WO2024090116A1 - Data processing device, optical sensor, data processing method, and data processing program - Google Patents

Data processing device, optical sensor, data processing method, and data processing program Download PDF

Info

Publication number
WO2024090116A1
WO2024090116A1 PCT/JP2023/035322 JP2023035322W WO2024090116A1 WO 2024090116 A1 WO2024090116 A1 WO 2024090116A1 JP 2023035322 W JP2023035322 W JP 2023035322W WO 2024090116 A1 WO2024090116 A1 WO 2024090116A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distance measurement
intensity
data
emission intensity
Prior art date
Application number
PCT/JP2023/035322
Other languages
French (fr)
Japanese (ja)
Inventor
浩 上杉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024090116A1 publication Critical patent/WO2024090116A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • This disclosure relates to data processing technology that processes detection data generated by an optical sensor.
  • Patent document 1 discloses a LiDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging) device. This device changes the illumination intensity of an emitted pulsed beam of light based on the intensity of the measured return pulse. Specifically, the device sets the illumination intensity so that the intensity of the return pulse falls within the linear range of an AD converter.
  • LiDAR Light Detection and Ranging/Laser Imaging Detection and Ranging
  • optical sensors such as the LiDAR device of Patent Document 1 may receive light emitted from a light source such as another optical sensor as crosstalk light.
  • a light source such as another optical sensor
  • crosstalk light there is a risk that the crosstalk light may be mistaken for light reflected by the target from the light emitted by the optical sensor itself.
  • An object of the present disclosure is to provide a data processing device capable of suppressing false detections. Another object of the present disclosure is to provide an optical sensor capable of suppressing false detections. Yet another object of the present disclosure is to provide a data processing method capable of suppressing false detections. Yet another object of the present disclosure is to provide a data processing program capable of suppressing false detections.
  • a first aspect of the present disclosure is a data processing device having a processor, which processes detection data generated by an optical sensor that detects a target by receiving reflected light that is reflected by a target from an irradiated light on a detection area, The processor acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame; Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a light reception timing at the light reception peak is within an allowable time
  • a second aspect of the present disclosure is an optical sensor that detects a target by receiving reflected light that is reflected by the target and is irradiated onto a detection area, A light-emitting unit that emits irradiation light; A light receiving unit that receives reflected light; A control unit for acquiring detection data from the light receiving unit; Equipped with The control unit an acquisition unit that acquires detection data including distance measurement data including physical information on a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame, and comparison data including physical information on a light reception peak in a reflected light received in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame; an exclusion unit that excludes from the distance measurement data a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light
  • a third aspect of the present disclosure is a data processing method executed by a processor to process detection data generated by an optical sensor that detects a target by receiving reflected light that is reflected by a target from an irradiated light onto a detection area, the data processing method comprising: acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame; Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a light reception timing at the light reception peak is
  • a fourth aspect of the present disclosure is a data processing program stored in a storage medium for processing detection data generated by an optical sensor that detects a target by receiving light reflected by the target from an irradiated light on a detection area, the data processing program including instructions to be executed by a processor,
  • the command is, acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame; Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a
  • light reception peaks that do not meet the normal conditions in detection data with different light emission intensities are excluded from the distance measurement data. Since the light reception intensity of crosstalk light from other light sources does not depend on the light emission intensity of the optical sensor and the light reception timing can change significantly, light reception peaks that do not meet the normal conditions can be attributed to crosstalk light. This makes it possible to suppress erroneous detections.
  • FIG. 1 is a block diagram showing an overall configuration of a first embodiment.
  • 1 is a schematic diagram showing a driving environment of an autonomous guided vehicle to which an optical sensor according to a first embodiment is applied;
  • FIG. 2 is a block diagram showing a functional configuration of a control unit according to the first embodiment.
  • 4 is a flowchart showing a data processing flow according to the first embodiment.
  • FIG. 2 is a diagram conceptually showing generation of a distance image from each frame.
  • 13 is a diagram conceptually showing light receiving and emitting processing of a distance measurement frame in one scanning line.
  • FIG. 13A and 13B are diagrams conceptually illustrating light receiving and emitting processes in a comparison frame.
  • 11 is a graph showing an example of background light data when crosstalk light is incident.
