WO2024090184A1 - Electric fluid pump - Google Patents

Electric fluid pump Download PDF

Info

Publication number
WO2024090184A1
WO2024090184A1 PCT/JP2023/036603 JP2023036603W WO2024090184A1 WO 2024090184 A1 WO2024090184 A1 WO 2024090184A1 JP 2023036603 W JP2023036603 W JP 2023036603W WO 2024090184 A1 WO2024090184 A1 WO 2024090184A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
port
section
motor
relief
Prior art date
Application number
PCT/JP2023/036603
Other languages
French (fr)
Japanese (ja)
Inventor
直嗣 北山
雅道 藤川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022171673A external-priority patent/JP2024063595A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024090184A1 publication Critical patent/WO2024090184A1/en

Links

Images

Definitions

  • the present invention relates to an electric fluid pump.
  • automobiles and other vehicles may use an electric oil pump to supply oil to various parts of the vehicle.
  • vehicles equipped with an idling stop mechanism (a mechanism that automatically stops the engine when the vehicle is stopped)
  • hybrid vehicles are equipped with an electric oil pump that supplies oil pressure to the transmission when the engine is stopped.
  • the hydraulic pressure is maintained at an appropriate level by controlling the output of the motor section based on the hydraulic pressure detected by a hydraulic sensor and adjusting the pump discharge pressure.
  • a hydraulic sensor is required, and complex control is required to vary the output of the motor section based on the detection results of the hydraulic sensor.
  • Patent Document 1 shows an electric oil pump having a relief valve.
  • this electric oil pump includes an electric motor 103 having a motor stator 101 and a motor rotor 102, a pump 106 having an inner rotor 104 and an outer rotor 105, a motor housing 107 that houses the electric motor 103, and a housing 109 having a pump housing 108 that houses the pump 106, and a pump plate 110 fixed to one axial side (left side in the figure) of the housing 109.
  • FIG. 9 shows an electric oil pump having a relief valve.
  • this electric oil pump includes an electric motor 103 having a motor stator 101 and a motor rotor 102, a pump 106 having an inner rotor 104 and an outer rotor 105, a motor housing 107 that houses the electric motor 103, and a housing 109 having a pump housing 108 that houses the pump 106, and a pump plate 110 fixed to one axial side (left side in the figure) of the housing 109.
  • the pump plate 110 is provided with a crescent-shaped port 111 on the suction side and a crescent-shaped port 112 on the discharge side, and these crescent-shaped ports 111, 112 are respectively connected to a suction port 113 and a discharge port 114.
  • the pump plate 110 is provided with a valve mounting hole 115 that connects the two crescent-shaped ports 111, 112.
  • a relief valve 116 is arranged inside the valve mounting hole 115 in a reciprocating manner.
  • the relief valve 116 is provided on the pump plate 110, which is located on the axially opposite side of the pump 106 from the electric motor 103 (the left side in Figure 9), which leads to an increase in the size of the pump plate 110 and therefore the size of the electric oil pump.
  • the present invention aims to make the electric fluid pump more compact and improve the cooling efficiency of the motor section.
  • the present invention made to solve the above problems is an electric fluid pump having a motor section, a pump section provided on one axial side of the motor section and driven by the motor section, an intake side flow path through which fluid before being compressed by the pump section flows, a discharge side flow path through which fluid compressed by the pump section flows, a relief pipeline connecting the discharge side flow path and the intake side flow path, and a relief valve disposed in the relief pipeline and opened when fluid pressure in the discharge side flow path reaches or exceeds a predetermined value,
  • the relief pipe and the relief valve are disposed in an axial region between the motor section and the pump section.
  • the present invention focuses on the fact that there is dead space between the motor section and the pump section in the axial direction, and places the relief line and relief valve in this dead space. This increases the efficiency of component placement within the electric fluid pump, and allows the electric fluid pump to be made more compact. Also, by providing a relief line between the motor section and the pump in the axial direction, the relief line is located closer to the motor section than in the conventional product shown in Figure 9, making it easier for the motor section to be cooled by the fluid flowing through the relief line.
  • the pump plate 110 of the conventional electric oil pump shown in Figures 9 and 10 is provided with an intake port 113, a discharge port 114, and a mounting surface 117 for mounting to an object.
  • the intake port 113 and the discharge port 114 are open in the mounting surface 117.
  • the mounting surface 117 is provided so as to be parallel to the rotation axis of the electric motor 103, but depending on the object to which it is to be mounted, the mounting surface may be provided so as to be perpendicular to the rotation axis of the electric motor 103. Therefore, the shape of the pump plate 110 needs to be changed according to the arrangement of the mounting surface 117.
  • valve mounting hole 115 relieve pipe
  • relief valve 116 are provided inside the pump plate 110, so that the arrangement of the valve mounting hole 115 and the relief valve 116 provided inside the pump plate 110 needs to be changed in accordance with the change in the shape of the pump plate 110.
  • the electric fluid pump has a suction port and a discharge port provided on one axial side of the pump section, and a suction side counter port and a discharge side counter port provided axially between the motor section and the pump section, it is preferable to connect the relief line to the suction side counter port and the discharge side counter port.
  • the above electric oil pump preferably includes a housing having a motor housing section that houses the motor section on its inner circumference, a pump housing section that houses the pump section on its inner circumference, and a relief pipe, all integrally formed as a single component. This allows heat to be easily transferred between the relief pipe and the pump section and the motor section via the housing, which is an integral part, thereby further enhancing the cooling effect of the motor section.
  • the electric oil pump may have, for example, a motor rotor provided in the motor section, a pump rotor provided in the pump section, a rotating shaft that rotates integrally with the motor rotor and the pump rotor, a plain bearing that supports the rotating shaft, and a seal member that is disposed between the motor section and the plain bearing, and the relief pipe and the relief valve may be configured to be disposed on the outer periphery of the plain bearing or the seal member.
  • the above electric fluid pump can be used, for example, as an electric oil pump for pumping oil.
  • the present invention makes it possible to make the electric fluid pump more compact and improve the cooling efficiency of the motor section.
  • FIG. 8 is a cross-sectional view of the electric oil pump according to the embodiment of the present invention, taken along line II in FIG. 7 .
  • 2 is a cross-sectional view taken along line II-II in FIG. 1 .
  • FIG. 2 is a perspective view of the electric oil pump.
  • 4 is a cross-sectional view taken along line IV-IV in FIG. 1 .
  • 2 is a cross-sectional view taken along line VV in FIG. 1 .
  • FIG. 13 is a perspective view of the counter port and the relief line.
  • 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 4 is a perspective view showing another example of the electric oil pump of the present invention.
  • FIG. 1 is a cross-sectional view of a conventional electric oil pump.
  • 10 is a cross-sectional view taken along line XX in FIG. 9.
  • the electric fluid pump of this embodiment is an electric oil pump that mainly supplies hydraulic pressure to the transmission while the engine is stopped.
  • the electric oil pump draws oil from an oil reservoir at the bottom of the transmission case, and then discharges the oil to pump it into the transmission, thereby ensuring the necessary hydraulic pressure and amount of lubricating oil within the transmission.
  • FIG. 1 shows an electric oil pump 1 of this embodiment.
  • This electric oil pump 1 has a motor section 2, a pump section 3 driven by the motor section 2, a controller 4 that controls the motor section 2, and a housing 5 that houses the motor section 2, the pump section 3, and the controller 4.
  • This electric oil pump 1 is an integrated mechanical and electrical type with a built-in controller 4, but is not limited to this, and the electric oil pump 1 may also be a separate mechanical and electrical type that does not have a controller. Each member or element will be described in detail below.
  • the direction parallel to the axis O of the motor unit 2 is referred to as the "axial direction,” and the radial direction of a circle centered on the axis O is referred to as the “radial direction” (the “inner diameter direction” and “outer diameter direction” also refer to the inner diameter direction and outer diameter direction of the circle).
  • the circumferential direction of a circle centered on the axis O is referred to as the "circumferential direction.”
  • the motor section 2 is, for example, a three-phase brushless DC motor.
  • the motor section 2 has a stator 21 and a rotor 22.
  • the stator 21 has a number of coils evenly arranged in the circumferential direction, specifically, coils corresponding to the three phases U-phase, V-phase, and W-phase.
  • the rotor 22 has a number of magnets 23 evenly arranged in the circumferential direction.
  • the stator 21 and the rotor 22 are arranged with a small radial gap between them.
  • the rotating shaft 6 is fixed to the inner circumference of the rotor 22.
  • the pump section 3 is disposed on one axial side of the motor section 2 (the right side in the figure).
  • the pump section 3 is a rotary pump that pumps oil by rotating.
  • the pump section 3 of this embodiment is a trochoid pump having an inner rotor 31 on which multiple external teeth 31a are formed, and an outer rotor 32 on which multiple internal teeth 32a are formed.
  • the inner rotor 31 and the outer rotor 32 are formed of, for example, an iron-based metal or a copper-based metal.
  • the inner rotor 31 is disposed on the inner diameter side of the outer rotor 32.
  • the outer rotor 32 is in an eccentric position with respect to the inner rotor 31.
  • Some of the internal teeth 32a of the outer rotor 32 mesh with some of the external teeth 31a of the inner rotor 31. If the number of teeth of the inner rotor 31 is n, the number of teeth of the outer rotor 32 is (n+1).
  • the outer peripheral surface 32b of the outer rotor 32 and the inner peripheral surface 55a of the housing 5 into which it fits are both cylindrical surfaces.
  • the outer rotor 32 is rotatably arranged on the inner circumference of the housing 5 so as to rotate in conjunction with the rotation of the inner rotor 31.
  • the rotating shaft 6 is rotatably supported relative to the housing 5 via a bearing 7 (see FIG. 1).
  • a plain bearing or a rolling bearing can be used as the bearing 7, and in this embodiment, a plain bearing, particularly a sintered oil-impregnated bearing, is used.
  • the bearing 7 is fixed to the inner periphery of the housing 5, for example, by press-fitting.
  • the bearing 7 is made of a material that has a linear expansion coefficient close to that of the housing 5 into which it is press-fitted, and that has excellent sliding properties.
  • the bearing 7 is preferably made of a copper-based metal (a metal containing copper as the main component).
  • the inner rotor 31 (pump rotor) of the pump section 3 is fixed to the end of the rotating shaft 6 on one axial side (the right side in FIG. 1), and the rotor 22 (motor rotor) of the motor section 2 is fixed to the end of the rotating shaft 6 on the other axial side (the left side in FIG. 1).
  • the rotating shaft 6 and either or both of the inner rotor 31 and the rotor 22 may be integrally formed as a single component.
  • a seal member 8 is disposed between the bearing 7 and the motor section 2.
  • the seal member 8 has a seal lip that slides against the outer circumferential surface of the rotating shaft 6. This seal member 8 prevents oil from leaking from the pump section 3 to the motor section 2. Oil from the pump section 3 is supplied to the sliding contact portion between the bearing 7 and the rotating shaft 6.
  • the controller 4 is disposed on the other axial side of the motor unit 2 (the left side in FIG. 1).
  • the controller 4 has a board perpendicular to the axial direction and multiple electronic components mounted on the board. These electronic components form a control circuit that controls the driving of the motor unit 2.
  • the controller 4 is supplied with power from an external power source via a connector.
  • the housing 5 has a central housing 51, a pump cover 52 provided on one axial side of the central housing 51 (right side in FIG. 1), a controller housing 53 provided on the other axial side of the central housing 51 (left side in FIG. 1), and a controller cover 54 provided on the other axial side of the controller housing 53 (left side in FIG. 1).
  • the central housing 51, pump cover 52, controller housing 53, and controller cover 54 are integrated together by fastening them together with bolts, for example.
  • the central housing 51 has a roughly cylindrical pump accommodating section 55 that accommodates the pump section 3 on its inner periphery, a roughly cylindrical motor accommodating section 56 that accommodates the motor section 2 on its inner periphery, and an intermediate section 57 provided in the axial direction of these sections.
  • the outer circumferential surface 32b of the outer rotor 32 is fitted into the cylindrical inner circumferential surface 55a of the pump accommodating section 55, thereby allowing the outer rotor 32 to rotate freely around its own axis.
  • the stator 21 of the motor section 2 is fixed to the cylindrical inner circumferential surface of the motor accommodating section 56.
  • the pump cover 52 is a flat member that covers the pump section 3 from one axial side (the right side in FIG. 1).
  • the pump cover 52 is provided with a mounting surface 52a for mounting the electric oil pump 1 to a mounting target part (the transmission case in this embodiment).
  • the mounting surface 52a in the illustrated example is a flat surface that is provided on the end face of the pump cover 52 on one axial side (the right side in FIG. 1) and is perpendicular to the axial direction. With the mounting surface 52a in close contact with the transmission case, the pump cover 52 and the transmission case are fastened together, for example with bolts, to fix the electric oil pump 1 to the transmission case.
  • the controller housing 53 is cylindrical.
  • the controller cover 54 covers the opening on the other axial side of the controller housing 53 (the left side in FIG. 1).
  • the controller 4 is housed in the space formed inside the controller housing 53 and the controller cover 54.
  • the controller cover 54 is provided with a number of fins 54a (see FIG. 3).
  • the central housing 51 is integrally formed as a single component, for example, by casting, cutting, or a combination of these.
  • the central housing 51, pump cover 52, controller housing 53, and controller cover 54 are formed from a metal material that is a conductor and has good thermal conductivity, for example, an aluminum alloy.
  • one or more of the central housing 51, pump cover 52, controller housing 53, and controller cover 54 may be formed from another metal material (for example, an iron-based metal or a copper-based metal) or resin.
  • the pump cover 52 is formed with an intake side intermediate port 61, a discharge side intermediate port 62, an intake port 63 and a discharge port 64.
  • the intake side intermediate port 61 and the discharge side intermediate port 62 are both provided adjacent to one axial side of the pump section 3 (the right side in FIG. 1).
  • the intake side intermediate port 61 opens to a portion (suction space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume expands with rotation.
