WO2024090241A1 - Chiller system and chiller system control method - Google Patents

Chiller system and chiller system control method Download PDF

Info

Publication number
WO2024090241A1
WO2024090241A1 PCT/JP2023/037189 JP2023037189W WO2024090241A1 WO 2024090241 A1 WO2024090241 A1 WO 2024090241A1 JP 2023037189 W JP2023037189 W JP 2023037189W WO 2024090241 A1 WO2024090241 A1 WO 2024090241A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiller
water
unit
sprinkler
water pressure
Prior art date
Application number
PCT/JP2023/037189
Other languages
French (fr)
Japanese (ja)
Inventor
清輝 馬越
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024090241A1 publication Critical patent/WO2024090241A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • This disclosure relates to a chiller system and a method for controlling a chiller system.
  • Patent Document 1 discloses that in a chiller group in which multiple chiller units are arranged side by side, the chiller units are equipped with a sprinkler device having multiple sprinkler tubes that can supply water to each side via a nozzle. Furthermore, Patent Document 1 discloses that the sprinkler tubes of the sprinkler device are configured to include a first sprinkler tube for sprinkling water to the end side of the chiller unit arranged at the end of the chiller group, and a second sprinkler tube for sprinkling water between the sides of adjacent chiller units.
  • Patent Document 2 discloses that the number of chillers in a cooling system is controlled based on the outside air temperature and the outlet liquid temperature of the supply junction pipe through which the refrigerant flows.
  • This disclosure has been made in consideration of these circumstances, and aims to provide a chiller system and a control method for a chiller system that prevents a sprinkler system from causing a shortage of water to be sprayed due to a drop in water supply pressure, and suppresses a decrease in the performance of the chiller unit.
  • a chiller system includes a chiller unit group including a plurality of chiller units arranged side by side at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure in the water supply pipe, and a control unit that controls the number of sprinkler devices in operation based on the water pressure measured by the water pressure detection unit.
  • a chiller system includes a chiller unit group including a plurality of chiller units arranged side by side at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure in the water supply pipe, and a control unit that adjusts the cycle of operation and stoppage of each sprinkler device based on the water pressure measured by the water pressure detection unit.
  • a method of controlling a chiller system includes a chiller unit group including a plurality of chiller units arranged in parallel with a space in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, and a water supply pipe connected to each of the sprinkler devices, the method comprising the steps of: measuring the water pressure of the water supply pipe; and controlling the number of sprinkler devices in operation based on the water pressure measured in the water pressure measuring step.
  • a method of controlling a chiller system includes a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, and a water supply pipe connected to each of the sprinkler devices, the method comprising the steps of: measuring the water pressure in the water supply pipe; and adjusting the cycle of operation and stoppage of each of the sprinkler devices based on the water pressure measured in the water pressure measuring step.
  • the present disclosure has the effect of preventing a shortage of water from the sprinkler system due to a drop in water supply pressure, and suppressing a decrease in the performance of the chiller unit.
  • FIG. 2 is a cross-sectional view illustrating adjacent chiller units according to an embodiment of the present disclosure.
  • FIG. 1 is a plan view illustrating a chiller system according to an embodiment of the present disclosure. 1 is a diagram illustrating an example of a refrigerant circuit showing a schematic configuration of a chiller unit according to an embodiment of the present disclosure.
  • FIG. 2 is a conceptual diagram showing the relationship between a host control unit and a chiller unit control device of a chiller system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a host control unit and a chiller unit control device according to an embodiment of the present disclosure.
  • FIG. 13 is a timing chart of control for sequentially switching between the sprinkler devices in operation when two sprinkler devices are operated according to an embodiment of the present disclosure.
  • 13 is an example diagram showing the relationship between the measurement value of the water pressure detection unit and the sprinkler operation time according to an embodiment of the present disclosure.
  • FIG. 13 is a timing chart of control for adjusting the cycles of operation time and stop time of a sprinkler device based on the measured value of a water pressure detection unit according to one embodiment of the present disclosure.
  • the chiller system 1 includes a plurality of chiller units 10 and sprinkler devices 30 (30-1 to 30-8) provided along a side surface 11a of each chiller unit 10.
  • the chiller units 10 are used as outdoor units of air conditioners installed in buildings such as large-scale buildings and warehouses.
  • the chiller units 10 circulate a refrigerant such as water between the chiller units 10 and an indoor unit (not shown) installed in the building.
  • the chiller units 10 cool the refrigerant, and the cooled refrigerant is supplied to a heat exchanger of the indoor unit and exchanges heat with the air in the room.
  • the multiple chiller units 10 are arranged side by side in a row with a gap between them in the horizontal direction.
  • the direction in which the chiller units 10 are arranged side by side (left to right direction on the paper in FIG. 1) is referred to as the arrangement direction H1.
  • Each chiller unit 10 extends in a horizontal direction perpendicular to the arrangement direction H1 (depth direction on the paper in FIG. 1 and up to down direction on the paper in FIG. 2) as the depth direction H2.
  • a chiller group is formed by arranging multiple chiller units 10 side by side.
  • the chiller unit 10 includes a casing 11 , a side opening (not shown), an upper opening (not shown), a heat exchanger 52 , a fan 53 , and a base 25 .
  • the base 25 is provided on an installation surface such as the rooftop of the building in which the chiller unit 10 is installed or the ground outside the building.
  • the base 25 extends upward from the installation surface in a vertical direction that is perpendicular to the horizontal direction.
  • the base 25 has therein a compressor (not shown) and chiller unit control devices 200 (200-1 to 200-8), etc.
  • the chiller unit control device 200 has a function of controlling the chiller unit 10, including the operation of the compressor, the rotation of the fan 53, the flow of the refrigerant inside the heat exchanger 52, etc.
  • the casing 11 accommodates the heat exchanger 52 and the fan 53 therein.
  • the casing 11 is provided on the base 25.
  • the casing 11 has a cylindrical shape extending in the vertical direction. The width dimension of the casing 11 in the horizontal direction in which the multiple chiller units 10 are adjacent to each other gradually increases from the lower end to the upper end.
  • the casing 11 illustrated in this embodiment has a trapezoidal shape that gradually expands from the bottom end to the top end when viewed from the depth direction H2 and the parallel installation direction H1.
  • the casing 11 has side openings (not shown) on both side surfaces 11a in the parallel installation direction H1.
  • the side openings are formed on the side surfaces 11a of the casing 11 facing the parallel installation direction H1 so as to penetrate the side surfaces 11a. That is, the inside and outside of the casing 11 are in communication via the side openings.
  • the side openings provided on the casings 11 of the chiller units 10 adjacent to each other in the parallel installation direction H1 face each other.
  • the lower end of the casing 11 is closed by the base 25.
  • the casing 11 has an upper opening at its upper end on the upper side in the vertical direction. The upper opening opens toward the top in the vertical direction.
  • the heat exchanger 52 is provided in the casing 11. In this embodiment, two heat exchangers 52 are provided for each casing 11. Furthermore, in this embodiment, the heat exchangers 52 are provided, one on each side, in the vicinity of the side surfaces 11a in the parallel installation direction H1, in each casing 11. The heat exchangers 52 are provided along the side surfaces 11a of the casing 11 so as to face the side openings.
  • the fan 53 is provided inside the casing 11.
  • the fan 53 is disposed near an upper opening inside the casing 11.
  • a plurality of the fans 53 are provided lined up in the depth direction H2 in Fig. 1.
  • a plurality of the fans 53 are provided inside the casing 11.
  • the fan 53 is a so-called axial fan that rotates around the central axis of each chiller unit 10 extending in the vertical direction, and has multiple blades arranged in a line in the circumferential direction centered on the central axis.
  • the fan 53 is driven to rotate around the central axis by a motor (not shown).
  • the fan 53 By rotating around the central axis, the fan 53 generates an air flow F, as shown in FIG. 1. More specifically, the fan 53 generates an air flow F from below to above by being driven to rotate around the central axis.
  • the fan 53 introduces air into the casing 11 from a side opening, and exhausts the introduced air from the upper opening via the heat exchanger 52.
  • FIG. 2 is a plan view showing the chiller system 1 according to one embodiment of the present disclosure.
  • the sprinkler device 30 has a sprinkler pipe 33, a plurality of nozzles 34, and an on-off valve 35 (35-1 to 35-8).
  • One end of a water supply pipe 31 is connected to each sprinkler device 30, and cooling water is supplied from a water supply tank (water supply source) 37 via the water supply pipe 31.
  • the sprinkler pipe 33 has a shape that branches into a first branch pipe 33a and a second branch pipe 33b.
  • a plurality of nozzles 34 are provided on the first branch pipe 33a and the second branch pipe 33b.
  • the sprinkler device 30 supplies cooling water to the space S between adjacent chiller units 10 and the side surface 11a of the chiller unit 10 in order to cool each chiller unit 10.
  • the water supply pipe 31 is a metal pipe and is connected to a plurality of sprinkler pipes 33.
  • the water supply pipe 31 is a pipe that supplies cooling water to the sprinkler pipes 33 in order to supply cooling water to the first branch pipe 33a and the second branch pipe 33b.
  • One end of the water supply pipe 31 is connected to a water supply tank 37 having a pump and the like that exists separately from the chiller group, and cooling water is supplied from the water supply tank 37 at a predetermined pressure to the inside of the water supply pipe 31 via the connected one end.
  • the sprinkler pipe 33 has a first branch pipe 33 a, a second branch pipe 33 b, and a plurality of nozzles 34.
  • a first branch pipe 33a and a second branch pipe 33b are provided for one chiller unit 10.
  • the first branch pipe 33a is a metal pipe and is arranged to extend along one side surface 11a of the casing 11 of the chiller unit 10 from its left end in the depth direction H2 in Figure 2 to its right end in the depth direction H2.
  • the second branch pipe 33b is a metal pipe and is arranged to extend along the other side 11a of the casing 11 of the chiller unit 10 from its left end in the depth direction H2 in Figure 2 to its right end in the depth direction H2.
  • the end of the first branch pipe 33a facing the rear side in the depth direction H2 is blocked to prevent the cooling water flowing inside from leaking out.
  • the same is true for the second branch pipe 33b.
  • the sprinkler pipe 33 is connected to the water supply pipe 31 in order to supply cooling water into the first branch pipe 33a and the second branch pipe 33b.
  • the sprinkler pipe 33 is provided with an on-off valve 35 (described later) for switching the supply of cooling water.
  • a plurality of nozzles 34 are provided at predetermined intervals in the first branch pipe 33a and the second branch pipe 33b so as to be capable of spraying water downward in the vertical direction.
  • the second branch pipe 33b can use a nozzle 34 to spray cooling water onto the other side 11a of the chiller unit 10 located at the other end in the parallel installation direction H1 and into the space near said side.
  • the nozzle 34 is a so-called fan-shaped nozzle made of metal that spreads out in a fan shape with a certain thickness from the spray position of the nozzle 34 to spray cooling water.
  • the nozzle 34 has an outlet (not shown) formed in a groove shape by cutting out a member near the outlet so that the central angle of the fan shape, which is the spray range in the depth direction H2 when viewed from the parallel installation direction H1, is 80° to 100°, preferably 90°.
  • a plurality of nozzles 34 are provided at predetermined positions on the first branch pipe 33a and the second branch pipe 33b at intervals.
  • the arrangement of the nozzles 34 may be changed as appropriate depending on the environment in which the water sprinkler device 30 is used.
  • the nozzle 34 provided in the first branch pipe 33a of the chiller unit 10 at one end in the parallel installation direction H1 sprays cooling water onto the side surface 11a on one side of each chiller unit 10 and the space near the side surface 11a.
  • the nozzle 34 provided in the second branch pipe 33b of the chiller unit 10 at the other end in the parallel installation direction H1 sprays cooling water onto the side surface 11a on the other side of the chiller unit 10 and the space near the side surface 11a.
  • Nozzles 34 provided on the first branch pipe 33a or the second branch pipe 33b spray cooling water into the space S partitioned between the sides of the chiller units 10 facing each other in the parallel installation direction H1, and onto both side surfaces 11a of the chiller units 10 facing each other.
  • the nozzles 34 provided on the first branch pipe 33a or the second branch pipe 33b can also spray water on areas around other chiller units 10 adjacent to the chiller unit 10 where water is being sprayed that are not being sprayed.
  • the on-off valve 35 is provided in each sprinkler device 30 and is a valve for switching between supplying water from the water supply tank 37 to the sprinkler device 30 and not supplying water.
  • the on-off valve 35 is provided, for example, in the sprinkler pipe 33.
  • the on-off valve 35 is controlled so that its open/closed state is switched in response to the operation or stop of each sprinkler device 30 being switched by the higher-level control unit (control unit) 100 described below.
  • the water pressure detection unit 32 is provided in the water supply pipe 31 and measures the water supply pressure of the water transported from the water supply tank 37 to each sprinkler device 30.
  • the water pressure detection unit 32 is connected to the higher-level control unit 100 (described later) via a communication medium, and is configured to be capable of two-way communication.
  • the water pressure detection unit 32 is preferably provided upstream of the transport path that transports the cooling water from the water supply tank 37 to the sprinkler device 30.
  • the temperature measurement unit 36 measures the outside air temperature in the environment in which the chiller unit group is installed.
  • a thermocouple is used as the temperature measurement unit 36.
  • the temperature measurement unit 36 is connected to the higher-level control unit 100 (described later) via a communication medium, and is configured to be capable of two-way communication.
  • FIG. 3 is a diagram illustrating an example of a refrigerant circuit showing a schematic configuration of the chiller unit 10 according to the embodiment of the present disclosure.
  • the chiller unit 10 has a configuration in which two refrigeration cycle systems, i.e., a first refrigeration cycle system R1 and a second refrigeration cycle system R2, and a water system section 43 are housed inside the housing of the chiller unit 10.
  • the first refrigeration cycle system R1 and the second refrigeration cycle system R2 are arranged in series in a water pipe 58.
  • the number of refrigeration cycle systems provided in the chiller unit 10 and the arrangement of the refrigeration cycle systems relative to the water piping 58 are not limited to the example described in this embodiment. For example, there may be a single or multiple refrigeration cycle systems, and in this embodiment, four refrigeration cycle systems are provided.
  • the multiple refrigeration cycle systems may be arranged in parallel in the water piping 58, or a combination of serial and parallel arrangements may be used.
  • the first refrigeration cycle system R1 and the second refrigeration cycle system R2 each include a compressor 45, an oil separator 46, a check valve 47, a four-way valve 48, a water heat exchanger 59 (first water heat exchanger 59A, second water heat exchanger 59B), a receiver 50, an electronic expansion valve 51, a heat exchanger 52, and a gas-liquid separator 54.
  • the heat exchanger 52 is provided with a fan 53.
  • the compressor 45 draws in gas refrigerant, compresses it, and discharges it.
  • the oil separator 46 separates the oil in the compressed refrigerant discharged from the compressor 45 and returns it to the compressor 45.
  • the check valve 47 prevents the compressed refrigerant from flowing back.
  • the four-way valve 48 has two selectable positions: a heating operation mode in which the compressed refrigerant discharged from the compressor 45 is sent to the water heat exchanger 59, and a cooling operation mode in which the refrigerant is sent to the heat exchanger 52.
  • the water heat exchanger 59 is a heat exchanger that functions as a condenser by condensing the compressed refrigerant in the heating operation mode, and as an evaporator by vaporizing the condensed refrigerant in the cooling operation mode.
  • the water flowing through the water system section 43 is heated or cooled by the heat of condensation or vaporization to generate hot water for heating, hot water or hot water for hot water supply, or cold water for cooling.
  • the first refrigeration cycle system R1 has a first water heat exchanger 59A
  • the second refrigeration cycle system R2 has a second water heat exchanger 59B.
  • the receiver 50 is a tank that stores a predetermined amount of condensed liquid refrigerant.
  • the electronic expansion valve 51 reduces the pressure of the condensed refrigerant to promote evaporation. Outside air is supplied to the heat exchanger 52 by a fan 53.
  • the heat exchanger 52 functions as an evaporator that vaporizes the condensed refrigerant in the heating operation mode, and as a condenser that condenses the compressed refrigerant in the cooling operation mode.
  • the gas-liquid separator 54 separates the refrigerant before it is drawn into the compressor 45, and draws only the gas refrigerant into the compressor 45.
  • the water system section 43 is configured with a water inlet section 55, a water pump 56, a water outlet section 57, and water piping 58.
  • the water pump 56 is installed in the water piping 58 extending from the water inlet section 55.
  • the chiller unit 10 is equipped with a refrigerant temperature detection unit 61 and a refrigerant pressure detection unit 62.
  • the refrigerant temperature detection unit 61 is installed upstream and/or downstream of the connection ports of the first water heat exchanger 59A and the second water heat exchanger 59B in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, and detects the temperature of the refrigerant flowing through the first refrigeration cycle system R1 and the second refrigeration cycle system R2.
  • the refrigerant pressure detection units 62 are installed on the suction side and discharge side of the compressor 45 in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, respectively, and detect the pressure of the refrigerant flowing through the first refrigeration cycle system R1 and the second refrigeration cycle system R2.
  • FIG. 4 is a conceptual diagram showing the relationship between the host control unit 100 and chiller unit control devices 200 (200-1 to 200-8) of the chiller system 1 according to an embodiment of the present disclosure.
  • the host control unit (control unit) 100 is connected via a communication medium to a chiller unit control device 200, which is a control device for each chiller unit 10, and is configured to be capable of two-way communication.
  • the host control unit 100 is, for example, a control unit that controls the entire chiller system 1, and has a function of determining which sprinkler device 30 is to be operated based on the operating status of each chiller unit 10 as described below, as well as controlling the number of chiller units 10 to be sprinkled.
  • the chiller unit control device 200 is provided in each chiller unit 10, and controls each chiller unit 10 based on a control command given from the host control unit 100.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the host control unit 100 and the chiller unit control device 200 according to an embodiment of the present disclosure.
  • the host control unit 100 and the chiller unit control device 200 provided in each chiller unit 10 are computer systems and include, for example, a CPU 81, a ROM (Read Only Memory) 82 for storing programs and the like executed by the CPU 81, a RAM (Random Access Memory) 83 that functions as a work area when each program is executed, a hard disk drive (HDD) 84 as a large-capacity storage device, and a communication unit 85 for connecting to a network or the like.
  • Other storage devices such as a solid state drive (SSD) may also be used as the large-capacity storage device.
  • SSD solid state drive
  • the upper level control unit 100 and the chiller unit control device 200 provided in each chiller unit 10 may include an input unit such as a keyboard or mouse, and a display unit such as a liquid crystal display device for displaying data.
  • FIG. 6 is a functional block diagram showing an example of a function related to controlling water spraying on the chiller unit 10, among the various control functions of the upper-level control unit 100.
  • the upper-level control unit 100 includes an information acquisition unit 101, a memory unit 102, a judgment unit 103, an on-off valve switching unit 104, a timer unit 105, and an abnormality detection unit 106.
  • the information acquisition unit 101 acquires the load of each chiller unit 10 as operation information from the chiller unit control device 200.
  • the information acquisition unit 101 acquires the measurement amount Pdet of the water pressure detection unit 32 provided in the water supply pipe 31 and the measurement value of the temperature measurement unit 36 as operation information.
  • the load on the chiller unit 10 may be, for example, the pressure of the refrigerant circulating within the chiller unit 10, the outside air temperature in the environment in which the chiller unit 10 is installed, the operating time of the sprinkler system 30 corresponding to the chiller unit 10, etc.
  • the memory unit 102 stores a reference value of the load on the chiller unit 10 to appropriately sprinkle water on each chiller unit 10.