  • the optical sensor 1 of the first embodiment shown in Fig. 1 is mounted on an autonomous transport vehicle 2 shown in Fig. 2. From a viewpoint centered on the autonomous transport vehicle 2, the autonomous transport vehicle 2 can also be said to be an ego-vehicle.
  • the autonomous transport vehicle 2 is an autonomous travel robot capable of autonomous travel in any direction, including forward, backward, left and right.
  • the autonomous transport vehicle 2 is a vehicle that autonomously travels in a facility such as a warehouse to transport an object.
  • the autonomous transport vehicle 2 is, for example, a forklift capable of autonomous travel.
  • the optical sensor 1 detects a target T, such as an object to be transported, within a travel area.
  • the optical sensor 1 is a so-called LiDAR that detects the target T by receiving the reflected light Br of the irradiated light Bi reflected by the target T.
  • the optical sensor 1 can detect the distance from the optical sensor 1 to the target T according to the time of flight (Time Of Flight) from when the irradiated light Bi is irradiated to when it is received as the reflected light Br.
  • the optical sensor 1 is composed of a light emitting unit 10, a scanning unit 20, a light receiving unit 30, and a control unit 100.
  • the light-emitting unit 10 includes a plurality of semiconductor elements, such as laser diodes, that emit directional laser light.
  • the light-emitting unit 10 applies a current to the semiconductor elements in response to a control signal from the control unit 100, thereby irradiating light toward the outside of the autonomous transport vehicle 2 in the form of an intermittent pulse beam.
  • each semiconductor element can irradiate irradiation light Bi corresponding to each pixel in each scanning line L, for example, in response to the reflection angle of the scanning unit 20 described below.
  • the light-emitting unit 10 can irradiate laser light in an oscillating LD (Laser Diode) mode by applying a current in a range larger than the boundary current value to the semiconductor elements.
  • oscillating LD Laser Diode
  • the light-emitting unit 10 can irradiate LED light in a non-oscillating LED (Light Emitting Diode) mode by applying a current in a range smaller than the boundary current value to the semiconductor elements.
  • the LED mode is not executed.
  • the scanning unit 20 includes a reflector that reflects the beam emitted from the light emitting unit 10 to the emission surface of the optical sensor 1, and an actuator.
  • the actuator controls the reflection angle of the reflector, thereby scanning the laser light.
  • the scanning direction may be either horizontal or vertical.
  • the scanning unit 20 may also scan the beam by controlling the attitude angle of the housing of the optical sensor 1 itself.
  • the light receiving unit 30 includes a light receiving lens, a light receiving element unit, and a light receiving circuit.
  • the light receiving lens focuses the light, including the reflected light Br, incident from the outside world onto the light receiving element unit.
  • the light receiving element unit is composed of a plurality of light receiving elements, such as a SPAD (Single Photon Avalanche Diode), that are highly sensitive to light.
  • the light receiving element unit is exposed to light incident from a detection area A, determined by the angle of view of the light receiving unit 30, within the outside world of the light receiving unit 30.
  • the light receiving elements constituting the light receiving element unit are arranged in a two-dimensional array, for example.
  • a set of a plurality of adjacent light receiving elements constitutes a pixel for detecting the reflected light Br.
  • an electrical signal corresponding to the intensity of the light received at each pixel is output.
  • the electrical signal is output to the light receiving circuit.
  • the light receiving circuit acquires an electrical signal from the light receiving element unit for each of the background light detection period Pe and the distance measurement period Pr, which are defined in each detection frame. Specifically, during the background light detection period Pe, during which the light receiving element unit is exposed to light while the light emission unit 10 is stopped from intermittently emitting light, an object point in the detection area becomes a reflection point of the background light. As a result, background light, which is light from the outside world reflected by the reflection point, enters the light receiving unit 30 through the incident surface. At this time, the light receiving circuit scans multiple pixels of the light receiving element unit to sense the surrounding light.
  • the setting block 110 in particular can acquire background light data by converting the luminance value acquired for each pixel according to the intensity of the sensed background light into data as each pixel value.
  • the background light data can also be called external light data or ambient light data.
  • the background light detection period Pe is an example of an "illumination stop period”.
  • the background light data is an example of "stop data”.
