WO2024090284A1 - Learning system, predicting system, and adjusting system - Google Patents

Learning system, predicting system, and adjusting system Download PDF

Info

Publication number
WO2024090284A1
WO2024090284A1 PCT/JP2023/037468 JP2023037468W WO2024090284A1 WO 2024090284 A1 WO2024090284 A1 WO 2024090284A1 JP 2023037468 W JP2023037468 W JP 2023037468W WO 2024090284 A1 WO2024090284 A1 WO 2024090284A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
gain
operating
conditions
learning
Prior art date
Application number
PCT/JP2023/037468
Other languages
French (fr)
Japanese (ja)
Inventor
貴晃 新川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024090284A1 publication Critical patent/WO2024090284A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies

Definitions

  • the present disclosure relates to learning systems, prediction systems, and adjustment systems.
  • Patent Document 1 discloses a positioning control device equipped with a learning unit that learns the relationship between a position command parameter and an evaluation value to obtain a learning result.
  • Patent Document 1 does not learn the relationship with the gain parameters, and there is a problem in that it cannot efficiently adjust the gain parameters set in the servo amplifier.
  • the present disclosure has been made to solve these problems, and aims to provide a learning system etc. that can efficiently adjust the gain parameters set in a servo amplifier.
  • a learning system includes an acquisition unit that acquires operating conditions generated based on initial operating condition values, gain conditions indicating gain parameter values for each of one or more types of gain parameters, and an operating result output from a servo amplifier in which the gain conditions are set and which operates a motor based on the operating conditions, and a learning model generation unit that learns the relationship between the operating conditions, the gain conditions, and the operating result acquired by the acquisition unit, and generates a learning model that predicts the operating result output from the servo amplifier in which the servo amplifier operates the motor based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input.
  • a prediction system includes a learning model acquisition unit that acquires the learning model generated by the above-mentioned learning system, and an output unit that inputs the operating conditions and the gain conditions into the learning model acquired by the learning model acquisition unit and outputs a prediction result output from the learning model.
  • An adjustment system includes the above-mentioned learning system and the above-mentioned prediction system.
  • This disclosure provides a learning system that can efficiently adjust the gain parameters set in a servo amplifier.
  • FIG. 1 is a block diagram showing a functional configuration of an adjustment system according to a first embodiment.
  • FIG. 2 is a block diagram showing the functional configuration of a learning system of the adjustment system of FIG.
  • FIG. 3 is a table showing an example of gain parameter values of the gain parameters obtained by the learning system of the adjustment system of FIG.
  • FIG. 4 is a graph showing a first example of operating conditions generated by the learning system of the regulation system of FIG.
  • FIG. 5 is a graph showing a second example of operating conditions generated by the learning system of the regulation system of FIG.
  • FIG. 6 is a graph illustrating a third example of operating conditions generated by the learning system of the regulation system of FIG.
  • FIG. 7 is a block diagram showing the functional configuration of a prediction system of the adjustment system of FIG. FIG.
  • FIG. 8 is a flow chart showing an example of the operation of the learning system of the adjustment system of FIG.
  • FIG. 9 is a flow chart showing an example of the operation of the prediction system of the adjustment system of FIG.
  • FIG. 10 is a block diagram showing a functional configuration of a learning system of the adjustment system according to the second embodiment.
  • FIG. 11 is a flow chart showing an example of the operation of the learning system of the adjustment system of FIG.
  • each figure is a schematic diagram and is not necessarily a precise illustration.
  • the same reference numerals are used for substantially the same configuration, and duplicate explanations are omitted or simplified.
  • FIG. 1 is a block diagram showing a functional configuration of an adjustment system 10 according to the first embodiment.
  • the adjustment system 10 is a system used to adjust gain parameters set in the servo amplifier 1.
  • the servo amplifier 1 is a control device that controls the motor 2.
  • the motor 2 is a servo motor.
  • the motor 2 drives the conveying device 3.
  • the conveying device 3 is a device that conveys luggage, etc., and includes a one-axis reciprocating table, and also includes a modular mounter for mounting electronic components, and a feed control device for the dispenser head, etc.
  • the adjustment system 10 may be realized by one device, or may be realized by multiple devices.
  • the learning data acquisition unit 27, the learning model generation unit 28, the input data acquisition unit 34, the learning model acquisition unit 35, and the prediction result output unit 36 described later may be realized by one device (such as a personal computer), and the other components may be realized by devices (such as a personal computer) different from the one device.
  • the learning data acquisition unit 27, the learning model generation unit 28, the input data acquisition unit 34, the learning model acquisition unit 35, and the prediction result output unit 36 may be placed on a cloud server that communicates via the Internet, or on a server that communicates via a LAN (Local Area Network), or may be placed anywhere.
  • at least a part of the adjustment system 10 may be built into the servo amplifier 1.
  • the adjustment system 10 includes a learning system 20 and a prediction system 30.
  • the learning system 20 is a system that performs learning. Details will be described later, but in this embodiment, the learning system 20 acquires the operation results output from the servo amplifier 1 when the servo amplifier 1 is operated based on the initial conditions, the operating conditions generated based on the initial values of the operating conditions, and the gain conditions, and learns the relationship between the initial conditions, the operating conditions, the gain conditions, and the operation results.
  • the prediction system 30 is a system that performs predictions. Details will be described later, but in this embodiment, the prediction system 30 uses the learning results of the learning system 20 to predict the operation results that will be output from the servo amplifier 1 when the servo amplifier 1 is operated based on the initial conditions, operating conditions, and gain conditions.
  • a business providing the adjustment system 10 a business providing a service using the adjustment system 10, or a user using the adjustment system 10 causes the learning system 20 to learn by operating the servo amplifier 1 using the learning system 20.
  • a user inputs gain conditions, etc. to the prediction system 30, and the prediction system 30 outputs a prediction result based on the input gain conditions, etc. If the prediction result output from the prediction system 30 is the desired result, the user can determine that the input gain conditions were appropriate. On the other hand, if the prediction result output from the prediction system 30 is not the desired result, the user can determine that the input gain conditions were not appropriate.
  • the user changes the gain conditions and inputs them to the prediction system 30, and again determines whether the prediction result output from the prediction system 30 is the desired result.
  • the user can appropriately adjust the gain conditions by repeatedly changing the gain conditions and inputting them to the prediction system 30 until the prediction result output from the prediction system 30 is the desired result.
  • the gain conditions can be adjusted without operating the servo amplifier 1 and the motor 2, etc., so the time required to adjust the gain conditions and the power consumption required to adjust the gain conditions can be reduced.
  • the transport device 3 can operate with high responsiveness to the servo amplifier 1.
  • the adjustment system 10 is described in detail below.
  • FIG. 2 is a block diagram showing the functional configuration of the learning system 20 of the adjustment system 10 in FIG. 1.
  • the learning system 20 has an initial condition acquisition unit 21, an operating condition initial value acquisition unit 22, a gain condition acquisition unit 23, an operating condition generation unit 24, an operating condition input unit 25, an operating result acquisition unit 26, a learning data acquisition unit 27, and a learning model generation unit 28.
  • the initial condition acquisition unit 21 acquires the initial conditions.
  • the initial conditions include an inertia ratio, which is the ratio between the moment of inertia of the motor 2 and the moment of inertia of the load of the conveying device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the conveying device 3.
  • the adjustment system 10 accepts input of the initial conditions by a user or the like, and the initial condition acquisition unit 21 acquires the initial conditions input by the user or the like.
  • the initial conditions are accepted by input of the initial conditions via a keyboard or a touch panel, but are not particularly limited thereto.
  • the operating condition initial value acquisition unit 22 acquires the operating condition initial value.
  • the operating condition initial value is the initial value of the operating condition of the motor 2.
  • the operating condition initial value includes a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2.
  • the adjustment system 10 accepts input of the operating condition initial value by a user or the like, and the operating condition initial value acquisition unit 22 acquires the operating condition initial value input by the user.
  • the input of the operating condition is accepted by a keyboard or a touch panel or the like, but is not particularly limited thereto.
  • the gain condition acquisition unit 23 acquires the gain condition.
  • the gain condition indicates each gain parameter value of one or more types of gain parameters.
  • the one or more types of gain parameters are multiple gain parameters, including a position gain, a speed gain, a speed integral gain, and a torque gain. That is, for example, the gain condition indicates a parameter value of a position gain, a parameter value of a speed gain, a parameter value of a speed integral gain, and a parameter value of a torque gain.
  • a table including multiple combination data (combination numbers 1 to N) is set, and the gain condition acquisition unit 23 acquires a gain condition from each of the multiple combination data.
  • the gain condition acquisition unit 23 automatically acquires combination numbers 1 to N one after another, and automatically acquires multiple combination data one after another.
  • Each of the multiple combination data indicates a combination of one or more gain parameter values of one or more types of gain parameters, and the combination of one or more gain parameter values is different from each other.
  • the selection and combination of the type of one or more types of gain parameters and the one or more gain parameter values are determined based on past knowledge.
  • multiple tables may be set.
  • the adjustment system 10 accepts input of a plurality of tables by a user, a business providing the adjustment system 10, or a business providing a service by the adjustment system 10, and the gain condition acquisition unit 23 acquires gain conditions from each of the plurality of tables input by the user.
  • the user may acquire and input gain conditions from a table, and the gain condition acquisition unit 23 may acquire the gain conditions input by the user.
  • the user may acquire and input a combination number from a table, and the gain condition acquisition unit 23 may acquire the gain conditions from the combination number input by the user.
  • the input of gain conditions is accepted by, but is not limited to, a keyboard or a touch panel.
  • FIG. 3 is a table showing an example of gain parameter values of the gain parameters acquired by the learning system 20 of the adjustment system 10 of FIG. 1. As shown in FIG. 3, for example, the table includes combination data of combination numbers 1 to N.
  • the gain condition acquisition unit 23 acquires gain conditions from each of the combination data of combination numbers 1 to N.
  • the operating condition generating unit 24 generates operating conditions.
  • the operating conditions are generated based on the operating condition initial values.
  • the operating condition generating unit 24 generates operating conditions based on the operating condition initial values acquired by the operating condition initial value acquiring unit 22.
  • the operating condition generating unit 24 generates operating conditions determined by the operating condition initial values.
  • the operating condition initial values include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2, and the operating condition generating unit 24 generates operating conditions determined by these.
  • the operating condition generating unit 24 calculates an acceleration from the maximum speed and acceleration time included in the operating condition initial values, calculates a deceleration from the maximum speed and deceleration time included in the operating condition initial values, and generates operating conditions including the acceleration and deceleration.
  • the operating condition generating unit 24 generates control operating conditions, which are operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and generates learning operating conditions, which are operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, the gain conditions, and the operating result.
  • the operating condition generating unit 24 generates operating conditions including acceleration and deceleration as operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, the gain conditions, and the operating result.
  • the operating condition generating unit 24 also generates operating conditions corresponding to the operating conditions including acceleration and deceleration (learning operating conditions) as operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2.
  • the operating condition generating unit 24 calculates the acceleration time from the maximum speed included in the operating condition initial value and the acceleration included in the learning operating condition, calculates the deceleration time from the maximum speed included in the operating condition initial value and the deceleration included in the learning operating condition, and generates operating conditions including the target time and maximum speed included in the operating condition initial value, the acceleration time, and the deceleration time.
  • the learning operating conditions may be the same as all of the control operating conditions, or may be the same as some of the control operating conditions.
  • the operating condition generating unit 24 generates a plurality of operating conditions by changing the operating conditions determined by the initial values of the operating conditions according to a predetermined rule. Specifically, the operating condition generating unit 24 generates operating conditions including an acceleration and deceleration obtained by changing at least one of the acceleration of the motor 2 and the deceleration of the motor 2, which are determined by the maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, according to a predetermined rule. The details of the generation of a plurality of operating conditions by the operating condition generating unit 24 will be described later.
  • the operating condition generating unit 24 generates operating conditions for operating the motor 2 (and the conveying device 3 in this embodiment) based on the target time, maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, and generates operating conditions for operating the motor 2 based on the acceleration and deceleration obtained by changing at least one of the acceleration of the motor 2 and the deceleration of the motor 2, which are calculated based on the maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, according to a predetermined rule, thereby generating a plurality of operating conditions.
  • the operating condition generating unit 24 generates multiple operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and the learning model generating unit 28 generates multiple operating conditions for learning the relationship between the operating conditions, gain conditions, and operating results.
  • FIG. 4 is a graph showing a first example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1.
  • FIG. 5 is a graph showing a second example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1.
  • FIG. 6 is a graph showing a third example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1.
  • the operating conditions here indicate the waveform of the speed of the motor 2, and the operating condition generating unit 24 generates the waveform of the speed of the motor 2.
  • the acceleration is determined by the angle calculated by atan(a/b)
  • the deceleration is determined by the angle calculated by atan(a/c).
  • the angle calculated by atan(a/b) is 75° 4' 6.9" and the angle calculated by atan(a/c) is 55° 0' 28.73".
  • the angle calculated by atan(a/b) is set to 75° and the angle calculated by atan(a/c) is set to 55°.
  • the angle calculated by atan(a/b) is set to 70°
  • the angle calculated by atan(a/c) is set to 50°.
  • the constant speed time for operating the motor 2 at maximum speed is determined by y-a-b.
  • the constant speed time is 2000 msec.
  • the operating condition generating unit 24 generates operating conditions for learning that include the target time, maximum speed, acceleration time, and acceleration and deceleration times that are determined by the deceleration time included in the operating condition initial values.
  • the operating condition generating unit 24 generates operating conditions for control that correspond to the operating conditions for learning.
  • the operating condition generating unit 24 also generates operating conditions including acceleration and deceleration obtained by changing at least one of the acceleration and deceleration determined by the maximum speed, acceleration time, and deceleration time included in the initial operating condition value according to a predetermined rule.
  • the predetermined condition is a condition that the acceleration and deceleration are changed based on an angle obtained by dividing an angle by 10 within a range of 45° to 89°.
  • the operating condition generating unit 24 divides the angle related to acceleration into 10 such as 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, and 89° so as to include the above-mentioned 75°, and changes the acceleration to nine accelerations obtained based on nine angles other than 75°.
  • the acceleration obtained based on an angle of 50° is an acceleration indicated by a straight line sloping upward to the right at an angle of 50° with respect to the time axis.
  • the operating condition generating unit 24 also divides the deceleration angle into 10, such as 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, and 89°, so as to include the above-mentioned 55°, and changes the deceleration to 9 decelerations obtained based on 9 angles other than 55°.
  • the deceleration obtained based on an angle of 50° is the deceleration indicated by the slope of a straight line sloping downward to the right at an angle of 50° with respect to the time axis.
  • the operating condition generating unit 24 generates 100 learning operating conditions based on 10 accelerations and 10 decelerations.
  • the operating condition generating unit 24 also generates 100 control operating conditions corresponding to the 100 learning operating conditions.
  • the operating condition generating unit 24 may divide the angle related to acceleration into 10 parts, such as 50°, 54°, 58°, 62°, 66°, 70°, 74°, 78°, 82°, and 86°, so as to include the above-mentioned 70°.
  • the acceleration obtained based on an angle of 50° is the acceleration indicated by the slope of a straight line sloping upward to the right at an angle of 50° with respect to the time axis.
  • the operating condition generating unit 24 may also divide the angle related to deceleration into 10 parts, such as 51°, 55°, 59°, 63°, 67°, 71°, 75°, 79°, 83°, and 87°, so as to include the above-mentioned 55°.
  • the deceleration obtained based on an angle of 51° is the deceleration indicated by the slope of a straight line sloping downward to the right at an angle of 51° with respect to the time axis.
  • the operating condition generating unit 24 generates operating conditions based on the acceleration obtained based on an angle of 50° and the deceleration obtained based on an angle of 45°.
  • the operating condition generating unit 24 generates operating conditions by reducing the maximum speed so that the distance the transport device 3 is moved falls within the limit.
  • the operating condition generating unit 24 generates operating conditions by setting the maximum speed to 5800 r/min.
  • the operating condition input unit 25 operates the servo amplifier 1.
  • the operating condition input unit 25 operates the servo amplifier 1 by inputting operating conditions and the like to the servo amplifier 1.
  • the operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the operating conditions generated by the operating condition generation unit 24.
  • the operating condition input unit 25 generates a control setting value by combining the initial condition, the gain condition, and the operating condition, and operates the servo amplifier 1 so that the motor 2 operates according to the control setting value.
  • the operating condition input unit 25 operates the servo amplifier 1 in this manner by generating a control setting value and outputting it to the servo amplifier 1.
  • the operating condition input unit 25 When there are multiple initial conditions, multiple gain conditions, and multiple operating conditions, the operating condition input unit 25 generates a control setting value by combining each of the multiple initial conditions, multiple gain conditions, and multiple operating conditions, and operates the servo amplifier 1. For example, when there are two types of initial conditions, four types of gain conditions, and 100 types of operating conditions, 800 control setting values are generated, and the control setting values are set one by one repeatedly 800 times to operate the servo amplifier 1. Note that, for example, the operating condition input unit 25 operates the servo amplifier 1 when no baggage is placed on the conveying device 3.
  • the operation result acquisition unit 26 acquires the operation result.
  • the operation result is the operation result output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions are set, operates the motor 2 based on the operation conditions.
  • the operation result is the operation result output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions and the initial conditions are set, operates the motor 2 based on the operation conditions.
  • the operation result is the operation result of the motor 2 or the conveying device 3 when the motor 2 and the conveying device 3 are operated.
  • the servo amplifier 1 acquires the operation result of the motor 2 from a device that detects the operation of the motor 2, such as an encoder (not shown) and a camera (not shown), and outputs the acquired operation result.
  • the operation result includes the settling time of the motor 2 and the vibration level of the motor 2.
  • the settling time indicates the difference between the target time and the actual time until the motor 2 is positioned at the target position.
  • the vibration level indicates the ratio between the command torque of the motor 2 and the actual torque.
  • the learning data acquisition unit 27 acquires learning data used for learning.
  • the learning data acquisition unit 27 is an example of an acquisition unit that acquires operating conditions generated based on the initial values of operating conditions, gain conditions indicating the gain parameter values of one or more types of gain parameters, and an operation result output from the servo amplifier 1 when the servo amplifier 1 to which the gain conditions are set operates the motor 2 based on the operating conditions.
  • the learning data acquisition unit 27 acquires initial conditions including an inertia ratio, which is the ratio between the inertia moment of the motor 2 and the load inertia moment of the conveying device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the conveying device 3, and acquires gain conditions and operation results output from the servo amplifier 1 to which the servo amplifier 1 to which the initial conditions are set operates the motor 2 based on the operating conditions.
  • the learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, acquires the gain conditions acquired by the gain condition acquisition unit 23, acquires the learning operating conditions generated by the operating condition generation unit 24, and acquires the operation results acquired by the operation result acquisition unit 26.
  • the learning model generation unit 28 generates a learning model.
  • the learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, and operation results acquired by the learning data acquisition unit 27, and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input.
  • the learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, initial conditions, and operation results acquired by the learning data acquisition unit 27, and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions, gain conditions, and initial conditions when the operating conditions, gain conditions, and initial conditions are input.
  • the learning model generation unit 28 generates a learning model that has learned the relationships between the acceleration and deceleration of the motor 2 included in the operating conditions, one or more gain parameter values included in the gain conditions, the inertia ratio and friction compensation value included in the initial conditions, and the settling time and vibration level included in the operation results.
  • the learning model generation unit 28 generates a learning model that has learned the relationships between the operating conditions, the gain conditions, the initial conditions, and the settling time, and also generates a learning model that has learned the relationships between the operating conditions, the gain conditions, the initial conditions, and the vibration level.
  • the learning model generation unit 28 generates a learning model that has learned the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the initial condition (e.g., inertia ratio and friction compensation value), the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the gain condition (one or more gain parameter values), and the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the operation condition (e.g., acceleration and deceleration of the motor 2).
  • the initial condition e.g., inertia ratio and friction compensation value
  • the tendency of change in the operation result e.g., settling time or vibration level
  • a change in the gain condition one or more gain parameter values
  • the tendency of change in the operation result e.g., settling time or vibration level
  • the learning model generation unit 28 generates a learning model by machine learning using a neural network. Also, for example, the learning model generation unit 28 generates a learning model by deep learning having multiple intermediate layers. In this case, the learning model generation unit 28 uses the operation results as teacher data. Also, for example, the learning model generation unit 28 generates a learning model by machine learning using regression analysis. The learning model generation unit 28 outputs the generated learning model.
  • the learning model generated by the learning model generation unit 28 learns the relationship between the initial conditions, operating conditions, gain conditions, and operation results, so when the initial conditions, operating conditions, and gain conditions are input, it can predict the operation results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input initial conditions, operating conditions, and gain conditions, and outputs the predicted result (predicted operation result).
  • the learning model generation unit 28 may train each type of operation result to generate a separate learning model, or train them all at once to generate a single learning model.
  • the learning model generation unit 28 may train the initial conditions all at once to generate a single learning model, or train them by type to generate a separate learning model.
  • the learning model generation unit 28 may train all of the initial conditions and other learning data, or train them separately.
  • the learning model generation unit 28 may train multiple pieces of learning data (initial conditions and learning operation conditions) simultaneously to generate a single learning model.
  • the learning model generation unit 28 may generate multiple learning models that have learned the relationships between the learning operation conditions, the gain conditions, one type of initial condition, and one type of operation result.
  • the learning model generation unit 28 may also generate a learning model that has learned the relationships between the learning operation conditions, the gain conditions, multiple types of initial conditions, and multiple types of operation results.
  • the learning model generation unit 28 may generate a learning model that has learned the relationships between the inertia ratio, the learning operation conditions, the gain conditions, and the settling time, and a learning model that has learned the relationships between the friction compensation, the learning operation conditions, the gain conditions, and the settling time.
  • the learning model generation unit 28 may also generate a learning model that has learned the relationships between the inertia ratio, the friction compensation, the learning operation conditions, the gain conditions, and the settling time.
  • the prediction system 30 has an initial condition receiving unit 31, an operating condition receiving unit 32, a gain condition receiving unit 33, an operating condition generating unit 37, an input data acquiring unit 34, a learning model acquiring unit 35, and a prediction result output unit 36.
  • the initial condition receiving unit 31 receives input of initial conditions.
  • the initial condition receiving unit 31 is realized by a keyboard or the like, and receives input of initial conditions by a user or the like.
  • the initial condition receiving unit 31 may also be realized by a touch panel or the like, and is not particularly limited.
  • the operating condition receiving unit 32 receives input of operating conditions.
  • the operating condition receiving unit 32 is realized by a keyboard or the like, and receives input of operating conditions by a user or the like.
  • the input operating conditions include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2.
  • the operating condition receiving unit 32 may be realized by a touch panel or the like, and is not particularly limited.
  • the gain condition receiving unit 33 receives the input of the gain conditions.
  • the gain condition receiving unit 33 is realized by a keyboard or the like, and receives the input of the gain conditions by the user or the like.
  • the user or the like may obtain and input the gain conditions from a table, as when learning with the learning system 20, or may obtain and input the combination numbers from the table to input the gain conditions.
  • the gain condition receiving unit 33 may also automatically obtain the combination data or combination numbers of the gain conditions from the table.