  • the reference value of the load is a reference value used to determine whether the number of operating sprinkler devices 30 or the operating conditions are appropriate for the current load on the chiller unit 10.
  • the reference value may be a predetermined value set in advance by the user.
  • the memory unit 102 stores the past operating history of each chiller unit 10 and the sprinkler device 30, and the reference value may be set based on the past operating history.
  • the determination unit 103 determines which sprinkler device 30 should be operated based on the load of each chiller unit 10 acquired by the information acquisition unit 101. As a specific example, the determination unit 103 determines that it is necessary to perform sprinkling on the chiller unit 10 for which the highest refrigerant pressure is detected among the refrigerant pressures of the chiller units 10 acquired by the information acquisition unit 101.
  • the on-off valve switching unit 104 switches the on-off state of each on-off valve 35 in response to the operation or stop of each sprinkler device 30 based on the judgment result of the judgment unit 103. By opening only the on-off valve 35 corresponding to the sprinkler device 30 that performs water sprinkling, water is supplied only to the sprinkler device 30 that performs water sprinkling.
  • the timing unit 105 measures the operation time of the sprinkler device 30 corresponding to each chiller unit 10.
  • the operation time of the sprinkler device 30 is, for example, a continuous operation time or an accumulated operation time.
  • the judgment unit 103 may judge whether to operate or stop each sprinkler device 30 based on the operation time of each sprinkler device 30 measured by the timing unit 105.
  • the abnormality detection unit 106 detects that an abnormality has occurred in the operation of the chiller system 1 and notifies the user that an abnormality has occurred. For example, if the water pressure measured by the water pressure detection unit 32, Pdet, falls below a predetermined value set in advance for a predetermined period of time, an abnormality in the chiller system is detected and the user is notified of the abnormality in the chiller system 1.
  • FIG. 7 is a diagram showing an example of the relationship between the measured value Pdet of the water pressure detection unit 32 and the number of operating sprinkler devices 30.
  • the host control unit 100 has a map in which the number of sprinklers 30 that are operated simultaneously decreases as the measured water pressure amount Pdet measured by the water pressure detection unit 32 decreases. Then, based on the map, the number of sprinklers 30 in operation is controlled according to the measured water pressure amount Pdet of the water pressure detection unit 32. For example, when 0.8 MPa ⁇ Pdet, the judgment unit 103 judges that water can be supplied to eight sprinklers 30-1 to 30-8. Then, the host control unit 100 operates the sprinklers 30-1 to 30-8 based on the judgment result of the judgment unit 103.
  • the judgment unit 103 judges that water can be supplied to the four sprinkler devices 30.
  • the upper control unit 100 then operates the four sprinkler devices 30 based on the judgment result of the judgment unit 103.
  • the four sprinkler devices 30 that are operated are either a combination of 30-1, 30-3, 30-5, and 30-7, or a combination of 30-2, 30-4, 30-6, and 30-8. In this way, by operating every other sprinkler device 30 in the arrangement direction H1 in FIG. 2, cooling by sprinkling water is performed even for chiller units 10 for which the corresponding sprinkler device 30 is stopped.
  • the judgment unit 103 judges that water can be supplied to two sprinkler devices 30. Then, the upper control unit 100 operates the two sprinkler devices 30 based on the judgment result of the judgment unit 103.
  • the two sprinkler devices 30 to be operated are any of the combinations of 30-1 and 30-5, 30-2 and 30-6, 30-3 and 30-7, and 30-4 and 30-8.
  • the upper control unit 100 controls the operation or stop of each sprinkler device 30 so that the intervals between each operating sprinkler device 30 are equal. In this way, by controlling the intervals between the operating sprinkler devices 30 so that the intervals between the operating sprinkler devices 30 are equal, cooling by sprinkling water is also performed on chiller units 10 located at a point away from the operating sprinkler devices 30.
  • the upper control unit 100 uses the timing unit 105 to measure the operating time of each sprinkler device 30, and controls the sequential switching of the operating sprinkler device 30 at predetermined intervals. By sequentially switching the operating sprinkler device 30 at predetermined intervals, it is possible to prevent a situation in which a particular chiller unit 10 is not cooled by sprinkling water for a long period of time, and to suppress performance deterioration or failure caused by the extended operating time of a particular sprinkler device 30.
  • FIG. 8 is a timing chart of control for sequentially switching the operating sprinkler device 30 when two sprinkler devices 30 are operated.
  • Each of the sections separated by dashed lines at elapsed times t1 to t5 is equally spaced.
  • elapsed time t1 which is the start time of sprinkling
  • only sprinklers 30-1 and 30-5 are operated so that the operating sprinklers 30 are spaced at equal intervals, and the other sprinklers 30-2, 30-3, 30-4, 30-6, 30-7, and 30-8 are stopped.
  • chiller units 10-1, 10-2, 10-4, 10-5, and 10-6 are cooled by sprinkling water by sprinklers 30-1 and 30-5.
  • sprinkler devices 30-1 and 30-5 are stopped and control is switched to operate sprinkler devices 30-2 and 30-6.
  • chiller units 10-1, 10-2, 10-3, 10-5, 10-6, and 10-7 are cooled by sprinkler devices 30-2 and 30-6 spraying water.
  • sprinkler devices 30-2 and 30-6 are stopped, and control is switched to operate sprinkler devices 30-3 and 30-7.
  • chiller units 10-2, 10-3, 10-4, 10-6, 10-7, and 10-8 are cooled by sprinkler devices 30-3 and 30-7 spraying water.
  • sprinkler devices 30-3 and 30-7 are stopped, and control is switched to operate sprinkler devices 30-4 and 30-8.
  • chiller units 10-3, 10-4, 10-5, 10-7, and 10-8 are cooled by sprinkler devices 30-4 and 30-8 spraying water.
  • the upper control unit 100 limits the number of sprinkler devices 30 that operate simultaneously, and controls the sprinkler devices 30 that are spaced at equal intervals to operate simultaneously. Furthermore, the upper control unit 100 switches the operating sprinkler device 30 at predetermined intervals. As a result, each chiller unit 10 is cooled sequentially, which makes it possible to suppress performance degradation of chiller units 10 installed at a position distant from the operating sprinkler device 30.
  • the number of sprinkler devices 30 operating simultaneously may be changed as appropriate based on the measured water pressure amount Pdet, user settings, the operating state of the chiller system 1, etc.
  • the water pressure detection unit 32 is provided in the water supply pipe 31, but it may also be provided in the sprinkler pipe 33, the first branch pipe 33a, or the second branch pipe 33b, and may be changed as appropriate based on the user's usage conditions.
  • the upper control unit 100 may detect abnormalities in each chiller unit 10 or the chiller system 1 equipped with each sprinkler device 30 based on the measurement value Pdet of the water pressure detection unit 32 when each sprinkler device 30 is operating.
  • the storage unit 102 included in the upper control unit 100 stores an allowable time length during which the measured water pressure Pdet measured by the water pressure detection unit 32 falls below a predetermined value.
  • the time length is a time that is set in advance by the user.
  • the timer unit 105 times the time length during which the measured water pressure Pdet falls below the predetermined value.
  • the abnormality detection unit 106 judges whether the length of time that the measured water pressure Pdet measured by the timer unit 105 falls below a predetermined value is equal to or longer than the allowable length of time stored in the memory unit 102. If the length of time that the measured water pressure Pdet falls below the predetermined value is equal to or longer than the allowable length of time, the abnormality detection unit 106 notifies the user that an abnormality has occurred in the water supply path of the water source in the chiller system 1, and that the supply of water to each sprinkler device 30 and the cooling of each chiller unit 10 cannot be performed sufficiently, and urges the user to perform maintenance on the chiller system 1.
  • the water pressure of the water supplied to each sprinkler device 30 is measured by the water pressure detection unit 32, and the time length during which the measured water pressure Pdet falls below a predetermined value is measured by the timing unit 105.
  • the abnormality detection unit 106 can then measure the presence or absence of an abnormality in the operating state of the chiller system 1 based on the timing results of the timing unit 105. Furthermore, the abnormality detection unit 106 can prompt the user to perform maintenance, thereby enabling the abnormality in the chiller system 1 to be resolved early.
  • the upper control unit 100 is capable of two-way communication with each chiller unit control device 200, and may determine a malfunction of the chiller unit 10 or the sprinkler system 30 based on the measured value Pdet of the water pressure detection unit 32, which is operating information.
  • the memory unit 102 stores, as operation information, the measured amount Pdet of the water pressure detection unit 32 acquired by the information acquisition unit 101 and the change in load of each chiller unit 10 corresponding to the combination of each operating sprinkler device 30. This makes it possible to store the amount of change in load of each chiller unit 10 when each sprinkler device 30 is operated in association with the measured amount Pdet of the water pressure detection unit 32.
  • the judgment unit 103 compares the current operation information of the chiller unit 10 acquired by the information acquisition unit 101 with the past operation information of the chiller unit 10 when the currently operating sprinkler system 30 was operated in the past. Then, if the comparison shows that the change in the load of the chiller unit 10 corresponding to the operation of a specific sprinkler system 30 is significantly different from the past operation information, it judges that the operation of the chiller unit 10 is not normal. In other words, it judges that there is a malfunction of the chiller unit 10 or the sprinkler system 30.
  • the abnormality detection unit 106 notifies the user that the chiller unit 10 or the sprinkler system 30 may be malfunctioning. This allows the user to know that the chiller system 1 is not functioning normally, and allows the user to promptly carry out maintenance on the malfunctioning chiller unit 10 or sprinkler system 30.
  • the judgment unit 103 judges whether the chiller unit 10 or the sprinkler system 30 is faulty based on the measured water pressure Pdet, but it may also determine whether a fault has occurred based on the load of each chiller unit 10, the measurement value of the temperature measurement unit 36, and the open/close state of the on-off valve 35, thereby more precisely identifying whether the chiller unit 10 or the sprinkler system 30 is faulty.
  • the number of operating sprinkler devices 30 is controlled based on the measured amount Pdet of the water pressure detection unit 32, thereby making it possible to supply water to each sprinkler device 30 and cool each chiller unit 10.
  • This embodiment is characterized in that the cycle of operation time and stop time of the sprinkler device 30 is adjusted based on the measured amount Pdet of the water pressure detection unit 32 provided in the water supply pipe 31.
  • Figure 9 is an example diagram showing the relationship between the measured value Pdet of the water pressure detection unit 32 and the operating time.
  • Figure 10 is a timing chart of the control that adjusts the cycle of the operating time and stop time of the sprinkler device 30 based on the measured value Pdet of the water pressure detection unit 32. Each section separated by a dashed line at elapsed times t1 to t6 is equally spaced.
  • the operation cycle of each sprinkler 30 is adjusted so that an operation time of 10 seconds and a stop time of 20 seconds is repeated as one cycle.
  • the measured water pressure amount Pdet is equal to or greater than the preset value of 0.4 MPa
  • sufficient water to cool each chiller unit 10 is supplied to each sprinkler 30, so that each chiller unit 10 can be cooled even if the operation time is shorter than the stop time.
  • the chiller system 1 is made more efficient.
  • the operation cycle of each sprinkler 30 is adjusted to repeat a cycle of 20 seconds of operation and 10 seconds of stoppage.
  • the operation time is made longer than the stoppage time to ensure cooling of each chiller unit 10. In this way, even if the supply of water supplied to each sprinkler 30 is reduced, each chiller unit 10 is cooled, so the performance of each chiller unit 10 can be reduced.
  • FIG. 10 is a timing chart of the control that adjusts the cycle of operation time and stop time of the sprinkler device 30 based on the measured amount Pdet of the water pressure detection unit 32.
  • the upper timing chart is a timing chart when the measured amount Pdet is equal to or greater than the preset value of 0.4 MPa.
  • the lower timing chart is a timing chart when the measured amount Pdet is less than the preset value of 0.4 MPa. All of the intervals separated by dashed lines at elapsed times t1 to t6 are equally spaced. As an example, the time interval between each interval is 10 seconds.
  • the upper control unit 100 adjusts the operation cycle of each sprinkler device 30 to a cycle in which the operation time is shorter than the stop time.
  • the water pressure measured by the water pressure detection unit 32 is Pdet ⁇ 0.4 MPa
  • water is supplied to each sprinkler device 30, and the upper control unit 100 adjusts the operation cycle of each sprinkler device 30 to a cycle in which the operation time is longer than the stop time.
  • the operation cycle of the sprinkler device 30 is adjusted to a cycle in which the operation time is shorter than the stop time.
  • the operation cycle of the sprinkler device 30 is adjusted to a cycle in which the operation time is longer than the stop time.
  • the chiller system (1) comprises a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe (31) connected to each sprinkler device, a water pressure detection unit (32) that measures the water pressure in the water supply pipe, and a control unit (100) that controls the number of sprinkler devices in operation based on the water pressure measured by the water pressure detection unit.
  • the chiller system includes a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure of the water supply pipe, and a control unit that controls the number of operating sprinkler devices based on the water pressure detected by the water pressure detection unit. That is, the control unit switches the number of operating sprinkler devices that sprinkle water based on the water pressure of the water flowing through the water supply pipe measured by the water pressure detection unit.
  • the control unit can reduce the number of sprinkler devices based on the measured water pressure. As a result, even if the water pressure of the water supply for cooling the chiller unit decreases, it is possible to prevent a shortage of water sprinkling to the chiller unit and suppress a decrease in performance of the chiller unit.
  • control unit is provided with a map that determines the number of sprinkler devices that are operated simultaneously as the water pressure measured by the water pressure detection unit decreases.
  • the control unit is provided with a map in which the lower the water pressure measured by the water pressure detection unit, the fewer the number of sprinklers that are operated simultaneously. In other words, the smaller the amount of water that can be supplied from the water supply source to each sprinkler device, the fewer the number of operating sprinkler devices that are the supply destination. This allows appropriate cooling by sprinkling water on the chiller unit in which the sprinkler device is operating, even when the amount of water that can be supplied to the sprinkler device is small, and suppresses deterioration in the performance of the chiller unit.
  • the chiller system according to the third aspect of the present disclosure in the first or second aspect, sequentially switches between the operating sprinkler devices among the plurality of sprinkler devices at predetermined time intervals.
  • control unit sequentially switches the operating sprinkler device among the multiple sprinkler devices at predetermined time intervals. This allows the chiller units that provide the cooling effect of sprinkling water to be switched sequentially, making it possible to efficiently cool all chiller units.
  • the chiller system according to the fourth aspect of the present disclosure is any one of the first to third aspects, in which the intervals between the operating sprinkler devices are equal.
  • the multiple sprinkler devices are spaced equally apart from one another when in operation.
  • the chiller units in which cooling by sprinkling is performed are switched every predetermined time while maintaining equal spacing between the operating sprinkler devices. This allows all chiller units to obtain the cooling effect of sprinkling water in turn at predetermined times, so that all chiller units can be cooled evenly.
  • the chiller system (1) comprises a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe (31) connected to each of the sprinkler devices, a water pressure detection unit (32) that measures the water pressure of the water supply pipe, and a control unit (100) that adjusts the cycle of operation time and stop time of each of the sprinkler devices based on the water pressure measured by the water pressure detection unit.
  • the control unit adjusts the period of operation time and stop time of each of the sprinkler devices based on the water pressure measured by the water pressure detection unit. For example, if the water pressure of the water flowing through the water supply pipe is sufficient to sprinkle water on each chiller unit, the operation time of the sprinkler device is extended and the stop time is shortened. If the water pressure of the water flowing through the water supply pipe is low and it is not possible to properly sprinkle water on each chiller unit, the operation time of the sprinkler device is shortened and the stop time is lengthened. In this way, the control unit adjusts the operation time and stop time of each sprinkler device based on the measurement results of the water pressure detection unit so that the chiller units are properly sprinkled. As a result, even if the water pressure of the water supply pipe is low, each chiller unit can be cooled by each sprinkler device, and a decrease in performance of each chiller unit can be suppressed.
  • control unit further includes an abnormality detection unit (106) that measures and notifies the user that an abnormality has occurred in the chiller system, and the abnormality detection unit detects an abnormality in the chiller system when the water pressure measured by the water pressure detection unit falls below a predetermined value set in advance for a predetermined period of time, and notifies the user of the abnormality in the chiller system.
  • an abnormality detection unit (106) that measures and notifies the user that an abnormality has occurred in the chiller system, and the abnormality detection unit detects an abnormality in the chiller system when the water pressure measured by the water pressure detection unit falls below a predetermined value set in advance for a predetermined period of time, and notifies the user of the abnormality in the chiller system.
  • control unit further includes an abnormality detection unit that detects and notifies the user that an abnormality has occurred in the chiller system, and the abnormality detection unit detects an abnormality in the chiller system and notifies the user of the abnormality in the chiller system when the water pressure detected by the water pressure detection unit falls below a predetermined value set in advance for a predetermined period of time.
  • the chiller system is any one of the first to sixth aspects, in which the control unit includes a memory unit (102) that stores, for each sprinkler device, the water pressure of the water flowing through the water supply pipe when the sprinkler device is operating, and the control unit determines whether or not there is a malfunction in the chiller unit or the sprinkler device based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit.
  • the control unit includes a memory unit (102) that stores, for each sprinkler device, the water pressure of the water flowing through the water supply pipe when the sprinkler device is operating, and the control unit determines whether or not there is a malfunction in the chiller unit or the sprinkler device based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit.
  • the control unit includes a memory unit that stores, for each sprinkler device, the water pressure of the water flowing through the water supply pipe when the sprinkler device is operating, and the control unit determines whether or not the chiller unit is faulty based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit. This allows for prompt maintenance of a faulty chiller unit or sprinkler device.
  • the control method for a chiller system (1) includes a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, and a water supply pipe (31) connected to each of the sprinkler devices, and includes the steps of measuring the water pressure in the water supply pipe and controlling the number of sprinkler devices in operation based on the water pressure detected in the water pressure measuring step.
  • the control method for a chiller system (1) in a chiller system including a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, and a water supply pipe (31) connected to each of the sprinkler devices, includes a step of detecting the water pressure in the water supply pipe, and a step of adjusting the cycle of operation time and stop time of each of the sprinkler devices based on the water pressure detected in the step of measuring the water pressure.
  • Chiller system 10 (10-1 to 10-8) Chiller unit 11 Casing 11a Side 25 Base 30 (30-1 to 30-8) Sprinkler device 31 Water supply pipe 32 Water pressure detection unit 33 Sprinkler pipe 33a First branch pipe 33b Second branch pipe 34 Nozzle 35 (35-1 to 35-8) Opening and closing valve 36 Temperature measurement unit 37 Water supply tank 43 Water system unit 45 Compressor 46 Oil separator 47 Check valve 48 Four-way valve 50 Receiver 51 Electronic expansion valve 52 Heat exchanger 53 Fan 54 Gas-liquid separator 55 Water inlet unit 56 Water pump 57 Water outlet unit 58 Water piping 59 Water heat exchanger 59A First water heat exchanger 59B Second water heat exchanger 61 Refrigerant temperature detection unit 62 Refrigerant pressure detection unit 81 CPU 82 ROM 83 RAM 84 HDD 85 Communication unit 88 Bus 100 Upper control unit 101 Information acquisition unit 102 Memory unit 103 Determination unit 104 On-off valve switching unit 105 Time measurement unit 106 Abnormality detection unit 200 Chiller unit control device F Air flow H1 Parallel installation direction H2 Depth direction P