  • the light receiving circuit senses the reflected light Br by scanning multiple pixels of the light receiving element unit.
  • the light receiving circuit integrates the received light intensity scanned at each pixel for each received light frequency, thereby acquiring the relationship between the flight time of the irradiated light Bi until reception and the received light intensity for each pixel, as shown in Figures 6 and 7.
  • the light receiving circuit can acquire histogram information in which the received light intensity is integrated for each predetermined time bin, or waveform information based on the received light intensity for each time bin in the histogram.
  • the light receiving circuit can eliminate background light during the distance measurement period Pr as noise according to the background light data acquired during the background light detection period Pe, and acquire data on the received light intensity of the reflected light Br for the irradiated light Bi.
  • the light receiving circuit can acquire the distance to the reflecting object according to the flight time by converting the flight time at the peak of the received light intensity for each pixel into the distance from the optical sensor 1 to the target T.
  • the autonomous transport vehicle 2 may be equipped with an external sensor other than the optical sensor 1.
  • the external sensor other than the optical sensor 1 may be at least one type of sensor, such as a camera, a millimeter wave radar, or a sonar.
  • the control unit 100 is connected to the light emitting unit 10, the scanning unit 20, and the light receiving unit 30 via at least one of the following: a LAN (Local Area Network) line, a wire harness, an internal bus, and a wireless communication line.
  • the control unit 100 is configured to include, for example, at least one dedicated computer.
  • the dedicated computer constituting the control unit 100 may be a sensor ECU that controls the optical sensor 1.
  • the dedicated computer constituting the control unit 100 may be a planning ECU (Electronic Control Unit) that plans a target trajectory along which the autonomous transport vehicle 2 travels.
  • the dedicated computer constituting the control unit 100 may be a trajectory control ECU that causes the actual trajectory to follow the target trajectory of the autonomous transport vehicle 2.
  • the dedicated computer constituting the control unit 100 may be an actuator ECU that controls each electric actuator of the autonomous transport vehicle 2, etc.
  • the dedicated computer constituting the control unit 100 may be a locator ECU that estimates the self-state quantity of the autonomous transport vehicle 2.
  • the dedicated computer constituting the control unit 100 may be a computer other than the autonomous transport vehicle 2 that constitutes, for example, an external center or a mobile terminal capable of communicating with the autonomous transport vehicle 2.
  • the dedicated computer constituting the control unit 100 has at least one memory 101 and one processor 102.
  • the memory 101 is at least one type of non-transitory tangible storage medium, such as a semiconductor memory, a magnetic medium, or an optical medium, that non-temporarily stores computer-readable programs and data.
  • storage may be accumulation in which data is retained even when the autonomous transport vehicle 2 is turned off, or temporary storage in which data is erased when the autonomous transport vehicle 2 is turned off.
  • the processor 102 includes at least one type of core, such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a RISC (Reduced Instruction Set Computer)-CPU, a DFP (Data Flow Processor), or a GSP (Graph Streaming Processor).
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • RISC Reduced Instruction Set Computer
  • DFP Data Flow Processor
  • GSP Graph Streaming Processor
  • control unit 100 the processor 102 executes a plurality of instructions contained in a data processing program stored in the memory 101 in order to process the detection data generated by the optical sensor 1. In this way, the control unit 100 constructs a plurality of functional blocks for controlling the autonomous guided vehicle 2.
  • the multiple functional blocks constructed in the control unit 100 include a setting block 110, an acquisition block 120, and an output block 130, as shown in FIG. 3.
  • the control unit 100 is an example of a "data processing device".
  • control unit 100 processes the detection data generated by the optical sensor 1 by cooperation of these blocks 110, 120, and 130 is executed according to the data processing flow shown in FIG. 4. This processing flow is executed repeatedly while the optical sensor 1 is running. Note that each "S" in this processing flow represents multiple steps executed by multiple commands included in the data processing program.
  • the acquisition block 120 acquires background light data for the background light detection period Pe for each individual pixel on one scanning line L in the ranging frame Fr. Specifically, the acquisition block 120 acquires the background light data as information including the integrated received light intensity obtained by integrating the received light intensity over the background light detection period Pe during which the irradiation of the irradiation light Bi is stopped. For example, as shown in FIG. 7, the acquisition block 120 acquires the integrated received light intensity for each predetermined time in the background light detection period Pe as background light data.