  • the discharge side intermediate port 62 opens to a portion (compression space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume narrows with rotation. As shown in FIG.
  • the intake side intermediate port 61 and the discharge side intermediate port 62 are both arc-shaped (crescent-shaped) extending in the circumferential direction, and are provided at positions that are approximately symmetrical with respect to the diameter direction (the vertical straight line passing through the center of rotation in FIG. 4).
  • One end of the suction port 63 opens to the suction side intermediate port 61, and the other end of the suction port 63 opens to the mounting surface 52a (see FIG. 1).
  • One end of the discharge port 64 opens to the discharge side intermediate port 62, and the other end of the discharge port 64 opens to the mounting surface 52a.
  • suction side intermediate port 61, suction port 63, and suction side counter port 65 form a suction side flow path through which oil flows before being compressed in the pump section 3.
  • discharge side intermediate port 62, discharge port 64, and discharge side counter port 66 form a discharge side flow path through which oil compressed in the pump section 3 flows.
  • a suction side counter port 65 and a discharge side counter port 66, and a relief pipe 67 that communicates between them are formed in the middle portion 57 of the central housing 51.
  • the suction side counter port 65 and the discharge side counter port 66 are both provided adjacent to the other axial side (left side in FIG. 1) of the pump section 3.
  • the suction side counter port 65 opens to a portion (suction space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume expands with rotation.
  • the discharge side counter port 66 opens to a portion (compression space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume narrows with rotation. It opens to the meshing portion of the inner rotor 31 and the outer rotor 32.
  • the suction side counter port 65 and the discharge side counter port 66 are both arc-shaped (crescent-shaped) extending in the circumferential direction, and are provided at positions that are approximately symmetrical with respect to the diameter direction (the vertical straight line passing through the center of rotation in FIG. 5).
  • the suction side counter port 65 is shaped and positioned so as to overlap the suction side intermediate port 61 when viewed from the axial direction
  • the discharge side counter port 66 is shaped and positioned so as to overlap the discharge side intermediate port 62 when viewed from the axial direction.
  • the relief pipe 67 has a valve accommodating portion 67a, a suction side connection portion 67b, and a discharge side connection portion 67c.
  • the suction side connection portion 67b connects the valve accommodating portion 67a to the suction side counter port 65.
  • the discharge side connection portion 67c connects the valve accommodating portion 67a to the discharge side counter port 66.
  • the valve accommodating portion 67a is a straight (cylindrical) pipe.
  • the side (inner peripheral surface) of the valve accommodating portion 67a is connected to the suction side counter port 65 by the suction side connection portion 67b.
  • the end (end closer to the axis O) of the valve accommodating portion 67a is connected to the discharge side counter port 66 by the discharge side connection portion 67c.
  • the suction side connection portion 67b and the discharge side connection portion 67c are each made up of two straight (cylindrical) pipes that intersect with each other.
  • the valve housing portion 67a, the suction side connection portion 67b, and the discharge side connection portion 67c are each formed as a straight line, and therefore can be easily formed in the central housing 51 by machining using a drill or the like.
  • the configuration of the relief line 67 is not limited to the above, and for example, the suction side connection portion 67b or the discharge side connection portion 67c, or both, may be formed as one or three or more straight lines.
  • the valve housing portion 67a has a larger diameter than the discharge side connection portion 67c that is connected to its end. Therefore, a step is provided at the boundary between the valve housing portion 67a and the discharge side connection portion 67c, and a seal surface 67d is provided at the inner diameter end of this step.
  • the seal surface 67d has a tapered surface shape similar to the tapered surface 71a provided at the tip of the relief valve 71.
  • a relief valve 71 is accommodated in the valve housing portion 67a of the relief pipe 67.
  • the opening on the outside side of the valve housing portion 67a is closed by a cover member 72, and a spring 73 is arranged in a compressed state between the cover member 72 and the relief valve 71.
  • the elastic force of the spring 73 presses the relief valve 71 against the seal surface 67d of the relief pipe 67, closing this portion, thereby blocking the suction side counter port 65 and the discharge side counter port 66.
  • the configuration of the relief valve is not limited to the poppet valve as described above, and may be, for example, a spool valve or a ball valve.
  • the bearing 7 and the seal member 8 are provided between the motor section 2 and the pump section 3 in the axial direction (see FIG. 1).
  • the motor section 2 and the pump section 3 need to be spaced apart in the axial direction in order to secure space for arranging the bearing 7 and the seal member 8. Therefore, a dead space is created between the motor section 2 and the pump section 3 and on the outer periphery of the bearing 7 and the seal member 8.
  • the relief pipe 67 and the relief valve 71 are arranged in the axial region between the motor section 2 and the pump section 3 (the middle section 57 of the central housing 51), which is the dead space, specifically on the outer periphery of the bearing 7 or the seal member 8 (the outer periphery of the bearing 7 in the illustrated example). This increases the efficiency of component arrangement within the electric oil pump 1, and allows the electric oil pump 1 to be made smaller.
  • a rolling bearing can also be used as the bearing 7 that supports the rotating shaft 6.
  • rolling bearings are usually lubricated with grease, it becomes necessary to place a seal member 8 between the rolling bearing (bearing 7) and the pump section 3 to prevent mixing with the oil pumped by the pump section 3.
  • the arrangement of the bearing 7 and the pump section 3 is reversed in the axial direction from that shown in FIG. 1.
  • the seal member 8 is placed close to the pump section 3, it becomes difficult to secure space for providing a relief pipe 67 on its outer periphery.
  • a plain bearing is used as the bearing 7. Since the plain bearing can be lubricated by the oil in the pump section 3, the bearing 7 can be arranged close to the other axial side of the pump section 3 (the left side in the figure). In this case, a seal member 8 for preventing oil from entering the motor section 2 is arranged between the bearing 7 and the motor section 2 as shown in FIG. 1.
  • a plain bearing has a smaller radial dimension than a rolling bearing, so by arranging the plain bearing (bearing 7) close to the pump section 3 as described above, it becomes easier to ensure space for providing a relief pipe 67 on its outer periphery, which facilitates the design of the electric oil pump 1, and in particular the design of the relief pipe 67.
  • the above electric oil pump 1 may require a change in the arrangement of the mounting surface 52a to be provided on the pump cover 52 depending on the object to which it is to be attached.
  • the mounting surface 52a is perpendicular to the axial direction, but as shown in Figure 8, the mounting surface 52a may be parallel to the axial direction.
  • the shape of the pump cover 52 varies greatly depending on the arrangement of the mounting surface 52a.
  • a relief valve 71 and a relief line 67 are provided inside the pump cover 52, it becomes necessary to reconsider the arrangement of the relief valve 71 and the relief line 67 provided inside the pump cover 52 every time the shape of the pump cover 52 is changed.
  • the relief line 67 and the relief valve 71 are provided in the central housing 51, which is provided with the counter ports 65, 66, rather than in the pump cover 52, which is provided with the suction port 63 and the discharge port 64. This makes it easier to make design changes, since there is no need to change the position of the relief line 67 and the relief valve 71 even if the shape of the pump cover 52 is changed.
  • the oil compressed by the pump section 3 as described above is not only supplied to the discharge side intermediate port 62 and the discharge port 64 as described above, but also to the discharge side counter port 66.
  • the relief valve 71 is pressed against the seal surface 67d by the biasing force of the spring 73, and the relief valve 71 is maintained in a closed state. In this way, because the relief line 67 is blocked by the relief valve 71 being closed, the oil at the discharge side counter port 66 does not flow into the suction side counter port 65 via the relief line 67.
  • the oil pressure at the discharge side counter port 66 exceeds a predetermined value, the oil pressure pushes the relief valve 71 against the biasing force of the spring 73, the relief valve 71 moves away from the seal surface 67d, and the discharge side counter port 66 and the suction side counter port 65 communicate with each other via the relief line 67 (see dotted line in FIG. 7).
  • the oil at the discharge side counter port 66 flows into the suction side counter port 65 via the relief line 67 (see dotted arrow C in FIG. 7), and the oil pressure at the discharge side counter port 66 drops.
  • the oil pressure can be maintained within an appropriate range without the need for complex control.
  • a relief pipe 67 is disposed in the axial region between the motor section 2 and the pump section 3.
  • the relief pipe 67 and the motor section 2 are disposed relatively close to each other, so that the motor section 2 is easily cooled through the housing 5 by the oil flowing through the relief pipe 67.
  • the motor accommodating section 56 of the housing 5 to which the stator 21 of the motor section 2 is fixed and the intermediate section 57 in which the relief pipe 67 is formed are integrally formed as a single component from metal (e.g., aluminum alloy), so that heat from the stator 21 is easily transferred to the relief pipe 67, further improving cooling efficiency.
  • the electric oil pump 1 described above can also be used for applications where it is not necessary to provide a relief valve 71.
  • the process of forming the relief line 67 (valve accommodating portion 67a, suction side connection portion 67b, and discharge side connection portion 67c) in the intermediate portion 57 of the central housing 51 can be omitted, and a central housing 51 without a relief line 67 can be formed. In this case, there is no need to change any other configuration of the electric oil pump 1.
  • the electric oil pump 1 can also use the suction side flow path (suction port 63, suction side intermediate port 61, suction side counter port 65) as a discharge side flow path, and the discharge side flow path (discharge port 64, discharge side intermediate port 62, discharge side counter port 66) as a suction side flow path.
  • the present invention is not limited to the above embodiment. Other embodiments of the present invention will be described below, but duplicate explanations of points similar to the above embodiment will be omitted.
  • the suction port 63 and the discharge port 64 are provided on one axial side of the pump section 3 (right side in FIG. 1), and the counter ports 65 and 66 are provided on the other axial side of the pump section 3 (left side in FIG. 1).
  • the suction port 63 and the discharge port 64 may be provided on the other axial side of the pump section 3 (left side in FIG. 1), and the counter ports 65 and 66 may be provided on one axial side of the pump section 3 (right side in FIG. 1).
  • the suction side intermediate port 61, the suction port 63, the discharge side intermediate port 62, the discharge port 64, and the relief pipe 67 are provided in the axial region between the motor section 2 and the pump section 3, specifically in the intermediate section 57 of the central housing 51.
  • the relief pipe 67 is provided at a position that communicates the suction port 63 and the discharge port 64, or the suction side intermediate port 61 and the discharge side intermediate port 62.
  • the housing 5 is made of an aluminum alloy
  • the outer rotor 32 of the pump section 3 is made of an iron-based metal or a copper-based metal.
  • the difference in hardness between the two is relatively large, so the amount of wear on the housing 5 increases, the gap between the housing 5 and the outer rotor 32 increases, and the amount of oil leakage increases, which leads to a decrease in the oil discharge characteristics (flow rate relative to pump pressure at each rotation speed).
  • the housing 5 and the outer rotor 32 come into contact and slide, a decrease in pump efficiency is unavoidable due to the sliding resistance at this time.
  • the hardness of at least the part of the housing 5 that slides against the outer rotor 32 i.e., the inner surface of the pump housing 55
  • the difference in hardness between them is HRB5 or less.
  • the hardness of this part can be made equal to the hardness of the outer rotor 32 made of iron or copper-based metal (for example, HRB60 or higher).
  • anodizing can be applied as a treatment for increasing the hardness as described above.
  • the pump housing 55 may be subjected to a heat treatment (for example, T6 treatment) to increase the hardness of the pump housing 55 itself.
  • a heat treatment for example, T6 treatment
  • the housing 5 may also be subjected to surface modification (e.g., molybdenum disulfide shot) to improve sliding properties.
  • the above-mentioned surface treatment may be applied not only to the inner circumferential surface of the pump housing 55, but also to other areas where the inner rotor 31 and the outer rotor 32 slide, such as the end faces of the pump cover 52 and the central housing 51 that face the end faces of the inner rotor 31 and the outer rotor 32.
  • a sliding bearing (e.g., a sintered oil-impregnated bearing) may be interposed between the inner peripheral surface of the pump housing 55 and the outer peripheral surface of the outer rotor 32.
  • a cylindrical sliding bearing is fixed to the inner peripheral surface of the pump housing 55 by press-fitting or the like, and this sliding bearing is in sliding contact with the outer peripheral surface of the outer rotor 32.
  • the sliding bearing is made of an iron-based or copper-based metal.
  • the hardness of the sliding bearing is equivalent to the hardness of the outer rotor 32, and the hardness difference with the outer rotor 32 is, for example, HRB5 or less.
  • the outer rotor 32 is made of an iron-based or copper-based metal, it is desirable that the hardness of the sliding bearing is equivalent to or greater than HRB60.
  • the material of the pump housing 55 is not limited, and it can be applied regardless of whether it is made of metal or resin.
  • the plain bearing from a sintered oil-impregnated bearing, the oil impregnated inside seeps into the sliding contact area between the plain bearing and the outer rotor 32, thereby improving sliding properties.
  • the present invention can be applied not only to electric oil pumps that pump oil, but also to electric pumps that pump liquids other than oil.
  • Electric oil pump (electric fluid pump) 2 Motor section 3 Pump section 4 Controller 5 Housing 6 Rotating shaft 7 Bearing 8 Seal member 21 Stator 22 Rotor 31 Inner rotor 32 Outer rotor 51 Central housing 52 Pump cover 52a Mounting surface 53 Controller housing 54 Controller cover 55 Pump accommodating section 56 Motor accommodating section 57 Intermediate section 61 Suction side intermediate port 62 Discharge side intermediate port 63 Suction port 64 Discharge port 65 Suction side counter port 66 Discharge side counter port 67 Relief pipe 67a Valve accommodating section 67b Suction side connecting section 67c Discharge side connecting section 67d Seal surface 71 Relief valve 72 Lid member 73 Spring

