結ぶ直線が、磁気テープの幅方向に対して成す角度に対応する。 The angle found in this case corresponds to the angle that a straight line connecting the positions where in-phase information is written in the servo pattern 47 of one servo band and the servo pattern 47 of the other servo band makes with respect to the width direction of the magnetic tape.
 tan-1(d/SP)により求められた角度が、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜する角度(基準角)と一致したとする(tan-1(d/SP)=refθ)(ある程度の誤差を含んでいてもよい)。この場合、この磁気テープMTは、データライトヘッド60が磁気テープMTの幅方向(Y軸方向)に対して傾斜して配置されるタイプのデータ記録再生装置50に用いられる磁気テープMTであると見做すことができる。 Let us assume that the angle calculated by tan -1 (d/SP) coincides with the angle (reference angle) at which the data write head 60 is tilted with respect to the width direction (Y-axis direction) of the magnetic tape MT (tan -1 (d/SP) = ref θ) (some degree of error may be included). In this case, the magnetic tape MT can be regarded as a magnetic tape MT used in a data recording/reproducing device 50 of the type in which the data write head 60 is disposed at an angle with respect to the width direction (Y-axis direction) of the magnetic tape MT.
(5)作用効果 (5) Effects
 上記2.の(2)において説明したとおり、第1の実施形態に係る磁気テープMTでは、65℃で360時間保存後に磁気テープMTの全長にわたって磁気テープMTの幅変化量Δを測定したときに、磁気テープMTの巻外側の幅変化量Δoutの符号が磁気テープMTの巻内側の幅変化量Δinの符号と異なる。磁気テープMTの巻外側の幅変化量Δoutの符号が磁気テープMTの巻内側の幅変化量Δinの符号と異なることにより、高温環境下で保存を行っても優れた走行安定性を得ることができる。また、前記幅変化量Δが、前記磁気テープの全長を4等分して4つの領域に分割した場合の前記磁気テープの全長の中心線を挟む2つの領域のいずれかの位置において、0ppmである。これにより、高温環境下で保存を行っても優れた走行安定性を得ることができる。さらに、磁気テープの長手方向において、4つの領域のうちのいずれの領域においても幅変化量Δが300ppm以下である。これにより、磁気テープMT1の幅が高温環境下で変化した場合にも、データライトヘッドのアジマス角θを調整することにより、温湿度変化による形状変化に対応することができる。 As explained in (2) of 2. above, in the magnetic tape MT according to the first embodiment, when the width change Δ of the magnetic tape MT is measured over the entire length of the magnetic tape MT after storage at 65° C. for 360 hours, the sign of the width change Δout on the outer side of the magnetic tape MT is different from the sign of the width change Δin on the inner side of the magnetic tape MT. Since the sign of the width change Δout on the outer side of the magnetic tape MT is different from the sign of the width change Δin on the inner side of the magnetic tape MT, excellent running stability can be obtained even when stored in a high-temperature environment. Furthermore, the width change Δ is 0 ppm in either of the two regions that sandwich the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal regions. This allows excellent running stability to be obtained even when stored in a high-temperature environment. Furthermore, in the longitudinal direction of the magnetic tape, the width change Δ is 300 ppm or less in any of the four regions. This allows the azimuth angle θ of the data write head to be adjusted to accommodate changes in shape due to changes in temperature and humidity, even if the width of the magnetic tape MT1 changes in a high-temperature environment.
 上記2.の(4)において説明したとおり、第1の実施形態に係る磁気テープMTは、幅方向に対して非対称な第1のサーボパターン47aおよび第2のサーボパターン47bを含むサーボパターン47がそれぞれ書き込まれた複数のサーボバンドsを有し、且つ、互いに隣接するサーボバンドsにおけるサーボパターン47は位相差を有している。そのため、第1の実施形態に係る磁気テープMTは、データライトヘッド60のアジマス角θを調整することにより磁気テープMTの幅変化に対応可能なデータ記録再生装置50において用いられうる。データ記録再生装置50において、典型的には、磁気テープMTの幅が相対的に広くなったとき、データライトヘッド60のアジマス角θは小さくされ、逆に、磁気テープMTの幅が相対的に狭くなったとき、データライトヘッド60のアジマス角θは大きくされる。これにより、磁気テープMTのサーボパターン47は、磁気テープMTの幅が変化した場合にも、正確に読み取られる。
 したがって、磁気テープMTの・BR>揩ェ高温環境下で変化した場合にも、データライトヘッド60のアジマス角θを調整することにより、幅変化に対応することができる。
As explained in (4) of 2. above, the magnetic tape MT according to the first embodiment has a plurality of servo bands s in which servo patterns 47 including a first servo pattern 47a and a second servo pattern 47b asymmetrical with respect to the width direction are written, and the servo patterns 47 in the servo bands s adjacent to each other have a phase difference. Therefore, the magnetic tape MT according to the first embodiment can be used in a data recording and reproducing device 50 that can respond to a change in the width of the magnetic tape MT by adjusting the azimuth angle θ of the data write head 60. In the data recording and reproducing device 50, typically, when the width of the magnetic tape MT becomes relatively wide, the azimuth angle θ of the data write head 60 is made small, and conversely, when the width of the magnetic tape MT becomes relatively narrow, the azimuth angle θ of the data write head 60 is made large. As a result, the servo patterns 47 of the magnetic tape MT can be accurately read even when the width of the magnetic tape MT changes.
Therefore, even if the temperature of the magnetic tape MT changes in a high temperature environment, the azimuth angle θ of the data write head 60 can be adjusted to accommodate the change in width.
 以上述べたとおり、第1の実施形態に係る磁気テープMTによれば、高温環境下で起こりうる幅変化に対処可能である。したがって、第1の実施形態に係る磁気テープMTは、高温環境下での保存および走行に適している。 As described above, the magnetic tape MT according to the first embodiment is capable of dealing with width changes that may occur in high-temperature environments. Therefore, the magnetic tape MT according to the first embodiment is suitable for storage and running in high-temperature environments.
3.第2の実施形態(真空薄膜型の磁気テープを含む磁気記録カートリッジの例) 3. Second embodiment (example of magnetic recording cartridge including vacuum thin-film magnetic tape)
(1)磁気記録カートリッジの構成 (1) Structure of magnetic recording cartridge
 本実施形態の磁気記録カートリッジは、塗布型の磁気テープMTの代わりに真空薄膜型の磁気テープMT1を含むこと以外は、上記2.の「(1)磁気カートリッジの構成」において述べた磁気記録カートリッジ10と同じである。以下で、真空薄膜型の磁気テープMT1について説明する。 The magnetic recording cartridge of this embodiment is the same as the magnetic recording cartridge 10 described in 2. "(1) Configuration of the magnetic cartridge" above, except that it includes a vacuum thin-film type magnetic tape MT1 instead of a coating type magnetic tape MT. The vacuum thin-film type magnetic tape MT1 is described below.
(2)磁気テープの構成 (2) Structure of magnetic tape
 上記の第1の実施形態では、磁気テープMTが、下地層および磁性層等が塗布工程(ウエットプロセス)により作製された塗布型の磁気テープである場合について説明したが、下地層および磁性層等がスパッタリング等の真空薄膜の作製技術(ドライプロセス)により作製される真空薄膜型の磁気テープであってもよい。 In the above first embodiment, the magnetic tape MT is a coated magnetic tape in which the underlayer and magnetic layer are produced by a coating process (wet process), but the magnetic tape may be a vacuum thin-film type magnetic tape in which the underlayer and magnetic layer are produced by a vacuum thin-film production technique (dry process) such as sputtering.
 図28は、本技術の第2の実施形態に係る真空薄膜型の磁気テープMT1の構成の一例を示す断面図である。磁気テープMT1は、垂直記録型の磁気記録媒体であり、フィルム状のベース層111と、軟磁性裏打ち層(Soft magnetic underlayer、以下「SUL」という。)112と、第1のシード層113Aと、第2のシード層113Bと、第1の下地層114Aと、第2の下地層114Bと、記録層としての磁性層115とを備える。SUL112、第1、第2のシード層113A、113B、第1、第2の下地層114A、114Bおよび磁性層115は、例えば、スパッタ膜等の真空薄膜である。 Figure 28 is a cross-sectional view showing an example of the configuration of a vacuum thin-film type magnetic tape MT1 according to a second embodiment of the present technology. The magnetic tape MT1 is a perpendicular recording type magnetic recording medium, and includes a film-like base layer 111, a soft magnetic underlayer (hereinafter referred to as "SUL") 112, a first seed layer 113A, a second seed layer 113B, a first underlayer 114A, a second underlayer 114B, and a magnetic layer 115 as a recording layer. The SUL 112, the first and second seed layers 113A and 113B, the first and second underlayers 114A and 114B, and the magnetic layer 115 are vacuum thin films such as sputtered films.
 SUL112、第1、第2のシード層113A、113Bおよび第1、第2の下地層114A、114Bは、ベース層111の一方の主面(以下「表面」という。)と磁性層115との間に設けられ、ベース層111から磁性層115の方向に向かってSUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bの順序で積層されている。 The SUL 112, the first and second seed layers 113A, 113B, and the first and second underlayers 114A, 114B are provided between one major surface (hereinafter referred to as the "surface") of the base layer 111 and the magnetic layer 115, and are stacked in the following order from the base layer 111 toward the magnetic layer 115: SUL 112, first seed layer 113A, second seed layer 113B, first underlayer 114A, second underlayer 114B.
 磁気テープMT1が、必要に応じて、磁性層115上に設けられた保護層116と、保護層116上に設けられた潤滑層117とをさらに備えるようにしてもよい。また、磁気テープMT1が、必要に応じて、ベース層111の他方の主面(以下「裏面」という。)上に設けられたバック層118をさらに備えるようにしてもよい。 The magnetic tape MT1 may further include a protective layer 116 provided on the magnetic layer 115 and a lubricating layer 117 provided on the protective layer 116, if necessary. The magnetic tape MT1 may further include a back layer 118 provided on the other main surface (hereinafter referred to as the "back surface") of the base layer 111, if necessary.
 以下では、磁気テープMT1の長手方向(ベース層111の長手方向)をMD(Machine Direction、機械方向)方向という。ここで、MD方向とは、磁気テープMT1に対する記録および再生ヘッドの相対的な移動方向、すなわち記録再生時に磁気テープMT1が走行される方向を意味する。 Hereinafter, the longitudinal direction of the magnetic tape MT1 (the longitudinal direction of the base layer 111) is referred to as the MD (machine direction). Here, the MD direction refers to the relative movement direction of the recording and reproducing heads with respect to the magnetic tape MT1, i.e., the direction in which the magnetic tape MT1 runs during recording and reproducing.
 第2の実施形態に係る磁気テープMT1は、今後ますます需要が高まることが期待されるデータアーカイブ用ストレージメディアとして用いて好適なものである。この磁気テープMT1は、例えば、現在のストレージ用塗布型磁気記録媒体の10倍以上の面記録密度、すなわち50Gb/in以上の面記録密度を実現することが可能である。このような面記録密度を有する磁気テープMT1を用いて、一般のリニア記録方式のデータカートリッジを構成した場合には、データカートリッジ1巻当たり100TB以上の大容量記録が可能になる。 The magnetic tape MT1 according to the second embodiment is suitable for use as a storage medium for data archives, the demand of which is expected to increase in the future. This magnetic tape MT1 can achieve an areal recording density of 50 Gb/ in2 or more, which is 10 times or more than that of current coating-type magnetic recording media for storage. When a general linear recording type data cartridge is configured using the magnetic tape MT1 having such an areal recording density, a large capacity recording capacity of 100 TB or more can be achieved per data cartridge.
 第2の実施形態に係る磁気テープMT1は、リング型の記録ヘッドと巨大磁気抵抗効果(Giant Magnetoresistive:GMR)型またはトンネル磁気抵抗効果(Tunneling Magnetoresistive:TMR)型の再生ヘッドとを有する記録再生装置(データを記録再生するための記録再生装置)に用いて好適なものである。また、第2の実施形態に係る磁気テープMT1は、サーボ信号書込ヘッドとしてリング型の記録ヘッドが用いられるものであることが好ましい。磁性層115には、例えばリング型の記録ヘッドによりデータ信号が垂直記録される。また、磁性層115には、例えばリング型の記録ヘッドによりサーボ信号が垂直記録される。 The magnetic tape MT1 according to the second embodiment is suitable for use in a recording and reproducing device (a recording and reproducing device for recording and reproducing data) having a ring-type recording head and a Giant Magnetoresistive (GMR) type or Tunneling Magnetoresistive (TMR) type reproducing head. The magnetic tape MT1 according to the second embodiment preferably uses a ring-type recording head as a servo signal writing head. A data signal is recorded perpendicularly on the magnetic layer 115, for example, by a ring-type recording head. A servo signal is recorded perpendicularly on the magnetic layer 115, for example, by a ring-type recording head.
 第2の実施形態における磁気テープMT1の平均厚みt、幅変化量、およびベース層111の貯蔵弾性率、損失弾性率等は、第1の実施形態におけるものと同様である。 The average thickness t T , width change, storage modulus, loss modulus, etc. of the magnetic tape MT1 in the second embodiment are similar to those in the first embodiment.
[ベース層]
 ベース層111は、第1の実施形態におけるベース層41と同様である。
[Base layer]
The base layer 111 is similar to the base layer 41 in the first embodiment.
[SUL]
 SUL112は、アモルファス状態の軟磁性材料を含む。軟磁性材料は、例えば、Co系材料およびFe系材料のうちの少なくとも1種を含む。Co系材料は、例えば、CoZrNb、CoZrTaまたはCoZrTaNbを含む。Fe系材料は、例えば、FeCoB、FeCoZrまたはFeCoTaを含む。
[SUL]
The SUL 112 includes a soft magnetic material in an amorphous state. The soft magnetic material includes at least one of a Co-based material and an Fe-based material. The Co-based material includes, for example, CoZrNb, CoZrTa, or CoZrTaNb. The Fe-based material includes, for example, FeCoB, FeCoZr, or FeCoTa.
 SUL112は、単層のSULであり、ベース層111に直接設けられている。SUL112の平均厚みは、好ましくは10nm以上50nm以下、より好ましくは20nm以上30nm以下である。 SUL 112 is a single layer SUL and is provided directly on base layer 111. The average thickness of SUL 112 is preferably 10 nm or more and 50 nm or less, and more preferably 20 nm or more and 30 nm or less.
 SUL112の平均厚みは、第1の実施形態における磁性層43と同様にして求められる。なお、後述する、SUL112以外の層の平均厚み(すなわち、第1、第2のシード層113A、113B、第1、第2の下地層114A、114Bおよび磁性層115の平均厚み)も、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、各層の厚みに応じて適宜調整される。 The average thickness of the SUL 112 is determined in the same manner as the magnetic layer 43 in the first embodiment. The average thicknesses of the layers other than the SUL 112 (i.e., the average thicknesses of the first and second seed layers 113A, 113B, the first and second underlayers 114A, 114B, and the magnetic layer 115), which will be described later, are also determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of each layer.
