WO2024090238A1 - Control-data-generating device, control method, and control program - Google Patents

Control-data-generating device, control method, and control program Download PDF

Info

Publication number
WO2024090238A1
WO2024090238A1 PCT/JP2023/037158 JP2023037158W WO2024090238A1 WO 2024090238 A1 WO2024090238 A1 WO 2024090238A1 JP 2023037158 W JP2023037158 W JP 2023037158W WO 2024090238 A1 WO2024090238 A1 WO 2024090238A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage devices
interchange
control data
power storage
Prior art date
Application number
PCT/JP2023/037158
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 川本
光太郎 地主
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024090238A1 publication Critical patent/WO2024090238A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • This disclosure relates to a control data generation device, a control method, and a control program.
  • Patent Document 1 it is known to exchange power between multiple power storage devices.
  • One aspect of the present disclosure makes it possible to simultaneously exchange power between multiple power storage devices as a whole and the power grid, and between multiple storage batteries.
  • a control data generating device generates a scenario describing a target SOC for each time of multiple storage devices that are connected to a power grid and that charge and discharge, and control data indicating a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmits at least data indicating the scenario from the generated control data to a corresponding storage device, and transmits at least data indicating the required amount of power from the generated control data to an integration unit that communicates with the multiple storage devices, and the charging and discharging includes a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
  • a control method generates control data indicating a scenario describing a target SOC for each time for each of multiple storage devices that are connected to a power grid and that charge and discharge, and a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmits at least data indicating the scenario from the generated control data to a corresponding storage device, and transmits at least data indicating the required amount of power from the generated control data to an integration unit that communicates with the multiple storage devices, and the charging and discharging includes a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
  • a control program causes a computer to execute a process of generating control data indicating a scenario describing a target SOC for each time of multiple storage devices that are connected to a power grid and that charge and discharge, and a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmitting at least data of the generated control data indicating the scenario to a corresponding storage device, and transmitting at least data of the generated control data indicating the required amount of power to an integration unit that communicates with the multiple storage devices, the charging and discharging including a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a power system including a control device according to an embodiment.
  • 1 is a block diagram showing an example of a schematic configuration of a power system;
  • FIG. 11 is a diagram illustrating an example of time division in the first power interchange.
  • 4 is a flowchart showing an example of a process (control method) executed in a first power interchange.
  • 10 is a flowchart showing an example of a process (control method) executed in a second power interchange.
  • FIG. FIG. 1 illustrates an example of an electricity market.
  • 1 is a block diagram showing an example of a schematic configuration of a power system
  • FIG. 13 is a diagram illustrating an example of collaboration with a market.
  • FIG. 13 is a diagram illustrating an example of a scenario update.
  • FIG. 13 is a diagram illustrating an example of a UI.
  • FIG. 13 is a diagram illustrating another example of a UI.
  • FIG. 2 is a diagram
  • VPP virtual power plant
  • the multiple storage equipment within the VPP can share power with each other, for example, so that each SOC approaches a target SOC.
  • the energy storage devices within the VPP were able to share electricity with power networks outside the VPP, such as power networks managed by power transmission and distribution companies, this could help retail electricity suppliers and others secure supply capacity. It could also be used to absorb surplus electricity and help balance supply and demand. In this case, however, the energy storage devices within the VPP must continue to hold the amount of electricity that may be required, which creates the problem that consumers cannot use that amount of electricity freely.
  • first power interchange power interchange between a plurality of power storage devices and a power grid
  • second power interchange power interchange between a plurality of power storage devices
  • Embodiment FIG. 1 is a diagram showing an example of a schematic configuration of a power system including a control device according to an embodiment.
  • An example of a user of the power system 100 is illustrated as a plurality of consumers D.
  • consumer D-1, consumer D-2, and consumer D-n are referred to as consumer D-1, consumer D-2, and consumer D-n.
  • Specific examples of the consumer D are houses, facilities, and the like, and more specifically, may indicate a user who uses power in such a place.
  • the plurality of consumers D for example, belong to the same community, and thus provide (configure) a virtual power plant VPP in cooperation.
  • the power system 100 includes a power storage device 1, a power generation device 2, an integrated unit 3, a control data generation device 4, a supply and demand management system 5, and a power line PL. Each element is configured to be able to communicate with each other as necessary.
  • the energy storage device 1 and the power generation device 2 are provided at a consumer D.
  • the energy storage device 1 is a plurality of energy storage devices 1 each provided at a corresponding consumer D for use.
  • the power generation device 2 is a plurality of power generation devices 2 each provided at a corresponding consumer D for use.
  • the power line PL extends, for example, within the virtual power plant VPP so as to connect the multiple energy storage devices 1.
  • the multiple energy storage devices 1 are connected in parallel to the power line PL.
  • the power line PL is also connected to the power grid G.
  • Each of the multiple energy storage devices 1 is connected to the power grid G via the power line PL. This connection enables power interchange between the multiple energy storage devices 1 as a whole and the power grid G, and power interchange between the multiple energy storage devices 1.
  • the former is referred to as “first power interchange” and the latter is referred to as “second power interchange", and each is diagrammatically illustrated with a hollow arrow.
  • the energy storage device 1 includes a storage battery 11 and a power converter 12.
  • the storage battery 11 is a secondary battery that can be charged and discharged. Various known secondary batteries may be used.
  • the power converter 12 is connected between the storage battery 11 and the power line PL, and controls the charging and discharging of the storage battery 11. For example, the power converter 12 charges the storage battery 11 by converting AC power from the power line PL into DC power and supplying it to the storage battery 11.
  • the power converter 12 discharges the storage battery 11 by converting DC power from the storage battery 11 into AC power and supplying it to the power line PL.
  • the power converter 12 is also called a power conditioner, a bidirectional inverter, etc.
  • the flow of power from the storage device 1 to the power line PL is also referred to as discharging the storage device 1.
  • the flow of power from the power line PL to the storage device 1 is also referred to as charging the storage device 1.
  • Charging and discharging the storage device 1 are also referred to as demand and supply. Discharging and charging are collectively referred to as charging and discharging (or supply and demand).
  • the SOC State of Charge
  • SOC of Charge which indicates the remaining capacity of the storage battery 11 of the storage device 1 is also simply referred to as the SOC of the storage device 1.
  • the power generation device 2 generates power, for example, by using renewable energy.
  • the power generation device 2 illustrated in FIG. 1 is a solar power generation device, but this is not limiting and various known power generation devices may be used. At least a portion of the power generated by the power generation device 2 may be consumed by the consumer D. Furthermore, the power generated by the power generation device 2 that is not consumed by the consumer D is charged to the storage battery 11 of the power storage device 1, or is supplied to the power line PL via, for example, the power converter 12. The power charged to the storage battery 11 is consumed by the consumer D, or is supplied to the power line PL via the power converter 12.
  • the integrated unit 3 communicates with the multiple energy storage devices 1.
  • the control data generation device 4 generates control data and transmits (also referred to as "distributing") it to each of the multiple energy storage devices 1 and the integrated unit 3.
  • the supply and demand management system 5 is operated or provided by, for example, a retail electricity supplier or an electricity transmission and distribution supplier. Further details of the power system 100 will be described with reference to FIG. 2.
  • FIG. 2 is a block diagram showing an example of the schematic configuration of a power system. Note that the consumer D and the power generation device 2 (FIG. 1) are not shown.
  • the power storage device 1 includes a generated power/demand power measurement unit 13, a control data storage unit 14, and a power interchange control unit 15.
  • the integrated unit 3 includes a control data storage unit 31 and a power interchange control unit 32.
  • the control data generation device 4 includes an actual value collection unit 41, a power storage device supply and demand simulation implementation unit 42, a control data generation unit 43, a control data update unit 44, a planned value collection unit 45, a planned/actual difference calculation unit 46, and a control data generation unit 47.
  • FIG. 2 also shows examples of some processes executed in the supply and demand management system 5.
  • the power generation/demand measurement unit 13 measures the power generated by the power generation device 2 and the charging/discharging power of the energy storage device 1.
  • the measurement results include actual values of the amount of power generated and the amount of power charged/discharged.
  • the power generation/demand measurement unit 13 transmits (data indicating) the actual values to the control data generation device 4.
  • the power generation/demand measurement unit 13 is configured to include, for example, a power meter, a communication device, etc.
  • the power generation/demand measurement unit 13 may be a so-called smart meter.
  • the performance value tallying unit 41 acquires the performance values from each power storage device 1 and tallys them (sums, etc.). Various other processes, such as tallying up past performance values, may also be performed by the performance value tallying unit 41.
  • the energy storage device supply and demand simulation implementation unit 42 performs a simulation based on the actual values of each energy storage device 1 acquired by the actual value aggregation unit 41.
  • This simulation includes calculation of the future SOC trends of each energy storage device 1. The calculation is performed, for example, based on the past amount of power generated by the power generation device 2 corresponding to each energy storage device 1, the amount of power charged and discharged by the energy storage device 1, etc.
  • the simulation may also be performed based on other information. Examples of other information include future weather, temperature, and humidity, day of the week and holiday information, schedules of consumer D, etc.
  • the control data generating unit 43 calculates the target SOC for each of the multiple power storage devices 1 based on the simulation results of the power storage device supply and demand simulation implementation unit 42. More specifically, the control data generating unit 43 generates a scenario that describes the target SOC for each of the power storage devices 1 at a future time. For example, the temporal progression of the target SOC over 24 hours on the following day is described by the scenario. The control data generating unit 43 generates control data that indicates the scenario.
  • the scenario may be calculated taking into consideration the objectives of consumer D.
  • objectives include minimizing surplus power, minimizing power shortages, minimizing power charges, and disaster prevention measures.
  • each energy storage device 1 is configured so that its operating mode can be selected from a number of modes with different objectives.
  • modes include a surplus power minimization mode, a power charge minimization mode, a power shortage minimization mode, and a disaster prevention mode.
  • Information indicating the selected mode may be transmitted from each energy storage device 1 to the control data generation device 4.
  • the control data generation unit 43 generates control data indicating a scenario according to the objective of the mode based on the mode selection information.
  • the control data update unit 44 transmits the control data generated by the control data generation unit 43, i.e., data indicating the scenario, to the corresponding energy storage device 1.
  • the data indicating the scenario for energy storage device 1-1 is transmitted to energy storage device 1-1.
  • the data indicating the scenario for energy storage device 1-2 is transmitted to energy storage device 1-2.
  • the data indicating the scenario for energy storage device 1-n is transmitted to energy storage device 1-n.
  • control data storage unit 14 receives and stores the control data from the control data generation device 4.
  • the power interchange control unit 15 controls the power converter 12 based on the control data. Specifically, the energy storage device 1 charges and discharges so that the SOC of the energy storage device 1 approaches the target SOC described by the scenario shown in the control data.
  • a power demand forecast for the power grid G is performed (process 5a), and a power generation plan based on the forecast result is generated (process 5b).
  • Market trading based on the power generation plan is performed (process 5c), and a plan determined based on the trading result is submitted (process 5d).
  • the plan here includes planned values for the amount of power charged and discharged to the power grid G by the entire multiple storage devices 1 (i.e., power supply and demand of the virtual power plant VPP). Data indicating this planned value is transmitted from the supply and demand management system 5 to the control data generation device 4. After the plan is submitted, the actual power supply and demand of the power grid G is monitored (process 5e).
  • the planned value may be a period obtained by dividing a day into multiple periods. Unless otherwise specified, in the following, it is assumed that a day is divided into 48 unit periods (frames), and each unit period is 30 minutes long.
  • the planned value may be a planned value for a unit period.
  • the planned value for each of the multiple unit periods may be transmitted from the supply and demand management system 5 to the control data generation device 4.
  • the planned value aggregation unit 45 acquires (receives) the planned values from the supply and demand management system 5.
  • the planned/actual difference calculation unit 46 calculates the difference between the planned value acquired by the planned value aggregation unit 45 and the actual value of the amount of power charged/discharged from the power grid G of the entire plurality of power storage devices 1 acquired and aggregated by the actual value aggregation unit 41.
  • the amount of power corresponding to this difference is the amount of power that the entire plurality of power storage devices 1 should charge/discharge from the power grid G, and is called the requested amount of power Erequest.
  • the planned value is referred to as the planned value Eplan.
  • the actual measured value is referred to as the actual value Ereal.
  • the actual value Ereal may be a value in a unit period, like the planned value Eplan. Unless otherwise specified, the planned value Eplan and the actual value Ereal are assumed to be the planned and actual values of the demand, i.e., the amount of charging power for the entire multiple storage devices 1.
  • the control data generation unit 47 generates control data indicating a scenario for each of the multiple storage devices 1 and a requested amount of energy Erequest based on the calculation results of the planned/actual difference calculation unit 46.
  • the scenarios here describe the target SOC for each of the multiple storage devices 1 at a time so as to bring the actual value Ereal closer to the planned value Eplan, in other words, to compensate for the difference between them.
  • control data generation unit 47 similar to the control data generation unit 43 described above, the mode selection information of each power storage device 1 may be taken into consideration when generating control data.
  • the control data update unit 44 transmits the control data generated by the control data generation unit 47 to the multiple energy storage devices 1 and the integrated unit 3. Of the control data, at least the data indicating the scenario is transmitted to the corresponding energy storage device 1. Of the control data, at least the data indicating the requested amount of energy Erequest is transmitted to the integrated unit 3.
  • control data storage unit 14 receives and stores the control data from the control data generation device 4.
  • the control data that has already been received and stored is, for example, overwritten by the current control data. In other words, the scenario is updated.
  • the control data storage unit 31 receives and stores control data from the control data generating device 4.
  • the power interchange control unit 32 communicates with the power interchange control unit 15 of the storage device 1 and adjusts the interchange of power.
  • This interchange adjustment is an adjustment for charging and discharging the amount of power equivalent to the requested amount of power Erequest from the multiple storage devices 1 as a whole to the power grid G.
  • a first power interchange is implemented.
  • the first power interchange at least some of the multiple storage devices 1 charge and discharge the power from the power grid G so that the charging and discharging power from the multiple storage devices 1 as a whole to the power grid G approaches the requested amount of power Erequest.
  • the first power interchange will be described with reference to Figs. 3 and 4.
  • FIG. 3 is a diagram showing an example of time division in the first power interchange.
  • Time t indicates, for example, the start time of the corresponding unit period.
  • each unit period power interchange is performed so that the actual value Ereal approaches the planned value Eplan.
  • One unit period is divided into a plurality of periods. The divided periods are called divided periods. For example, one unit period is divided into m equal periods. That is, each of the unit periods corresponding to time t1 to time t48 is divided into m equal periods. By dividing the unit period corresponding to time t1 into m equal periods, m divided periods corresponding to time t1,1 to time t1,m are obtained. The same applies to the other times t2 to t48.
  • the number of m is not particularly limited, but may be, for example, about 5 to 6.
  • ... t48 t48,1, t48,2, ... t48,m
  • the total amount of charge and discharge power of the multiple storage devices 1 for the next divided period is calculated from the difference between the values in a certain divided period.
  • the integration unit 3 selects, from the multiple storage devices 1, one or more storage devices 1 that can charge and discharge from the power grid G.
  • the selected storage devices 1 charge and discharge from the power grid G so that the amount of charge and discharge power from the entire storage devices 1 selected by the integration unit 3 to the power grid G approaches the requested amount of power Erequest.
  • the description will also be made with reference to FIG. 4.
  • FIG. 4 is a flowchart showing an example of the process (control method) executed in the first power interchange. Explanations of content that overlap with the above will be omitted where appropriate.
  • steps S1 and S2 are executed by the control data generating device 4.
  • step S1 the plan-actual difference calculation unit 46 compares the plan value Eplan and the actual value Ereal. If the plan value Eplan is greater than the actual value Ereal (Eplan>Ereal), processing proceeds to step S2. If the plan value Eplan is less than the actual value Ereal (Eplan ⁇ Ereal), processing proceeds to step S10.
  • step S2 the plan/actual difference calculation unit 46 calculates the requested energy Erequest, which corresponds to the difference between the planned value Eplan and the actual value Ereal.
  • the requested energy Erequest here is the amount of energy charged to the power grid G of the multiple storage devices 1 as a whole, and is also referred to as the requested charging energy Erequest-c.
  • the control data generation unit 47 generates control data indicating the scenario for each of the multiple storage devices 1 and the requested charging energy Erequest-c. This control data indicates a scenario updated so that the amount of energy charged to the power grid G of the multiple storage devices 1 as a whole is increased.
  • the control data update unit 44 transmits the control data to the multiple storage devices 1 and the integrated unit 3.
  • steps S3 to S6 and S8 is performed by the integrated unit 3.
  • step S3 the power interchange control unit 32 issues a demand request to each power storage device 1.
  • the issuance of the demand request includes an inquiry about the interchangeable amount of power of each power storage device 1, more specifically, the chargeable amount of power in this example.
  • step S4 the power interchange control unit 32 receives a response from each storage device 1.
  • the response includes information indicating the interchangeable power amount of each storage device 1.
  • the total amount of interchangeable power of each storage device 1 that responded is referred to as the interchangeable power amount Eaccept. Since the interchangeable power amount Eaccept here corresponds to the amount of charging power, it is also referred to as the chargeable power amount Eaccept-c. Note that storage devices 1 that are not being charged do not need to respond.
  • step S5 the power interchange control unit 32 compares the requested charging energy amount Erequest-c with the chargeable energy amount Eaccept-c. In this example, it is determined whether the requested charging energy amount Erequest-c is smaller than the chargeable energy amount Eaccept-c. If the requested charging energy amount Erequest-c is smaller than the chargeable energy amount Eaccept-c (step S5: Yes), processing proceeds to step S6. If not (step S5: No), processing proceeds to step S8.
  • step S6 the power interchange control unit 32 preferentially selects, from among the responding storage devices 1, the storage device 1 with the largest amount of interchangeable power, in this case the largest amount of chargeable power.
  • the storage devices 1 with the largest amount of chargeable power are selected in order until the total amount of chargeable power of the selected storage devices 1 reaches the requested amount of charging power Erequest-c.
  • step S7 the first power interchange is carried out.
  • Each storage battery 1 selected by the integration unit 3 controls the power converter 12 according to the update scenario, and charges from the power grid G for a certain period of time (e.g., the above-mentioned division period). As a result, the actual value Ereal over the unit period approaches the planned value Eplan.
  • step S8 the power interchange control unit 32 selects all of the storage devices 1 that responded.
  • step S9 the first power interchange is carried out.
  • the storage device 1 selected by the integrated unit 3 is charged from the power grid G according to the update scenario.
  • the actual value Ereal over the unit period approaches the planned value Eplan.
  • step S10 is executed by the control data generating device 4.
  • the plan/actual difference calculation unit 46 calculates the requested energy Erequest, which corresponds to the difference between the planned value Eplan and the actual value Ereal.
  • the requested energy Erequest here is the amount of energy discharged from the entire multiple energy storage devices 1 to the power grid G, and is also referred to as the requested discharge energy Erequest-dc.
  • the control data generating unit 47 generates control data indicating the scenario for each of the multiple energy storage devices 1 and the requested discharge energy Erequest-dc. This control data indicates a scenario updated so that the amount of energy discharged from the entire multiple energy storage devices 1 to the power grid G is increased.
  • the control data update unit 44 transmits the control data to each of the multiple energy storage devices 1 and the integrated unit 3.
  • steps S11 to S14 and S17 is performed by the integrated unit 3.
  • step S11 the power interchange control unit 32 issues a supply request to each power storage device 1.
  • the issuance of the supply request includes an inquiry about the interchangeable amount of power of each power storage device 1, more specifically, the amount of dischargeable power in this example.
  • step S12 the power interchange control unit 32 receives a response from each storage device 1.
  • the response includes information indicating the interchangeable power amount of each storage device 1.
  • the total amount of interchangeable power of each storage device 1 that responded is the interchangeable power amount Eaccept, which corresponds to the amount of discharged power here and is therefore also referred to as the dischargeable power amount Eaccept-dc. Note that storage devices 1 that do not discharge do not need to respond.
  • step S13 the power interchange control unit 32 compares the requested discharge energy Erequest-dc with the dischargeable energy Eaccept-dc. In this example, it is determined whether the requested discharge energy Erequest-dc is smaller than the dischargeable energy Eaccept-dc. If the requested discharge energy Erequest-dc is smaller than the dischargeable energy Eaccept-dc (step S13: Yes), processing proceeds to step S14. If not (step S13: No), processing proceeds to step S16.
  • step S14 the power interchange control unit 32 preferentially selects the storage device 1 with the largest amount of interchangeable power (dischargeable power) from among the responding storage devices 1. For example, the storage devices 1 with the largest amount of dischargeable power are selected in order until the total amount of dischargeable power of the selected storage devices 1 reaches the requested discharge power amount Erequest-dc.
  • step S15 the first power interchange is carried out.
  • Each power storage device 1 selected by the integration unit 3 controls the power converter 12 according to the update scenario, and discharges to the power grid G for a certain period of time (e.g., the above-mentioned division period).
  • the actual value Ereal over the unit period approaches the planned value Eplan.
  • step S16 the power interchange control unit 32 selects all of the storage devices 1 that responded.
  • step S17 the first power interchange is carried out.
  • the storage device 1 selected by the integration unit 3 discharges to the power grid G according to the update scenario.
  • the actual value Ereal over the unit period approaches the planned value Eplan.
  • step S7 After the processing of step S7, step S9, step S15, or step S17 is completed, the processing of the flowchart ends.
  • the first power interchange is performed in this manner.
  • the SOC of the power storage device 1 may deviate from the target SOC due to unexpected power generation and demand fluctuations, including charging and discharging due to the first power interchange described above.
  • the SOC of each power storage device 1 is brought closer to the target SOC by the second power interchange, i.e., the power interchange between multiple power storage devices 1.
  • the power interchange control units 15 of the multiple storage devices 1 communicate with each other and adjust the interchange of power.
  • This interchange adjustment is an adjustment for charging and discharging each device so that their SOCs approach the target SOC. Based on the result of this interchange adjustment, the second power interchange is implemented.
  • the amount of charging power (demand) of the storage devices 1 to be charged matches the amount of discharging power (supply) of the storage devices 1 to be discharged