  • the order in which the gain condition receiving unit 33 obtains the data may be from the smallest number, may be random, or may have some regularity.
  • the gain condition receiving unit 33 may be realized by a touch panel or the like, and is not particularly limited.
  • the operating condition generating unit 37 generates operating conditions. For example, in the same manner as the operating condition generating unit 24, the operating condition generating unit 37 generates operating conditions determined by the target time, maximum speed, acceleration time, and deceleration time included in the operating conditions whose input has been accepted by the operating condition accepting unit 32. For example, the operating condition generating unit 37 generates operating conditions including data that matches the type of learning data included in the learning operating conditions as predictive operating conditions, which are operating conditions for prediction. For example, the predictive operating conditions generated by the operating condition generating unit 37 include the acceleration of motor 2 and the deceleration of motor 2.
  • the input data acquisition unit 34 acquires the input data that has been entered.
  • the input data acquisition unit 34 acquires the initial conditions accepted by the initial condition acceptance unit 31, the operating conditions generated by the operating condition generation unit 37, and the gain conditions accepted by the gain condition acceptance unit 33.
  • the input data for prediction includes the initial conditions, operating conditions, and gain conditions, and the purpose is that the initial conditions and operating conditions are data that are uniquely determined by the user, and the gain conditions are values that the user assumes to be optimal, and the user inputs values to confirm whether the input gain conditions are optimal or not. The user repeats inputting input data until it can be confirmed that the input gain conditions are appropriate.
  • the learning model acquisition unit 35 acquires a learning model.
  • the learning model acquisition unit 35 acquires a learning model generated by the learning model generation unit 28 of the learning system 20.
  • the prediction result output unit 36 outputs the prediction result.
  • the prediction result output unit 36 is an example of an output unit that inputs the operating conditions and gain conditions into the learning model acquired by the learning model acquisition unit 35, and outputs the prediction result output from the learning model.
  • the prediction result output unit 36 inputs the operating conditions, gain conditions, and initial conditions acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35, and outputs the prediction result output from the learning model.
  • FIG. 8 is a block diagram showing an example of the operation of the learning system 20 of the adjustment system 10 of FIG. 1.
  • the initial condition acquisition unit 21 acquires the initial conditions (step S1). For example, the initial condition acquisition unit 21 acquires the initial conditions as described above.
  • the operating condition initial value acquisition unit 22 acquires the operating condition initial value (step S2). For example, the operating condition initial value acquisition unit 22 acquires the operating condition initial value as described above.
  • the gain condition acquisition unit 23 acquires the gain condition (step S3).
  • the gain condition acquisition unit 23 acquires the gain condition as described above.
  • the operating condition generating unit 24 generates the learning operating conditions and the control operating conditions based on the operating condition initial values acquired by the operating condition initial value acquiring unit 22 (step S4). For example, the operating condition generating unit 24 generates the learning operating conditions and the control operating conditions as described above.
  • the operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the control operating conditions generated by the operating condition generation unit 24 (step S5).
  • the operating condition input unit 25 operates the servo amplifier 1 as described above.
  • the operation result acquisition unit 26 acquires the operation result output from the servo amplifier 1 operated by the operation condition input unit 25 (step S6). For example, the operation result acquisition unit 26 acquires the operation result output from the servo amplifier 1 as described above.
  • the learning data acquisition unit 27 acquires learning data (step S7).
  • the learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, the learning operation conditions generated by the operation condition generation unit 24, and the operation results acquired by the operation result acquisition unit 26 as learning data.
  • the operating condition input unit 25 determines whether all operations have been completed (step S8). For example, when L initial conditions are acquired by the initial condition acquisition unit 21, N gain conditions are acquired by the gain condition acquisition unit 23, and M control operating conditions are generated by the operating condition generation unit 24, the operating condition input unit 25 determines whether operations based on each of the L ⁇ N ⁇ M combinations have been completed. If operations based on each of the L ⁇ N ⁇ M combinations have been completed, the operating condition input unit 25 determines that all operations have been completed. If operations based on each of the L ⁇ N ⁇ M combinations have not been completed, the operating condition input unit 25 determines that all operations have not been completed.
  • the operating condition input unit 25 operates the servo amplifier 1 again (step S5). For example, if L initial conditions are acquired by the initial condition acquisition unit 21, N gain conditions are acquired by the gain condition acquisition unit 23, and M operating conditions are generated by the operating condition generation unit 24, the operating condition input unit 25 operates the servo amplifier 1 again based on a combination of initial conditions, gain conditions, and operating conditions that have not yet been activated among the L x N x M combinations.
  • the learning model generation unit 28 If the operation condition input unit 25 determines that all operations have been completed (Yes in step S8), the learning model generation unit 28 generates a learning model based on the learning data acquired by the learning data acquisition unit 27 (step S9). For example, the learning model generation unit 28 generates a learning model as described above.
  • the learning model generation unit 28 outputs the generated learning model (step S10).
  • FIG. 9 is a block diagram showing an example of the operation of the prediction system 30 of the adjustment system 10 of FIG. 1.
  • the initial condition receiving unit 31 receives input of the initial conditions (step S11). For example, the initial condition receiving unit 31 receives input of the initial conditions as described above.
  • the operating condition receiving unit 32 receives input of the operating conditions (step S12). For example, the operating condition receiving unit 32 receives input of the operating conditions as described above.
  • the gain condition receiving unit 33 receives the input of the gain condition (step S13). For example, the gain condition receiving unit 33 receives the input of the gain condition as described above.
  • the operating condition generating unit 37 generates the predictive operating conditions (step S14). For example, the operating condition generating unit 37 generates the operating conditions as described above.
  • the input data acquisition unit 34 acquires input data (step S15). For example, as described above, the input data acquisition unit 34 acquires, as input data, the initial conditions accepted by the initial condition acceptance unit 31, the prediction operating conditions generated by the operating condition generation unit 37, and the gain conditions accepted by the gain condition acceptance unit 33.
  • the learning model acquisition unit 35 acquires the learning model generated by the learning model generation unit 28 (step S16).
  • the prediction result output unit 36 inputs the input data acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35 (step S17).
  • the prediction result output unit 36 inputs the input data acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35, and then outputs the prediction result output from the learning model (step S18).
  • the learning system 20 includes an acquisition unit (learning data acquisition unit 27) that acquires operating conditions generated based on initial operating condition values, gain conditions indicating the respective gain parameter values of one or more types of gain parameters, and an operation result output from the servo amplifier 1 when the servo amplifier 1 to which the gain conditions are set operates the motor 2 based on the operating conditions, and a learning model generation unit 28 that learns the relationship between the operating conditions, gain conditions, and operation results acquired by the acquisition unit (learning data acquisition unit 27), and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input.
  • learning data acquisition unit 27 that acquires operating conditions generated based on initial operating condition values, gain conditions indicating the respective gain parameter values of one or more types of gain parameters, and an operation result output from the servo amplifier 1 when the servo amplifier 1 to which the gain conditions are set operates the motor 2 based on the operating conditions
  • the acquisition unit acquires initial conditions including an inertia ratio, which is the ratio between the moment of inertia of the motor 2 and the moment of load inertia of the transport device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the transport device 3, and acquires the operation results output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions and initial conditions are set, operates the motor 2 based on the operating conditions.
  • the servo amplifier 1 is operated including the initial conditions, but when learning is performed using gain conditions, etc. without using the initial conditions, the operation results used as learning data become more accurate data, so a better learning model can be generated and the accuracy of the predicted operation results is improved as a result.
  • the servo amplifier 1 is operated including the initial conditions and used as learning data, an even better learning model can be generated and the accuracy of the predicted operation results is further improved.
  • the learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, initial conditions, and operating results acquired by the acquisition unit (learning data acquisition unit 27), and generates a learning model that predicts the operating results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions, gain conditions, and initial conditions when the operating conditions, gain conditions, and initial conditions are input.
  • the learning system 20 also includes an operating condition generating unit 24 that generates multiple operating conditions by changing the operating conditions determined by the initial operating condition values according to a predetermined rule, and the operating condition generating unit 24 generates multiple operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and multiple operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, gain conditions, and the operation results.
  • an operating condition generating unit 24 that generates multiple operating conditions by changing the operating conditions determined by the initial operating condition values according to a predetermined rule, and the operating condition generating unit 24 generates multiple operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and multiple operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, gain conditions, and the operation results.
  • the servo amplifier 1 can be efficiently operated multiple times based on multiple operating conditions, etc., and a learning model can be efficiently generated, so that the gain parameters can be adjusted even more efficiently.
  • the initial operating condition values include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2.
  • the operating condition generating unit 24 calculates the acceleration from the maximum speed and acceleration time included in the initial operating condition values, and calculates the deceleration from the maximum speed and deceleration time included in the initial operating condition values.
  • the learning model generating unit 28 generates operating conditions including the acceleration and deceleration as operating conditions for learning the relationship between the operating conditions, the gain conditions, and the operating results.
  • the operating condition generating unit 24 generates operating conditions corresponding to operating conditions including acceleration and deceleration as operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2.
  • the one or more types of gain parameters are multiple types of gain parameters, each of which indicates a combination of one or more gain parameter values of one or more types of gain parameters, and a gain condition acquisition unit 23 is provided that acquires gain conditions from each of multiple combination data in which the combinations of one or more gain parameter values are different from one another, and an acquisition unit (learning data acquisition unit 27) acquires the gain conditions acquired by the gain condition acquisition unit 23.
  • the learning system 20 also includes an operation result acquisition unit 26 that acquires the operation results output from the servo amplifier 1 when the servo amplifier 1, to which the gain conditions are set, operates the motor 2 based on the operating conditions, and an acquisition unit (learning data acquisition unit 27) acquires the operation results acquired by the operation result acquisition unit 26.
  • the acquisition unit (learning data acquisition unit 27) can acquire the operation results output from the servo amplifier 1 via the operation result acquisition unit 26 without directly communicating with the servo amplifier 1. Therefore, a device including the acquisition unit (learning data acquisition unit 27) and the learning model generation unit 28 can be installed in a place where direct communication with the servo amplifier 1 is not possible, and the learning model can be efficiently generated, so that the gain parameters can be adjusted more efficiently.
  • the learning model generation unit 28 can be placed on a platform (such as a cloud computer) that is provided with abundant and flexible amounts of computing resources.
  • learning data can be acquired from multiple learning systems 20 in a unified manner to generate a learning model.
  • the learning model can be continuously generated regardless of a specific learning system 20.
  • the prediction system 30 also includes a learning model acquisition unit 35 that acquires the learning model generated by the learning system 20, and an output unit (prediction result output unit 36) that inputs the operating conditions and gain conditions into the learning model acquired by the learning model acquisition unit 35 and outputs the prediction result output from the learning model.
  • a learning model acquisition unit 35 acquires the learning model generated by the learning system 20
  • an output unit prediction result output unit 36
  • the prediction system 30 also includes a learning model acquisition unit 35 that acquires the learning model generated by the learning system 20, and an output unit (prediction result output unit 36) that inputs the operating conditions, gain conditions, and initial conditions into the learning model acquired by the learning model acquisition unit 35 and outputs the prediction result output from the learning model.
  • a learning model acquisition unit 35 acquires the learning model generated by the learning system 20
  • an output unit prediction result output unit 36
  • the adjustment system 10 also includes the learning system 20 and the prediction system 30.
  • FIG. 10 is a block diagram showing a functional configuration of the learning system 20 of the adjustment system 10 according to the second embodiment.
  • the learning system 20 according to the second embodiment mainly differs from the learning system 20 according to the first embodiment in that it operates multiple servo amplifiers 1.
  • Each of the multiple servo amplifiers 1 is a control device that controls a motor 2.
  • the motor 2 is a servo motor.
  • the motor 2 drives a conveying device 3.
  • the conveying device 3 is a device that conveys luggage, etc., and includes a one-axis reciprocating table. The following will mainly explain the differences from the learning system 20 according to the first embodiment.
  • the operating condition input unit 25 makes A servo amplifiers 1 (A is an integer equal to or greater than 2) operate the motor 2 by making at least one of the operating conditions and the gain conditions different from each other. Specifically, the operating condition input unit 25 makes at least one of the operating conditions and the gain conditions different from each other, sets the operating conditions and the gain conditions to the A servo amplifiers 1, controls the motor 2, and operates the conveying device 3. In other words, different control setting values (combinations of operating conditions and gain conditions) are set for each of the A servo amplifiers 1.
  • the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1, to operate the motor 2 next.
  • the operation condition input unit 25 sets the initial conditions to be the same for each of the A servo amplifiers 1 (A is an integer of 2 or more), and causes the A servo amplifiers 1 to operate the motor 2 next. For example, when the settling time output from each of the B servo amplifiers 1 deviates by a predetermined amount from the settling time output from the reference servo amplifier, the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1, to operate the motor 2 next.
  • the operating condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1 from the A servo amplifiers 1, to operate the motors 2 next.
  • the A servo amplifiers 1 operate A mutually different motors 2 to drive A mutually different conveying devices 3.
  • FIG. 11 is a block diagram showing an example of the operation of the learning system 20 of the adjustment system 10 of FIG. 10.
  • the operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the operating conditions generated by the operating condition generation unit 24 (step S5).
  • the operating condition input unit 25 operates the A servo amplifiers 1 by making at least one of the operating conditions and the gain conditions different from each other. Specifically, the operating condition input unit 25 sets different values (combinations of operating conditions and gain conditions) for each of the A servo amplifiers 1, and operates the A servo amplifiers 1.
  • the operation result acquisition unit 26 acquires the operation results output from the servo amplifiers 1 operated by the operation condition input unit 25 (step S6).
  • the operation result acquisition unit 26 acquires A operation results output from A servo amplifiers 1 operated by the operation condition input unit 25.
  • the learning data acquisition unit 27 acquires learning data (step S7).
  • the learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, the operating conditions generated by the operating condition generation unit 24, and the operating results acquired by the operating result acquisition unit 26 as learning data.
  • the operating condition input unit 25 judges whether all operations have been completed (step S8). For example, as described above, the operating condition input unit 25 judges whether all operations have been completed. Specifically, the operating condition input unit 25 judges that all operations have not been completed if there is a combination to be set (not yet set) among the N x M combinations of operating conditions and gain conditions, and judges that all operations have been completed if there is no combination to be set (not yet set).
  • the operating condition input unit 25 sequentially sets the N x M combinations of operating conditions and gain conditions to the multiple servo amplifiers 1 so that they are mutually different combinations, and when the operations of all servo amplifiers 1 have been completed and there is a combination to be set, it further sequentially sets the multiple servo amplifiers 1 so that they are mutually different combinations, and repeats this until all combinations have been set.
  • the operating condition input unit 25 determines whether or not there is a servo amplifier 1 among the A servo amplifiers 1 that has output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (step S21). For example, as described above, the operating condition input unit 25 determines whether or not there is a servo amplifier 1 among the A servo amplifiers 1 that has output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more.
  • the operating condition input unit 25 operates the A servo amplifiers 1 again (step S5).
  • the operating condition input unit 25 next operates (A-B) servo amplifiers 1 other than the B servo amplifiers 1 among the A servo amplifiers 1 that output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (step S22).
  • the end of the loop process can be determined not only by whether all operations have been completed, but also by whether all the generated control operating conditions have been set.
  • the operating condition input unit 25 operates the servo amplifiers 1 other than the one or more servo amplifiers 1 among the multiple servo amplifiers 1 next.
  • the learning system 20 includes an operating condition input unit 25 that causes A (A is an integer equal to or greater than 2) servo amplifiers 1 to operate the motors 2 by making at least one of the operating conditions and the gain conditions different from each other.
  • a servo amplifiers 1 can be operated, the operation results can be efficiently obtained, and the learning model can be efficiently generated, so that the learning speed can be improved, a general learning model including variations can be generated, and a valid learning model that avoids the influence of inappropriate devices can be generated.
  • a learning model generated by operating multiple sets can learn including variations without being biased to the characteristics of one set of motor 2 and device, rather than a learning model generated by operating one set of servo amplifier 1, motor 2, and transport device 3. This makes it possible to generate a more general learning model. Therefore, when operating a new servo amplifier 1, motor 2, and transport device 3, it is possible to adjust the gain conditions closer to the optimum.
  • a learning model generated by operating one set of servo amplifier 1, motor 2, and transport device 3 may perform inappropriate learning due to deterioration of motor 2 and transport device 3.
  • the learning system 20 when one of the A servo amplifiers 1 is set as a reference servo amplifier, if the operation result output from each of the B (B is an integer equal to or greater than 1) servo amplifiers 1 other than the reference servo amplifier among the A servo amplifiers 1 when the servo amplifier 1 operates the motor 2 deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor 2, the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1 from the A servo amplifiers 1, to operate the motor 2 next.
  • B servo amplifiers 1 associated with operation results that deviate by a certain amount from the operation results when the reference servo amplifier operates the motor 2 may be faulty, etc., and the motor 2 can be operated next with (A-B) servo amplifiers 1 excluding such B servo amplifiers 1, resulting in a more normal operation result.
  • This improves the learning speed, allows the generation of a general learning model that includes variation, and allows the generation of a valid learning model that avoids the influence of inappropriate devices.
  • operating the servo amplifier 1 means setting a control setting value in the servo amplifier 1, which generates an operation command from the control setting value to drive the motor 2 and control the conveying device 3 attached to the motor 2.
  • the operation result output from the servo amplifier 1 means that the inertia and load of the controlled conveyor device 3 affect the drive of the motor 2, and the servo amplifier 1 acquires and processes the result of the drive of the motor 2.
  • predicting the operation result output from the servo amplifier 1 means predicting the operation result that reflects the influence of the conveying device 3 without driving the motor 2 and without controlling the conveying device 3.
  • Technique 1 an acquisition unit that acquires operating conditions generated based on initial values of operating conditions, gain conditions indicating respective gain parameter values of one or more types of gain parameters, and an operation result output from a servo amplifier in which the gain conditions are set and which operates a motor based on the operating conditions; a learning model generating unit that learns a relationship between the operation condition and the gain condition acquired by the acquiring unit and the operation result, and generates a learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition and the gain condition when the operation condition and the gain condition are input. Learning system.
  • the acquisition unit is obtain initial conditions including an inertia ratio, which is a ratio between the moment of inertia of the motor and the moment of inertia of a load of a conveying device driven by the motor, and a friction compensation value for compensating for friction in the conveying device, and obtain the operation result output from the servo amplifier in a case where the servo amplifier, in which the gain condition and the initial condition are set, operates the motor based on the operation condition;
  • a learning system according to technique 1.
  • the learning model generation unit learning a relationship between the operation condition, the gain condition, the initial condition, and the operation result acquired by the acquisition unit, and generating the learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition, the gain condition, and the initial condition when the operation condition, the gain condition, and the initial condition are input;
  • a learning system according to technique 2.
  • FIG. 4 An operating condition generating unit that generates a plurality of operating conditions by changing the operating conditions determined by the operating condition initial values in accordance with a predetermined rule; the operating condition generating unit generates the plurality of operating conditions for generating an operating command for the servo amplifier to operate the motor, and the learning model generating unit generates the plurality of operating conditions for learning a relationship between the operating conditions, the gain condition, and the operation result;
  • a learning system according to any one of techniques 1 to 3.
  • the initial operating condition values include a target time for operating the motor, a maximum speed of the motor, an acceleration time of the motor, and a deceleration time of the motor; the operating condition generation unit calculates an acceleration from the maximum speed and the acceleration time included in the operating condition initial value, and calculates a deceleration from the maximum speed and the deceleration time included in the operating condition initial value, and generates the operating condition including the acceleration and the deceleration as the operating condition for the learning model generation unit to learn the relationship between the operating condition, the gain condition, and the operating result.
  • a learning system according to technique 4.
  • the operating condition generating unit generates, as the operating condition for generating an operating command for the servo amplifier to operate the motor, an operating condition corresponding to the operating condition including the acceleration and the deceleration; A learning system according to technique 5.
  • the one or more types of gain parameters are a plurality of types of gain parameters, a gain condition acquisition unit that acquires the gain condition from each of a plurality of combination data, each of which indicates a combination of one or more gain parameter values of the one or more types of gain parameters and in which the combinations of the one or more gain parameter values are different from one another;
  • the acquisition unit is acquiring the gain condition acquired by the gain condition acquisition unit;
  • a learning system according to any one of techniques 1 to 6.
  • the operating condition input unit includes: If the operation result output from each of B (B is an integer equal to or greater than 1) servo amplifiers other than the reference servo amplifier among the A servo amplifiers when the servo amplifier operates the motor deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor, next operate the motor with (A-B) servo amplifiers, which are the A servo amplifiers excluding the B servo amplifiers.
  • a learning system according to technique 9.
  • a learning model acquisition unit that acquires the learning model generated by the learning system described in Technology 1; an output unit that inputs the operation condition and the gain condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model; Prediction system.
  • a learning model acquisition unit that acquires the learning model generated by the learning system described in Technology 3; an output unit that inputs the operating condition, the gain condition, and the initial condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model; Prediction system.
  • the general or specific aspects of the present disclosure may be realized as a system, device, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM.
  • the present disclosure may be realized as any combination of a system, device, method, integrated circuit, computer program, and recording medium.
  • the present disclosure may be realized as a program for causing a computer device to execute the processing (method) performed by a learning system, a prediction system, or an adjustment system, or as a computer-readable non-transitory recording medium on which the program is recorded.
  • the learning system and the like disclosed herein can be used in systems used to adjust gain parameters set in servo amplifiers, etc.
  • REFERENCE SIGNS LIST 1 servo amplifier 2 motor 3 transport device 10 adjustment system 20 learning system 21 initial condition acquisition unit 22 operating condition initial value acquisition unit 23 gain condition acquisition unit 24, 37 operating condition generation unit 25 operating condition input unit 26 operating result acquisition unit 27 learning data acquisition unit 28 learning model generation unit 30 prediction system 31 initial condition reception unit 32 operating condition reception unit 33 gain condition reception unit 34 input data acquisition unit 35 learning model acquisition unit 36 prediction result output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A learning system (20) comprises: an acquiring unit (training data acquiring unit (27)) for acquiring an operating condition generated on the basis of an operating condition initial value, a gain condition indicating a gain parameter value of each of one or more types of gain parameter, and an operation result output from a servo amplifier (1) when the servo amplifier (1), in which the gain condition has been set, operates a motor (2) on the basis of the operating condition; and a learning model generating unit (28) which learns a relationship between the operating condition, the gain condition, and the operation result acquired by the acquiring unit (training data acquiring unit (27)), and which generates a learning model for predicting the operation result output from the servo amplifier (1) when the operating condition and the gain condition have been input and the servo amplifier (1) operates the motor (2) on the basis of the input operating condition and gain condition.