[第1、第2のシード層]
 第1のシード層113Aは、TiおよびCrを含む合金を含み、アモルファス状態を有している。また、この合金には、O(酸素)がさらに含まれていてもよい。この酸素は、スパッタリング法等の成膜法で第1のシード層113Aを成膜する際に、第1のシード層113A内に微量に含まれる不純物酸素であってもよい。
[First and second seed layers]
The first seed layer 113A includes an alloy containing Ti and Cr, and is in an amorphous state. The alloy may further include O (oxygen). The oxygen may be impurity oxygen contained in a small amount in the first seed layer 113A when the first seed layer 113A is formed by a film forming method such as a sputtering method.
 ここで、“合金”とは、TiおよびCrを含む固溶体、共晶体、および金属間化合物等の少なくとも一種を意味する。“アモルファス状態”とは、X線回折または電子線回折法等により、ハローが観測され、結晶構造を特定できないことを意味する。 Here, "alloy" refers to at least one of a solid solution, a eutectic, and an intermetallic compound containing Ti and Cr. "Amorphous state" means that a halo is observed by X-ray diffraction or electron beam diffraction, etc., and the crystal structure cannot be identified.
 第1のシード層113Aに含まれるTiおよびCrの総量に対するTiの原子比率は、好ましくは30原子%以上100原子%未満、より好ましくは50原子%以上100原子%未満の範囲内である。Tiの原子比率が30%未満であると、Crの体心立方格子(Body-Centered Cubic lattice:bcc)構造の(100)面が配向するようになり、第1のシード層113A上に形成される第1、第2の下地層114A、114Bの配向性が低下する虞がある。 The atomic ratio of Ti to the total amount of Ti and Cr contained in the first seed layer 113A is preferably in the range of 30 atomic % or more and less than 100 atomic %, and more preferably 50 atomic % or more and less than 100 atomic %. If the atomic ratio of Ti is less than 30%, the (100) plane of the body-centered cubic lattice (bcc) structure of Cr will become oriented, and there is a risk that the orientation of the first and second underlayers 114A and 114B formed on the first seed layer 113A will decrease.
 上記Tiの原子比率は次のようにして求められる。磁性層115側から磁気テープMT1をイオンミリングしながら、オージェ電子分光法(Auger Electron Spectroscopy、以下「AES」という。)による第1のシード層113Aの深さ方向分析(デプスプロファイル測定)を行う。次に、得られたデプスプロファイルから、膜厚方向におけるTiおよびCrの平均組成(平均原子比率)を求める。次に、求めたTiおよびCrの平均組成を用いて、上記Tiの原子比率を求める。 The atomic ratio of Ti is determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 115 side, a depth profile analysis (depth profile measurement) of the first seed layer 113A is performed by Auger Electron Spectroscopy (AES). Next, the average composition (average atomic ratio) of Ti and Cr in the film thickness direction is determined from the obtained depth profile. Next, the atomic ratio of Ti is determined using the obtained average composition of Ti and Cr.
 第1のシード層113AがTi、CrおよびOを含む場合、第1のシード層113Aに含まれるTi、CrおよびOの総量に対するOの原子比率は、好ましくは15原子%以下、より好ましくは10原子%以下である。Oの原子比率が15原子%を超えると、TiO2結晶が生成することにより、第1のシード層113A上に形成される第1、第2の下地層114A、114Bの結晶核形成に影響を与えるようになり、第1、第2の下地層114A、114Bの配向性が低下する虞がある。上記Oの原子比率は、上記Tiの原子比率と同様の解析方法を用いて求められる。 When the first seed layer 113A contains Ti, Cr and O, the atomic ratio of O to the total amount of Ti, Cr and O contained in the first seed layer 113A is preferably 15 atomic % or less, more preferably 10 atomic % or less. If the atomic ratio of O exceeds 15 atomic %, TiO2 crystals are generated, which may affect the crystal nucleation of the first and second underlayers 114A and 114B formed on the first seed layer 113A, and may reduce the orientation of the first and second underlayers 114A and 114B. The atomic ratio of O is determined using the same analytical method as the atomic ratio of Ti.
 第1のシード層113Aに含まれる合金が、TiおよびCr以外の元素を添加元素としてさらに含んでいてもよい。この添加元素としては、例えば、Nb、Ni、Mo、AlおよびW等からなる群より選ばれる1種以上の元素が挙げられる。 The alloy contained in the first seed layer 113A may further contain an element other than Ti and Cr as an additive element. The additive element may be, for example, one or more elements selected from the group consisting of Nb, Ni, Mo, Al, W, etc.
 第1のシード層113Aの平均厚みは、好ましくは2nm以上15nm以下、より好ましくは3nm以上10nm以下である。 The average thickness of the first seed layer 113A is preferably 2 nm or more and 15 nm or less, and more preferably 3 nm or more and 10 nm or less.
 第2のシード層113Bは、例えば、NiWまたはTaを含み、結晶状態を有している。第2のシード層113Bの平均厚みは、好ましくは3nm以上20nm以下、より好ましくは5nm以上15nm以下である。 The second seed layer 113B contains, for example, NiW or Ta, and has a crystalline state. The average thickness of the second seed layer 113B is preferably 3 nm or more and 20 nm or less, more preferably 5 nm or more and 15 nm or less.
 第1、第2のシード層113A、113Bは、第1、第2の下地層114A、114Bに類似した結晶構造を有し、結晶成長を目的として設けられるシード層ではなく、当該第1、第2のシード層113A、113Bのアモルファス状態によって第1、第2の下地層114A、114Bの垂直配向性を向上するシード層である。 The first and second seed layers 113A and 113B have a crystal structure similar to that of the first and second underlayers 114A and 114B, and are not seed layers provided for the purpose of crystal growth, but are seed layers that improve the vertical orientation of the first and second underlayers 114A and 114B due to the amorphous state of the first and second seed layers 113A and 113B.
[第1、第2の下地層]
 第1、第2の下地層114A、114Bは、磁性層115と同様の結晶構造を有していることが好ましい。磁性層115がCo系合金を含む場合には、第1、第2の下地層114A、114Bは、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。磁性層115の配向性を高め、かつ、第2の下地層114Bと磁性層115との格子定数のマッチングを比較的良好にできるからである。六方細密充填(hcp)構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO、Ru-TiOまたはRu-ZrO等のRu合金酸化物が挙げられる。
[First and second underlayers]
The first and second underlayers 114A and 114B preferably have the same crystal structure as the magnetic layer 115. When the magnetic layer 115 contains a Co-based alloy, the first and second underlayers 114A and 114B preferably contain a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it enhances the orientation of the magnetic layer 115 and can relatively well match the lattice constants of the second underlayer 114B and the magnetic layer 115. As the material having the hexagonal close-packed (hcp) structure, it is preferable to use a material containing Ru, and specifically, Ru alone or a Ru alloy is preferable. As the Ru alloy, for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 or Ru-ZrO 2 can be mentioned.
 上記のように、第1、第2の下地層114A、114Bの材料として同様のものを用いることができる。しかしながら、第1、第2の下地層114A、114Bそれぞれの目的とする効果が異なっている。具体的には、第2の下地層114Bについてはその上層となる磁性層115のグラニュラ構造を促進する膜構造であり、第1の下地層114Aについては結晶配向性の高い膜構造である。このような膜構造を得るためには、第1、第2の下地層114A、114Bそれぞれのスパッタ条件等の成膜条件を異なるものとすることが好ましい。 As described above, the first and second underlayers 114A and 114B can be made of similar materials. However, the intended effects of the first and second underlayers 114A and 114B are different. Specifically, the second underlayer 114B has a film structure that promotes the granular structure of the magnetic layer 115 that is the layer above it, and the first underlayer 114A has a film structure with high crystal orientation. To obtain such a film structure, it is preferable to use different film formation conditions, such as sputtering conditions, for the first and second underlayers 114A and 114B.
 第1の下地層114Aの平均厚みは、好ましくは3nm以上15nm以下、より好ましくは5nm以上10nm以下である。第2の下地層114Bの平均厚みは、好ましくは7nm以上40nm以下、より好ましくは10nm以上25nm以下である。 The average thickness of the first underlayer 114A is preferably 3 nm to 15 nm, more preferably 5 nm to 10 nm. The average thickness of the second underlayer 114B is preferably 7 nm to 40 nm, more preferably 10 nm to 25 nm.
[磁性層]
 磁性層115は、磁性材料が垂直に配向した垂直磁気記録層である。磁性層115は、スパッタ膜等の真空薄膜であってもよい。磁性層115は、記録密度を向上する観点からすると、Co系合金を含むグラニュラ磁性層であることが好ましい。このグラニュラ磁性層は、Co系合金を含む強磁性結晶粒子と、この強磁性結晶粒子を取り巻く非磁性粒界(非磁性体)とから構成されている。より具体的には、このグラニュラ磁性層は、Co系合金を含むカラム(柱状結晶)と、このカラムを取り囲み、それぞれのカラムを磁気的に分離する非磁性粒界(例えばSiO等の酸化物)とから構成されている。この構造では、それぞれのカラムが磁気的に分離した構造を有する磁性層115を構成することができる。
[Magnetic Layer]
The magnetic layer 115 is a perpendicular magnetic recording layer in which the magnetic material is oriented perpendicularly. The magnetic layer 115 may be a vacuum thin film such as a sputtered film. From the viewpoint of improving the recording density, the magnetic layer 115 is preferably a granular magnetic layer containing a Co-based alloy. This granular magnetic layer is composed of ferromagnetic crystal grains containing a Co-based alloy and non-magnetic grain boundaries (non-magnetic material) surrounding the ferromagnetic crystal grains. More specifically, this granular magnetic layer is composed of columns (columnar crystals) containing a Co-based alloy and non-magnetic grain boundaries (e.g., oxides such as SiO2 ) surrounding the columns and magnetically separating each column. In this structure, the magnetic layer 115 can be formed with a structure in which each column is magnetically separated.
 Co系合金は、六方細密充填(hcp)構造を有し、そのc軸が膜面に対して垂直方向(膜厚方向)に配向している。Co系合金としては、少なくともCo、CrおよびPtを含有するCoCrPt系合金を用いることが好ましい。CoCrPt系合金は、特に限定されるものではなく、CoCrPt合金がさらに添加元素を含んでいてもよい。添加元素としては、例えば、NiおよびTa等からなる群より選ばれる1種以上の元素が挙げられる。 The Co-based alloy has a hexagonal close-packed (hcp) structure, with its c-axis oriented perpendicular to the film surface (film thickness direction). As the Co-based alloy, it is preferable to use a CoCrPt-based alloy containing at least Co, Cr, and Pt. The CoCrPt-based alloy is not particularly limited, and the CoCrPt alloy may further contain an additive element. Examples of the additive element include one or more elements selected from the group consisting of Ni, Ta, etc.
 強磁性結晶粒子を取り巻く非磁性粒界は、非磁性金属材料を含む。ここで、金属には半金属を含むものとする。非磁性金属材料としては、例えば、金属酸化物および金属窒化物のうちの少なくとも一方を用いることができ、グラニュラ構造をより安定に維持する観点からすると、金属酸化物を用いることが好ましい。金属酸化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHf等からなる群より選ばれる少なくとも1種以上の元素を含む金属酸化物が挙げられ、少なくともSi酸化物(すなわちSiO)を含む金属酸化物が好ましい。金属酸化物の具体例としては、SiO、Cr、CoO、Al、TiO、Ta、ZrOまたはHfO等が挙げられる。金属窒化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHf等からなる群より選ばれる少なくとも1種以上の元素を含む金属窒化物が挙げられる。金属窒化物の具体例としては、SiN、TiNまたはAlN等が挙げられる。 The non-magnetic grain boundaries surrounding the ferromagnetic crystal grains contain a non-magnetic metal material. Here, the metal includes a semi-metal. For example, at least one of a metal oxide and a metal nitride can be used as the non-magnetic metal material, and from the viewpoint of maintaining the granular structure more stably, it is preferable to use a metal oxide. As the metal oxide, there is a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf, and a metal oxide containing at least Si oxide (i.e., SiO 2 ) is preferable. Specific examples of the metal oxide include SiO 2 , Cr 2 O 3 , CoO, Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , or HfO 2 . As the metal nitride, there is a metal nitride containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf. Specific examples of metal nitrides include SiN, TiN, and AlN.
 強磁性結晶粒子に含まれるCoCrPt系合金と、非磁性粒界に含まれるSi酸化物とが、以下の式(5)に示す平均組成を有していることが好ましい。反磁界の影響を抑え、かつ、十分な再生出力を確保できる飽和磁化量Msを実現でき、これにより、記録再生特性の更なる向上を実現できるからである。
 (CoPtCr100-x-y100-z-(SiO ・・・(5)
(但し、式(5)中において、x、y、zはそれぞれ、69≦X≦75、10≦y≦16、9≦Z≦12の範囲内の値である。)
It is preferable that the CoCrPt alloy contained in the ferromagnetic crystal grains and the Si oxide contained in the non-magnetic grain boundaries have an average composition shown in the following formula (5), because this can suppress the influence of the demagnetizing field and realize a saturation magnetization Ms that can ensure sufficient reproduction output, thereby achieving further improvement in the recording and reproduction characteristics.
( CoxPtyCr100 -x-y ) 100-z- ( SiO2 ) z ... ( 5)
(In formula (5), x, y, and z are values within the ranges of 69≦X≦75, 10≦y≦16, and 9≦Z≦12, respectively.)
 なお、上記組成は次のようにして求めることができる。磁性層115側から磁気テープMT1をイオンミリングしながら、AESによる磁性層115の深さ方向分析を行い、膜厚方向におけるCo、Pt、Cr、SiおよびOの平均組成(平均原子比率)を求める。 The above composition can be determined as follows. While ion milling the magnetic tape MT1 from the magnetic layer 115 side, AES is used to perform a depth direction analysis of the magnetic layer 115, and the average composition (average atomic ratio) of Co, Pt, Cr, Si, and O in the film thickness direction is determined.
 磁性層115の平均厚みの上限値は、例えば90nm以下、好ましくは80nm以下、より好ましくは70nm以下、さらにより好ましくは60nm以下、特に好ましくは50nm以下、20nm以下または15nm以下である。磁性層115の平均厚みの下限値は、好ましくは9nm以上である。磁性層115の平均厚みが9nm以上90nm以下であると、電磁変換特性を向上することができる。 The upper limit of the average thickness of the magnetic layer 115 is, for example, 90 nm or less, preferably 80 nm or less, more preferably 70 nm or less, even more preferably 60 nm or less, and particularly preferably 50 nm or less, 20 nm or less, or 15 nm or less. The lower limit of the average thickness of the magnetic layer 115 is preferably 9 nm or more. When the average thickness of the magnetic layer 115 is 9 nm or more and 90 nm or less, the electromagnetic conversion characteristics can be improved.
 磁性層115は、データが書き込まれる複数のデータバンドと、サーボパターンが書き込まれる複数のサーボバンドと、を有している。磁性層115のデータバンドおよびサーボバンドの詳細については、上記1.(2)において述べた第1の実施形態におけるデータバンドおよびサーボバンドに関する説明が当てはまる。そのため、磁性層115のデータバンドおよびサーボバンドについての説明は省略する。 The magnetic layer 115 has multiple data bands in which data is written, and multiple servo bands in which servo patterns are written. For details of the data bands and servo bands of the magnetic layer 115, the explanation of the data bands and servo bands in the first embodiment described in 1. (2) above applies. Therefore, the explanation of the data bands and servo bands of the magnetic layer 115 is omitted.