  • the amount of charging and discharging power (supply and demand balance) of the multiple storage devices 1 as a whole to the power grid G is maintained. An explanation will also be given with reference to FIG. 5.
  • FIG. 5 is a flowchart showing an example of the process (control method) executed in the second power interchange.
  • the processes of steps S21 to S29 are executed in each of the multiple power storage devices 1.
  • the SOC of the power storage device 1 is also referred to as SoCreal.
  • the target SOC of the power storage device 1 is also referred to as SOCtarget.
  • step S21 the storage device 1 compares SOCtarget and SOCreal. If SOCreal is greater than SOCtarget (SOCtarget ⁇ SOCreal), processing proceeds to step S22. If SOCreal is less than SOCtarget (SOCtarget>SOCreal), processing proceeds to step S26.
  • step S22 the power interchange control unit 15 of the energy storage device 1 issues a supply request to another energy storage device 1 other than the own device.
  • Supply here means that the own device supplies power to the other energy storage device 1.
  • the issuance of the supply request may include an inquiry about the amount of interchangeable power of the other energy storage device 1, more specifically, the amount of chargeable power.
  • step S23 the power interchange control unit 15 receives responses from the other energy storage devices 1.
  • the responses may include information indicating the amount of interchangeable (chargeable) power of each energy storage device 1. Note that energy storage devices 1 that are not charging do not need to respond.
  • step 24 the power interchange control unit 15 selects the desired storage device 1 from the other storage devices 1 that have responded. For example, a storage device 1 with a large amount of chargeable power may be selected preferentially.
  • step S25 the second power interchange is performed.
  • the device itself discharges, and the discharged power is charged to the selected storage device 1.
  • the amount of charge/discharge power to the power grid G of the entire plurality of storage devices 1 is maintained, and the SOCreal of the device itself approaches the SOCtarget.
  • step S26 the power interchange control unit 15 of the energy storage device 1 issues a demand request to the other energy storage devices 1 other than the own device.
  • Demand here means that the other energy storage devices 1 will supply power to the own device.
  • the issuance of the demand request may include an inquiry about the amount of interchangeable power of the other energy storage devices 1, more specifically, the amount of dischargeable power.
  • step S27 the power interchange control unit 15 receives responses from the other energy storage devices 1.
  • the responses may include information indicating the amount of interchangeable (dischargeable) power of each energy storage device 1. Note that energy storage devices 1 that do not discharge do not need to respond.
  • step 28 the power interchange control unit 15 selects the desired storage device 1 from the other storage devices 1 that have responded. For example, the storage device 1 with the largest amount of dischargeable power is selected preferentially.
  • step S29 the second power interchange is performed.
  • the selected storage device 1 discharges, and the device itself charges with the discharged power.
  • the amount of charge/discharge power of the entire plurality of storage devices 1 to the power grid G is maintained, and the SOCreal of the device itself approaches the SOCtarget.
  • step S25 or step S29 the processing of the flowchart ends.
  • the second power interchange is performed in this manner.
  • the scenario describing the target SOC of each storage device 1 may be appropriately updated and distributed so that the second power interchange is performed at the desired timing.
  • Example FIG. 6 is a diagram showing an example. Three storage devices 1 will be described as an example. In order to distinguish between the storage devices 1, they will be referred to as storage devices 1-1, 1-2, and 1-3. A scenario for one day is illustrated for the storage device 1. The illustrated scenario describes the time, the target SOC (SOCtarget), the amount of interchangeable power, and the interchange adjustment partner in association with each other. The amount of interchangeable power indicates the amount of power that the storage device 1 can charge and discharge.
  • the interchange adjustment partner is a partner that is permitted to perform power interchange adjustment, and only power interchange adjustment between the interchange adjustment partner described here is permitted. Examples of the interchange adjustment partner are another storage device 1 and an integrated unit 3. "Anyone" means that the interchange adjustment partner is not particularly limited.
  • (A) in FIG. 6 illustrates an example of a base scenario.
  • the base scenario is generated and distributed before the start of a day, for example, the day before.
  • the base scenario describes the progress of the target SOC for charging and discharging the energy storage device 1 so that there is no time during the day when surplus power occurs and charging becomes impossible, or conversely, when discharging becomes impossible.
  • the control data generating device 4 may calculate the time when the energy storage device 1 discharges and the amount of discharged power to prevent the generation of surplus power.
  • This amount of discharged power is the amount of power that can be supplied (discharged) to the power grid G, i.e., the amount of power that can be proposed for procurement by the retail electricity supplier, and may correspond to the planned value Eplan.
  • the illustrated scenario describes the time, the charge/discharge request, the amount of interchangeable power, and the interchange adjustment partner in association with each other.
  • the base scenario stage there is no need for a charge/discharge request or an interchangeable amount of power.
  • New control data i.e., a scenario, is generated and updated to fill this difference.
  • a power supply shortage occurs between 10:00 and 10:05 (planned value Eplan ⁇ actual value Ereal).
  • the SOC of each storage device 1 is 80% for storage device 1-1, 95% for storage device 1-2, and 60% for storage device 1-3.
  • FIG. 6 illustrates an example of an update scenario.
  • the base scenario is updated so that the actual value Ereal approaches the planned value Eplan.
  • Data indicating the requested amount of energy Erequest is also distributed to the integrated unit 3.
  • the integrated unit 3 issues a supply request to each storage device 1, and in this example, storage devices 1-1 and 1-2 are selected. As storage devices 1-1 and 1-2 discharge, the actual value Ereal approaches the planned value Eplan. This first power interchange is carried out between storage devices 1-1, 1-2, and the integrated unit 3 between 10:05 and 10:10.
  • data indicating a scenario for limiting the party for power exchange adjustment is transmitted to the corresponding energy storage device 1 so as to avoid overlapping implementation of the first power exchange and the second power exchange.
  • the first power exchange is prioritized over the second power exchange.
  • Data indicating a scenario for limiting the party for power exchange adjustment to the integrated unit 3 is transmitted to the energy storage devices 1, 1-1, and 1-2 that charge and discharge to and from the power grid G in the first power exchange.
  • the power storage devices 1-1 and 1-2 are limited to the integrated unit 3 as their power exchange partner. During that time, power exchange adjustment is performed only between the power storage devices 1-1 and 1-2 and the integrated unit 3, and the first power exchange is implemented based on the results of this power exchange adjustment. The second power exchange is not implemented. After 10:10, when the first power exchange ends, the restriction on the power exchange partner is lifted.
  • the SOC of power storage device 1-1 falls below the target SOC. Meanwhile, the SOC of power storage device 1-2 and the SOC of power storage device 1-3 both exceed the target SOC.
  • a second power interchange is implemented. For example, power interchange may be implemented between power storage device 1-1 and power storage device 1-3. Power storage device 1-3 discharges, and the discharged power is charged by power storage device 1-1. The SOC of each of power storage device 1-1 and power storage device 1-3 is brought closer to the target SOC.
  • a scenario may be generated based on the mode selection information of the power storage device 1.
  • data indicating a scenario may be generated such that the first power interchange and the second power interchange are implemented based on the priority according to the selected mode. Power interchange according to the purpose of the mode can be implemented.
  • the disaster recovery mode may be selected in the mode selection for the power storage device 1.
  • control data is distributed indicating a scenario describing a target SOC for always securing the SOC. No control data for implementing the first power interchange is transmitted, and the second power interchange is implemented with priority over the first power interchange, and overlapping implementation is avoided.
  • a disaster is a disaster caused by a typhoon or the like. For example, based on the predicted date and time of the typhoon's landfall obtained from meteorological information, by not transmitting control data to implement the first power interchange not only to the storage device 1 for which the disaster countermeasure mode has been selected, but to all storage devices 1, it is possible to implement only the second power interchange and sufficiently ensure the SOC of each storage device 1.
  • the priority of the first power interchange regarding discharge may be highest for the surplus power minimization mode, followed by the power fee minimization mode, the power shortage minimization mode, and the disaster response mode.
  • surplus power minimization mode active discharge is performed to prevent the generation of surplus power. It is selected first for discharge to the integrated unit 3 (to the power grid G).
  • power price minimization mode power is exchanged based on the power price. By setting the power price of the power request from the integrated unit 3 higher, active discharge is performed.
  • power shortage minimization mode and disaster response mode basically, discharge is hardly performed, and is performed only when there is a margin in the SOC.
  • the priority of the first power interchange is determined based on the mode selection information of each storage device 1, the power usage status at that time, etc.
  • the power price of the first power interchange can be set higher than the second power interchange, thereby prioritizing the first power interchange.
  • the power price may be indicated in the control data, and may also be used to adjust the interchange between the integrated unit 3 and the storage device 1.
  • Figure 7 shows an example of an electricity market.
  • the closing time corresponds to the gate close (GC) time.
  • Electricity retailers and others submit plans for the day's electricity demand and supply in the day-ahead and hour-ahead markets.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a power system.
  • the control data generating device 4 further includes a procurement amount calculation unit 48, a procurement amount notification unit 49, and a control data generating unit 50.
  • the available procurement amount calculation unit 48 calculates the surplus power of each storage device 1 as the amount of power that can be procured (available procurement amount) based on the simulation results of the storage device supply and demand simulation implementation unit 42.
  • the available procurement amount notification unit 49 notifies the supply and demand management system 5 of the available procurement amount. The notified available procurement amount is taken into consideration in the power generation plan in the supply and demand management system 5.
  • the energy storage device 1 As an option for power procurement, the energy storage device 1 and other power sources owned by retail electricity suppliers can be compared with respect to power procurement costs and amounts, and a desirable procurement source can be selected. When the energy storage device 1 is selected, the procurement amount is notified to the control data generation device 4.
  • control data generating unit 50 In the control data generating device 4, the control data generating unit 50 generates control data based on the procurement amount notified by the supply and demand management system 5.
  • the control data updating unit 44 transmits the control data generated by the control data generating unit 50 to each power storage device 1.
  • FIG. 9 is a diagram showing an example of cooperation with the market.
  • demand forecasting and power supply procurement are performed (step S31). If power supply cannot be secured (step S32: No), for example, in the control data generating device 4, an interchange simulation is performed, a power storage device 1 that can supply power during the time period when power supply cannot be secured is selected, and the available supply amount and price are notified (step S33). Power supply procurement is updated (step S34), and the amount of procurement from the power storage device 1 is notified. A power storage device that satisfies the updated procurement amount is selected, and a discharge scenario is distributed to each power storage device 1 and the integrated unit 3 (step S35).
  • step S36 From the viewpoint of charging and discharging the power storage device 1 to maintain the supply and demand balance, and control between the integrated unit 3 and each power storage device 1, a scenario for interchange between the power storage device 1 that generates a surplus even when discharged and the power storage device 1 that generates a shortage is distributed (step S36).
  • step S37 and S38 The latest demand forecast and power procurement are used to check whether power can be secured. If power cannot be secured (step S38: No), an interchange simulation is performed, a power storage device 1 that can supply power during the time period when power cannot be secured is selected, and the available supply amount and price are notified (step S39). Power procurement is updated (step 40), a power storage device that satisfies the updated procurement amount is selected, and a discharge scenario is distributed to each power storage device 1 and the integrated unit 3 (step S41). A scenario for interchange between a power storage device 1 that generates a surplus even when discharged and a power storage device 1 that has a shortage is distributed (step S42).
  • a charge/discharge scenario is distributed to the additionally chargeable/dischargeable storage device 1 and the integrated unit 3 (step S45).
  • a scenario that appropriately balances the SOC according to the SOC of the storage device 1 is distributed.
  • Figure 10 shows an example of a scenario update.
  • the scenario for power storage device 1-1 is referred to as scenario 1, etc.
  • FIG. 10(A) base scenarios for all energy storage devices 1 are generated and distributed.
  • FIG. 10(B) and FIG. 10(C) in the day-ahead market and hour-ahead market, scenarios for energy storage devices 1 that exchange power with integrated units 3 are generated and updated as necessary.
  • FIG. 10(D) scenarios are updated in real time even after the gate is closed.
  • the storage device 1 to which the update scenario has been distributed can efficiently allocate power between the storage devices 1 by only using the integrated unit 3 as a power exchange adjustment partner during the first power exchange time period, and also using other storage devices 1 as power exchange adjustment partners at other times.
  • the above control will not only enable electricity supply and demand to minimize the imbalance between power generation and demand by retail electricity suppliers, etc., but will also make it possible to supply and demand electricity to the supply and demand adjustment market and wholesale electricity market.
  • information about electricity may be presented to consumer D. Such presentation may be performed, for example, by the energy storage device 1.
  • the energy storage device 1 may include a UI (user interface) for presenting information, etc.
  • a UI user interface
  • An example of a UI is a display, etc. This will be described with reference to Figures 11 and 12.
  • FIG. 11 is a diagram showing an example of a UI.
  • a scenario is displayed in a graph.
  • the dashed graph line indicates the predicted SOC value.
  • the solid graph line indicates the progress of the target SOC for using electricity efficiently without generating surpluses or shortages.
  • power can be used more efficiently and the consumer's electricity bill can be reduced.
  • FIG. 12 is a diagram showing another example of the UI.
  • the SOC of each storage device 1 is visualized and displayed.
  • the power status of the storage devices 1 (other storage devices) used by other consumers D and the integrated unit 3 are also displayed. By comparing these power statuses, the consumer D can make decisions on supplying power when there is a shortage of power from other storage devices 1 or the integrated unit 3 (power from the power grid G), or consuming (demanding) power when there is a surplus. By leading to a change in the behavior of the consumer D, it is possible to promote efficient use of power.
  • Each of the devices described above such as the power storage device 1, the integrated unit 3, the control data generating device 4, and the supply and demand management system 5, may include a computer. An example will be described with reference to FIG. 13.
  • FIG. 13 is a diagram showing an example of the hardware configuration of a device, etc.
  • the illustrated computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads the programs stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processes corresponding to the various programs.
  • the ROM 1300 stores boot programs such as the Basic Input Output System (BIOS) that is executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the hardware of the computer 1000.
  • BIOS Basic Input Output System
  • HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by CPU 1100 and data used by such programs.
  • HDD 1400 is a recording medium that records programs (e.g., control programs) for executing the operations related to the present disclosure, which are an example of program data 1450.
  • the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (e.g., the Internet).
  • the CPU 1100 receives data from other devices and transmits data generated by the CPU 1100 to other devices via the communication interface 1500.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600.
  • the CPU 1100 also transmits data to an output device such as a display, a speaker or a printer via the input/output interface 1600.
  • the input/output interface 1600 may also function as a media interface that reads programs and the like recorded on a specific recording medium.
  • Examples of media include optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Disks), magneto-optical recording media such as MOs (Magneto-Optical Disks), tape media, magnetic recording media, and semiconductor memories.
  • optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Disks)
  • magneto-optical recording media such as MOs (Magneto-Optical Disks)
  • tape media magnetic recording media
  • magnetic recording media and semiconductor memories.
  • At least some of the functions of the energy storage device 1, integrated unit 3, control data generating device 4, and supply and demand management system 5 described above may be realized, for example, by the CPU 1100 of the computer 1000 executing a program (control program) loaded onto the RAM 1200.
  • the HDD 1400 stores programs and the like related to the present disclosure. Note that the CPU 1100 reads and executes program data 1450 from the HDD 1400, but as another example, these programs may be obtained from other devices via the external network 1550.
  • control data generating device 4 As described with reference to FIG. 1 to FIG. 5 and the like, the control data generating device 4 generates a scenario describing a target SOC for each time of the multiple storage devices 1 connected to the power grid G, and control data indicating a requested amount of power Erequest corresponding to a difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power of the multiple storage devices 1 as a whole with respect to the power grid G, transmits at least data indicating the scenario among the generated control data to the corresponding storage device 1, and transmits at least data indicating the requested amount of power Erequest among the generated control data to the integration unit 3 that communicates with the multiple storage devices 1.
  • the charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1. According to such a control data generating device 4, it becomes possible to achieve both the first power interchange and the second power interchange.
  • the storage devices 1 of the multiple storage devices 1 may charge and discharge to the power grid G so that the charge/discharge power of the multiple storage devices 1 as a whole to the power grid G approaches the requested power amount Erequest.
  • the planned value Eplan is a planned value for a unit period
  • at least some of the storage devices 1 of the multiple storage devices 1 may charge and discharge to the power grid G for each divided period into which the unit period is divided, so that the value of the actual value for the divided period approaches the value of the planned value for the divided period.
  • the integration unit 3 selects one or more storage devices 1 that can be charged and discharged to the power grid G from the multiple storage devices 1, and in the first power interchange, the selected storage devices 1 may charge and discharge to the power grid G so that the charge/discharge power amount of the entire storage devices 1 selected by the integration unit 3 to the power grid G approaches the requested power amount Erequest. For example, by implementing the first power interchange in this manner, the actual value Ereal can be brought closer to the planned value Eplan.
  • the scenario further describes the exchange adjustment partner for each of the multiple energy storage devices 1, and the control data generating device 4 may transmit data indicating a scenario that limits the exchange adjustment partner so as to avoid overlapping implementation of the first power exchange and the second power exchange to the corresponding energy storage device 1.
  • the control data generating device 4 may transmit data indicating a scenario that limits the exchange adjustment partner to the integrated unit 3 to the energy storage devices 1 (e.g., energy storage device 1-1 and energy storage device 1-2) that charge/discharge with respect to the power grid G in the first power exchange. For example, in this way, the first power exchange and the second power exchange can be linked.
  • the operating mode of the energy storage device 1 can be selected from a plurality of modes, and the control data generating device 4 may generate data indicating a scenario such that the first power interchange and the second power interchange are implemented based on a priority according to the selected mode.
  • the plurality of modes may include a surplus power minimization mode, a power fee minimization mode, a power shortage minimization mode, and a disaster countermeasure mode.
  • Power interchange can be implemented according to the purpose of the mode.
  • the control method described with reference to Figures 1 to 5 is also one of the disclosed techniques.
  • the control method generates control data indicating a scenario describing a target SOC for each time of the multiple storage devices 1 connected to the power grid G, and a requested amount of power Erequest corresponding to a difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power for the power grid G of the multiple storage devices 1 as a whole, transmits at least data indicating the scenario from the generated control data to the corresponding storage device 1, and transmits at least data indicating the requested amount of power Erequest from the generated control data to an integration unit 3 that communicates with the multiple storage devices 1.
  • the charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1.
  • this control method also makes it possible to achieve both the first power interchange and the second power interchange.
  • the control program causes the computer 1000 to execute processing to generate control data indicating a scenario describing a target SOC for each time of the multiple storage devices 1 that are connected to the power grid G and a requested amount of power Erequest corresponding to the difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power for the power grid G of the multiple storage devices 1 as a whole, transmit at least data indicating the scenario from the generated control data to the corresponding storage device 1, and transmit at least data indicating the requested amount of power Erequest from the generated control data to the integration unit 3 that communicates with the multiple storage devices 1.
  • the charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1.
  • this control program also makes it possible to achieve both the first power interchange and the second power interchange.
  • This technology may be related to Goal 7 "Affordable and Clean Energy” and Goal 13 “Climate Action” of the Sustainable Development Goals (SDGs) adopted at the United Nations Summit in 2015.
  • This technology is related to power networks (e.g. smart grids) that use digital communications technology to detect and respond to changes in the use of renewable energy, while allowing for the two-way flow of electricity and data.
  • power networks e.g. smart grids
  • digital communications technology to detect and respond to changes in the use of renewable energy, while allowing for the two-way flow of electricity and data.
  • the use of renewable energy also makes it possible to reduce greenhouse gas (GHG) emissions.
  • GFG greenhouse gas
  • the present technology can also be configured as follows. (1) generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices; Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device; Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device; transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices; A control data generating device,
  • the charging and discharging is A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices; A second power interchange between the plurality of power storage devices is performed
  • the planned value is a planned value for a unit period
  • At least a part of the power storage devices among the plurality of power storage devices is charged/discharged to/from the power grid for each divided period obtained by dividing the unit period into a plurality of periods, so that a value of an actual value for the divided period approaches a value of a planned value for the divided period.
  • a control data generating device according to (1) or (2).
  • the integration unit selects one or more power storage devices that can be charged/discharged to/from the power grid from the plurality of power storage devices;
  • the selected power storage device charges and discharges with respect to the power grid such that an amount of charge/discharge power of the entire power storage devices selected by the integration unit with respect to the power grid approaches the required amount of power.
  • a control data generating device according to any one of (1) to (3).
  • the scenario further describes a power exchange adjustment partner for each of the plurality of power storage devices,
  • the control data generation device transmits data indicating a scenario for limiting a counterpart of the power interchange adjustment so as to avoid overlapping implementation of the first power interchange and the second power interchange to a corresponding power storage device.
  • a control data generating device transmits data indicating a scenario in which the interchange adjustment partner is limited to the integration unit to an electric power storage device that charges/discharges the electric power grid in the first electric power interchange.
  • a control data generating device according to (5).
  • the operation mode of the power storage device can be selected from a plurality of modes, the control data generation device generates data indicating the scenario such that a first power interchange and a second power interchange are implemented based on a priority according to a selected mode.
  • a control data generating device according to any one of (1) to (6).
  • the plurality of modes include a surplus power minimization mode, a power fee minimization mode, a power shortage minimization mode, and a disaster prevention mode.
  • a control data generating device according to (7). (9) generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices; Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device; Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device; transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices; 1.
  • a control method comprising: The charging and discharging is A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices; A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and including, Control methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