Description

学習システム、予測システム、および調整システムLearning, predictive, and adaptive systems
 本開示は、学習システム、予測システム、および調整システムに関する。 The present disclosure relates to learning systems, prediction systems, and adjustment systems.
 従来、サーボアンプに設定されるパラメータを調整するための学習システム等が知られている。たとえば、特許文献1には、位置指令パラメータと評価値との関係性を学習して学習結果を得る学習部を備える位置決め制御装置が開示されている。  Traditionally, there are known learning systems for adjusting parameters set in a servo amplifier. For example, Patent Document 1 discloses a positioning control device equipped with a learning unit that learns the relationship between a position command parameter and an evaluation value to obtain a learning result.
国際公開第2020/075316号International Publication No. 2020/075316
 しかしながら、特許文献1の位置決め制御装置では、ゲインパラメータとの関係性については学習しておらず、サーボアンプに設定されるゲインパラメータの調整を効率よく行わせることはできないという課題がある。 However, the positioning control device in Patent Document 1 does not learn the relationship with the gain parameters, and there is a problem in that it cannot efficiently adjust the gain parameters set in the servo amplifier.
 本開示は、このような課題を解決するためになされたものであり、サーボアンプに設定されるゲインパラメータの調整を効率よく行わせることができる学習システム等を提供することを目的とする。 The present disclosure has been made to solve these problems, and aims to provide a learning system etc. that can efficiently adjust the gain parameters set in a servo amplifier.
 本開示の一態様に係る学習システムは、動作条件初期値に基づいて生成される動作条件、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示すゲイン条件、および前記ゲイン条件が設定されたサーボアンプが前記動作条件に基づいてモータを動作させた場合の前記サーボアンプから出力される動作結果を取得する取得部と、前記取得部によって取得された前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習し、前記動作条件と前記ゲイン条件とが入力された場合に入力された前記動作条件と前記ゲイン条件とに基づいて前記サーボアンプが前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を予測する学習モデルを生成する学習モデル生成部とを備える。 A learning system according to one aspect of the present disclosure includes an acquisition unit that acquires operating conditions generated based on initial operating condition values, gain conditions indicating gain parameter values for each of one or more types of gain parameters, and an operating result output from a servo amplifier in which the gain conditions are set and which operates a motor based on the operating conditions, and a learning model generation unit that learns the relationship between the operating conditions, the gain conditions, and the operating result acquired by the acquisition unit, and generates a learning model that predicts the operating result output from the servo amplifier in which the servo amplifier operates the motor based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input.
 本開示の一態様に係る予測システムは、上記の学習システムによって生成された前記学習モデルを取得する学習モデル取得部と、前記動作条件と前記ゲイン条件とを前記学習モデル取得部によって取得された前記学習モデルに入力し、前記学習モデルから出力された予測結果を出力する出力部とを備える。 A prediction system according to one aspect of the present disclosure includes a learning model acquisition unit that acquires the learning model generated by the above-mentioned learning system, and an output unit that inputs the operating conditions and the gain conditions into the learning model acquired by the learning model acquisition unit and outputs a prediction result output from the learning model.
 本開示の一態様に係る調整システムは、上記の学習システムと、上記の予測システムとを備える。 An adjustment system according to one aspect of the present disclosure includes the above-mentioned learning system and the above-mentioned prediction system.
 本開示によれば、サーボアンプに設定されるゲインパラメータの調整を効率よく行わせることができる学習システム等を提供できる。 This disclosure provides a learning system that can efficiently adjust the gain parameters set in a servo amplifier.
図1は、第1の実施の形態に係る調整システムの機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of an adjustment system according to a first embodiment. 図2は、図1の調整システムの学習システムの機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a learning system of the adjustment system of FIG. 図3は、図1の調整システムの学習システムによって取得されるゲインパラメータのゲインパラメータ値の一例を示す表である。FIG. 3 is a table showing an example of gain parameter values of the gain parameters obtained by the learning system of the adjustment system of FIG. 図4は、図1の調整システムの学習システムによって生成される動作条件の第1の例を示すグラフである。FIG. 4 is a graph showing a first example of operating conditions generated by the learning system of the regulation system of FIG. 図5は、図1の調整システムの学習システムによって生成される動作条件の第2の例を示すグラフである。FIG. 5 is a graph showing a second example of operating conditions generated by the learning system of the regulation system of FIG. 図6は、図1の調整システムの学習システムによって生成される動作条件の第3の例を示すグラフである。FIG. 6 is a graph illustrating a third example of operating conditions generated by the learning system of the regulation system of FIG. 図7は、図1の調整システムの予測システムの機能構成を示すブロック図である。FIG. 7 is a block diagram showing the functional configuration of a prediction system of the adjustment system of FIG. 図8は、図1の調整システムの学習システムの動作の一例を示すフローチャート図である。FIG. 8 is a flow chart showing an example of the operation of the learning system of the adjustment system of FIG. 図9は、図1の調整システムの予測システムの動作の一例を示すフローチャート図である。FIG. 9 is a flow chart showing an example of the operation of the prediction system of the adjustment system of FIG. 図10は、第2の実施の形態に係る調整システムの学習システムの機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of a learning system of the adjustment system according to the second embodiment. 図11は、図10の調整システムの学習システムの動作の一例を示フローチャート図である。FIG. 11 is a flow chart showing an example of the operation of the learning system of the adjustment system of FIG.
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、ならびに、ステップおよびステップの順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Below, embodiments of the present disclosure are described. Note that each of the embodiments described below shows a specific example of the present disclosure. Therefore, the numerical values, components, the arrangement and connection of the components, as well as the steps and the order of the steps shown in the following embodiments are merely examples and are not intended to limit the present disclosure. Therefore, among the components in the following embodiments, components that are not described in an independent claim that shows the highest concept of the present disclosure are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily a precise illustration. In each figure, the same reference numerals are used for substantially the same configuration, and duplicate explanations are omitted or simplified.
 (第1の実施の形態)
 図1は、第1の実施の形態に係る調整システム10の機能構成を示すブロック図である。
(First embodiment)
FIG. 1 is a block diagram showing a functional configuration of an adjustment system 10 according to the first embodiment.
 調整システム10は、サーボアンプ1に設定されるゲインパラメータを調整するために用いられるシステムである。サーボアンプ1は、モータ2を制御する制御装置である。たとえば、モータ2は、サーボモータである。本実施の形態では、モータ2は、搬送装置3を駆動させる。たとえば、搬送装置3は、荷物等を搬送する装置であり、1軸の往復テーブルを含み、また、電子部品実装のためのモジュラーマウンタ、およびディスペンサのヘッドの送り制御装置等を含む。調整システム10は、1つの装置によって実現されてもよいし、複数の装置によって実現されてもよい。たとえば、調整システム10のうち、後述する学習データ取得部27、学習モデル生成部28、入力データ取得部34、学習モデル取得部35、および予測結果出力部36が1つの装置(パーソナルコンピュータ等)によって実現され、その他の構成が当該1つの装置とは異なる装置(パーソナルコンピュータ等)によって実現されてもよい。また、たとえば、学習データ取得部27、学習モデル生成部28、入力データ取得部34、学習モデル取得部35、および予測結果出力部36は、インターネットを介して通信するクラウドサーバ上に配置されてもよいし、LAN(Local Area Network)を介して通信するサーバ上に配置されてもよいし、どこに配置されてもよい。また、たとえば、調整システム10の少なくとも一部は、サーボアンプ1に内蔵されていてもよい。図1に示すように、調整システム10は、学習システム20と、予測システム30とを備えている。 The adjustment system 10 is a system used to adjust gain parameters set in the servo amplifier 1. The servo amplifier 1 is a control device that controls the motor 2. For example, the motor 2 is a servo motor. In this embodiment, the motor 2 drives the conveying device 3. For example, the conveying device 3 is a device that conveys luggage, etc., and includes a one-axis reciprocating table, and also includes a modular mounter for mounting electronic components, and a feed control device for the dispenser head, etc. The adjustment system 10 may be realized by one device, or may be realized by multiple devices. For example, of the adjustment system 10, the learning data acquisition unit 27, the learning model generation unit 28, the input data acquisition unit 34, the learning model acquisition unit 35, and the prediction result output unit 36 described later may be realized by one device (such as a personal computer), and the other components may be realized by devices (such as a personal computer) different from the one device. Also, for example, the learning data acquisition unit 27, the learning model generation unit 28, the input data acquisition unit 34, the learning model acquisition unit 35, and the prediction result output unit 36 may be placed on a cloud server that communicates via the Internet, or on a server that communicates via a LAN (Local Area Network), or may be placed anywhere. Also, for example, at least a part of the adjustment system 10 may be built into the servo amplifier 1. As shown in FIG. 1, the adjustment system 10 includes a learning system 20 and a prediction system 30.
 学習システム20は、学習を行うシステムである。詳細は後述するが、本実施の形態では、学習システム20は、初期条件と、動作条件初期値に基づいて生成される動作条件と、ゲイン条件とに基づいて、サーボアンプ1を動作させた場合のサーボアンプ1から出力される動作結果を取得し、初期条件と動作条件とゲイン条件と動作結果との関係性を学習する。 The learning system 20 is a system that performs learning. Details will be described later, but in this embodiment, the learning system 20 acquires the operation results output from the servo amplifier 1 when the servo amplifier 1 is operated based on the initial conditions, the operating conditions generated based on the initial values of the operating conditions, and the gain conditions, and learns the relationship between the initial conditions, the operating conditions, the gain conditions, and the operation results.
 予測システム30は、予測を行うシステムである。詳細は後述するが、本実施の形態では、予測システム30は、学習システム20の学習結果を用いて、初期条件と動作条件とゲイン条件とに基づいてサーボアンプ1を動作させた場合のサーボアンプ1から出力される動作結果を予測する。 The prediction system 30 is a system that performs predictions. Details will be described later, but in this embodiment, the prediction system 30 uses the learning results of the learning system 20 to predict the operation results that will be output from the servo amplifier 1 when the servo amplifier 1 is operated based on the initial conditions, operating conditions, and gain conditions.
 たとえば、調整システム10を提供する事業者、調整システム10によるサービスを提供する事業者、または調整システム10を使用するユーザは、学習システム20を用いてサーボアンプ1を動作させることによって学習システム20に学習を行わせる。学習システム20に学習を行わせた後、ユーザ等が予測システム30にゲイン条件等を入力することによって、入力されたゲイン条件等に基づいて予測システム30から予測結果が出力される。ユーザ等は、予測システム30から出力された予測結果が所望の結果になっていれば、入力したゲイン条件が適切であったと判定できる。一方、ユーザ等は、予測システム30から出力された予測結果が所望の結果になっていなければ、入力したゲイン条件が適切でなかったと判定できる。ユーザ等は、予測システム30から出力された予測結果が所望の結果になっていなければ、ゲイン条件を変更して予測システム30に入力し、予測システム30から出力された予測結果が所望の結果になっているか否かを再び判定する。ユーザは、予測システム30から出力された予測結果が所望の結果になるまで、ゲイン条件を変更して予測システム30に入力することを繰り返し行うことによって、ゲイン条件を適切に調整することができる。このように、学習システム20に学習を行わせた後には、サーボアンプ1およびモータ2等を動作させることなくゲイン条件を調整できるので、ゲイン条件の調整にかかる時間、およびゲイン条件の調整のための電力消費等を抑制できる。ゲイン条件を適切に調整することによって、搬送装置3がサーボアンプ1に対して高い応答性で動作できるようになる。 For example, a business providing the adjustment system 10, a business providing a service using the adjustment system 10, or a user using the adjustment system 10 causes the learning system 20 to learn by operating the servo amplifier 1 using the learning system 20. After the learning system 20 has learned, a user inputs gain conditions, etc. to the prediction system 30, and the prediction system 30 outputs a prediction result based on the input gain conditions, etc. If the prediction result output from the prediction system 30 is the desired result, the user can determine that the input gain conditions were appropriate. On the other hand, if the prediction result output from the prediction system 30 is not the desired result, the user can determine that the input gain conditions were not appropriate. If the prediction result output from the prediction system 30 is not the desired result, the user changes the gain conditions and inputs them to the prediction system 30, and again determines whether the prediction result output from the prediction system 30 is the desired result. The user can appropriately adjust the gain conditions by repeatedly changing the gain conditions and inputting them to the prediction system 30 until the prediction result output from the prediction system 30 is the desired result. In this way, after the learning system 20 has performed learning, the gain conditions can be adjusted without operating the servo amplifier 1 and the motor 2, etc., so the time required to adjust the gain conditions and the power consumption required to adjust the gain conditions can be reduced. By appropriately adjusting the gain conditions, the transport device 3 can operate with high responsiveness to the servo amplifier 1.
 以下、調整システム10について詳細に説明する。 The adjustment system 10 is described in detail below.
 図2は、図1の調整システム10の学習システム20の機能構成を示すブロック図である。 FIG. 2 is a block diagram showing the functional configuration of the learning system 20 of the adjustment system 10 in FIG. 1.
 図2に示すように、学習システム20は、初期条件取得部21と、動作条件初期値取得部22と、ゲイン条件取得部23と、動作条件生成部24と、動作条件入力部25と、動作結果取得部26と、学習データ取得部27と、学習モデル生成部28とを有している。 As shown in FIG. 2, the learning system 20 has an initial condition acquisition unit 21, an operating condition initial value acquisition unit 22, a gain condition acquisition unit 23, an operating condition generation unit 24, an operating condition input unit 25, an operating result acquisition unit 26, a learning data acquisition unit 27, and a learning model generation unit 28.
 初期条件取得部21は、初期条件を取得する。たとえば、初期条件は、モータ2の慣性モーメントとモータ2によって駆動される搬送装置3の負荷慣性モーメントとの比であるイナーシャ比、および搬送装置3における摩擦を補償するための摩擦補償値を含む。たとえば、調整システム10は、ユーザ等による初期条件の入力を受け付け、初期条件取得部21は、ユーザ等によって入力された初期条件を取得する。たとえば、キーボードまたはタッチパネル等によって初期条件の入力を受け付けるが、特に限定されない。 The initial condition acquisition unit 21 acquires the initial conditions. For example, the initial conditions include an inertia ratio, which is the ratio between the moment of inertia of the motor 2 and the moment of inertia of the load of the conveying device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the conveying device 3. For example, the adjustment system 10 accepts input of the initial conditions by a user or the like, and the initial condition acquisition unit 21 acquires the initial conditions input by the user or the like. For example, the initial conditions are accepted by input of the initial conditions via a keyboard or a touch panel, but are not particularly limited thereto.
 動作条件初期値取得部22は、動作条件初期値を取得する。たとえば、動作条件初期値は、モータ2の動作条件の初期値である。たとえば、動作条件初期値は、モータ2を動作させる目標時間と、モータ2の最大速度と、モータ2の加速時間と、モータ2の減速時間とを含む。たとえば、調整システム10は、ユーザ等による動作条件初期値の入力を受け付け、動作条件初期値取得部22は、ユーザによって入力された動作条件初期値を取得する。たとえば、キーボードまたはタッチパネル等によって動作条件の入力を受け付けるが、特に限定されない。 The operating condition initial value acquisition unit 22 acquires the operating condition initial value. For example, the operating condition initial value is the initial value of the operating condition of the motor 2. For example, the operating condition initial value includes a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2. For example, the adjustment system 10 accepts input of the operating condition initial value by a user or the like, and the operating condition initial value acquisition unit 22 acquires the operating condition initial value input by the user. For example, the input of the operating condition is accepted by a keyboard or a touch panel or the like, but is not particularly limited thereto.
 ゲイン条件取得部23は、ゲイン条件を取得する。ゲイン条件は、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示す。たとえば、1種類以上のゲインパラメータは、複数のゲインパラメータであり、位置ゲインと、速度ゲインと、速度積分ゲインと、トルクゲインとを含む。つまり、たとえば、ゲイン条件は、位置ゲインのパラメータ値と、速度ゲインのパラメータ値と、速度積分ゲインのパラメータ値と、トルクゲインのパラメータ値とを示す。たとえば、複数の組み合わせデータ(組み合わせ番号1~N)を含むテーブルが設定され、ゲイン条件取得部23は、複数の組み合わせデータのそれぞれからゲイン条件を取得する。具体的には、ゲイン条件取得部23は、組み合わせ番号1~Nを自動で次々に取得し、複数の組み合わせデータを自動に次々に取得する。複数の組み合わせデータは、それぞれが1種類以上のゲインパラメータの1つ以上のゲインパラメータ値の組み合わせを示し、かつ1つ以上のゲインパラメータ値の組み合わせが相互に異なる。たとえば、1種類以上のゲインパラメータの種類および1つ以上のゲインパラメータ値の選択と組み合わせとは、過去の知見に基づいて決定される。たとえば、複数のテーブルが設定されてもよい。たとえば、調整システム10は、ユーザ、調整システム10を提供する事業者、または調整システム10によるサービスを提供する事業者による複数のテーブルの入力を受け付け、ゲイン条件取得部23は、ユーザによって入力された複数のテーブルのそれぞれからゲイン条件を取得する。なお、たとえば、ユーザ等は、テーブルからゲイン条件を取得して入力し、ゲイン条件取得部23は、ユーザ等によって入力されたゲイン条件を取得してもよい。また、たとえば、ユーザ等は、テーブルから組み合わせ番号を取得して入力し、ゲイン条件取得部23は、ユーザ等によって入力された組み合わせ番号からゲイン条件を取得してもよい。たとえば、キーボードまたはタッチパネル等によってゲイン条件の入力を受け付けるが、特に限定されない。 The gain condition acquisition unit 23 acquires the gain condition. The gain condition indicates each gain parameter value of one or more types of gain parameters. For example, the one or more types of gain parameters are multiple gain parameters, including a position gain, a speed gain, a speed integral gain, and a torque gain. That is, for example, the gain condition indicates a parameter value of a position gain, a parameter value of a speed gain, a parameter value of a speed integral gain, and a parameter value of a torque gain. For example, a table including multiple combination data (combination numbers 1 to N) is set, and the gain condition acquisition unit 23 acquires a gain condition from each of the multiple combination data. Specifically, the gain condition acquisition unit 23 automatically acquires combination numbers 1 to N one after another, and automatically acquires multiple combination data one after another. Each of the multiple combination data indicates a combination of one or more gain parameter values of one or more types of gain parameters, and the combination of one or more gain parameter values is different from each other. For example, the selection and combination of the type of one or more types of gain parameters and the one or more gain parameter values are determined based on past knowledge. For example, multiple tables may be set. For example, the adjustment system 10 accepts input of a plurality of tables by a user, a business providing the adjustment system 10, or a business providing a service by the adjustment system 10, and the gain condition acquisition unit 23 acquires gain conditions from each of the plurality of tables input by the user. Note that, for example, the user may acquire and input gain conditions from a table, and the gain condition acquisition unit 23 may acquire the gain conditions input by the user. Also, for example, the user may acquire and input a combination number from a table, and the gain condition acquisition unit 23 may acquire the gain conditions from the combination number input by the user. For example, the input of gain conditions is accepted by, but is not limited to, a keyboard or a touch panel.
 図3は、図1の調整システム10の学習システム20によって取得されるゲインパラメータのゲインパラメータ値の一例を示す表である。図3に示すように、たとえば、テーブルは、組み合わせ番号1~Nの組み合わせデータを含む。ゲイン条件取得部23は、組み合わせ番号1~Nの組み合わせデータのそれぞれからゲイン条件を取得する。 FIG. 3 is a table showing an example of gain parameter values of the gain parameters acquired by the learning system 20 of the adjustment system 10 of FIG. 1. As shown in FIG. 3, for example, the table includes combination data of combination numbers 1 to N. The gain condition acquisition unit 23 acquires gain conditions from each of the combination data of combination numbers 1 to N.
 図2に戻って、動作条件生成部24は、動作条件を生成する。動作条件は、動作条件初期値に基づいて生成される動作条件である。動作条件生成部24は、動作条件初期値取得部22によって取得された動作条件初期値に基づいて、動作条件を生成する。 Returning to FIG. 2, the operating condition generating unit 24 generates operating conditions. The operating conditions are generated based on the operating condition initial values. The operating condition generating unit 24 generates operating conditions based on the operating condition initial values acquired by the operating condition initial value acquiring unit 22.
 たとえば、動作条件生成部24は、動作条件初期値によって定まる動作条件を生成する。上述したように、たとえば、動作条件初期値は、モータ2を動作させる目標時間と、モータ2の最大速度と、モータ2の加速時間と、モータ2の減速時間とを含み、動作条件生成部24は、これらによって定まる動作条件を生成する。具体的には、動作条件生成部24は、動作条件初期値に含まれる最大速度と加速時間とから加速度を算出し、動作条件初期値に含まれる最大速度と減速時間とから減速度を算出し、当該加速度と当該減速度とを含む動作条件を生成する。 For example, the operating condition generating unit 24 generates operating conditions determined by the operating condition initial values. As described above, for example, the operating condition initial values include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2, and the operating condition generating unit 24 generates operating conditions determined by these. Specifically, the operating condition generating unit 24 calculates an acceleration from the maximum speed and acceleration time included in the operating condition initial values, calculates a deceleration from the maximum speed and deceleration time included in the operating condition initial values, and generates operating conditions including the acceleration and deceleration.
 たとえば、動作条件生成部24は、サーボアンプ1がモータ2を動作させるための動作指令を生成するための動作条件である制御用動作条件を生成し、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための動作条件である学習用動作条件を生成する。動作条件生成部24は、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための動作条件として、加速度と減速度とを含む動作条件を生成する。また、動作条件生成部24は、サーボアンプ1がモータ2を動作させるための動作指令を生成するための動作条件として、加速度と減速度とを含む動作条件(学習用動作条件)に相応する動作条件を生成する。具体的には、動作条件生成部24は、動作条件初期値に含まれる最大速度と学習用動作条件に含まれる加速度とから加速時間を算出し、動作条件初期値に含まれる最大速度と学習用動作条件に含まれる減速度とから減速時間を算出し、動作条件初期値に含まれる目標時間および最大速度と、当該加速時間および当該減速時間とを含む動作条件を生成する。なお、たとえば、学習用動作条件は、制御用動作条件の全てと同一でもよいし、制御用動作条件の一部と同一でもよい。 For example, the operating condition generating unit 24 generates control operating conditions, which are operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and generates learning operating conditions, which are operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, the gain conditions, and the operating result. The operating condition generating unit 24 generates operating conditions including acceleration and deceleration as operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, the gain conditions, and the operating result. The operating condition generating unit 24 also generates operating conditions corresponding to the operating conditions including acceleration and deceleration (learning operating conditions) as operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2. Specifically, the operating condition generating unit 24 calculates the acceleration time from the maximum speed included in the operating condition initial value and the acceleration included in the learning operating condition, calculates the deceleration time from the maximum speed included in the operating condition initial value and the deceleration included in the learning operating condition, and generates operating conditions including the target time and maximum speed included in the operating condition initial value, the acceleration time, and the deceleration time. For example, the learning operating conditions may be the same as all of the control operating conditions, or may be the same as some of the control operating conditions.
 たとえば、動作条件生成部24は、動作条件初期値によって定まる動作条件を所定の規則にしたがって変化させることによって複数の動作条件を生成する。具体的には、動作条件生成部24は、動作条件初期値に含まれる最大速度、加速時間、および減速時間によって定まるモータ2の加速度およびモータ2の減速度の少なくとも一方を所定の規則にしたがって変化させることによって得られる加速度および減速度を含む動作条件を生成する。動作条件生成部24による複数の動作条件の生成の詳細については後述する。このように、たとえば、動作条件生成部24は、動作条件初期値に含まれる目標時間、最大速度、加速時間、および減速時間に基づいてモータ2(本実施の形態では、搬送装置3も)を動作させるための動作条件を生成するとともに、動作条件初期値に含まれる最大速度、加速時間、および減速時間に基づいて算出されるモータ2の加速度およびモータ2の減速度の少なくとも一方を所定の規則にしたがって変化させることによって得られる加速度および減速度に基づいてモータ2を動作させるための動作条件を生成することによって、複数の動作条件を生成する。動作条件生成部24は、サーボアンプ1がモータ2を動作させるための動作指令を生成するための複数の動作条件と、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための複数の動作条件とを生成する。 For example, the operating condition generating unit 24 generates a plurality of operating conditions by changing the operating conditions determined by the initial values of the operating conditions according to a predetermined rule. Specifically, the operating condition generating unit 24 generates operating conditions including an acceleration and deceleration obtained by changing at least one of the acceleration of the motor 2 and the deceleration of the motor 2, which are determined by the maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, according to a predetermined rule. The details of the generation of a plurality of operating conditions by the operating condition generating unit 24 will be described later. In this way, for example, the operating condition generating unit 24 generates operating conditions for operating the motor 2 (and the conveying device 3 in this embodiment) based on the target time, maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, and generates operating conditions for operating the motor 2 based on the acceleration and deceleration obtained by changing at least one of the acceleration of the motor 2 and the deceleration of the motor 2, which are calculated based on the maximum speed, acceleration time, and deceleration time included in the initial values of the operating conditions, according to a predetermined rule, thereby generating a plurality of operating conditions. The operating condition generating unit 24 generates multiple operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and the learning model generating unit 28 generates multiple operating conditions for learning the relationship between the operating conditions, gain conditions, and operating results.
 図4は、図1の調整システム10の学習システム20によって生成される動作条件の第1の例を示すグラフである。図5は、図1の調整システム10の学習システム20によって生成される動作条件の第2の例を示すグラフである。図6は、図1の調整システム10の学習システム20によって生成される動作条件の第3の例を示すグラフである。 FIG. 4 is a graph showing a first example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1. FIG. 5 is a graph showing a second example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1. FIG. 6 is a graph showing a third example of operating conditions generated by the learning system 20 of the adjustment system 10 of FIG. 1.
 図4に示すように、ここでは、動作条件は、モータ2の速度の波形を示し、動作条件生成部24は、モータ2の速度の波形を生成する。 As shown in FIG. 4, the operating conditions here indicate the waveform of the speed of the motor 2, and the operating condition generating unit 24 generates the waveform of the speed of the motor 2.