[保護層]
 保護層116は、例えば、炭素材料または二酸化ケイ素(SiO)を含み、保護層116の膜強度の観点からすると、炭素材料を含むことが好ましい。炭素材料としては、例えば、グラファイト、ダイヤモンド状炭素(Diamond-Like Carbon:DLC)またはダイヤモンド等が挙げられる。
[Protective Layer]
The protective layer 116 contains, for example, a carbon material or silicon dioxide (SiO 2 ), and preferably contains a carbon material from the viewpoint of the film strength of the protective layer 116. Examples of the carbon material include graphite, diamond-like carbon (DLC), diamond, and the like.
[潤滑層]
 潤滑層117は、少なくとも1種の潤滑剤を含む。潤滑層117は、必要に応じて各種添加剤、例えば防錆剤をさらに含んでいてもよい。潤滑剤としては、第1の実施形態における磁性層43と同様のものを例示することができる。
[Lubricant layer]
The lubricating layer 117 includes at least one lubricant. The lubricating layer 117 may further include various additives, such as a rust inhibitor, as necessary. Examples of the lubricant include the same lubricant as that used in the magnetic layer 43 in the first embodiment.
 なお、潤滑剤は、上記のように磁気テープMT1の表面に潤滑層117として保持されるのみならず、磁気テープMT1を構成する磁性層115および保護層116等の層に含まれ、保有されていてもよい。 The lubricant may not only be held as a lubricating layer 117 on the surface of the magnetic tape MT1 as described above, but may also be contained and held in layers such as the magnetic layer 115 and protective layer 116 that make up the magnetic tape MT1.
[バック層]
 バック層118は、第1の実施形態におけるバック層44と同様である。
[Back layer]
The back layer 118 is similar to the back layer 44 in the first embodiment.
(3)スパッタ装置の構成 (3) Configuration of the sputtering device
 以下、図29を参照して、第2の実施形態に係る磁気テープMT1の製造に用いられるスパッタ装置120の構成の一例について説明する。このスパッタ装置120は、SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115の成膜に用いられる連続巻取式スパッタ装置であり、成膜室121と、金属キャン(回転体)であるドラム122と、カソード123a~123fと、供給リール124と、巻き取りリール125と、複数のガイドロール127a~127c、128a~128cとを備える。スパッタ装置120は、例えばDC(直流)マグネトロンスパッタリング方式の装置であるが、スパッタリング方式はこの方式に限定されるものではない。 Below, with reference to FIG. 29, an example of the configuration of the sputtering device 120 used in the manufacture of the magnetic tape MT1 according to the second embodiment will be described. The sputtering device 120 is a continuous winding type sputtering device used to deposit the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115, and includes a deposition chamber 121, a drum 122 which is a metal can (rotating body), cathodes 123a to 123f, a supply reel 124, a take-up reel 125, and a number of guide rolls 127a to 127c, 128a to 128c. The sputtering device 120 is, for example, a DC (direct current) magnetron sputtering type device, but the sputtering type is not limited to this type.
 成膜室121は、排気口126を介して図示しない真空ポンプに接続され、この真空ポンプにより成膜室121内の雰囲気が所定の真空度に設定される。成膜室121の内部には、回転可能な構成を有するドラム122、供給リール124および巻き取りリール125が配置されている。成膜室121の内部には、供給リール124とドラム122との間におけるベース層111の搬送をガイドするための複数のガイドロール127a~127cが設けられていると共に、ドラム122と巻き取りリール125との間におけるベース層111の搬送をガイドするための複数のガイドロール128a~128cが設けられている。スパッタ時には、供給リール124から巻き出されたベース層111が、ガイドロール127a~127c、ドラム122およびガイドロール128a~128cを介して巻き取りリール125に巻き取られる。ドラム122は円柱状の形状を有し、長尺状のベース層111はドラム122の円柱面状の周面に沿わせて搬送される。ドラム122には、図示しない冷却機構が設けられており、スパッタ時には、例えば-20℃程度に冷却される。成膜室121の内部には、ドラム122の周面に対向して複数のカソード123a~123fが配置されている。これらのカソード123a~123fにはそれぞれターゲットがセットされている。具体的には、カソード123a、123b、123c、123d、123e、123fにはそれぞれ、SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114B、磁性層115を成膜するためのターゲットがセットされている。これらのカソード123a~123fにより複数の種類の膜、すなわちSUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115が同時に成膜される。 The film-forming chamber 121 is connected to a vacuum pump (not shown) via an exhaust port 126, and the atmosphere in the film-forming chamber 121 is set to a predetermined vacuum level by the vacuum pump. Inside the film-forming chamber 121, a rotatable drum 122, a supply reel 124, and a take-up reel 125 are arranged. Inside the film-forming chamber 121, a plurality of guide rolls 127a-127c are provided for guiding the transport of the base layer 111 between the supply reel 124 and the drum 122, and a plurality of guide rolls 128a-128c are provided for guiding the transport of the base layer 111 between the drum 122 and the take-up reel 125. During sputtering, the base layer 111 unwound from the supply reel 124 is wound onto the take-up reel 125 via the guide rolls 127a-127c, the drum 122, and the guide rolls 128a-128c. The drum 122 has a cylindrical shape, and the long base layer 111 is transported along the cylindrical peripheral surface of the drum 122. The drum 122 is provided with a cooling mechanism (not shown), and is cooled to, for example, about −20° C. during sputtering. Inside the film-forming chamber 121, a plurality of cathodes 123a to 123f are arranged facing the peripheral surface of the drum 122. Targets are set on each of these cathodes 123a to 123f. Specifically, targets for forming the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115 are set on the cathodes 123a, 123b, 123c, 123d, 123e, and 123f, respectively. These cathodes 123a-123f simultaneously deposit multiple types of films, namely, SUL 112, first seed layer 113A, second seed layer 113B, first underlayer 114A, second underlayer 114B, and magnetic layer 115.
 上記の構成を有するスパッタ装置120では、SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115をRoll to Roll法により連続成膜することができる。 In the sputtering apparatus 120 having the above configuration, the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B and the magnetic layer 115 can be continuously formed by the roll-to-roll method.
(4)磁気テープの製造方法 (4) Manufacturing method of magnetic tape
 第2の実施形態に係る磁気テープMT1は、例えば、以下のようにして製造することができる。 The magnetic tape MT1 according to the second embodiment can be manufactured, for example, as follows.
 まず、図29に示したスパッタ装置120を用いて、SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115をベース層111の表面上に順次成膜する。具体的には以下のようにして成膜する。まず、成膜室121を所定の圧力になるまで真空引きする。その後、成膜室121内にArガス等のプロセスガスを導入しながら、カソード123a~123fにセットされたターゲットをスパッタする。これにより、SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115が、走行するベース層111の表面に順次成膜される。 First, using the sputtering device 120 shown in FIG. 29, the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115 are sequentially deposited on the surface of the base layer 111. Specifically, the deposition is performed as follows. First, the deposition chamber 121 is evacuated to a predetermined pressure. Then, while introducing a process gas such as Ar gas into the deposition chamber 121, the targets set on the cathodes 123a to 123f are sputtered. As a result, the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B, and the magnetic layer 115 are sequentially deposited on the surface of the running base layer 111.
 スパッタ時の成膜室121の雰囲気は、例えば、1×10-5Paから5×10-5Pa程度に設定される。SUL112、第1のシード層113A、第2のシード層113B、第1の下地層114A、第2の下地層114Bおよび磁性層115の膜厚および特性は、ベース層111を巻き取るテープライン速度、スパッタ時に導入するArガス等のプロセスガスの圧力(スパッタガス圧)、および投入電力等を調整することにより制御可能である。 The atmosphere in the film formation chamber 121 during sputtering is set to, for example, about 1×10 −5 Pa to 5×10 −5 Pa. The film thickness and characteristics of the SUL 112, the first seed layer 113A, the second seed layer 113B, the first underlayer 114A, the second underlayer 114B and the magnetic layer 115 can be controlled by adjusting the tape line speed for winding up the base layer 111, the pressure of the process gas such as Ar gas introduced during sputtering (sputtering gas pressure), the input power, and the like.
 次に、磁性層115上に保護層116を成膜する。保護層116の成膜方法としては、例えば化学気相成長(Chemical Vapor Deposition:CVD)法または物理蒸着(physical vapor deposition:PVD)法を用いることができる。 Next, the protective layer 116 is formed on the magnetic layer 115. The protective layer 116 can be formed by, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD).
 次に、結着剤、無機粒子および潤滑剤等を溶剤に混練、分散させることにより、バック層成膜用の塗料を調製する。次に、ベース層111の裏面上にバック層成膜用の塗料を塗布して乾燥させることにより、バック層118をベース層111の裏面上に成膜する。 Next, a paint for forming the back layer is prepared by kneading and dispersing a binder, inorganic particles, a lubricant, etc. in a solvent. Next, the paint for forming the back layer is applied to the back surface of the base layer 111 and dried, thereby forming the back layer 118 on the back surface of the base layer 111.
 次に、例えば潤滑剤を保護層116上に塗布し、潤滑層117を成膜する。潤滑剤の塗布方法としては、例えば、グラビアコーティング、ディップコーティング等の各種塗布方法を用いることができる。次に、必要に応じて、磁気テープMT1を所定の幅に裁断する。以上により、図28に示した磁気テープMT1が得られる。 Next, for example, a lubricant is applied onto the protective layer 116 to form the lubricant layer 117. As a method for applying the lubricant, various application methods such as gravure coating and dip coating can be used. Next, if necessary, the magnetic tape MT1 is cut to a predetermined width. In this manner, the magnetic tape MT1 shown in FIG. 28 is obtained.
(5)作用効果
 上記2.の(5)において述べた作用効果に関する説明が、第2の実施形態についても当てはまる。すなわち、第2の実施形態に係る磁気テープMT1では、第1の実施形態と同様に、長期間(例えば10年間)に亘って磁気テープMT1を高温環境下で保存や走行した場合にも、磁気テープMT1の走行テンションの調整により磁気テープMT1の幅変化を補正することができる。また、磁気テープMT1の幅が高温環境下で変化した場合にも、データライトヘッドのアジマス角θ調整することにより、幅変化に対応することができる。このように、第2の実施形態に係る磁気テープMT1によれば、高温環境下で起こりうる幅変化に対処可能であるため、第2の実施形態に係る磁気テープMT1は、高温環境下での保存および走行に適している。
(5) Effects The description of the effects described in (5) of 2 above also applies to the second embodiment. That is, in the magnetic tape MT1 according to the second embodiment, even if the magnetic tape MT1 is stored or run in a high-temperature environment for a long period of time (for example, 10 years), the magnetic tape MT1 can correct the width change of the magnetic tape MT1 by adjusting the running tension of the magnetic tape MT1, as in the first embodiment. Also, even if the width of the magnetic tape MT1 changes in a high-temperature environment, the width change can be accommodated by adjusting the azimuth angle θ of the data write head. Thus, the magnetic tape MT1 according to the second embodiment can handle the width change that may occur in a high-temperature environment, so the magnetic tape MT1 according to the second embodiment is suitable for storage and running in a high-temperature environment.
4.第3の実施形態(真空薄膜型の磁気テープを含む磁気記録カートリッジの例) 4. Third embodiment (example of magnetic recording cartridge including vacuum thin-film magnetic tape)
(1)磁気記録カートリッジの構成 (1) Structure of magnetic recording cartridge
 本実施形態の磁気記録カートリッジは、塗布型の磁気テープMTの代わりに真空薄膜型の磁気テープMT2を含むこと以外は、上記2.の「(1)磁気カートリッジの構成」において述べた磁気記録カートリッジ10と同じである。以下で、真空薄膜型の磁気テープMT2について説明する。 The magnetic recording cartridge of this embodiment is the same as the magnetic recording cartridge 10 described in "(1) Configuration of the magnetic cartridge" in 2. above, except that it includes a vacuum thin-film type magnetic tape MT2 instead of the coated magnetic tape MT. The vacuum thin-film type magnetic tape MT2 is described below.
(2)磁気テープの構成 (2) Structure of magnetic tape
 図30は、本技術の第3の実施形態に係る真空薄膜型の磁気テープMT2の構成の一例を示す断面図である。磁気テープMT2は、ベース層111と、SUL112と、シード層131と、第1の下地層132Aと、第2の下地層132Bと、磁性層115とを備える。なお、第3の実施形態において第2の実施形態と同様の箇所には同一の符号を付して説明を省略する。 FIG. 30 is a cross-sectional view showing an example of the configuration of a vacuum thin-film magnetic tape MT2 according to a third embodiment of the present technology. The magnetic tape MT2 includes a base layer 111, an SUL 112, a seed layer 131, a first underlayer 132A, a second underlayer 132B, and a magnetic layer 115. Note that in the third embodiment, parts that are the same as those in the second embodiment are given the same reference numerals and will not be described.
 SUL112、シード層131、第1、第2の下地層132A、132Bは、ベース層111のベース層111の一方の主面と磁性層115との間に設けられ、ベース層111から磁性層115の方向に向かってSUL112、シード層131、第1の下地層132A、第2の下地層132Bの順序で積層されている。 The SUL 112, seed layer 131, first and second underlayers 132A and 132B are provided between one major surface of the base layer 111 and the magnetic layer 115, and are stacked in the order of SUL 112, seed layer 131, first underlayer 132A, and second underlayer 132B from the base layer 111 toward the magnetic layer 115.
[シード層]
 シード層131は、Cr、NiおよびFeを含み、面心立方格子(fcc)構造を有し、この面心立方構造の(111)面がベース層111の表面に平行になるように優先配向している。ここで、優先配向とは、X線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度が他の結晶面からの回折ピークより大きい状態、またはX線回折法のθ-2θスキャンにおいて面心立方格子構造の(111)面からの回折ピーク強度のみが観察される状態を意味する。
[Seed layer]
The seed layer 131 contains Cr, Ni, and Fe, has a face-centered cubic lattice (fcc) structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the base layer 111. Here, the preferential orientation means a state in which the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is greater than the diffraction peaks from other crystal planes in a θ-2θ scan of an X-ray diffraction method, or a state in which only the diffraction peak intensity from the (111) plane of the face-centered cubic lattice structure is observed in a θ-2θ scan of an X-ray diffraction method.
 シード層131のX線回折の強度比率は、SNRの向上の観点から、好ましくは60cps/nm以上、より好ましくは70cps/nm以上、さらにより好ましくは80cps/nm以上である。ここで、シード層131のX線回折の強度比率は、シード層131のX線回折の強度I(cps)をシード層131の平均厚みD(nm)で除算して求められる値(I/D(cps/nm))である。 From the viewpoint of improving the SNR, the intensity ratio of the X-ray diffraction of the seed layer 131 is preferably 60 cps/nm or more, more preferably 70 cps/nm or more, and even more preferably 80 cps/nm or more. Here, the intensity ratio of the X-ray diffraction of the seed layer 131 is a value (I/D (cps/nm)) obtained by dividing the intensity I (cps) of the X-ray diffraction of the seed layer 131 by the average thickness D (nm) of the seed layer 131.