  • the setting block 110 executes light emission control to emit irradiation light Bi from the light-emitting unit 10 during the distance measurement period Pr following the background light detection period Pe.
  • the setting block 110 emits irradiation light Bi at a distance measurement light emission intensity Iia, which is a predetermined constant light emission intensity.
  • the acquisition block 120 acquires distance measurement data Dr during the distance measurement period Pr from the light receiving unit 30 for each individual pixel on the scan line L.
  • the distance measurement data Dr includes physical information related to the light reception peaks in the reflected light Br when the irradiated light Bi is reflected by the target T.
  • the distance measurement data Dr includes at least the light reception time La and light reception intensity Ira of each peak as physical information of the light reception peaks.
  • the background light data acquired in S10 and the distance measurement data Dr acquired in this step become information included in the detection data in the distance measurement frame Fr.
  • the light receiving unit 30 may receive light irradiated from an external light source 3 as crosstalk light Bc.
  • the external light source 3 may be, for example, another optical sensor mounted on another autonomous vehicle (hereinafter, other vehicle) 4.
  • the distance measurement data Dr may include a light receiving peak resulting from the reflected light Br and a light receiving peak resulting from the crosstalk light Bc.
  • the acquisition block 120 determines whether or not acquisition of detection data has been completed for all scan lines L. If it is determined that acquisition of detection data for all scan lines L has not been completed, the flow returns to S10. This causes acquisition of detection data for each pixel for the next scan line L to be performed.
  • the flow proceeds to S50.
  • the acquisition block 120 acquires background light data for the background light detection period Pe for each pixel of one scan line L in the comparison frame Fc.
  • the background light data includes the integrated received light intensity, for example, similar to the ranging frame Fr.
  • the setting block 110 executes light emission control during the distance measurement period Pr following the background light detection period Pe.
  • the setting block 110 irradiates the irradiation light Bi at a comparative light emission intensity Iib corresponding to the light reception intensity (crosstalk light reception intensity) of the crosstalk light Bc for each pixel and the light reception intensity of the peak light reception in the distance measurement data Dr in the distance measurement frame Fr.
  • the setting block 110 first estimates whether crosstalk light Bc is incident from the background light data. Specifically, the setting block 110 determines that crosstalk light Bc is incident when the time-varying width of the light receiving intensity in the background light data is outside the allowable range. For example, as shown in FIG. 7, the setting block 110 performs the determination by using the difference Vd of the integrated light receiving intensity for each time as the time-varying width of the light receiving intensity.
  • the allowable range is a numerical range in which the difference Vd is equal to or less than a threshold value.
  • the setting block 110 determines whether the increase in the integrated received light intensity is linear or nonlinear based on the difference Vd.
  • the background light data used in this step may be that acquired in the distance measurement frame Fr or that acquired in the comparison frame Fc. Alternatively, the determination results for the background light data of each frame Fr, Fc may be integrated.
  • the setting block 110 determines that crosstalk light Bc is incident and estimates the magnitude of the crosstalk received light intensity from the magnitude of the difference Vd.
  • the larger the difference Vd the larger the crosstalk received light intensity that the setting block 110 estimates.
  • the setting block 110 may estimate the crosstalk received light intensity from, for example, predetermined relationship information between the difference Vd and the crosstalk received light intensity.
  • the setting block 110 may use the difference Vd as it is as a parameter indicating the crosstalk received light intensity.
  • the setting block 110 acquires the light receiving intensity of the light receiving peak included in the attention distance range as the peak light receiving intensity.
  • the attention distance range is a distance range set according to the distance measurement scene by the optical sensor 1. For example, in the case of this embodiment, when the autonomous transport vehicle 2 is traveling indoors, a distance range relatively close to the optical sensor 1 is set as the attention distance range. Also, when the autonomous transport vehicle 2 is traveling outdoors, a distance range farther than when indoors is set as the attention distance range.
  • the setting block 110 may calculate the average light receiving intensity of the multiple light receiving peaks. Note that since the distance to the target T correlates with the flight time, i.e., the light receiving timing, the setting block 110 may specify an attention time range corresponding to the attention distance range.