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

An electric oil pump (electric fluid pump) 1 comprises: a motor unit 2; a pump unit 3; an intake-side flow path (intake-side counter port 65) through which oil before compressed by the pump unit 3 flows; an ejection-side flow path (ejection-side counter port 66) through which oil after compressed by the pump unit 3 flows; a relief conduit 67 making the intake-side counter port 65 and the ejection-side counter port 66 communicate with each other; and a relief valve 71 disposed inside the relief conduit 67 and opened when a fluid pressure of the ejection-side flow path becomes a prescribed value or more. The relief conduit 67 and the relief valve 71 are disposed in a region between the motor unit 2 and the pump unit 3 in an axial direction.

Description

電動流体ポンプElectric Fluid Pump
 本発明は、電動流体ポンプに関する。 The present invention relates to an electric fluid pump.
 近年の自動車等の車両では、車両各部へのオイルの供給を電動オイルポンプを用いて行う場合がある。例えばアイドリングストップ機構(停車時にエンジンを自動停止する機構)を備えた車両やハイブリッド車両では、エンジン停止中にトランスミッションに油圧を供給する電動オイルポンプが設けられる。 In recent years, automobiles and other vehicles may use an electric oil pump to supply oil to various parts of the vehicle. For example, vehicles equipped with an idling stop mechanism (a mechanism that automatically stops the engine when the vehicle is stopped) and hybrid vehicles are equipped with an electric oil pump that supplies oil pressure to the transmission when the engine is stopped.
 電動オイルポンプを含む油圧回路では、例えば、油圧センサで検知した油圧に基づいてモータ部の出力を制御してポンプ吐出圧を調整することで、油圧が適正に保たれる。しかし、この場合、油圧センサや、油圧センサの検知結果に基づいてモータ部の出力を変動させる複雑な制御が必要になる。 In a hydraulic circuit that includes an electric oil pump, for example, the hydraulic pressure is maintained at an appropriate level by controlling the output of the motor section based on the hydraulic pressure detected by a hydraulic sensor and adjusting the pump discharge pressure. In this case, however, a hydraulic sensor is required, and complex control is required to vary the output of the motor section based on the detection results of the hydraulic sensor.
 例えば、下記の特許文献1には、リリーフバルブを有する電動オイルポンプが示されている。この電動オイルポンプは、図9に示すように、モータステータ101及びモータロータ102を有する電動モータ103と、インナロータ104及びアウタロータ105を有するポンプ106と、電動モータ103を収容するモータハウジング107、及び、ポンプ106を収容するポンプハウジング108を有するハウジング109と、ハウジング109の軸方向一方側(図中左側)に固定されたポンププレート110とを備える。図10に示すように、ポンププレート110には、吸入側の三日月状ポート111と、吐出側の三日月状ポート112とが設けられ、これら三日月状ポート111、112が、それぞれ吸入ポート113及び吐出ポート114と連通している。ポンププレート110には、両三日月状ポート111、112を連通する弁装着孔115が設けられる。弁装着孔115の内部には、リリーフ弁116が往復動可能な状態で配される。 For example, the following Patent Document 1 shows an electric oil pump having a relief valve. As shown in FIG. 9, this electric oil pump includes an electric motor 103 having a motor stator 101 and a motor rotor 102, a pump 106 having an inner rotor 104 and an outer rotor 105, a motor housing 107 that houses the electric motor 103, and a housing 109 having a pump housing 108 that houses the pump 106, and a pump plate 110 fixed to one axial side (left side in the figure) of the housing 109. As shown in FIG. 10, the pump plate 110 is provided with a crescent-shaped port 111 on the suction side and a crescent-shaped port 112 on the discharge side, and these crescent- shaped ports 111, 112 are respectively connected to a suction port 113 and a discharge port 114. The pump plate 110 is provided with a valve mounting hole 115 that connects the two crescent- shaped ports 111, 112. A relief valve 116 is arranged inside the valve mounting hole 115 in a reciprocating manner.
 電動モータ103によりポンプ106のインナロータ104が回転駆動されると、吸入ポート113からオイルが吸い込まれ、このオイルが吸入側の三日月状ポート111を介してインナロータ104とアウタロータ105との間の空間に侵入する。この空間で圧縮されたオイルが、吐出側の三日月状ポート112を介して吐出ポート114から吐出される。 When the inner rotor 104 of the pump 106 is driven to rotate by the electric motor 103, oil is sucked in from the suction port 113 and enters the space between the inner rotor 104 and the outer rotor 105 via the crescent-shaped port 111 on the suction side. The oil compressed in this space is discharged from the discharge port 114 via the crescent-shaped port 112 on the discharge side.
 このとき、吐出側の三日月状ポート112におけるオイルの圧力が所定以上となったら、このオイル圧でリリーフ弁116が後退(図10の右側に移動)し、弁装着孔115を介して両三日月状ポート111、112が連通する。これにより、吐出側の三日月状ポート112から弁装着孔115を介して吸入側の三日月状ポート111にオイルが流入し、吐出側の三日月状ポート112のオイル圧、すなわち、吐出ポート114からのオイルの吐出圧が低下する。以上のように、リリーフ弁116による機械的な制御により、電動オイルポンプの吐出圧が所定値以下となるように維持されるため、油圧センサや複雑な制御が不要となる。 At this time, when the oil pressure in the crescent-shaped port 112 on the discharge side reaches or exceeds a predetermined value, the relief valve 116 moves backward (to the right in Figure 10) due to this oil pressure, and both crescent- shaped ports 111, 112 communicate via the valve mounting hole 115. As a result, oil flows from the crescent-shaped port 112 on the discharge side through the valve mounting hole 115 into the crescent-shaped port 111 on the suction side, and the oil pressure in the crescent-shaped port 112 on the discharge side, i.e., the discharge pressure of the oil from the discharge port 114, decreases. As described above, the discharge pressure of the electric oil pump is maintained below a predetermined value through mechanical control by the relief valve 116, eliminating the need for hydraulic sensors or complex control.
特開2008-215087号公報JP 2008-215087 A
 しかし、上記の電動オイルポンプでは、ポンプ106に対して電動モータ103と軸方向反対側(図9の左側)に設けられたポンププレート110にリリーフ弁116を設けているため、ポンププレート110の大型化、ひいては電動オイルポンプの大型化を招く。 However, in the above electric oil pump, the relief valve 116 is provided on the pump plate 110, which is located on the axially opposite side of the pump 106 from the electric motor 103 (the left side in Figure 9), which leads to an increase in the size of the pump plate 110 and therefore the size of the electric oil pump.
 また、上記の電動オイルポンプでは、電動モータ103とオイル流路とが離間しているため、オイルによる電動モータ103の冷却効果はほとんど期待できない。 In addition, in the above electric oil pump, the electric motor 103 and the oil flow path are separated, so there is little hope of the oil providing any cooling effect to the electric motor 103.
 そこで、本発明は、電動流体ポンプのコンパクト化を図ると共に、モータ部の冷却効率を高めることにある。 The present invention aims to make the electric fluid pump more compact and improve the cooling efficiency of the motor section.
 前記課題を解決するためになされた本発明は、モータ部と、前記モータ部の軸方向一方側に設けられ、前記モータ部で駆動されるポンプ部と、前記ポンプ部で圧縮される前の流体が流通する吸入側の流路と、前記ポンプ部で圧縮された流体が流通する吐出側の流路と、前記吐出側の流路と前記吸入側の流路を連通するリリーフ管路と、前記リリーフ管路内に配され、前記吐出側の流路の流体圧力が所定値以上となったら開放されるリリーフ弁とを有する電動流体ポンプであって、
 前記リリーフ管路及び前記リリーフ弁が、前記モータ部と前記ポンプ部との軸方向間領域に配されたことを特徴とする。
The present invention made to solve the above problems is an electric fluid pump having a motor section, a pump section provided on one axial side of the motor section and driven by the motor section, an intake side flow path through which fluid before being compressed by the pump section flows, a discharge side flow path through which fluid compressed by the pump section flows, a relief pipeline connecting the discharge side flow path and the intake side flow path, and a relief valve disposed in the relief pipeline and opened when fluid pressure in the discharge side flow path reaches or exceeds a predetermined value,
The relief pipe and the relief valve are disposed in an axial region between the motor section and the pump section.
 このように、本発明では、モータ部とポンプ部との軸方向間にデッドスペースがあることに着目し、このデッドスペースにリリーフ管路及びリリーフ弁を配置した。これにより、電動流体ポンプ内における部品の配置効率が高くなり、電動流体ポンプの小型化が図られる。また、モータ部とポンプとの軸方向間にリリーフ管路を設けることで、図9に示す従来品と比べて、リリーフ管路がモータ部に近接して設けられるため、リリーフ管路内を流れる流体によりモータ部が冷却されやすくなる。 In this way, the present invention focuses on the fact that there is dead space between the motor section and the pump section in the axial direction, and places the relief line and relief valve in this dead space. This increases the efficiency of component placement within the electric fluid pump, and allows the electric fluid pump to be made more compact. Also, by providing a relief line between the motor section and the pump in the axial direction, the relief line is located closer to the motor section than in the conventional product shown in Figure 9, making it easier for the motor section to be cooled by the fluid flowing through the relief line.
 電動流体ポンプにおいて、ポンプ部の軸方向一方側に吐出ポート及び吸入ポートが設けられる場合、吐出ポート及び吸入ポート内の流体圧力で、ポンプ部がハウジングに軸方向一方側から押し付けられる。そこで、ポンプ部の軸方向他方側(吐出ポート及び吸入ポートと反対側)に、カウンターポートを設けることにより、吐出ポート及び吸入ポート内の流体圧力とカウンターポート内の流体圧力とが軸方向で相殺され、ポンプ部がハウジングに押し付けられる力を低減できる。 In an electric fluid pump, when a discharge port and a suction port are provided on one axial side of the pump section, the fluid pressure in the discharge port and the suction port presses the pump section against the housing from one axial side. Therefore, by providing a counter port on the other axial side of the pump section (the opposite side to the discharge port and the suction port), the fluid pressure in the discharge port and the fluid pressure in the counter port are offset in the axial direction, reducing the force with which the pump section is pressed against the housing.
 ところで、図9、10に示す従来の電動オイルポンプのポンププレート110には、吸入ポート113及び吐出ポート114と、取付対象に取り付けるための取付面117が設けられる。取付面117には、吸入ポート113及び吐出ポート114が開口している。この電動オイルポンプでは、取付面117が、電動モータ103の回転軸と平行となるように設けられているが、取付対象によっては、取付面が、電動モータ103の回転軸と直交するように設けられることもある。そのため、ポンププレート110の形状は、取付面117の配置に応じて変更する必要がある。この電動オイルポンプでは、ポンププレート110の内部に弁装着孔115(リリーフ管路)及びリリーフ弁116が設けられるため、ポンププレート110の形状の変更に伴って、その内部に設けられる弁装着孔115及びリリーフ弁116の配置を変更する必要が生じる。 The pump plate 110 of the conventional electric oil pump shown in Figures 9 and 10 is provided with an intake port 113, a discharge port 114, and a mounting surface 117 for mounting to an object. The intake port 113 and the discharge port 114 are open in the mounting surface 117. In this electric oil pump, the mounting surface 117 is provided so as to be parallel to the rotation axis of the electric motor 103, but depending on the object to which it is to be mounted, the mounting surface may be provided so as to be perpendicular to the rotation axis of the electric motor 103. Therefore, the shape of the pump plate 110 needs to be changed according to the arrangement of the mounting surface 117. In this electric oil pump, a valve mounting hole 115 (relief pipe) and a relief valve 116 are provided inside the pump plate 110, so that the arrangement of the valve mounting hole 115 and the relief valve 116 provided inside the pump plate 110 needs to be changed in accordance with the change in the shape of the pump plate 110.
 そこで、電動流体ポンプが、ポンプ部の軸方向一方側に設けられた吸入ポート及び吐出ポートと、モータ部とポンプ部の軸方向間に設けられた吸入側カウンターポート及び吐出側カウンターポートとを有する場合、リリーフ管路を、吸入側カウンターポート及び吐出側カウンターポートに接続することが好ましい。このように、リリーフ弁を、吸入ポート及び吐出ポート側ではなく、カウンターポート側に設けることで、吸入ポート及び吐出ポートが開口する取付面の形状や配置が変わった場合でも、リリーフ管路及びリリーフ弁の配置に影響が及ばないため、リリーフ管路及びリリーフ弁の配置の変更が不要となる。 Therefore, when the electric fluid pump has a suction port and a discharge port provided on one axial side of the pump section, and a suction side counter port and a discharge side counter port provided axially between the motor section and the pump section, it is preferable to connect the relief line to the suction side counter port and the discharge side counter port. By providing the relief valve on the counter port side rather than on the suction port and discharge port side in this way, even if the shape or arrangement of the mounting surface where the suction port and discharge port open is changed, the arrangement of the relief line and the relief valve is not affected, and there is no need to change the arrangement of the relief line and the relief valve.
 上記の電動オイルポンプは、モータ部を内周に収容するモータ収容部と、ポンプ部を内周に収容するポンプ収容部と、リリーフ管路とを有し、一部品として一体に形成されたハウジングを備えることが好ましい。これにより、リリーフ管路及びポンプ部とモータ部との間で、一体品であるハウジングを介して熱が伝わりやすくなるため、モータ部の冷却効果がさらに高められる。 The above electric oil pump preferably includes a housing having a motor housing section that houses the motor section on its inner circumference, a pump housing section that houses the pump section on its inner circumference, and a relief pipe, all integrally formed as a single component. This allows heat to be easily transferred between the relief pipe and the pump section and the motor section via the housing, which is an integral part, thereby further enhancing the cooling effect of the motor section.
 上記の電動オイルポンプは、例えば、前記モータ部に設けられたモータロータと、前記ポンプ部に設けられたポンプロータと、前記モータロータ及び前記ポンプロータと一体に回転する回転軸と、前記回転軸を支持するすべり軸受と、前記モータ部と前記すべり軸受との間に配されたシール部材とを有し、前記リリーフ管路及び前記リリーフ弁が、前記すべり軸受又は前記シール部材の外周に配された構成とすることができる。 The electric oil pump may have, for example, a motor rotor provided in the motor section, a pump rotor provided in the pump section, a rotating shaft that rotates integrally with the motor rotor and the pump rotor, a plain bearing that supports the rotating shaft, and a seal member that is disposed between the motor section and the plain bearing, and the relief pipe and the relief valve may be configured to be disposed on the outer periphery of the plain bearing or the seal member.
 上記の電動流体ポンプは、例えば、オイルを圧送するための電動オイルポンプとして使用することができる。 The above electric fluid pump can be used, for example, as an electric oil pump for pumping oil.
 以上のように、本発明によれば、電動流体ポンプをコンパクト化できると共に、モータ部の冷却効率を高めることができる。 As described above, the present invention makes it possible to make the electric fluid pump more compact and improve the cooling efficiency of the motor section.