In the present invention, a control-data-generating device: generates a scenario describing a target SOC at a point in time for each of a plurality of charging/discharging electric power storage devices that are connected to an electric power grid, and generates control data showing the required electric power amount corresponding to the difference between outlooked and actual values for the amount of electric power charged to or discharged from the electric power grid for all of the plurality of electric power storage devices; transmits, to a corresponding electric power storage device, data that indicates at least the scenario from within the generated control data; and transmits, to an integrated unit communicating with the plurality of power storage devices, data that indicates at least the required electric power amount from within the generated control data. The charging and discharging includes: a first electric power interchange between the plurality of electric power storage devices as a whole and the electric power grid, the first electric power interchange being implemented on the basis of the result of interchange adjustment between the integrated unit and the plurality of electric power storage devices; and a second electric power interchange between the plurality of electric power storage devices, the second electric power interchange being implemented on the basis of the result of interchange adjustment between the plurality of electric power storage devices.

Description

制御データ生成装置、制御方法及び制御プログラムControl data generating device, control method, and control program
 本開示は、制御データ生成装置、制御方法及び制御プログラムに関する。 This disclosure relates to a control data generation device, a control method, and a control program.
 例えば特許文献1に開示されるように、複数の蓄電装置間で電力融通を行うことが知られている。 For example, as disclosed in Patent Document 1, it is known to exchange power between multiple power storage devices.
特開2021-44972号公報JP 2021-44972 A
 複数の蓄電装置全体と電力網との間の電力融通も可能になれば、例えば電力供給確保、電力需給バランシング等に役立てることができる。 If it becomes possible to share power between multiple power storage devices as a whole and the power grid, this can be useful, for example, for ensuring power supplies and balancing power supply and demand.
 本開示の一側面は、複数の蓄電装置全体と電力網との間の電力融通、及び、複数の蓄電池間の電力融通の両立を可能にする。 One aspect of the present disclosure makes it possible to simultaneously exchange power between multiple power storage devices as a whole and the power grid, and between multiple storage batteries.
 本開示の一側面に係る制御データ生成装置は、電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置全体の電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置に送信し、生成した制御データのうちの少なくとも要求電力量を示すデータを、複数の蓄電装置と通信する統合ユニットに送信する、制御データ生成装置であって、充放電は、複数の蓄電装置全体と電力網との間の電力融通であって、統合ユニットと複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置間の電力融通であって、複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、を含む。 A control data generating device according to one aspect of the present disclosure generates a scenario describing a target SOC for each time of multiple storage devices that are connected to a power grid and that charge and discharge, and control data indicating a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmits at least data indicating the scenario from the generated control data to a corresponding storage device, and transmits at least data indicating the required amount of power from the generated control data to an integration unit that communicates with the multiple storage devices, and the charging and discharging includes a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
 本開示の一側面に制御方法は、電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置全体の電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置に送信し、生成した制御データのうちの少なくとも要求電力量を示すデータを、複数の蓄電装置と通信する統合ユニットに送信する、制御方法であって、充放電は、複数の蓄電装置全体と電力網との間の電力融通であって、統合ユニットと複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置間の電力融通であって、複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、を含む。 In one aspect of the present disclosure, a control method generates control data indicating a scenario describing a target SOC for each time for each of multiple storage devices that are connected to a power grid and that charge and discharge, and a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmits at least data indicating the scenario from the generated control data to a corresponding storage device, and transmits at least data indicating the required amount of power from the generated control data to an integration unit that communicates with the multiple storage devices, and the charging and discharging includes a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
 本開示の一側面に係る制御プログラムは、コンピュータに、電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置全体の電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置に送信し、生成した制御データのうちの少なくとも要求電力量を示すデータを、複数の蓄電装置と通信する統合ユニットに送信する、処理を実行させる制御プログラムであって、充放電は、複数の蓄電装置全体と電力網との間の電力融通であって、統合ユニットと複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置間の電力融通であって、複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、を含む。 A control program according to one aspect of the present disclosure causes a computer to execute a process of generating control data indicating a scenario describing a target SOC for each time of multiple storage devices that are connected to a power grid and that charge and discharge, and a required amount of power equivalent to the difference between a planned value and an actual value for the amount of power that is charged and discharged to the power grid for the multiple storage devices as a whole, transmitting at least data of the generated control data indicating the scenario to a corresponding storage device, and transmitting at least data of the generated control data indicating the required amount of power to an integration unit that communicates with the multiple storage devices, the charging and discharging including a first power interchange between the multiple storage devices as a whole and the power grid, which is implemented based on the result of the interchange adjustment between the integration unit and the multiple storage devices, and a second power interchange between the multiple storage devices, which is implemented based on the result of the interchange adjustment between the multiple storage devices.
実施形態に係る制御装置を含む電力システムの概略構成の例を示す図である。1 is a diagram illustrating an example of a schematic configuration of a power system including a control device according to an embodiment. 電力システムの概略構成の例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a power system; 第1の電力融通における時間分割の例を示す図である。FIG. 11 is a diagram illustrating an example of time division in the first power interchange. 第1の電力融通において実行される処理(制御方法)の例を示すフローチャートである。4 is a flowchart showing an example of a process (control method) executed in a first power interchange. 第2の電力融通において実行される処理(制御方法)の例を示すフローチャートである。10 is a flowchart showing an example of a process (control method) executed in a second power interchange. 実施例を示す図である。FIG. 電力市場の例を示す図である。FIG. 1 illustrates an example of an electricity market. 電力システムの概略構成の例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a power system; 市場との連携の例を示す図である。FIG. 13 is a diagram illustrating an example of collaboration with a market. シナリオ更新の例を示す図である。FIG. 13 is a diagram illustrating an example of a scenario update. UIの例を示す図である。FIG. 13 is a diagram illustrating an example of a UI. UIの別の例を示す図である。FIG. 13 is a diagram illustrating another example of a UI. 装置等のハードウェア構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of an apparatus, etc.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that in each of the following embodiments, the same elements will be designated by the same reference numerals, and duplicate descriptions will be omitted.
 以下に示す項目順序に従って本開示を説明する。
  0.序
  1.実施形態
  2.実施例
  3.モード選択情報に応じた優先度の例
  4.応用例
  5.ハードウェア構成の例
  6.効果の例
The present disclosure will be described in the following order.
0. Introduction 1. Embodiment 2. Example 3. Example of Priority According to Mode Selection Information 4. Application Example 5. Example of Hardware Configuration 6. Example of Effects
0.序
 電力のバランシンググループや小売事業者(以下、「小売事業者等」ともいう。)には、電力需給の計画値と実績値を常に一致させるような運用を求められる。計画値と実績値が一致しない状態は、インバランスとも称される。とくに、不足インバランス、すなわち需要が供給よりも多い状態が発生すると、小売電気事業者等は、送配電事業者に対してインバランス費用を支払わなければならず、このことは経営上の課題でもあった。
0. Introduction Electricity balancing groups and retailers (hereinafter referred to as "retailers, etc.") are required to operate in such a way that the planned and actual values of electricity supply and demand always match. A state in which the planned and actual values do not match is also called an imbalance. In particular, when a shortage imbalance occurs, that is, a state in which demand exceeds supply, retailers etc. must pay imbalance fees to the electricity transmission and distribution company, which has been a management issue.
 近年は、需要家(家屋、工場等)に設置した再生可能エネルギーを利用した発電装置及びこれに接続された蓄電池を含む蓄電装置の分散リソースを集約配置した仮想発電所VPP(Virtual Power Plant)の導入が検討されている。VPP内の複数の蓄電装置は、例えばそれぞれのSOCが目標SOCに近づくように互いに電力融通可能である。 In recent years, the introduction of a virtual power plant (VPP) that aggregates distributed resources such as power generation equipment that uses renewable energy and storage equipment including storage batteries connected to the power generation equipment installed at consumers' facilities (houses, factories, etc.) has been considered. The multiple storage equipment within the VPP can share power with each other, for example, so that each SOC approaches a target SOC.
 VPP内の蓄電装置を、VPP外の電力網、例えば送配電事業者が管理する電力網との間でも電力融通できるようにすれば、小売電気事業者等による供給力確保に役立てることができる。また、余剰電力を吸収して需給バランシングに役立てたりすることもできる。ただしその場合、VPP内の蓄電装置は、要求される可能性のある電力量を保持し続けなければならず、その分の電力は需要家が自由に使えないという問題がある。 If the energy storage devices within the VPP were able to share electricity with power networks outside the VPP, such as power networks managed by power transmission and distribution companies, this could help retail electricity suppliers and others secure supply capacity. It could also be used to absorb surplus electricity and help balance supply and demand. In this case, however, the energy storage devices within the VPP must continue to hold the amount of electricity that may be required, which creates the problem that consumers cannot use that amount of electricity freely.
 開示される技術によれば、複数の蓄電装置と電力網との間の電力融通(第1の電力融通)、及び、複数の蓄電装置間の電力融通(第2の電力融通)を両立するように、それら2種類の電力融通が連携して実施される。具体的な手法のいくつかの例が、この後の実施形態で説明される。 According to the disclosed technology, two types of power interchange are implemented in coordination so as to achieve both power interchange between a plurality of power storage devices and a power grid (first power interchange) and power interchange between a plurality of power storage devices (second power interchange). Some examples of specific techniques are described in the following embodiments.
1.実施形態
 図1は、実施形態に係る制御装置を含む電力システムの概略構成の例を示す図である。電力システム100のユーザの一例が、複数の需要家Dとして図示される。各需要家Dを区別できるように、需要家D-1、需要家D-2及び需要家D-nと称し図示する。後述の蓄電装置1及び発電装置2についても同様である。需要家Dの具体例は、家屋、施設等であり、より特定的には、そのような場所で電力を利用するユーザを指し示すものであってよい。複数の需要家Dは、例えば同じコミュニティに属することにより、協働で仮想発電所VPPを提供(構成)する。
1. Embodiment FIG. 1 is a diagram showing an example of a schematic configuration of a power system including a control device according to an embodiment. An example of a user of the power system 100 is illustrated as a plurality of consumers D. In order to distinguish each consumer D, they are referred to as consumer D-1, consumer D-2, and consumer D-n. The same applies to the storage device 1 and the power generation device 2 described below. Specific examples of the consumer D are houses, facilities, and the like, and more specifically, may indicate a user who uses power in such a place. The plurality of consumers D, for example, belong to the same community, and thus provide (configure) a virtual power plant VPP in cooperation.
 電力システム100は、蓄電装置1と、発電装置2と、統合ユニット3と、制御データ生成装置4と、需給管理システム5と、電力線PLとを含む。各要素は、必要に応じて互いに通信可能に構成される。 The power system 100 includes a power storage device 1, a power generation device 2, an integrated unit 3, a control data generation device 4, a supply and demand management system 5, and a power line PL. Each element is configured to be able to communicate with each other as necessary.
 蓄電装置1及び発電装置2は、需要家Dに設けられる。図1に示される例では、蓄電装置1は、それぞれが対応する需要家Dに設けられて使用される複数の蓄電装置1である。発電装置2は、それぞれが対応する需要家Dに設けられて使用される複数の発電装置2である。 The energy storage device 1 and the power generation device 2 are provided at a consumer D. In the example shown in FIG. 1, the energy storage device 1 is a plurality of energy storage devices 1 each provided at a corresponding consumer D for use. The power generation device 2 is a plurality of power generation devices 2 each provided at a corresponding consumer D for use.
 電力線PLは、複数の蓄電装置1を接続するように、例えば仮想発電所VPP内を延在する。電力線PLに対して、複数の蓄電装置1が並列に接続される。また、電力線PLは、電力網Gにも接続される。電力線PLを介して、複数の蓄電装置1それぞれが電力網Gに接続される。このような接続により、複数の蓄電装置1全体と電力網Gとの間の電力融通、及び、複数の蓄電装置1間の電力融通が可能になる。前者を「第1の電力融通」と称し、後者を「第2の電力融通」と称し、それぞれ白抜き矢印で模式的に図示する。 The power line PL extends, for example, within the virtual power plant VPP so as to connect the multiple energy storage devices 1. The multiple energy storage devices 1 are connected in parallel to the power line PL. The power line PL is also connected to the power grid G. Each of the multiple energy storage devices 1 is connected to the power grid G via the power line PL. This connection enables power interchange between the multiple energy storage devices 1 as a whole and the power grid G, and power interchange between the multiple energy storage devices 1. The former is referred to as "first power interchange" and the latter is referred to as "second power interchange", and each is diagrammatically illustrated with a hollow arrow.
 蓄電装置1は、蓄電池11と、電力変換器12とを含む。蓄電池11は、充放電可能な二次電池である。種々の公知の二次電池が用いられてよい。電力変換器12は、蓄電池11と電力線PLとの間に接続され、蓄電池11の充放電を制御する。例えば、電力変換器12は、電力線PLからの交流電力を直流電力に変換して蓄電池11に供給することで、蓄電池11を充電する。電力変換器12は、蓄電池11からの直流電力を交流電力に変換して電力線PLに供給することで、蓄電池11を放電させる。電力変換器12は、パワーコンディショナ、双方向インバータ等とも称される。 The energy storage device 1 includes a storage battery 11 and a power converter 12. The storage battery 11 is a secondary battery that can be charged and discharged. Various known secondary batteries may be used. The power converter 12 is connected between the storage battery 11 and the power line PL, and controls the charging and discharging of the storage battery 11. For example, the power converter 12 charges the storage battery 11 by converting AC power from the power line PL into DC power and supplying it to the storage battery 11. The power converter 12 discharges the storage battery 11 by converting DC power from the storage battery 11 into AC power and supplying it to the power line PL. The power converter 12 is also called a power conditioner, a bidirectional inverter, etc.
 蓄電装置1から電力線PLへの電力の流れを、その蓄電装置1の放電等とも称する。電力線PLから蓄電装置1への電力の流れを、その蓄電装置1の充電等とも称する。また、蓄電装置1の充電及び放電を、需要及び供給等とも称する。放電及び充電をまとめて、充放電(又は需給)等とも称する。蓄電装置1の蓄電池11の残存容量を示すSOC(State Of Charge)を、単に蓄電装置1のSOCとも称する。 The flow of power from the storage device 1 to the power line PL is also referred to as discharging the storage device 1. The flow of power from the power line PL to the storage device 1 is also referred to as charging the storage device 1. Charging and discharging the storage device 1 are also referred to as demand and supply. Discharging and charging are collectively referred to as charging and discharging (or supply and demand). The SOC (State of Charge), which indicates the remaining capacity of the storage battery 11 of the storage device 1, is also simply referred to as the SOC of the storage device 1.
 発電装置2は、例えば再生可能エネルギーを利用して発電する。図1に例示される発電装置2は太陽光発電装置であるが、これに限らず種々の公知の発電装置が用いられてよい。発電装置2の発電電力の少なくとも一部は、需要家Dによって消費され得る。また、発電装置2の発電電力のうち、需要家Dによって消費されなかった電力は、蓄電装置1の蓄電池11に充電されたり、例えば電力変換器12を介して電力線PLに供給されたりする。蓄電池11に充電された電力は、需要家Dによって消費されたり、電力変換器12を介して電力線PLに供給されたりする。 The power generation device 2 generates power, for example, by using renewable energy. The power generation device 2 illustrated in FIG. 1 is a solar power generation device, but this is not limiting and various known power generation devices may be used. At least a portion of the power generated by the power generation device 2 may be consumed by the consumer D. Furthermore, the power generated by the power generation device 2 that is not consumed by the consumer D is charged to the storage battery 11 of the power storage device 1, or is supplied to the power line PL via, for example, the power converter 12. The power charged to the storage battery 11 is consumed by the consumer D, or is supplied to the power line PL via the power converter 12.
 統合ユニット3は、複数の蓄電装置1と通信する。制御データ生成装置4は、制御データを生成し、複数の蓄電装置1それぞれ及び統合ユニット3に送信(「配布」ともいう。)する。需給管理システム5は、需給管理システム5は、例えば小売電気事業者や送配電事業者等によって運用されたり提供されたりする。電力システム100のさらなる詳細について、図2を参照して説明する。 The integrated unit 3 communicates with the multiple energy storage devices 1. The control data generation device 4 generates control data and transmits (also referred to as "distributing") it to each of the multiple energy storage devices 1 and the integrated unit 3. The supply and demand management system 5 is operated or provided by, for example, a retail electricity supplier or an electricity transmission and distribution supplier. Further details of the power system 100 will be described with reference to FIG. 2.
 図2は、電力システムの概略構成の例を示すブロック図である。なお、需要家D及び発電装置2(図1)の図示は省略する。蓄電装置1は、前述の蓄電池11及び電力変換器12の他に、発電・需要電力測定部13と、制御データ記憶部14と、電力融通制御部15とを含む。統合ユニット3は、制御データ記憶部31と、電力融通制御部32とを含む。制御データ生成装置4は、実績値集計部41と、蓄電装置需給シミュレーション実施部42と、制御データ生成部43と、制御データ更新部44と、計画値集計部45と、計画・実績差分計算部46と、制御データ生成部47とを含む。また、図2には、需給管理システム5において実行されるいくつかの処理が例示される。 FIG. 2 is a block diagram showing an example of the schematic configuration of a power system. Note that the consumer D and the power generation device 2 (FIG. 1) are not shown. In addition to the storage battery 11 and power converter 12 described above, the power storage device 1 includes a generated power/demand power measurement unit 13, a control data storage unit 14, and a power interchange control unit 15. The integrated unit 3 includes a control data storage unit 31 and a power interchange control unit 32. The control data generation device 4 includes an actual value collection unit 41, a power storage device supply and demand simulation implementation unit 42, a control data generation unit 43, a control data update unit 44, a planned value collection unit 45, a planned/actual difference calculation unit 46, and a control data generation unit 47. FIG. 2 also shows examples of some processes executed in the supply and demand management system 5.
<ベースシナリオ>
 まず、蓄電装置1の基本的な動作について説明する。複数の蓄電装置1それぞれは、与えられた目標SOCに近づくように充放電する。目標SOCは、この後で説明するように、制御データ生成装置4によって与えられる。
<Base scenario>
First, a description will be given of a basic operation of the power storage device 1. Each of the power storage devices 1 is charged and discharged so as to approach a given target SOC. The target SOC is given by the control data generating device 4, as will be described later.
 蓄電装置1において、発電・需要電力測定部13は、発電装置2の発電電力を測定したり、蓄電装置1の充放電電力を測定したりする。測定結果は、発電電力量の実績値及び充放電電力量の実績値を含む。発電・需要電力測定部13は、実績値(を示すデータ)を、制御データ生成装置4に送信する。発電・需要電力測定部13は、例えば電力計、通信機等を含んで構成される。発電・需要電力測定部13は、いわゆるスマートメータであってもよい。 In the energy storage device 1, the power generation/demand measurement unit 13 measures the power generated by the power generation device 2 and the charging/discharging power of the energy storage device 1. The measurement results include actual values of the amount of power generated and the amount of power charged/discharged. The power generation/demand measurement unit 13 transmits (data indicating) the actual values to the control data generation device 4. The power generation/demand measurement unit 13 is configured to include, for example, a power meter, a communication device, etc. The power generation/demand measurement unit 13 may be a so-called smart meter.
 制御データ生成装置4において、実績値集計部41は、各蓄電装置1からの実績値を取得し、集計(合計等)する。これ以外のさまざまな処理、例えば過去の実績値の集計等も、実績値集計部41によって行われてよい。 In the control data generating device 4, the performance value tallying unit 41 acquires the performance values from each power storage device 1 and tallys them (sums, etc.). Various other processes, such as tallying up past performance values, may also be performed by the performance value tallying unit 41.
 蓄電装置需給シミュレーション実施部42は、実績値集計部41によって取得された各蓄電装置1の実績値に基づくシミュレーションを実施する。このシミュレーションは、各蓄電装置1の将来のSOCの推移の計算を含む。計算は、例えば、各蓄電装置1に対応する発電装置2の過去の発電電力量、蓄電装置1の充放電電力量等に基づいて行われる。それら以外の他の情報にも基づいてシミュレーションが行われてよい。他の情報の例は、将来の天気・温度・湿度、曜日・祝日情報、需要家Dの予定等である。 The energy storage device supply and demand simulation implementation unit 42 performs a simulation based on the actual values of each energy storage device 1 acquired by the actual value aggregation unit 41. This simulation includes calculation of the future SOC trends of each energy storage device 1. The calculation is performed, for example, based on the past amount of power generated by the power generation device 2 corresponding to each energy storage device 1, the amount of power charged and discharged by the energy storage device 1, etc. The simulation may also be performed based on other information. Examples of other information include future weather, temperature, and humidity, day of the week and holiday information, schedules of consumer D, etc.
 制御データ生成部43は、蓄電装置需給シミュレーション実施部42のシミュレーション結果に基づいて、複数の蓄電装置1それぞれの目標SOCを計算する。より具体的に、制御データ生成部43は、蓄電装置1それぞれの将来の時刻に対する目標SOCを記述するシナリオを生成する。例えば翌日の24時間にわたる目標SOCの時間的な推移が、シナリオによって記述される。制御データ生成部43は、シナリオを示す制御データを生成する。 The control data generating unit 43 calculates the target SOC for each of the multiple power storage devices 1 based on the simulation results of the power storage device supply and demand simulation implementation unit 42. More specifically, the control data generating unit 43 generates a scenario that describes the target SOC for each of the power storage devices 1 at a future time. For example, the temporal progression of the target SOC over 24 hours on the following day is described by the scenario. The control data generating unit 43 generates control data that indicates the scenario.
 シナリオは、需要家Dの目的等を考慮して計算されてよい。目的の例は、余剰電力最小化、不足電力最小化、電力料金最小化、災害対策等である。例えば、各蓄電装置1は、その動作モードが、目的が異なる複数のモードから選択できるように構成される。モードの例は、余剰電力最小化モード、電力料金最小化モード、不足電力最小化モード及び災害対策モード等である。選択されたモードを示す情報(モード選択情報)が、各蓄電装置1から制御データ生成装置4に送信されてよい。制御データ生成部43は、モード選択情報に基づいて、モードの目的に応じたシナリオを示す制御データを生成する。 The scenario may be calculated taking into consideration the objectives of consumer D. Examples of objectives include minimizing surplus power, minimizing power shortages, minimizing power charges, and disaster prevention measures. For example, each energy storage device 1 is configured so that its operating mode can be selected from a number of modes with different objectives. Examples of modes include a surplus power minimization mode, a power charge minimization mode, a power shortage minimization mode, and a disaster prevention mode. Information indicating the selected mode (mode selection information) may be transmitted from each energy storage device 1 to the control data generation device 4. The control data generation unit 43 generates control data indicating a scenario according to the objective of the mode based on the mode selection information.
 制御データ更新部44は、制御データ生成部43によって生成された制御データ、すなわちシナリオを示すデータを、対応する蓄電装置1に送信する。蓄電装置1-1のシナリオを示すデータは、蓄電装置1-1に送信される。蓄電装置1-2のシナリオを示すデータは、蓄電装置1-2に送信される。蓄電装置1-nのシナリオを示すデータは、蓄電装置1-nに送信される。 The control data update unit 44 transmits the control data generated by the control data generation unit 43, i.e., data indicating the scenario, to the corresponding energy storage device 1. The data indicating the scenario for energy storage device 1-1 is transmitted to energy storage device 1-1. The data indicating the scenario for energy storage device 1-2 is transmitted to energy storage device 1-2. The data indicating the scenario for energy storage device 1-n is transmitted to energy storage device 1-n.
 蓄電装置1において、制御データ記憶部14は、制御データ生成装置4からの制御データを受信し、記憶する。電力融通制御部15は、制御データに基づいて、電力変換器12を制御する。具体的に、蓄電装置1のSOCが、制御データに示されるシナリオが記述する目標SOCに近づくように、蓄電装置1が充放電する。 In the energy storage device 1, the control data storage unit 14 receives and stores the control data from the control data generation device 4. The power interchange control unit 15 controls the power converter 12 based on the control data. Specifically, the energy storage device 1 charges and discharges so that the SOC of the energy storage device 1 approaches the target SOC described by the scenario shown in the control data.
<更新シナリオ>
 次に、第1の電力融通について説明する。第1の電力融通を実施するように、シナリオが更新される。
<Update scenario>
Next, the first power interchange will be described. The scenario is updated so as to implement the first power interchange.
 需給管理システム5において、電力網Gに関する電力需要予測が行われ(処理5a)、予測結果に基づく発電計画が生成される(処理5b)。発電計画に基づく市場取引が行われ(処理5c)、取引結果に基づいて決定された計画が提出される(処理5d)。ここでの計画は、複数の蓄電装置1全体の電力網Gに対する充放電電力量(すなわち仮想発電所VPPの電力需給)の計画値を含む。この計画値を示すデータが、需給管理システム5から制御データ生成装置4に送信される。なお、計画提出後は、実際の電力網Gの電力需給が監視される(処理5e)。 In the supply and demand management system 5, a power demand forecast for the power grid G is performed (process 5a), and a power generation plan based on the forecast result is generated (process 5b). Market trading based on the power generation plan is performed (process 5c), and a plan determined based on the trading result is submitted (process 5d). The plan here includes planned values for the amount of power charged and discharged to the power grid G by the entire multiple storage devices 1 (i.e., power supply and demand of the virtual power plant VPP). Data indicating this planned value is transmitted from the supply and demand management system 5 to the control data generation device 4. After the plan is submitted, the actual power supply and demand of the power grid G is monitored (process 5e).
 計画値は、1日を複数の期間に分割して得られる1つの期間であってよい。とくに説明がある場合を除き、以下では、1日が48個の単位期間(コマ)に分割され、各単位期間の長さは30分であるものとする。計画値は、単位期間における計画値であってよい。複数の単位期間それぞれについての計画値が、需給管理システム5から制御データ生成装置4に送信されてよい。 The planned value may be a period obtained by dividing a day into multiple periods. Unless otherwise specified, in the following, it is assumed that a day is divided into 48 unit periods (frames), and each unit period is 30 minutes long. The planned value may be a planned value for a unit period. The planned value for each of the multiple unit periods may be transmitted from the supply and demand management system 5 to the control data generation device 4.
 制御データ生成装置4において、計画値集計部45は、需給管理システム5からの計画値を取得(受信)する。 In the control data generating device 4, the planned value aggregation unit 45 acquires (receives) the planned values from the supply and demand management system 5.
 計画・実績差分計算部46は、計画値集計部45が取得した計画値と、実績値集計部41が取得して集計した複数の蓄電装置1全体の電力網Gに対する充放電電力量の実績値との差分を計算する。この差分に相当する電力量は、複数の蓄電装置1全体が電力網Gに対して充放電すべき電力量であり、要求電力量Erequestと称する。 The planned/actual difference calculation unit 46 calculates the difference between the planned value acquired by the planned value aggregation unit 45 and the actual value of the amount of power charged/discharged from the power grid G of the entire plurality of power storage devices 1 acquired and aggregated by the actual value aggregation unit 41. The amount of power corresponding to this difference is the amount of power that the entire plurality of power storage devices 1 should charge/discharge from the power grid G, and is called the requested amount of power Erequest.
 なお、計画値を、計画値Eplanと称する。実測値を、実績値Erealと称する。実績値Erealは、計画値Eplanと同様に、単位期間における値であってよい。計画値Eplan及び実績値Erealは、とくに説明がなければ、需要、すなわち複数の蓄電装置1全体の充電電力量の計画値及び実績値であるものとする。 The planned value is referred to as the planned value Eplan. The actual measured value is referred to as the actual value Ereal. The actual value Ereal may be a value in a unit period, like the planned value Eplan. Unless otherwise specified, the planned value Eplan and the actual value Ereal are assumed to be the planned and actual values of the demand, i.e., the amount of charging power for the entire multiple storage devices 1.
 制御データ生成部47は、計画・実績差分計算部46の計算結果に基づいて、複数の蓄電装置1それぞれのシナリオ、及び、要求電力量Erequestを示す制御データを生成する。ここでのシナリオは、実績値Erealを計画値Eplanに近づけるように、換言するとそれらの差分を補填するように、複数の蓄電装置1それぞれの時刻に対する目標SOCを記述する。 The control data generation unit 47 generates control data indicating a scenario for each of the multiple storage devices 1 and a requested amount of energy Erequest based on the calculation results of the planned/actual difference calculation unit 46. The scenarios here describe the target SOC for each of the multiple storage devices 1 at a time so as to bring the actual value Ereal closer to the planned value Eplan, in other words, to compensate for the difference between them.
 なお、制御データ生成部47においても、先に説明した制御データ生成部43と同様に、各蓄電装置1のモード選択情報が考慮され、制御データが生成されてよい。 In addition, in the control data generation unit 47, similar to the control data generation unit 43 described above, the mode selection information of each power storage device 1 may be taken into consideration when generating control data.
 制御データ更新部44は、制御データ生成部47が生成した制御データを、複数の蓄電装置1及び統合ユニット3に送信する。制御データのうちの少なくともシナリオを示すデータが、対応する蓄電装置1に送信される。制御データのうちの少なくとも要求電力量Erequestを示すデータが、統合ユニット3に送信される。 The control data update unit 44 transmits the control data generated by the control data generation unit 47 to the multiple energy storage devices 1 and the integrated unit 3. Of the control data, at least the data indicating the scenario is transmitted to the corresponding energy storage device 1. Of the control data, at least the data indicating the requested amount of energy Erequest is transmitted to the integrated unit 3.
 蓄電装置1において、制御データ記憶部14は、制御データ生成装置4からの制御データを受信し、記憶する。すでに受信及び記憶されていた制御データは、今回の制御データによって例えば上書きされる。すなわち、シナリオが更新される。 In the energy storage device 1, the control data storage unit 14 receives and stores the control data from the control data generation device 4. The control data that has already been received and stored is, for example, overwritten by the current control data. In other words, the scenario is updated.
 統合ユニット3において、制御データ記憶部31は、制御データ生成装置4からの制御データを受信し、記憶する。電力融通制御部32は、蓄電装置1の電力融通制御部15と通信し、電力の融通調整を行う。この融通調整は、要求電力量Erequestに相当する電力量を、複数の蓄電装置1全体に電力網Gに対して充放電させるための調整である。この融通調整結果に基づいて、第1の電力融通が実施される。第1の電力融通では、複数の蓄電装置1全体の電力網Gに対する充放電電力が要求電力量Erequestに近づくように、複数の蓄電装置1の少なくとも一部の蓄電装置1が電力網Gに対して充放電する。第1の電力融通について、図3及び図4も参照して説明する。 In the integrated unit 3, the control data storage unit 31 receives and stores control data from the control data generating device 4. The power interchange control unit 32 communicates with the power interchange control unit 15 of the storage device 1 and adjusts the interchange of power. This interchange adjustment is an adjustment for charging and discharging the amount of power equivalent to the requested amount of power Erequest from the multiple storage devices 1 as a whole to the power grid G. Based on the result of this interchange adjustment, a first power interchange is implemented. In the first power interchange, at least some of the multiple storage devices 1 charge and discharge the power from the power grid G so that the charging and discharging power from the multiple storage devices 1 as a whole to the power grid G approaches the requested amount of power Erequest. The first power interchange will be described with reference to Figs. 3 and 4.
 図3は、第1の電力融通における時間分割の例を示す図である。1日における各単位期間(この例では単位期間=30分)に対応する時刻tを、時刻t1~時刻t48と称する。時刻tは、例えば対応する単位期間の開始時刻を示す。 FIG. 3 is a diagram showing an example of time division in the first power interchange. The time t corresponding to each unit period in one day (in this example, the unit period = 30 minutes) is referred to as time t1 to time t48. Time t indicates, for example, the start time of the corresponding unit period.
 各単位期間において、実績値Erealが計画値Eplanに近づくように、電力融通が実施される。1つの単位期間が、複数の期間に分割される。分割後の期間を、分割期間と称する。例えば、1つの単位期間がm等分される。すなわち、時刻t1~時刻t48に対応する単位期間それぞれがm等分される。時刻t1に対応する単位期間をm等分に分割することで、時刻t1,1~時刻t1,mに対応するm個の分割期間が得られる。他の時刻t2~時刻t48についても同様である。mの数はとくに限定されないが、例えば5~6程度であってよい。
   t1=t1,1,t1,2,…t1,m
   t2=t2,1,t2,2,…t2,m
     …
  t48=t48,1,t48,2,…t48,m
In each unit period, power interchange is performed so that the actual value Ereal approaches the planned value Eplan. One unit period is divided into a plurality of periods. The divided periods are called divided periods. For example, one unit period is divided into m equal periods. That is, each of the unit periods corresponding to time t1 to time t48 is divided into m equal periods. By dividing the unit period corresponding to time t1 into m equal periods, m divided periods corresponding to time t1,1 to time t1,m are obtained. The same applies to the other times t2 to t48. The number of m is not particularly limited, but may be, for example, about 5 to 6.
t1 = t1,1,t1,2,...t1,m
t2 = t2,1,t2,2,...t2,m