  • the setting block 110 determines the relative magnitude of the comparative light emission intensity Iib to the ranging light emission intensity Iia based on the above crosstalk light reception intensity and the peak light reception intensity in the ranging data Dr in the ranging frame Fr. For example, the setting block 110 irradiates the corresponding pixel with the comparative light emission intensity Iib of a magnitude determined by the combination pattern shown in Figures 9 and 10.
  • the crosstalk light receiving intensity and the peak light receiving intensity are classified into three levels, high, medium, and low, and the comparative emission intensity Iib is determined by combining these levels.
  • the comparative emission intensity Iib is set high relative to the distance measurement emission intensity Iia. That is, the comparative emission intensity Iib is increased so that the light receiving peak within the attention distance range detected in the distance measurement frame Fr does not disappear.
  • the peak light receiving intensity is high, the comparative emission intensity Iib is set low relative to the distance measurement emission intensity Iia.
  • the comparative emission intensity Iib is decreased so that the light receiving peak within the attention distance range detected in the distance measurement frame Fr does not become saturated. Then, the specific magnitude of the comparative emission intensity Iib is determined so that the light receiving intensity of the reflected light Br in the comparison frame Fc differs from the light receiving intensity of the crosstalk light according to the correspondence relationship between each peak light receiving intensity and the crosstalk light receiving intensity.
  • the acquisition block 120 acquires comparison data Dc including physical information related to the light reception peaks in the reflected light Br for the irradiated light Bi irradiated at the comparative emission intensity Iib set in the previous step.
  • the comparison data Dc includes at least the light reception time La and light reception intensity Ira of each peak, similar to the distance measurement data Dr.
  • the background light data acquired in S50 and the comparison data Dc acquired in this step become the information included in the detection data in the comparison frame Fc.
  • the output block 130 determines whether the normal condition is satisfied between the distance measurement data Dr and the comparison data Dc for each pixel.
  • the normal condition is that the difference in the intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within the allowable intensity range, and the difference in the light reception timing for the light reception peak is within the allowable time range.
  • the allowable intensity range is the range in which the intensity ratio is equal to or smaller than the threshold value.
  • the allowable time range is the range in which the difference in the light reception timing is equal to or smaller than the threshold value.
  • the allowable time range may be set to a smaller range as the traveling speed of the autonomous guided vehicle 2 is slower.
  • the output block 130 determines whether the normal condition is satisfied for all light reception peaks.
  • the output block 130 may identify the light reception peak of the comparison data Dc corresponding to a specific light reception peak in the distance measurement data Dr as the light reception peak with the smallest difference in light reception timing from the specific light reception peak.
  • the light receiving intensity of a particular light receiving peak in the distance measurement data Dr is Ira
  • the light receiving timing is Ta
  • the light receiving intensity of the corresponding light receiving peak in the comparison data Dc is Irb
  • the light receiving timing is Tb.
  • Ei in formula (1) is the threshold value of the intensity ratio.
  • Et in formula (2) is the threshold value of the difference in light reception timing.
  • Formulas (1) and (2) respectively have the allowable intensity range and allowable time range below the threshold, but as described above, at least one of them may be a range below the threshold.
  • a light reception peak that satisfies the relationship of formula (1) i.e., a light reception peak where the difference in the intensity ratio is within the allowable intensity range, has a light reception intensity in each frame Fr, Fc that correlates with the emission intensity. In other words, there is a relatively high possibility that the light reception peak is derived from the reflected light Br of the irradiated light Bi.
  • a light reception peak that satisfies the relationship of formula (2) i.e., a light reception peak where the difference in the light reception timing is within the allowable time range
  • a light reception peak for which the normal condition is satisfied is a light reception peak that can be estimated to be derived from the reflected light Br from the same target T.
  • the output block 130 adopts the distance measurement data Dr as normal data in which all light reception peaks are derived from reflected light Br.
  • the flow proceeds to S100.
  • the light reception peak with the latest light reception timing in Figures 6 and 7 is a light reception peak for which the difference in intensity ratio falls outside the allowable intensity range and the light reception intensity in each frame Fr, Fc is not correlated with the emission intensity.