 シード層131に含まれるCr、NiおよびFeは、以下の式(6)で表される平均組成を有することが好ましい。
 Cr(NiFe100-Y100-X ・・・(6)
(但し、式(6)中において、Xは10≦X≦45、Yは60≦Y≦90の範囲内である。)
 Xが上記範囲内であると、Cr、Ni、Feの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。同様にYが上記範囲内であると、Cr、Ni、Feの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。
The Cr, Ni, and Fe contained in the seed layer 131 preferably have an average composition represented by the following formula (6).
CrX ( NiYFe100 -Y ) 100-X ... (6)
(In formula (6), X is within the range of 10≦X≦45, and Y is within the range of 60≦Y≦90.)
When X is within the above range, the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained. Similarly, when Y is within the above range, the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe is improved, and a better SNR can be obtained.
 シード層131の平均厚みは、5nm以上40nm以下であることが好ましい。シード層131の平均厚みをこの範囲内にすることで、Cr、Ni、Feの面心立方格子構造の(111)配向を向上し、より良好なSNRを得ることができる。なお、シード層131の平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、シード層131の厚みに応じて適宜調整される。 The average thickness of the seed layer 131 is preferably 5 nm or more and 40 nm or less. By setting the average thickness of the seed layer 131 within this range, the (111) orientation of the face-centered cubic lattice structure of Cr, Ni, and Fe can be improved, and a better SNR can be obtained. The average thickness of the seed layer 131 is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the seed layer 131.
[第1、第2の下地層]
 第1の下地層132Aは、面心立方格子構造を有するCoおよびOを含み、カラム(柱状結晶)構造を有している。CoおよびOを含む第1の下地層132Aでは、Ruを含む第2の下地層132Bとほぼ同様の効果(機能)が得られる。Coの平均原子濃度に対するOの平均原子濃度の濃度比((Oの平均原子濃度)/(Coの平均原子濃度))が1以上である。濃度比が1以上であると、第1の下地層132Aを設ける効果が向上し、より良好なSNRを得ることができる。
[First and second underlayers]
The first underlayer 132A contains Co and O having a face-centered cubic lattice structure, and has a columnar (columnar crystal) structure. The first underlayer 132A containing Co and O has substantially the same effect (function) as the second underlayer 132B containing Ru. The concentration ratio of the average atomic concentration of O to the average atomic concentration of Co ((average atomic concentration of O)/(average atomic concentration of Co)) is 1 or more. When the concentration ratio is 1 or more, the effect of providing the first underlayer 132A is improved, and a better SNR can be obtained.
 カラム構造は、SNR向上の観点から、傾斜していることが好ましい。その傾斜の方向は、長尺状の磁気テープMT2の長手方向であることが好ましい。このように長手方向が好ましいのは、以下の理由による。本実施形態に係る磁気テープMT2は、いわゆるリニア記録用の磁気記録媒体であり、記録トラックは磁気テープMT2の長手方向に平行となる。また、本実施形態に係る磁気テープMT2は、いわゆる垂直磁気記録媒体でもあり、記録特性の観点からすると、磁性層115の結晶配向軸が垂直方向であることが好ましいが、第1の下地層132Aのカラム構造の傾きの影響で、磁性層115の結晶配向軸に傾きが生じる場合がある。リニア記録用である磁気テープMT2においては、記録時のヘッド磁界との関係上、磁気テープMT2の長手方向に磁性層115の結晶配向軸が傾いている構成が、磁気テープMT2の幅方向に磁性層115の結晶配向軸が傾いている構成に比べて、結晶配向軸の傾きによる記録特性への影響を低減できる。磁気テープMT2の長手方向に磁性層115の結晶配向軸を傾かせるためには、上記のように第1の下地層132Aのカラム構造の傾斜方向を磁気テープMT2の長手方向とすることが好ましい。 From the viewpoint of improving the SNR, it is preferable that the column structure is inclined. The direction of the inclination is preferably the longitudinal direction of the long magnetic tape MT2. The longitudinal direction is preferable for the following reasons. The magnetic tape MT2 according to this embodiment is a magnetic recording medium for so-called linear recording, and the recording tracks are parallel to the longitudinal direction of the magnetic tape MT2. The magnetic tape MT2 according to this embodiment is also a so-called perpendicular magnetic recording medium, and from the viewpoint of recording characteristics, it is preferable that the crystal orientation axis of the magnetic layer 115 is vertical, but the influence of the inclination of the column structure of the first underlayer 132A may cause the crystal orientation axis of the magnetic layer 115 to be inclined. In the magnetic tape MT2 for linear recording, in relation to the head magnetic field during recording, a configuration in which the crystal orientation axis of the magnetic layer 115 is inclined in the longitudinal direction of the magnetic tape MT2 can reduce the influence of the inclination of the crystal orientation axis on the recording characteristics compared to a configuration in which the crystal orientation axis of the magnetic layer 115 is inclined in the width direction of the magnetic tape MT2. In order to tilt the crystal orientation axis of the magnetic layer 115 in the longitudinal direction of the magnetic tape MT2, it is preferable to set the tilt direction of the column structure of the first underlayer 132A to the longitudinal direction of the magnetic tape MT2 as described above.
 カラム構造の傾斜角は、好ましくは0°より大きく60°以下であることが好ましい。傾斜角が0°より大きく60°以下の範囲では、第1の下地層132Aに含まれるカラムの先端形状の変化が大きくほぼ三角山状になるため、グラニュラ構造の効果が高まり、低ノイズ化し、SNRが向上する傾向がある。一方、傾斜角が60°を超えると、第1の下地層132Aに含まれるカラムの先端形状の変化が小さくほぼ三角山状とはなりにくいため、低ノイズ効果が薄れる傾向がある。 The inclination angle of the column structure is preferably greater than 0° and equal to or less than 60°. When the inclination angle is in the range of greater than 0° and equal to or less than 60°, the change in the tip shape of the columns contained in the first underlayer 132A is large and becomes approximately triangular, which tends to enhance the effect of the granular structure, reduce noise, and improve the SNR. On the other hand, when the inclination angle exceeds 60°, the change in the tip shape of the columns contained in the first underlayer 132A is small and it is difficult to obtain an approximately triangular shape, which tends to weaken the low-noise effect.
 カラム構造の平均粒径は、3nm以上13nm以下である。平均粒径が3nm未満であると、磁性層115に含まれるカラム構造の平均粒径が小さくなるため、現在の磁性材料では記録を保持する能力が低下する虞がある。一方、平均粒径が13nm以下であると、ノイズを抑制し、より良好なSNRを得ることができる。 The average grain size of the columnar structure is 3 nm or more and 13 nm or less. If the average grain size is less than 3 nm, the average grain size of the columnar structure contained in the magnetic layer 115 will be small, and there is a risk that the ability of current magnetic materials to retain records will decrease. On the other hand, if the average grain size is 13 nm or less, noise can be suppressed and a better SNR can be obtained.
 第1の下地層132Aの平均厚みは、10nm以上150nm以下であることが好ましい。第1の下地層132Aの平均厚みが10nm以上であると、第1の下地層132Aの面心立方格子構造の(111)配向が向上し、より良好なSNRを得ることができる。一方、第1の下地層132Aの平均厚みが150nm以下であると、カラムの粒径が大きくなることを抑制できる。したがって、ノイズを抑制し、より良好なSNRを得ることができる。なお、第1の下地層132Aの平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、第1の下地層132Aの厚みに応じて適宜調整される。 The average thickness of the first underlayer 132A is preferably 10 nm or more and 150 nm or less. If the average thickness of the first underlayer 132A is 10 nm or more, the (111) orientation of the face-centered cubic lattice structure of the first underlayer 132A is improved, and a better SNR can be obtained. On the other hand, if the average thickness of the first underlayer 132A is 150 nm or less, the column particle size can be prevented from increasing. Therefore, noise can be suppressed and a better SNR can be obtained. The average thickness of the first underlayer 132A is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the first underlayer 132A.
 第2の下地層132Bは、磁性層115と同様の結晶構造を有していることが好ましい。磁性層115がCo系合金を含む場合には、第2の下地層132Bは、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。磁性層115の配向性を高め、かつ、第2の下地層132Bと磁性層115との格子定数のマッチングを比較的良好にできるからである。六方細密充填構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO、Ru-TiOまたはRu-ZrO等のRu合金酸化物が挙げられる。 The second underlayer 132B preferably has the same crystal structure as the magnetic layer 115. When the magnetic layer 115 contains a Co-based alloy, the second underlayer 132B preferably contains a material having a hexagonal close-packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is preferably oriented perpendicular to the film surface (i.e., in the film thickness direction). This is because it can increase the orientation of the magnetic layer 115 and relatively well match the lattice constants of the second underlayer 132B and the magnetic layer 115. As a material having a hexagonal close-packed structure, it is preferable to use a material containing Ru, and specifically, Ru alone or a Ru alloy is preferable. As the Ru alloy, for example, Ru alloy oxides such as Ru-SiO 2 , Ru-TiO 2 , or Ru-ZrO 2 can be mentioned.
 第2の下地層132Bの平均厚みは、一般的な磁気記録媒体における下地層(例えばRuを含む下地層)よりも薄くてもよく、例えば、1nm以上5nm以下とすることが可能である。第2の下地層132Bの下に上記の構成を有するシード層131および第1の下地層132Aを設けているので、第2の下地層132Bの平均厚みが上記のように薄くても良好なSNRが得られる。なお、第2の下地層132Bの平均厚みは、第1の実施形態における磁性層43と同様にして求められる。但し、TEM像の倍率は、第2の下地層132Bの厚みに応じて適宜調整される。 The average thickness of the second underlayer 132B may be thinner than that of an underlayer in a typical magnetic recording medium (e.g., an underlayer containing Ru), and can be, for example, 1 nm or more and 5 nm or less. Since the seed layer 131 and the first underlayer 132A having the above-mentioned configuration are provided under the second underlayer 132B, a good SNR can be obtained even if the average thickness of the second underlayer 132B is as thin as described above. The average thickness of the second underlayer 132B is determined in the same manner as the magnetic layer 43 in the first embodiment. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the second underlayer 132B.
 第3の実施形態における磁気テープMT2の平均厚みt、幅変化量およびベース層111の損失弾性率等は、第1の実施形態におけるものと同様である。 The average thickness t T , the width change, and the loss modulus of the base layer 111 of the magnetic tape MT2 in the third embodiment are similar to those in the first embodiment.
 第3の実施形態における磁性層115のデータバンドおよびサーボバンドは、第1の実施形態におけるものと同様である。すなわち、第3の実施形態における磁性層115のデータバンドおよびサーボバンドの詳細については、上記2.(2)において述べた説明が当てはまる。 The data band and servo band of the magnetic layer 115 in the third embodiment are the same as those in the first embodiment. That is, the details of the data band and servo band of the magnetic layer 115 in the third embodiment are as described in 2. (2) above.
(3)作用効果 (3) Effects
 上記2.の(5)において述べた作用効果に関する説明が、第3の実施形態についても当てはまる。すなわち、第3の実施形態に係る磁気テープMT2では、第1の実施形態と同様に、長期間(例えば10年間)に亘って磁気テープMT2を高温環境下で保存や走行した場合にも、磁気テープMT2の走行テンションの調整により磁気テープMT2の幅変化を補正することができる。また、磁気テープMT2の幅が高温環境下で変化した場合にも、データライトヘッドのアジマス角θ調整することにより、幅変化に対応することができる。このように、第3の実施形態に係る磁気テープMT2によれば、高温環境下で起こりうる幅変化に対処可能であるため、第3の実施形態に係る磁気テープMT2は、高温環境下での保存および走行に適している。 The explanation of the effects described in (5) of 2 above also applies to the third embodiment. That is, in the magnetic tape MT2 according to the third embodiment, as in the first embodiment, even if the magnetic tape MT2 is stored or run in a high-temperature environment for a long period of time (for example, 10 years), the width change of the magnetic tape MT2 can be corrected by adjusting the running tension of the magnetic tape MT2. Also, even if the width of the magnetic tape MT2 changes in a high-temperature environment, the width change can be accommodated by adjusting the azimuth angle θ of the data write head. Thus, the magnetic tape MT2 according to the third embodiment can accommodate width changes that may occur in a high-temperature environment, and therefore the magnetic tape MT2 according to the third embodiment is suitable for storage and running in a high-temperature environment.
 第3の実施形態に係る磁気テープMT2は、ベース層111と第2の下地層132Bとの間にシード層131および第1の下地層132Aを備えている。シード層131は、Cr、NiおよびFeを含み、面心立方格子構造を有し、この面心立方構造の(111)面がベース層111の表面に平行になるように優先配向している。第1の下地層132Aは、CoおよびOを含み、Coの平均原子濃度に対するOの平均原子濃度の比が1以上であり、平均粒径が3nm以上13nm以下であるカラム構造を有する。これにより、第2の下地層132Bの厚さを薄くして高価な材料であるRuをできるだけ使用せずに、良好な結晶配向を有し、かつ高い抗磁力を有する磁性層115を実現できる。 The magnetic tape MT2 according to the third embodiment includes a seed layer 131 and a first underlayer 132A between a base layer 111 and a second underlayer 132B. The seed layer 131 contains Cr, Ni, and Fe, has a face-centered cubic lattice structure, and is preferentially oriented so that the (111) plane of this face-centered cubic structure is parallel to the surface of the base layer 111. The first underlayer 132A contains Co and O, and has a columnar structure in which the ratio of the average atomic concentration of O to the average atomic concentration of Co is 1 or more, and the average grain size is 3 nm or more and 13 nm or less. This makes it possible to realize a magnetic layer 115 with good crystal orientation and high coercivity by reducing the thickness of the second underlayer 132B and using as little Ru, which is an expensive material, as possible.
 第2の下地層132Bに含まれるRuは、磁性層115の主成分であるCoと同じ六方稠密格子構造を有する。このため、Ruには、磁性層115の結晶配向性向上とグラニュラ性促進とを両立させる効果がある。また、第2の下地層132Bに含まれるRuの結晶配向を更に向上させるために、第2の下地層132Bの下に第1の下地層132Aおよびシード層131を設けている。第3の実施形態に係る磁気テープMT2においては、Ruを含む第2の下地層132Bとほぼ同様の効果(機能)を、面心立方格子構造を有する安価なCoOを含む第1の下地層132Aで実現している。このため、第2の下地層132Bの厚さを薄くできる。また、第1の下地層132Aの結晶配向を高めるために、Cr、NiおよびFeを含むシード層131を設けている。 The Ru contained in the second underlayer 132B has the same hexagonal close-packed lattice structure as Co, the main component of the magnetic layer 115. Therefore, Ru has the effect of improving the crystal orientation of the magnetic layer 115 and promoting granularity at the same time. In addition, in order to further improve the crystal orientation of the Ru contained in the second underlayer 132B, the first underlayer 132A and the seed layer 131 are provided under the second underlayer 132B. In the magnetic tape MT2 according to the third embodiment, the first underlayer 132A containing inexpensive CoO with a face-centered cubic lattice structure achieves almost the same effect (function) as the second underlayer 132B containing Ru. Therefore, the thickness of the second underlayer 132B can be made thin. In addition, in order to improve the crystal orientation of the first underlayer 132A, the seed layer 131 containing Cr, Ni and Fe is provided.