本発明の実施形態に係る電動オイルポンプの断面図であり、図7のI-I線における矢視断面図である。8 is a cross-sectional view of the electric oil pump according to the embodiment of the present invention, taken along line II in FIG. 7 . 図1のII-II線における矢視断面図である。2 is a cross-sectional view taken along line II-II in FIG. 1 . 上記電動オイルポンプの斜視図である。FIG. 2 is a perspective view of the electric oil pump. 図1のIV-IV線における矢視断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 1 . 図1のV-V線における矢視断面図である。2 is a cross-sectional view taken along line VV in FIG. 1 . カウンターポート及びリリーフ管路の斜視図である。FIG. 13 is a perspective view of the counter port and the relief line. 図1のVII-VII線における矢視断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 本発明の電動オイルポンプの他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of the electric oil pump of the present invention. 従来の電動オイルポンプの断面図である。FIG. 1 is a cross-sectional view of a conventional electric oil pump. 図9のX-X線における矢視断面図である。10 is a cross-sectional view taken along line XX in FIG. 9.
 以下、本発明の実施の形態を図面に基づいて説明する。 The following describes an embodiment of the present invention with reference to the drawings.
 本実施形態の電動流体ポンプは、主にエンジンの停止中にトランスミッションに油圧を供給する電動オイルポンプである。電動オイルポンプが、トランスミッションケース底部のオイル溜りからオイルを吸引し、このオイルを吐出してトランスミッション内にオイルを圧送することにより、トランスミッション内で必要な油圧や潤滑油量が確保される。 The electric fluid pump of this embodiment is an electric oil pump that mainly supplies hydraulic pressure to the transmission while the engine is stopped. The electric oil pump draws oil from an oil reservoir at the bottom of the transmission case, and then discharges the oil to pump it into the transmission, thereby ensuring the necessary hydraulic pressure and amount of lubricating oil within the transmission.
 図1に、本実施形態の電動オイルポンプ1を示す。この電動オイルポンプ1は、モータ部2と、モータ部2で駆動されるポンプ部3と、モータ部2を制御するコントローラ4と、モータ部2、ポンプ部3、及びコントローラ4を収容するハウジング5とを有する。この電動オイルポンプ1は、コントローラ4が内蔵された機電一体型であるが、これに限らず、電動オイルポンプ1を、コントローラを有しない機電別体型としてもよい。以下、それぞれの部材または要素を詳細に説明する。 FIG. 1 shows an electric oil pump 1 of this embodiment. This electric oil pump 1 has a motor section 2, a pump section 3 driven by the motor section 2, a controller 4 that controls the motor section 2, and a housing 5 that houses the motor section 2, the pump section 3, and the controller 4. This electric oil pump 1 is an integrated mechanical and electrical type with a built-in controller 4, but is not limited to this, and the electric oil pump 1 may also be a separate mechanical and electrical type that does not have a controller. Each member or element will be described in detail below.
 なお、以下の説明において、モータ部2の軸心Oと平行な方向を「軸方向」と呼び、軸心Oを中心とする円の半径方向を「半径方向」と呼ぶ(「内径方向」および「外径方向」も当該円の内径方向および外径方向を意味する)。また、軸心Oを中心とする円の円周方向を「周方向」と呼ぶ。 In the following description, the direction parallel to the axis O of the motor unit 2 is referred to as the "axial direction," and the radial direction of a circle centered on the axis O is referred to as the "radial direction" (the "inner diameter direction" and "outer diameter direction" also refer to the inner diameter direction and outer diameter direction of the circle). In addition, the circumferential direction of a circle centered on the axis O is referred to as the "circumferential direction."
 モータ部2は、例えば3相ブラシレスDCモータである。モータ部2は、ステータ21とロータ22とを有する。ステータ21は、周方向に等配された複数のコイル、具体的には、U相、V相、W相の三相に対応したコイルを有する。ロータ22は、周方向に等配された複数のマグネット23を有する。ステータ21とロータ22とは、半径方向の微小隙間を介して配される。ロータ22の内周には、回転軸6が固定される。 The motor section 2 is, for example, a three-phase brushless DC motor. The motor section 2 has a stator 21 and a rotor 22. The stator 21 has a number of coils evenly arranged in the circumferential direction, specifically, coils corresponding to the three phases U-phase, V-phase, and W-phase. The rotor 22 has a number of magnets 23 evenly arranged in the circumferential direction. The stator 21 and the rotor 22 are arranged with a small radial gap between them. The rotating shaft 6 is fixed to the inner circumference of the rotor 22.
 ポンプ部3は、モータ部2の軸方向一方側(図中右側)に配置される。ポンプ部3は、回転することでオイルを圧送する回転式ポンプである。本実施形態のポンプ部3は、図2に示すように、複数の外歯31aが形成されたインナロータ31と、複数の内歯32aが形成されたアウタロータ32とを有するトロコイドポンプである。インナロータ31及びアウタロータ32は、例えば鉄系金属あるいは銅系金属で形成される。アウタロータ32の内径側にインナロータ31が配置されている。アウタロータ32は、インナロータ31に対して偏心した位置にある。アウタロータ32の一部の内歯32aがインナロータ31の一部の外歯31aと噛み合っている。なお、インナロータ31の歯数をnとすると、アウタロータ32の歯数は(n+1)である。アウタロータ32の外周面32bと、これが嵌合するハウジング5の内周面55aは、何れも円筒面である。アウタロータ32は、インナロータ31の回転に伴って従動回転するように、ハウジング5の内周に回転可能に配置される。 The pump section 3 is disposed on one axial side of the motor section 2 (the right side in the figure). The pump section 3 is a rotary pump that pumps oil by rotating. As shown in FIG. 2, the pump section 3 of this embodiment is a trochoid pump having an inner rotor 31 on which multiple external teeth 31a are formed, and an outer rotor 32 on which multiple internal teeth 32a are formed. The inner rotor 31 and the outer rotor 32 are formed of, for example, an iron-based metal or a copper-based metal. The inner rotor 31 is disposed on the inner diameter side of the outer rotor 32. The outer rotor 32 is in an eccentric position with respect to the inner rotor 31. Some of the internal teeth 32a of the outer rotor 32 mesh with some of the external teeth 31a of the inner rotor 31. If the number of teeth of the inner rotor 31 is n, the number of teeth of the outer rotor 32 is (n+1). The outer peripheral surface 32b of the outer rotor 32 and the inner peripheral surface 55a of the housing 5 into which it fits are both cylindrical surfaces. The outer rotor 32 is rotatably arranged on the inner circumference of the housing 5 so as to rotate in conjunction with the rotation of the inner rotor 31.
 回転軸6は、軸受7を介してハウジング5に対して回転可能に支持されている(図1参照)。軸受7としては、例えばすべり軸受あるいは転がり軸受を使用することができ、本実施形態ではすべり軸受、特に焼結含油軸受が使用される。軸受7はハウジング5の内周に例えば圧入により固定される。この場合、軸受7は、これが圧入されるハウジング5と線膨張係数が近く、且つ摺動性に優れた材質で形成することが好ましい。例えば、ハウジング5がアルミニウム合金で形成される場合、軸受7は銅系金属(銅を主成分として含む金属)で形成することが好ましい。 The rotating shaft 6 is rotatably supported relative to the housing 5 via a bearing 7 (see FIG. 1). For example, a plain bearing or a rolling bearing can be used as the bearing 7, and in this embodiment, a plain bearing, particularly a sintered oil-impregnated bearing, is used. The bearing 7 is fixed to the inner periphery of the housing 5, for example, by press-fitting. In this case, it is preferable that the bearing 7 is made of a material that has a linear expansion coefficient close to that of the housing 5 into which it is press-fitted, and that has excellent sliding properties. For example, if the housing 5 is made of an aluminum alloy, the bearing 7 is preferably made of a copper-based metal (a metal containing copper as the main component).
 回転軸6の軸方向一方側(図1の右側)の端部には、ポンプ部3のインナロータ31(ポンプロータ)が固定され、回転軸6の軸方向他方側(図1の左側)の端部には、モータ部2のロータ22(モータロータ)が固定されている。これにより、回転軸6、インナロータ31、及びロータ22が一体に回転可能とされる。なお、回転軸6と、インナロータ31及びロータ22の一方又は双方とを、一部品として一体形成してもよい。軸受7とモータ部2との間にはシール部材8が配置される。シール部材8は、回転軸6の外周面に摺接するシールリップを備える。このシール部材8によって、ポンプ部3からモータ部2へのオイルの漏洩が防止されている。ポンプ部3のオイルが、軸受7と回転軸6との摺接部に供給される。 The inner rotor 31 (pump rotor) of the pump section 3 is fixed to the end of the rotating shaft 6 on one axial side (the right side in FIG. 1), and the rotor 22 (motor rotor) of the motor section 2 is fixed to the end of the rotating shaft 6 on the other axial side (the left side in FIG. 1). This allows the rotating shaft 6, the inner rotor 31, and the rotor 22 to rotate together. The rotating shaft 6 and either or both of the inner rotor 31 and the rotor 22 may be integrally formed as a single component. A seal member 8 is disposed between the bearing 7 and the motor section 2. The seal member 8 has a seal lip that slides against the outer circumferential surface of the rotating shaft 6. This seal member 8 prevents oil from leaking from the pump section 3 to the motor section 2. Oil from the pump section 3 is supplied to the sliding contact portion between the bearing 7 and the rotating shaft 6.
 コントローラ4は、モータ部2の軸方向他方側(図1の左側)に配置される。コントローラ4は、軸方向と直交する基板と、これに実装された複数の電子部品を有する。これらの電子部品でモータ部2の駆動を制御する制御回路が構成される。コントローラ4には、外部電源からコネクタを介して電力が供給される。 The controller 4 is disposed on the other axial side of the motor unit 2 (the left side in FIG. 1). The controller 4 has a board perpendicular to the axial direction and multiple electronic components mounted on the board. These electronic components form a control circuit that controls the driving of the motor unit 2. The controller 4 is supplied with power from an external power source via a connector.
 ハウジング5は、中央ハウジング51と、中央ハウジング51の軸方向一方側(図1の右側)に設けられたポンプカバー52と、中央ハウジング51の軸方向他方側(図1の左側)に設けられたコントローラハウジング53と、コントローラハウジング53の軸方向他方側(図1の左側)に設けられたコントローラカバー54とを有する。中央ハウジング51、ポンプカバー52、コントローラハウジング53、及びコントローラカバー54は、例えばボルトで締結することにより一体化されている。 The housing 5 has a central housing 51, a pump cover 52 provided on one axial side of the central housing 51 (right side in FIG. 1), a controller housing 53 provided on the other axial side of the central housing 51 (left side in FIG. 1), and a controller cover 54 provided on the other axial side of the controller housing 53 (left side in FIG. 1). The central housing 51, pump cover 52, controller housing 53, and controller cover 54 are integrated together by fastening them together with bolts, for example.
 中央ハウジング51は、内周にポンプ部3を収容する概略円筒状のポンプ収容部55と、内周にモータ部2を収容する概略円筒状のモータ収容部56と、これらの軸方向に設けられた中間部57とを有する。ポンプ収容部55の円筒状内周面55aにはアウタロータ32の外周面32bが嵌合し、これによりアウタロータ32が自身の軸心周りに回転自在とされる。モータ収容部56の円筒状内周面には、モータ部2のステータ21が固定されている。 The central housing 51 has a roughly cylindrical pump accommodating section 55 that accommodates the pump section 3 on its inner periphery, a roughly cylindrical motor accommodating section 56 that accommodates the motor section 2 on its inner periphery, and an intermediate section 57 provided in the axial direction of these sections. The outer circumferential surface 32b of the outer rotor 32 is fitted into the cylindrical inner circumferential surface 55a of the pump accommodating section 55, thereby allowing the outer rotor 32 to rotate freely around its own axis. The stator 21 of the motor section 2 is fixed to the cylindrical inner circumferential surface of the motor accommodating section 56.
 ポンプカバー52は、ポンプ部3を軸方向一方側(図1の右側)から覆う平板状の部材である。ポンプカバー52には、電動オイルポンプ1を取付対象部品(本実施形態ではトランスミッションケース)に取り付けるための取付面52aが設けられる。図示例の取付面52aは、ポンプカバー52の軸方向一方側(図1の右側)の端面に設けられた、軸方向と直交する平面である。取付面52aをトランスミッションケースに密着させた状態で、ポンプカバー52とトランスミッションケースとを例えばボルトで締結することにより、電動オイルポンプ1がトランスミッションケースに固定される。 The pump cover 52 is a flat member that covers the pump section 3 from one axial side (the right side in FIG. 1). The pump cover 52 is provided with a mounting surface 52a for mounting the electric oil pump 1 to a mounting target part (the transmission case in this embodiment). The mounting surface 52a in the illustrated example is a flat surface that is provided on the end face of the pump cover 52 on one axial side (the right side in FIG. 1) and is perpendicular to the axial direction. With the mounting surface 52a in close contact with the transmission case, the pump cover 52 and the transmission case are fastened together, for example with bolts, to fix the electric oil pump 1 to the transmission case.
 コントローラハウジング53は筒状を成している。コントローラカバー54は、コントローラハウジング53の軸方向他方側(図1の左側)の開口部を覆う。コントローラハウジング53及びコントローラカバー54の内部に形成される空間に、コントローラ4が収容される。コントローラカバー54には、複数のフィン54aが設けられている(図3参照)。 The controller housing 53 is cylindrical. The controller cover 54 covers the opening on the other axial side of the controller housing 53 (the left side in FIG. 1). The controller 4 is housed in the space formed inside the controller housing 53 and the controller cover 54. The controller cover 54 is provided with a number of fins 54a (see FIG. 3).
 中央ハウジング51は、例えば鋳造や切削あるいはこれらの組み合わせにより、一部品の形で一体に形成される。中央ハウジング51、ポンプカバー52、コントローラハウジング53、およびコントローラカバー54は、導体でかつ熱伝導性が良好な金属材料、例えばアルミニウム合金で形成される。この他、中央ハウジング51、ポンプカバー52、コントローラハウジング53、およびコントローラカバー54のうちの一つ又は複数を他の金属材料(例えば、鉄系金属や銅系金属)や樹脂で形成してもよい。 The central housing 51 is integrally formed as a single component, for example, by casting, cutting, or a combination of these. The central housing 51, pump cover 52, controller housing 53, and controller cover 54 are formed from a metal material that is a conductor and has good thermal conductivity, for example, an aluminum alloy. Alternatively, one or more of the central housing 51, pump cover 52, controller housing 53, and controller cover 54 may be formed from another metal material (for example, an iron-based metal or a copper-based metal) or resin.
 ポンプカバー52には、吸入側中間ポート61及び吐出側中間ポート62と、吸入ポート63及び吐出ポート64とが形成される。吸入側中間ポート61および吐出側中間ポート62は、何れもポンプ部3の軸方向一方側(図1の右側)に隣接して設けられる。吸入側中間ポート61は、インナロータ31とアウタロータ32との間の空間のうち、回転に伴って空間容積が広がる部分(吸入空間)に開口している。吐出側中間ポート62は、インナロータ31とアウタロータ32との間の空間のうち、回転に伴って空間容積が狭まる部分(圧縮空間)に開口している。吸入側中間ポート61および吐出側中間ポート62は、図4に示すように、何れも周方向に延びる円弧状(三日月状)をなし、直径方向(図4で、回転中心を通る上下方向の直線)に関して略対象な位置に設けられる。吸入ポート63の一端は吸入側中間ポート61に開口し、吸入ポート63の他端は取付面52aに開口する(図1参照)。吐出ポート64の一端は吐出側中間ポート62に開口し、吐出ポート64の他端は取付面52aに開口する。 The pump cover 52 is formed with an intake side intermediate port 61, a discharge side intermediate port 62, an intake port 63 and a discharge port 64. The intake side intermediate port 61 and the discharge side intermediate port 62 are both provided adjacent to one axial side of the pump section 3 (the right side in FIG. 1). The intake side intermediate port 61 opens to a portion (suction space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume expands with rotation. The discharge side intermediate port 62 opens to a portion (compression space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume narrows with rotation. As shown in FIG. 4, the intake side intermediate port 61 and the discharge side intermediate port 62 are both arc-shaped (crescent-shaped) extending in the circumferential direction, and are provided at positions that are approximately symmetrical with respect to the diameter direction (the vertical straight line passing through the center of rotation in FIG. 4). One end of the suction port 63 opens to the suction side intermediate port 61, and the other end of the suction port 63 opens to the mounting surface 52a (see FIG. 1). One end of the discharge port 64 opens to the discharge side intermediate port 62, and the other end of the discharge port 64 opens to the mounting surface 52a.