 たとえば、動作条件初期値に含まれる最大速度をa=6000r/minとし、動作条件初期値に含まれる加速時間をb=1600msecとし、動作条件初期値に含まれる減速時間をc=4200msecとし、動作条件初期値に含まれる目標時間をy=7800msecとした場合を考える。この場合、atan(a/b)によって算出される角度によって加速度が定まり、atan(a/c)によって算出される角度によって減速度が定まる。ここでは、atan(a/b)によって算出される角度は75°4′6.9″であり、atan(a/c)によって算出される角度は55°0′28.73″である。たとえば、分秒を切り捨てる場合、atan(a/b)によって算出される角度を75°とし、atan(a/c)によって算出される角度を55°とする。また、たとえば、1の位を切り捨てる場合、atan(a/b)によって算出される角度を70°とし、atan(a/c)によって算出される角度を50°とする。また、y-a-bによって、モータ2を最大速度で動作させる等速時間が定まる。ここでは、等速時間は2000msecである。このように、動作条件生成部24は、動作条件初期値に含まれる目標時間、最大速度、加速時間、および減速時間によって定まる加速度および減速度を含む学習用動作条件を生成する。また、動作条件生成部24は、学習用動作条件に相応する制御用動作条件を生成する。 For example, consider the case where the maximum speed included in the initial operating conditions is a = 6000 r/min, the acceleration time included in the initial operating conditions is b = 1600 msec, the deceleration time included in the initial operating conditions is c = 4200 msec, and the target time included in the initial operating conditions is y = 7800 msec. In this case, the acceleration is determined by the angle calculated by atan(a/b), and the deceleration is determined by the angle calculated by atan(a/c). Here, the angle calculated by atan(a/b) is 75° 4' 6.9" and the angle calculated by atan(a/c) is 55° 0' 28.73". For example, when rounding down to the minutes and seconds, the angle calculated by atan(a/b) is set to 75° and the angle calculated by atan(a/c) is set to 55°. For example, when rounding down to the nearest 1, the angle calculated by atan(a/b) is set to 70°, and the angle calculated by atan(a/c) is set to 50°. Furthermore, the constant speed time for operating the motor 2 at maximum speed is determined by y-a-b. Here, the constant speed time is 2000 msec. In this manner, the operating condition generating unit 24 generates operating conditions for learning that include the target time, maximum speed, acceleration time, and acceleration and deceleration times that are determined by the deceleration time included in the operating condition initial values. Furthermore, the operating condition generating unit 24 generates operating conditions for control that correspond to the operating conditions for learning.
 また、たとえば、動作条件生成部24は、動作条件初期値に含まれる最大速度、加速時間、および減速時間によって定まる加速度および減速度の少なくとも一方を所定の規則にしたがって変化させることによって得られる加速度および減速度を含む動作条件も生成する。ここでは、所定の条件は、45°以上89°以下の範囲内で角度を10分割して得られる角度に基づいて加速度および減速度を変化させるという条件である。ここでは、たとえば、動作条件生成部24は、加速度に係る角度について上述した75°を含むように45°,50°,55°,60°,65°,70°,75°,80°,85°,89°のように10分割し、加速度を75°以外の9個の角度に基づいて得られる9個の加速度に変化させる。たとえば、50°の角度に基づいて得られる加速度は、時間軸に対して50°傾いた右上がりの直線の傾きで示される加速度である。また、動作条件生成部24は、減速度に係る角度について上述した55°を含むように45°,50°,55°,60°,65°,70°,75°,80°,85°,89°のように10分割し、減速度を55°以外の9個の角度に基づいて得られる9個の減速度に変化させる。たとえば、50°の角度に基づいて得られる減速度は、時間軸に対して50°傾いた右下がりの直線の傾きで示される減速度である。たとえば、動作条件生成部24は、10個の加速度と10個の減速度とに基づいて、100個の学習用動作条件を生成する。また、動作条件生成部24は、100個の学習用動作条件に相応する100個の制御用動作条件を生成する。 For example, the operating condition generating unit 24 also generates operating conditions including acceleration and deceleration obtained by changing at least one of the acceleration and deceleration determined by the maximum speed, acceleration time, and deceleration time included in the initial operating condition value according to a predetermined rule. Here, the predetermined condition is a condition that the acceleration and deceleration are changed based on an angle obtained by dividing an angle by 10 within a range of 45° to 89°. Here, for example, the operating condition generating unit 24 divides the angle related to acceleration into 10 such as 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, and 89° so as to include the above-mentioned 75°, and changes the acceleration to nine accelerations obtained based on nine angles other than 75°. For example, the acceleration obtained based on an angle of 50° is an acceleration indicated by a straight line sloping upward to the right at an angle of 50° with respect to the time axis. The operating condition generating unit 24 also divides the deceleration angle into 10, such as 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, and 89°, so as to include the above-mentioned 55°, and changes the deceleration to 9 decelerations obtained based on 9 angles other than 55°. For example, the deceleration obtained based on an angle of 50° is the deceleration indicated by the slope of a straight line sloping downward to the right at an angle of 50° with respect to the time axis. For example, the operating condition generating unit 24 generates 100 learning operating conditions based on 10 accelerations and 10 decelerations. The operating condition generating unit 24 also generates 100 control operating conditions corresponding to the 100 learning operating conditions.
 なお、たとえば、動作条件生成部24は、加速度に係る角度について上述した70°を含むように50°,54°,58°,62°,66°,70°,74°,78°,82°,86°のように10分割してもよい。たとえば、50°の角度に基づいて得られる加速度は、時間軸に対して50°傾いた右上がりの直線の傾きで示される加速度である。また、動作条件生成部24は、減速度に係る角度について上述した55°を含むように51°,55°,59°,63°,67°,71°,75°,79°,83°87°のように10分割してもよい。たとえば、51°の角度に基づいて得られる減速度は、時間軸に対して51°傾いた右下がりの直線の傾きで示される減速度である。 For example, the operating condition generating unit 24 may divide the angle related to acceleration into 10 parts, such as 50°, 54°, 58°, 62°, 66°, 70°, 74°, 78°, 82°, and 86°, so as to include the above-mentioned 70°. For example, the acceleration obtained based on an angle of 50° is the acceleration indicated by the slope of a straight line sloping upward to the right at an angle of 50° with respect to the time axis. The operating condition generating unit 24 may also divide the angle related to deceleration into 10 parts, such as 51°, 55°, 59°, 63°, 67°, 71°, 75°, 79°, 83°, and 87°, so as to include the above-mentioned 55°. For example, the deceleration obtained based on an angle of 51° is the deceleration indicated by the slope of a straight line sloping downward to the right at an angle of 51° with respect to the time axis.
 図5に示すように、たとえば、動作条件生成部24は、50°の角度に基づいて得られる加速度と45°の角度に基づいて得られる減速度とに基づいて、動作条件を生成する。 As shown in FIG. 5, for example, the operating condition generating unit 24 generates operating conditions based on the acceleration obtained based on an angle of 50° and the deceleration obtained based on an angle of 45°.
 図6に示すように、たとえば、搬送装置3を移動させる距離に制限がある場合等には、動作条件生成部24は、搬送装置3を移動させる距離が制限内に収まるように、最大速度を小さくして動作条件を生成する。ここでは、動作条件生成部24は、最大速度を5800r/minにして動作条件を生成する。 As shown in FIG. 6, for example, if there is a limit to the distance the transport device 3 is moved, the operating condition generating unit 24 generates operating conditions by reducing the maximum speed so that the distance the transport device 3 is moved falls within the limit. Here, the operating condition generating unit 24 generates operating conditions by setting the maximum speed to 5800 r/min.
 図2に戻って、動作条件入力部25は、サーボアンプ1を動作させる。動作条件入力部25は、動作条件等をサーボアンプ1に入力することによって、サーボアンプ1を動作させる。本実施の形態では、動作条件入力部25は、初期条件取得部21によって取得された初期条件と、ゲイン条件取得部23によって取得されたゲイン条件と、動作条件生成部24によって生成された動作条件とに基づいて、サーボアンプ1を動作させる。具体的には、動作条件入力部25は、初期条件とゲイン条件と動作条件とを組み合わせて制御設定値を生成し、制御設定値にしたがってモータ2が動作するようにサーボアンプ1を動作させる。たとえば、動作条件入力部25は、制御設定値を生成してサーボアンプ1に対して出力することによって、サーボアンプ1をこのように動作させる。複数の初期条件、複数のゲイン条件、複数の動作条件がある場合、動作条件入力部25は、複数の初期条件と複数のゲイン条件と複数の動作条件のそれぞれを組み合わせて制御設定値を生成してサーボアンプ1を動作させる。たとえば、初期条件が2種類、ゲイン条件が4種類、動作条件が100種類の場合に、800通りの制御設定値を生成し、制御設定値を1通りずつ、800回繰り返し設定してサーボアンプ1を動作させる。なお、たとえば、動作条件入力部25は、搬送装置3に荷物が載置されていない状態で、サーボアンプ1を動作させる。 Returning to FIG. 2, the operating condition input unit 25 operates the servo amplifier 1. The operating condition input unit 25 operates the servo amplifier 1 by inputting operating conditions and the like to the servo amplifier 1. In this embodiment, the operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the operating conditions generated by the operating condition generation unit 24. Specifically, the operating condition input unit 25 generates a control setting value by combining the initial condition, the gain condition, and the operating condition, and operates the servo amplifier 1 so that the motor 2 operates according to the control setting value. For example, the operating condition input unit 25 operates the servo amplifier 1 in this manner by generating a control setting value and outputting it to the servo amplifier 1. When there are multiple initial conditions, multiple gain conditions, and multiple operating conditions, the operating condition input unit 25 generates a control setting value by combining each of the multiple initial conditions, multiple gain conditions, and multiple operating conditions, and operates the servo amplifier 1. For example, when there are two types of initial conditions, four types of gain conditions, and 100 types of operating conditions, 800 control setting values are generated, and the control setting values are set one by one repeatedly 800 times to operate the servo amplifier 1. Note that, for example, the operating condition input unit 25 operates the servo amplifier 1 when no baggage is placed on the conveying device 3.
 動作結果取得部26は、動作結果を取得する。動作結果は、ゲイン条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果である。本実施の形態では、動作結果は、ゲイン条件と初期条件とが設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果である。たとえば、動作結果は、モータ2および搬送装置3を動作させた場合のモータ2または搬送装置3の動作結果である。たとえば、サーボアンプ1は、エンコーダ(図示せず)およびカメラ(図示せず)等のようなモータ2の動作を検出する装置からモータ2の動作結果を取得し、取得した動作結果を出力する。たとえば、動作結果は、モータ2の整定時間と、モータ2の振動レベルとを含む。たとえば、整定時間は、モータ2が目標位置に位置するまでの目標時間と実際の時間との差を示す。また、たとえば、振動レベルは、モータ2の指令トルクと実際のトルクとの比を示す。 The operation result acquisition unit 26 acquires the operation result. The operation result is the operation result output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions are set, operates the motor 2 based on the operation conditions. In this embodiment, the operation result is the operation result output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions and the initial conditions are set, operates the motor 2 based on the operation conditions. For example, the operation result is the operation result of the motor 2 or the conveying device 3 when the motor 2 and the conveying device 3 are operated. For example, the servo amplifier 1 acquires the operation result of the motor 2 from a device that detects the operation of the motor 2, such as an encoder (not shown) and a camera (not shown), and outputs the acquired operation result. For example, the operation result includes the settling time of the motor 2 and the vibration level of the motor 2. For example, the settling time indicates the difference between the target time and the actual time until the motor 2 is positioned at the target position. Also, for example, the vibration level indicates the ratio between the command torque of the motor 2 and the actual torque.
 学習データ取得部27は、学習に用いる学習データを取得する。学習データ取得部27は、動作条件初期値に基づいて生成される動作条件、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示すゲイン条件、およびゲイン条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果を取得する取得部の一例である。本実施の形態では、学習データ取得部27は、モータ2の慣性モーメントとモータ2によって駆動される搬送装置3の負荷慣性モーメントとの比であるイナーシャ比、および搬送装置3における摩擦を補償するための摩擦補償値を含む初期条件を取得するとともに、ゲイン条件および初期条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果を取得する。学習データ取得部27は、初期条件取得部21によって取得された初期条件を取得し、ゲイン条件取得部23によって取得されたゲイン条件を取得し、動作条件生成部24によって生成された学習用動作条件を取得し、動作結果取得部26によって取得された動作結果を取得する。 The learning data acquisition unit 27 acquires learning data used for learning. The learning data acquisition unit 27 is an example of an acquisition unit that acquires operating conditions generated based on the initial values of operating conditions, gain conditions indicating the gain parameter values of one or more types of gain parameters, and an operation result output from the servo amplifier 1 when the servo amplifier 1 to which the gain conditions are set operates the motor 2 based on the operating conditions. In this embodiment, the learning data acquisition unit 27 acquires initial conditions including an inertia ratio, which is the ratio between the inertia moment of the motor 2 and the load inertia moment of the conveying device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the conveying device 3, and acquires gain conditions and operation results output from the servo amplifier 1 to which the servo amplifier 1 to which the initial conditions are set operates the motor 2 based on the operating conditions. The learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, acquires the gain conditions acquired by the gain condition acquisition unit 23, acquires the learning operating conditions generated by the operating condition generation unit 24, and acquires the operation results acquired by the operation result acquisition unit 26.
 学習モデル生成部28は、学習モデルを生成する。学習モデル生成部28は、学習データ取得部27によって取得された動作条件とゲイン条件と動作結果との関係性を学習し、動作条件とゲイン条件とが入力された場合に入力された動作条件とゲイン条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成する。本実施の形態では、学習モデル生成部28は、学習データ取得部27によって取得された動作条件とゲイン条件と初期条件と動作結果との関係性を学習し、動作条件とゲイン条件と初期条件とが入力された場合に入力された動作条件とゲイン条件と初期条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成する。 The learning model generation unit 28 generates a learning model. The learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, and operation results acquired by the learning data acquisition unit 27, and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input. In this embodiment, the learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, initial conditions, and operation results acquired by the learning data acquisition unit 27, and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions, gain conditions, and initial conditions when the operating conditions, gain conditions, and initial conditions are input.
 たとえば、学習モデル生成部28は、動作条件に含まれるモータ2の加速度および減速度と、ゲイン条件に含まれる1つ以上のゲインパラメータ値と、初期条件に含まれるイナーシャ比および摩擦補償値と、動作結果に含まれる整定時間および振動レベルとの関係性を学習した学習モデルを生成する。たとえば、学習モデル生成部28は、動作条件とゲイン条件と初期条件と整定時間との関係性を学習した学習モデルを生成するとともに、動作条件とゲイン条件と初期条件と振動レベルとの関係性を学習した学習モデルを生成する。 For example, the learning model generation unit 28 generates a learning model that has learned the relationships between the acceleration and deceleration of the motor 2 included in the operating conditions, one or more gain parameter values included in the gain conditions, the inertia ratio and friction compensation value included in the initial conditions, and the settling time and vibration level included in the operation results. For example, the learning model generation unit 28 generates a learning model that has learned the relationships between the operating conditions, the gain conditions, the initial conditions, and the settling time, and also generates a learning model that has learned the relationships between the operating conditions, the gain conditions, the initial conditions, and the vibration level.
 たとえば、学習モデル生成部28は、初期条件(たとえば、イナーシャ比および摩擦補償値)の変化に伴う動作結果(たとえば、整定時間または振動レベル)の変化の傾向、ゲイン条件(1つ以上のゲインパラメータ値)の変化に伴う動作結果(たとえば、整定時間または振動レベル)の変化の傾向、および動作条件(たとえば、モータ2の加速度および減速度)の変化に伴う動作結果(たとえば、整定時間または振動レベル)の変化の傾向等を学習した学習モデルを生成する。 For example, the learning model generation unit 28 generates a learning model that has learned the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the initial condition (e.g., inertia ratio and friction compensation value), the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the gain condition (one or more gain parameter values), and the tendency of change in the operation result (e.g., settling time or vibration level) with a change in the operation condition (e.g., acceleration and deceleration of the motor 2).
 たとえば、学習モデル生成部28は、ニューラルネットワークを用いた機械学習によって学習モデルを生成する。また、たとえば、学習モデル生成部28は、複数の中間層を有する深層学習によって学習モデルを生成する。この場合、学習モデル生成部28は、教師データとして動作結果を用いる。また、たとえば、学習モデル生成部28は、回帰分析を用いた機械学習によって学習モデルを生成する。学習モデル生成部28は、生成した学習モデルを出力する。 For example, the learning model generation unit 28 generates a learning model by machine learning using a neural network. Also, for example, the learning model generation unit 28 generates a learning model by deep learning having multiple intermediate layers. In this case, the learning model generation unit 28 uses the operation results as teacher data. Also, for example, the learning model generation unit 28 generates a learning model by machine learning using regression analysis. The learning model generation unit 28 outputs the generated learning model.
 このように、学習モデル生成部28によって生成された学習モデルは、初期条件と動作条件とゲイン条件と動作結果との関係性を学習しているので、初期条件と動作条件とゲイン条件とが入力された場合に入力された初期条件と動作条件とゲイン条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測でき、予測結果(予測した動作結果)を出力する。 In this way, the learning model generated by the learning model generation unit 28 learns the relationship between the initial conditions, operating conditions, gain conditions, and operation results, so when the initial conditions, operating conditions, and gain conditions are input, it can predict the operation results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input initial conditions, operating conditions, and gain conditions, and outputs the predicted result (predicted operation result).
 なお、たとえば、学習モデル生成部28は、動作結果の種類毎に学習させて別々の学習モデルを生成してもよいし、一括して学習させて1つの学習モデルを生成してもよい。また、たとえば、学習モデル生成部28は、初期条件を一括して学習させて1つの学習モデルを生成してもよいし、種類毎に学習させて別々の学習モデルを生成してもよい。たとえば、学習モデル生成部28は、複数の初期条件が入力された場合、全ての初期条件と他の学習データとを学習させてもよいが、別々に学習させてもよい。また、たとえば、学習モデル生成部28は、複数(初期条件および学習用の動作条件のそれぞれ)の学習データを同時に学習させて1つの学習モデルを生成してもよい。 For example, the learning model generation unit 28 may train each type of operation result to generate a separate learning model, or train them all at once to generate a single learning model. For example, the learning model generation unit 28 may train the initial conditions all at once to generate a single learning model, or train them by type to generate a separate learning model. For example, when multiple initial conditions are input, the learning model generation unit 28 may train all of the initial conditions and other learning data, or train them separately. For example, the learning model generation unit 28 may train multiple pieces of learning data (initial conditions and learning operation conditions) simultaneously to generate a single learning model.
 つまり、学習モデル生成部28は、学習用動作条件と、ゲイン条件と、初期条件の1種類と、動作結果の1種類との関係性を学習した学習モデルを複数生成してもよい。また、学習モデル生成部28は、学習用動作条件と、ゲイン条件と、初期条件の複数種類と、動作結果の複数種類との関係性を学習した学習モデルを生成してもよい。具体的には、たとえば、学習モデル生成部28は、イナーシャ比と学習用動作条件とゲイン条件と整定時間との関係性を学習した学習モデルと、摩擦補償と学習用動作条件とゲイン条件と整定時間との関係性を学習した学習モデルとを生成してもよい。また、学習モデル生成部28は、イナーシャ比と摩擦補償と学習用動作条件とゲイン条件と整定時間との関係性を学習した学習モデルを生成してもよい。 In other words, the learning model generation unit 28 may generate multiple learning models that have learned the relationships between the learning operation conditions, the gain conditions, one type of initial condition, and one type of operation result. The learning model generation unit 28 may also generate a learning model that has learned the relationships between the learning operation conditions, the gain conditions, multiple types of initial conditions, and multiple types of operation results. Specifically, for example, the learning model generation unit 28 may generate a learning model that has learned the relationships between the inertia ratio, the learning operation conditions, the gain conditions, and the settling time, and a learning model that has learned the relationships between the friction compensation, the learning operation conditions, the gain conditions, and the settling time. The learning model generation unit 28 may also generate a learning model that has learned the relationships between the inertia ratio, the friction compensation, the learning operation conditions, the gain conditions, and the settling time.
 図7に示すように、予測システム30は、初期条件受付部31と、動作条件受付部32と、ゲイン条件受付部33と、動作条件生成部37と、入力データ取得部34と、学習モデル取得部35と、予測結果出力部36とを有している。 As shown in FIG. 7, the prediction system 30 has an initial condition receiving unit 31, an operating condition receiving unit 32, a gain condition receiving unit 33, an operating condition generating unit 37, an input data acquiring unit 34, a learning model acquiring unit 35, and a prediction result output unit 36.
 初期条件受付部31は、初期条件の入力を受け付ける。たとえば、初期条件受付部31は、キーボード等によって実現され、ユーザ等による初期条件の入力を受け付ける。なお、初期条件受付部31は、タッチパネル等によって実現されてもよいし、特に限定されない。 The initial condition receiving unit 31 receives input of initial conditions. For example, the initial condition receiving unit 31 is realized by a keyboard or the like, and receives input of initial conditions by a user or the like. Note that the initial condition receiving unit 31 may also be realized by a touch panel or the like, and is not particularly limited.
 動作条件受付部32は、動作条件の入力を受け付ける。たとえば、動作条件受付部32は、キーボード等によって実現され、ユーザ等による動作条件の入力を受け付ける。たとえば、入力される動作条件は、モータ2を動作させる目標時間と、モータ2の最大速度と、モータ2の加速時間と、モータ2の減速時間とを含む。なお、動作条件受付部32は、タッチパネル等によって実現されてもよいし、特に限定されない。 The operating condition receiving unit 32 receives input of operating conditions. For example, the operating condition receiving unit 32 is realized by a keyboard or the like, and receives input of operating conditions by a user or the like. For example, the input operating conditions include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2. Note that the operating condition receiving unit 32 may be realized by a touch panel or the like, and is not particularly limited.
 ゲイン条件受付部33は、ゲイン条件の入力を受け付ける。たとえば、ゲイン条件受付部33は、キーボード等によって実現され、ユーザ等によるゲイン条件の入力を受け付ける。たとえば、ユーザ等は、学習システム20による学習時と同様に、テーブルからゲイン条件を取得して入力してもよいし、テーブルから組み合わせ番号を取得して入力することによってゲイン条件を入力してもよい。また、ゲイン条件受付部33は、テーブルから、ゲイン条件の組み合わせデータまたは組み合わせ番号を自動的に取得してもよい。なお、ゲイン条件受付部33が取得する順番は、番号が小さいものからでもよいし、ランダムでもよいし、規則性があってもよい。なお、ゲイン条件受付部33は、タッチパネル等によって実現されてもよいし、特に限定されない。 The gain condition receiving unit 33 receives the input of the gain conditions. For example, the gain condition receiving unit 33 is realized by a keyboard or the like, and receives the input of the gain conditions by the user or the like. For example, the user or the like may obtain and input the gain conditions from a table, as when learning with the learning system 20, or may obtain and input the combination numbers from the table to input the gain conditions. The gain condition receiving unit 33 may also automatically obtain the combination data or combination numbers of the gain conditions from the table. The order in which the gain condition receiving unit 33 obtains the data may be from the smallest number, may be random, or may have some regularity. The gain condition receiving unit 33 may be realized by a touch panel or the like, and is not particularly limited.
 動作条件生成部37は、動作条件を生成する。たとえば、動作条件生成部37は、動作条件生成部24と同じようにして、動作条件受付部32によって入力が受け付けられた動作条件に含まれる目標時間、最大速度、加速時間、および減速時間によって定まる動作条件を生成する。たとえば、動作条件生成部37は、学習用の動作条件に含まれる学習データの種類と合致するデータを含む動作条件を、予測用の動作条件である予測用動作条件として生成する。たとえば、動作条件生成部37によって生成される予測用動作条件は、モータ2の加速度と、モータ2の減速度とを含む。 The operating condition generating unit 37 generates operating conditions. For example, in the same manner as the operating condition generating unit 24, the operating condition generating unit 37 generates operating conditions determined by the target time, maximum speed, acceleration time, and deceleration time included in the operating conditions whose input has been accepted by the operating condition accepting unit 32. For example, the operating condition generating unit 37 generates operating conditions including data that matches the type of learning data included in the learning operating conditions as predictive operating conditions, which are operating conditions for prediction. For example, the predictive operating conditions generated by the operating condition generating unit 37 include the acceleration of motor 2 and the deceleration of motor 2.
 入力データ取得部34は、入力された入力データを取得する。本実施の形態では、入力データ取得部34は、初期条件受付部31によって入力が受け付けられた初期条件、動作条件生成部37によって生成された動作条件、およびゲイン条件受付部33によって入力が受け付けられたゲイン条件を取得する。このように、予測のための入力データは、初期条件と、動作条件と、ゲイン条件とを含むが、その目的は、初期条件と動作条件とはユーザが一意に決定するデータであり、ゲイン条件はユーザが最適と想定する値を入力し、入力したゲイン条件が最適か否かを確認するためである。ユーザは、入力したゲイン条件が妥当と確認できるまで、入力データの入力を繰り返す。 The input data acquisition unit 34 acquires the input data that has been entered. In this embodiment, the input data acquisition unit 34 acquires the initial conditions accepted by the initial condition acceptance unit 31, the operating conditions generated by the operating condition generation unit 37, and the gain conditions accepted by the gain condition acceptance unit 33. In this way, the input data for prediction includes the initial conditions, operating conditions, and gain conditions, and the purpose is that the initial conditions and operating conditions are data that are uniquely determined by the user, and the gain conditions are values that the user assumes to be optimal, and the user inputs values to confirm whether the input gain conditions are optimal or not. The user repeats inputting input data until it can be confirmed that the input gain conditions are appropriate.
 学習モデル取得部35は、学習モデルを取得する。学習モデル取得部35は、学習システム20の学習モデル生成部28によって生成された学習モデルを取得する。 The learning model acquisition unit 35 acquires a learning model. The learning model acquisition unit 35 acquires a learning model generated by the learning model generation unit 28 of the learning system 20.
 予測結果出力部36は、予測結果を出力する。予測結果出力部36は、動作条件とゲイン条件とを学習モデル取得部35によって取得された学習モデルに入力し、学習モデルから出力された予測結果を出力する出力部の一例である。本実施の形態では、予測結果出力部36は、入力データ取得部34によって取得された動作条件とゲイン条件と初期条件とを学習モデル取得部35によって取得された学習モデルに入力し、学習モデルから出力された予測結果を出力する。 The prediction result output unit 36 outputs the prediction result. The prediction result output unit 36 is an example of an output unit that inputs the operating conditions and gain conditions into the learning model acquired by the learning model acquisition unit 35, and outputs the prediction result output from the learning model. In this embodiment, the prediction result output unit 36 inputs the operating conditions, gain conditions, and initial conditions acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35, and outputs the prediction result output from the learning model.
 図8は、図1の調整システム10の学習システム20の動作の一例を示すブロック図である。 FIG. 8 is a block diagram showing an example of the operation of the learning system 20 of the adjustment system 10 of FIG. 1.