5.変形例 5. Modifications
[変形例1]
 上記の第1の実施形態では、磁気テープカートリッジが、1リールタイプのカートリッジ10である場合について説明したが、2リールタイプのカートリッジであってもよい。
[Modification 1]
In the above first embodiment, the magnetic tape cartridge 10 is a one-reel type cartridge, but it may be a two-reel type cartridge.
 図31は、2リールタイプのカートリッジ321の構成の一例を示す分解斜視図である。カートリッジ321は、合成樹脂製の上ハーフ302と、上ハーフ302の上面に開口された窓部302aに嵌合されて固着される透明な窓部材323と、上ハーフ302の内側に固着されリール306、307の浮き上がりを防止するリールホルダー322と、上ハーフ302に対応する下ハーフ305と、上ハーフ302と下ハーフ305を組み合わせてできる空間に収納されるリール306、307と、リール306、307に巻かれた磁気テープMTと、上ハーフ302と下ハーフ305を組み合わせてできるフロント側開口部を閉蓋するフロントリッド309およびこのフロント側開口部に露出した磁気テープMTを保護するバックリッド309Aとを備える。 Figure 31 is an exploded perspective view showing an example of the configuration of a two-reel type cartridge 321. The cartridge 321 comprises an upper half 302 made of synthetic resin, a transparent window member 323 that fits into and is fixed to a window portion 302a opened on the upper surface of the upper half 302, a reel holder 322 that is fixed to the inside of the upper half 302 and prevents the reels 306 and 307 from floating up, a lower half 305 that corresponds to the upper half 302, the reels 306 and 307 that are stored in the space formed by combining the upper half 302 and the lower half 305, the magnetic tape MT wound on the reels 306 and 307, a front lid 309 that closes the front opening formed by combining the upper half 302 and the lower half 305, and a back lid 309A that protects the magnetic tape MT exposed at this front opening.
 リール306、307は、磁気テープMTを巻くためのものである。リール306は、磁気テープMTが巻かれる円筒状のハブ部306aを中央部に有する下フランジ306bと、下フランジ306bとほぼ同じ大きさの上フランジ306cと、ハブ部306aと上フランジ306cの間に挟み込まれたリールプレート311とを備える。リール307はリール306と同様の構成を有している。 Reels 306 and 307 are used to wind magnetic tape MT. Reel 306 comprises a lower flange 306b having a cylindrical hub portion 306a in the center around which magnetic tape MT is wound, an upper flange 306c of approximately the same size as lower flange 306b, and a reel plate 311 sandwiched between hub portion 306a and upper flange 306c. Reel 307 has the same configuration as reel 306.
 窓部材323には、リール306、307に対応した位置に、これらリールの浮き上がりを防止するリール保持手段であるリールホルダー322を組み付けるための取付孔323aが各々設けられている。磁気テープMTは、第1の実施形態における磁気テープMTと同様である。 The window member 323 has mounting holes 323a at positions corresponding to the reels 306 and 307 for attaching reel holders 322, which are reel holding means for preventing the reels from floating up. The magnetic tape MT is the same as the magnetic tape MT in the first embodiment.
[変形例2]
 第2の実施形態に係る磁気テープMT1が、ベース層111とSUL112との間に下地層をさらに備えるようにしてもよい。SUL112はアモルファス状態を有するため、SUL112上に形成される層のエピタキシャル成長を促す役割を担わないが、SUL112の上に形成される第1、第2の下地層114A、114Bの結晶配向を乱さないことが求められる。そのためには、軟磁性材料がカラムを形成しない微細な構造を有していることが好ましいが、ベース層111からの水分等のデガスの影響が大きい場合、軟磁性材料が粗大化し、SUL112上に形成される第1、第2の下地層114A、114Bの結晶配向を乱してしまう虞がある。ベース層111からの水分等のデガスの影響を抑制するためには、上記のように、ベース層111とSUL112との間に、TiおよびCrを含む合金を含み、アモル
ファス状態を有する下地層を設けることが好ましい。この下地層の具体的な構成としては、第2の実施形態の第1のシード層113Aと同様の構成を採用することができる。
[Modification 2]
The magnetic tape MT1 according to the second embodiment may further include an underlayer between the base layer 111 and the SUL 112. Since the SUL 112 has an amorphous state, it does not play a role in promoting epitaxial growth of the layer formed on the SUL 112, but it is required not to disturb the crystal orientation of the first and second underlayers 114A and 114B formed on the SUL 112. For this purpose, it is preferable that the soft magnetic material has a fine structure that does not form columns, but if the influence of degassing such as moisture from the base layer 111 is large, the soft magnetic material may become coarse and disturb the crystal orientation of the first and second underlayers 114A and 114B formed on the SUL 112. In order to suppress the influence of degassing such as moisture from the base layer 111, it is preferable to provide an underlayer having an amorphous state, which contains an alloy containing Ti and Cr, between the base layer 111 and the SUL 112, as described above. As a specific configuration of this underlayer, a configuration similar to that of the first seed layer 113A of the second embodiment can be adopted.
 磁気テープMT1が、第2のシード層113Bおよび第2の下地層114Bのうちの少なくとも1つの層を備えていなくてもよい。但し、SNRの向上の観点からすると、第2のシード層113Bおよび第2の下地層114Bの両方の層を備えることがより好ましい。 The magnetic tape MT1 does not have to include at least one of the second seed layer 113B and the second underlayer 114B. However, from the viewpoint of improving the SNR, it is more preferable to include both the second seed layer 113B and the second underlayer 114B.
 磁気テープMT1が、単層のSULに代えて、APC-SUL(Antiparallel Coupled SUL)を備えるようにしてもよい。 The magnetic tape MT1 may be provided with an APC-SUL (Antiparallel Coupled SUL) instead of a single-layer SUL.
6.実施例 6. Example
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。  Below, the present technology will be explained in detail using examples, but the present technology is not limited to these examples.
 以下の実施例及び比較例において、磁気テープのベース層の損失弾性率は、第1の実施形態にて説明した測定方法により求められた値である。 In the following examples and comparative examples, the loss modulus of the base layer of the magnetic tape is a value determined by the measurement method described in the first embodiment.
[幅変化量]
 幅変化量を、第1の実施形態にて説明した測定方法により求めた。
[Width change amount]
The amount of change in width was determined by the measurement method described in the first embodiment.
[傾斜して配置されたドライブヘッドの移動角度の算出方法]
 図40は、傾斜して配置されたドライブヘッドの移動角度の算出方法を説明するための模式図である。当該移動角度は、高温環境での保存を想定した幅変化に対処するために必要なドライブヘッドの移動角度である。
 図40の左側には、初期(幅変化前)の磁気テープにおける、ドライブヘッドの2つのサーボリードヘッドの間隔(h)、サーボバンドピッチ(SP)、及びドライブヘッドの傾斜角度(10°)が示されている。図34の左側の場合において、Cos10°=SP/hである。
 図40の右側には、サーボバンドピッチが狭くなった後(幅変化後)の磁気テープにおける、サーボバンドピッチ(SP-ΔSP)、ドライブヘッドの移動角度(α)、及びドライブヘッドの移動後の傾斜角度(10°+α)が示されている。図40の右側の場合において、Cos(10°+α)=(SP-ΔSP)/hである。この式から、ドライブヘッドの移動角度(α)は次のとおり算出される。
 10°+α=Cos-1[(SP-ΔSP)/h]
 α=Cos-1[(SP-ΔSP)/h]-10°
[Method of calculating the movement angle of a drive head arranged at an angle]
40 is a schematic diagram for explaining a method for calculating the movement angle of a tilted drive head, which is the movement angle of the drive head required to deal with width changes assumed when the disk is stored in a high-temperature environment.
The left side of Fig. 40 shows the distance (h) between the two servo read heads of the drive head, the servo band pitch (SP), and the tilt angle (10°) of the drive head for the initial (before width change) magnetic tape. In the case of the left side of Fig. 34, Cos10°=SP/h.
The right side of Figure 40 shows the servo band pitch (SP-ΔSP), the drive head movement angle (α), and the tilt angle (10°+α) after the drive head moves on the magnetic tape after the servo band pitch has narrowed (after the width has changed). In the case on the right side of Figure 40, Cos(10°+α)=(SP-ΔSP)/h. From this formula, the drive head movement angle (α) is calculated as follows:
10° + α = Cos-1 [(SP-ΔSP)/h]
α=Cos−1[(SP−ΔSP)/h]−10°
[巻き直し長期間保存後の走行特性]
 65℃、40RH%で磁気記録カートリッジを2週間保存後、磁気テープをデータ記録再生装置50の巻き取りリール52に巻き取った状態で巻き外巻き内を逆転させて、さらに2週間保存後、データ記録再生装置50を用いて磁気テープの全面記録再生を行い、走行特性について、下記3段階の基準に基づいて判定値をそれぞれ付与した。なお、評価「B、C」が望ましくない判定結果を示すものとした。磁気テープの全面記録再生を行うことができた場合、磁気テープの幅方向中央部のデータバンドの幅方向における保存前からの幅変化量を測定し、幅が最小になる部分と幅が最大になる部分の差を算出した。
A:何も異常が発生しない(Fail発生無し)。
B:数回走行後、サーボが読めず、システムエラーで停止する。
C:サーボが読めず、システムエラーで即時に停止する。
[Running characteristics after rewinding and long-term storage]
After storing the magnetic recording cartridge for two weeks at 65°C and 40% RH, the magnetic tape was wound around the take-up reel 52 of the data recording and reproducing device 50, and the magnetic tape was reversed inward and outward while being stored for another two weeks. After that, the magnetic tape was recorded and reproduced over the entire surface using the data recording and reproducing device 50, and the running characteristics were given a judgment value based on the following three-level criteria. The evaluations "B" and "C" indicate undesirable judgment results. When the magnetic tape was able to be recorded and reproduced over the entire surface, the amount of change in width in the data band at the center of the width of the magnetic tape from before storage was measured, and the difference between the part with the smallest width and the part with the largest width was calculated.
A: No abnormality occurred (no failure occurred).
B: After several runs, the servo cannot be read and the system stops due to an error.
C: The servo cannot be read and a system error occurs, causing an immediate stop.
[実施例1]
(磁性層形成用塗料の調製工程)
 磁性層形成用塗料を以下のようにして調製した。まず、下記配合の第1組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第1組成物と、下記配合の第2組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルター処理を行い、磁性層形成用塗料を調製した。
[Example 1]
(Preparation process of paint for forming magnetic layer)
The magnetic layer coating material was prepared as follows. First, the first composition having the following composition was mixed with an extruder. Next, the mixed first composition and the second composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, the mixture was further mixed with a sand mill and filtered to prepare the magnetic layer coating material.
(第1組成物)
バリウムフェライト(BaFe1219)磁性粉(六角板状、平均アスペクト比3.0、平均粒子体積1500nm):100質量部
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):35質量部
(塩化ビニル系樹脂:重合度300、数平均分子量Mn=10000、極性基としてOSOK=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):10質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=110℃)酸化アルミニウム粉末:7.5質量部(α-Al、平均粒径80μm)
(First composition)
Barium ferrite ( BaFe12O19 ) magnetic powder (hexagonal plate shape, average aspect ratio 3.0, average particle volume 1500 nm3 ) : 100 parts by mass Vinyl chloride resin (cyclohexanone solution 30% by mass): 35 parts by mass (vinyl chloride resin: degree of polymerization 300, number average molecular weight Mn = 10,000, contains OSO3K = 0.07 mmol/g and secondary OH = 0.3 mmol/g as polar groups)
Polyurethane resin (resin solution: polyurethane resin content 30% by mass, cyclohexanone content 70% by mass): 10 parts by mass (polyurethane resin: number average molecular weight Mn=25,000, glass transition temperature Tg=110° C.) Aluminum oxide powder: 7.5 parts by mass (α-Al 2 O 3 , average particle size 80 μm)
(第2組成物)
カーボンブラック:2.0質量部(東海カーボン社製、商品名:シーストS、算術平均粒子径70nm)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):5.0質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=110℃)n-ブチルステアレート:2質量部
メチルエチルケトン:121.0質量部
トルエン:121.0質量部
シクロヘキサノン:116.0質量部
(Second Composition)
Carbon black: 2.0 parts by mass (manufactured by Tokai Carbon Co., Ltd., product name: Seast S, arithmetic mean particle diameter 70 nm)
Polyurethane resin (resin solution: polyurethane resin content 30% by mass, cyclohexanone content 70% by mass): 5.0 parts by mass (polyurethane resin: number average molecular weight Mn = 25,000, glass transition temperature Tg = 110°C) n-Butyl stearate: 2 parts by mass Methyl ethyl ketone: 121.0 parts by mass Toluene: 121.0 parts by mass Cyclohexanone: 116.0 parts by mass
 上記のようにして調製した磁性層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製):3.3質量部と、ステアリン酸:2質量部とを添加した。 To the magnetic layer-forming paint prepared as above, 3.3 parts by mass of polyisocyanate (product name: Coronate L, manufactured by Tosoh Corporation) and 2 parts by mass of stearic acid were added as a curing agent.
(下地層形成用塗料の調製工程)
 下地層形成用塗料を以下のようにして調製した。まず、下記配合の第3組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第3組成物と、下記配合の第4組成物を加えて予備混合を行った。続いて、さらにダイノミル混合を行い、フィルター処理を行い、下地層形成用塗料を調製した。
(Preparation process of paint for forming base layer)
The paint for forming the undercoat layer was prepared as follows. First, the third composition having the following composition was mixed with an extruder. Next, the mixed third composition and the fourth composition having the following composition were added to a stirring tank equipped with a disperser and premixed. Then, further mixing was performed with a dyno mill and filtering was performed to prepare the paint for forming the undercoat layer.