t48 = t48,1, t48,2, ... t48,m
 分割期間ごとに、実績値Erealの分割期間分の値(=Ereal/m)が計画値Eplanの分割期間分の値(Eplan/m)に近づくように、複数の蓄電装置1のうちの少なくとも一部の蓄電装置1が電力網Gに対して充放電する。或る分割期間における各値の差分から、次の分割期間分の複数の蓄電装置1全体の充放電電力量が求められる。 For each divided period, at least some of the multiple storage devices 1 charge and discharge to the power grid G so that the value of the actual value Ereal for that divided period (=Ereal/m) approaches the value of the planned value Eplan for that divided period (Eplan/m). The total amount of charge and discharge power of the multiple storage devices 1 for the next divided period is calculated from the difference between the values in a certain divided period.
 具体的に、第1の電力融通において、統合ユニット3は、複数の蓄電装置1から、電力網Gに対して充放電可能な1つ以上の蓄電装置1を選択する。統合ユニット3によって選択された蓄電装置1全体の電力網Gに対する充放電電力量が要求電力量Erequestに近づくように、選択された蓄電装置1が電力網Gに対して充放電する。図4も参照して説明する。 Specifically, in the first power interchange, the integration unit 3 selects, from the multiple storage devices 1, one or more storage devices 1 that can charge and discharge from the power grid G. The selected storage devices 1 charge and discharge from the power grid G so that the amount of charge and discharge power from the entire storage devices 1 selected by the integration unit 3 to the power grid G approaches the requested amount of power Erequest. The description will also be made with reference to FIG. 4.
 図4は、第1の電力融通において実行される処理(制御方法)の例を示すフローチャートである。これまでと重複する内容については適宜説明を省略する。 FIG. 4 is a flowchart showing an example of the process (control method) executed in the first power interchange. Explanations of content that overlap with the above will be omitted where appropriate.
 ステップS1及びステップS2の処理は、制御データ生成装置4によって実行される。 The processing of steps S1 and S2 is executed by the control data generating device 4.
 ステップS1において、例えば計画・実績差分計算部46が、計画値Eplan及び実績値Erealを比較する。計画値Eplanが実績値Erealよりも大きい場合(Eplan>Ereal)、ステップS2に処理が進められる。計画値Eplanが実績値Erealよりも小さい場合(Eplan<Ereal)、ステップS10に処理が進められる。 In step S1, for example, the plan-actual difference calculation unit 46 compares the plan value Eplan and the actual value Ereal. If the plan value Eplan is greater than the actual value Ereal (Eplan>Ereal), processing proceeds to step S2. If the plan value Eplan is less than the actual value Ereal (Eplan<Ereal), processing proceeds to step S10.
 ステップS2において、計画・実績差分計算部46が、計画値Eplan及び実績値Erealの差分に相当する要求電力量Erequestを計算する。ここでの要求電力量Erequestは、複数の蓄電装置1全体の電力網Gに対する充電電力量であり、要求充電電力量Erequest-cとも称する。制御データ生成部47は、複数の蓄電装置1それぞれのシナリオ、及び、要求充電電力量Erequest-cを示す制御データを生成する。この制御データは、複数の蓄電装置1全体の電力網Gに対する充電電力量が大きくなるように更新されたシナリオを示す。制御データ更新部44は、制御データを複数の蓄電装置1及び統合ユニット3に送信する。 In step S2, the plan/actual difference calculation unit 46 calculates the requested energy Erequest, which corresponds to the difference between the planned value Eplan and the actual value Ereal. The requested energy Erequest here is the amount of energy charged to the power grid G of the multiple storage devices 1 as a whole, and is also referred to as the requested charging energy Erequest-c. The control data generation unit 47 generates control data indicating the scenario for each of the multiple storage devices 1 and the requested charging energy Erequest-c. This control data indicates a scenario updated so that the amount of energy charged to the power grid G of the multiple storage devices 1 as a whole is increased. The control data update unit 44 transmits the control data to the multiple storage devices 1 and the integrated unit 3.
 ステップS3~ステップS6及びステップS8の処理は、統合ユニット3によって実行される。 The processing of steps S3 to S6 and S8 is performed by the integrated unit 3.
 ステップS3において、電力融通制御部32は、各蓄電装置1に対して需要要求を発行する。需要要求の発行は、各蓄電装置1の融通可能電力量、より具体的にこの例では充電可能電力量の問い合わせを含む。 In step S3, the power interchange control unit 32 issues a demand request to each power storage device 1. The issuance of the demand request includes an inquiry about the interchangeable amount of power of each power storage device 1, more specifically, the chargeable amount of power in this example.
 ステップS4において、電力融通制御部32は、各蓄電装置1からの応答を受信する。応答は、各蓄電装置1の融通可能電力量を示す情報を含む。応答した各蓄電装置1の融通可能電力量の合計電力量を、融通可能電力量Eacceptと称する。ここでの融通可能電力量Eacceptは、充電電力量に相当するので、充電可能電力量Eaccept-cとも称する。なお、充電しない蓄電装置1は応答しなくてもよい。 In step S4, the power interchange control unit 32 receives a response from each storage device 1. The response includes information indicating the interchangeable power amount of each storage device 1. The total amount of interchangeable power of each storage device 1 that responded is referred to as the interchangeable power amount Eaccept. Since the interchangeable power amount Eaccept here corresponds to the amount of charging power, it is also referred to as the chargeable power amount Eaccept-c. Note that storage devices 1 that are not being charged do not need to respond.
 ステップS5において、電力融通制御部32は、要求充電電力量Erequest-c及び充電可能電力量Eaccept-cを比較する。この例では、要求充電電力量Erequest-cが充電可能電力量Eaccept-cよりも小さいか否かが判断される。要求充電電力量Erequest-cが充電可能電力量Eaccept-cよりも小さい場合(ステップS5:Yes)、ステップS6に処理が進められる。そうでない場合(ステップS5:No)、ステップS8に処理が進められる。 In step S5, the power interchange control unit 32 compares the requested charging energy amount Erequest-c with the chargeable energy amount Eaccept-c. In this example, it is determined whether the requested charging energy amount Erequest-c is smaller than the chargeable energy amount Eaccept-c. If the requested charging energy amount Erequest-c is smaller than the chargeable energy amount Eaccept-c (step S5: Yes), processing proceeds to step S6. If not (step S5: No), processing proceeds to step S8.
 ステップS6において、電力融通制御部32は、応答した蓄電装置1のうち、融通可能電力量、ここでは充電可能電力量の多い蓄電装置1を優先的に選択する。例えば、選択した蓄電装置1の充電可能電力量の合計が要求充電電力量Erequest-cになるまで、充電可能電力量の多い蓄電装置1から順番に選択される。 In step S6, the power interchange control unit 32 preferentially selects, from among the responding storage devices 1, the storage device 1 with the largest amount of interchangeable power, in this case the largest amount of chargeable power. For example, the storage devices 1 with the largest amount of chargeable power are selected in order until the total amount of chargeable power of the selected storage devices 1 reaches the requested amount of charging power Erequest-c.
 ステップS7において、第1の電力融通が実施される。統合ユニット3によって選択された各蓄電装置1は、更新シナリオに従って電力変換器12を制御し、一定時間(例えば上述の分割期間)、電力網Gから充電する。その結果、単位期間にわたる実績値Erealが計画値Eplanに近づく。 In step S7, the first power interchange is carried out. Each storage battery 1 selected by the integration unit 3 controls the power converter 12 according to the update scenario, and charges from the power grid G for a certain period of time (e.g., the above-mentioned division period). As a result, the actual value Ereal over the unit period approaches the planned value Eplan.
 ステップS8において、電力融通制御部32は、応答した蓄電装置1をすべて選択する。 In step S8, the power interchange control unit 32 selects all of the storage devices 1 that responded.
 ステップS9において、第1の電力融通が実施される。統合ユニット3によって選択された蓄電装置1は、更新シナリオに従って電力網Gから充電する。単位期間にわたる実績値Erealが計画値Eplanに近づく。 In step S9, the first power interchange is carried out. The storage device 1 selected by the integrated unit 3 is charged from the power grid G according to the update scenario. The actual value Ereal over the unit period approaches the planned value Eplan.
 ステップS10の処理は、制御データ生成装置4によって実行される。計画・実績差分計算部46が、計画値Eplan及び実績値Erealの差分に相当する要求電力量Erequestを計算する。ここでの要求電力量Erequestは、複数の蓄電装置1全体の電力網Gに対する放電電力量であり、要求放電電力量Erequest-dcとも称する。制御データ生成部47は、複数の蓄電装置1それぞれのシナリオ、及び、要求放電電力量Erequest-dcを示す制御データを生成する。この制御データは、複数の蓄電装置1全体の電力網Gに対する放電電力量が大きくなるように更新されたシナリオを示す。制御データ更新部44は、制御データを複数の蓄電装置1それぞれ及び統合ユニット3に送信する。 The process of step S10 is executed by the control data generating device 4. The plan/actual difference calculation unit 46 calculates the requested energy Erequest, which corresponds to the difference between the planned value Eplan and the actual value Ereal. The requested energy Erequest here is the amount of energy discharged from the entire multiple energy storage devices 1 to the power grid G, and is also referred to as the requested discharge energy Erequest-dc. The control data generating unit 47 generates control data indicating the scenario for each of the multiple energy storage devices 1 and the requested discharge energy Erequest-dc. This control data indicates a scenario updated so that the amount of energy discharged from the entire multiple energy storage devices 1 to the power grid G is increased. The control data update unit 44 transmits the control data to each of the multiple energy storage devices 1 and the integrated unit 3.
 ステップS11~ステップS14及びステップS17の処理は、統合ユニット3によって実行される。 The processing of steps S11 to S14 and S17 is performed by the integrated unit 3.
 ステップS11において、電力融通制御部32は、各蓄電装置1に対して供給要求を発行する。供給要求の発行は、各蓄電装置1の融通可能電力量、より具体的にこの例では放電可能電力量の問い合わせを含む。 In step S11, the power interchange control unit 32 issues a supply request to each power storage device 1. The issuance of the supply request includes an inquiry about the interchangeable amount of power of each power storage device 1, more specifically, the amount of dischargeable power in this example.
 ステップS12において、電力融通制御部32は、各蓄電装置1からの応答を受信する。応答は、各蓄電装置1の融通可能電力量を示す情報を含む。応答した各蓄電装置1の融通可能電力量の合計電力量が融通可能電力量Eacceptであり、ここでは放電電力量に相当するので、放電可能電力量Eaccept-dcとも称する。なお、放電しない蓄電装置1は応答しなくてもよい。 In step S12, the power interchange control unit 32 receives a response from each storage device 1. The response includes information indicating the interchangeable power amount of each storage device 1. The total amount of interchangeable power of each storage device 1 that responded is the interchangeable power amount Eaccept, which corresponds to the amount of discharged power here and is therefore also referred to as the dischargeable power amount Eaccept-dc. Note that storage devices 1 that do not discharge do not need to respond.
 ステップS13において、電力融通制御部32は、要求放電電力量Erequest-dc及び放電可能電力量Eaccept-dcを比較する。この例では、要求放電電力量Erequest-dcが放電可能電力量Eaccept-dcよりも小さいか否かが判断される。要求放電電力量Erequest-dcが放電可能電力量Eaccept-dcよりも小さい場合(ステップS13:Yes)、ステップS14に処理が進められる。そうでない場合(ステップS13:No)、ステップS16に処理が進められる。 In step S13, the power interchange control unit 32 compares the requested discharge energy Erequest-dc with the dischargeable energy Eaccept-dc. In this example, it is determined whether the requested discharge energy Erequest-dc is smaller than the dischargeable energy Eaccept-dc. If the requested discharge energy Erequest-dc is smaller than the dischargeable energy Eaccept-dc (step S13: Yes), processing proceeds to step S14. If not (step S13: No), processing proceeds to step S16.
 ステップS14において、電力融通制御部32は、応答した蓄電装置1のうち、融通可能電力量(放電可能電力量)の多い蓄電装置1を優先的に選択する。例えば、選択した蓄電装置1の放電可能電力量の合計が要求放電電力量Erequest-dcになるまで、放電可能電力量の多い蓄電装置1から順番に選択される。 In step S14, the power interchange control unit 32 preferentially selects the storage device 1 with the largest amount of interchangeable power (dischargeable power) from among the responding storage devices 1. For example, the storage devices 1 with the largest amount of dischargeable power are selected in order until the total amount of dischargeable power of the selected storage devices 1 reaches the requested discharge power amount Erequest-dc.
 ステップS15において、第1の電力融通が実施される。統合ユニット3によって選択された各蓄電装置1は、更新シナリオに従って電力変換器12を制御し、一定時間(例えば上述の分割期間)、電力網Gに放電する。単位期間にわたる実績値Erealが計画値Eplanに近づく。 In step S15, the first power interchange is carried out. Each power storage device 1 selected by the integration unit 3 controls the power converter 12 according to the update scenario, and discharges to the power grid G for a certain period of time (e.g., the above-mentioned division period). The actual value Ereal over the unit period approaches the planned value Eplan.
 ステップS16において、電力融通制御部32は、応答した蓄電装置1をすべて選択する。 In step S16, the power interchange control unit 32 selects all of the storage devices 1 that responded.
 ステップS17において、第1の電力融通が実施される。統合ユニット3によって選択された蓄電装置1は、更新シナリオに従って電力網Gに放電する。単位期間にわたる実績値Erealが計画値Eplanに近づく。 In step S17, the first power interchange is carried out. The storage device 1 selected by the integration unit 3 discharges to the power grid G according to the update scenario. The actual value Ereal over the unit period approaches the planned value Eplan.
 ステップS7、ステップS9、ステップS15又はステップS17の処理が完了した後、フローチャートの処理が終了する。例えばこのようにして第1の電力融通が実施される。 After the processing of step S7, step S9, step S15, or step S17 is completed, the processing of the flowchart ends. For example, the first power interchange is performed in this manner.
 図2に戻り、上述の第1の電力融通による充放電も含めた予期せぬ発電や需要の変動等により、蓄電装置1のSOCが目標SOCから外れる場合がある。例えばそのような場合には、第2の電力融通、すなわち複数の蓄電装置1間の電力融通により、各蓄電装置1のSOCが目標SOCに近づけられる。 Returning to FIG. 2, the SOC of the power storage device 1 may deviate from the target SOC due to unexpected power generation and demand fluctuations, including charging and discharging due to the first power interchange described above. In such a case, for example, the SOC of each power storage device 1 is brought closer to the target SOC by the second power interchange, i.e., the power interchange between multiple power storage devices 1.
 第2の電力融通において、複数の蓄電装置1の電力融通制御部15どうしが通信し、電力の融通調整を行う。この融通調整は、互いのSOCを目標SOCに近づけるようにそれぞれが充放電するための調整である。この融通調整結果に基づいて、第2の電力融通が実施される。充電する蓄電装置1の充電電力量(需要)と、放電する蓄電装置1の放電電力量(供給)とが一致するようにそれらを充放電させることで、複数の蓄電装置1全体の電力網Gに対する充放電電力量(需給バランス)が維持される。図5も参照して説明する。 In the second power interchange, the power interchange control units 15 of the multiple storage devices 1 communicate with each other and adjust the interchange of power. This interchange adjustment is an adjustment for charging and discharging each device so that their SOCs approach the target SOC. Based on the result of this interchange adjustment, the second power interchange is implemented. By charging and discharging the storage devices 1 so that the amount of charging power (demand) of the storage devices 1 to be charged matches the amount of discharging power (supply) of the storage devices 1 to be discharged, the amount of charging and discharging power (supply and demand balance) of the multiple storage devices 1 as a whole to the power grid G is maintained. An explanation will also be given with reference to FIG. 5.
 図5は、第2の電力融通において実行される処理(制御方法)の例を示すフローチャートである。ステップS21~ステップS29の処理は、複数の蓄電装置1それぞれで実行される。なお、以下では、蓄電装置1のSOCを、SoCrealとも称する。蓄電装置1の目標SOCを、SOCtargetとも称する。 FIG. 5 is a flowchart showing an example of the process (control method) executed in the second power interchange. The processes of steps S21 to S29 are executed in each of the multiple power storage devices 1. In the following, the SOC of the power storage device 1 is also referred to as SoCreal. The target SOC of the power storage device 1 is also referred to as SOCtarget.
 ステップS21において、蓄電装置1は、SOCtarget及びSOCrealを比較する。SOCrealがSOCtargetよりも大きい場合(SOCtarget<SOCreal)、ステップS22に処理が進められる。SOCrealがSOCtargetよりも小さい場合(SOCtarget>SOCreal)、ステップS26に処理が進められる。 In step S21, the storage device 1 compares SOCtarget and SOCreal. If SOCreal is greater than SOCtarget (SOCtarget<SOCreal), processing proceeds to step S22. If SOCreal is less than SOCtarget (SOCtarget>SOCreal), processing proceeds to step S26.
 ステップS22において、蓄電装置1の電力融通制御部15は、自装置以外の他の蓄電装置1に供給要求を発行する。ここでの供給は、自装置が他の蓄電装置1に電力供給することを意味する。供給要求の発行は、他の蓄電装置1の融通可能電力量、より具体的に充電可能電力量の問い合わせを含んでよい。 In step S22, the power interchange control unit 15 of the energy storage device 1 issues a supply request to another energy storage device 1 other than the own device. Supply here means that the own device supplies power to the other energy storage device 1. The issuance of the supply request may include an inquiry about the amount of interchangeable power of the other energy storage device 1, more specifically, the amount of chargeable power.
 ステップS23において、電力融通制御部15は、他の蓄電装置1からの応答を受信する。応答は、各蓄電装置1の融通(充電)可能電力量を示す情報を含んでよい。なお、充電しない蓄電装置1は応答しなくてもよい。 In step S23, the power interchange control unit 15 receives responses from the other energy storage devices 1. The responses may include information indicating the amount of interchangeable (chargeable) power of each energy storage device 1. Note that energy storage devices 1 that are not charging do not need to respond.
 ステップ24において、電力融通制御部15は、応答した他の蓄電装置1から所望の蓄電装置1を選択する。例えば、充電可能電力量の多い蓄電装置1が優先的に選択されてよい。 In step 24, the power interchange control unit 15 selects the desired storage device 1 from the other storage devices 1 that have responded. For example, a storage device 1 with a large amount of chargeable power may be selected preferentially.
 ステップS25において、第2の電力融通が実施される。自装置が放電し、その放電電力を、選択された蓄電装置1が充電する。複数の蓄電装置1全体の電力網Gに対する充放電電力量が維持されたまま、自装置のSOCrealがSOCtargetに近づく。 In step S25, the second power interchange is performed. The device itself discharges, and the discharged power is charged to the selected storage device 1. The amount of charge/discharge power to the power grid G of the entire plurality of storage devices 1 is maintained, and the SOCreal of the device itself approaches the SOCtarget.
 ステップS26において、蓄電装置1の電力融通制御部15は、自装置以外の他の蓄電装置1に需要要求を発行する。ここでの需要は、他の蓄電装置1が自装置に電力供給することことを意味する。需要要求の発行は、他の蓄電装置1の融通可能電力量、より具体的に放電可能電力量の問い合わせを含んでよい。 In step S26, the power interchange control unit 15 of the energy storage device 1 issues a demand request to the other energy storage devices 1 other than the own device. Demand here means that the other energy storage devices 1 will supply power to the own device. The issuance of the demand request may include an inquiry about the amount of interchangeable power of the other energy storage devices 1, more specifically, the amount of dischargeable power.
 ステップS27において、電力融通制御部15は、他の蓄電装置1からの応答を受信する。応答は、各蓄電装置1の融通(放電)可能電力量を示す情報を含んでよい。なお、放電しない蓄電装置1は応答しなくてもよい。 In step S27, the power interchange control unit 15 receives responses from the other energy storage devices 1. The responses may include information indicating the amount of interchangeable (dischargeable) power of each energy storage device 1. Note that energy storage devices 1 that do not discharge do not need to respond.
 ステップ28において、電力融通制御部15は、応答した他の蓄電装置1から所望の蓄電装置1を選択する。例えば、放電可能電力量の多い蓄電装置1が優先的に選択される。 In step 28, the power interchange control unit 15 selects the desired storage device 1 from the other storage devices 1 that have responded. For example, the storage device 1 with the largest amount of dischargeable power is selected preferentially.
 ステップS29において、第2の電力融通が実施される。選択された蓄電装置1が放電し、その放電電力を、自装置が充電する。複数の蓄電装置1全体の電力網Gに対する充放電電力量が維持されたまま、自装置のSOCrealがSOCtargetに近づく。 In step S29, the second power interchange is performed. The selected storage device 1 discharges, and the device itself charges with the discharged power. The amount of charge/discharge power of the entire plurality of storage devices 1 to the power grid G is maintained, and the SOCreal of the device itself approaches the SOCtarget.
 ステップS25又はステップS29の処理が完了した後、フローチャートの処理が終了する。例えばこのようにして第2の電力融通が実施される。所望のタイミングで第2の電力融通が実施されるように、各蓄電装置1の目標SOCを記述するシナリオが適宜更新され配布されてよい。 After the processing of step S25 or step S29 is completed, the processing of the flowchart ends. For example, the second power interchange is performed in this manner. The scenario describing the target SOC of each storage device 1 may be appropriately updated and distributed so that the second power interchange is performed at the desired timing.
2.実施例
 図6は、実施例を示す図である。3つの蓄電装置1を例に挙げて説明する。各蓄電装置1を区別できるように、蓄電装置1-1、蓄電装置1-2及び蓄電装置1-3と称する。蓄電装置1に関して、1日のシナリオが模式的に図示される。例示されるシナリオは、時刻と、目標SOC(SOCtarget)と、融通可能電力量と、融通調整相手とを対応付けて記述する。融通可能電力量は、その蓄電装置1が充放電可能な電力量を示す。融通調整相手は、電力融通調整を行うことが許可された相手であり、ここに記述された融通調整相手との間の電力融通調整だけが許可される。融通調整相手の例は、他の蓄電装置1、統合ユニット3である。anyoneは、融通調整相手がとくに限定されないことを意味する。
2. Example FIG. 6 is a diagram showing an example. Three storage devices 1 will be described as an example. In order to distinguish between the storage devices 1, they will be referred to as storage devices 1-1, 1-2, and 1-3. A scenario for one day is illustrated for the storage device 1. The illustrated scenario describes the time, the target SOC (SOCtarget), the amount of interchangeable power, and the interchange adjustment partner in association with each other. The amount of interchangeable power indicates the amount of power that the storage device 1 can charge and discharge. The interchange adjustment partner is a partner that is permitted to perform power interchange adjustment, and only power interchange adjustment between the interchange adjustment partner described here is permitted. Examples of the interchange adjustment partner are another storage device 1 and an integrated unit 3. "Anyone" means that the interchange adjustment partner is not particularly limited.
 図6の(A)には、ベースシナリオが例示される。ベースシナリオは、1日が開始するよりも前、例えば前日に生成され配布される。例えば、1日の間に、余剰電力が発生して充電できなくなったり、反対に放電できなくなったりする時刻が発生しないように蓄電装置1を充放電させる目標SOCの推移が記述される。制御データ生成装置4において、余剰電力の発生を防ぐために蓄電装置1が放電する時刻及びその放電電力量が計算されてよい。この放電電力量が、電力網Gに供給(放電)可能な電力量、すなわち小売り電気事業者による調達を提案できる電力量であり、計画値Eplanに相当し得る。 (A) in FIG. 6 illustrates an example of a base scenario. The base scenario is generated and distributed before the start of a day, for example, the day before. For example, the base scenario describes the progress of the target SOC for charging and discharging the energy storage device 1 so that there is no time during the day when surplus power occurs and charging becomes impossible, or conversely, when discharging becomes impossible. The control data generating device 4 may calculate the time when the energy storage device 1 discharges and the amount of discharged power to prevent the generation of surplus power. This amount of discharged power is the amount of power that can be supplied (discharged) to the power grid G, i.e., the amount of power that can be proposed for procurement by the retail electricity supplier, and may correspond to the planned value Eplan.