 図8に示すように、初期条件取得部21は、初期条件を取得する(ステップS1)。たとえば、上述したようにして、初期条件取得部21は、初期条件を取得する。 As shown in FIG. 8, the initial condition acquisition unit 21 acquires the initial conditions (step S1). For example, the initial condition acquisition unit 21 acquires the initial conditions as described above.
 動作条件初期値取得部22は、動作条件初期値を取得する(ステップS2)。たとえば、上述したようにして、動作条件初期値取得部22は、動作条件初期値を取得する。 The operating condition initial value acquisition unit 22 acquires the operating condition initial value (step S2). For example, the operating condition initial value acquisition unit 22 acquires the operating condition initial value as described above.
 ゲイン条件取得部23は、ゲイン条件を取得する(ステップS3)。たとえば、上述したようにして、ゲイン条件取得部23は、ゲイン条件を取得する。 The gain condition acquisition unit 23 acquires the gain condition (step S3). For example, the gain condition acquisition unit 23 acquires the gain condition as described above.
 動作条件生成部24は、動作条件初期値取得部22によって取得された動作条件初期値に基づいて、学習用動作条件と制御用動作条件とを生成する(ステップS4)。たとえば、上述したようにして、動作条件生成部24は、学習用動作条件と制御用動作条件とを生成する。 The operating condition generating unit 24 generates the learning operating conditions and the control operating conditions based on the operating condition initial values acquired by the operating condition initial value acquiring unit 22 (step S4). For example, the operating condition generating unit 24 generates the learning operating conditions and the control operating conditions as described above.
 動作条件入力部25は、初期条件取得部21によって取得された初期条件とゲイン条件取得部23によって取得されたゲイン条件と動作条件生成部24によって生成された制御用動作条件とに基づいて、サーボアンプ1を動作させる(ステップS5)。たとえば、上述したようにして、動作条件入力部25は、サーボアンプ1を動作させる。 The operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the control operating conditions generated by the operating condition generation unit 24 (step S5). For example, the operating condition input unit 25 operates the servo amplifier 1 as described above.
 動作結果取得部26は、動作条件入力部25によって動作させられたサーボアンプ1から出力される動作結果を取得する(ステップS6)。たとえば、動作結果取得部26は、上述したようにしてサーボアンプ1から出力された動作結果を取得する。 The operation result acquisition unit 26 acquires the operation result output from the servo amplifier 1 operated by the operation condition input unit 25 (step S6). For example, the operation result acquisition unit 26 acquires the operation result output from the servo amplifier 1 as described above.
 学習データ取得部27は、学習データを取得する(ステップS7)。たとえば、上述したように、学習データ取得部27は、初期条件取得部21によって取得された初期条件と、ゲイン条件取得部23によって取得されたゲイン条件と、動作条件生成部24によって生成された学習用動作条件と、動作結果取得部26によって取得された動作結果とを、学習データとして取得する。 The learning data acquisition unit 27 acquires learning data (step S7). For example, as described above, the learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, the learning operation conditions generated by the operation condition generation unit 24, and the operation results acquired by the operation result acquisition unit 26 as learning data.
 動作条件入力部25は、全ての動作が終了したか否かを判定する(ステップS8)。たとえば、初期条件取得部21によってL個の初期条件が取得され、ゲイン条件取得部23によってN個のゲイン条件が取得され、動作条件生成部24によってM個の制御用動作条件が生成された場合、動作条件入力部25は、L×N×M通りのそれぞれに基づく動作が終了したか否かを判定する。動作条件入力部25は、L×N×M通りのそれぞれに基づく動作が終了している場合、全ての動作が終了したと判定する。動作条件入力部25は、L×N×M通りのそれぞれに基づく動作が終了していない場合、全ての動作が終了していないと判定する。 The operating condition input unit 25 determines whether all operations have been completed (step S8). For example, when L initial conditions are acquired by the initial condition acquisition unit 21, N gain conditions are acquired by the gain condition acquisition unit 23, and M control operating conditions are generated by the operating condition generation unit 24, the operating condition input unit 25 determines whether operations based on each of the L×N×M combinations have been completed. If operations based on each of the L×N×M combinations have been completed, the operating condition input unit 25 determines that all operations have been completed. If operations based on each of the L×N×M combinations have not been completed, the operating condition input unit 25 determines that all operations have not been completed.
 動作条件入力部25は、全ての動作が終了していない場合(ステップS8でNo)、サーボアンプ1を再び動作させる(ステップS5)。たとえば、初期条件取得部21によってL個の初期条件が取得され、ゲイン条件取得部23によってN個のゲイン条件が取得され、動作条件生成部24によってM個の動作条件が生成された場合、動作条件入力部25は、L×N×M通りのうちまだ動作させていない初期条件とゲイン条件と動作条件との組み合わせに基づいて、サーボアンプ1を再び動作させる。 If all operations have not been completed (No in step S8), the operating condition input unit 25 operates the servo amplifier 1 again (step S5). For example, if L initial conditions are acquired by the initial condition acquisition unit 21, N gain conditions are acquired by the gain condition acquisition unit 23, and M operating conditions are generated by the operating condition generation unit 24, the operating condition input unit 25 operates the servo amplifier 1 again based on a combination of initial conditions, gain conditions, and operating conditions that have not yet been activated among the L x N x M combinations.
 学習モデル生成部28は、動作条件入力部25によって全ての動作が終了したと判定された場合(ステップS8でYes)、学習データ取得部27によって取得された学習データに基づいて、学習モデルを生成する(ステップS9)。たとえば、上述したようにして、学習モデル生成部28は、学習モデルを生成する。 If the operation condition input unit 25 determines that all operations have been completed (Yes in step S8), the learning model generation unit 28 generates a learning model based on the learning data acquired by the learning data acquisition unit 27 (step S9). For example, the learning model generation unit 28 generates a learning model as described above.
 学習モデル生成部28は、学習モデルを生成すると、生成した学習モデルを出力する(ステップS10)。 Once the learning model is generated, the learning model generation unit 28 outputs the generated learning model (step S10).
 図9は、図1の調整システム10の予測システム30の動作の一例を示すブロック図である。 FIG. 9 is a block diagram showing an example of the operation of the prediction system 30 of the adjustment system 10 of FIG. 1.
 図9に示すように、初期条件受付部31は、初期条件の入力を受け付ける(ステップS11)。たとえば、上述したようにして、初期条件受付部31は、初期条件の入力を受け付ける。 As shown in FIG. 9, the initial condition receiving unit 31 receives input of the initial conditions (step S11). For example, the initial condition receiving unit 31 receives input of the initial conditions as described above.
 動作条件受付部32は、動作条件の入力を受け付ける(ステップS12)。たとえば、上述したようにして、動作条件受付部32は、動作条件の入力を受け付ける。 The operating condition receiving unit 32 receives input of the operating conditions (step S12). For example, the operating condition receiving unit 32 receives input of the operating conditions as described above.
 ゲイン条件受付部33は、ゲイン条件の入力を受け付ける(ステップS13)。たとえば、上述したようにして、ゲイン条件受付部33は、ゲイン条件の入力を受け付ける。 The gain condition receiving unit 33 receives the input of the gain condition (step S13). For example, the gain condition receiving unit 33 receives the input of the gain condition as described above.
 動作条件生成部37は、予測用動作条件を生成する(ステップS14)。たとえば、上述したようにして、動作条件生成部37は、動作条件を生成する。 The operating condition generating unit 37 generates the predictive operating conditions (step S14). For example, the operating condition generating unit 37 generates the operating conditions as described above.
 入力データ取得部34は、入力データを取得する(ステップS15)。たとえば、上述したように、入力データ取得部34は、初期条件受付部31によって入力が受け付けられた初期条件と、動作条件生成部37によって生成された予測用動作条件と、ゲイン条件受付部33によって入力が受け付けられたゲイン条件とを、入力データとして取得する。 The input data acquisition unit 34 acquires input data (step S15). For example, as described above, the input data acquisition unit 34 acquires, as input data, the initial conditions accepted by the initial condition acceptance unit 31, the prediction operating conditions generated by the operating condition generation unit 37, and the gain conditions accepted by the gain condition acceptance unit 33.
 学習モデル取得部35は、学習モデル生成部28によって生成された学習モデルを取得する(ステップS16)。 The learning model acquisition unit 35 acquires the learning model generated by the learning model generation unit 28 (step S16).
 予測結果出力部36は、学習モデル取得部35によって取得された学習モデルに、入力データ取得部34によって取得された入力データを入力する(ステップS17)。 The prediction result output unit 36 inputs the input data acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35 (step S17).
 予測結果出力部36は、学習モデル取得部35によって取得された学習モデルに、入力データ取得部34によって取得された入力データを入力した後、学習モデルから出力された予測結果を出力する(ステップS18)。 The prediction result output unit 36 inputs the input data acquired by the input data acquisition unit 34 into the learning model acquired by the learning model acquisition unit 35, and then outputs the prediction result output from the learning model (step S18).
 以上、第1の実施の形態に係る調整システム10等について説明した。 The adjustment system 10 and other components relating to the first embodiment have been described above.
 第1の実施の形態に係る学習システム20は、動作条件初期値に基づいて生成される動作条件、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示すゲイン条件、およびゲイン条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果を取得する取得部(学習データ取得部27)と、取得部(学習データ取得部27)によって取得された動作条件とゲイン条件と動作結果との関係性を学習し、動作条件とゲイン条件とが入力された場合に入力された動作条件とゲイン条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成する学習モデル生成部28とを備える。 The learning system 20 according to the first embodiment includes an acquisition unit (learning data acquisition unit 27) that acquires operating conditions generated based on initial operating condition values, gain conditions indicating the respective gain parameter values of one or more types of gain parameters, and an operation result output from the servo amplifier 1 when the servo amplifier 1 to which the gain conditions are set operates the motor 2 based on the operating conditions, and a learning model generation unit 28 that learns the relationship between the operating conditions, gain conditions, and operation results acquired by the acquisition unit (learning data acquisition unit 27), and generates a learning model that predicts the operation result output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions and gain conditions when the operating conditions and gain conditions are input.
 これによれば、動作条件とゲイン条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成できるので、モータ2を実際に動作させることなく、ゲイン条件に基づく動作結果を予測できるので、ゲインパラメータを効率よく調整させることができる。たとえば、最適なゲインパラメータ値を想定する知見がない者であっても、効率よくゲインパラメータ値を決定できる。 This makes it possible to generate a learning model that predicts the operation results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the operating conditions and gain conditions, so that the operation results based on the gain conditions can be predicted without actually operating the motor 2, allowing the gain parameters to be adjusted efficiently. For example, even someone with no knowledge of how to predict optimal gain parameter values can efficiently determine the gain parameter values.
 また、第1の実施の形態に係る学習システム20において、取得部(学習データ取得部27)は、モータ2の慣性モーメントとモータ2によって駆動される搬送装置3の負荷慣性モーメントとの比であるイナーシャ比、および搬送装置3における摩擦を補償するための摩擦補償値を含む初期条件を取得するとともに、ゲイン条件および初期条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果を取得する。 In addition, in the learning system 20 according to the first embodiment, the acquisition unit (learning data acquisition unit 27) acquires initial conditions including an inertia ratio, which is the ratio between the moment of inertia of the motor 2 and the moment of load inertia of the transport device 3 driven by the motor 2, and a friction compensation value for compensating for friction in the transport device 3, and acquires the operation results output from the servo amplifier 1 when the servo amplifier 1, in which the gain conditions and initial conditions are set, operates the motor 2 based on the operating conditions.
 これによれば、動作条件とゲイン条件と初期条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成し易くなるので、モータ2を実際に動作させることなく、ゲイン条件に基づく動作結果を予測できるので、ゲインパラメータをさらに効率よく調整させることができる。初期条件を含めてサーボアンプ1を動作させるが、初期条件を用いずゲイン条件等を用いて学習した場合には、学習データとして使用する動作結果がより正確なデータとなることから、より良い学習モデルを生成でき、結果的に予測される動作結果の精度が向上する。初期条件を含めてサーボアンプ1を動作させ、かつ、学習データとして使用する場合は、さらにより良い学習モデルを生成でき、予測される動作結果の精度もさらに向上する。 This makes it easier to generate a learning model that predicts the operation results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the operating conditions, gain conditions, and initial conditions, so that the operation results based on the gain conditions can be predicted without actually operating the motor 2, making it possible to adjust the gain parameters even more efficiently. The servo amplifier 1 is operated including the initial conditions, but when learning is performed using gain conditions, etc. without using the initial conditions, the operation results used as learning data become more accurate data, so a better learning model can be generated and the accuracy of the predicted operation results is improved as a result. When the servo amplifier 1 is operated including the initial conditions and used as learning data, an even better learning model can be generated and the accuracy of the predicted operation results is further improved.
 また、第1の実施の形態に係る学習システム20において、学習モデル生成部28は、取得部(学習データ取得部27)によって取得された動作条件とゲイン条件と初期条件と動作結果との関係性を学習し、動作条件とゲイン条件と初期条件とが入力された場合に入力された動作条件とゲイン条件と初期条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成する。 In addition, in the learning system 20 according to the first embodiment, the learning model generation unit 28 learns the relationship between the operating conditions, gain conditions, initial conditions, and operating results acquired by the acquisition unit (learning data acquisition unit 27), and generates a learning model that predicts the operating results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the input operating conditions, gain conditions, and initial conditions when the operating conditions, gain conditions, and initial conditions are input.
 これによれば、動作条件とゲイン条件と初期条件とに基づいてサーボアンプ1がモータ2を動作させた場合のサーボアンプ1から出力される動作結果を予測する学習モデルを生成できるので、モータ2を実際に動作させることなく、ゲイン条件に基づく動作結果を予測できるので、ゲインパラメータをさらに効率よく調整させることができる。初期条件を含めてサーボアンプ1を動作させ、かつ、学習データとして使用する場合は、さらにより良い学習モデルを生成でき、予測される動作結果の精度もさらに向上する。 This makes it possible to generate a learning model that predicts the operation results output from the servo amplifier 1 when the servo amplifier 1 operates the motor 2 based on the operating conditions, gain conditions, and initial conditions, so that the operation results based on the gain conditions can be predicted without actually operating the motor 2, making it possible to adjust the gain parameters even more efficiently. If the servo amplifier 1 is operated including the initial conditions and used as learning data, an even better learning model can be generated and the accuracy of the predicted operation results is further improved.
 また、第1の実施の形態に係る学習システム20は、動作条件初期値によって定まる動作条件を所定の規則にしたがって変化させることによって複数の動作条件を生成する動作条件生成部24を備え、動作条件生成部24は、サーボアンプ1がモータ2を動作させるための動作指令を生成するための複数の動作条件と、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための複数の動作条件とを生成する。 The learning system 20 according to the first embodiment also includes an operating condition generating unit 24 that generates multiple operating conditions by changing the operating conditions determined by the initial operating condition values according to a predetermined rule, and the operating condition generating unit 24 generates multiple operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2, and multiple operating conditions for the learning model generating unit 28 to learn the relationship between the operating conditions, gain conditions, and the operation results.
 これによれば、動作条件初期値から複数の動作条件を生成でき、サーボアンプ1がモータ2を動作させるための動作指令を生成するための複数の動作条件と、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための複数の動作条件とを生成できるので、複数の動作条件等に基づいてサーボアンプ1を効率よく複数回動作させることができ、学習モデルを効率よく生成できるので、ゲインパラメータをさらに効率よく調整させることができる。 This allows multiple operating conditions to be generated from the initial operating condition values, and multiple operating conditions can be generated for the servo amplifier 1 to generate an operating command for operating the motor 2, and multiple operating conditions can be generated for the learning model generation unit 28 to learn the relationship between the operating conditions, gain conditions, and operation results. Therefore, the servo amplifier 1 can be efficiently operated multiple times based on multiple operating conditions, etc., and a learning model can be efficiently generated, so that the gain parameters can be adjusted even more efficiently.
 また、第1の実施の形態に係る学習システム20において、動作条件初期値は、モータ2を動作させる目標時間と、モータ2の最大速度と、モータ2の加速時間と、モータ2の減速時間とを含み、動作条件生成部24は、動作条件初期値に含まれる最大速度と加速時間とから加速度を算出し、動作条件初期値に含まれる最大速度と減速時間とから減速度を算出し、学習モデル生成部28が動作条件とゲイン条件と動作結果との関係性を学習するための動作条件として、加速度と減速度とを含む動作条件を生成する。 In addition, in the learning system 20 according to the first embodiment, the initial operating condition values include a target time for operating the motor 2, a maximum speed of the motor 2, an acceleration time of the motor 2, and a deceleration time of the motor 2. The operating condition generating unit 24 calculates the acceleration from the maximum speed and acceleration time included in the initial operating condition values, and calculates the deceleration from the maximum speed and deceleration time included in the initial operating condition values. The learning model generating unit 28 generates operating conditions including the acceleration and deceleration as operating conditions for learning the relationship between the operating conditions, the gain conditions, and the operating results.
 これによれば、加速度と減速度とを含む動作条件を生成することができ、加速度と減速度とを含む動作条件を用いることによって学習モデルを効率よく生成できるので、ゲインパラメータをさらに効率よく調整させることができる。 This allows operating conditions including acceleration and deceleration to be generated, and a learning model can be efficiently generated using operating conditions including acceleration and deceleration, allowing the gain parameters to be adjusted even more efficiently.
 また、第1の実施の形態に係る学習システム20において、動作条件生成部24は、サーボアンプ1がモータ2を動作させるための動作指令を生成するための動作条件として、加速度と減速度とを含む動作条件に相応する動作条件を生成する。 In addition, in the learning system 20 according to the first embodiment, the operating condition generating unit 24 generates operating conditions corresponding to operating conditions including acceleration and deceleration as operating conditions for the servo amplifier 1 to generate an operating command for operating the motor 2.
 これによれば、加速度と減速度とを含む動作条件に相応する動作条件に基づいてモータ2を動作させることができる。 This allows the motor 2 to be operated based on operating conditions that correspond to operating conditions including acceleration and deceleration.
 また、第1の実施の形態に係る学習システム20において、1種類以上のゲインパラメータは、複数種類のゲインパラメータであり、それぞれが1種類以上のゲインパラメータの1つ以上のゲインパラメータ値の組み合わせを示し、かつ1つ以上のゲインパラメータ値の組み合わせが相互に異なる複数の組み合わせデータのそれぞれからゲイン条件を取得するゲイン条件取得部23を備え、取得部(学習データ取得部27)は、ゲイン条件取得部23によって取得されたゲイン条件を取得する。 In addition, in the learning system 20 according to the first embodiment, the one or more types of gain parameters are multiple types of gain parameters, each of which indicates a combination of one or more gain parameter values of one or more types of gain parameters, and a gain condition acquisition unit 23 is provided that acquires gain conditions from each of multiple combination data in which the combinations of one or more gain parameter values are different from one another, and an acquisition unit (learning data acquisition unit 27) acquires the gain conditions acquired by the gain condition acquisition unit 23.
 これによれば、複数のゲイン条件を効率よく取得でき、複数のゲイン条件等に基づいてサーボアンプ1を効率よく複数回動作させることができ、学習モデルを効率よく生成できるので、ゲインパラメータをさらに効率よく調整させることができる。 This allows multiple gain conditions to be obtained efficiently, and the servo amplifier 1 to be operated multiple times efficiently based on the multiple gain conditions, etc., and a learning model to be generated efficiently, allowing the gain parameters to be adjusted even more efficiently.
 また、第1の実施の形態に係る学習システム20は、ゲイン条件が設定されたサーボアンプ1が動作条件に基づいてモータ2を動作させた場合のサーボアンプ1から出力される動作結果を取得する動作結果取得部26を備え、取得部(学習データ取得部27)は、動作結果取得部26によって取得された動作結果を取得する。 The learning system 20 according to the first embodiment also includes an operation result acquisition unit 26 that acquires the operation results output from the servo amplifier 1 when the servo amplifier 1, to which the gain conditions are set, operates the motor 2 based on the operating conditions, and an acquisition unit (learning data acquisition unit 27) acquires the operation results acquired by the operation result acquisition unit 26.
 これによれば、取得部(学習データ取得部27)は、サーボアンプ1と直接的に通信することなく、サーボアンプ1から出力される動作結果を動作結果取得部26を介して取得できる。したがって、取得部(学習データ取得部27)および学習モデル生成部28を備える装置をサーボアンプ1と直接的に通信できない場所等に設けることができ、学習モデルを効率よく生成できるので、ゲインパラメータをさらに効率よく調整させることができる。たとえば、学習モデル生成部28をコンピュート資源が潤沢に提供されかつ柔軟にコンピュート資源量が提供される基盤(クラウドコンピュータ等)に配置できる。また、複数の学習システム20から学習データを一元的に取得して学習モデルを生成できる。また、断続的に学習させる場合に特定の学習システム20に異存せずに継続して学習モデルを生成できる。 With this, the acquisition unit (learning data acquisition unit 27) can acquire the operation results output from the servo amplifier 1 via the operation result acquisition unit 26 without directly communicating with the servo amplifier 1. Therefore, a device including the acquisition unit (learning data acquisition unit 27) and the learning model generation unit 28 can be installed in a place where direct communication with the servo amplifier 1 is not possible, and the learning model can be efficiently generated, so that the gain parameters can be adjusted more efficiently. For example, the learning model generation unit 28 can be placed on a platform (such as a cloud computer) that is provided with abundant and flexible amounts of computing resources. In addition, learning data can be acquired from multiple learning systems 20 in a unified manner to generate a learning model. In addition, when learning is performed intermittently, the learning model can be continuously generated regardless of a specific learning system 20.
 また、第1の実施の形態に係る予測システム30は、上記の学習システム20によって生成された学習モデルを取得する学習モデル取得部35と、動作条件とゲイン条件とを学習モデル取得部35によって取得された学習モデルに入力し、学習モデルから出力された予測結果を出力する出力部(予測結果出力部36)とを備える。 The prediction system 30 according to the first embodiment also includes a learning model acquisition unit 35 that acquires the learning model generated by the learning system 20, and an output unit (prediction result output unit 36) that inputs the operating conditions and gain conditions into the learning model acquired by the learning model acquisition unit 35 and outputs the prediction result output from the learning model.
 これによれば、動作条件とゲイン条件とに基づいてサーボアンプ1がモータ2を動作させた場合の動作結果を予測して予測結果を出力できるので、ゲインパラメータをさらに効率よく調整させることができる。たとえば、最適なゲインパラメータ値を想定する知見がない者であっても、効率よくゲインパラメータ値を決定できる。 This makes it possible to predict the operation results when the servo amplifier 1 operates the motor 2 based on the operating conditions and gain conditions, and output the predicted results, so that the gain parameters can be adjusted more efficiently. For example, even someone who does not have the knowledge to predict the optimal gain parameter values can efficiently determine the gain parameter values.
 また、第1の実施の形態に係る予測システム30は、上記の学習システム20によって生成された学習モデルを取得する学習モデル取得部35と、動作条件とゲイン条件と初期条件とを学習モデル取得部35によって取得された学習モデルに入力し、学習モデルから出力された予測結果を出力する出力部(予測結果出力部36)とを備える。 The prediction system 30 according to the first embodiment also includes a learning model acquisition unit 35 that acquires the learning model generated by the learning system 20, and an output unit (prediction result output unit 36) that inputs the operating conditions, gain conditions, and initial conditions into the learning model acquired by the learning model acquisition unit 35 and outputs the prediction result output from the learning model.
 これによれば、動作条件とゲイン条件と初期条件とに基づいてサーボアンプ1がモータ2を動作させた場合の動作結果を予測する学習モデルを生成できるので、モータ2を実際に動作させることなく、ゲイン条件に基づく動作結果を予測できるので、ゲインパラメータをさらに効率よく調整させることができる。 This allows a learning model to be generated that predicts the operational results when the servo amplifier 1 operates the motor 2 based on the operating conditions, gain conditions, and initial conditions. This makes it possible to predict the operational results based on the gain conditions without actually operating the motor 2, thereby making it possible to adjust the gain parameters even more efficiently.
 また、第1の実施の形態に係る調整システム10は、上記の学習システム20と、上記の予測システム30とを備える。 The adjustment system 10 according to the first embodiment also includes the learning system 20 and the prediction system 30.
 これによれば、学習システム20と同様の作用効果、および予測システム30と同様の作用効果を奏することができる。 This allows the same effects and advantages to be achieved as the learning system 20 and the prediction system 30.
 (第2の実施の形態)
 図10は、第2の実施の形態に係る調整システム10の学習システム20の機能構成を示すブロック図である。
Second Embodiment
FIG. 10 is a block diagram showing a functional configuration of the learning system 20 of the adjustment system 10 according to the second embodiment.
 図10に示すように、第2の実施の形態に係る学習システム20は、複数のサーボアンプ1を動作させる点において、第1の実施の形態に係る学習システム20と主に異なっている。複数のサーボアンプ1のそれぞれは、モータ2を制御する制御装置である。たとえば、モータ2は、サーボモータである。本実施の形態では、モータ2は、搬送装置3を駆動させる。たとえば、搬送装置3は、荷物等を搬送する装置であり、1軸の往復テーブルを含む。以下では、第1の実施の形態に係る学習システム20と異なる点を中心に説明する。 As shown in FIG. 10, the learning system 20 according to the second embodiment mainly differs from the learning system 20 according to the first embodiment in that it operates multiple servo amplifiers 1. Each of the multiple servo amplifiers 1 is a control device that controls a motor 2. For example, the motor 2 is a servo motor. In this embodiment, the motor 2 drives a conveying device 3. For example, the conveying device 3 is a device that conveys luggage, etc., and includes a one-axis reciprocating table. The following will mainly explain the differences from the learning system 20 according to the first embodiment.
 動作条件入力部25は、動作条件およびゲイン条件の少なくとも一方を相互に異ならせて、A個(Aは2以上の整数)のサーボアンプ1にモータ2を動作させる。具体的には、動作条件入力部25は、動作条件およびゲイン条件の少なくとも一方を相互に異ならせて、動作条件およびゲイン条件をA個のサーボアンプ1に設定してモータ2を制御し、搬送装置3を動作させる。つまり、A個のサーボアンプ1のそれぞれに異なる制御設定値(動作条件とゲイン条件との組み合わせ)を設定する。動作条件とゲイン条件とのN×M通りの組み合わせのうち異なる組み合わせを順次にそれぞれのサーボアンプ1に設定し、全てのサーボアンプ1の動作が終了し、設定すべき組み合わせ(N×M通りのうちまだ設定していない組み合わせ)があれば、さらに順次にそれぞれのサーボアンプ1に異なる組み合わせを設定して、全ての組み合わせの設定が終了するまで繰り返す。 The operating condition input unit 25 makes A servo amplifiers 1 (A is an integer equal to or greater than 2) operate the motor 2 by making at least one of the operating conditions and the gain conditions different from each other. Specifically, the operating condition input unit 25 makes at least one of the operating conditions and the gain conditions different from each other, sets the operating conditions and the gain conditions to the A servo amplifiers 1, controls the motor 2, and operates the conveying device 3. In other words, different control setting values (combinations of operating conditions and gain conditions) are set for each of the A servo amplifiers 1. Different combinations of the N x M combinations of operating conditions and gain conditions are set in each servo amplifier 1 in sequence, and when the operation of all servo amplifiers 1 is completed and there is a combination to be set (a combination of the N x M combinations that has not yet been set), different combinations are further set in sequence for each servo amplifier 1, and this is repeated until all combinations have been set.