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided are a chiller system and a chiller system control method which prevent an insufficient amount of water sprinkling by a water sprinkler device due to a drop in a water supply pressure, thereby suppressing a deterioration in the performance of a chiller unit. A chiller system (1) comprises: a chiller unit group comprising a plurality of chiller units (10) arranged side by side at intervals in one direction; water sprinkler devices (30) which are provided to correspond to each chiller unit and which sprinkle water onto the chiller unit; a water supply pipe (31) connected to each water sprinkler device; a water pressure detecting unit (32) for measuring a water pressure in the water supply pipe; and a control unit (100) for controlling the number of water sprinkler devices that operate, on the basis of the water pressure measured by the water pressure detecting unit.

Description

チラーシステム及びチラーシステムの制御方法Chiller system and method for controlling chiller system
 本開示は、チラーシステム及びチラーシステムの制御方法に関するものである。 This disclosure relates to a chiller system and a method for controlling a chiller system.
 従来、複数のチラーユニットが並列されたチラー群において、各チラーユニットに対する散水量の制御は、チラーユニット毎にチラーユニット単体の運転状況に基づいて制御されていた。  Previously, in a chiller group in which multiple chiller units were arranged in parallel, the amount of water sprayed on each chiller unit was controlled for each chiller unit based on the operating status of each individual chiller unit.
 特許文献1には、複数のチラーユニットが並設されたチラー群において、チラーユニットは、ノズルを介して各側面に水を供給可能な複数の散水管を有する散水装置を備えていることが開示されている。さらに、特許文献1には、散水装置の散水管は、チラー群の端部に配置されるチラーユニットの端側側面に水を散布するため第一散水管と、互いに隣り合うチラーユニットの側面同士の間に水を散布する第二散水管とを含む構成が開示されている。 Patent Document 1 discloses that in a chiller group in which multiple chiller units are arranged side by side, the chiller units are equipped with a sprinkler device having multiple sprinkler tubes that can supply water to each side via a nozzle. Furthermore, Patent Document 1 discloses that the sprinkler tubes of the sprinkler device are configured to include a first sprinkler tube for sprinkling water to the end side of the chiller unit arranged at the end of the chiller group, and a second sprinkler tube for sprinkling water between the sides of adjacent chiller units.
 特許文献2には、外気の温度と冷媒が流れる供給合流管の出口液温に基づいて、チラー冷却系の台数制御が行われることが開示されている。 Patent Document 2 discloses that the number of chillers in a cooling system is controlled based on the outside air temperature and the outlet liquid temperature of the supply junction pipe through which the refrigerant flows.
特開2022-75268号公報JP 2022-75268 A 特開2021-92370号公報JP 2021-92370 A
 しかしながら、例えば、特許文献2に記載されているような温度に基づいてチラー冷却系の台数を制御したとしても、散水装置の運転台数に応じて水圧が変化した場合に、散水装置の運転台数に対して水圧が低いと各散水装置へ散水を行うための給水圧が低下してしまい、散水が必要なチラーユニットを十分に冷却することができず、チラーユニットの性能低下を招いてしまう虞があった。 However, even if the number of chiller cooling systems is controlled based on temperature as described in Patent Document 2, for example, if the water pressure changes depending on the number of operating sprinkler devices, if the water pressure is low compared to the number of operating sprinkler devices, the water supply pressure for sprinkling water to each sprinkler device will decrease, and chiller units that require water sprinkling cannot be sufficiently cooled, which could lead to a decrease in performance of the chiller units.
 本開示は、このような事情に鑑みてなされたものであって、給水圧の低下に伴う散水装置の散水量不足を防止し、チラーユニットの性能低下を抑制するチラーシステム及びチラーシステムの制御方法を提供することを目的とする。 This disclosure has been made in consideration of these circumstances, and aims to provide a chiller system and a control method for a chiller system that prevents a sprinkler system from causing a shortage of water to be sprayed due to a drop in water supply pressure, and suppresses a decrease in the performance of the chiller unit.
 本開示の幾つかの実施形態における一態様に係るチラーシステムは、一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、各前記散水装置に接続される給水管と、前記給水管の水圧を計測する水圧検知部と、前記水圧検知部により計測された水圧に基づいて、前記散水装置の運転台数を制御する制御部とを備える。 A chiller system according to one aspect of some embodiments of the present disclosure includes a chiller unit group including a plurality of chiller units arranged side by side at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure in the water supply pipe, and a control unit that controls the number of sprinkler devices in operation based on the water pressure measured by the water pressure detection unit.
 本開示の幾つかの実施形態における一態様に係るチラーシステムは、一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、各前記散水装置に接続される給水管と、前記給水管の水圧を計測する水圧検知部と、前記水圧検知部によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する制御部とを備える。 A chiller system according to one aspect of some embodiments of the present disclosure includes a chiller unit group including a plurality of chiller units arranged side by side at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure in the water supply pipe, and a control unit that adjusts the cycle of operation and stoppage of each sprinkler device based on the water pressure measured by the water pressure detection unit.
 本開示の幾つかの実施形態における一態様に係るチラーシステムの制御方法は、一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、各前記散水装置に接続される給水管と、を備えるチラーシステムにおいて、前記給水管の水圧を計測する工程と、前記水圧を計測する工程により計測された水圧に基づいて、前記散水装置の運転台数を制御する工程とを有する。 A method of controlling a chiller system according to one aspect of some embodiments of the present disclosure includes a chiller unit group including a plurality of chiller units arranged in parallel with a space in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, and a water supply pipe connected to each of the sprinkler devices, the method comprising the steps of: measuring the water pressure of the water supply pipe; and controlling the number of sprinkler devices in operation based on the water pressure measured in the water pressure measuring step.
 本開示の幾つかの実施形態における一態様に係るチラーシステムの制御方法は、一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、各前記散水装置に接続される給水管と、を備えるチラーシステムにおいて、前記給水管の水圧を計測する工程と、前記水圧を計測する工程によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する工程とを有する。 A method of controlling a chiller system according to one aspect of some embodiments of the present disclosure includes a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water on the chiller unit, and a water supply pipe connected to each of the sprinkler devices, the method comprising the steps of: measuring the water pressure in the water supply pipe; and adjusting the cycle of operation and stoppage of each of the sprinkler devices based on the water pressure measured in the water pressure measuring step.
 本開示によれば、給水圧の低下に伴う散水装置の散水量不足を防止し、チラーユニットの性能低下を抑制することができるという効果を奏する。 The present disclosure has the effect of preventing a shortage of water from the sprinkler system due to a drop in water supply pressure, and suppressing a decrease in the performance of the chiller unit.
本開示の一実施形態に係る互いに隣り合う複数のチラーユニットを示す断面図である。FIG. 2 is a cross-sectional view illustrating adjacent chiller units according to an embodiment of the present disclosure. 本開示の一実施形態に係るチラーシステムを示す平面図である。FIG. 1 is a plan view illustrating a chiller system according to an embodiment of the present disclosure. 本開示の一実施形態に係るチラーユニットの概略構成を示す冷媒回路の例図である。1 is a diagram illustrating an example of a refrigerant circuit showing a schematic configuration of a chiller unit according to an embodiment of the present disclosure. 本開示の一実施形態に係るチラーシステムの上位制御部及びチラーユニット制御装置の関係を示した概念図である。FIG. 2 is a conceptual diagram showing the relationship between a host control unit and a chiller unit control device of a chiller system according to an embodiment of the present disclosure. 本開示の一実施形態に係る上位制御部及びチラーユニット制御装置のハードウェア構成の一例を示した図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a host control unit and a chiller unit control device according to an embodiment of the present disclosure. 本開示の一実施形態に係る上位制御部が備える各種制御機能のうち、チラーユニットへの散水制御に関係する機能の一例を示した機能ブロック図である。A functional block diagram showing an example of a function related to water sprinkling control for a chiller unit, among various control functions provided in an upper control unit according to an embodiment of the present disclosure. 本開示の一実施形態に係る水圧検知部の計測量と散水装置の運転台数の関係を示した例図である。10 is an example diagram showing the relationship between the measurement amount of the water pressure detection unit and the number of operating sprinkler devices according to an embodiment of the present disclosure. FIG. 本開示の一実施形態に係る2台の散水装置を運転した場合に、運転する散水装置を順次切替える制御のタイミングチャートである。13 is a timing chart of control for sequentially switching between the sprinkler devices in operation when two sprinkler devices are operated according to an embodiment of the present disclosure. 本開示の一実施形態に係る水圧検知部の計測量と散水装置運転時間の関係を示した例図である。13 is an example diagram showing the relationship between the measurement value of the water pressure detection unit and the sprinkler operation time according to an embodiment of the present disclosure. FIG. 本開示の一実施形態に係る水圧検知部の計測量に基づいて散水装置の運転時間及び停止時間の周期を調整する制御のタイミングチャートである。13 is a timing chart of control for adjusting the cycles of operation time and stop time of a sprinkler device based on the measured value of a water pressure detection unit according to one embodiment of the present disclosure.
[第1実施形態]
 以下、本開示の一実施形態に係るチラーシステム及びチラーシステムの制御方法について、図面を参照して説明する。
[First embodiment]
Hereinafter, a chiller system and a control method for a chiller system according to an embodiment of the present disclosure will be described with reference to the drawings.
 図1は、本開示の一実施形態に係る互いに隣り合う複数のチラーユニット10(10-1~10-8)を示す断面図である。チラーユニット10の各構成要素の符号については、チラーユニット10-1にのみ記載しているが、チラーユニット10-2~10-8についても同様の構成を備える。
 チラーシステム1は、複数のチラーユニット10と、各チラーユニット10の側面11aに沿って設けられた散水装置30(30-1~30-8)と、を備えている。チラーユニット10は、大規模建築物や倉庫等の建物に設置される空気調和機の室外ユニットとして用いられる。チラーユニット10は、建物内に設置された室内ユニット(不図示)との間で、水等の冷媒を循環させる。チラーユニット10は、冷媒を冷却し、冷却された冷媒は、室内ユニットの熱交換器へ供給され、室内の空気と熱交換を行う。
1 is a cross-sectional view showing adjacent chiller units 10 (10-1 to 10-8) according to an embodiment of the present disclosure. Although the reference numerals of the components of the chiller unit 10 are only shown for chiller unit 10-1, chiller units 10-2 to 10-8 have the same configuration.
The chiller system 1 includes a plurality of chiller units 10 and sprinkler devices 30 (30-1 to 30-8) provided along a side surface 11a of each chiller unit 10. The chiller units 10 are used as outdoor units of air conditioners installed in buildings such as large-scale buildings and warehouses. The chiller units 10 circulate a refrigerant such as water between the chiller units 10 and an indoor unit (not shown) installed in the building. The chiller units 10 cool the refrigerant, and the cooled refrigerant is supplied to a heat exchanger of the indoor unit and exchanges heat with the air in the room.
 複数のチラーユニット10は、水平方向に間隔を空けて一列に並設されている。以下では、チラーユニット10が並設されている方向(図1の紙面左右方向)を並設方向H1と称する。各チラーユニット10は、並設方向H1に直交する水平方向(図1の紙面奥行方向及び図2の紙面上下方向)を奥行方向H2として延びている。これら複数のチラーユニット10が並設されることによって、チラー群が構成されている。 The multiple chiller units 10 are arranged side by side in a row with a gap between them in the horizontal direction. Hereinafter, the direction in which the chiller units 10 are arranged side by side (left to right direction on the paper in FIG. 1) is referred to as the arrangement direction H1. Each chiller unit 10 extends in a horizontal direction perpendicular to the arrangement direction H1 (depth direction on the paper in FIG. 1 and up to down direction on the paper in FIG. 2) as the depth direction H2. A chiller group is formed by arranging multiple chiller units 10 side by side.
(チラーユニット)
 チラーユニット10は、ケーシング11と、側部開口(不図示)と、上部開口(不図示)と、熱交換器52と、ファン53と、基部25と、を備えている。
(Chiller unit)
The chiller unit 10 includes a casing 11 , a side opening (not shown), an upper opening (not shown), a heat exchanger 52 , a fan 53 , and a base 25 .
(基部)
 基部25は、チラーユニット10が設置される建物の屋上や、建物の外部の地面等の設置面上に設けられている。基部25は、設置面から水平方向に対して垂直である上下方向の上方に向かって延びている。
 基部25は、内部に圧縮機(不図示)やチラーユニット制御装置200(200-1~200-8)等を有している。チラーユニット制御装置200は、圧縮機の動作や、ファン53の回転、熱交換器52内部での冷媒の流通等を含めたチラーユニット10を制御する機能を有している。
(base)
The base 25 is provided on an installation surface such as the rooftop of the building in which the chiller unit 10 is installed or the ground outside the building. The base 25 extends upward from the installation surface in a vertical direction that is perpendicular to the horizontal direction.
The base 25 has therein a compressor (not shown) and chiller unit control devices 200 (200-1 to 200-8), etc. The chiller unit control device 200 has a function of controlling the chiller unit 10, including the operation of the compressor, the rotation of the fan 53, the flow of the refrigerant inside the heat exchanger 52, etc.
(ケーシング)
 ケーシング11は、熱交換器52と、ファン53と、を内部に収容している。本実施形態では、ケーシング11が、基部25上に設けられている。さらに、ケーシング11は、上下方向に延びる筒状をなしている。複数台のチラーユニット10が隣り合う水平方向におけるケーシング11の幅寸法は、下端から上端に向かって漸次拡大している。
(casing)
The casing 11 accommodates the heat exchanger 52 and the fan 53 therein. In this embodiment, the casing 11 is provided on the base 25. Furthermore, the casing 11 has a cylindrical shape extending in the vertical direction. The width dimension of the casing 11 in the horizontal direction in which the multiple chiller units 10 are adjacent to each other gradually increases from the lower end to the upper end.
 すなわち、本実施形態で例示するケーシング11は、奥行方向H2及び並設方向H1から見た時に、下端から上端に向かって漸次拡大する台形状をなしている。 In other words, the casing 11 illustrated in this embodiment has a trapezoidal shape that gradually expands from the bottom end to the top end when viewed from the depth direction H2 and the parallel installation direction H1.
 これにより、並設方向H1に互いに隣り合うチラーユニット10において、一方のチラーユニット10のケーシング11と、他方のチラーユニット10のケーシング11との空間Sは、上下方向の下方から上方に向かって漸次狭くなっている。 As a result, in chiller units 10 adjacent to each other in the parallel installation direction H1, the space S between the casing 11 of one chiller unit 10 and the casing 11 of the other chiller unit 10 becomes gradually narrower from bottom to top in the vertical direction.
 ケーシング11は、並設方向H1の両側側面11aに、側部開口(不図示)を有している。側部開口は、ケーシング11において並設方向H1を向く側面11aに該側面11aを貫通するように形成されている。即ち、側部開口を介して、ケーシング11の内外は、連通している。そして、並設方向H1に互いに隣り合うチラーユニット10のケーシング11に設けられた側部開口同士は互いに対向している。ケーシング11の下端は、基部25によって閉塞されている。ケーシング11は、上下方向の上方側の上端に、上部開口を有している。上部開口は、上下方向の上方に向かって開口している。 The casing 11 has side openings (not shown) on both side surfaces 11a in the parallel installation direction H1. The side openings are formed on the side surfaces 11a of the casing 11 facing the parallel installation direction H1 so as to penetrate the side surfaces 11a. That is, the inside and outside of the casing 11 are in communication via the side openings. The side openings provided on the casings 11 of the chiller units 10 adjacent to each other in the parallel installation direction H1 face each other. The lower end of the casing 11 is closed by the base 25. The casing 11 has an upper opening at its upper end on the upper side in the vertical direction. The upper opening opens toward the top in the vertical direction.
(熱交換器)
 熱交換器52は、ケーシング11内に設けられている。本実施形態の熱交換器52は、一つのケーシング11に対して二つずつ設けられている。さらに、本実施形態における熱交換器52は、一つのケーシング11内において、並設方向H1における両側側面11a付近に一つずつ設けられている。熱交換器52は、それぞれケーシング11の側面11aに沿って側部開口に対向するように設けられている。
(Heat exchanger)
The heat exchanger 52 is provided in the casing 11. In this embodiment, two heat exchangers 52 are provided for each casing 11. Furthermore, in this embodiment, the heat exchangers 52 are provided, one on each side, in the vicinity of the side surfaces 11a in the parallel installation direction H1, in each casing 11. The heat exchangers 52 are provided along the side surfaces 11a of the casing 11 so as to face the side openings.
(ファン)
 ファン53は、ケーシング11内に設けられている。本実施形態におけるファン53は、ケーシング11内で、上部開口付近に配置されている。ファン53は、図1の奥行方向H2に、複数個が並べて設けられている。本実施形態においては、ケーシング11内にファン53は複数個設けられている。
(fan)
The fan 53 is provided inside the casing 11. In this embodiment, the fan 53 is disposed near an upper opening inside the casing 11. A plurality of the fans 53 are provided lined up in the depth direction H2 in Fig. 1. In this embodiment, a plurality of the fans 53 are provided inside the casing 11.
 ファン53は、上下方向に延びる各チラーユニット10の中心軸周りに回転するいわゆる軸流ファンであり、中心軸を中心とした周方向に並んで配置された複数枚の羽根を備えている。ファン53は、モータ(不図示)により、中心軸周りに回転駆動される。ファン53は、中心軸周りに回転することによって、図1に示すように、空気の流れFを生じさせる。より具体的には、ファン53は、中心軸周りに回転駆動することにより下方から上方へ向かう空気の流れFを生じさせる。言い換えれば、ファン53は、側部開口からケーシング11内に空気を導入し、熱交換器52を介して上部開口から導入した空気を排出する。 The fan 53 is a so-called axial fan that rotates around the central axis of each chiller unit 10 extending in the vertical direction, and has multiple blades arranged in a line in the circumferential direction centered on the central axis. The fan 53 is driven to rotate around the central axis by a motor (not shown). By rotating around the central axis, the fan 53 generates an air flow F, as shown in FIG. 1. More specifically, the fan 53 generates an air flow F from below to above by being driven to rotate around the central axis. In other words, the fan 53 introduces air into the casing 11 from a side opening, and exhausts the introduced air from the upper opening via the heat exchanger 52.
(散水装置)
 図2は、本開示の一実施形態に係るチラーシステム1を示す平面図である。
 散水装置30は、散水管33と、複数のノズル34と、開閉弁35(35-1~35-8)とを有している。各散水装置30には給水管31の一端が接続され、給水管31を介して給水タンク(給水源)37から冷却水を供給する。散水管33は、第一分岐管33aと第二分岐管33bに分岐する形状を有している。第一分岐管33aと第二分岐管33bには複数のノズル34が設けられている。散水装置30は、各チラーユニット10を冷却するために、隣り合うチラーユニット10同士の間の空間S及びチラーユニット10の側面11aに冷却水を供給する。
(Water sprinkler system)
FIG. 2 is a plan view showing the chiller system 1 according to one embodiment of the present disclosure.
The sprinkler device 30 has a sprinkler pipe 33, a plurality of nozzles 34, and an on-off valve 35 (35-1 to 35-8). One end of a water supply pipe 31 is connected to each sprinkler device 30, and cooling water is supplied from a water supply tank (water supply source) 37 via the water supply pipe 31. The sprinkler pipe 33 has a shape that branches into a first branch pipe 33a and a second branch pipe 33b. A plurality of nozzles 34 are provided on the first branch pipe 33a and the second branch pipe 33b. The sprinkler device 30 supplies cooling water to the space S between adjacent chiller units 10 and the side surface 11a of the chiller unit 10 in order to cool each chiller unit 10.
(給水管)
 給水管31は、金属製の管であり、複数の散水管33に接続されている。給水管31は、第一分岐管33a内及び第二分岐管33b内へ冷却水を供給するために散水管33へ冷却水を供給する管である。給水管31は、チラー群とは別途存在しているポンプ等を有する給水タンク37に一端が接続されており、給水管31の内部には接続された一端を介して、所定の圧力で給水タンク37から冷却水が供給される。
(Water supply pipe)
The water supply pipe 31 is a metal pipe and is connected to a plurality of sprinkler pipes 33. The water supply pipe 31 is a pipe that supplies cooling water to the sprinkler pipes 33 in order to supply cooling water to the first branch pipe 33a and the second branch pipe 33b. One end of the water supply pipe 31 is connected to a water supply tank 37 having a pump and the like that exists separately from the chiller group, and cooling water is supplied from the water supply tank 37 at a predetermined pressure to the inside of the water supply pipe 31 via the connected one end.