 統合ユニット3に関して、例示されるシナリオは、時刻と、充放電要求と、融通可能電力量と、融通調整相手とを対応付けて記述する。ベースシナリオの段階では、充放電要求及び融通可能電力量は無くてよい。 With regard to the integrated unit 3, the illustrated scenario describes the time, the charge/discharge request, the amount of interchangeable power, and the interchange adjustment partner in association with each other. At the base scenario stage, there is no need for a charge/discharge request or an interchangeable amount of power.
 各蓄電装置1が実際に充放電を開始した後で、先に述べた計画値Eplan及び実績値Erealの間の差分が生じ得る。この差分を埋めるように、新たな制御データ、すなわちシナリオが生成され更新される。 After each storage device 1 actually starts charging and discharging, a difference may occur between the planned value Eplan and the actual value Ereal described above. New control data, i.e., a scenario, is generated and updated to fill this difference.
 具体的に、この例では、10:00~10:05において電力供給不足が発生する(計画値Eplan<実績値Ereal)。10:05時点での各蓄電装置1のSOCは、蓄電装置1-1のSOCが80%、蓄電装置1-2のSOCが95%、蓄電装置1-3のSOCが60%である。 Specifically, in this example, a power supply shortage occurs between 10:00 and 10:05 (planned value Eplan < actual value Ereal). As of 10:05, the SOC of each storage device 1 is 80% for storage device 1-1, 95% for storage device 1-2, and 60% for storage device 1-3.
 図6の(B)には、更新シナリオが例示される。実績値Erealを計画値Eplanに近づけるように、ベースシナリオが更新される。統合ユニット3にも、要求電力量Erequestを示すデータが配布される。統合ユニット3は各蓄電装置1に対して供給要求を発行し、この例では、蓄電装置1-1及び蓄電装置1-2が選択される。蓄電装置1-1及び蓄電装置1-2が放電することで、実績値Erealが計画値Eplanに近づく。このような第1の電力融通が、10:05~10:10の間、蓄電装置1-1、蓄電装置1-2及び統合ユニット3の間で実施される。 (B) in FIG. 6 illustrates an example of an update scenario. The base scenario is updated so that the actual value Ereal approaches the planned value Eplan. Data indicating the requested amount of energy Erequest is also distributed to the integrated unit 3. The integrated unit 3 issues a supply request to each storage device 1, and in this example, storage devices 1-1 and 1-2 are selected. As storage devices 1-1 and 1-2 discharge, the actual value Ereal approaches the planned value Eplan. This first power interchange is carried out between storage devices 1-1, 1-2, and the integrated unit 3 between 10:05 and 10:10.
 ここで、第1の電力融通及び第2の電力融通の重複実施を避けるように、融通調整相手を限定するシナリオを示すデータが、対応する蓄電装置1に送信される。この例では、第2の電力融通よりも、第1の電力融通が優先される。融通調整相手を統合ユニット3に限定するシナリオを示すデータが、第1の電力融通において電力網Gに対して充放電する蓄電装置1蓄電装置1-1及び蓄電装置1-2に送信される。 Here, data indicating a scenario for limiting the party for power exchange adjustment is transmitted to the corresponding energy storage device 1 so as to avoid overlapping implementation of the first power exchange and the second power exchange. In this example, the first power exchange is prioritized over the second power exchange. Data indicating a scenario for limiting the party for power exchange adjustment to the integrated unit 3 is transmitted to the energy storage devices 1, 1-1, and 1-2 that charge and discharge to and from the power grid G in the first power exchange.
 具体的に、10:05~10:10の間、蓄電装置1-1及び蓄電装置1-2の融通相手が統合ユニット3に限定される。その間は、蓄電装置1-1及び蓄電装置1-2と統合ユニット3との間でだけで融通調整が行われ、その融通調整結果に基づいて第1の電力融通が実施される。第2の電力融通は実施されない。第1の電力融通が終了した10:10以降に、融通相手の限定が解除される。 Specifically, between 10:05 and 10:10, the power storage devices 1-1 and 1-2 are limited to the integrated unit 3 as their power exchange partner. During that time, power exchange adjustment is performed only between the power storage devices 1-1 and 1-2 and the integrated unit 3, and the first power exchange is implemented based on the results of this power exchange adjustment. The second power exchange is not implemented. After 10:10, when the first power exchange ends, the restriction on the power exchange partner is lifted.
 その後、この例では、10:30時点で、蓄電装置1-1のSOCが目標SOCを下回る。一方で、蓄電装置1-2のSOC及び蓄電装置1-3のSOCはいずれも目標SOCを上回る。各蓄電装置1のSOCを目標SOCに近づけるために、第2の電力融通が実施される。例えば、蓄電装置1-1と蓄電装置1-3との間で電力融通が実施されてよい。蓄電装置1-3は放電し、その放電電力を蓄電装置1-1が充電する。蓄電装置1-1及び蓄電装置1-3それぞれのSOCが目標SOCに近づけられる。 In this example, thereafter, at 10:30, the SOC of power storage device 1-1 falls below the target SOC. Meanwhile, the SOC of power storage device 1-2 and the SOC of power storage device 1-3 both exceed the target SOC. In order to bring the SOC of each power storage device 1 closer to the target SOC, a second power interchange is implemented. For example, power interchange may be implemented between power storage device 1-1 and power storage device 1-3. Power storage device 1-3 discharges, and the discharged power is charged by power storage device 1-1. The SOC of each of power storage device 1-1 and power storage device 1-3 is brought closer to the target SOC.
3.モード選択情報に応じた優先度の例
 先に述べたように、蓄電装置1のモード選択情報に基づくシナリオが生成されてよい。一実施形態において、選択されたモードに応じた優先度に基づいて第1の電力融通及び第2の電力融通が実施されるように、シナリオを示すデータが生成されてよい。モードの目的に応じた電力融通を実施することができる。
3. Example of Priority According to Mode Selection Information As described above, a scenario may be generated based on the mode selection information of the power storage device 1. In one embodiment, data indicating a scenario may be generated such that the first power interchange and the second power interchange are implemented based on the priority according to the selected mode. Power interchange according to the purpose of the mode can be implemented.
 例えば、需要家Dによっては、蓄電装置1から電力網Gへの電力供給(放電)よりも、蓄電装置1のSOC確保を優先したい場合もある。そのような場合は、蓄電装置1のモード選択にて災害対策モードが選択されてよい。例えば、災害対策モードが選択されると、常にSOCを確保するような目標SOCを記述するシナリオを示す制御データが配布される。第1の電力融通を実施するような制御データは送信されず、第2の電力融通が第1の電力融通よりも優先して実施され、また、重複実施は避けられる。 For example, some consumer D may wish to prioritize securing the SOC of the power storage device 1 over supplying (discharging) power from the power storage device 1 to the power grid G. In such a case, the disaster recovery mode may be selected in the mode selection for the power storage device 1. For example, when the disaster recovery mode is selected, control data is distributed indicating a scenario describing a target SOC for always securing the SOC. No control data for implementing the first power interchange is transmitted, and the second power interchange is implemented with priority over the first power interchange, and overlapping implementation is avoided.
 災害の一例は、台風等に起因する災害である。例えば、気象情報から得られる台風の上陸の予測日時に基づいて、災害対策モードが選択された蓄電装置1だけでなく、すべての蓄電装置1に対して、第1の電力融通を実施するような制御データを送信しないことで、第2の電力融通のみを行い各蓄電装置1のSOCを十分に確保することもできる。 One example of a disaster is a disaster caused by a typhoon or the like. For example, based on the predicted date and time of the typhoon's landfall obtained from meteorological information, by not transmitting control data to implement the first power interchange not only to the storage device 1 for which the disaster countermeasure mode has been selected, but to all storage devices 1, it is possible to implement only the second power interchange and sufficiently ensure the SOC of each storage device 1.
 モード選択情報に応じた第1の電力融通の優先度の一例について述べる。例えば、放電に関する第1の電力融通の優先度は、余剰電力最小化モードが最も高く、電力料金最小化モード、不足電力最小化モード、災害対策モードの順に低くなってよい。 An example of the priority of the first power interchange according to the mode selection information will be described. For example, the priority of the first power interchange regarding discharge may be highest for the surplus power minimization mode, followed by the power fee minimization mode, the power shortage minimization mode, and the disaster response mode.
 余剰電力最小化モードでは、余剰電力が生しないように積極的に放電が行われる。統合ユニット3に対する(電力網Gに対する)放電として最初に選択される。電力料金最小化モードでは、電力料金を基準に電力融通が行われる。統合ユニット3からの電力要求の電力価格を高めに設定することで、積極的に放電が行われるようになる。不足電力最小化モード及び災害対策モードでは、基本的には放電はほとんど行われず、SOCに余裕があるときにだけ放電が行われる。 In surplus power minimization mode, active discharge is performed to prevent the generation of surplus power. It is selected first for discharge to the integrated unit 3 (to the power grid G). In power price minimization mode, power is exchanged based on the power price. By setting the power price of the power request from the integrated unit 3 higher, active discharge is performed. In power shortage minimization mode and disaster response mode, basically, discharge is hardly performed, and is performed only when there is a margin in the SOC.
 このように、各蓄電装置1のモード選択情報、また、その時の電力の使用状況等に基づいて、第1の電力融通の優先度が決められる。小売電気事業者の電力調達がひっ迫しているときなど、第1の電力融通を優先させたいときには、第1の電力融通の電力価格を第2の電力融通より高い価格設定にすることにより、第1の電力融通を優先させることもできる。電力価格は、制御データに示されてよく、また、統合ユニット3と蓄電装置1との間の融通調整に用いられてもよい。 In this way, the priority of the first power interchange is determined based on the mode selection information of each storage device 1, the power usage status at that time, etc. When it is desired to prioritize the first power interchange, such as when the power procurement of the retail electricity supplier is tight, the power price of the first power interchange can be set higher than the second power interchange, thereby prioritizing the first power interchange. The power price may be indicated in the control data, and may also be used to adjust the interchange between the integrated unit 3 and the storage device 1.
 電力価格を段階的に設定する場合の例を記載する。例えば、SOCが70%なら電力価格を20円、SOCが50%なら電力価格を30円、等として段階的に設定をするケースを考える。通常の電力の市場価格が20円程度であれば、統合ユニット3が提示する電力融通条件も20円とすることで、市場価格に連動した電力の取引が行われる。一方で、電力調達がひっ迫すると市場価格も高騰する。例えば50円になったとする。統合ユニット3は、通常よりは高いが高騰した市場価格より安い30円を提示することで、市場価格より安い30円で該当する蓄電装置1から電力を調達できる。また、該当する蓄電装置1も、通常より高い価格で電力取引をできるので、金銭的メリットを享受できる。 An example of setting electricity prices in stages will be described below. For example, consider a case where electricity prices are set in stages, such as 20 yen if the SOC is 70%, 30 yen if the SOC is 50%, etc. If the normal market price of electricity is around 20 yen, the power interchange conditions presented by the integration unit 3 will also be 20 yen, and electricity will be traded in line with the market price. On the other hand, when electricity procurement becomes tight, the market price will also rise. For example, let's say that the market price becomes 50 yen. The integration unit 3 can procure electricity from the corresponding storage device 1 at 30 yen, which is lower than the market price, by presenting 30 yen, which is higher than normal but lower than the increased market price. Furthermore, the corresponding storage device 1 can also enjoy financial benefits, as electricity can be traded at a higher price than normal.
4.応用例
 上記の実施形態では、当日の制御、すなわち単位期間(コマ)の開始時刻の1時間前が過ぎた後(いわゆるゲートクローズ後)に実行される制御を例に挙げて説明した。一実施形態において、ゲートクローズ前に需給管理システム5に対して調達可能な電力量を通知することにより、調達コストの最小化を図ることも可能である。図7~図10を参照して説明する。
4. Application Example In the above embodiment, the control on the day, that is, the control executed after one hour has passed before the start time of the unit period (frame) (so-called after the gate is closed) is described as an example. In one embodiment, it is also possible to minimize the procurement cost by notifying the supply and demand management system 5 of the amount of electricity that can be procured before the gate is closed. The following description will be given with reference to Figs. 7 to 10.
 図7は、電力市場の例を示す図である。需給バランスの運用に関して、2つの市場が存在する。1つの市場は、前日10時までに締め切られる一日前市場である。もう1つの市場は、先に述べた各単位期間(各コマ)の1時間前に締め切られる時間前市場である。締め切り時刻がゲートクローズ(GC)時刻に相当する。小売電気事業者等は、一日前市場や時間前市場において当日の電力の需要や供給の計画を提出する。 Figure 7 shows an example of an electricity market. There are two markets for managing the supply and demand balance. One is the day-ahead market, which closes by 10:00 the day before. The other is the hour-ahead market, which closes one hour before each unit period (each frame) mentioned above. The closing time corresponds to the gate close (GC) time. Electricity retailers and others submit plans for the day's electricity demand and supply in the day-ahead and hour-ahead markets.
 図8は、電力システムの概略構成の例を示すブロック図である。この例では、制御データ生成装置4は、調達可能量計算部48と、調達可能量通知部49と、制御データ生成部50とをさらに含む。 FIG. 8 is a block diagram showing an example of a schematic configuration of a power system. In this example, the control data generating device 4 further includes a procurement amount calculation unit 48, a procurement amount notification unit 49, and a control data generating unit 50.
 調達可能量計算部48は、蓄電装置需給シミュレーション実施部42のシミュレーション結果に基づいて、各蓄電装置1の余剰電力を、調達可能な電力量(調達可能量)として計算する。調達可能量通知部49は、調達可能量を需給管理システム5に通知する。通知された調達可能電力量は、需給管理システム5での発電計画において考慮される。 The available procurement amount calculation unit 48 calculates the surplus power of each storage device 1 as the amount of power that can be procured (available procurement amount) based on the simulation results of the storage device supply and demand simulation implementation unit 42. The available procurement amount notification unit 49 notifies the supply and demand management system 5 of the available procurement amount. The notified available procurement amount is taken into consideration in the power generation plan in the supply and demand management system 5.
 需給管理システム5では、電力調達のオプションとして蓄電装置1を選択することが可能になる。例えば、蓄電装置1及びその他小売電気事業者が持つ電源と、電力調達費用や量を比較のうえ、望ましい調達先を選択することができる。蓄電装置1を選択する場合には、その調達量が制御データ生成装置4に通知される。 In the supply and demand management system 5, it becomes possible to select the energy storage device 1 as an option for power procurement. For example, the energy storage device 1 and other power sources owned by retail electricity suppliers can be compared with respect to power procurement costs and amounts, and a desirable procurement source can be selected. When the energy storage device 1 is selected, the procurement amount is notified to the control data generation device 4.
 制御データ生成装置4において、制御データ生成部50は、需給管理システム5から通知された調達量に基づいて制御データを生成する。制御データ更新部44は、制御データ生成部50が生成した制御データを、各蓄電装置1に送信する。このような制御を一日前市場及び時間前市場の両方で実施することで、確実に電力を調達し、また、需給バランスを維持することで、小売電気事業者等によるインバランス費用を最小化することができる。 In the control data generating device 4, the control data generating unit 50 generates control data based on the procurement amount notified by the supply and demand management system 5. The control data updating unit 44 transmits the control data generated by the control data generating unit 50 to each power storage device 1. By implementing such control in both the day-ahead market and the hour-ahead market, it is possible to reliably procure electricity and maintain the supply and demand balance, thereby minimizing imbalance costs incurred by electricity retailers and the like.
 上述のような一日前市場と、時間前市場との2つの市場との連携の一例について、図9を参照して説明する。 An example of the link between the above-mentioned two markets, the day-ahead market and the hour-ahead market, will be explained with reference to Figure 9.
 図9は、市場との連携の例を示す図である。需給管理システム5において、需要予測、電源調達が行われる(ステップS31)。電源確保ができない場合には(ステップS32:No)、例えば制御データ生成装置4において、融通シミュレーションが実施され、電源確保ができない時間帯に供給可能な蓄電装置1が選択され、供給可能量及び価格が通知される(ステップS33)。電源調達が更新され(ステップS34)、蓄電装置1からの調達量が通知される。更新した調達量を満たす蓄電装置が選択され、放電シナリオが各蓄電装置1及び統合ユニット3に配布される(ステップS35)。需給バランスを維持する蓄電装置1の充放電、統合ユニット3と各蓄電装置1間の制御等の観点から、放電しても余剰が発生する蓄電装置1と不足する蓄電装置1間で融通するシナリオが配布される(ステップS36)。 FIG. 9 is a diagram showing an example of cooperation with the market. In the supply and demand management system 5, demand forecasting and power supply procurement are performed (step S31). If power supply cannot be secured (step S32: No), for example, in the control data generating device 4, an interchange simulation is performed, a power storage device 1 that can supply power during the time period when power supply cannot be secured is selected, and the available supply amount and price are notified (step S33). Power supply procurement is updated (step S34), and the amount of procurement from the power storage device 1 is notified. A power storage device that satisfies the updated procurement amount is selected, and a discharge scenario is distributed to each power storage device 1 and the integrated unit 3 (step S35). From the viewpoint of charging and discharging the power storage device 1 to maintain the supply and demand balance, and control between the integrated unit 3 and each power storage device 1, a scenario for interchange between the power storage device 1 that generates a surplus even when discharged and the power storage device 1 that generates a shortage is distributed (step S36).
 最新の需要予測と電源調達について、改めて電源確保ができるかどうか確認される(ステップS37、ステップS38)。電源確保ができない場合には(ステップS38:No)、融通シミュレーションが実施され、電源確保ができない時間帯に供給可能な蓄電装置1が選択され、供給可能量及び価格が通知される(ステップS39)。電源調達が更新され(ステップ40)、また、更新した調達量を満たす蓄電装置が選択され、放電シナリオが各蓄電装置1及び統合ユニット3に配布される(ステップS41)。放電しても余剰が発生する蓄電装置1と不足する蓄電装置1間で融通するシナリオが配布される(ステップS42)。 The latest demand forecast and power procurement are used to check whether power can be secured (steps S37 and S38). If power cannot be secured (step S38: No), an interchange simulation is performed, a power storage device 1 that can supply power during the time period when power cannot be secured is selected, and the available supply amount and price are notified (step S39). Power procurement is updated (step 40), a power storage device that satisfies the updated procurement amount is selected, and a discharge scenario is distributed to each power storage device 1 and the integrated unit 3 (step S41). A scenario for interchange between a power storage device 1 that generates a surplus even when discharged and a power storage device 1 that has a shortage is distributed (step S42).
 時間前市場以降(ゲートクローズ後)のリアルタイム制御では、需要実績の差、すなわち計画と実績に差がある場合(ステップS43、ステップS44:Yes)、追加で充放電可能な蓄電装置1と統合ユニット3に充放電シナリオが配布される(ステップS45)。蓄電装置1のSOCに合わせて適宜SOCをバランシングするシナリオが配布される。 In real-time control after the pre-hour market (after the gate is closed), if there is a difference in actual demand, i.e., a difference between the plan and the actual demand (step S43, step S44: Yes), a charge/discharge scenario is distributed to the additionally chargeable/dischargeable storage device 1 and the integrated unit 3 (step S45). A scenario that appropriately balances the SOC according to the SOC of the storage device 1 is distributed.
 上記におけるシナリオ(制御データ)更新について図10を参照して説明する。 The above scenario (control data) update will be explained with reference to Figure 10.
 図10は、シナリオ更新の例を示す図である。蓄電装置1-1のシナリオを、シナリオ1等と称する。蓄電装置1-2~蓄電装置1-nについても同様である。 Figure 10 shows an example of a scenario update. The scenario for power storage device 1-1 is referred to as scenario 1, etc. The same applies to power storage devices 1-2 to 1-n.
 図10の(A)に示されるように、すべての蓄電装置1のベースシナリオが生成され、配布される。図10の(B)及び図10の(C)に示されるように、一日前市場や時間前市場では、必要に応じて、統合ユニット3との電力融通を行う蓄電装置1のシナリオが生成、更新される。さらに、図10の(D)に示されるように、ゲートクローズ後にもリアルタイムでシナリオが更新される。 As shown in FIG. 10(A), base scenarios for all energy storage devices 1 are generated and distributed. As shown in FIG. 10(B) and FIG. 10(C), in the day-ahead market and hour-ahead market, scenarios for energy storage devices 1 that exchange power with integrated units 3 are generated and updated as necessary. Furthermore, as shown in FIG. 10(D), scenarios are updated in real time even after the gate is closed.
 更新シナリオが配布された蓄電装置1は、第1の電力融通の時間帯では統合ユニット3だけを融通調整相手とし、それ以外のときに他の蓄電装置1も融通調整相手とすることで、蓄電装置1間の電力を効率的に配分することが可能である。 The storage device 1 to which the update scenario has been distributed can efficiently allocate power between the storage devices 1 by only using the integrated unit 3 as a power exchange adjustment partner during the first power exchange time period, and also using other storage devices 1 as power exchange adjustment partners at other times.
 上記の制御によれば、小売電気事業者等の発電と需要のインバランス最小化のための電力需給だけでなく、需給調整市場や卸電力市場に対して電力を供給、需要することも可能になる。 The above control will not only enable electricity supply and demand to minimize the imbalance between power generation and demand by retail electricity suppliers, etc., but will also make it possible to supply and demand electricity to the supply and demand adjustment market and wholesale electricity market.
 一実施形態において、電力に関する情報が需要家Dに提示されてよい。そのような提示は、例えば蓄電装置1によって行われてよい。蓄電装置1は、情報提示等のためのUI(ユーザインタフェース)を含んでよい。UIの例は、ディスプレイ等である。図11及び図12を参照して説明する。 In one embodiment, information about electricity may be presented to consumer D. Such presentation may be performed, for example, by the energy storage device 1. The energy storage device 1 may include a UI (user interface) for presenting information, etc. An example of a UI is a display, etc. This will be described with reference to Figures 11 and 12.
 図11は、UIの例を示す図である。この例では、シナリオがグラフ化されて表示される。破線グラフ線は、SOCの予測値を示す。実線グラフ線は、余剰や不足を発生させずに効率的に電気を使うための目標SOCの推移を示する。例示されるケースでは、8時~16時に積極的に電気を使い、他の時間節約することで、より効率的に電力を使い、需要家の電力料金を下げることができる。1日の中での電力の使い方を視覚的に表現し、需要家が直感的に分かるように提示し、需要家Dの行動変容につなげることで、電力の効率的な利用を行う。 FIG. 11 is a diagram showing an example of a UI. In this example, a scenario is displayed in a graph. The dashed graph line indicates the predicted SOC value. The solid graph line indicates the progress of the target SOC for using electricity efficiently without generating surpluses or shortages. In the illustrated case, by actively using electricity between 8:00 and 16:00 and saving at other times, power can be used more efficiently and the consumer's electricity bill can be reduced. By visually expressing how electricity is used throughout the day and presenting it in a way that consumers can intuitively understand, and by leading to a change in consumer D's behavior, power can be used more efficiently.