(第3組成物)
針状酸化鉄粉末:100質量部
(α-Fe、平均長軸長0.11μm)
塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):46質量部
(塩化ビニル系樹脂:重合度300、数平均分子量Mn=10000、極性基としてOSOK=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
酸化アルミニウム粉末:3質量部(α-Al、平均粒径0.1μm)
(Third Composition)
Acicular iron oxide powder: 100 parts by mass (α-Fe 2 O 3 , average major axis length 0.11 μm)
Vinyl chloride resin (cyclohexanone solution 30% by mass): 46 parts by mass (vinyl chloride resin: degree of polymerization 300, number average molecular weight Mn = 10,000, contains OSO 3 K = 0.07 mmol/g and secondary OH = 0.3 mmol/g as polar groups)
Aluminum oxide powder: 3 parts by mass (α-Al 2 O 3 , average particle size 0.1 μm)
(第4組成物)
カーボンブラック:30質量部(旭カーボン社製、商品名:#80)
ポリウレタン樹脂(樹脂溶液:ポリウレタン樹脂の配合量30質量%、シクロヘキサノンの配合量70質量%):40質量部
(ポリウレタン樹脂:数平均分子量Mn=25000、ガラス転移温度Tg=110℃)n-ブチルステアレート:2質量部
メチルエチルケトン:108.2質量部
トルエン:108.2質量部
シクロヘキサノン:100.0質量部
(Fourth Composition)
Carbon black: 30 parts by weight (manufactured by Asahi Carbon Co., Ltd., product name: #80)
Polyurethane resin (resin solution: polyurethane resin content 30% by mass, cyclohexanone content 70% by mass): 40 parts by mass (polyurethane resin: number average molecular weight Mn = 25,000, glass transition temperature Tg = 110°C) n-Butyl stearate: 2 parts by mass Methyl ethyl ketone: 108.2 parts by mass Toluene: 108.2 parts by mass Cyclohexanone: 100.0 parts by mass
 上記のようにして調製した下地層形成用塗料に、硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製):1.5質量部と、ステアリン酸:2.0質量部とを添加した。 To the base layer forming paint prepared as above, 1.5 parts by mass of polyisocyanate (product name: Coronate L, manufactured by Tosoh Corporation) and 2.0 parts by mass of stearic acid were added as a curing agent.
(バック層形成用塗料の調製工程)
 バック層形成用塗料を以下のようにして調製した。下記原料を、ディスパーを備えた攪拌タンクで混合を行い、フィルター処理を行うことで、バック層形成用塗料を調製した。カーボンブラック(旭カーボン株式会社製、商品名:#80):100質量部
ポリエステルポリウレタン:100質量部
(日本ポリウレタン社製、商品名:N-2304)
メチルエチルケトン:500質量部
トルエン:400質量部
シクロヘキサノン:100質量部
ポリイソシアネート(商品名:コロネートL、東ソー株式会社製):10質量部
(Preparation of paint for forming back layer)
The paint for forming the back layer was prepared as follows. The following raw materials were mixed in a stirring tank equipped with a disperser and filtered to prepare the paint for forming the back layer. Carbon black (manufactured by Asahi Carbon Co., Ltd., product name: #80): 100 parts by mass Polyester polyurethane: 100 parts by mass (manufactured by Nippon Polyurethane Co., Ltd., product name: N-2304)
Methyl ethyl ketone: 500 parts by weight Toluene: 400 parts by weight Cyclohexanone: 100 parts by weight Polyisocyanate (product name: Coronate L, manufactured by Tosoh Corporation): 10 parts by weight
(成膜工程)
 上記のようにして作製した塗料を用いて、非磁性支持体としての長尺の高分子フィルムの一方の主面上に下地層および磁性層を以下のようにして形成した。
(Film forming process)
Using the coating material prepared as described above, an underlayer and a magnetic layer were formed on one main surface of a long polymer film serving as a non-magnetic support in the following manner.
 まず、ベース層となる高分子フィルム上に下地層形成用塗料を塗布し乾燥させることにより、下地層を形成した。この際、塗布条件は、カレンダー処理後の下地層の平均厚みが0.82μmとなるように調整された。高分子フィルムとしては、平均厚みが4.0μmの強化PET(商品名「SPALTAN」(登録商標)、東レ社製)を用いた。 First, the base layer was formed by applying the paint for forming the base layer onto the polymer film that would become the base layer and drying it. The application conditions were adjusted so that the average thickness of the base layer after calendaring would be 0.82 μm. The polymer film used was reinforced PET (trade name "SPALTAN" (registered trademark), manufactured by Toray Industries, Inc.) with an average thickness of 4.0 μm.
 次に、下地層上に、磁性層形成用塗料を塗布し、乾燥させることにより、下地層上に磁性層を形成した。この際、塗布条件は、カレンダー処理後の磁性層の平均厚みが0.08μmとなるように調整された。磁性層形成用塗料の乾燥の際に、ネオジム磁石により、磁性粉が高分子フィルムの厚み方向に磁場配向された。磁性層形成用塗料の乾燥条件(乾燥温度および乾燥時間)が調整され、長手方向における角形比が34%に設定された。 Next, the magnetic layer-forming paint was applied onto the underlayer and dried to form a magnetic layer on the underlayer. The application conditions were adjusted so that the average thickness of the magnetic layer after calendaring would be 0.08 μm. When the magnetic layer-forming paint was dried, the magnetic powder was magnetically oriented in the thickness direction of the polymer film by a neodymium magnet. The drying conditions (drying temperature and drying time) of the magnetic layer-forming paint were adjusted, and the squareness ratio in the longitudinal direction was set to 34%.
 続いて、下地層および磁性層が形成された強化PETフィルムの他方の主面上にバック層形成用塗料を塗布し乾燥させることにより、バック層を形成した。この際、塗布条件は、カレンダー処理後のバック層の平均厚みが0.3μmとなるように調整された。以上により、磁気テープが得られた。  Next, a back layer was formed by applying a paint for forming a back layer to the other main surface of the reinforced PET film on which the undercoat layer and magnetic layer were formed, and then drying it. At this time, the application conditions were adjusted so that the average thickness of the back layer after calendaring was 0.3 μm. In this way, a magnetic tape was obtained.
(硬化工程)
 次に、磁気テープをロール状に巻き取ったのち、この状態で磁気テープに加熱処理を行うことにより、下地層および磁性層を硬化させた。
(Curing process)
Next, the magnetic tape was wound into a roll, and then subjected to a heat treatment in this state to harden the underlayer and the magnetic layer.
(カレンダー工程)
 次に、得られた磁気テープにカレンダー処理を行い、磁性層の表面を平滑化した。
(Calendar process)
The magnetic tape thus obtained was then subjected to a calendar treatment to smooth the surface of the magnetic layer.
(裁断の工程)
 上記のようにして得られた磁気テープを1/2インチ(12.65mm)幅に裁断した。これにより、目的とする長尺状の磁気テープ(平均厚み5.2μm)が得られた。以上のとおりにして得られた磁気テープは、表1及び表2に示す特性を有した。例えば、当該磁気テープのベース層の65℃における損失弾性率は0.07GPaであった。
(Cutting process)
The magnetic tape obtained as described above was cut to a width of 1/2 inch (12.65 mm). As a result, the desired long magnetic tape (average thickness 5.2 μm) was obtained. The magnetic tape obtained as described above had the properties shown in Tables 1 and 2. For example, the loss modulus of the base layer of the magnetic tape at 65° C. was 0.07 GPa.
(消磁工程およびサーボパターンの書き込み工程)
 当該1/2インチ幅の磁気テープをカートリッジケース内に設けられたリールに巻き付けて、磁気記録カートリッジを得た。磁気テープの消磁を行ったのち、磁気テープにサーボパターンを書き込んだ。当該サーボパターンは、磁気テープの幅方向に対して非対称な第1のサーボパターンおよび第2のサーボパターンを含んでいた。また、互いに隣接するサーボバンドにおけるサーボパターンは位相差を有していた。磁気テープを0.55Nのテンションで磁気記録カートリッジに巻き込んだ状態で、65℃、40RH%、360時間保存後、磁気記録カートリッジ内に収容されている磁気テープを、磁気記録再生装置へと巻き込むように走行させながら(いわゆる順方向に走行させながら)サーボバンドピッチの測定を行った。また、保存前の初期状態にある磁気記録カートリッジ内に収容されている磁気テープについても同様に長手方向におけるサーボバンドピッチの測定を行い、保存後サーボバンドピッチと初期状態サーボバンドピッチの比で表される幅変化量を算出した。その結果を図33に示す。図33において、横軸は、磁気テープの長手方向における位置を示す。図33では、テープリールに巻回された磁気テープの外周側(巻外側)の端部(BOT)の位置を0とし、テープリールに巻回された磁気テープの内周側(巻内側)の端部(以下、EOTともいう)の位置を84とし、磁気テープ全長が84等分された。図33において、縦軸は、65℃、40RH%、360時間保存後の幅変化量を示し、保存後幅/保存前幅を示す。図33において、幅変化量が負の値を示す場合、保存前よりも保存後、磁気テープの幅が狭くなっていることを意味し、幅変化量が正の値を示す場合、保存前よりも保存後、磁気テープの幅が広くなっていることを意味する。なお、図34~42においても横軸及び縦軸については、図33の説明があてはまる。図33に示すように、位置0~20の巻外側の幅変化量は負の値であり、位置60~84の巻内側の幅変化量は正の値であり、位置55~56の間で、幅変化量が0ppmとなった。
(Demagnetization process and servo pattern writing process)
The 1/2 inch wide magnetic tape was wound around a reel provided in a cartridge case to obtain a magnetic recording cartridge. After demagnetizing the magnetic tape, a servo pattern was written on the magnetic tape. The servo pattern included a first servo pattern and a second servo pattern that were asymmetric with respect to the width direction of the magnetic tape. In addition, the servo patterns in the adjacent servo bands had a phase difference. After storing the magnetic tape at 65°C, 40 RH% for 360 hours in a state where the magnetic tape was wound into the magnetic recording cartridge with a tension of 0.55 N, the magnetic tape housed in the magnetic recording cartridge was run so as to be wound into a magnetic recording and reproducing device (running in the so-called forward direction) and the servo band pitch was measured. In addition, the servo band pitch in the longitudinal direction was also measured for the magnetic tape housed in the magnetic recording cartridge in the initial state before storage, and the width change amount represented by the ratio of the servo band pitch after storage to the servo band pitch in the initial state was calculated. The results are shown in FIG. 33. In FIG. 33, the horizontal axis indicates the position in the longitudinal direction of the magnetic tape. In FIG. 33, the position of the end (BOT) on the outer periphery side (outside of the winding) of the magnetic tape wound on the tape reel is set to 0, and the position of the end (hereinafter also referred to as EOT) on the inner periphery side (inside of the winding) of the magnetic tape wound on the tape reel is set to 84, and the total length of the magnetic tape is divided into 84 equal parts. In FIG. 33, the vertical axis indicates the amount of width change after storage at 65° C., 40 RH%, and 360 hours, and indicates width after storage/width before storage. In FIG. 33, when the amount of width change indicates a negative value, it means that the width of the magnetic tape is narrower after storage than before storage, and when the amount of width change indicates a positive value, it means that the width of the magnetic tape is wider after storage than before storage. Note that the explanation of FIG. 33 applies to the horizontal and vertical axes in FIGS. 34 to 42 as well. As shown in FIG. 33, the amount of width change on the outer side of the winding at positions 0 to 20 is a negative value, the amount of width change on the inner side of the winding at positions 60 to 84 is a positive value, and the amount of width change is 0 ppm between positions 55 and 56.
[実施例2a]
 ベース層材料として、ポリエチレンナフタレートフィルム(以下「PENフィルム」という。)を用い、磁性層の平均厚みを0.06μm、下地層の平均厚みを0.84μmとする点以外は実施例1と同じ方法で磁気テープを得た。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図34に示す。図34に示すように、位置0~20の巻外側の幅変化量は負の値であり、位置60~84の巻内側の幅変化量は正の値であり、位置59~60の間で、幅変化量が0ppmとなった。
[Example 2a]
A magnetic tape was obtained in the same manner as in Example 1, except that a polyethylene naphthalate film (hereinafter referred to as "PEN film") was used as the base layer material, the average thickness of the magnetic layer was 0.06 μm, and the average thickness of the underlayer was 0.84 μm. As in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 34. As shown in FIG. 34, the width change on the outside of the winding at positions 0 to 20 was a negative value, the width change on the inside of the winding at positions 60 to 84 was a positive value, and the width change was 0 ppm between positions 59 and 60.
[実施例2b]
 カレンダー処理の温度を低温にし、磁性層の平均厚みを0.07μm、下地層の平均厚みを0.83μmとした点以外は実施例2と同じ方法で磁気テープを得た。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。
Example 2b
A magnetic tape was obtained in the same manner as in Example 2, except that the calendering temperature was low, the average thickness of the magnetic layer was 0.07 μm, and the average thickness of the underlayer was 0.83 μm. In the same manner as in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
[実施例2c]
 塗布時の乾燥温度を5℃下げて処理し、磁性層の平均厚みを0.07μm、下地層の平均厚みを0.83μmとした点以外は実施例2と同じ方法で磁気テープを得た。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。
[Example 2c]
A magnetic tape was obtained in the same manner as in Example 2, except that the drying temperature during coating was lowered by 5° C., the average thickness of the magnetic layer was 0.07 μm, and the average thickness of the underlayer was 0.83 μm. In the same manner as in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
[実施例2d]
 塗布時の乾燥温度を10℃下げて処理し、磁性層の平均厚みを0.05μm、下地層の平均厚みを0.45μm、ベース層の平均厚みを4.40μmとした点以外は実施例2と同じ方法で磁気テープを得た。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。
[Example 2d]
A magnetic tape was obtained in the same manner as in Example 2, except that the drying temperature during coating was lowered by 10° C., the average thickness of the magnetic layer was 0.05 μm, the average thickness of the underlayer was 0.45 μm, and the average thickness of the base layer was 4.40 μm. In the same manner as in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape.
[実施例3]
 ベース層材料として、ポリエーテルエーテルケトンフィルム(以下「PEEKフィルム」という。)を用い、バック層の平均厚みが0.4μmとし、磁性層の平均厚みを0.07μmとし、下地層の平均厚みを0.83μm、平均全厚みを5.3μmとした点以外は実施例1と同じ方法で磁気テープを得た。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図35に示す。図35に示すように、位置0~20の巻外側の幅変化量は負の値であり、位置60~84の巻内側の幅変化量は正の値であり、位置37~38の間で、幅変化量が0ppmとなった。
[Example 3]
A magnetic tape was obtained in the same manner as in Example 1, except that a polyether ether ketone film (hereinafter referred to as "PEEK film") was used as the base layer material, the average thickness of the back layer was 0.4 μm, the average thickness of the magnetic layer was 0.07 μm, the average thickness of the underlayer was 0.83 μm, and the average total thickness was 5.3 μm. As in Example 1, a magnetic recording cartridge was manufactured using the magnetic tape, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 35. As shown in FIG. 35, the width change on the outer side of the winding at positions 0 to 20 was a negative value, the width change on the inner side of the winding at positions 60 to 84 was a positive value, and the width change was 0 ppm between positions 37 and 38.
[比較例1a]
 磁性層形成用塗料と下地層形成用塗料に配合するポリウレタン系樹脂として、Tgが70℃のものを使用し、磁性層に添加するn-ブチルステアレートの量を1.5質量部とし、さらに下地層形成用塗料に硬化剤としてポリイソシアネートを添加しない点以外は、実施例2と同じ方法 で磁気テープを得た。実施例2と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図36に示す。図36に示すように、位置0~20の巻外側の幅変化量は正の値であり、位置60~84の巻内側の幅変化量も正の値であった。
[Comparative Example 1a]
A magnetic tape was obtained in the same manner as in Example 2, except that a polyurethane resin with a Tg of 70°C was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, the amount of n-butyl stearate added to the magnetic layer was 1.5 parts by mass, and no polyisocyanate was added as a hardener to the paint for forming the undercoat layer. A magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 36. As shown in FIG. 36, the width change on the outer side of the winding at positions 0 to 20 was a positive value, and the width change on the inner side of the winding at positions 60 to 84 was also a positive value.