(散水管)
 散水管33は、第一分岐管33aと、第二分岐管33bと、複数のノズル34と、を有している。
(Water sprinkler pipe)
The sprinkler pipe 33 has a first branch pipe 33 a, a second branch pipe 33 b, and a plurality of nozzles 34.
 本実施形態では、1台のチラーユニット10に対して、第一分岐管33a及び第二分岐管33bが設けられている。
 第一分岐管33aは、金属製の管であり、チラーユニット10のケーシング11の一方側の側面11aに沿って、図2における奥行方向H2左側の端部から奥行方向H2右側の端部まで延びるように設けられている。
 第二分岐管33bは、金属製の管であり、チラーユニット10のケーシング11の他方側の側面11aに沿って、図2における奥行方向H2左側の端部から奥行方向H2右側の端部まで延びるように設けられている。
In this embodiment, a first branch pipe 33a and a second branch pipe 33b are provided for one chiller unit 10.
The first branch pipe 33a is a metal pipe and is arranged to extend along one side surface 11a of the casing 11 of the chiller unit 10 from its left end in the depth direction H2 in Figure 2 to its right end in the depth direction H2.
The second branch pipe 33b is a metal pipe and is arranged to extend along the other side 11a of the casing 11 of the chiller unit 10 from its left end in the depth direction H2 in Figure 2 to its right end in the depth direction H2.
 第一分岐管33aの奥行方向H2の奥側を向く端部は、内部を流通する冷却水が漏出しないように閉塞されている。第二分岐管33bも同様である。 The end of the first branch pipe 33a facing the rear side in the depth direction H2 is blocked to prevent the cooling water flowing inside from leaking out. The same is true for the second branch pipe 33b.
 散水管33は、第一分岐管33a及び第二分岐管33b内に冷却水を供給するために給水管31に接続されている。散水管33には、冷却水の供給を切替える後述の開閉弁35が設けられている。
 第一分岐管33a及び第二分岐管33bには、所定の間隔を空けて複数のノズル34が上下方向の下方側に向かって散水可能に設けられている。
The sprinkler pipe 33 is connected to the water supply pipe 31 in order to supply cooling water into the first branch pipe 33a and the second branch pipe 33b. The sprinkler pipe 33 is provided with an on-off valve 35 (described later) for switching the supply of cooling water.
A plurality of nozzles 34 are provided at predetermined intervals in the first branch pipe 33a and the second branch pipe 33b so as to be capable of spraying water downward in the vertical direction.
 これにより、第一分岐管33aの内部を冷却水が流通可能となり、第一分岐管33aは、ノズル34を用いて並設方向H1の一方側の端部に配置されたチラーユニット10の一方側の側面11a及び該側面11a付近の空間に冷却水を散布できる。 This allows cooling water to flow inside the first branch pipe 33a, and the first branch pipe 33a can use the nozzle 34 to spray cooling water onto one side surface 11a of the chiller unit 10 located at one end in the parallel installation direction H1 and into the space near the side surface 11a.
 第一分岐管33aと同様に第二分岐管33bは、ノズル34を用いて並設方向H1の他方側の端部に配置されたチラーユニット10の他方側の側面11a及び該側面付近の空間に冷却水を散布できる。 Similar to the first branch pipe 33a, the second branch pipe 33b can use a nozzle 34 to spray cooling water onto the other side 11a of the chiller unit 10 located at the other end in the parallel installation direction H1 and into the space near said side.
(ノズル)
 ノズル34は、ノズル34の散水位置からある程度の厚みをもたせて扇形状に広がって冷却水を散布する金属製のいわゆる扇形ノズルである。ノズル34の噴出口(不図示)は、並設方向H1から見た際に奥行方向H2の散水範囲である扇形の中心角が80°~100°、好ましくは90°となるよう噴出口近辺の部材が切り欠き溝状に形成されている。
(nozzle)
The nozzle 34 is a so-called fan-shaped nozzle made of metal that spreads out in a fan shape with a certain thickness from the spray position of the nozzle 34 to spray cooling water. The nozzle 34 has an outlet (not shown) formed in a groove shape by cutting out a member near the outlet so that the central angle of the fan shape, which is the spray range in the depth direction H2 when viewed from the parallel installation direction H1, is 80° to 100°, preferably 90°.
 ノズル34は、第一分岐管33a及び第二分岐管33bの所定の位置に間隔を空けて複数(本実施形態では、第一分岐管33a及び第二分岐管33bのそれぞれに8個)設けられている。各ノズル34の配置については、散水装置30の利用環境に対応して適宜変更されてもよい。
 並設方向H1の一方側の端部のチラーユニット10の第一分岐管33aに設けられたノズル34は、各チラーユニット10の一方側の側面11a及び該側面11a付近の空間に対して冷却水を散布する。並設方向H1の他方側の端部のチラーユニット10の第二分岐管33bに設けられたノズル34は、チラーユニット10の他方側の側面11a及び該側面11a付近の空間に対して冷却水を散布する。
A plurality of nozzles 34 (eight nozzles each on the first branch pipe 33a and the second branch pipe 33b in this embodiment) are provided at predetermined positions on the first branch pipe 33a and the second branch pipe 33b at intervals. The arrangement of the nozzles 34 may be changed as appropriate depending on the environment in which the water sprinkler device 30 is used.
The nozzle 34 provided in the first branch pipe 33a of the chiller unit 10 at one end in the parallel installation direction H1 sprays cooling water onto the side surface 11a on one side of each chiller unit 10 and the space near the side surface 11a. The nozzle 34 provided in the second branch pipe 33b of the chiller unit 10 at the other end in the parallel installation direction H1 sprays cooling water onto the side surface 11a on the other side of the chiller unit 10 and the space near the side surface 11a.
 第一分岐管33a又は第二分岐管33bに設けられたノズル34は、並設方向H1で互いに対向するチラーユニット10の側面同士の間に区画される空間S、及び互いに対向するチラーユニット10の両側面11aに対して冷却水を散布する。 Nozzles 34 provided on the first branch pipe 33a or the second branch pipe 33b spray cooling water into the space S partitioned between the sides of the chiller units 10 facing each other in the parallel installation direction H1, and onto both side surfaces 11a of the chiller units 10 facing each other.
 第一分岐管33a又は第二分岐管33bに設けられたノズル34により、散水が行われるチラーユニット10に隣接する他のチラーユニット10周辺における散水されていない領域に対しても散水することができる。 The nozzles 34 provided on the first branch pipe 33a or the second branch pipe 33b can also spray water on areas around other chiller units 10 adjacent to the chiller unit 10 where water is being sprayed that are not being sprayed.
(開閉弁)
 開閉弁35は、各散水装置30に設けられ、給水タンク37から散水装置30への給水有無を切替えるための弁である。開閉弁35は、例えば、散水管33に設けられる。開閉弁35は、後述の上位制御部(制御部)100によって各散水装置30の運転又は停止が切り替えられることに対応して、開閉状態が切り替わるように制御される。
(Shut-off valve)
The on-off valve 35 is provided in each sprinkler device 30 and is a valve for switching between supplying water from the water supply tank 37 to the sprinkler device 30 and not supplying water. The on-off valve 35 is provided, for example, in the sprinkler pipe 33. The on-off valve 35 is controlled so that its open/closed state is switched in response to the operation or stop of each sprinkler device 30 being switched by the higher-level control unit (control unit) 100 described below.
(水圧検知部)
 水圧検知部32は、給水管31に設けられ、給水タンク37から各散水装置30に搬送される水の給水圧力を計測する。水圧検知部32は、後述の上位制御部100と通信媒体を介して接続されており、双方向の通信が可能な構成とされている。水圧検知部32は、給水タンク37から散水装置30まで冷却水を搬送する搬送経路の上流側に設けられることが好ましい。
(Water pressure detection section)
The water pressure detection unit 32 is provided in the water supply pipe 31 and measures the water supply pressure of the water transported from the water supply tank 37 to each sprinkler device 30. The water pressure detection unit 32 is connected to the higher-level control unit 100 (described later) via a communication medium, and is configured to be capable of two-way communication. The water pressure detection unit 32 is preferably provided upstream of the transport path that transports the cooling water from the water supply tank 37 to the sprinkler device 30.
(温度計測部)
 温度計測部36は、チラーユニット群が設置されている環境下の外気温を計測する。温度計測部36としては、例えば熱電対などが用いられる。温度計測部36は、後述の上位制御部100と通信媒体を介して接続されており、双方向の通信が可能な構成とされている。
(Temperature measurement section)
The temperature measurement unit 36 measures the outside air temperature in the environment in which the chiller unit group is installed. For example, a thermocouple is used as the temperature measurement unit 36. The temperature measurement unit 36 is connected to the higher-level control unit 100 (described later) via a communication medium, and is configured to be capable of two-way communication.
(チラーユニットの冷媒回路)
 図3は、本開示の実施形態に係るチラーユニット10の概略構成を示す冷媒回路の例図である。
 このチラーユニット10は、2つの冷凍サイクル系統、すなわち、第1冷凍サイクル系統R1,第2冷凍サイクル系統R2と、水系統部43とがチラーユニット10の筐体内部に収容された構成となっている。第1冷凍サイクル系統R1と第2冷凍サイクル系統R2は、水配管58において直列に配置される。
(Chiller unit refrigerant circuit)
FIG. 3 is a diagram illustrating an example of a refrigerant circuit showing a schematic configuration of the chiller unit 10 according to the embodiment of the present disclosure.
The chiller unit 10 has a configuration in which two refrigeration cycle systems, i.e., a first refrigeration cycle system R1 and a second refrigeration cycle system R2, and a water system section 43 are housed inside the housing of the chiller unit 10. The first refrigeration cycle system R1 and the second refrigeration cycle system R2 are arranged in series in a water pipe 58.
 チラーユニット10が備える冷凍サイクル系統の数や、冷凍サイクル系統の水配管58に対する配置関係は、本実施形態で説明した例に限定されない。例えば、冷凍サイクル系統は単数でも複数でもよく、本実施形態では4つの冷凍サイクル系統を備える。複数の冷凍サイクル系統は、水配管58において並列に配置されてもよく、直列配置と並列配置が組み合わされてもよい。 The number of refrigeration cycle systems provided in the chiller unit 10 and the arrangement of the refrigeration cycle systems relative to the water piping 58 are not limited to the example described in this embodiment. For example, there may be a single or multiple refrigeration cycle systems, and in this embodiment, four refrigeration cycle systems are provided. The multiple refrigeration cycle systems may be arranged in parallel in the water piping 58, or a combination of serial and parallel arrangements may be used.
 第1冷凍サイクル系統R1,第2冷凍サイクル系統R2は、それぞれ、圧縮機45と、オイルセパレータ46と、逆止弁47と、四方弁48と、水熱交換器59(第1水熱交換器59A,第2水熱交換器59B)と、レシーバ50と、電子膨張弁51と、熱交換器52と、気液分離器54とを備えている。熱交換器52にはファン53が設けられている。 The first refrigeration cycle system R1 and the second refrigeration cycle system R2 each include a compressor 45, an oil separator 46, a check valve 47, a four-way valve 48, a water heat exchanger 59 (first water heat exchanger 59A, second water heat exchanger 59B), a receiver 50, an electronic expansion valve 51, a heat exchanger 52, and a gas-liquid separator 54. The heat exchanger 52 is provided with a fan 53.
 圧縮機45は、ガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出する。オイルセパレータ46は、圧縮機45から吐出された圧縮冷媒中のオイルを分離して圧縮機45に還流させる。逆止弁47は、圧縮冷媒の逆流を防止する。 The compressor 45 draws in gas refrigerant, compresses it, and discharges it. The oil separator 46 separates the oil in the compressed refrigerant discharged from the compressor 45 and returns it to the compressor 45. The check valve 47 prevents the compressed refrigerant from flowing back.
 四方弁48は、圧縮機45から吐出された圧縮冷媒を水熱交換器59に送る暖房運転モードと、熱交換器52に送る冷房運転モードとの2つのポジションが選択される弁である。 The four-way valve 48 has two selectable positions: a heating operation mode in which the compressed refrigerant discharged from the compressor 45 is sent to the water heat exchanger 59, and a cooling operation mode in which the refrigerant is sent to the heat exchanger 52.
 水熱交換器59は、暖房運転モードにおいて圧縮冷媒を凝縮させて凝縮器として機能し、冷房運転モードにおいて凝縮冷媒を気化させる蒸発器として機能する熱交換器である。そして、その凝縮熱又は気化熱により、水系統部43を流れる水を加熱又は冷却して暖房用の温水、給湯用の温水若しくは熱水、又は冷房用の冷水を生成する。 The water heat exchanger 59 is a heat exchanger that functions as a condenser by condensing the compressed refrigerant in the heating operation mode, and as an evaporator by vaporizing the condensed refrigerant in the cooling operation mode. The water flowing through the water system section 43 is heated or cooled by the heat of condensation or vaporization to generate hot water for heating, hot water or hot water for hot water supply, or cold water for cooling.
 第1冷凍サイクル系統R1は、第1水熱交換器59Aを有し、第2冷凍サイクル系統R2は、第2水熱交換器59Bを有する。 The first refrigeration cycle system R1 has a first water heat exchanger 59A, and the second refrigeration cycle system R2 has a second water heat exchanger 59B.
 レシーバ50は、凝縮した液冷媒を所定量貯留するタンクである。電子膨張弁51は、凝縮冷媒の圧力を低下させて気化を促進させる。熱交換器52は、ファン53によって外気が供給される。熱交換器52は、暖房運転モードにおいて凝縮冷媒を気化させる蒸発器として機能し、冷房運転モードにおいて圧縮冷媒を凝縮させる凝縮器として機能する熱交換器である。気液分離器54は、圧縮機45に吸入される前の冷媒を気液分離してガス冷媒のみを圧縮機45に吸入させる。 The receiver 50 is a tank that stores a predetermined amount of condensed liquid refrigerant. The electronic expansion valve 51 reduces the pressure of the condensed refrigerant to promote evaporation. Outside air is supplied to the heat exchanger 52 by a fan 53. The heat exchanger 52 functions as an evaporator that vaporizes the condensed refrigerant in the heating operation mode, and as a condenser that condenses the compressed refrigerant in the cooling operation mode. The gas-liquid separator 54 separates the refrigerant before it is drawn into the compressor 45, and draws only the gas refrigerant into the compressor 45.
 水系統部43は、水入口部55と、水ポンプ56と、水出口部57と、水配管58とを具備して構成されている。水入口部55から延びる水配管58には、水ポンプ56が設置される。 The water system section 43 is configured with a water inlet section 55, a water pump 56, a water outlet section 57, and water piping 58. The water pump 56 is installed in the water piping 58 extending from the water inlet section 55.
 さらに、チラーユニット10は、冷媒温度検知部61と、冷媒圧力検知部62とを備えている。 Furthermore, the chiller unit 10 is equipped with a refrigerant temperature detection unit 61 and a refrigerant pressure detection unit 62.
 冷媒温度検知部61は、第1冷凍サイクル系統R1,第2冷凍サイクル系統R2において、第1水熱交換器59A,第2水熱交換器59Bの接続口よりも上流側及び/又は下流側に設置され、第1冷凍サイクル系統R1,第2冷凍サイクル系統R2を流れる冷媒の温度を検知する。 The refrigerant temperature detection unit 61 is installed upstream and/or downstream of the connection ports of the first water heat exchanger 59A and the second water heat exchanger 59B in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, and detects the temperature of the refrigerant flowing through the first refrigeration cycle system R1 and the second refrigeration cycle system R2.
 冷媒圧力検知部62は、第1冷凍サイクル系統R1,第2冷凍サイクル系統R2において、圧縮機45の吸い込み側及び吐き出し側にそれぞれ設置され、第1冷凍サイクル系統R1,第2冷凍サイクル系統R2を流れる冷媒の圧力を検知する。 The refrigerant pressure detection units 62 are installed on the suction side and discharge side of the compressor 45 in the first refrigeration cycle system R1 and the second refrigeration cycle system R2, respectively, and detect the pressure of the refrigerant flowing through the first refrigeration cycle system R1 and the second refrigeration cycle system R2.
(上位制御部及びチラーユニット制御装置)
 図4は、本開示の一実施形態に係るチラーシステム1の上位制御部100及びチラーユニット制御装置200(200-1~200-8)の関係を示した概念図である。
 図4に示すように、上位制御部(制御部)100は、各チラーユニット10の制御装置であるチラーユニット制御装置200と通信媒体を介して接続されており、双方向の通信が可能な構成とされている。上位制御部100は、例えば、チラーシステム1全体を制御する制御部であり、後述するように各チラーユニット10の運転状況に基づいて運転する散水装置30を決定する機能を有する他、散水が行われるチラーユニット10の台数制御等を行う。チラーユニット制御装置200は、各チラーユニット10に備えられており、上位制御部100から与えられる制御指令に基づいて、各チラーユニット10の制御を行う。
(Host control unit and chiller unit control device)
FIG. 4 is a conceptual diagram showing the relationship between the host control unit 100 and chiller unit control devices 200 (200-1 to 200-8) of the chiller system 1 according to an embodiment of the present disclosure.
As shown in Fig. 4, the host control unit (control unit) 100 is connected via a communication medium to a chiller unit control device 200, which is a control device for each chiller unit 10, and is configured to be capable of two-way communication. The host control unit 100 is, for example, a control unit that controls the entire chiller system 1, and has a function of determining which sprinkler device 30 is to be operated based on the operating status of each chiller unit 10 as described below, as well as controlling the number of chiller units 10 to be sprinkled. The chiller unit control device 200 is provided in each chiller unit 10, and controls each chiller unit 10 based on a control command given from the host control unit 100.
 図5は、本開示の一実施形態に係る上位制御部100及びチラーユニット制御装置200のハードウェア構成の一例を示した図である。
 上位制御部100、各チラーユニット10が備えるチラーユニット制御装置200は、コンピュータシステム(計算機システム)であり、例えば、CPU81と、CPU81が実行するプログラム等を記憶するためのROM(Read Only Memory)82と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)83と、大容量記憶装置としてのハードディスクドライブ(HDD)84と、ネットワーク等に接続するための通信部85とを備えている。大容量記憶装置としては、ソリッドステートドライブ(SSD)等の他の記憶装置を用いることとしてもよい。これら各部は、バス88を介して接続されている。
FIG. 5 is a diagram illustrating an example of a hardware configuration of the host control unit 100 and the chiller unit control device 200 according to an embodiment of the present disclosure.
The host control unit 100 and the chiller unit control device 200 provided in each chiller unit 10 are computer systems and include, for example, a CPU 81, a ROM (Read Only Memory) 82 for storing programs and the like executed by the CPU 81, a RAM (Random Access Memory) 83 that functions as a work area when each program is executed, a hard disk drive (HDD) 84 as a large-capacity storage device, and a communication unit 85 for connecting to a network or the like. Other storage devices such as a solid state drive (SSD) may also be used as the large-capacity storage device. These units are connected via a bus 88.
 上位制御部100、各チラーユニット10が備えるチラーユニット制御装置200は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。 The upper level control unit 100 and the chiller unit control device 200 provided in each chiller unit 10 may include an input unit such as a keyboard or mouse, and a display unit such as a liquid crystal display device for displaying data.
 図6は、上位制御部100が備える各種制御機能のうち、チラーユニット10への散水制御に関係する機能の一例を示した機能ブロック図である。図6に示されるように、上位制御部100は、情報取得部101、記憶部102、判断部103、開閉弁切替部104、計時部105、異常検知部106を備えている。 FIG. 6 is a functional block diagram showing an example of a function related to controlling water spraying on the chiller unit 10, among the various control functions of the upper-level control unit 100. As shown in FIG. 6, the upper-level control unit 100 includes an information acquisition unit 101, a memory unit 102, a judgment unit 103, an on-off valve switching unit 104, a timer unit 105, and an abnormality detection unit 106.
(情報取得部)
 情報取得部101は、チラーユニット制御装置200から各チラーユニット10の負荷を運転情報として取得する。情報取得部101は、給水管31に設けられた水圧検知部32の計測量Pdetと、温度計測部36の計測値とを運転情報として取得する。
 チラーユニット10の負荷とは、例として、チラーユニット10内を循環する冷媒の圧力、チラーユニット10が設置される環境下の外気温度、チラーユニット10に対応する散水装置30の運転時間等である。
(Information Acquisition Unit)
The information acquisition unit 101 acquires the load of each chiller unit 10 as operation information from the chiller unit control device 200. The information acquisition unit 101 acquires the measurement amount Pdet of the water pressure detection unit 32 provided in the water supply pipe 31 and the measurement value of the temperature measurement unit 36 as operation information.
The load on the chiller unit 10 may be, for example, the pressure of the refrigerant circulating within the chiller unit 10, the outside air temperature in the environment in which the chiller unit 10 is installed, the operating time of the sprinkler system 30 corresponding to the chiller unit 10, etc.
(記憶部)
 記憶部102は、各チラーユニット10への散水を適切に行うためにチラーユニット10の負荷の基準値を記憶している。負荷の基準値は、チラーユニット10の現在の負荷に対する散水装置30の運転台数又は運転条件が適切か否かを判断するために用いられる基準値である。基準値は、ユーザによって予め設定された所定値であってもよい。記憶部102は、各チラーユニット10及び散水装置30の過去の運転履歴を記憶しており、過去の運転履歴に基づいて基準値が設定されてもよい。
(Memory unit)
The memory unit 102 stores a reference value of the load on the chiller unit 10 to appropriately sprinkle water on each chiller unit 10. The reference value of the load is a reference value used to determine whether the number of operating sprinkler devices 30 or the operating conditions are appropriate for the current load on the chiller unit 10. The reference value may be a predetermined value set in advance by the user. The memory unit 102 stores the past operating history of each chiller unit 10 and the sprinkler device 30, and the reference value may be set based on the past operating history.
(判断部)