 図12は、UIの別の例を示す図である。この例では、各蓄電装置1のSOCが可視化表示される。その需要家Dが使用する蓄電装置1(自身の蓄電装置)の他に、他の需要家Dが使用する蓄電装置1(他の蓄電装置)、さらには、統合ユニット3の電力状況が表示される。これらの電力状況を比較することで、需要家Dは、他の蓄電装置1の電力や統合ユニット3の電力(電力網Gの電力)が足りないときに電力を供給したり、余剰があるときに電力を消費(需要)したりするための判断を行うことができる。需要家Dの行動変容につなげることで、電力の効率的な利用を促進することができる。 FIG. 12 is a diagram showing another example of the UI. In this example, the SOC of each storage device 1 is visualized and displayed. In addition to the storage device 1 (own storage device) used by the consumer D, the power status of the storage devices 1 (other storage devices) used by other consumers D and the integrated unit 3 are also displayed. By comparing these power statuses, the consumer D can make decisions on supplying power when there is a shortage of power from other storage devices 1 or the integrated unit 3 (power from the power grid G), or consuming (demanding) power when there is a surplus. By leading to a change in the behavior of the consumer D, it is possible to promote efficient use of power.
5.ハードウェア構成の例
 これまで説明した装置等、例えば、蓄電装置1、統合ユニット3、制御データ生成装置4及び需給管理システム5それぞれは、コンピュータを含んで構成されてよい。一例について、図13を参照して説明する。
5. Example of Hardware Configuration Each of the devices described above, such as the power storage device 1, the integrated unit 3, the control data generating device 4, and the supply and demand management system 5, may include a computer. An example will be described with reference to FIG. 13.
 図13は、装置等のハードウェア構成の例を示す図である。例示されるコンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インタフェース1500、及び入出力インタフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。 FIG. 13 is a diagram showing an example of the hardware configuration of a device, etc. The illustrated computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads the programs stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processes corresponding to the various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores boot programs such as the Basic Input Output System (BIOS) that is executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the hardware of the computer 1000.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る各動作を実行するためのプログラム(例えば制御プログラム)を記録する記録媒体である。 HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by CPU 1100 and data used by such programs. Specifically, HDD 1400 is a recording medium that records programs (e.g., control programs) for executing the operations related to the present disclosure, which are an example of program data 1450.
 通信インタフェース1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインタフェースである。例えば、CPU1100は、通信インタフェース1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (e.g., the Internet). For example, the CPU 1100 receives data from other devices and transmits data generated by the CPU 1100 to other devices via the communication interface 1500.
 入出力インタフェース1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインタフェースである。例えば、CPU1100は、入出力インタフェース1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インタフェース1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インタフェース1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインタフェースとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、又は半導体メモリ等である。 The input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600. The CPU 1100 also transmits data to an output device such as a display, a speaker or a printer via the input/output interface 1600. The input/output interface 1600 may also function as a media interface that reads programs and the like recorded on a specific recording medium. Examples of media include optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Disks), magneto-optical recording media such as MOs (Magneto-Optical Disks), tape media, magnetic recording media, and semiconductor memories.
 先に説明した蓄電装置1、統合ユニット3、制御データ生成装置4及び需給管理システム5が有する機能の少なくとも一部は、例えば、コンピュータ1000のCPU1100が、RAM1200上にロードされたプログラム(制御プログラム)を実行することにより実現されてよい。また、HDD1400には、本開示に係るプログラム等が格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 At least some of the functions of the energy storage device 1, integrated unit 3, control data generating device 4, and supply and demand management system 5 described above may be realized, for example, by the CPU 1100 of the computer 1000 executing a program (control program) loaded onto the RAM 1200. In addition, the HDD 1400 stores programs and the like related to the present disclosure. Note that the CPU 1100 reads and executes program data 1450 from the HDD 1400, but as another example, these programs may be obtained from other devices via the external network 1550.
6.効果の例
 以上で説明した技術は、例えば次のように特定される。開示される技術の1つは、制御データ生成装置4である。図1~図5等を参照して説明したように、制御データ生成装置4は、電力網Gに接続された複数の蓄電装置1それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置1全体の電力網Gに対する充放電電力量の計画値Eplanと実績値Erealとの差分に相当する要求電力量Erequestを示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置1に送信し、生成した制御データのうちの少なくとも要求電力量Erequestを示すデータを、複数の蓄電装置1と通信する統合ユニット3に送信する。充放電は、複数の蓄電装置1全体と電力網Gとの間の電力融通であって、統合ユニット3と複数の蓄電装置1との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置1間の電力融通であって、複数の蓄電装置1間の融通調整結果に基づいて実施される第2の電力融通と、を含む。このような制御データ生成装置4によれば、第1の電力融通及び第2の電力融通の両立が可能になる。
6. Example of Effects The above-described technology is specified, for example, as follows. One of the disclosed technologies is a control data generating device 4. As described with reference to FIG. 1 to FIG. 5 and the like, the control data generating device 4 generates a scenario describing a target SOC for each time of the multiple storage devices 1 connected to the power grid G, and control data indicating a requested amount of power Erequest corresponding to a difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power of the multiple storage devices 1 as a whole with respect to the power grid G, transmits at least data indicating the scenario among the generated control data to the corresponding storage device 1, and transmits at least data indicating the requested amount of power Erequest among the generated control data to the integration unit 3 that communicates with the multiple storage devices 1. The charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1. According to such a control data generating device 4, it becomes possible to achieve both the first power interchange and the second power interchange.
 図2~図4等を参照して説明したように、第1の電力融通では、複数の蓄電装置1全体の電力網Gに対する充放電電力が要求電力量Erequestに近づくように、複数の蓄電装置1の少なくとも一部の蓄電装置1が電力網Gに対して充放電してよい。例えば、計画値Eplanは、単位期間における計画値であり、第1の電力融通では、単位期間を複数の期間に分割した分割期間ごとに、実績値の分割期間分の値が計画値の分割期間分の値に近づくように、複数の蓄電装置1のうちの少なくとも一部の蓄電装置1が電力網Gに対して充放電してよい。統合ユニット3は、複数の蓄電装置1から、電力網Gに対して充放電可能な1つ以上の蓄電装置1を選択し、第1の電力融通では、統合ユニット3によって選択された蓄電装置1全体の電力網Gに対する充放電電力量が要求電力量Erequestに近づくように、選択された蓄電装置1が電力網Gに対して充放電してよい。例えばこのように第1の電力融通を実施することで、実績値Erealを計画値Eplanに近づけることができる。 As described with reference to Figures 2 to 4, in the first power interchange, at least some of the storage devices 1 of the multiple storage devices 1 may charge and discharge to the power grid G so that the charge/discharge power of the multiple storage devices 1 as a whole to the power grid G approaches the requested power amount Erequest. For example, the planned value Eplan is a planned value for a unit period, and in the first power interchange, at least some of the storage devices 1 of the multiple storage devices 1 may charge and discharge to the power grid G for each divided period into which the unit period is divided, so that the value of the actual value for the divided period approaches the value of the planned value for the divided period. The integration unit 3 selects one or more storage devices 1 that can be charged and discharged to the power grid G from the multiple storage devices 1, and in the first power interchange, the selected storage devices 1 may charge and discharge to the power grid G so that the charge/discharge power amount of the entire storage devices 1 selected by the integration unit 3 to the power grid G approaches the requested power amount Erequest. For example, by implementing the first power interchange in this manner, the actual value Ereal can be brought closer to the planned value Eplan.
 図6等を参照して説明したように、シナリオは、複数の蓄電装置1それぞれの融通調整相手をさらに記述し、制御データ生成装置4は、第1の電力融通及び第2の電力融通の重複実施を避けるように融通調整相手を限定するシナリオを示すデータを、対応する蓄電装置1に送信してよい。制御データ生成装置4は、融通調整相手を統合ユニット3に限定するシナリオを示すデータを、第1の電力融通において電力網Gに対して充放電する蓄電装置1(例えば蓄電装置1-1及び蓄電装置1-2)に送信してよい。例えばこのようにして第1の電力融通及び第2の電力融通の連携を図ることができる。 As described with reference to FIG. 6 etc., the scenario further describes the exchange adjustment partner for each of the multiple energy storage devices 1, and the control data generating device 4 may transmit data indicating a scenario that limits the exchange adjustment partner so as to avoid overlapping implementation of the first power exchange and the second power exchange to the corresponding energy storage device 1. The control data generating device 4 may transmit data indicating a scenario that limits the exchange adjustment partner to the integrated unit 3 to the energy storage devices 1 (e.g., energy storage device 1-1 and energy storage device 1-2) that charge/discharge with respect to the power grid G in the first power exchange. For example, in this way, the first power exchange and the second power exchange can be linked.
 図2等を参照して説明したように、蓄電装置1の動作モードは、複数のモードから選択可能であり、制御データ生成装置4は、選択されたモードに応じた優先度に基づいて第1の電力融通及び第2の電力融通が実施されるように、シナリオを示すデータを生成してよい。複数のモードは、余剰電力最小化モード、電力料金最小化モード、不足電力最小化モード及び災害対策モードを含んでよい。モードの目的に応じた電力融通を実施することができる。 As described with reference to FIG. 2 etc., the operating mode of the energy storage device 1 can be selected from a plurality of modes, and the control data generating device 4 may generate data indicating a scenario such that the first power interchange and the second power interchange are implemented based on a priority according to the selected mode. The plurality of modes may include a surplus power minimization mode, a power fee minimization mode, a power shortage minimization mode, and a disaster countermeasure mode. Power interchange can be implemented according to the purpose of the mode.
 図1~図5等を参照して説明した制御方法も、開示される技術の1つである。制御方法は、電力網Gに接続された複数の蓄電装置1それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置1全体の電力網Gに対する充放電電力量の計画値Eplanと実績値Erealとの差分に相当する要求電力量Erequestを示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置1に送信し、生成した制御データのうちの少なくとも要求電力量Erequestを示すデータを、複数の蓄電装置1と通信する統合ユニット3に送信する。充放電は、複数の蓄電装置1全体と電力網Gとの間の電力融通であって、統合ユニット3と複数の蓄電装置1との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置1間の電力融通であって、複数の蓄電装置1間の融通調整結果に基づいて実施される第2の電力融通と、を含む。このような制御方法によっても、これまで説明したように、第1の電力融通及び第2の電力融通の両立が可能になる。 The control method described with reference to Figures 1 to 5 is also one of the disclosed techniques. The control method generates control data indicating a scenario describing a target SOC for each time of the multiple storage devices 1 connected to the power grid G, and a requested amount of power Erequest corresponding to a difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power for the power grid G of the multiple storage devices 1 as a whole, transmits at least data indicating the scenario from the generated control data to the corresponding storage device 1, and transmits at least data indicating the requested amount of power Erequest from the generated control data to an integration unit 3 that communicates with the multiple storage devices 1. The charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1. As explained above, this control method also makes it possible to achieve both the first power interchange and the second power interchange.
 図1~図5及び図13等を参照して説明した制御プログラムも、開示される技術の1つである。制御プログラムは、コンピュータ1000に、電力網Gに接続された充放電する複数の蓄電装置1それぞれの時刻に対する目標SOCを記述するシナリオ、及び、複数の蓄電装置1全体の電力網Gに対する充放電電力量の計画値Eplanと実績値Erealとの差分に相当する要求電力量Erequestを示す制御データを生成し、生成した制御データのうちの少なくともシナリオを示すデータを、対応する蓄電装置1に送信し、生成した制御データのうちの少なくとも要求電力量Erequestを示すデータを、複数の蓄電装置1と通信する統合ユニット3に送信する、処理を実行させる。充放電は、複数の蓄電装置1全体と電力網Gとの間の電力融通であって、統合ユニット3と複数の蓄電装置1との間の融通調整結果に基づいて実施される第1の電力融通と、複数の蓄電装置1間の電力融通であって、複数の蓄電装置1間の融通調整結果に基づいて実施される第2の電力融通と、を含む。このような制御プログラムによっても、これまで説明したように、第1の電力融通及び第2の電力融通の両立が可能になる。 1 to 5 and 13 are also disclosed technologies. The control program causes the computer 1000 to execute processing to generate control data indicating a scenario describing a target SOC for each time of the multiple storage devices 1 that are connected to the power grid G and a requested amount of power Erequest corresponding to the difference between a planned value Eplan and an actual value Ereal of the amount of charge/discharge power for the power grid G of the multiple storage devices 1 as a whole, transmit at least data indicating the scenario from the generated control data to the corresponding storage device 1, and transmit at least data indicating the requested amount of power Erequest from the generated control data to the integration unit 3 that communicates with the multiple storage devices 1. The charging and discharging includes a first power interchange between the multiple storage devices 1 as a whole and the power grid G, which is implemented based on the result of the interchange adjustment between the integration unit 3 and the multiple storage devices 1, and a second power interchange between the multiple storage devices 1, which is implemented based on the result of the interchange adjustment between the multiple storage devices 1. As explained above, this control program also makes it possible to achieve both the first power interchange and the second power interchange.
 なお、本技術は2015年に国連サミットで採択されたSDGs(Sustainable Development Goals)のゴール7「Affordable and Clean Energy」及びゴール13「Climate Action」に関連し得る。 This technology may be related to Goal 7 "Affordable and Clean Energy" and Goal 13 "Climate Action" of the Sustainable Development Goals (SDGs) adopted at the United Nations Summit in 2015.
 本技術は、デジタル通信技術により再生可能エネルギーの使用状況の変化等を検知して対応しながら、電気とデータの双方向の流れを可能とする電力ネットワーク(例:スマートグリッド)に関連する技術であり、再生可能エネルギーを使用することで、温室効果ガス(greenhouse gas (GHG))排出量の削減も可能となる。 This technology is related to power networks (e.g. smart grids) that use digital communications technology to detect and respond to changes in the use of renewable energy, while allowing for the two-way flow of electricity and data. The use of renewable energy also makes it possible to reduce greenhouse gas (GHG) emissions.
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。 Note that the effects described in this disclosure are merely examples and are not limited to the disclosed contents. Other effects may also exist.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 The above describes the embodiments of the present disclosure, but the technical scope of the present disclosure is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present disclosure. In addition, components from different embodiments and modified examples may be combined as appropriate.
 なお、本技術は以下のような構成も取ることができる。
(1)
 電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
 生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
 生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
 生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
 制御データ生成装置であって、
 前記充放電は、
 前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
 前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
 を含む、
 制御データ生成装置。
(2)
 前記第1の電力融通では、前記複数の蓄電装置全体の前記電力網に対する充放電電力が前記要求電力量に近づくように、前記複数の蓄電装置の少なくとも一部の蓄電装置が前記電力網に対して充放電する、
 (1)に記載の制御データ生成装置。
(3)
 前記計画値は、単位期間における計画値であり、
 前記第1の電力融通では、前記単位期間を複数の期間に分割した分割期間ごとに、実績値の分割期間分の値が計画値の分割期間分の値に近づくように、前記複数の蓄電装置のうちの少なくとも一部の蓄電装置が前記電力網に対して充放電する、
 (1)又は(2)に記載の制御データ生成装置。
(4)
 前記統合ユニットは、前記複数の蓄電装置から、前記電力網に対して充放電可能な1つ以上の蓄電装置を選択し、
 前記第1の電力融通では、前記統合ユニットによって選択された蓄電装置全体の前記電力網に対する充放電電力量が前記要求電力量に近づくように、前記選択された蓄電装置が前記電力網に対して充放電する、
 (1)~(3)のいずれかに記載の制御データ生成装置。
(5)
 前記シナリオは、前記複数の蓄電装置それぞれの融通調整相手をさらに記述し、
 前記制御データ生成装置は、前記第1の電力融通及び前記第2の電力融通の重複実施を避けるように前記融通調整相手を限定するシナリオを示すデータを、対応する蓄電装置に送信する、
 (1)~(4)のいずれかに記載の制御データ生成装置。
(6)
 前記制御データ生成装置は、前記融通調整相手を統合ユニットに限定するシナリオを示すデータを、前記第1の電力融通において前記電力網に対して充放電する蓄電装置に送信する、
 (5)に記載の制御データ生成装置。
(7)
 前記蓄電装置の動作モードは、複数のモードから選択可能であり、
 前記制御データ生成装置は、選択されたモードに応じた優先度に基づいて第1の電力融通及び第2の電力融通が実施されるように、前記シナリオを示すデータを生成する、
 (1)~(6)のいずれかに記載の制御データ生成装置。
(8)
 前記複数のモードは、余剰電力最小化モード、電力料金最小化モード、不足電力最小化モード及び災害対策モードを含む、
 (7)に記載の制御データ生成装置。
(9)
 電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
 生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
 生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
 生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
 制御方法であって、
 前記充放電は、
 前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
 前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
 を含む、
 制御方法。
(10)
 コンピュータに、
 電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
 生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
 生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
 処理を実行させる制御プログラムであって、
 前記充放電は、
 前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
 前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
 を含む、
 制御プログラム。
The present technology can also be configured as follows.
(1)
generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
A control data generating device,
The charging and discharging is
A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
including,
Control data generator.
(2)
In the first power interchange, at least some of the power storage devices of the plurality of power storage devices charge and discharge with respect to the power grid so that charging/discharging power of the entirety of the plurality of power storage devices with respect to the power grid approaches the required amount of power.
A control data generating device as described in (1).
(3)
The planned value is a planned value for a unit period,
In the first power interchange, at least a part of the power storage devices among the plurality of power storage devices is charged/discharged to/from the power grid for each divided period obtained by dividing the unit period into a plurality of periods, so that a value of an actual value for the divided period approaches a value of a planned value for the divided period.
A control data generating device according to (1) or (2).
(4)
the integration unit selects one or more power storage devices that can be charged/discharged to/from the power grid from the plurality of power storage devices;
In the first power interchange, the selected power storage device charges and discharges with respect to the power grid such that an amount of charge/discharge power of the entire power storage devices selected by the integration unit with respect to the power grid approaches the required amount of power.
A control data generating device according to any one of (1) to (3).
(5)
The scenario further describes a power exchange adjustment partner for each of the plurality of power storage devices,
The control data generation device transmits data indicating a scenario for limiting a counterpart of the power interchange adjustment so as to avoid overlapping implementation of the first power interchange and the second power interchange to a corresponding power storage device.
A control data generating device according to any one of (1) to (4).
(6)
The control data generation device transmits data indicating a scenario in which the interchange adjustment partner is limited to the integration unit to an electric power storage device that charges/discharges the electric power grid in the first electric power interchange.
A control data generating device according to (5).
(7)
The operation mode of the power storage device can be selected from a plurality of modes,
the control data generation device generates data indicating the scenario such that a first power interchange and a second power interchange are implemented based on a priority according to a selected mode.
A control data generating device according to any one of (1) to (6).
(8)
The plurality of modes include a surplus power minimization mode, a power fee minimization mode, a power shortage minimization mode, and a disaster prevention mode.
A control data generating device according to (7).
(9)
generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
1. A control method comprising:
The charging and discharging is
A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
including,
Control methods.
(10)
On the computer,
generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
A control program for executing a process,
The charging and discharging is
A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
including,
Control program.
  1 蓄電装置
 11 蓄電池
 12 電力変換器
 13 発電・需要電力測定部
 14 制御データ記憶部
 15 電力融通制御部
  2 発電装置
  3 統合ユニット
 31 制御データ記憶部
 32 電力融通制御部
  4 制御データ生成装置
 41 実績値集計部
 42 蓄電装置需給シミュレーション実施部
 43 制御データ生成部
 44 制御データ更新部
 45 計画値集計部
 46 計画・実績差分計算部
 47 制御データ生成部
 48 調達可能量計算部
 49 調達可能量通知部
 50 制御データ生成部
  5 需給管理システム
  G 電力網
 PL 電力線
VPP 仮想発電所
REFERENCE SIGNS LIST 1 Energy storage device 11 Storage battery 12 Power converter 13 Power generation/demand measurement unit 14 Control data storage unit 15 Power interchange control unit 2 Power generation device 3 Integrated unit 31 Control data storage unit 32 Power interchange control unit 4 Control data generation device 41 Actual value collection unit 42 Energy storage device supply and demand simulation execution unit 43 Control data generation unit 44 Control data update unit 45 Planned value collection unit 46 Planned/actual difference calculation unit 47 Control data generation unit 48 Available supply amount calculation unit 49 Available supply amount notification unit 50 Control data generation unit 5 Supply and demand management system G Power grid PL Power line VPP Virtual power plant