 動作条件入力部25は、A個のサーボアンプ1のうち1個を基準サーボアンプとした場合、A個のサーボアンプ1のうち基準サーボアンプ以外のB(Bは1以上の整数)個のサーボアンプ1のそれぞれがモータ2を動作させた場合の当該サーボアンプ1から出力される動作結果が基準サーボアンプがモータ2を動作させた場合の基準サーボアンプから出力される動作結果と所定以上に乖離している場合、A個のサーボアンプ1からB個のサーボアンプ1を除外した(A-B)個のサーボアンプ1に次にモータ2を動作させる。たとえば、動作条件入力部25は、初期条件については相互に同一とし、A個(Aは2以上の整数)のサーボアンプ1にモータ2を動作させる。たとえば、動作条件入力部25は、B個のサーボアンプ1のそれぞれから出力される整定時間が基準サーボアンプから出力される整定時間よりも所定以上に乖離している場合、A個のサーボアンプ1からB個のサーボアンプ1を除外した(A-B)個のサーボアンプ1に次にモータ2を動作させる。また、たとえば、動作条件入力部25は、B個のサーボアンプ1のそれぞれから出力される振動レベルが基準サーボアンプから出力される振動レベルよりも所定以上に乖離している場合、A個のサーボアンプ1からB個のサーボアンプ1を除外した(A-B)個のサーボアンプ1に次にモータ2を動作させる。たとえば、A個のサーボアンプ1は、相互に異なるA個のモータ2を動作させ、相互に異なるA個の搬送装置3を駆動させる。 When one of the A servo amplifiers 1 is set as a reference servo amplifier, if the operation result output from each of the B (B is an integer of 1 or more) servo amplifiers 1 other than the reference servo amplifier among the A servo amplifiers 1 when the servo amplifier 2 is operated deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor 2, the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1, to operate the motor 2 next. For example, the operation condition input unit 25 sets the initial conditions to be the same for each of the A servo amplifiers 1 (A is an integer of 2 or more), and causes the A servo amplifiers 1 to operate the motor 2 next. For example, when the settling time output from each of the B servo amplifiers 1 deviates by a predetermined amount from the settling time output from the reference servo amplifier, the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1, to operate the motor 2 next. Also, for example, when the vibration level output from each of the B servo amplifiers 1 deviates from the vibration level output from the reference servo amplifier by a predetermined amount or more, the operating condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1 from the A servo amplifiers 1, to operate the motors 2 next. For example, the A servo amplifiers 1 operate A mutually different motors 2 to drive A mutually different conveying devices 3.
 図11は、図10の調整システム10の学習システム20の動作の一例を示すブロック図である。 FIG. 11 is a block diagram showing an example of the operation of the learning system 20 of the adjustment system 10 of FIG. 10.
 動作条件入力部25は、初期条件取得部21によって取得された初期条件とゲイン条件取得部23によって取得されたゲイン条件と動作条件生成部24によって生成された動作条件とに基づいて、サーボアンプ1を動作させる(ステップS5)。動作条件入力部25は、動作条件およびゲイン条件の少なくとも一方を相互に異ならせて、A個のサーボアンプ1を動作させる。具体的には、動作条件入力部25は、A個のサーボアンプ1のそれぞれに異なる値(動作条件およびゲイン条件の組み合わせ)を設定し、A個のサーボアンプ1を動作させる。 The operating condition input unit 25 operates the servo amplifier 1 based on the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, and the operating conditions generated by the operating condition generation unit 24 (step S5). The operating condition input unit 25 operates the A servo amplifiers 1 by making at least one of the operating conditions and the gain conditions different from each other. Specifically, the operating condition input unit 25 sets different values (combinations of operating conditions and gain conditions) for each of the A servo amplifiers 1, and operates the A servo amplifiers 1.
 動作結果取得部26は、動作条件入力部25によって動作させられたサーボアンプ1から出力される動作結果を取得する(ステップS6)。本実施の形態では、動作結果取得部26は、動作条件入力部25によって動作させられたA個のサーボアンプ1から出力されるA個の動作結果を取得する。 The operation result acquisition unit 26 acquires the operation results output from the servo amplifiers 1 operated by the operation condition input unit 25 (step S6). In this embodiment, the operation result acquisition unit 26 acquires A operation results output from A servo amplifiers 1 operated by the operation condition input unit 25.
 学習データ取得部27は、学習データを取得する(ステップS7)。たとえば、上述したように、学習データ取得部27は、初期条件取得部21によって取得された初期条件と、ゲイン条件取得部23によって取得されたゲイン条件と、動作条件生成部24によって生成された動作条件と、動作結果取得部26によって取得された動作結果とを、学習データとして取得する。 The learning data acquisition unit 27 acquires learning data (step S7). For example, as described above, the learning data acquisition unit 27 acquires the initial conditions acquired by the initial condition acquisition unit 21, the gain conditions acquired by the gain condition acquisition unit 23, the operating conditions generated by the operating condition generation unit 24, and the operating results acquired by the operating result acquisition unit 26 as learning data.
 動作条件入力部25は、全ての動作が終了したか否かを判定する(ステップS8)。たとえば、上述したようにして、動作条件入力部25は、全ての動作が終了したか否かを判定する。具体的には、動作条件入力部25は、動作条件とゲイン条件とのN×M通りの組み合わせのうち、設定すべき(まだ設定されていない)組み合わせがある場合には全ての動作が終了していないと判定し、設定すべき(まだ設定されていない)組み合わせがない場合には全ての動作が終了していると判定する。動作条件入力部25は、動作条件とゲイン条件とのN×M通りの組み合わせを順次に複数のサーボアンプ1に相互に異なる組み合わせとなるように設定し、全てのサーボアンプ1の動作が終了し、設定すべき組み合わせがあれば、さらに順次に複数のサーボアンプ1に相互に異なる組み合わせとなるように設定し、全ての組み合わせの設定が終了するまで繰り返す。 The operating condition input unit 25 judges whether all operations have been completed (step S8). For example, as described above, the operating condition input unit 25 judges whether all operations have been completed. Specifically, the operating condition input unit 25 judges that all operations have not been completed if there is a combination to be set (not yet set) among the N x M combinations of operating conditions and gain conditions, and judges that all operations have been completed if there is no combination to be set (not yet set). The operating condition input unit 25 sequentially sets the N x M combinations of operating conditions and gain conditions to the multiple servo amplifiers 1 so that they are mutually different combinations, and when the operations of all servo amplifiers 1 have been completed and there is a combination to be set, it further sequentially sets the multiple servo amplifiers 1 so that they are mutually different combinations, and repeats this until all combinations have been set.
 動作条件入力部25は、全ての動作が終了していない場合(ステップS8でNo)、A個のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力したサーボアンプ1があるか否かを判定する(ステップS21)。たとえば、上述したようにして、動作条件入力部25は、A個のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力したサーボアンプ1があるか否かを判定する。 If all operations have not been completed (No in step S8), the operating condition input unit 25 determines whether or not there is a servo amplifier 1 among the A servo amplifiers 1 that has output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (step S21). For example, as described above, the operating condition input unit 25 determines whether or not there is a servo amplifier 1 among the A servo amplifiers 1 that has output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more.
 動作条件入力部25は、A個のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力したサーボアンプ1がない場合(ステップS21でNo)、A個のサーボアンプ1を再び動作させる(ステップS5)。 If there is no servo amplifier 1 among the A servo amplifiers 1 that outputs an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (No in step S21), the operating condition input unit 25 operates the A servo amplifiers 1 again (step S5).
 動作条件入力部25は、A個のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力したサーボアンプ1がある場合(ステップS21でYes)、A個のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力したB個のサーボアンプ1以外の(A-B)個のサーボアンプ1を次に動作させる(ステップS22)。 If there is a servo amplifier 1 among the A servo amplifiers 1 that outputs an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (Yes in step S21), the operating condition input unit 25 next operates (A-B) servo amplifiers 1 other than the B servo amplifiers 1 among the A servo amplifiers 1 that output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more (step S22).
 制御用動作条件の生成数がA個より少ない場合、余るサーボアンプ1には動作条件等を設定せず、モータ2を制御させず、搬送装置3を動作させない。この場合、たとえば、ループ処理の終了判定は、全ての動作が終了したか否かに加えて、生成した制御用の動作条件を全て設定したか否かで判定できる。 If the number of generated control operating conditions is less than A, no operating conditions are set for the remaining servo amplifiers 1, the motor 2 is not controlled, and the conveying device 3 is not operated. In this case, for example, the end of the loop process can be determined not only by whether all operations have been completed, but also by whether all the generated control operating conditions have been set.
 このように、動作条件入力部25は、複数のサーボアンプ1のうち基準サーボアンプから出力される動作結果と所定以上に乖離している動作結果を出力した1つ以上のサーボアンプ1がある場合、複数のサーボアンプ1のうち当該1つ以上のサーボアンプ1以外のサーボアンプ1を次に動作させる。 In this way, when there is one or more servo amplifiers 1 among the multiple servo amplifiers 1 that have output an operation result that deviates from the operation result output from the reference servo amplifier by a predetermined amount or more, the operating condition input unit 25 operates the servo amplifiers 1 other than the one or more servo amplifiers 1 among the multiple servo amplifiers 1 next.
 第2の実施の形態に係る学習システム20は、動作条件およびゲイン条件の少なくとも一方を相互に異ならせて、A個(Aは2以上の整数)のサーボアンプ1にモータ2を動作させる動作条件入力部25を備える。 The learning system 20 according to the second embodiment includes an operating condition input unit 25 that causes A (A is an integer equal to or greater than 2) servo amplifiers 1 to operate the motors 2 by making at least one of the operating conditions and the gain conditions different from each other.
 これによれば、A個のサーボアンプ1を動作させることができ、動作結果を効率よく取得でき、学習モデルを効率よく生成できるので、学習速度を向上でき、バラツキを含めた一般的な学習モデルを生成でき、不適切な装置の影響を回避した妥当な学習モデルを生成できる。たとえば、1組の、サーボアンプ1、モータ2、および搬送装置3を動作させて生成する学習モデルより、複数組を動作させて生成する学習モデルの方が、1組のモータ2および装置の特性に偏らず、バラツキを含めて学習させることができる。これによって、より一般的な学習モデルを生成できる。したがって、新たな、サーボアンプ1、モータ2、および搬送装置3を動作させる際に、より最適に近いゲイン条件の調整ができる。たとえば、1組の、サーボアンプ1、モータ2、および搬送装置3を動作させて生成した学習モデルが、モータ2および搬送装置3の劣化等により妥当でない学習をさせている可能性がある。しかし、複数組を動作させることで、動作結果が一定の基準から乖離している等の検知ができることから、ユーザ等による検査等を実施する機会を提供でき、不適切なサーボアンプ1、モータ2、および搬送装置3を排除することができる。これによって、少なくとも妥当でない学習モデルの生成を回避することができる。 According to this, A servo amplifiers 1 can be operated, the operation results can be efficiently obtained, and the learning model can be efficiently generated, so that the learning speed can be improved, a general learning model including variations can be generated, and a valid learning model that avoids the influence of inappropriate devices can be generated. For example, a learning model generated by operating multiple sets can learn including variations without being biased to the characteristics of one set of motor 2 and device, rather than a learning model generated by operating one set of servo amplifier 1, motor 2, and transport device 3. This makes it possible to generate a more general learning model. Therefore, when operating a new servo amplifier 1, motor 2, and transport device 3, it is possible to adjust the gain conditions closer to the optimum. For example, a learning model generated by operating one set of servo amplifier 1, motor 2, and transport device 3 may perform inappropriate learning due to deterioration of motor 2 and transport device 3. However, by operating multiple sets, it is possible to detect deviations in the operation results from a certain standard, so that an opportunity can be provided for a user to carry out inspections, etc., and inappropriate servo amplifiers 1, motors 2, and transport devices 3 can be eliminated. This will at least avoid generating invalid training models.
 また、第2の実施の形態に係る学習システム20において、A個のサーボアンプ1のうち1個を基準サーボアンプとした場合、動作条件入力部25は、A個のサーボアンプ1のうち基準サーボアンプ以外のB(Bは1以上の整数)個のサーボアンプ1のそれぞれがモータ2を動作させた場合の当該サーボアンプ1から出力される動作結果が基準サーボアンプがモータ2を動作させた場合の基準サーボアンプから出力される動作結果と所定以上に乖離している場合、A個のサーボアンプ1からB個のサーボアンプ1を除外した(A-B)個のサーボアンプ1に次にモータ2を動作させる。 In addition, in the learning system 20 according to the second embodiment, when one of the A servo amplifiers 1 is set as a reference servo amplifier, if the operation result output from each of the B (B is an integer equal to or greater than 1) servo amplifiers 1 other than the reference servo amplifier among the A servo amplifiers 1 when the servo amplifier 1 operates the motor 2 deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor 2, the operation condition input unit 25 causes the (A-B) servo amplifiers 1, excluding the B servo amplifiers 1 from the A servo amplifiers 1, to operate the motor 2 next.
 これによれば、基準サーボアンプがモータ2を動作させた場合の動作結果と所定以上に乖離している動作結果に係るB個のサーボアンプ1は故障等している場合があり、このようなB個のサーボアンプ1を除外した(A-B)個のサーボアンプ1に次にモータ2を動作させることができ、より正常な動作結果を取得することができるので、学習速度を向上でき、バラツキを含めた一般的な学習モデルを生成でき、不適切な装置の影響を回避した妥当な学習モデルを生成できる。 According to this, B servo amplifiers 1 associated with operation results that deviate by a certain amount from the operation results when the reference servo amplifier operates the motor 2 may be faulty, etc., and the motor 2 can be operated next with (A-B) servo amplifiers 1 excluding such B servo amplifiers 1, resulting in a more normal operation result. This improves the learning speed, allows the generation of a general learning model that includes variation, and allows the generation of a valid learning model that avoids the influence of inappropriate devices.
 たとえば、上述した説明において、サーボアンプ1を動作させるとは、サーボアンプ1に制御設定値を設定し、サーボアンプ1が制御設定値から動作指令を生成してモータ2を駆動し、モータ2に装着される搬送装置3を制御することを意味する。 For example, in the above explanation, operating the servo amplifier 1 means setting a control setting value in the servo amplifier 1, which generates an operation command from the control setting value to drive the motor 2 and control the conveying device 3 attached to the motor 2.
 また、たとえば、サーボアンプ1から出力される動作結果は、制御される搬送装置3の慣性および負荷等がモータ2の駆動に影響し、モータ2の駆動の結果をサーボアンプ1が取得して演算処理した結果を意味する。 In addition, for example, the operation result output from the servo amplifier 1 means that the inertia and load of the controlled conveyor device 3 affect the drive of the motor 2, and the servo amplifier 1 acquires and processes the result of the drive of the motor 2.
 また、たとえば、サーボアンプ1から出力される動作結果を予測するとは、モータ2を駆動することなく、搬送装置3を制御することなく、搬送装置3の影響が反映される動作結果を予測することを意味する。 Furthermore, for example, predicting the operation result output from the servo amplifier 1 means predicting the operation result that reflects the influence of the conveying device 3 without driving the motor 2 and without controlling the conveying device 3.
 (付記)
 以上の実施の形態等の記載により、下記の技術が開示される。
(Additional Note)
The above description of the embodiments and the like discloses the following techniques.
 (技術1)
 動作条件初期値に基づいて生成される動作条件、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示すゲイン条件、および前記ゲイン条件が設定されたサーボアンプが前記動作条件に基づいてモータを動作させた場合の前記サーボアンプから出力される動作結果を取得する取得部と、
 前記取得部によって取得された前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習し、前記動作条件と前記ゲイン条件とが入力された場合に入力された前記動作条件と前記ゲイン条件とに基づいて前記サーボアンプが前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を予測する学習モデルを生成する学習モデル生成部とを備える、
 学習システム。
(Technique 1)
an acquisition unit that acquires operating conditions generated based on initial values of operating conditions, gain conditions indicating respective gain parameter values of one or more types of gain parameters, and an operation result output from a servo amplifier in which the gain conditions are set and which operates a motor based on the operating conditions;
a learning model generating unit that learns a relationship between the operation condition and the gain condition acquired by the acquiring unit and the operation result, and generates a learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition and the gain condition when the operation condition and the gain condition are input.
Learning system.
 (技術2)
 前記取得部は、
 前記モータの慣性モーメントと前記モータによって駆動される搬送装置の負荷慣性モーメントとの比であるイナーシャ比、および前記搬送装置における摩擦を補償するための摩擦補償値を含む初期条件を取得するとともに、前記ゲイン条件および前記初期条件が設定された前記サーボアンプが前記動作条件に基づいて前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を取得する、
 技術1に記載の学習システム。
(Technique 2)
The acquisition unit is
obtain initial conditions including an inertia ratio, which is a ratio between the moment of inertia of the motor and the moment of inertia of a load of a conveying device driven by the motor, and a friction compensation value for compensating for friction in the conveying device, and obtain the operation result output from the servo amplifier in a case where the servo amplifier, in which the gain condition and the initial condition are set, operates the motor based on the operation condition;
A learning system according to technique 1.
 (技術3)
 前記学習モデル生成部は、
 前記取得部によって取得された前記動作条件と前記ゲイン条件と前記初期条件と前記動作結果との関係性を学習し、前記動作条件と前記ゲイン条件と前記初期条件とが入力された場合に入力された前記動作条件と前記ゲイン条件と前記初期条件とに基づいて前記サーボアンプが前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を予測する前記学習モデルを生成する、
 技術2に記載の学習システム。
(Technique 3)
The learning model generation unit
learning a relationship between the operation condition, the gain condition, the initial condition, and the operation result acquired by the acquisition unit, and generating the learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition, the gain condition, and the initial condition when the operation condition, the gain condition, and the initial condition are input;
A learning system according to technique 2.
 (技術4)
 前記動作条件初期値によって定まる前記動作条件を所定の規則にしたがって変化させることによって複数の前記動作条件を生成する動作条件生成部を備え、
 前記動作条件生成部は、前記サーボアンプが前記モータを動作させるための動作指令を生成するための前記複数の動作条件と、前記学習モデル生成部が前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習するための前記複数の動作条件とを生成する、
 技術1から3のいずれかに記載の学習システム。
(Technique 4)
an operating condition generating unit that generates a plurality of operating conditions by changing the operating conditions determined by the operating condition initial values in accordance with a predetermined rule;
the operating condition generating unit generates the plurality of operating conditions for generating an operating command for the servo amplifier to operate the motor, and the learning model generating unit generates the plurality of operating conditions for learning a relationship between the operating conditions, the gain condition, and the operation result;
A learning system according to any one of techniques 1 to 3.
 (技術5)
 前記動作条件初期値は、前記モータを動作させる目標時間と、前記モータの最大速度と、前記モータの加速時間と、前記モータの減速時間とを含み、
 前記動作条件生成部は、前記動作条件初期値に含まれる前記最大速度と前記加速時間とから加速度を算出し、前記動作条件初期値に含まれる前記最大速度と前記減速時間とから減速度を算出し、前記学習モデル生成部が前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習するための前記動作条件として、前記加速度と前記減速度とを含む前記動作条件を生成する、
 技術4に記載の学習システム。
(Technique 5)
the initial operating condition values include a target time for operating the motor, a maximum speed of the motor, an acceleration time of the motor, and a deceleration time of the motor;
the operating condition generation unit calculates an acceleration from the maximum speed and the acceleration time included in the operating condition initial value, and calculates a deceleration from the maximum speed and the deceleration time included in the operating condition initial value, and generates the operating condition including the acceleration and the deceleration as the operating condition for the learning model generation unit to learn the relationship between the operating condition, the gain condition, and the operating result.
A learning system according to technique 4.
 (技術6)
 前記動作条件生成部は、前記サーボアンプが前記モータを動作させるための動作指令を生成するための前記動作条件として、前記加速度と前記減速度とを含む前記動作条件に相応する前記動作条件を生成する、
 技術5に記載の学習システム。
(Technique 6)
the operating condition generating unit generates, as the operating condition for generating an operating command for the servo amplifier to operate the motor, an operating condition corresponding to the operating condition including the acceleration and the deceleration;
A learning system according to technique 5.
 (技術7)
 前記1種類以上のゲインパラメータは、複数種類のゲインパラメータであり、
 それぞれが前記1種類以上のゲインパラメータの1つ以上の前記ゲインパラメータ値の組み合わせを示し、かつ前記1つ以上のゲインパラメータ値の組み合わせが相互に異なる複数の組み合わせデータのそれぞれから前記ゲイン条件を取得するゲイン条件取得部を備え、
 前記取得部は、
 前記ゲイン条件取得部によって取得された前記ゲイン条件を取得する、
 技術1から6のいずれかに記載の学習システム。
(Technique 7)
the one or more types of gain parameters are a plurality of types of gain parameters,
a gain condition acquisition unit that acquires the gain condition from each of a plurality of combination data, each of which indicates a combination of one or more gain parameter values of the one or more types of gain parameters and in which the combinations of the one or more gain parameter values are different from one another;
The acquisition unit is
acquiring the gain condition acquired by the gain condition acquisition unit;
A learning system according to any one of techniques 1 to 6.
 (技術8)
 前記ゲイン条件が設定された前記サーボアンプが前記動作条件に基づいて前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を取得する動作結果取得部を備え、
 前記取得部は、
 前記動作結果取得部によって取得された前記動作結果を取得する、
 技術1から7のいずれかに記載の学習システム。
(Technique 8)
an operation result acquisition unit that acquires the operation result output from the servo amplifier in which the gain condition is set and when the servo amplifier operates the motor based on the operation condition,
The acquisition unit is
acquiring the operation result acquired by the operation result acquisition unit;
A learning system according to any one of techniques 1 to 7.
 (技術9)
 前記動作条件および前記ゲイン条件の少なくとも一方を相互に異ならせて、A個(Aは2以上の整数)の前記サーボアンプに前記モータを動作させる動作条件入力部を備える、
 技術1から8のいずれかに記載の学習システム。
(Technique 9)
an operating condition input unit that causes A number of the servo amplifiers (A is an integer equal to or greater than 2) to operate the motor by making at least one of the operating condition and the gain condition different from each other;
A learning system according to any one of techniques 1 to 8.
 (技術10)
 前記A個のサーボアンプのうち1個を基準サーボアンプとした場合、
 前記動作条件入力部は、
 前記A個のサーボアンプのうち前記基準サーボアンプ以外のB(Bは1以上の整数)個の前記サーボアンプのそれぞれが前記モータを動作させた場合の当該サーボアンプから出力される前記動作結果が前記基準サーボアンプが前記モータを動作させた場合の前記基準サーボアンプから出力される前記動作結果と所定以上に乖離している場合、前記A個のサーボアンプから前記B個のサーボアンプを除外した(A-B)個の前記サーボアンプに次に前記モータを動作させる、
 技術9に記載の学習システム。
(Technique 10)
When one of the A servo amplifiers is set as a reference servo amplifier,
The operating condition input unit includes:
If the operation result output from each of B (B is an integer equal to or greater than 1) servo amplifiers other than the reference servo amplifier among the A servo amplifiers when the servo amplifier operates the motor deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor, next operate the motor with (A-B) servo amplifiers, which are the A servo amplifiers excluding the B servo amplifiers.
A learning system according to technique 9.
 (技術11)
 技術1に記載の学習システムによって生成された前記学習モデルを取得する学習モデル取得部と、
 前記動作条件と前記ゲイン条件とを前記学習モデル取得部によって取得された前記学習モデルに入力し、前記学習モデルから出力された予測結果を出力する出力部とを備える、
 予測システム。
(Technique 11)
A learning model acquisition unit that acquires the learning model generated by the learning system described in Technology 1;
an output unit that inputs the operation condition and the gain condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model;
Prediction system.
 (技術12)
 技術3に記載の学習システムによって生成された前記学習モデルを取得する学習モデル取得部と、
 前記動作条件と前記ゲイン条件と前記初期条件とを前記学習モデル取得部によって取得された前記学習モデルに入力し、前記学習モデルから出力された予測結果を出力する出力部とを備える、
 予測システム。
(Technique 12)
A learning model acquisition unit that acquires the learning model generated by the learning system described in Technology 3;
an output unit that inputs the operating condition, the gain condition, and the initial condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model;
Prediction system.
 (技術13)
 技術1に記載の学習システムと、
 技術11に記載の予測システムとを備える、
 調整システム。
(Technique 13)
A learning system according to Technology 1;
and a prediction system according to technology 11.
Adjustment system.
 (他の実施の形態等)
 以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態または変形例にも適用可能である。
(Other embodiments, etc.)
As described above, the embodiments have been described as examples of the technology disclosed in this application. However, the technology according to this disclosure is not limited to these, and can be applied to embodiments or modified examples in which changes, substitutions, additions, omissions, etc. are appropriately made without departing from the spirit of this disclosure.
 また、本開示の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。たとえば、本開示は、学習システム、予測システム、または調整システムが行う処理(方法)をコンピュータ装置に実行させるためのプログラムとして実現されてもよいし、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 Furthermore, the general or specific aspects of the present disclosure may be realized as a system, device, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM. Also, the present disclosure may be realized as any combination of a system, device, method, integrated circuit, computer program, and recording medium. For example, the present disclosure may be realized as a program for causing a computer device to execute the processing (method) performed by a learning system, a prediction system, or an adjustment system, or as a computer-readable non-transitory recording medium on which the program is recorded.
 本開示に係る学習システム等は、サーボアンプに設定されるゲインパラメータを調整するために用いられるシステム等に利用可能である。 The learning system and the like disclosed herein can be used in systems used to adjust gain parameters set in servo amplifiers, etc.
 1   サーボアンプ
 2   モータ
 3   搬送装置
 10   調整システム
 20   学習システム
 21   初期条件取得部
 22   動作条件初期値取得部
 23   ゲイン条件取得部
 24,37   動作条件生成部
 25   動作条件入力部
 26   動作結果取得部
 27   学習データ取得部
 28   学習モデル生成部
 30   予測システム
 31   初期条件受付部
 32   動作条件受付部
 33   ゲイン条件受付部
 34   入力データ取得部
 35   学習モデル取得部
 36   予測結果出力部
REFERENCE SIGNS LIST 1 servo amplifier 2 motor 3 transport device 10 adjustment system 20 learning system 21 initial condition acquisition unit 22 operating condition initial value acquisition unit 23 gain condition acquisition unit 24, 37 operating condition generation unit 25 operating condition input unit 26 operating result acquisition unit 27 learning data acquisition unit 28 learning model generation unit 30 prediction system 31 initial condition reception unit 32 operating condition reception unit 33 gain condition reception unit 34 input data acquisition unit 35 learning model acquisition unit 36 prediction result output unit