 判断部103は、情報取得部101によって取得された各チラーユニット10の負荷に基づいて、いずれの散水装置30を運転するべきかを判断する。具体例として、判断部103は、情報取得部101によって取得された各チラーユニット10の冷媒圧力のうち、最も高い冷媒圧力が検知されたチラーユニット10に対して散水を行う必要があると判断する。
(Judgment Department)
The determination unit 103 determines which sprinkler device 30 should be operated based on the load of each chiller unit 10 acquired by the information acquisition unit 101. As a specific example, the determination unit 103 determines that it is necessary to perform sprinkling on the chiller unit 10 for which the highest refrigerant pressure is detected among the refrigerant pressures of the chiller units 10 acquired by the information acquisition unit 101.
(開閉弁切替部)
 開閉弁切替部104は、判断部103の判断結果に基づいて、各散水装置30の運転又は停止に対応して各開閉弁35の開閉状態を切替える。散水を行う散水装置30に対応する開閉弁35のみを開とすることにより、散水を行う散水装置30にのみ水が供給される。
(On-off valve switching section)
The on-off valve switching unit 104 switches the on-off state of each on-off valve 35 in response to the operation or stop of each sprinkler device 30 based on the judgment result of the judgment unit 103. By opening only the on-off valve 35 corresponding to the sprinkler device 30 that performs water sprinkling, water is supplied only to the sprinkler device 30 that performs water sprinkling.
(計時部)
 計時部105は、各チラーユニット10に対応する散水装置30の運転時間を計時する。散水装置30の運転時間は、例として、継続運転時間や累積運転時間等である。判断部103は、計時部105によって計時された各散水装置30の運転時間に基づいて、各散水装置30の運転又は停止を判断してもよい。
(Timekeeping section)
The timing unit 105 measures the operation time of the sprinkler device 30 corresponding to each chiller unit 10. The operation time of the sprinkler device 30 is, for example, a continuous operation time or an accumulated operation time. The judgment unit 103 may judge whether to operate or stop each sprinkler device 30 based on the operation time of each sprinkler device 30 measured by the timing unit 105.
 異常検知部106は、チラーシステム1の運転に異常が発生したことを検知し、異常が発生したことをユーザへ通知する。例として、水圧検知部32による水圧の計測量Pdetが、予め設定された所定の値を所定の期間に亘って下回る場合に、チラーシステムの異常を検知し、チラーシステム1の異常をユーザへ通知する。 The abnormality detection unit 106 detects that an abnormality has occurred in the operation of the chiller system 1 and notifies the user that an abnormality has occurred. For example, if the water pressure measured by the water pressure detection unit 32, Pdet, falls below a predetermined value set in advance for a predetermined period of time, an abnormality in the chiller system is detected and the user is notified of the abnormality in the chiller system 1.
(水圧検知量に応じた散水装置の台数制御)
 図7は、水圧検知部32の計測量Pdetと散水装置30の運転台数の関係を示した例図である。
 上位制御部100は、水圧検知部32によって計測された水圧の計測量Pdetが低いほど、散水装置30を同時に運転する台数が少なくなるように決められたマップを有している。そして、該マップに基づいて、水圧検知部32の計測量Pdetに応じて散水装置30の運転台数を制御する。例として、0.8MPa≦Pdetである場合には、判断部103は8台の散水装置30-1~30-8に水を供給できると判断する。そして、上位制御部100は、判断部103の判断結果に基づいて、散水装置30-1~30-8を運転する。
(Controlling the number of sprinklers according to the amount of detected water pressure)
FIG. 7 is a diagram showing an example of the relationship between the measured value Pdet of the water pressure detection unit 32 and the number of operating sprinkler devices 30. In FIG.
The host control unit 100 has a map in which the number of sprinklers 30 that are operated simultaneously decreases as the measured water pressure amount Pdet measured by the water pressure detection unit 32 decreases. Then, based on the map, the number of sprinklers 30 in operation is controlled according to the measured water pressure amount Pdet of the water pressure detection unit 32. For example, when 0.8 MPa≦Pdet, the judgment unit 103 judges that water can be supplied to eight sprinklers 30-1 to 30-8. Then, the host control unit 100 operates the sprinklers 30-1 to 30-8 based on the judgment result of the judgment unit 103.
 0.4MPa≦Pdet<0.8MPaの場合には、判断部103は4台の散水装置30に水を供給できると判断する。そして、上位制御部100は、判断部103の判断結果に基づいて、4台の散水装置30を運転する。ここで、運転する4台の散水装置30は、30-1と、30-3と、30-5と、30-7との組み合わせ、又は30-2と、30-4と、30-6と、30-8との組み合わせのいずれかである。このように、図2の並設方向H1において1台おきに散水装置30を運転することにより、対応する散水装置30が停止しているチラーユニット10に対しても散水による冷却を行う。 If 0.4MPa≦Pdet<0.8MPa, the judgment unit 103 judges that water can be supplied to the four sprinkler devices 30. The upper control unit 100 then operates the four sprinkler devices 30 based on the judgment result of the judgment unit 103. Here, the four sprinkler devices 30 that are operated are either a combination of 30-1, 30-3, 30-5, and 30-7, or a combination of 30-2, 30-4, 30-6, and 30-8. In this way, by operating every other sprinkler device 30 in the arrangement direction H1 in FIG. 2, cooling by sprinkling water is performed even for chiller units 10 for which the corresponding sprinkler device 30 is stopped.
 Pdet<0.4MPaの場合には、判断部103は2台の散水装置30に水を供給できると判断する。そして、上位制御部100は、判断部103の判断結果に基づいて、2台の散水装置30を運転する。ここで、運転する2台の散水装置30は、30-1と30-5、30-2と30-6、30-3と30-7、30-4と30-8の組み合わせのいずれかである。 If Pdet<0.4MPa, the judgment unit 103 judges that water can be supplied to two sprinkler devices 30. Then, the upper control unit 100 operates the two sprinkler devices 30 based on the judgment result of the judgment unit 103. Here, the two sprinkler devices 30 to be operated are any of the combinations of 30-1 and 30-5, 30-2 and 30-6, 30-3 and 30-7, and 30-4 and 30-8.
 上位制御部100は、2台又は4台の散水装置30の運転する場合に、運転する各散水装置30間の間隔が等間隔となるように各散水装置30の運転又は停止を制御する。このように、運転する散水装置30同士の間隔が等間隔となるように制御することにより、運転する散水装置30から離れた地点に配置されるチラーユニット10に対しても散水による冷却を行う。 When two or four sprinkler devices 30 are in operation, the upper control unit 100 controls the operation or stop of each sprinkler device 30 so that the intervals between each operating sprinkler device 30 are equal. In this way, by controlling the intervals between the operating sprinkler devices 30 so that the intervals between the operating sprinkler devices 30 are equal, cooling by sprinkling water is also performed on chiller units 10 located at a point away from the operating sprinkler devices 30.
 散水装置30の運転台数が2台又は4台の場合には、上位制御部100は、計時部105によって各散水装置30の運転時間を計時し、所定の時間毎に運転する散水装置30を順次切替える制御を行う。運転する散水装置30を所定時間毎に順次切替えることにより、特定のチラーユニット10に対して長期に亘って散水による冷却がされない事態を防止するとともに、特定の散水装置30の運転時間が長期化することによる性能劣化や故障が発生することを抑制する。 When there are two or four operating sprinkler devices 30, the upper control unit 100 uses the timing unit 105 to measure the operating time of each sprinkler device 30, and controls the sequential switching of the operating sprinkler device 30 at predetermined intervals. By sequentially switching the operating sprinkler device 30 at predetermined intervals, it is possible to prevent a situation in which a particular chiller unit 10 is not cooled by sprinkling water for a long period of time, and to suppress performance deterioration or failure caused by the extended operating time of a particular sprinkler device 30.
 図8は、2台の散水装置30を運転した場合に、運転する散水装置30を順次切替える制御のタイミングチャートである。経過時刻t1~t5において破線で区切られた各区間はいずれも等間隔である。
 まず、散水開始時刻である経過時刻t1の時点では、運転する散水装置30が等間隔となるように散水装置30-1及び30-5のみを運転し、その他の散水装置30-2,30-3,30-4,30-6,30-7,30-8を停止する。この時、チラーユニット10-1,10-2,10-4,10-5,10-6は散水装置30-1,30-5が散水を行うことにより冷却される。
8 is a timing chart of control for sequentially switching the operating sprinkler device 30 when two sprinkler devices 30 are operated. Each of the sections separated by dashed lines at elapsed times t1 to t5 is equally spaced.
First, at elapsed time t1, which is the start time of sprinkling, only sprinklers 30-1 and 30-5 are operated so that the operating sprinklers 30 are spaced at equal intervals, and the other sprinklers 30-2, 30-3, 30-4, 30-6, 30-7, and 30-8 are stopped. At this time, chiller units 10-1, 10-2, 10-4, 10-5, and 10-6 are cooled by sprinkling water by sprinklers 30-1 and 30-5.
 経過時刻t1の時点から所定時刻経過した経過時刻t2の時点では、散水装置30-1及び30-5を停止し、散水装置30-2及び30-6を運転するよう制御を切替える。この時は、チラーユニット10-1,10-2,10-3,10-5,10-6,10-7は散水装置30-2,30-6が散水を行うことにより冷却される。 At elapsed time t2, a predetermined time after elapsed time t1, sprinkler devices 30-1 and 30-5 are stopped and control is switched to operate sprinkler devices 30-2 and 30-6. At this time, chiller units 10-1, 10-2, 10-3, 10-5, 10-6, and 10-7 are cooled by sprinkler devices 30-2 and 30-6 spraying water.
 経過時刻t2の時点よりもさらに所定時刻経過した経過時刻t3の時点では、散水装置30-2及び30-6を停止し、散水装置30-3及び30-7を運転するよう制御を切替える。この時は、チラーユニット10-2,10-3,10-4,10-6,10-7,10-8は散水装置30-3,30-7が散水を行うことにより冷却される。 At elapsed time t3, a predetermined time after elapsed time t2, sprinkler devices 30-2 and 30-6 are stopped, and control is switched to operate sprinkler devices 30-3 and 30-7. At this time, chiller units 10-2, 10-3, 10-4, 10-6, 10-7, and 10-8 are cooled by sprinkler devices 30-3 and 30-7 spraying water.
 経過時刻t3の時点よりもさらに所定時刻経過した経過時刻t4の時点では、散水装置30-3及び30-7を停止し、散水装置30-4及び30-8を運転するよう制御を切替える。この時は、チラーユニット10-3,10-4,10-5,10-7,10-8は散水装置30-4,30-8が散水を行うことにより冷却される。 At elapsed time t4, a predetermined time after elapsed time t3, sprinkler devices 30-3 and 30-7 are stopped, and control is switched to operate sprinkler devices 30-4 and 30-8. At this time, chiller units 10-3, 10-4, 10-5, 10-7, and 10-8 are cooled by sprinkler devices 30-4 and 30-8 spraying water.
 経過時刻t4の時点よりもさらに所定時刻経過した経過時刻t5の時点では、散水装置30の運転を開始した経過時刻t1と同様に散水装置30-1及び30-5のみを運転し、その他の散水装置30-2,30-3,30-4,30-6,30-7,30-8を停止する。以降は経過時刻t1~t5のサイクルを繰り返し行う。 At elapsed time t5, a predetermined time after elapsed time t4, only sprinklers 30-1 and 30-5 are operated, as at elapsed time t1 when sprinkler 30 started operating, and the other sprinklers 30-2, 30-3, 30-4, 30-6, 30-7, and 30-8 are stopped. Thereafter, the cycle of elapsed times t1 to t5 is repeated.
 以上より、上位制御部100は、散水装置30に供給される水の水圧の計測量Pdetが低い場合は、同時に運転する散水装置30の台数を制限するとともに、等間隔に離れている散水装置30を同時に運転するよう制御する。さらに、上位制御部100は、運転する散水装置30を所定の時間毎に切替える。これにより、各チラーユニット10は順次冷却されるため、運転する散水装置30から離れた位置に設置されたチラーユニット10の性能低下を抑制することができる。 As a result, when the measured water pressure Pdet of the water supplied to the sprinkler devices 30 is low, the upper control unit 100 limits the number of sprinkler devices 30 that operate simultaneously, and controls the sprinkler devices 30 that are spaced at equal intervals to operate simultaneously. Furthermore, the upper control unit 100 switches the operating sprinkler device 30 at predetermined intervals. As a result, each chiller unit 10 is cooled sequentially, which makes it possible to suppress performance degradation of chiller units 10 installed at a position distant from the operating sprinkler device 30.
 上述の例では、2台の散水装置30を同時に運転する制御の例を示したが、同時に運転する散水装置30の台数は、水圧の計測量Pdet、ユーザによる設定又はチラーシステム1の運転状態等に基づいて適宜変更されてもよい。
 上述の例では、水圧検知部32は、給水管31に設けられているが、散水管33,第一分岐管33a,第二分岐管33bに設けられてもよく、ユーザの利用条件に基づいて適宜変更されてもよい。
In the above example, an example of control for operating two sprinkler devices 30 simultaneously is shown, but the number of sprinkler devices 30 operating simultaneously may be changed as appropriate based on the measured water pressure amount Pdet, user settings, the operating state of the chiller system 1, etc.
In the above example, the water pressure detection unit 32 is provided in the water supply pipe 31, but it may also be provided in the sprinkler pipe 33, the first branch pipe 33a, or the second branch pipe 33b, and may be changed as appropriate based on the user's usage conditions.
(チラーシステムの異常検知)
 例えば、上位制御部100は、各散水装置30を運転した際の水圧検知部32の計測量Pdetに基づいて、各チラーユニット10又は各散水装置30を備えるチラーシステム1の異常検知を行うこととしてもよい。
 上位制御部100が備える記憶部102には、水圧検知部32によって計測される水圧の計測量Pdetが所定の値を下回る時間に関して、許容可能な時間長さが記憶されている。該時間長さは、ユーザによって予め設定される時間である。計時部105は、水圧の計測量Pdetが所定の値を下回る時間長さを計時する。
(Detection of abnormalities in chiller systems)
For example, the upper control unit 100 may detect abnormalities in each chiller unit 10 or the chiller system 1 equipped with each sprinkler device 30 based on the measurement value Pdet of the water pressure detection unit 32 when each sprinkler device 30 is operating.
The storage unit 102 included in the upper control unit 100 stores an allowable time length during which the measured water pressure Pdet measured by the water pressure detection unit 32 falls below a predetermined value. The time length is a time that is set in advance by the user. The timer unit 105 times the time length during which the measured water pressure Pdet falls below the predetermined value.
 異常検知部106は、計時部105によって計時された水圧の計測量Pdetが所定の値を下回る時間長さが、記憶部102に記憶されている許容可能な時間長さ以上であるか否かを判断する。そして、水圧の計測量Pdetが所定の値を下回る時間長さが許容可能な時間長さ以上である場合、異常検知部106は、チラーシステム1における給水元の水の供給経路に異常が発生しており、各散水装置30への水の供給及び各チラーユニット10の冷却が充分に行えないことをユーザに通知し、ユーザへチラーシステム1のメンテナンスを促す。 The abnormality detection unit 106 judges whether the length of time that the measured water pressure Pdet measured by the timer unit 105 falls below a predetermined value is equal to or longer than the allowable length of time stored in the memory unit 102. If the length of time that the measured water pressure Pdet falls below the predetermined value is equal to or longer than the allowable length of time, the abnormality detection unit 106 notifies the user that an abnormality has occurred in the water supply path of the water source in the chiller system 1, and that the supply of water to each sprinkler device 30 and the cooling of each chiller unit 10 cannot be performed sufficiently, and urges the user to perform maintenance on the chiller system 1.
 このように、各散水装置30へ供給される水の水圧を水圧検知部32によって計測し、水圧の計測量Pdetが所定の値を下回る時間長さを計時部105によって計時する。そして、異常検知部106は、計時部105の計時結果に基づいてチラーシステム1の運転状態に関する異常の有無を計測することができる。さらに、異常検知部106がユーザへメンテナンスを促すことにより、チラーシステム1の異常を早期に解消することができる。 In this way, the water pressure of the water supplied to each sprinkler device 30 is measured by the water pressure detection unit 32, and the time length during which the measured water pressure Pdet falls below a predetermined value is measured by the timing unit 105. The abnormality detection unit 106 can then measure the presence or absence of an abnormality in the operating state of the chiller system 1 based on the timing results of the timing unit 105. Furthermore, the abnormality detection unit 106 can prompt the user to perform maintenance, thereby enabling the abnormality in the chiller system 1 to be resolved early.
(チラーユニット又は散水装置の故障検知)
 上位制御部100は、各チラーユニット制御装置200と双方向通信可能であり、運転情報である水圧検知部32の計測量Pdetに基づいてチラーユニット10又は散水装置30の故障を判断してもよい。
 例えば、記憶部102は、情報取得部101により取得される水圧検知部32の計測量Pdetと、運転している各散水装置30の組み合わせに対応した各チラーユニット10の負荷の変化を運転情報として記憶する。これにより、各散水装置30を運転した際の各チラーユニット10の負荷の変化量を、水圧検知部32の計測量Pdetと関連付けて記憶することができる。
(Detection of failure of chiller unit or sprinkler system)
The upper control unit 100 is capable of two-way communication with each chiller unit control device 200, and may determine a malfunction of the chiller unit 10 or the sprinkler system 30 based on the measured value Pdet of the water pressure detection unit 32, which is operating information.
For example, the memory unit 102 stores, as operation information, the measured amount Pdet of the water pressure detection unit 32 acquired by the information acquisition unit 101 and the change in load of each chiller unit 10 corresponding to the combination of each operating sprinkler device 30. This makes it possible to store the amount of change in load of each chiller unit 10 when each sprinkler device 30 is operated in association with the measured amount Pdet of the water pressure detection unit 32.
 判断部103は、情報取得部101が取得した現在のチラーユニット10の運転情報と、現在運転している散水装置30が過去に運転された際のチラーユニット10の過去の運転情報とを比較する。そして、比較の結果、特定の散水装置30を運転した際に対応するチラーユニット10の負荷の変化量が過去の運転情報と大きく異なる場合、チラーユニット10の運転が正常に行われていないと判断する。すなわち、チラーユニット10又は散水装置30の故障を判断する。 The judgment unit 103 compares the current operation information of the chiller unit 10 acquired by the information acquisition unit 101 with the past operation information of the chiller unit 10 when the currently operating sprinkler system 30 was operated in the past. Then, if the comparison shows that the change in the load of the chiller unit 10 corresponding to the operation of a specific sprinkler system 30 is significantly different from the past operation information, it judges that the operation of the chiller unit 10 is not normal. In other words, it judges that there is a malfunction of the chiller unit 10 or the sprinkler system 30.
 判断部103によって、チラーユニット10又は散水装置30が故障していると判断された場合、異常検知部106は、チラーユニット10又は散水装置30が故障している可能性があることをユーザへ通知する。これにより、ユーザは、チラーシステム1が正常に機能していないことを把握でき、故障しているチラーユニット10又は散水装置30のメンテナンスを速やかに行うことができる。 If the judgment unit 103 judges that the chiller unit 10 or the sprinkler system 30 is malfunctioning, the abnormality detection unit 106 notifies the user that the chiller unit 10 or the sprinkler system 30 may be malfunctioning. This allows the user to know that the chiller system 1 is not functioning normally, and allows the user to promptly carry out maintenance on the malfunctioning chiller unit 10 or sprinkler system 30.
 上述の例では、判断部103は、水圧の計測量Pdetに基づいてチラーユニット10又は散水装置30の故障の判断を行ったが、その他、各チラーユニット10の負荷、温度計測部36の計測値、開閉弁35の開閉状態に基づいて故障の判断を行うことにより、チラーユニット10又は散水装置30のいずれが故障しているかをより詳細に特定してもよい。 In the above example, the judgment unit 103 judges whether the chiller unit 10 or the sprinkler system 30 is faulty based on the measured water pressure Pdet, but it may also determine whether a fault has occurred based on the load of each chiller unit 10, the measurement value of the temperature measurement unit 36, and the open/close state of the on-off valve 35, thereby more precisely identifying whether the chiller unit 10 or the sprinkler system 30 is faulty.
[第2実施形態]
(散水装置の運転/停止時間の周期の調整)
 第1実施形態においては、水圧検知部32の計測量Pdetに基づいて、運転する散水装置30の台数制御を行うことにより、各散水装置30への水の供給及び各チラーユニット10の冷却を行うことができる。本実施形態においては、給水管31に設けられた水圧検知部32の計測量Pdetに基づいて、散水装置30の運転時間と停止時間の周期を調整することを特徴としている。
[Second embodiment]
(Adjusting the sprinkler on/off time cycle)
In the first embodiment, the number of operating sprinkler devices 30 is controlled based on the measured amount Pdet of the water pressure detection unit 32, thereby making it possible to supply water to each sprinkler device 30 and cool each chiller unit 10. This embodiment is characterized in that the cycle of operation time and stop time of the sprinkler device 30 is adjusted based on the measured amount Pdet of the water pressure detection unit 32 provided in the water supply pipe 31.
 図9は、水圧検知部32の計測量Pdetの運転時間の関係を示した例図である。図10は、水圧検知部32の計測量Pdetに基づいて、散水装置30の運転時間及び停止時間の周期を調整する制御のタイミングチャートである。経過時刻t1~t6において破線で区切られた各区間はいずれも等間隔である。 Figure 9 is an example diagram showing the relationship between the measured value Pdet of the water pressure detection unit 32 and the operating time. Figure 10 is a timing chart of the control that adjusts the cycle of the operating time and stop time of the sprinkler device 30 based on the measured value Pdet of the water pressure detection unit 32. Each section separated by a dashed line at elapsed times t1 to t6 is equally spaced.