  • the output block 130 generates excluded data by excluding such light reception peaks for which the normal condition is not met from the distance measurement data Dr that contains such light reception peaks as light reception peaks resulting from crosstalk light Bc.
  • the output block 130 determines whether the determination of whether the normal conditions are satisfied has been completed for all scan lines L. If it is determined that the determination of whether the normal conditions are satisfied has not been completed, the flow returns to S50. On the other hand, if it is determined in S110 that the determination of whether the normal conditions are satisfied has been completed, the flow proceeds to S120. In S120, the output block 130 generates a distance image by synthesizing the distance measurement data Dr or the excluded data for each pixel for which the normal conditions are satisfied across all scan lines L.
  • the setting block 110, acquisition block 120, and output block 130 can also be referred to as a setting section, an acquisition section, and an output section, respectively.
  • the output block 130 can also be referred to as an exclusion section.
  • light reception peaks for which the normal conditions are not met in detection data with different light emission intensities are excluded from the distance measurement data. Since the light reception intensity of crosstalk light from other light sources does not depend on the light emission intensity of the optical sensor and the light reception timing can change significantly, light reception peaks for which the normal conditions are not met can be attributed to crosstalk light. Therefore, it is possible to suppress erroneous detection.
  • the magnitude of the comparative light emission intensity Iib relative to the distance measurement light emission intensity Iia is set. Therefore, a more appropriate comparative light emission intensity Iib can be set for determining whether the normal condition for the light reception peak is satisfied.
  • the magnitude of the comparative emission intensity Iib is set according to the time-varying width. Therefore, the received light intensity of the crosstalk light Bc from the external light source 3 can be estimated from the background light data. Therefore, a more appropriate comparative emission intensity Iib can be set.
  • the relative magnitude of the comparative emission intensity Iib is set according to the light receiving intensity of the light receiving peak in the distance measurement data Dr in the distance measurement frame Fr preceding the comparison frame Fc. Therefore, a more appropriate comparative emission intensity Iib for determining whether the normal condition is met for the light receiving peak can be set according to the light receiving intensity of the light receiving peak in the distance measurement frame Fr. Furthermore, in the first embodiment, the relative magnitude of the comparative emission intensity Iib is set according to the light receiving intensity of the light receiving peak included in the attention distance range. Therefore, a more appropriate comparative emission intensity Iib for determining whether the normal condition is met can be set for light receiving peaks in a distance range that requires high attention.
  • the detection data generated by the optical sensor 1 mounted on the autonomous transport vehicle 2 that transports the transported object as the target T is processed.
  • Such vehicles can have a relatively slow running speed compared to general vehicles that travel on public roads.
  • the slower the running speed of the moving body on which the optical sensor 1 is mounted the smaller the time difference between the light reception timing in the ranging frame Fr at the light reception peak and the light reception timing in the comparison frame Fc can be. Therefore, the data processing method can be executed by the optical sensor 1 mounted on a moving body that is more suitable for the data processing method in the first embodiment.
  • the optical sensor 1 may be mounted on a vehicle traveling on a public road. In this case, the optical sensor 1 may execute the above-described data processing method within a speed range in which the traveling speed of the vehicle is equal to or less than a threshold value.
  • the comparison frame Fc corresponding to the ranging frame Fr may be a frame preceding the ranging frame Fr.
  • the setting block 110 may set the relative magnitude of the comparison light emission intensity Iib to the ranging light emission intensity Iia by directly setting the magnitude of the ranging light emission intensity Iia.
  • the dedicated computer constituting the control unit 100 may have at least one of a digital circuit and an analog circuit as a processor.
  • the digital circuit is at least one of the following types: ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), SOC (System on a Chip), PGA (Programmable Gate Array), and CPLD (Complex Programmable Logic Device).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • SOC System on a Chip
  • PGA Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • a processing circuit e.g., a processing ECU, etc.
  • a semiconductor device e.g., a semiconductor chip, etc.
  • a control device that is configured to be mountable on the autonomous transport vehicle 2 and has at least one processor and one memory.