Claims (13)

  1.  動作条件初期値に基づいて生成される動作条件、1種類以上のゲインパラメータのそれぞれのゲインパラメータ値を示すゲイン条件、および前記ゲイン条件が設定されたサーボアンプが前記動作条件に基づいてモータを動作させた場合の前記サーボアンプから出力される動作結果を取得する取得部と、
     前記取得部によって取得された前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習し、前記動作条件と前記ゲイン条件とが入力された場合に入力された前記動作条件と前記ゲイン条件とに基づいて前記サーボアンプが前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を予測する学習モデルを生成する学習モデル生成部とを備える、
     学習システム。
    an acquisition unit that acquires operating conditions generated based on initial values of operating conditions, gain conditions indicating respective gain parameter values of one or more types of gain parameters, and an operation result output from a servo amplifier in which the gain conditions are set and which operates a motor based on the operating conditions;
    a learning model generating unit that learns a relationship between the operation condition and the gain condition acquired by the acquiring unit and the operation result, and generates a learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition and the gain condition when the operation condition and the gain condition are input.
    Learning system.
  2.  前記取得部は、
     前記モータの慣性モーメントと前記モータによって駆動される搬送装置の負荷慣性モーメントとの比であるイナーシャ比、および前記搬送装置における摩擦を補償するための摩擦補償値を含む初期条件を取得するとともに、前記ゲイン条件および前記初期条件が設定された前記サーボアンプが前記動作条件に基づいて前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を取得する、
     請求項1に記載の学習システム。
    The acquisition unit is
    obtain initial conditions including an inertia ratio, which is a ratio between the moment of inertia of the motor and the moment of inertia of a load of a conveying device driven by the motor, and a friction compensation value for compensating for friction in the conveying device, and obtain the operation result output from the servo amplifier in a case where the servo amplifier, in which the gain condition and the initial condition are set, operates the motor based on the operation condition;
    The learning system according to claim 1 .
  3.  前記学習モデル生成部は、
     前記取得部によって取得された前記動作条件と前記ゲイン条件と前記初期条件と前記動作結果との関係性を学習し、前記動作条件と前記ゲイン条件と前記初期条件とが入力された場合に入力された前記動作条件と前記ゲイン条件と前記初期条件とに基づいて前記サーボアンプが前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を予測する前記学習モデルを生成する、
     請求項2に記載の学習システム。
    The learning model generation unit
    learning a relationship between the operation condition, the gain condition, the initial condition, and the operation result acquired by the acquisition unit, and generating the learning model that predicts the operation result output from the servo amplifier when the servo amplifier operates the motor based on the input operation condition, the gain condition, and the initial condition when the operation condition, the gain condition, and the initial condition are input;
    The learning system according to claim 2 .
  4.  前記動作条件初期値によって定まる前記動作条件を所定の規則にしたがって変化させることによって複数の前記動作条件を生成する動作条件生成部を備え、
     前記動作条件生成部は、前記サーボアンプが前記モータを動作させるための動作指令を生成するための前記複数の動作条件と、前記学習モデル生成部が前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習するための前記複数の動作条件とを生成する、
     請求項1から3のいずれか1項に記載の学習システム。
    an operating condition generating unit that generates a plurality of operating conditions by changing the operating conditions determined by the operating condition initial values in accordance with a predetermined rule;
    the operating condition generating unit generates the plurality of operating conditions for generating an operating command for the servo amplifier to operate the motor, and the learning model generating unit generates the plurality of operating conditions for learning a relationship between the operating conditions, the gain condition, and the operation result;
    A learning system according to any one of claims 1 to 3.
  5.  前記動作条件初期値は、前記モータを動作させる目標時間と、前記モータの最大速度と、前記モータの加速時間と、前記モータの減速時間とを含み、
     前記動作条件生成部は、前記動作条件初期値に含まれる前記最大速度と前記加速時間とから加速度を算出し、前記動作条件初期値に含まれる前記最大速度と前記減速時間とから減速度を算出し、前記学習モデル生成部が前記動作条件と前記ゲイン条件と前記動作結果との関係性を学習するための前記動作条件として、前記加速度と前記減速度とを含む前記動作条件を生成する、
     請求項4に記載の学習システム。
    the initial operating condition values include a target time for operating the motor, a maximum speed of the motor, an acceleration time of the motor, and a deceleration time of the motor;
    the operating condition generation unit calculates an acceleration from the maximum speed and the acceleration time included in the operating condition initial value, and calculates a deceleration from the maximum speed and the deceleration time included in the operating condition initial value, and generates the operating condition including the acceleration and the deceleration as the operating condition for the learning model generation unit to learn the relationship between the operating condition, the gain condition, and the operating result.
    The learning system according to claim 4.
  6.  前記動作条件生成部は、前記サーボアンプが前記モータを動作させるための動作指令を生成するための前記動作条件として、前記加速度と前記減速度とを含む前記動作条件に相応する前記動作条件を生成する、
     請求項5に記載の学習システム。
    the operating condition generating unit generates, as the operating condition for generating an operating command for the servo amplifier to operate the motor, an operating condition corresponding to the operating condition including the acceleration and the deceleration;
    The learning system according to claim 5 .
  7.  前記1種類以上のゲインパラメータは、複数種類のゲインパラメータであり、
     それぞれが前記1種類以上のゲインパラメータの1つ以上の前記ゲインパラメータ値の組み合わせを示し、かつ前記1つ以上のゲインパラメータ値の組み合わせが相互に異なる複数の組み合わせデータのそれぞれから前記ゲイン条件を取得するゲイン条件取得部を備え、
     前記取得部は、
     前記ゲイン条件取得部によって取得された前記ゲイン条件を取得する、
     請求項1から3のいずれか1項に記載の学習システム。
    the one or more types of gain parameters are a plurality of types of gain parameters,
    a gain condition acquisition unit that acquires the gain condition from each of a plurality of combination data, each of which indicates a combination of one or more gain parameter values of the one or more types of gain parameters and in which the combinations of the one or more gain parameter values are different from one another;
    The acquisition unit is
    acquiring the gain condition acquired by the gain condition acquisition unit;
    A learning system according to any one of claims 1 to 3.
  8.  前記ゲイン条件が設定された前記サーボアンプが前記動作条件に基づいて前記モータを動作させた場合の前記サーボアンプから出力される前記動作結果を取得する動作結果取得部を備え、
     前記取得部は、
     前記動作結果取得部によって取得された前記動作結果を取得する、
     請求項1から3のいずれか1項に記載の学習システム。
    an operation result acquisition unit that acquires the operation result output from the servo amplifier in which the gain condition is set and when the servo amplifier operates the motor based on the operation condition,
    The acquisition unit is
    acquiring the operation result acquired by the operation result acquisition unit;
    A learning system according to any one of claims 1 to 3.
  9.  前記動作条件および前記ゲイン条件の少なくとも一方を相互に異ならせて、A個(Aは2以上の整数)の前記サーボアンプに前記モータを動作させる動作条件入力部を備える、
     請求項1から3のいずれか1項に記載の学習システム。
    an operating condition input unit that causes A number of the servo amplifiers (A is an integer equal to or greater than 2) to operate the motor by making at least one of the operating condition and the gain condition different from each other;
    A learning system according to any one of claims 1 to 3.
  10.  前記A個のサーボアンプのうち1個を基準サーボアンプとした場合、
     前記動作条件入力部は、
     前記A個のサーボアンプのうち前記基準サーボアンプ以外のB(Bは1以上の整数)個の前記サーボアンプのそれぞれが前記モータを動作させた場合の当該サーボアンプから出力される前記動作結果が前記基準サーボアンプが前記モータを動作させた場合の前記基準サーボアンプから出力される前記動作結果と所定以上に乖離している場合、前記A個のサーボアンプから前記B個のサーボアンプを除外した(A-B)個の前記サーボアンプに次に前記モータを動作させる、
     請求項9に記載の学習システム。
    When one of the A servo amplifiers is set as a reference servo amplifier,
    The operating condition input unit includes:
    If the operation result output from each of B (B is an integer equal to or greater than 1) servo amplifiers other than the reference servo amplifier among the A servo amplifiers when the servo amplifier operates the motor deviates by a predetermined amount from the operation result output from the reference servo amplifier when the reference servo amplifier operates the motor, next operate the motor with (A-B) servo amplifiers, which are the A servo amplifiers excluding the B servo amplifiers.
    The learning system according to claim 9.
  11.  請求項1に記載の学習システムによって生成された前記学習モデルを取得する学習モデル取得部と、
     前記動作条件と前記ゲイン条件とを前記学習モデル取得部によって取得された前記学習モデルに入力し、前記学習モデルから出力された予測結果を出力する出力部とを備える、
     予測システム。
    A learning model acquisition unit that acquires the learning model generated by the learning system according to claim 1;
    an output unit that inputs the operation condition and the gain condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model;
    Prediction system.
  12.  請求項3に記載の学習システムによって生成された前記学習モデルを取得する学習モデル取得部と、
     前記動作条件と前記ゲイン条件と前記初期条件とを前記学習モデル取得部によって取得された前記学習モデルに入力し、前記学習モデルから出力された予測結果を出力する出力部とを備える、
     予測システム。
    A learning model acquisition unit that acquires the learning model generated by the learning system according to claim 3;
    an output unit that inputs the operating condition, the gain condition, and the initial condition into the learning model acquired by the learning model acquisition unit, and outputs a prediction result output from the learning model;
    Prediction system.
  13.  請求項1に記載の学習システムと、
     請求項11に記載の予測システムとを備える、
     調整システム。
    A learning system according to claim 1;
    and the prediction system according to claim 11.
    Adjustment system.
PCT/JP2023/037468 2022-10-27 2023-10-17 Learning system, predicting system, and adjusting system WO2024090284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172227 2022-10-27
JP2022-172227 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090284A1 true WO2024090284A1 (en) 2024-05-02