 まず、図9において、水圧検知部32によって計測された水圧の計測量Pdetが予め設定された所定値である0.4MPa以上である場合(0.4MPa≦Pdet)、運転時間10秒と停止時間20秒を1周期として、該周期を繰り返すよう各散水装置30の運転周期を調整する。これにより、水圧の計測量Pdetが所定値0.4MPa以上の場合は、各チラーユニット10を冷却するための充分な水が各散水装置30へ供給されるため、運転時間が停止時間よりも短くとも各チラーユニット10の冷却が行える。各散水装置30の運転時間を短縮することにより、チラーシステム1が効率化される。 First, in FIG. 9, if the measured water pressure amount Pdet measured by the water pressure detection unit 32 is equal to or greater than the preset value of 0.4 MPa (0.4 MPa≦Pdet), the operation cycle of each sprinkler 30 is adjusted so that an operation time of 10 seconds and a stop time of 20 seconds is repeated as one cycle. As a result, when the measured water pressure amount Pdet is equal to or greater than the preset value of 0.4 MPa, sufficient water to cool each chiller unit 10 is supplied to each sprinkler 30, so that each chiller unit 10 can be cooled even if the operation time is shorter than the stop time. By shortening the operation time of each sprinkler 30, the chiller system 1 is made more efficient.
 水圧検知部32によって計測された水圧の計測量Pdetが予め設定された所定値である0.4MPa未満である場合(Pdet<0.4MPa)、運転時間20秒と停止時間10秒を1周期として、該周期を繰り返すよう各散水装置30の運転周期を調整する。これにより、水圧の計測量Pdetが0.4MPa未満の場合は、各チラーユニット10を冷却するための充分な水が各散水装置30へ供給されないため、運転時間を停止時間よりも長くすることにより各チラーユニット10の冷却を確実に行う。このように、各散水装置30へ供給される水の供給が減少する場合においても、各チラーユニット10の冷却が行われるので、各チラーユニット10の性能低下することができる。 If the measured water pressure Pdet by the water pressure detection unit 32 is less than the preset value of 0.4 MPa (Pdet<0.4 MPa), the operation cycle of each sprinkler 30 is adjusted to repeat a cycle of 20 seconds of operation and 10 seconds of stoppage. As a result, when the measured water pressure Pdet is less than 0.4 MPa, sufficient water is not supplied to each sprinkler 30 to cool each chiller unit 10, so the operation time is made longer than the stoppage time to ensure cooling of each chiller unit 10. In this way, even if the supply of water supplied to each sprinkler 30 is reduced, each chiller unit 10 is cooled, so the performance of each chiller unit 10 can be reduced.
 次に、図10は、水圧検知部32の計測量Pdetに基づいて、散水装置30の運転時間及び停止時間の周期を調整する制御のタイミングチャートである。上方のタイミングチャートは、計測量Pdetが予め設定された所定値である0.4MPa以上である場合のタイミングチャートである。下方のタイミングチャートは、計測量Pdetが予め設定された所定値である0.4MPa未満である場合のタイミングチャートである。経過時刻t1~t6において破線で区切られた各区間はいずれも等間隔である。例として、1つの区間の時間間隔は10秒とする。 Next, FIG. 10 is a timing chart of the control that adjusts the cycle of operation time and stop time of the sprinkler device 30 based on the measured amount Pdet of the water pressure detection unit 32. The upper timing chart is a timing chart when the measured amount Pdet is equal to or greater than the preset value of 0.4 MPa. The lower timing chart is a timing chart when the measured amount Pdet is less than the preset value of 0.4 MPa. All of the intervals separated by dashed lines at elapsed times t1 to t6 are equally spaced. As an example, the time interval between each interval is 10 seconds.
 水圧検知部32によって計測される水圧が0.4MPa≦Pdetの場合は、各散水装置30へ充分な水が供給されるため、上位制御部100は、各散水装置30の運転周期を運転時間が停止時間よりも短い周期に調整する。水圧検知部32によって計測される水圧がPdet<0.4MPaの場合は、各散水装置30へ水が供給されるため、上位制御部100は、各散水装置30の運転周期を運転時間が停止時間よりも長い周期に調整する。 When the water pressure measured by the water pressure detection unit 32 is 0.4 MPa or less Pdet, sufficient water is supplied to each sprinkler device 30, and the upper control unit 100 adjusts the operation cycle of each sprinkler device 30 to a cycle in which the operation time is shorter than the stop time. When the water pressure measured by the water pressure detection unit 32 is Pdet < 0.4 MPa, water is supplied to each sprinkler device 30, and the upper control unit 100 adjusts the operation cycle of each sprinkler device 30 to a cycle in which the operation time is longer than the stop time.
 このように、散水装置30に供給される水の水圧が所定の値以上である場合、散水装置30の運転周期は運転時間が停止時間よりも短い周期に調整される。散水装置30に供給される水の水圧が所定の値未満である場合、散水装置30の運転周期は運転時間が停止時間よりも長い周期に調整される。これにより、給水管31の水圧が低い場合においても、各散水装置30によって各チラーユニット10を冷却することができ、各チラーユニット10の性能低下を抑制することができる。
 運転時間及び停止時間は、ユーザの設定やチラーシステム1の運転状態等に基づいて適宜変更されてもよい。
In this way, when the water pressure of the water supplied to the sprinkler device 30 is equal to or higher than a predetermined value, the operation cycle of the sprinkler device 30 is adjusted to a cycle in which the operation time is shorter than the stop time. When the water pressure of the water supplied to the sprinkler device 30 is less than a predetermined value, the operation cycle of the sprinkler device 30 is adjusted to a cycle in which the operation time is longer than the stop time. As a result, even when the water pressure of the water supply pipe 31 is low, each chiller unit 10 can be cooled by each sprinkler device 30, and a decrease in performance of each chiller unit 10 can be suppressed.
The operation time and stop time may be changed as appropriate based on the user's settings, the operating state of the chiller system 1, etc.
 以上、本開示について実施形態を用いて説明したが、本開示の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本開示の技術的範囲に含まれる。上記実施形態を適宜組み合わせてもよい。 The present disclosure has been described above using embodiments, but the technical scope of the present disclosure is not limited to the scope described in the above embodiments. Various modifications or improvements can be made to the above embodiments without departing from the gist of the invention, and forms with such modifications or improvements are also included in the technical scope of the present disclosure. The above embodiments may be combined as appropriate.
 本開示の第1態様に係るチラーシステムは(1)、一方向に間隔を空けて並設される複数のチラーユニット(10)を備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置(30)と、各前記散水装置に接続される給水管(31)と、前記給水管の水圧を計測する水圧検知部(32)と、前記水圧検知部により計測された水圧に基づいて、前記散水装置の運転台数を制御する制御部(100)とを備える。 The chiller system according to the first aspect of the present disclosure (1) comprises a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe (31) connected to each sprinkler device, a water pressure detection unit (32) that measures the water pressure in the water supply pipe, and a control unit (100) that controls the number of sprinkler devices in operation based on the water pressure measured by the water pressure detection unit.
 本開示に係るチラーシステムによれば、一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、各前記散水装置に接続される給水管と、前記給水管の水圧を計測する水圧検知部と、前記水圧検知部により検知された水圧に基づいて、前記散水装置の運転台数を制御する制御部とを備える。すなわち、制御部は、水圧検知部によって計測される給水管を流れる水の水圧に基づいて、散水が行われる散水装置の運転台数を切替える。これにより、給水源からの水圧が低下して給水量が低下した場合においても、制御部は、計測した水圧に基づいて、散水装置の台数を低減することができる。これにより、チラーユニットの冷却を行うための給水の水圧が低下した場合においても、チラーユニットへの散水量不足を防止し、チラーユニットの性能低下を抑制することができる。 The chiller system according to the present disclosure includes a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction, a sprinkler device provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe connected to each sprinkler device, a water pressure detection unit that measures the water pressure of the water supply pipe, and a control unit that controls the number of operating sprinkler devices based on the water pressure detected by the water pressure detection unit. That is, the control unit switches the number of operating sprinkler devices that sprinkle water based on the water pressure of the water flowing through the water supply pipe measured by the water pressure detection unit. As a result, even if the water pressure from the water supply source decreases and the amount of water supplied decreases, the control unit can reduce the number of sprinkler devices based on the measured water pressure. As a result, even if the water pressure of the water supply for cooling the chiller unit decreases, it is possible to prevent a shortage of water sprinkling to the chiller unit and suppress a decrease in performance of the chiller unit.
 本開示の第2態様に係るチラーシステムは、前記第1態様において、前記制御部は、前記水圧検知部によって計測された水圧が低いほど、前記散水装置を同時に運転する台数が少なくなるように決められたマップを備えている。 In the chiller system according to the second aspect of the present disclosure, in the first aspect, the control unit is provided with a map that determines the number of sprinkler devices that are operated simultaneously as the water pressure measured by the water pressure detection unit decreases.
 本開示に係るチラーシステムによれば、前記制御部は、前記水圧検知部によって計測された水圧が低いほど、前記散水装置を同時に運転する台数が少なくなるように決められたマップを備えている。すなわち、水の供給源から各散水装置へ供給できる給水量が少ない程、供給先となる散水装置の運転台数を少なくする。これにより、散水装置へ供給可能な給水量が少ない場合においても、散水装置が運転されるチラーユニットへの散水による冷却を適切に行うことができ、チラーユニットの性能低下を抑制することができる。 In the chiller system of the present disclosure, the control unit is provided with a map in which the lower the water pressure measured by the water pressure detection unit, the fewer the number of sprinklers that are operated simultaneously. In other words, the smaller the amount of water that can be supplied from the water supply source to each sprinkler device, the fewer the number of operating sprinkler devices that are the supply destination. This allows appropriate cooling by sprinkling water on the chiller unit in which the sprinkler device is operating, even when the amount of water that can be supplied to the sprinkler device is small, and suppresses deterioration in the performance of the chiller unit.
 本開示の第3態様に係るチラーシステムは、前記第1態様又は前記第2態様において、複数の前記散水装置のうち運転する前記散水装置を所定の時間毎に順次切替える。 The chiller system according to the third aspect of the present disclosure, in the first or second aspect, sequentially switches between the operating sprinkler devices among the plurality of sprinkler devices at predetermined time intervals.
 本開示に係るチラーシステムによれば、前記制御部は、複数の前記散水装置のうち運転する前記散水装置を所定の時間毎に順次切替える。これにより、散水による冷却効果を得られるチラーユニットを順次切替えることができるため、全てのチラーユニットの冷却を効率的に行うことができる。 In the chiller system disclosed herein, the control unit sequentially switches the operating sprinkler device among the multiple sprinkler devices at predetermined time intervals. This allows the chiller units that provide the cooling effect of sprinkling water to be switched sequentially, making it possible to efficiently cool all chiller units.
 本開示の第4態様に係るチラーシステムは、前記第1態様から前記第3態様のいずれかにおいて、運転する前記散水装置間の間隔が等間隔である。 The chiller system according to the fourth aspect of the present disclosure is any one of the first to third aspects, in which the intervals between the operating sprinkler devices are equal.
 本開示に係るチラーシステムによれば、複数の前記散水装置は、運転する前記散水装置間の間隔が等間隔である。すなわち、散水による冷却が行われるチラーユニットは、運転する散水装置間の間隔が等間隔であることを維持しながら、所定時間毎に切替えられる。これにより、全てのチラーユニットは、所定時間毎に順に散水による冷却効果を得ることができるため、全てのチラーユニットを均等に冷却することができる。 In the chiller system of the present disclosure, the multiple sprinkler devices are spaced equally apart from one another when in operation. In other words, the chiller units in which cooling by sprinkling is performed are switched every predetermined time while maintaining equal spacing between the operating sprinkler devices. This allows all chiller units to obtain the cooling effect of sprinkling water in turn at predetermined times, so that all chiller units can be cooled evenly.
 本開示の第5態様に係るチラーシステム(1)は、一方向に間隔を空けて並設される複数のチラーユニット(10)を備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置(30)と、各前記散水装置に接続される給水管(31)と、前記給水管の水圧を計測する水圧検知部(32)と、前記水圧検知部によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する制御部(100)とを備える。 The chiller system (1) according to the fifth aspect of the present disclosure comprises a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, a water supply pipe (31) connected to each of the sprinkler devices, a water pressure detection unit (32) that measures the water pressure of the water supply pipe, and a control unit (100) that adjusts the cycle of operation time and stop time of each of the sprinkler devices based on the water pressure measured by the water pressure detection unit.
 本開示に係るチラーシステムによれば、前記制御部は、前記水圧検知部によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する。例えば、給水管を流れる水の水圧が各チラーユニットへの散水を行える場合には、散水装置の運転時間を長くし、停止時間を短くする。そして、給水管を流れる水の水圧が低く、各前記チラーユニットへの散水を適切に行うことができない場合には、散水装置の運転時間を短くし、停止時間を長くする。このように、水圧検知部の計測結果に基づいて、チラーユニットへの散水が適切に行われるように、制御部によって各散水装置の運転時間及び停止時間が調整される。これにより、給水管の水圧が低い場合においても、各前記散水装置によって各前記チラーユニットを冷却することができ、各前記チラーユニットの性能低下を抑制することができる。 In the chiller system according to the present disclosure, the control unit adjusts the period of operation time and stop time of each of the sprinkler devices based on the water pressure measured by the water pressure detection unit. For example, if the water pressure of the water flowing through the water supply pipe is sufficient to sprinkle water on each chiller unit, the operation time of the sprinkler device is extended and the stop time is shortened. If the water pressure of the water flowing through the water supply pipe is low and it is not possible to properly sprinkle water on each chiller unit, the operation time of the sprinkler device is shortened and the stop time is lengthened. In this way, the control unit adjusts the operation time and stop time of each sprinkler device based on the measurement results of the water pressure detection unit so that the chiller units are properly sprinkled. As a result, even if the water pressure of the water supply pipe is low, each chiller unit can be cooled by each sprinkler device, and a decrease in performance of each chiller unit can be suppressed.
 本開示の第6態様に係るチラーシステムは、前記第1態様から前記第5態様のいずれかにおいて、前記制御部は、チラーシステムに異常が発生したことを計測及び通知する異常検知部(106)をさらに備え、前記異常検知部は、前記水圧検知部によって計測される水圧が、予め設定された所定の値を所定の期間に亘って下回る場合に、チラーシステムの異常を検知するとともに、ユーザへチラーシステムの異常を通知する。 In the chiller system according to the sixth aspect of the present disclosure, in any one of the first to fifth aspects, the control unit further includes an abnormality detection unit (106) that measures and notifies the user that an abnormality has occurred in the chiller system, and the abnormality detection unit detects an abnormality in the chiller system when the water pressure measured by the water pressure detection unit falls below a predetermined value set in advance for a predetermined period of time, and notifies the user of the abnormality in the chiller system.
 本開示に係るチラーシステムによれば、前記制御部は、チラーシステムに異常が発生したことを検知及び通知する異常検知部をさらに備え、前記異常検知部は、前記水圧検知部によって検知される水圧が、予め設定された所定の値を所定の期間に亘って下回る場合に、チラーシステムの異常を検知するとともに、ユーザへチラーシステムの異常を通知する。これにより、ユーザがチラーシステムの異常、具体的には、設備不良や給水源及び給水経路の損傷等を把握でき、チラーシステムの改修を速やかに行うことができる。これにより、各チラーユニットの長寿命化や、チラーユニットを利用する空調システムの動作不良を抑制することができる。 In the chiller system of the present disclosure, the control unit further includes an abnormality detection unit that detects and notifies the user that an abnormality has occurred in the chiller system, and the abnormality detection unit detects an abnormality in the chiller system and notifies the user of the abnormality in the chiller system when the water pressure detected by the water pressure detection unit falls below a predetermined value set in advance for a predetermined period of time. This allows the user to understand abnormalities in the chiller system, specifically, equipment malfunctions and damage to the water supply source and water supply path, and to quickly repair the chiller system. This can extend the life of each chiller unit and prevent malfunctions in the air conditioning system that uses the chiller units.
 本開示の第7態様に係るチラーシステムは、前記第1態様から前記第6態様のいずれかにおいて、前記制御部は、前記散水装置を運転する場合の前記給水管に流れる水の水圧を前記散水装置毎に記憶する記憶部(102)を備え、前記制御部は、前記水圧検知部によって計測された現在の水圧と前記記憶部に記憶されている過去の水圧との差に基づいて、前記チラーユニット又は前記散水装置の故障の有無を判断する。 The chiller system according to the seventh aspect of the present disclosure is any one of the first to sixth aspects, in which the control unit includes a memory unit (102) that stores, for each sprinkler device, the water pressure of the water flowing through the water supply pipe when the sprinkler device is operating, and the control unit determines whether or not there is a malfunction in the chiller unit or the sprinkler device based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit.
 本開示に係るチラーシステムによれば、前記制御部は、前記散水装置を運転する場合の前記給水管に流れる水の水圧を前記散水装置毎に記憶する記憶部を備え、前記制御部は、前記水圧検知部によって計測された現在の水圧と前記記憶部に記憶されている過去の水圧との差に基づいて、前記チラーユニットの故障の有無を判断する。これにより、故障しているチラーユニット又は前記散水装置のメンテナンスを速やかに行うことができる。 In the chiller system of the present disclosure, the control unit includes a memory unit that stores, for each sprinkler device, the water pressure of the water flowing through the water supply pipe when the sprinkler device is operating, and the control unit determines whether or not the chiller unit is faulty based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit. This allows for prompt maintenance of a faulty chiller unit or sprinkler device.
 本開示の第8態様に係るチラーシステム(1)の制御方法は、一方向に間隔を空けて並設される複数のチラーユニット(10)を備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置(30)と、各前記散水装置に接続される給水管(31)と、を備えるチラーシステムにおいて、前記給水管の水圧を計測する工程と、前記水圧を計測する工程により検知された水圧に基づいて、前記散水装置の運転台数を制御する工程とを有する。 The control method for a chiller system (1) according to the eighth aspect of the present disclosure includes a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, and a water supply pipe (31) connected to each of the sprinkler devices, and includes the steps of measuring the water pressure in the water supply pipe and controlling the number of sprinkler devices in operation based on the water pressure detected in the water pressure measuring step.
 本開示の第9態様に係るチラーシステム(1)の制御方法は、一方向に間隔を空けて並設される複数のチラーユニット(10)を備えるチラーユニット群と、各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置(30)と、各前記散水装置に接続される給水管(31)と、を備えるチラーシステムにおいて、前記給水管の水圧を検知する工程と、前記水圧を計測する工程によって検知される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する工程とを有する。 The control method for a chiller system (1) according to the ninth aspect of the present disclosure, in a chiller system including a chiller unit group including a plurality of chiller units (10) arranged in parallel at intervals in one direction, a sprinkler device (30) provided corresponding to each chiller unit and sprinkling water to the chiller unit, and a water supply pipe (31) connected to each of the sprinkler devices, includes a step of detecting the water pressure in the water supply pipe, and a step of adjusting the cycle of operation time and stop time of each of the sprinkler devices based on the water pressure detected in the step of measuring the water pressure.
1                 チラーシステム
10(10-1~10-8)     チラーユニット
11                ケーシング
11a               側面
25                基部
30(30-1~30-8)     散水装置
31                給水管
32                水圧検知部
33                散水管
33a               第一分岐管
33b               第二分岐管
34                ノズル
35(35-1~35-8)     開閉弁
36                温度計測部
37                給水タンク
43                水系統部
45                圧縮機
46                オイルセパレータ
47                逆止弁
48                四方弁
50                レシーバ
51                電子膨張弁
52                熱交換器
53                ファン
54                気液分離器
55                水入口部
56                水ポンプ
57                水出口部
58                水配管
59                水熱交換器
59A               第1水熱交換器
59B               第2水熱交換器
61                冷媒温度検知部
62                冷媒圧力検知部
81                CPU
82                ROM
83                RAM
84                HDD
85                通信部
88                バス
100               上位制御部
101               情報取得部
102               記憶部
103               判断部
104               開閉弁切替部
105               計時部
106               異常検知部
200               チラーユニット制御装置
F                 空気の流れ
H1                並設方向
H2                奥行方向
Pdet              計測量
R1                第1冷凍サイクル系統
R2                第2冷凍サイクル系統
S                 空間
t1,t2,t3,t4,t5,t6 経過時刻
 