  • a data processing device having a processor (102) for processing detection data generated by an optical sensor (1) that detects a target (T) by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A), the data processing device comprising: The processor, acquiring the detection data including: distance measurement data including physical information regarding a light reception peak in the reflected light received in response to the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame; and comparison data including the physical information regarding the light reception peak in the reflected light in response to the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame; excluding, from the distance measurement data, the light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls
  • the data processing device according to Technical Idea 2 includes, when a time-varying width of the received light intensity in the stop data falls outside an allowable range, setting a magnitude of the comparative light emission intensity in accordance with the time-varying width.
  • Setting the relative magnitude of the comparative emission intensity includes: A data processing device according to Technical Idea 2 or Technical Idea 3, which includes setting the relative magnitude of the comparative emission intensity according to the received light intensity of the received light peak in the distance measurement data in the distance measurement frame preceding the comparison frame.
  • Setting the relative magnitude of the comparative emission intensity includes: The data processing device according to Technical Idea 4, further comprising setting a relative magnitude of the comparative emission intensity in accordance with the received light intensity of the received light peak included within a distance range of interest.
  • the above technical ideas 1 to 6 may be realized in the form of an optical sensor 1, a method, and a program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A processor of this data processing device is configured to acquire detection data. The detection data includes distance measurement data including physical information relating to a light reception peak in reflected light received in response to emitted light emitted at a distance measurement luminous intensity, which is the luminous intensity in a distance measurement frame. The detection data includes comparative data including physical information relating to a light reception peak in reflected light with respect to emitted light emitted at a comparative luminous intensity different from the distance measurement luminous intensity, in a comparison frame different from the distance measurement frame. The processor is configured to exclude, from the distance measurement data, a light reception peak for which a normal condition is not satisfied, the normal condition being that between the distance measurement data and the comparative data, the difference in intensity ratio between the luminous intensity and the light reception intensity at the light reception peak is within an allowable intensity range, and the difference in light reception timing at the light reception peak is within an allowable time range.

Description

データ処理装置、光学センサ、データ処理方法、データ処理プログラムData processing device, optical sensor, data processing method, and data processing program 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 この出願は、2022年10月28日に日本に出願された特許出願第2022-173227号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-173227 filed in Japan on October 28, 2022, and the contents of the original application are incorporated by reference in their entirety.
 本開示は、光学センサにて生成された検出データを処理するデータ処理技術に、関する。 This disclosure relates to data processing technology that processes detection data generated by an optical sensor.
 特許文献1には、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)装置が開示されている。この装置は、放射するパルス化されたビーム光の照明強度を、測定された戻りパルスの強度に基づいて変化させる。具体的には、装置は、戻りパルスの強度がAD変換器の線形範囲に収まるように、照明強度を設定する。 Patent document 1 discloses a LiDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging) device. This device changes the illumination intensity of an emitted pulsed beam of light based on the intensity of the measured return pulse. Specifically, the device sets the illumination intensity so that the intensity of the return pulse falls within the linear range of an AD converter.
特表2021-510417号公報Specific Publication No. 2021-510417
 ところで、特許文献1のLiDAR装置のような光学センサは、他の光学センサ等の光源からの照射光をクロストーク光として受光する場合がある。この場合、クロストーク光を、自身の照射した照射光がターゲットにて反射した反射光と誤検知してしまう虞がある。 Incidentally, optical sensors such as the LiDAR device of Patent Document 1 may receive light emitted from a light source such as another optical sensor as crosstalk light. In this case, there is a risk that the crosstalk light may be mistaken for light reflected by the target from the light emitted by the optical sensor itself.
 本開示の課題は、誤検知を抑制可能なデータ処理装置を、提供することにある。本開示の別の課題は、誤検知を抑制可能な光学センサを、提供することにある。本開示の又別の課題は、誤検知を抑制可能なデータ処理方法を、提供することにある。本開示のさらに別の課題は、誤検知を抑制可能なデータ処理プログラムを、提供することにある。 An object of the present disclosure is to provide a data processing device capable of suppressing false detections. Another object of the present disclosure is to provide an optical sensor capable of suppressing false detections. Yet another object of the present disclosure is to provide a data processing method capable of suppressing false detections. Yet another object of the present disclosure is to provide a data processing program capable of suppressing false detections.
 以下、課題を解決するための本開示の技術的手段について、説明する。尚、請求の範囲に記載された括弧内の符号は、後に詳述する実施形態に記載された具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 The technical means of the present disclosure for solving the problems will be explained below. Note that the reference characters in parentheses in the claims indicate the corresponding relationship with the specific means described in the embodiments described in detail later, and do not limit the technical scope of the present disclosure.