Family

ID=90830699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037468 WO2024090284A1 (en) 2022-10-27 2023-10-17 Learning system, predicting system, and adjusting system

Country Status (1)

Country Link
WO (1) WO2024090284A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260891A (en) * 2003-02-25 2004-09-16 Yaskawa Electric Corp Motor control device and method therefor
JP2018151884A (en) * 2017-03-13 2018-09-27 オムロン株式会社 Processing device, method of determining control parameter, and control parameter determination program
JP2021168548A (en) * 2020-04-09 2021-10-21 ミネベアミツミ株式会社 Motor control device, motor control method, learning device, learning method, and motor control system
JP6961130B1 (en) * 2021-01-07 2021-11-05 三菱電機株式会社 Simulation program, simulation device, and simulation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004260891A (en) * 2003-02-25 2004-09-16 Yaskawa Electric Corp Motor control device and method therefor
JP2018151884A (en) * 2017-03-13 2018-09-27 オムロン株式会社 Processing device, method of determining control parameter, and control parameter determination program
JP2021168548A (en) * 2020-04-09 2021-10-21 ミネベアミツミ株式会社 Motor control device, motor control method, learning device, learning method, and motor control system
JP6961130B1 (en) * 2021-01-07 2021-11-05 三菱電機株式会社 Simulation program, simulation device, and simulation method

Similar Documents

Publication Publication Date Title
US9990590B2 (en) Machine learning apparatus and method for optimizing smoothness of feed of feed axis of machine and motor control apparatus including machine learning apparatus
CN108693832B (en) Machine learning device and method, servo control device, and servo control system
US8868221B1 (en) Adaptive neural net feed forward system and method for adaptive control of mechanical systems
US20180262145A1 (en) Machine learning apparatus and method for learning correction value in motor current control, correction value computation apparatus including machine learning apparatus and motor driving apparatus
CN110286645B (en) Machine learning device, servo control system, and machine learning method
US10747193B2 (en) Machine learning apparatus, servo control apparatus, servo control system, and machine learning method
US10824121B2 (en) Machine learning device, servo motor controller, servo motor control system, and machine learning method
US6861814B2 (en) Control parameter automatic adjustment apparatus
JP6564432B2 (en) Machine learning device, control system, control device, and machine learning method
JP6490131B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
Bukkems et al. Learning-based identification and iterative learning control of direct-drive robots
US11914333B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
US11126149B2 (en) Control parameter adjusting device and adjusting method using machine learning
JP2017199313A (en) Manufacturing regulation system for regulating manufacturing situation of machines
WO2024090284A1 (en) Learning system, predicting system, and adjusting system
US10739734B2 (en) Motor control apparatus
JP4166157B2 (en) Electric motor control device
JP2002367875A (en) Process control system and process control method
JP6856591B2 (en) Control device, CNC device and control method of control device
US20030173928A1 (en) Servo control method
JP2009220997A (en) Door control device for elevator
JPH09146610A (en) Multivariable nonlinear process controller
CN116075782A (en) Parameter adjusting device and parameter adjusting method
Cuong et al. An adaptive LQG combined with the MRAS-based LFFC for motion control systems
JPH0721724B2 (en) Automatic control device