[比較例1b]
 カレンダー温度を比較例1より10℃下げて処理をした以外は比較例1と同じ方法でテープを得た。
[Comparative Example 1b]
A tape was obtained in the same manner as in Comparative Example 1, except that the calendering temperature was 10° C. lower than that in Comparative Example 1.
[比較例2]
 ベース層の平均厚みを4.0μm、磁性層と下地層の平均厚みを1.2μm、バック層の平均厚みを0.4μmとし、平均全厚みを5.6μmとし、磁性層形成用塗料と下地層形成用塗料に配合するポリウレタン系樹脂として、Tgが70℃のものを使用し、磁性層形成用塗料に硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製)1.7質量部、下地層形成用塗料に硬化剤として、ポリイソシアネート(商品名:コロネートL、東ソー株式会社製)0.75質量部添加する以外は、実施例1と同じ方法で磁気テープを製造した。実施例1と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図37に示す。図37に示すように、位置0~20の巻外側の幅変化量は正の値であり、位置60~84の巻内側の幅変化量も正の値であった。
[Comparative Example 2]
The average thickness of the base layer was 4.0 μm, the average thickness of the magnetic layer and the undercoat layer was 1.2 μm, the average thickness of the back layer was 0.4 μm, the average total thickness was 5.6 μm, a polyurethane resin with a Tg of 70° C. was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer was used, and 1.7 parts by mass of polyisocyanate (product name: Coronate L, manufactured by Tosoh Corporation) was added as a hardener to the paint for forming the magnetic layer, and 0.75 parts by mass of polyisocyanate (product name: Coronate L, manufactured by Tosoh Corporation) was added as a hardener to the paint for forming the undercoat layer. A magnetic tape was manufactured in the same manner as in Example 1. A magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 1, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 37. As shown in FIG. 37, the width change on the outer side of the winding at positions 0 to 20 was a positive value, and the width change on the inner side of the winding at positions 60 to 84 was also a positive value.
[比較例3]
 磁性層形成用塗料と下地層形成用塗料に配合するポリウレタン系樹脂として、Tgが70℃のものを使用し、下地層形成用塗料に硬化剤としてポリイソシアネートを添加しない以外は、実施例2と同じ方法で磁気テープを得た。実施例2と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図38に示す。図38に示すように、位置0~20の巻外側の幅変化量は負の値であり、位置60~84の巻内側の幅変化量も負の値であった。
[Comparative Example 3]
A magnetic tape was obtained in the same manner as in Example 2, except that a polyurethane resin with a Tg of 70° C. was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, and polyisocyanate was not added as a curing agent to the paint for forming the undercoat layer. A magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in FIG. 38. As shown in FIG. 38, the width change on the outer side of the winding at positions 0 to 20 was a negative value, and the width change on the inner side of the winding at positions 60 to 84 was also a negative value.
[比較例4]
 ベース層としてアラミドフィルム(以下「ARAMIDフィルム」という。)を用い、磁性層形成用塗料と下地層形成用塗料に配合するポリウレタン系樹脂として、Tgが70℃のものを使用し、下地層形成用塗料に硬化剤としてポリイソシアネートを添加しない以外は、実施例2と同じ方法で磁気テープを得た。実施例2と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。磁気テープ長手方向における幅変化量の結果を図39に示す。
[Comparative Example 4]
A magnetic tape was obtained in the same manner as in Example 2, except that an aramid film (hereinafter referred to as "ARAMID film") was used as the base layer, a polyurethane resin with a Tg of 70°C was used as the resin blended in the paint for forming the magnetic layer and the paint for forming the undercoat layer, and no polyisocyanate was added as a hardener to the paint for forming the undercoat layer. A magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape. The results of the width change in the longitudinal direction of the magnetic tape are shown in Figure 39.
[比較例5]
 ベース層の平均厚みを4.0μm、磁性層と下地層の平均厚みを1.2μm、バック層の平均厚みを0.4μmとし、平均全厚みを5.6μmとし、磁性層形成用塗料と下地層形成用塗料に配合するポリウレタン系樹脂として、Tgが70℃のものを使用し、下地層形成用塗料に硬化剤としてポリイソシアネートを添加しない以外は、実施例2と同じ方法で磁気テープを得た。実施例2と同じように、当該磁気テープを用いて磁気記録カートリッジを製造し、そして、当該磁気テープにサーボパターンを記録した。
[Comparative Example 5]
A magnetic tape was obtained in the same manner as in Example 2, except that the average thickness of the base layer was 4.0 μm, the average thickness of the magnetic layer and the undercoat layer was 1.2 μm, the average thickness of the back layer was 0.4 μm, the average total thickness was 5.6 μm, a polyurethane resin with a Tg of 70° C. was used for the coating material for forming the magnetic layer and the coating material for forming the undercoat layer, and no polyisocyanate was added as a curing agent to the coating material for forming the undercoat layer. A magnetic recording cartridge was manufactured using the magnetic tape in the same manner as in Example 2, and a servo pattern was recorded on the magnetic tape.
 表1及び表2は、実施例1~3及び比較例1~5の磁気テープの構成及び評価結果を示す。また、図33~41は、実施例1~3及び比較例1~4の磁気テープのそれぞれの長手方向における幅変化量を示す図である。 Tables 1 and 2 show the configurations and evaluation results of the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 5. Also, Figures 33 to 41 show the amount of width change in the longitudinal direction of each of the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 4.
   
   
 表1に示される結果より、以下のことが分かる。 The results shown in Table 1 reveal the following:
 実施例1~3の磁気テープはいずれも、65℃、40RH%環境下で2週間保存後、巻外、巻内を逆転させるようにまき直し、さらに前記環境下で2週間保存後、磁気記録再生装置で全面再生を行ったところ、走行特性の評価がAであり、Failが発生せず、良好な走行特性を示していた。よって、本技術に従う磁気記録カートリッジは、60℃以上の高温環境下での保存、使用に適していることがわかる。 All of the magnetic tapes of Examples 1 to 3 were stored for two weeks in an environment of 65°C and 40% RH, then rewound so that the outside and inside of the winding were reversed, and after another two weeks of storage in the same environment, the entire tape was played back using a magnetic recording and playback device. The running characteristics were rated A, with no Fails occurring, and good running characteristics were observed. This shows that the magnetic recording cartridge according to this technology is suitable for storage and use in high-temperature environments of 60°C or higher.
 実施例2b及び比較例3についての長手方向におけるテープ幅の変化量の結果より、磁気テープの巻外側の幅変化量Δoutの符号が磁気テープの巻内側の幅変化量Δinの符号と異なることによって、当該磁気記録テープは、前記まき直し長期間保存による走行特性を向上させることができることが分かる。 The results of the change in tape width in the longitudinal direction for Example 2b and Comparative Example 3 show that the sign of the width change Δout on the outside of the magnetic tape roll is different from the sign of the width change Δin on the inside of the magnetic tape roll, and therefore the magnetic recording tape can improve its running characteristics when rewound and stored for a long period of time.
 実施例2bと比較例3との比較から、65℃、360時間保存後の(磁気テープの巻内側の幅変化量Δin)-(磁気テープの巻外側の幅変化量Δout)が、800ppm以下であると前記まき直し長期間保存による走行特性を向上させることができることが分かる。 Comparing Example 2b with Comparative Example 3, it can be seen that if (width change on the inside of the magnetic tape roll Δin) - (width change on the outside of the magnetic tape roll Δout) after storage for 360 hours at 65°C is 800 ppm or less, the running characteristics after rewinding and long-term storage can be improved.
 実施例1と比較例2との比較から、磁気テープの長手方向の全長を4等分して4つの部分に分割した場合の磁気テープの全長の中心線を挟む2つの部分であるC領域において、65℃で360時間保存後における前記磁気テープの幅変化量Δが0ppmであることにより、前記まき直し長期間保存による走行特性を向上させることができることが分かる。 Comparing Example 1 and Comparative Example 2, it can be seen that in region C, which is the two parts sandwiching the center line of the entire length of the magnetic tape when the entire length of the magnetic tape is divided into four equal parts, the width change Δ of the magnetic tape after storage at 65°C for 360 hours is 0 ppm, which means that the running characteristics can be improved by rewinding and storing for a long period of time.
 実施例2bと比較例4との比較から、ベース層の65℃における損失弾性率が0.40GPa以下であることにより、前記まき直し長期間保存による走行特性を向上させることができることが分かる。 Comparing Example 2b with Comparative Example 4, it can be seen that by having a base layer with a loss modulus of 0.40 GPa or less at 65°C, the running characteristics can be improved after rewinding and long-term storage.
 実施例2aと比較例1bとの比較から、脂肪酸の抽出率が45%以上であることにより、磁気ヘッドに対する付着物が角なく、またヘッドダメージが少ないものであることが分かる。 Comparing Example 2a with Comparative Example 1b, it can be seen that with a fatty acid extraction rate of 45% or more, adhesion to the magnetic head is smooth and head damage is minimal.
 以上、本技術の実施形態及び実施例について具体的に説明したが、本技術は、上述の実施形態及び実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。  Although the embodiments and examples of the present technology have been specifically described above, the present technology is not limited to the above-mentioned embodiments and examples, and various modifications based on the technical concept of the present technology are possible.
 例えば、上述の実施形態及び実施例において挙げた構成、方法、工程、形状、材料、及び数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料、及び数値等を用いてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。 For example, the configurations, methods, steps, shapes, materials, and values given in the above-mentioned embodiments and examples are merely examples, and different configurations, methods, steps, shapes, materials, and values may be used as necessary. In addition, the chemical formulas of compounds, etc. are representative, and are not limited to the valences, etc. given as long as they are general names of the same compounds.
 また、上述の実施形態及び実施例の構成、方法、工程、形状、材料、及び数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。 Furthermore, the configurations, methods, processes, shapes, materials, and numerical values of the above-mentioned embodiments and examples can be combined with each other without departing from the spirit of this technology.
 また、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 In addition, in this specification, a numerical range indicated using "~" indicates a range that includes the numerical values before and after "~" as the minimum and maximum values, respectively. In numerical ranges described in stages in this specification, the upper or lower limit of a numerical range of a certain stage may be replaced with the upper or lower limit of a numerical range of another stage. Unless otherwise specified, the materials exemplified in this specification may be used alone or in combination of two or more types.
 なお、本技術は、以下のような構成をとることもできる。
〔1〕
 カートリッジケースと、
リールと、
 前記リールに巻かれた状態で前記カートリッジケース内に収容された磁気記録媒体と、を有し、
 前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
 前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
 前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
 前記磁気記録媒体は、65℃における損失弾性率が0.40GPa以下であるベース層を備え、
 前記磁気記録媒体は、磁性層を備え、
 前記磁気記録媒体は、脂肪酸を含み、
 下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録カートリッジ。
 脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
〔2〕
 前記磁気記録媒体の前記幅変化量Δinが正の値であり、且つ、前記磁気記録媒体の前記幅変化量Δoutが負の値である、〔1〕に記載の磁気記録カートリッジ。
〔3〕
 前記磁気記録媒体の長手方向の全長を100%としたときに、前記磁気記録媒体の巻外側端部から25%~75%の位置において、65℃で360時間保存後における前記磁気記録媒体の幅変化量Δが0ppmである、〔1〕又は〔2〕に記載の磁気記録カートリッジ。
〔4〕
 前記磁気記録媒体は、(前記磁気記録媒体の前記幅変化量Δin)-(前記磁気記録媒体の前記幅変化量Δout)が、800ppm以下である、〔1〕~〔3〕のいずれか1つに記載の磁気記録カートリッジ。
〔5〕
 前記ベース層の65℃における貯蔵弾性率が8.0GPa以下である、〔1〕~〔4〕のいずれか1つに記載の磁気記録カートリッジ。
〔6〕
 前記ベース層がPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、又はPEEK(ポリエーテルエーテルケトン)から形成されている、〔1〕~〔5〕のいずれか1つに記載の磁気記録カートリッジ。
〔7〕
 前記磁気記録媒体の平均厚みtが5.4μm以下である、〔1〕~〔6〕のいずれか1つに記載の磁気記録カートリッジ。
〔8〕
 前記ベース層の平均厚みtが4.6μm以下である、〔1〕~〔7〕のいずれか1つに記載の磁気記録カートリッジ。
〔9〕
 前記磁性層が磁性粉を含む、〔1〕~〔8〕のいずれか1つに記載の磁気記録カートリッジ。
〔10〕
 前記磁性層は、研磨効果のある粒子を含有し、前記粒子により形成された突起の平均高さが8nm以下である、〔1〕~〔9〕のいずれか1つに記載の磁気記録カートリッジ。〔11〕
 脂肪酸の5分間抽出量(mg/m)が3.0mg/m以上である、〔1〕~〔10〕のいずれか1つに記載の磁気記録カートリッジ。
〔12〕
 脂肪酸の全量抽出量(mg/m)が5.0mg/m以上である、〔1〕~〔11〕のいずれか1つに記載の磁気記録カートリッジ。
〔13〕
 前記脂肪酸は、ステアリン酸である、〔1〕~〔12〕のいずれか1つに記載の磁気記録カートリッジ。
〔14〕
 前記磁気記録媒体は、さらに脂肪酸エステルを含み、下記式で定義する脂肪酸エステルの抽出率が60%以上である、〔1〕~〔13〕のいずれか1つに記載の磁気記録カートリッジ。
 脂肪酸エステルの抽出率(%)=[脂肪酸エステルの5分間抽出量(mg/m)/脂肪酸エステルの全量抽出量(mg/m)]×100
〔15〕
 脂肪酸エステルの5分間抽出量(mg/m)が10.0mg/m以上である、〔14〕に記載の磁気記録カートリッジ。
〔16〕
 脂肪酸エステルの全量抽出量(mg/m)が12.0mg/m以上である、〔14〕又は〔15〕に記載の磁気記録カートリッジ。
〔17〕
 前記脂肪酸エステルは、ステアリン酸ブチルである、〔14〕~〔16〕のいずれか1つに記載の磁気記録カートリッジ。
〔18〕
 前記磁性層の平均厚みが0.08μm以下である、〔1〕~〔17〕のいずれか1つに記載の磁気記録カートリッジ。
〔19〕
 前記磁気記録媒体は、さらに、平均厚みが1.0μm以下である非磁性層を有する、〔1〕~〔18〕のいずれか1つに記載の磁気記録カートリッジ。
〔20〕
 磁気記録カートリッジのリールに巻かれた状態で当該磁気記録カートリッジのカートリッジケース内に収容された磁気記録媒体であって、
 前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
 前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
 前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
 65℃における損失弾性率が0.40GPa以下であるベース層を備え、
 磁性層を備える磁気記録媒体であって、
 前記磁気記録媒体は、脂肪酸を含み、
 下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録媒体。
 脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
The present technology can also be configured as follows.
[1]
A cartridge case;
Reel and
a magnetic recording medium wound around the reel and housed within the cartridge case;
When the magnetic recording medium was stored wound on the reel at 65° C. for 360 hours, the amount of change in width of the magnetic recording medium was measured over the entire length.