 上記の吸入側中間ポート61、吸入ポート63、及び吸入側カウンターポート65が、ポンプ部3で圧縮される前のオイルが流通する吸入側の流路を形成する。上記の吐出側中間ポート62、吐出ポート64、及び吐出側カウンターポート66が、ポンプ部3で圧縮されたオイルが流通する吐出側の流路を形成する。 The above-mentioned suction side intermediate port 61, suction port 63, and suction side counter port 65 form a suction side flow path through which oil flows before being compressed in the pump section 3. The above-mentioned discharge side intermediate port 62, discharge port 64, and discharge side counter port 66 form a discharge side flow path through which oil compressed in the pump section 3 flows.
 中央ハウジング51の中間部57には、吸入側カウンターポート65及び吐出側カウンターポート66と、これらを連通するリリーフ管路67とが形成される。吸入側カウンターポート65および吐出側カウンターポート66は、何れもポンプ部3の軸方向他方側(図1の左側)に隣接して設けられる。吸入側カウンターポート65は、インナロータ31とアウタロータ32との間の空間のうち、回転に伴って空間容積が広がる部分(吸入空間)に開口している。吐出側カウンターポート66は、インナロータ31とアウタロータ32との間の空間のうち、回転に伴って空間容積が狭まる部分(圧縮空間)に開口している。インナロータ31とアウタロータ32の噛み合い部に開口している。吸入側カウンターポート65および吐出側カウンターポート66は、図5に示すように、何れも周方向に延びる円弧状(三日月状)をなし、直径方向(図5で、回転中心を通る上下方向の直線)に関して略対象な位置に設けられる。吸入側カウンターポート65は、軸方向から見て吸入側中間ポート61と略重なる形状及び位置に設けられ、吐出側カウンターポート66は、軸方向から見て吐出側中間ポート62と略重なる形状及び位置に設けられる。 In the middle portion 57 of the central housing 51, a suction side counter port 65 and a discharge side counter port 66, and a relief pipe 67 that communicates between them are formed. The suction side counter port 65 and the discharge side counter port 66 are both provided adjacent to the other axial side (left side in FIG. 1) of the pump section 3. The suction side counter port 65 opens to a portion (suction space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume expands with rotation. The discharge side counter port 66 opens to a portion (compression space) of the space between the inner rotor 31 and the outer rotor 32 where the spatial volume narrows with rotation. It opens to the meshing portion of the inner rotor 31 and the outer rotor 32. As shown in FIG. 5, the suction side counter port 65 and the discharge side counter port 66 are both arc-shaped (crescent-shaped) extending in the circumferential direction, and are provided at positions that are approximately symmetrical with respect to the diameter direction (the vertical straight line passing through the center of rotation in FIG. 5). The suction side counter port 65 is shaped and positioned so as to overlap the suction side intermediate port 61 when viewed from the axial direction, and the discharge side counter port 66 is shaped and positioned so as to overlap the discharge side intermediate port 62 when viewed from the axial direction.
 リリーフ管路67は、図6に示すように、弁収容部67aと、吸入側接続部67bと、吐出側接続部67cとを有する。吸入側接続部67bは、弁収容部67aと吸入側カウンターポート65とを接続する。吐出側接続部67cは、弁収容部67aと吐出側カウンターポート66とを接続する。図示例では、弁収容部67aが直線状(円筒状)の管路からなる。弁収容部67aの側部(内周面)と吸入側カウンターポート65とが、吸入側接続部67bで接続される。弁収容部67aの端部(軸心Oに近い側の端部)と吐出側カウンターポート66とが吐出側接続部67cで接続される。図示例では、吸入側接続部67b及び吐出側接続部67cが、それぞれ互いに交差する二本の直線状(円筒状)の管路からなる。このように、弁収容部67a、吸入側接続部67b、及び吐出側接続部67cがそれぞれ直線状の管路で形成されるため、これらをドリル等による機械加工で中央ハウジング51に容易に形成することができる。なお、リリーフ管路67の構成は上記に限らず、例えば、吸入側接続部67b又は吐出側接続部67cあるいはこれらの双方を、1本又は3本以上の直線状の管路で形成してもよい。 As shown in FIG. 6, the relief pipe 67 has a valve accommodating portion 67a, a suction side connection portion 67b, and a discharge side connection portion 67c. The suction side connection portion 67b connects the valve accommodating portion 67a to the suction side counter port 65. The discharge side connection portion 67c connects the valve accommodating portion 67a to the discharge side counter port 66. In the illustrated example, the valve accommodating portion 67a is a straight (cylindrical) pipe. The side (inner peripheral surface) of the valve accommodating portion 67a is connected to the suction side counter port 65 by the suction side connection portion 67b. The end (end closer to the axis O) of the valve accommodating portion 67a is connected to the discharge side counter port 66 by the discharge side connection portion 67c. In the illustrated example, the suction side connection portion 67b and the discharge side connection portion 67c are each made up of two straight (cylindrical) pipes that intersect with each other. In this way, the valve housing portion 67a, the suction side connection portion 67b, and the discharge side connection portion 67c are each formed as a straight line, and therefore can be easily formed in the central housing 51 by machining using a drill or the like. Note that the configuration of the relief line 67 is not limited to the above, and for example, the suction side connection portion 67b or the discharge side connection portion 67c, or both, may be formed as one or three or more straight lines.
 図7に示すように、弁収容部67aは、その端部に接続される吐出側接続部67cよりも大径である。そのため、弁収容部67aと吐出側接続部67cとの境界には段差部が設けられ、この段差部の内径端にシール面67dが設けられる。シール面67dは、リリーフ弁71の先端に設けられたテーパ面71aと同様のテーパ面状を成している。 As shown in FIG. 7, the valve housing portion 67a has a larger diameter than the discharge side connection portion 67c that is connected to its end. Therefore, a step is provided at the boundary between the valve housing portion 67a and the discharge side connection portion 67c, and a seal surface 67d is provided at the inner diameter end of this step. The seal surface 67d has a tapered surface shape similar to the tapered surface 71a provided at the tip of the relief valve 71.
 リリーフ管路67の弁収容部67aには、リリーフ弁71が収容される。本実施形態では、弁収容部67aの外部側の開口部が蓋部材72で閉塞され、この蓋部材72とリリーフ弁71との間にスプリング73が圧縮状態で配される。このスプリング73の弾性力により、リリーフ弁71がリリーフ管路67のシール面67dに押し付けられてこの部分が閉塞され、これにより吸入側カウンターポート65と吐出側カウンターポート66とが遮断される。なお、リリーフ弁の構成は、上記のようなポペット弁に限らず、例えばスプール弁やボール弁であってもよい。 A relief valve 71 is accommodated in the valve housing portion 67a of the relief pipe 67. In this embodiment, the opening on the outside side of the valve housing portion 67a is closed by a cover member 72, and a spring 73 is arranged in a compressed state between the cover member 72 and the relief valve 71. The elastic force of the spring 73 presses the relief valve 71 against the seal surface 67d of the relief pipe 67, closing this portion, thereby blocking the suction side counter port 65 and the discharge side counter port 66. Note that the configuration of the relief valve is not limited to the poppet valve as described above, and may be, for example, a spool valve or a ball valve.
 上記の電動オイルポンプ1では、モータ部2とポンプ部3との軸方向間に軸受7及びシール部材8が設けられている(図1参照)。換言すると、軸受7及びシール部材8を配置するスペースを確保するために、モータ部2とポンプ部3とを軸方向に離間させる必要がある。そのため、モータ部2とポンプ部3との軸方向間のうち、軸受7及びシール部材8の外周にデッドスペースができる。上記の電動オイルポンプ1では、デッドスペースとなるモータ部2とポンプ部3との軸方向間領域(中央ハウジング51の中間部57)、具体的には軸受7又はシール部材8の外周(図示例では軸受7の外周)に、リリーフ管路67及びリリーフ弁71を配している。これにより、電動オイルポンプ1内における部品の配置効率が高くなり、電動オイルポンプ1の小型化が図られる。 In the electric oil pump 1, the bearing 7 and the seal member 8 are provided between the motor section 2 and the pump section 3 in the axial direction (see FIG. 1). In other words, the motor section 2 and the pump section 3 need to be spaced apart in the axial direction in order to secure space for arranging the bearing 7 and the seal member 8. Therefore, a dead space is created between the motor section 2 and the pump section 3 and on the outer periphery of the bearing 7 and the seal member 8. In the electric oil pump 1, the relief pipe 67 and the relief valve 71 are arranged in the axial region between the motor section 2 and the pump section 3 (the middle section 57 of the central housing 51), which is the dead space, specifically on the outer periphery of the bearing 7 or the seal member 8 (the outer periphery of the bearing 7 in the illustrated example). This increases the efficiency of component arrangement within the electric oil pump 1, and allows the electric oil pump 1 to be made smaller.
 ところで、回転軸6を支持する軸受7として、転がり軸受を用いることもできる。しかし、転がり軸受は、通常、グリース潤滑であるため、ポンプ部3で圧送されるオイルとの混合を防止するために、転がり軸受(軸受7)とポンプ部3との間にシール部材8を配する必要が生じる。すなわち、軸受7とポンプ部3の配置が、図1とは軸方向で逆の状態となる。この場合、ポンプ部3に近接してシール部材8が配されるため、その外周にリリーフ管路67を設けるためのスペースを確保しにくくなる。 Incidentally, a rolling bearing can also be used as the bearing 7 that supports the rotating shaft 6. However, because rolling bearings are usually lubricated with grease, it becomes necessary to place a seal member 8 between the rolling bearing (bearing 7) and the pump section 3 to prevent mixing with the oil pumped by the pump section 3. In other words, the arrangement of the bearing 7 and the pump section 3 is reversed in the axial direction from that shown in FIG. 1. In this case, because the seal member 8 is placed close to the pump section 3, it becomes difficult to secure space for providing a relief pipe 67 on its outer periphery.
 そこで、本実施形態では、軸受7としてすべり軸受を用いている。すべり軸受は、ポンプ部3のオイルで潤滑することができるため、軸受7をポンプ部3の軸方向他方側(図中左側)に近接して配置することができる。この場合、モータ部2へのオイルの侵入を防止するためのシール部材8は、図1に示すように軸受7とモータ部2との間に配置される。一般に、すべり軸受は転がり軸受と比べて半径方向寸法が小さいため、上記のようにすべり軸受(軸受7)をポンプ部3に近接して配置することで、その外周にリリーフ管路67を設けるためのスペースを確保しやすくなるため、電動オイルポンプ1の設計、特にリリーフ管路67の設計が容易化される。 Therefore, in this embodiment, a plain bearing is used as the bearing 7. Since the plain bearing can be lubricated by the oil in the pump section 3, the bearing 7 can be arranged close to the other axial side of the pump section 3 (the left side in the figure). In this case, a seal member 8 for preventing oil from entering the motor section 2 is arranged between the bearing 7 and the motor section 2 as shown in FIG. 1. Generally, a plain bearing has a smaller radial dimension than a rolling bearing, so by arranging the plain bearing (bearing 7) close to the pump section 3 as described above, it becomes easier to ensure space for providing a relief pipe 67 on its outer periphery, which facilitates the design of the electric oil pump 1, and in particular the design of the relief pipe 67.
 また、上記の電動オイルポンプ1は、取付対象によって、ポンプカバー52に設けるべき取付面52aの配置の変更が必要となる場合がある。例えば、本実施形態では、図1、3に示すように、取付面52aが軸方向と直交しているが、図8に示すように、取付面52aを軸方向と平行とする場合もある。このように、取付面52aの配置によって、ポンプカバー52の形状は大きく異なる。このとき、ポンプカバー52の内部にリリーフ弁71及びリリーフ管路67が設けられていると、ポンプカバー52の形状を変更する度に、その内部に設けられるリリーフ弁71及びリリーフ管路67の配置を再検討する必要が生じる。 Furthermore, the above electric oil pump 1 may require a change in the arrangement of the mounting surface 52a to be provided on the pump cover 52 depending on the object to which it is to be attached. For example, in this embodiment, as shown in Figures 1 and 3, the mounting surface 52a is perpendicular to the axial direction, but as shown in Figure 8, the mounting surface 52a may be parallel to the axial direction. In this way, the shape of the pump cover 52 varies greatly depending on the arrangement of the mounting surface 52a. In this case, if a relief valve 71 and a relief line 67 are provided inside the pump cover 52, it becomes necessary to reconsider the arrangement of the relief valve 71 and the relief line 67 provided inside the pump cover 52 every time the shape of the pump cover 52 is changed.
 そこで、上記の電動オイルポンプ1では、吸入ポート63及び吐出ポート64が設けられたポンプカバー52ではなく、カウンターポート65、66が設けられた中央ハウジング51にリリーフ管路67及びリリーフ弁71を設けている。これにより、ポンプカバー52の形状が変更された場合でも、リリーフ管路67及びリリーフ弁71の配置を変更する必要が無いため、設計変更が容易化される。 In the above electric oil pump 1, the relief line 67 and the relief valve 71 are provided in the central housing 51, which is provided with the counter ports 65, 66, rather than in the pump cover 52, which is provided with the suction port 63 and the discharge port 64. This makes it easier to make design changes, since there is no need to change the position of the relief line 67 and the relief valve 71 even if the shape of the pump cover 52 is changed.
 以上の構成を有する電動オイルポンプ1において、モータ部2を駆動すると、インナロータ31が回転し、これに噛み合ったアウタロータ32が従動回転することにより、両者の歯部の間に形成される空間が回転に伴って拡大および縮小する。これにより、トランスミッションケース内の油溜りに溜まったオイルが吸入ポート63及び吸入側中間ポート61を介してポンプ部3に吸入され(図1の矢印A参照)、ポンプ部3で圧縮されたオイルが吐出側中間ポート62及び吐出ポート64を介して吐出され(同矢印B参照)、トランスミッションに供給される。 In the electric oil pump 1 having the above configuration, when the motor section 2 is driven, the inner rotor 31 rotates, and the meshed outer rotor 32 rotates, causing the space formed between the teeth of the two to expand and contract as the rotor rotates. As a result, oil collected in the oil reservoir inside the transmission case is sucked into the pump section 3 via the suction port 63 and the suction side intermediate port 61 (see arrow A in Figure 1), and the oil compressed by the pump section 3 is discharged via the discharge side intermediate port 62 and the discharge port 64 (see arrow B in Figure 1) and supplied to the transmission.
 上記のようにポンプ部3で圧縮されたオイルは、上記のように吐出側中間ポート62及び吐出ポート64に供給されるだけでなく、吐出側カウンターポート66にも供給される。このとき、吐出側カウンターポート66の油圧が所定値以下であれば、スプリング73の付勢力によりリリーフ弁71がシール面67dに押し付けられ、リリーフ弁71が閉じた状態が維持される。このように、リリーフ弁71が閉じていることでリリーフ管路67が遮断されるため、吐出側カウンターポート66のオイルがリリーフ管路67を介して吸入側カウンターポート65に流入することはない。 The oil compressed by the pump section 3 as described above is not only supplied to the discharge side intermediate port 62 and the discharge port 64 as described above, but also to the discharge side counter port 66. At this time, if the oil pressure at the discharge side counter port 66 is below a predetermined value, the relief valve 71 is pressed against the seal surface 67d by the biasing force of the spring 73, and the relief valve 71 is maintained in a closed state. In this way, because the relief line 67 is blocked by the relief valve 71 being closed, the oil at the discharge side counter port 66 does not flow into the suction side counter port 65 via the relief line 67.