Claims (10)

  1.  電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
     生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
     生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
     制御データ生成装置であって、
     前記充放電は、
     前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
     前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
     を含む、
     制御データ生成装置。
    generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
    Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
    transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
    A control data generating device,
    The charging and discharging is
    A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
    A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
    including,
    Control data generator.
  2.  前記第1の電力融通では、前記複数の蓄電装置全体の前記電力網に対する充放電電力が前記要求電力量に近づくように、前記複数の蓄電装置の少なくとも一部の蓄電装置が前記電力網に対して充放電する、
     請求項1に記載の制御データ生成装置。
    In the first power interchange, at least some of the power storage devices of the plurality of power storage devices charge and discharge with respect to the power grid so that charging/discharging power of the entirety of the plurality of power storage devices with respect to the power grid approaches the required amount of power.
    2. The control data generating device according to claim 1.
  3.  前記計画値は、単位期間における計画値であり、
     前記第1の電力融通では、前記単位期間を複数の期間に分割した分割期間ごとに、実績値の分割期間分の値が計画値の分割期間分の値に近づくように、前記複数の蓄電装置のうちの少なくとも一部の蓄電装置が前記電力網に対して充放電する、
     請求項1に記載の制御データ生成装置。
    The planned value is a planned value for a unit period,
    In the first power interchange, at least a part of the power storage devices among the plurality of power storage devices is charged/discharged to/from the power grid for each divided period obtained by dividing the unit period into a plurality of periods, so that a value of an actual value for the divided period approaches a value of a planned value for the divided period.
    2. The control data generating device according to claim 1.
  4.  前記統合ユニットは、前記複数の蓄電装置から、前記電力網に対して充放電可能な1つ以上の蓄電装置を選択し、
     前記第1の電力融通では、前記統合ユニットによって選択された蓄電装置全体の前記電力網に対する充放電電力量が前記要求電力量に近づくように、前記選択された蓄電装置が前記電力網に対して充放電する、
     請求項1に記載の制御データ生成装置。
    the integration unit selects one or more power storage devices that can be charged/discharged to/from the power grid from the plurality of power storage devices;
    In the first power interchange, the selected power storage device charges and discharges with respect to the power grid such that an amount of charge/discharge power of the entire power storage devices selected by the integration unit with respect to the power grid approaches the required amount of power.
    2. The control data generating device according to claim 1.
  5.  前記シナリオは、前記複数の蓄電装置それぞれの融通調整相手をさらに記述し、
     前記制御データ生成装置は、前記第1の電力融通及び前記第2の電力融通の重複実施を避けるように前記融通調整相手を限定するシナリオを示すデータを、対応する蓄電装置に送信する、
     請求項1に記載の制御データ生成装置。
    The scenario further describes a power exchange adjustment partner for each of the plurality of power storage devices,
    The control data generation device transmits data indicating a scenario for limiting a counterpart of the power interchange adjustment so as to avoid overlapping implementation of the first power interchange and the second power interchange to a corresponding power storage device.
    2. The control data generating device according to claim 1.
  6.  前記制御データ生成装置は、前記融通調整相手を統合ユニットに限定するシナリオを示すデータを、前記第1の電力融通において前記電力網に対して充放電する蓄電装置に送信する、
     請求項5に記載の制御データ生成装置。
    The control data generation device transmits data indicating a scenario in which the interchange adjustment partner is limited to the integrated unit to an electric power storage device that charges and discharges with respect to the electric power grid in the first electric power interchange.
    6. The control data generating device according to claim 5.
  7.  前記蓄電装置の動作モードは、複数のモードから選択可能であり、
     前記制御データ生成装置は、選択されたモードに応じた優先度に基づいて第1の電力融通及び第2の電力融通が実施されるように、前記シナリオを示すデータを生成する、
     請求項1に記載の制御データ生成装置。
    The operation mode of the power storage device can be selected from a plurality of modes,
    the control data generation device generates data indicating the scenario such that a first power interchange and a second power interchange are implemented based on a priority according to a selected mode.
    2. The control data generating device according to claim 1.
  8.  前記複数のモードは、余剰電力最小化モード、電力料金最小化モード、不足電力最小化モード及び災害対策モードを含む、
     請求項7に記載の制御データ生成装置。
    The plurality of modes include a surplus power minimization mode, a power fee minimization mode, a power shortage minimization mode, and a disaster prevention mode.
    8. The control data generating device according to claim 7.
  9.  電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
     生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
     生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
     制御方法であって、
     前記充放電は、
     前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
     前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
     を含む、
     制御方法。
    generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
    Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
    transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
    1. A control method comprising:
    The charging and discharging is
    A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
    A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
    including,
    Control methods.
  10.  コンピュータに、
     電力網に接続された充放電する複数の蓄電装置それぞれの時刻に対する目標SOCを記述するシナリオ、及び、前記複数の蓄電装置全体の前記電力網に対する充放電電力量の計画値と実績値との差分に相当する要求電力量を示す制御データを生成し、
     生成した制御データのうちの少なくとも前記シナリオを示すデータを、対応する蓄電装置に送信し、
     生成した制御データのうちの少なくとも前記要求電力量を示すデータを、前記複数の蓄電装置と通信する統合ユニットに送信する、
     処理を実行させる制御プログラムであって、
     前記充放電は、
     前記複数の蓄電装置全体と前記電力網との間の電力融通であって、前記統合ユニットと前記複数の蓄電装置との間の融通調整結果に基づいて実施される第1の電力融通と、
     前記複数の蓄電装置間の電力融通であって、前記複数の蓄電装置間の融通調整結果に基づいて実施される第2の電力融通と、
     を含む、
     制御プログラム。
    On the computer,
    generating a scenario describing a target SOC for each of a plurality of charging/discharging power storage devices connected to a power grid, and control data indicating a required amount of power corresponding to a difference between a planned value and an actual value of a charging/discharging power amount for the power grid of the entire plurality of power storage devices;
    Transmitting at least data indicating the scenario from among the generated control data to a corresponding power storage device;
    transmitting at least the data indicating the required amount of power among the generated control data to an integration unit that communicates with the plurality of power storage devices;
    A control program for executing a process,
    The charging and discharging is
    A first power interchange between the plurality of power storage devices and the power grid, the first power interchange being performed based on an interchange adjustment result between the integration unit and the plurality of power storage devices;
    A second power interchange between the plurality of power storage devices is performed based on a result of an interchange adjustment between the plurality of power storage devices; and
    including,
    Control program.
PCT/JP2023/037158 2022-10-26 2023-10-13 Control-data-generating device, control method, and control program WO2024090238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171302 2022-10-26
JP2022-171302 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090238A1 true WO2024090238A1 (en) 2024-05-02