The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
The magnetic recording medium has a base layer having a loss modulus of 0.40 GPa or less at 65° C.,
The magnetic recording medium includes a magnetic layer,
The magnetic recording medium contains a fatty acid,
A magnetic recording cartridge having an extraction rate of fatty acids defined by the following formula of 45% or more.
Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
[2]
2. The magnetic recording cartridge according to claim 1, wherein the amount of width change Δin of the magnetic recording medium is a positive value, and the amount of width change Δout of the magnetic recording medium is a negative value.
[3]
The magnetic recording cartridge according to [1] or [2], wherein, when the total length of the magnetic recording medium in the longitudinal direction is taken as 100%, the amount of width change Δ of the magnetic recording medium after storage for 360 hours at 65° C. is 0 ppm at a position 25% to 75% from the outer end of the magnetic recording medium.
[4]
The magnetic recording cartridge according to any one of [1] to [3], wherein the magnetic recording medium has a width change amount Δin of the magnetic recording medium minus (width change amount Δout of the magnetic recording medium) of 800 ppm or less.
[5]
The magnetic recording cartridge according to any one of [1] to [4], wherein the storage modulus of the base layer at 65° C. is 8.0 GPa or less.
[6]
6. The magnetic recording cartridge according to any one of claims 1 to 5, wherein the base layer is made of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PEEK (polyether ether ketone).
[7]
The magnetic recording cartridge according to any one of [1] to [6], wherein the average thickness tT of the magnetic recording medium is 5.4 μm or less.
[8]
The magnetic recording cartridge according to any one of [1] to [7], wherein the average thickness t B of the base layer is 4.6 μm or less.
[9]
The magnetic recording cartridge according to any one of claims 1 to 8, wherein the magnetic layer contains magnetic powder.
[10]
The magnetic recording cartridge according to any one of [1] to [9], wherein the magnetic layer contains particles having an abrasive effect, and the average height of protrusions formed by the particles is 8 nm or less.
The magnetic recording cartridge according to any one of [1] to [10], wherein the 5-minute extractable amount (mg/m 2 ) of fatty acids is 3.0 mg/m 2 or more.
[12]
The magnetic recording cartridge according to any one of [1] to [11], wherein the total amount of fatty acid extraction (mg/m 2 ) is 5.0 mg/m 2 or more.
[13]
13. The magnetic recording cartridge according to any one of claims 1 to 12, wherein the fatty acid is stearic acid.
[14]
The magnetic recording cartridge according to any one of [1] to [13], wherein the magnetic recording medium further contains a fatty acid ester, and the extraction rate of the fatty acid ester defined by the following formula is 60% or more.
Extraction rate of fatty acid ester (%)=[amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )]×100
[15]
The magnetic recording cartridge according to claim 14, wherein the 5-minute extractable amount (mg/m 2 ) of the fatty acid ester is 10.0 mg/m 2 or more.
[16]
The magnetic recording cartridge according to [14] or [15], wherein the total amount of fatty acid ester extract (mg/m 2 ) is 12.0 mg/m 2 or more.
[17]
17. The magnetic recording cartridge according to any one of claims 14 to 16, wherein the fatty acid ester is butyl stearate.
[18]
The magnetic recording cartridge according to any one of [1] to [17], wherein the average thickness of the magnetic layer is 0.08 μm or less.
[19]
The magnetic recording cartridge according to any one of [1] to [18], wherein the magnetic recording medium further comprises a non-magnetic layer having an average thickness of 1.0 μm or less.
[20]
A magnetic recording medium wound on a reel of a magnetic recording cartridge and accommodated in a cartridge case of the magnetic recording cartridge,
When the magnetic recording medium was stored wound on the reel at 65° C. for 360 hours, the amount of change in width of the magnetic recording medium was measured over the entire length.
The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
A base layer having a loss modulus of 0.40 GPa or less at 65°C,
A magnetic recording medium having a magnetic layer,
The magnetic recording medium contains a fatty acid,
A magnetic recording medium having an extraction rate of fatty acids defined by the following formula of 45% or more.
Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
MT 磁気テープ
10 磁気記録カートリッジ
13 リール
41 ベース層
42 下地層
43 磁性層
44 バック層 
MT magnetic tape 10 magnetic recording cartridge 13 reel 41 base layer 42 undercoat layer 43 magnetic layer 44 back layer

Claims (20)

  1.  カートリッジケースと、
     リールと、
     前記リールに巻かれた状態で前記カートリッジケース内に収容された磁気記録媒体と、を有し、
     前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
     前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
     前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
     前記磁気記録媒体は、65℃における損失弾性率が0.40GPa以下であるベース層を備え、
     前記磁気記録媒体は、磁性層を備え、
     前記磁気記録媒体は、脂肪酸を含み、
     下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録カートリッジ。
     脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
    A cartridge case;
    Reel and
    a magnetic recording medium wound around the reel and housed within the cartridge case;
    When the magnetic recording medium was stored at 65° C. for 360 hours in a wound state on the reel, the amount of change in width of the magnetic recording medium was measured over the entire length of the magnetic recording medium.
    The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
    The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
    The magnetic recording medium has a base layer having a loss modulus of 0.40 GPa or less at 65° C.,
    The magnetic recording medium includes a magnetic layer,
    The magnetic recording medium contains a fatty acid,
    A magnetic recording cartridge having an extraction rate of fatty acids defined by the following formula of 45% or more.
    Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100
  2.  前記磁気記録媒体の前記幅変化量Δinが正の値であり、且つ、前記磁気記録媒体の前記幅変化量Δoutが負の値である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the width change amount Δin of the magnetic recording medium is a positive value, and the width change amount Δout of the magnetic recording medium is a negative value.
  3.  前記磁気記録媒体の長手方向の全長を100%としたときに、前記磁気記録媒体の巻外側端部から25%~75%の位置において、65℃で360時間保存後における前記磁気記録媒体の幅変化量Δが0ppmである、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge according to claim 1, in which the width change Δ of the magnetic recording medium after storage for 360 hours at 65°C is 0 ppm at a position 25% to 75% from the outer end of the magnetic recording medium when the total length of the magnetic recording medium in the longitudinal direction is 100%.
  4.  前記磁気記録媒体は、(前記磁気記録媒体の前記幅変化量Δin)-(前記磁気記録媒体の前記幅変化量Δout)が、800ppm以下である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge according to claim 1, wherein the magnetic recording medium has a width change amount Δin of the magnetic recording medium minus a width change amount Δout of the magnetic recording medium of 800 ppm or less.
  5.  前記ベース層の65℃における貯蔵弾性率が8.0GPa以下である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the storage modulus of the base layer at 65°C is 8.0 GPa or less.
  6.  前記ベース層がPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、又はPEEK(ポリエーテルエーテルケトン)から形成されている、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the base layer is formed from PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or PEEK (polyether ether ketone).
  7.  前記磁気記録媒体の平均厚みtが5.4μm以下である、請求項1に記載の磁気記録カートリッジ。 2. The magnetic recording cartridge of claim 1, wherein the average thickness tT of said magnetic recording medium is 5.4 [mu]m or less.
  8.  前記ベース層の平均厚みtが4.6μm以下である、請求項1に記載の磁気記録カートリッジ。 2. The magnetic recording cartridge of claim 1, wherein the base layer has an average thickness, tB , of 4.6 [mu]m or less.
  9.  前記磁性層が磁性粉を含む、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the magnetic layer includes magnetic powder.
  10.  前記磁性層は、研磨効果のある粒子を含有し、前記粒子により形成された突起の平均高さが8nm以下である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the magnetic layer contains particles with an abrasive effect, and the average height of the protrusions formed by the particles is 8 nm or less.
  11.  脂肪酸の5分間抽出量(mg/m)が3.0mg/m以上である、請求項1に記載の磁気記録カートリッジ。 2. The magnetic recording cartridge of claim 1, wherein the 5-minute extractable amount (mg/ m2 ) of fatty acids is 3.0 mg/ m2 or more.
  12.  脂肪酸の全量抽出量(mg/m)が5.0mg/m以上である、請求項1に記載の磁気記録カートリッジ。 2. The magnetic recording cartridge of claim 1, wherein the total fatty acid extractables (mg/ m2 ) is 5.0 mg/ m2 or greater.
  13.  前記脂肪酸は、ステアリン酸である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the fatty acid is stearic acid.
  14.  前記磁気記録媒体は、さらに脂肪酸エステルを含み、下記式で定義する脂肪酸エステルの抽出率が60%以上である、請求項1に記載の磁気記録カートリッジ。
     脂肪酸エステルの抽出率(%)=[脂肪酸エステルの5分間抽出量(mg/m)/脂肪酸エステルの全量抽出量(mg/m)]×100
    2. The magnetic recording cartridge according to claim 1, wherein the magnetic recording medium further contains a fatty acid ester, and the extraction rate of the fatty acid ester defined by the following formula is 60% or more.
    Extraction rate of fatty acid ester (%)=[amount of fatty acid ester extracted in 5 minutes (mg/m 2 )/total amount of fatty acid ester extracted (mg/m 2 )]×100
  15.  脂肪酸エステルの5分間抽出量(mg/m)が10.0mg/m以上である、請求項14に記載の磁気記録カートリッジ。 15. The magnetic recording cartridge of claim 14, wherein the 5-minute extractable amount (mg/ m2 ) of fatty acid ester is 10.0 mg/ m2 or more.
  16.  脂肪酸エステルの全量抽出量(mg/m)が12.0mg/m以上である、請求項14に記載の磁気記録カートリッジ。 15. The magnetic recording cartridge of claim 14, wherein the total extractable amount (mg/ m2 ) of fatty acid esters is 12.0 mg/ m2 or greater.
  17.  前記脂肪酸エステルは、ステアリン酸ブチルである、請求項14に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 14, wherein the fatty acid ester is butyl stearate.
  18.  前記磁性層の平均厚みが0.08μm以下である、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the average thickness of the magnetic layer is 0.08 μm or less.
  19.  前記磁気記録媒体は、さらに、平均厚みが1.0μm以下である非磁性層を有する、請求項1に記載の磁気記録カートリッジ。 The magnetic recording cartridge of claim 1, wherein the magnetic recording medium further has a non-magnetic layer having an average thickness of 1.0 μm or less.
  20.  磁気記録カートリッジのリールに巻かれた状態で当該磁気記録カートリッジのカートリッジケース内に収容された磁気記録媒体であって、
     前記磁気記録媒体が前記リールに巻かれた状態で、65℃で360時間保存後に全長にわたって前記磁気記録媒体の幅変化量を測定したときに、
     前記磁気記録媒体の巻外側の幅変化量Δoutの符号が前記磁気記録媒体の巻内側の幅変化量Δinの符号と異なり、且つ、
     前記幅変化量が、前記磁気記録媒体の全長を4等分して4つの領域に分割した場合の全長の中心線を挟む2つの領域のいずれかの位置において、0ppmであり、且つ、
     65℃における損失弾性率が0.40GPa以下であるベース層を備え、
     磁性層を備える磁気記録媒体であって、
     前記磁気記録媒体は、脂肪酸を含み、
     下記式で定義する脂肪酸の抽出率が45%以上である、磁気記録媒体。
     脂肪酸の抽出率(%)=[脂肪酸の5分間抽出量(mg/m)/脂肪酸の全量抽出量 (mg/m)]×100
     
     
     
     
      
    A magnetic recording medium wound on a reel of a magnetic recording cartridge and accommodated in a cartridge case of the magnetic recording cartridge,
    When the magnetic recording medium was stored at 65° C. for 360 hours in a wound state on the reel, the amount of change in width of the magnetic recording medium was measured over the entire length of the magnetic recording medium.
    The sign of the width change amount Δout on the outer side of the magnetic recording medium is different from the sign of the width change amount Δin on the inner side of the magnetic recording medium, and
    The amount of change in width is 0 ppm at any one of two regions on either side of a center line of the entire length of the magnetic recording medium when the entire length of the magnetic recording medium is divided into four equal regions, and
    A base layer having a loss modulus of 0.40 GPa or less at 65°C,
    A magnetic recording medium having a magnetic layer,
    The magnetic recording medium contains a fatty acid,
    A magnetic recording medium having an extraction rate of fatty acids defined by the following formula of 45% or more.
    Extraction rate of fatty acid (%)=[amount of fatty acid extracted in 5 minutes (mg/m 2 )/total amount of fatty acid extracted (mg/m 2 )]×100




PCT/JP2023/037503 2022-10-27 2023-10-17 Magnetic recording cartridge WO2024090286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-172387 2022-10-27
JP2022172387 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090286A1 true WO2024090286A1 (en) 2024-05-02

Family

ID=90830735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037503 WO2024090286A1 (en) 2022-10-27 2023-10-17 Magnetic recording cartridge

Country Status (1)

Country Link
WO (1) WO2024090286A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006148A (en) * 1999-06-17 2001-01-12 Sony Corp Magnetic recording medium and manufacture of the same
JP2007048427A (en) * 2005-07-11 2007-02-22 Fujifilm Holdings Corp Magnetic recording medium and method for manufacturing the same
JP2019179585A (en) * 2018-02-20 2019-10-17 富士フイルム株式会社 Magnetic tape cartridge
WO2022230308A1 (en) * 2021-04-30 2022-11-03 ソニーグループ株式会社 Magnetic recording cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006148A (en) * 1999-06-17 2001-01-12 Sony Corp Magnetic recording medium and manufacture of the same
JP2007048427A (en) * 2005-07-11 2007-02-22 Fujifilm Holdings Corp Magnetic recording medium and method for manufacturing the same
JP2019179585A (en) * 2018-02-20 2019-10-17 富士フイルム株式会社 Magnetic tape cartridge
WO2022230308A1 (en) * 2021-04-30 2022-11-03 ソニーグループ株式会社 Magnetic recording cartridge

Similar Documents

Publication Publication Date Title
JP6590102B1 (en) Magnetic recording cartridge
JP6590103B1 (en) Magnetic recording medium
US10923148B2 (en) Magnetic recording medium
JP6610822B1 (en) Magnetic recording medium
JP2020166916A (en) Magnetic recording medium
JP2020166914A (en) Magnetic recording medium
JP7052903B2 (en) Magnetic recording cartridge
JP2020184399A (en) Magnetic recording cartridge
JP6885495B2 (en) Magnetic recording medium
WO2024090286A1 (en) Magnetic recording cartridge
JP6680396B1 (en) Magnetic recording media
JP6733798B1 (en) Magnetic recording medium
JP6733794B1 (en) Magnetic recording medium
WO2024090255A1 (en) Magnetic recording cartridge
WO2024090258A1 (en) Magnetic recording cartridge
WO2024070719A1 (en) Magnetic recording medium and cartridge
WO2024070554A1 (en) Magnetic recording medium
WO2022211020A1 (en) Magnetic recording medium and cartridge
WO2023074694A1 (en) Magnetic recording medium
WO2024057947A1 (en) Magnetic recording medium
WO2022018904A1 (en) Magnetic recording medium
JP6677340B1 (en) Magnetic recording media
JP6883227B2 (en) Magnetic recording medium
JP6885496B2 (en) Magnetic recording medium
WO2023013144A1 (en) Magnetic recording medium and magnetic recording medium cartridge