1 Chiller system 10 (10-1 to 10-8) Chiller unit 11 Casing 11a Side 25 Base 30 (30-1 to 30-8) Sprinkler device 31 Water supply pipe 32 Water pressure detection unit 33 Sprinkler pipe 33a First branch pipe 33b Second branch pipe 34 Nozzle 35 (35-1 to 35-8) Opening and closing valve 36 Temperature measurement unit 37 Water supply tank 43 Water system unit 45 Compressor 46 Oil separator 47 Check valve 48 Four-way valve 50 Receiver 51 Electronic expansion valve 52 Heat exchanger 53 Fan 54 Gas-liquid separator 55 Water inlet unit 56 Water pump 57 Water outlet unit 58 Water piping 59 Water heat exchanger 59A First water heat exchanger 59B Second water heat exchanger 61 Refrigerant temperature detection unit 62 Refrigerant pressure detection unit 81 CPU
82 ROM
83 RAM
84 HDD
85 Communication unit 88 Bus 100 Upper control unit 101 Information acquisition unit 102 Memory unit 103 Determination unit 104 On-off valve switching unit 105 Time measurement unit 106 Abnormality detection unit 200 Chiller unit control device F Air flow H1 Parallel installation direction H2 Depth direction Pdet Measurement amount R1 First refrigeration cycle system R2 Second refrigeration cycle system S Space t1, t2, t3, t4, t5, t6 Elapsed time