Family

ID=90830742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037158 WO2024090238A1 (en) 2022-10-26 2023-10-13 Control-data-generating device, control method, and control program

Country Status (1)

Country Link
WO (1) WO2024090238A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182911A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Cell system
JP6942295B1 (en) * 2021-01-29 2021-09-29 三菱電機株式会社 Charge / discharge plan creation device, command device, power system management system, terminal device, power storage system, charge / discharge system, storage battery, electric vehicle, charge / discharge plan creation method and charge / discharge plan creation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182911A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Cell system
JP6942295B1 (en) * 2021-01-29 2021-09-29 三菱電機株式会社 Charge / discharge plan creation device, command device, power system management system, terminal device, power storage system, charge / discharge system, storage battery, electric vehicle, charge / discharge plan creation method and charge / discharge plan creation program

Similar Documents

Publication Publication Date Title
US11715952B2 (en) System and method of managing energy distribution using a distributed ledger
Olivella-Rosell et al. Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources
US11068821B2 (en) Building energy optimization system with capacity market program (CMP) participation
US9772643B2 (en) Methods, apparatus and systems for managing energy assets
US9159042B2 (en) Facilitating revenue generation from data shifting by data centers
Kahrobaee et al. Multiagent study of smart grid customers with neighborhood electricity trading
US20150278968A1 (en) Facilitating revenue generation from data shifting by data centers
EP3547234A1 (en) Building energy optimization system with capacity market program (cmp) participation
JP6732552B2 (en) Storage battery control system, method and program
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
JP6783641B2 (en) Charge / discharge planning device, method and program
Nizami et al. A nested transactive energy market model to trade demand-side flexibility of residential consumers
WO2017203664A1 (en) Control device, storage battery control device, control system, battery unit control device, control method, storage battery control method, battery unit control device operating method, and program
US11789082B2 (en) Systems and method for managing dispatch and lifecycle of energy storage systems on an electrical grid, including management of energy storage systems for provisioning of multiple services
JP2018161023A (en) Power management system, power management device and power management method
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program
Eid et al. Assessing the costs of electric flexibility from distributed energy resources: A case from the Netherlands
CN115702429A (en) Resource management method and system
WO2024090238A1 (en) Control-data-generating device, control method, and control program
Eto et al. Demand response as a system reliability resource
Ellman et al. Customer incentives for gaming demand response baselines
Chernyakhovskiy et al. USAID Energy Storage Decision Guide for Policymakers
JP7486653B1 (en) Apparatus, method and program
JP7482173B2 (en) Distributed resource market trading device, distributed resource market trading method, and program
JP7447207B1 (en) Information processing device, information processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882446

Country of ref document: EP

Kind code of ref document: A1