 一方、吐出側カウンターポート66の油圧が所定値を超えたら、この油圧により、リリーフ弁71がスプリング73の付勢力に抗して押し込まれ、リリーフ弁71がシール面67dから離反し、吐出側カウンターポート66と吸入側カウンターポート65とがリリーフ管路67を介して連通する(図7の点線参照)。これにより、吐出側カウンターポート66のオイルが、リリーフ管路67を介して吸入側カウンターポート65に流入し(図7の点線矢印C参照)、吐出側カウンターポート66の油圧が低下する。そして、吐出側カウンターポート66の油圧が所定値以下になったら、スプリング73の付勢力によりリリーフ弁71がシール面67dに押し付けられ、リリーフ管路67が再び遮断される。以上により、吐出側の流路の油圧が適正範囲内(所定値以下)に維持される。 On the other hand, if the oil pressure at the discharge side counter port 66 exceeds a predetermined value, the oil pressure pushes the relief valve 71 against the biasing force of the spring 73, the relief valve 71 moves away from the seal surface 67d, and the discharge side counter port 66 and the suction side counter port 65 communicate with each other via the relief line 67 (see dotted line in FIG. 7). As a result, the oil at the discharge side counter port 66 flows into the suction side counter port 65 via the relief line 67 (see dotted arrow C in FIG. 7), and the oil pressure at the discharge side counter port 66 drops. Then, when the oil pressure at the discharge side counter port 66 falls below a predetermined value, the relief valve 71 is pressed against the seal surface 67d by the biasing force of the spring 73, and the relief line 67 is shut off again. As a result, the oil pressure at the discharge side flow path is maintained within an appropriate range (below a predetermined value).
 上記のように、電動オイルポンプ1にリリーフ弁71を設け、このリリーフ弁71で油圧を機械的に制御することで、複雑な制御を要することなく油圧を適正範囲内に維持することができる。 As described above, by providing the electric oil pump 1 with a relief valve 71 and mechanically controlling the oil pressure with this relief valve 71, the oil pressure can be maintained within an appropriate range without the need for complex control.
 上記の電動オイルポンプ1では、図1に示すように、モータ部2とポンプ部3との軸方向間領域にリリーフ管路67が配置されている。この場合、リリーフ管路67とモータ部2とが比較的近接して配置されるため、リリーフ管路67を流れるオイルによりハウジング5を介してモータ部2が冷却されやすくなる。特に、本実施形態では、ハウジング5のうち、モータ部2のステータ21が固定されるモータ収容部56と、リリーフ管路67が形成される中間部57とが、金属(例えばアルミニウム合金)により一部品として一体形成されているため、ステータ21の熱がリリーフ管路67に伝わりやすくなり、冷却効率がさらに高められる。 In the above electric oil pump 1, as shown in FIG. 1, a relief pipe 67 is disposed in the axial region between the motor section 2 and the pump section 3. In this case, the relief pipe 67 and the motor section 2 are disposed relatively close to each other, so that the motor section 2 is easily cooled through the housing 5 by the oil flowing through the relief pipe 67. In particular, in this embodiment, the motor accommodating section 56 of the housing 5 to which the stator 21 of the motor section 2 is fixed and the intermediate section 57 in which the relief pipe 67 is formed are integrally formed as a single component from metal (e.g., aluminum alloy), so that heat from the stator 21 is easily transferred to the relief pipe 67, further improving cooling efficiency.
 尚、リリーフ弁71が閉じた状態では、リリーフ管路67内にオイルが流れないため、上記のような冷却効果はほとんど得られない。しかし、電動オイルポンプ1は、モータ部2の駆動力を高くしてポンプ部3の吐出圧を上げるほど、モータ部2のステータ21の発熱量が増大する。こうしてポンプ部3の吐出圧が上がると、リリーフ弁71が開いてリリーフ管路67にオイルが流通するため、リリーフ管路67内を流通するオイルによりモータ部2が冷却される。すなわち、モータ部2の駆動力が高くなってステータ21の発熱量が大きくなったときに、リリーフ弁71が開いてリリーフ管路67にオイルが流通するため、特に冷却が必要なときに上記のような冷却効果を得ることができる。 When the relief valve 71 is closed, no oil flows through the relief line 67, so the cooling effect described above is hardly obtained. However, in the electric oil pump 1, the more the driving force of the motor section 2 is increased and the discharge pressure of the pump section 3 is raised, the more heat is generated by the stator 21 of the motor section 2. When the discharge pressure of the pump section 3 increases in this way, the relief valve 71 opens and oil flows through the relief line 67, so that the motor section 2 is cooled by the oil flowing through the relief line 67. In other words, when the driving force of the motor section 2 increases and the amount of heat generated by the stator 21 increases, the relief valve 71 opens and oil flows through the relief line 67, so that the cooling effect described above can be obtained when cooling is particularly necessary.
 上記の電動オイルポンプ1は、リリーフ弁71を設ける必要がない用途にも用いることができる。この場合、中央ハウジング51の中間部57にリリーフ管路67(弁収容部67a、吸入側接続部67b、及び吐出側接続部67c)を形成する工程を省略し、リリーフ管路67を有しない中央ハウジング51を形成すればよい。この場合、電動オイルポンプ1のその他の構成は一切変更する必要がない。 The electric oil pump 1 described above can also be used for applications where it is not necessary to provide a relief valve 71. In this case, the process of forming the relief line 67 (valve accommodating portion 67a, suction side connection portion 67b, and discharge side connection portion 67c) in the intermediate portion 57 of the central housing 51 can be omitted, and a central housing 51 without a relief line 67 can be formed. In this case, there is no need to change any other configuration of the electric oil pump 1.
 なお、上記の電動オイルポンプ1は、吸入側の流路(吸入ポート63、吸入側中間ポート61、吸入側カウンターポート65)を吐出側の流路として、且つ、吐出側の流路(吐出ポート64、吐出側中間ポート62、吐出側カウンターポート66)を吸入側の流路として使用することもできる。 In addition, the electric oil pump 1 can also use the suction side flow path (suction port 63, suction side intermediate port 61, suction side counter port 65) as a discharge side flow path, and the discharge side flow path (discharge port 64, discharge side intermediate port 62, discharge side counter port 66) as a suction side flow path.
 本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の点については、重複説明を省略する。 The present invention is not limited to the above embodiment. Other embodiments of the present invention will be described below, but duplicate explanations of points similar to the above embodiment will be omitted.
 上記の実施形態では、吸入ポート63及び吐出ポート64をポンプ部3の軸方向一方側(図1の右側)に設けると共に、カウンターポート65、66をポンプ部3の軸方向他方側(図1の左側)に設けた場合を示したが、これとは逆に、吸入ポート63及び吐出ポート64をポンプ部3の軸方向他方側(図1の左側)に設けると共に、カウンターポート65、66をポンプ部3の軸方向一方側(図1の右側)に設けてもよい。この場合、モータ部2とポンプ部3との軸方向間領域、具体的には中央ハウジング51の中間部57に、吸入側中間ポート61、吸入ポート63、吐出側中間ポート62、吐出ポート64、及びリリーフ管路67が設けられる。リリーフ管路67は、吸入ポート63と吐出ポート64、あるいは、吸入側中間ポート61と吐出側中間ポート62とを連通する位置に設けられる。 In the above embodiment, the suction port 63 and the discharge port 64 are provided on one axial side of the pump section 3 (right side in FIG. 1), and the counter ports 65 and 66 are provided on the other axial side of the pump section 3 (left side in FIG. 1). However, conversely, the suction port 63 and the discharge port 64 may be provided on the other axial side of the pump section 3 (left side in FIG. 1), and the counter ports 65 and 66 may be provided on one axial side of the pump section 3 (right side in FIG. 1). In this case, the suction side intermediate port 61, the suction port 63, the discharge side intermediate port 62, the discharge port 64, and the relief pipe 67 are provided in the axial region between the motor section 2 and the pump section 3, specifically in the intermediate section 57 of the central housing 51. The relief pipe 67 is provided at a position that communicates the suction port 63 and the discharge port 64, or the suction side intermediate port 61 and the discharge side intermediate port 62.
 上記の実施形態では、ハウジング5がアルミニウム合金で形成され、ポンプ部3のアウタロータ32が鉄系金属あるいは銅系金属で形成される。この場合、両者の硬度差が比較的大きくなるため、ハウジング5の摩耗量が多くなり、ハウジング5とアウタロータ32との間の隙間が増大してオイルの漏れ量が増加し、これに起因してオイル吐出特性(各回転数におけるポンプ圧力に対する流量)の低下を招く。また、ハウジング5とアウタロータ32とが接触摺動するため、このときの摺動抵抗によりポンプ効率の低下は避けられない。 In the above embodiment, the housing 5 is made of an aluminum alloy, and the outer rotor 32 of the pump section 3 is made of an iron-based metal or a copper-based metal. In this case, the difference in hardness between the two is relatively large, so the amount of wear on the housing 5 increases, the gap between the housing 5 and the outer rotor 32 increases, and the amount of oil leakage increases, which leads to a decrease in the oil discharge characteristics (flow rate relative to pump pressure at each rotation speed). In addition, because the housing 5 and the outer rotor 32 come into contact and slide, a decrease in pump efficiency is unavoidable due to the sliding resistance at this time.
 そこで、ハウジング5のうち、少なくともアウタロータ32と摺動する部分、すなわち、ポンプ収容部55の内周面の硬さを、ポンプ部3のアウタロータ32の硬さと同等にすることが好ましい。例えば、これらの硬さの差をHRB5以下とすることが好ましい。具体的には、ハウジング5のポンプ収容部55の内周面に処理(コーティング、表面処理、熱処理等)を施すことで、この部分の硬さを、鉄あるいは銅系金属からなるアウタロータ32と同等の硬さ(例えば、HRB60相当かそれ以上)とすることができる。ハウジング5がアルミニウム合金製である場合、上記のような硬度を高める処理としてアルマイト処理を適用できる。アルマイト処理は、硬度を高めるだけでなく、摺動性も高められるため、特に好ましい。また、ポンプ収容部55に熱処理(例えばT6処理)を施して、ポンプ収容部55自体の硬度を上昇させてもよい。また、ハウジング5に、上記のような硬度を高める処理に加えて、さらに、摺動性を向上させる表面改質(例えば二硫化モリブデンショット等)を施してもよい。 Therefore, it is preferable that the hardness of at least the part of the housing 5 that slides against the outer rotor 32, i.e., the inner surface of the pump housing 55, is made equal to the hardness of the outer rotor 32 of the pump section 3. For example, it is preferable that the difference in hardness between them is HRB5 or less. Specifically, by subjecting the inner surface of the pump housing 55 of the housing 5 to a treatment (coating, surface treatment, heat treatment, etc.), the hardness of this part can be made equal to the hardness of the outer rotor 32 made of iron or copper-based metal (for example, HRB60 or higher). When the housing 5 is made of an aluminum alloy, anodizing can be applied as a treatment for increasing the hardness as described above. Anodizing is particularly preferable because it not only increases the hardness but also improves the sliding properties. In addition, the pump housing 55 may be subjected to a heat treatment (for example, T6 treatment) to increase the hardness of the pump housing 55 itself. In addition to the above-mentioned treatment to increase hardness, the housing 5 may also be subjected to surface modification (e.g., molybdenum disulfide shot) to improve sliding properties.
 上記のように、ポンプ収容部55の硬さをアウタロータ32の硬さと同等とすることにより、アウタロータ32との摺接によるポンプ収容部55の摩耗を抑えることができる。これにより、ポンプ収容部55の摩耗に伴うアウタロータ32との間のクリアランス増加や、これに伴うオイル漏れ量の増加を抑制できるため、ポンプ効率の低下を抑制できる。 As described above, by making the hardness of the pump housing 55 equal to that of the outer rotor 32, wear of the pump housing 55 due to sliding contact with the outer rotor 32 can be suppressed. This makes it possible to suppress an increase in the clearance between the outer rotor 32 and the pump housing 55 due to wear, and an increase in the amount of oil leakage that accompanies this, and therefore a decrease in pump efficiency can be suppressed.
 尚、上記のような表面処理は、ポンプ収容部55の内周面だけでなく、インナロータ31やアウタロータ32が摺接する他の領域、例えば、インナロータ31及びアウタロータ32の端面と対向するポンプカバー52の端面や中央ハウジング51の端面に施してもよい。 Furthermore, the above-mentioned surface treatment may be applied not only to the inner circumferential surface of the pump housing 55, but also to other areas where the inner rotor 31 and the outer rotor 32 slide, such as the end faces of the pump cover 52 and the central housing 51 that face the end faces of the inner rotor 31 and the outer rotor 32.
 また、ポンプ収容部55の内周面とアウタロータ32の外周面との間にすべり軸受(例えば、焼結含油軸受)を介在させてもよい。例えば、ポンプ収容部55の内周面に、円筒状のすべり軸受を圧入等により固定し、このすべり軸受をアウタロータ32の外周面と摺接させる。すべり軸受は、鉄系あるいは銅系の金属で形成される。すべり軸受の硬度は、アウタロータ32の硬度と同等であり、例えば、アウタロータ32との硬度差をHRB5以下とされる。アウタロータ32が鉄系金属あるいは銅系金属で形成される場合、すべり軸受の硬度はHRB60相当かそれ以上であることが望ましい。このように、ハウジング5とアウタロータ32とをすべり軸受を介して摺動させることで、ポンプ収容部55の材質は限定されないため、金属、樹脂を問わず適用可能となる。特に、すべり軸受を焼結含油軸受で形成することで、内部に含浸されたオイルがすべり軸受とアウタロータ32との摺接部に滲み出すことで、摺動性が特に向上する。 Also, a sliding bearing (e.g., a sintered oil-impregnated bearing) may be interposed between the inner peripheral surface of the pump housing 55 and the outer peripheral surface of the outer rotor 32. For example, a cylindrical sliding bearing is fixed to the inner peripheral surface of the pump housing 55 by press-fitting or the like, and this sliding bearing is in sliding contact with the outer peripheral surface of the outer rotor 32. The sliding bearing is made of an iron-based or copper-based metal. The hardness of the sliding bearing is equivalent to the hardness of the outer rotor 32, and the hardness difference with the outer rotor 32 is, for example, HRB5 or less. When the outer rotor 32 is made of an iron-based or copper-based metal, it is desirable that the hardness of the sliding bearing is equivalent to or greater than HRB60. In this way, by sliding the housing 5 and the outer rotor 32 via the sliding bearing, the material of the pump housing 55 is not limited, and it can be applied regardless of whether it is made of metal or resin. In particular, by forming the plain bearing from a sintered oil-impregnated bearing, the oil impregnated inside seeps into the sliding contact area between the plain bearing and the outer rotor 32, thereby improving sliding properties.
 本発明は、オイルを圧送する電動オイルポンプに限らず、オイル以外の液体を圧送する電動ポンプにも適用することができる。 The present invention can be applied not only to electric oil pumps that pump oil, but also to electric pumps that pump liquids other than oil.
1     電動オイルポンプ(電動流体ポンプ)
2     モータ部
3     ポンプ部
4     コントローラ
5     ハウジング
6     回転軸
7     軸受
8     シール部材
21   ステータ
22   ロータ
31   インナロータ
32   アウタロータ
51   中央ハウジング
52   ポンプカバー
52a 取付面
53   コントローラハウジング
54   コントローラカバー
55   ポンプ収容部
56   モータ収容部
57   中間部
61   吸入側中間ポート
62   吐出側中間ポート
63   吸入ポート
64   吐出ポート
65   吸入側カウンターポート
66   吐出側カウンターポート
67   リリーフ管路
67a 弁収容部
67b 吸入側接続部
67c 吐出側接続部
67d シール面
71   リリーフ弁
72   蓋部材
73   スプリング
1. Electric oil pump (electric fluid pump)
2 Motor section 3 Pump section 4 Controller 5 Housing 6 Rotating shaft 7 Bearing 8 Seal member 21 Stator 22 Rotor 31 Inner rotor 32 Outer rotor 51 Central housing 52 Pump cover 52a Mounting surface 53 Controller housing 54 Controller cover 55 Pump accommodating section 56 Motor accommodating section 57 Intermediate section 61 Suction side intermediate port 62 Discharge side intermediate port 63 Suction port 64 Discharge port 65 Suction side counter port 66 Discharge side counter port 67 Relief pipe 67a Valve accommodating section 67b Suction side connecting section 67c Discharge side connecting section 67d Seal surface 71 Relief valve 72 Lid member 73 Spring