Claims (9)

  1.  一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、
     各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、
     各前記散水装置に接続される給水管と、
     前記給水管の水圧を計測する水圧検知部と、
     前記水圧検知部により計測された水圧に基づいて、前記散水装置の運転台数を制御する制御部と
    を備えるチラーシステム。
    a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction;
    a water sprinkler provided in correspondence with each of the chiller units and configured to sprinkle water on the chiller units;
    A water supply pipe connected to each of the water sprinkler devices;
    A water pressure detection unit that measures the water pressure of the water supply pipe;
    A control unit that controls the number of operating sprinkler devices based on the water pressure measured by the water pressure detection unit.
  2.  前記制御部は、前記水圧検知部によって計測された水圧が低いほど、前記散水装置を同時に運転する台数が少なくなるように決められたマップを備えている請求項1に記載のチラーシステム。 The chiller system of claim 1, wherein the control unit is provided with a map that determines the number of sprinklers that are operated simultaneously as the water pressure measured by the water pressure detection unit decreases.
  3.  前記制御部は、複数の前記散水装置のうち運転する前記散水装置を所定の時間毎に順次切替える請求項1に記載のチラーシステム。 The chiller system according to claim 1, wherein the control unit sequentially switches between the sprinkler devices in operation among the plurality of sprinkler devices at predetermined intervals.
  4.  複数の前記散水装置は、運転する前記散水装置間の間隔が等間隔である請求項1に記載のチラーシステム。 The chiller system of claim 1, wherein the plurality of sprinkler devices are arranged such that the intervals between the operating sprinkler devices are equal.
  5.  一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、
     各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、
     各前記散水装置に接続される給水管と、
     前記給水管の水圧を計測する水圧検知部と、
     前記水圧検知部によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する制御部と
    を備えるチラーシステム。
    a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction;
    a water sprinkler provided in correspondence with each of the chiller units and configured to sprinkle water on the chiller units;
    A water supply pipe connected to each of the water sprinkler devices;
    A water pressure detection unit that measures the water pressure of the water supply pipe;
    A control unit that adjusts the cycles of operation time and stop time of each sprinkler device based on the water pressure measured by the water pressure detection unit.
  6.  前記制御部は、チラーシステムに異常が発生したことを検知及び通知する異常検知部をさらに備え、
     前記異常検知部は、前記水圧検知部によって計測される水圧が、予め設定された所定の値を所定の期間に亘って下回る場合に、チラーシステムの異常を検知するとともに、ユーザへチラーシステムの異常を通知する請求項1又は5に記載のチラーシステム。
    The control unit further includes an abnormality detection unit that detects and notifies that an abnormality has occurred in the chiller system,
    6. The chiller system according to claim 1 or 5, wherein the abnormality detection unit detects an abnormality in the chiller system and notifies a user of the abnormality in the chiller system when the water pressure measured by the water pressure detection unit falls below a predetermined value for a predetermined period of time.
  7.  前記制御部は、前記散水装置を運転する場合の前記給水管に流れる水の水圧を前記散水装置毎に記憶する記憶部を備え、
     前記制御部は、前記水圧検知部によって計測された現在の水圧と前記記憶部に記憶されている過去の水圧との差に基づいて、前記チラーユニット又は前記散水装置の故障の有無を判断する請求項1又は5に記載のチラーシステム。
    The control unit includes a memory unit that stores, for each sprinkler device, a water pressure of water flowing through the water supply pipe when the sprinkler device is operated,
    The chiller system of claim 1 or 5, wherein the control unit determines whether or not there is a malfunction of the chiller unit or the sprinkler device based on the difference between the current water pressure measured by the water pressure detection unit and the past water pressure stored in the memory unit.
  8.  一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、
     各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、
     各前記散水装置に接続される給水管と、
    を備えるチラーシステムにおいて、
     前記給水管の水圧を計測する工程と、
     前記水圧を計測する工程により計測された水圧に基づいて、前記散水装置の運転台数を制御する工程と
    を有するチラーシステムの制御方法。
    a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction;
    a water sprinkler provided in correspondence with each of the chiller units and configured to sprinkle water on the chiller units;
    A water supply pipe connected to each of the water sprinkler devices;
    In a chiller system comprising:
    Measuring the water pressure of the water supply pipe;
    and controlling the number of sprinkler devices in operation based on the water pressure measured in the water pressure measuring step.
  9.  一方向に間隔を空けて並設される複数のチラーユニットを備えるチラーユニット群と、
     各前記チラーユニットに対応して設けられ、該チラーユニットに対して散水する散水装置と、
     各前記散水装置に接続される給水管と、
    を備えるチラーシステムにおいて、
     前記給水管の水圧を計測する工程と、
     前記水圧を計測する工程によって計測される水圧に基づいて、各前記散水装置の運転時間及び停止時間の周期を調整する工程と
    を有するチラーシステムの制御方法。
     
    a chiller unit group including a plurality of chiller units arranged in parallel at intervals in one direction;
    a water sprinkler provided in correspondence with each of the chiller units and configured to sprinkle water on the chiller units;
    A water supply pipe connected to each of the water sprinkler devices;
    In a chiller system comprising:
    Measuring the water pressure of the water supply pipe;
    and a step of adjusting the cycles of operation time and stop time of each of the sprinkler devices based on the water pressure measured in the step of measuring the water pressure.
PCT/JP2023/037189 2022-10-28 2023-10-13 Chiller system and chiller system control method WO2024090241A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-173697 2022-10-28
JP2022173697A JP2024064812A (en) 2022-10-28 2022-10-28 Chiller system and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2024090241A1 true WO2024090241A1 (en) 2024-05-02

Family

ID=90830731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037189 WO2024090241A1 (en) 2022-10-28 2023-10-13 Chiller system and chiller system control method

Country Status (2)

Country Link
JP (1) JP2024064812A (en)
WO (1) WO2024090241A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325587A (en) * 1997-05-27 1998-12-08 O K Kizai Kk Auxiliary cooling device of air cooled condenser for air conditioner
JP2000328611A (en) * 1999-05-20 2000-11-28 Sayama Seisakusho:Kk Water supply control unit
JP2009097817A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Cooler, cooling device, and heat pump
JP2022501568A (en) * 2018-09-11 2022-01-06 マンターズ コーポレイションMunters Corporation Stepwise spray indirect evaporative cooling system
JP2022075268A (en) * 2020-11-06 2022-05-18 三菱重工サーマルシステムズ株式会社 Chiller system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325587A (en) * 1997-05-27 1998-12-08 O K Kizai Kk Auxiliary cooling device of air cooled condenser for air conditioner
JP2000328611A (en) * 1999-05-20 2000-11-28 Sayama Seisakusho:Kk Water supply control unit
JP2009097817A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Cooler, cooling device, and heat pump
JP2022501568A (en) * 2018-09-11 2022-01-06 マンターズ コーポレイションMunters Corporation Stepwise spray indirect evaporative cooling system
JP2022075268A (en) * 2020-11-06 2022-05-18 三菱重工サーマルシステムズ株式会社 Chiller system

Also Published As

Publication number Publication date
JP2024064812A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US11867426B2 (en) System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US9568206B2 (en) Method and apparatus for cooling
EP2498024B1 (en) Cooling system for electronic equipment
US8322155B2 (en) Method and apparatus for cooling
US8327656B2 (en) Method and apparatus for cooling
US20080041077A1 (en) Method and apparatus for cooling
CN102287972A (en) Refrigerant circulation apparatus
CN109737559A (en) Air source heat pump, air conditioner, defrosting control method and storage medium
JP2010216776A (en) Local air conditioning system, control device of the same, and program
CA3112260A1 (en) Staged spray indirect evaporative cooling system
KR102061756B1 (en) Hybrid air conditioning apparatus and method for controlling the same
WO2024090241A1 (en) Chiller system and chiller system control method
CN107621058B (en) Indoor unit refrigerant control device and control method thereof, indoor unit and air conditioning system
WO2024090244A1 (en) Chiller system and chiller system control method
CN110160281A (en) Pump refrigerant cooling system and built-in redundancy with l+1 to N+1
JP5250954B2 (en) Air conditioner
KR20110017311A (en) Apparatus for cooling condenser of airconditioner
KR100698373B1 (en) System for heat pump with four check valve for defrosting
CN114459082B (en) Air conditioner and control method thereof
JP7258174B2 (en) Showcase
CN103185410A (en) Cooling system for improving high-density thermal load
KR101951673B1 (en) Multi type Air Conditioner and Method for preventing the refrigerant&#39;s remnants for the same
JPH07120092A (en) Air conditioner
KR20040034866A (en) Heat pump type air conditioning apparatus with a medium heat exchanger
CN118031486A (en) Online defrosting air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882449

Country of ref document: EP

Kind code of ref document: A1