Claims (5)

  1.  モータ部と、
     前記モータ部の軸方向一方側に設けられ、前記モータ部で駆動されるポンプ部と、
     前記ポンプ部で圧縮される前の流体が流通する吸入側の流路と、
     前記ポンプ部で圧縮された流体が流通する吐出側の流路と、
     前記吐出側の流路と前記吸入側の流路を連通するリリーフ管路と、
     前記リリーフ管路内に配され、前記吐出側の流路の流体圧力が所定値以上となったら開放されるリリーフ弁とを有する電動流体ポンプであって、
     前記リリーフ管路及び前記リリーフ弁が、前記モータ部と前記ポンプ部との軸方向間領域に配された電動流体ポンプ。
    A motor unit;
    a pump section provided on one axial side of the motor section and driven by the motor section;
    a suction side flow path through which fluid before being compressed in the pump portion flows;
    a discharge side flow path through which the fluid compressed in the pump portion flows;
    a relief pipe connecting the discharge side flow path and the suction side flow path;
    a relief valve disposed in the relief line and opened when the fluid pressure in the discharge side flow path reaches or exceeds a predetermined value,
    The relief pipe and the relief valve are disposed in an axial region between the motor portion and the pump portion.
  2.  前記ポンプ部の軸方向一方側に設けられた吸入ポート及び吐出ポートと、
     前記モータ部と前記ポンプ部の軸方向間に設けられた吸入側カウンターポート及び吐出側カウンターポートとを有し、
     前記リリーフ管路が、前記吸入側カウンターポート及び前記吐出側カウンターポートに接続された請求項1に記載の電動流体ポンプ。
    a suction port and a discharge port provided on one axial side of the pump portion;
    a suction side counter port and a discharge side counter port provided between the motor section and the pump section in the axial direction,
    2. The electric fluid pump according to claim 1, wherein the relief line is connected to the suction counter port and the discharge counter port.
  3.  一部品として一体に形成されたハウジングを備え、
     前記ハウジングが、前記モータ部を内周に収容するモータ収容部と、前記ポンプ部を内周に収容するポンプ収容部と、前記リリーフ管路とを有する請求項1又は2に記載の電動流体ポンプ。
    a housing integrally formed as one piece;
    3. The electric fluid pump according to claim 1, wherein the housing has a motor accommodating portion that accommodates the motor portion on an inner periphery thereof, a pump accommodating portion that accommodates the pump portion on an inner periphery thereof, and the relief pipe.
  4.  前記モータ部に設けられたモータロータと、
     前記ポンプ部に設けられたポンプロータと、
     前記モータロータ及び前記ポンプロータと一体に回転する回転軸と、
     前記回転軸を支持するすべり軸受と、
     前記モータ部と前記すべり軸受との間に配されたシール部材とを有し、
     前記リリーフ管路及び前記リリーフ弁が、前記すべり軸受又は前記シール部材の外周に配された請求項1又は2に記載の電動流体ポンプ。
    A motor rotor provided in the motor unit;
    A pump rotor provided in the pump section;
    a rotating shaft that rotates integrally with the motor rotor and the pump rotor;
    A plain bearing for supporting the rotating shaft;
    a seal member disposed between the motor portion and the sliding bearing,
    3. The electric fluid pump according to claim 1, wherein the relief pipe and the relief valve are disposed on an outer periphery of the sliding bearing or the seal member.
  5.  オイルを圧送するための電動オイルポンプである請求項1又は2に記載の電動流体ポンプ。 The electric fluid pump according to claim 1 or 2 is an electric oil pump for pumping oil.
PCT/JP2023/036603 2022-10-26 2023-10-06 Electric fluid pump WO2024090184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171673A JP2024063595A (en) 2022-10-26 Electric Fluid Pump
JP2022-171673 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090184A1 true WO2024090184A1 (en) 2024-05-02

Family

ID=90830635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036603 WO2024090184A1 (en) 2022-10-26 2023-10-06 Electric fluid pump

Country Status (1)

Country Link
WO (1) WO2024090184A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564485U (en) * 1978-10-27 1980-05-02
JPH11324839A (en) * 1998-03-18 1999-11-26 Denso Corp Fuel pump
US20100098571A1 (en) * 2005-11-15 2010-04-22 Foam In Place Co. Ltd. Pump Apparatus and Methods for Using Same
JP2011032982A (en) * 2009-08-05 2011-02-17 Hitachi Automotive Systems Ltd Electric pump
JP2013167162A (en) * 2012-02-14 2013-08-29 Jtekt Corp Electric pump unit
JP2014009596A (en) * 2012-06-28 2014-01-20 Jtekt Corp Pump
JP2014047807A (en) * 2012-08-29 2014-03-17 Aisin Seiki Co Ltd Valve and fluid pump employing the valve
JP2022052492A (en) * 2020-09-23 2022-04-04 日本電産トーソク株式会社 Electric pump
WO2022202423A1 (en) * 2021-03-24 2022-09-29 Ntn株式会社 Electric pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564485U (en) * 1978-10-27 1980-05-02
JPH11324839A (en) * 1998-03-18 1999-11-26 Denso Corp Fuel pump
US20100098571A1 (en) * 2005-11-15 2010-04-22 Foam In Place Co. Ltd. Pump Apparatus and Methods for Using Same
JP2011032982A (en) * 2009-08-05 2011-02-17 Hitachi Automotive Systems Ltd Electric pump
JP2013167162A (en) * 2012-02-14 2013-08-29 Jtekt Corp Electric pump unit
JP2014009596A (en) * 2012-06-28 2014-01-20 Jtekt Corp Pump
JP2014047807A (en) * 2012-08-29 2014-03-17 Aisin Seiki Co Ltd Valve and fluid pump employing the valve
JP2022052492A (en) * 2020-09-23 2022-04-04 日本電産トーソク株式会社 Electric pump
WO2022202423A1 (en) * 2021-03-24 2022-09-29 Ntn株式会社 Electric pump

Similar Documents

Publication Publication Date Title
KR102631733B1 (en) Electric-motor-driven liquid pump
US9441628B2 (en) Electric pump unit
KR100749040B1 (en) Scroll compressor
JP6369194B2 (en) Electric pump unit
EP1441126A2 (en) Multistage gear pump
EP1302704B1 (en) Submerged electric fluid pump
CN106930941B (en) A kind of compressor
CN113227580A (en) Electric screw coolant pump
US8192184B2 (en) Pump with a cylindrical cooling bush
CN110915108A (en) Motor with a stator having a stator core
WO2024090184A1 (en) Electric fluid pump
WO2022202423A1 (en) Electric pump
JP2012189015A (en) Electric pump unit
JP2024063595A (en) Electric Fluid Pump
JP2013160046A (en) Electric pump unit
JP6060488B2 (en) Electric pump unit
JP2022148740A (en) electric fluid pump
JP3693469B2 (en) Vane type vacuum pump
US6685453B2 (en) Fluid transfer machine with drive shaft lubrication and cooling
CN217602912U (en) Pump cover, pump device and vehicle
US11585341B2 (en) Pump device
US20060292025A1 (en) Electric internal gear pump
US20220065249A1 (en) Pump-motor unit comprising an integrative housing cover
US20240052829A1 (en) Motor vehicle oil pump
JP2022148772A (en) electric pump