 本開示の第一態様は、プロセッサを有し、検出エリアに対する照射光がターゲットにて反射した反射光を受光することによりターゲットを検出する光学センサにて生成された検出データを処理するデータ処理装置であって、
 プロセッサは、
 測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
 測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
 を実行するように構成される。
A first aspect of the present disclosure is a data processing device having a processor, which processes detection data generated by an optical sensor that detects a target by receiving reflected light that is reflected by a target from an irradiated light on a detection area,
The processor
acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a light reception timing at the light reception peak is within an allowable time range between the distance measurement data and the comparison data;
The apparatus is configured to execute the following steps:
 本開示の第二態様は、検出エリアに対する照射光がターゲットにて反射した反射光を受光することによりターゲットを検出する光学センサであって、
 照射光を照射する発光ユニットと、
 反射光を受光する受光ユニットと、
 受光ユニットからの検出データを取得する制御ユニットと、
 を備え、
 制御ユニットは、
 測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得する取得部と、
 測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外する除外部と、
 を有する。
A second aspect of the present disclosure is an optical sensor that detects a target by receiving reflected light that is reflected by the target and is irradiated onto a detection area,
A light-emitting unit that emits irradiation light;
A light receiving unit that receives reflected light;
A control unit for acquiring detection data from the light receiving unit;
Equipped with
The control unit
an acquisition unit that acquires detection data including distance measurement data including physical information on a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame, and comparison data including physical information on a light reception peak in a reflected light received in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
an exclusion unit that excludes from the distance measurement data a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within a permissible intensity range and a difference in light reception timing at the light reception peak is within a permissible time range, between the distance measurement data and the comparison data;
has.
 本開示の第三態様は、検出エリアに対する照射光がターゲットにて反射した反射光を受光することによりターゲットを検出する光学センサにて生成された検出データを処理するために、プロセッサにより実行されるデータ処理方法であって、
 測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
 測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
 を含む。
A third aspect of the present disclosure is a data processing method executed by a processor to process detection data generated by an optical sensor that detects a target by receiving reflected light that is reflected by a target from an irradiated light onto a detection area, the data processing method comprising:
acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a light reception timing at the light reception peak is within an allowable time range between the distance measurement data and the comparison data;
including.
 本開示の第四態様は、検出エリアに対する照射光がターゲットにて反射した反射光を受光することによりターゲットを検出する光学センサにて生成された検出データを処理するために記憶媒体に記憶され、プロセッサに実行させる命令を含むデータ処理プログラムであって、
 命令は、
 測距フレームでの発光強度である測距発光強度にて照射された照射光に対して受光された反射光における受光ピークに関する物理情報を含む測距データと、測距フレームと異なる比較フレームにおいて、測距発光強度と異なる比較発光強度にて照射された照射光に対する反射光における受光ピークに関する物理情報を含む比較データと、を含む検出データを取得することと、
 測距データと比較データとの間において、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる受光ピークを、測距データから除外することと、
 を含む。
A fourth aspect of the present disclosure is a data processing program stored in a storage medium for processing detection data generated by an optical sensor that detects a target by receiving light reflected by the target from an irradiated light on a detection area, the data processing program including instructions to be executed by a processor,
The command is,
acquiring detection data including distance measurement data including physical information regarding a light reception peak in a reflected light received in response to irradiation light irradiated at a distance measurement light emission intensity, which is an emission intensity in a distance measurement frame; and comparison data including physical information regarding a light reception peak in a reflected light in response to irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
Excluding from the distance measurement data, a light reception peak that does not satisfy a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within an allowable intensity range and a difference in a light reception timing at the light reception peak is within an allowable time range between the distance measurement data and the comparison data;
including.
 これら第一~第四態様によると、発光強度の異なる検出データにおいて正規条件が不成立となる受光ピークが、測距データから除外される。他の光源からのクロストーク光は、受光強度が光学センサの発光強度によらず、受光タイミングも大きく変化し得るため、正規条件が不成立の受光ピークは、クロストーク光に由来するものとなり得る。したがって、誤検知を抑制可能となる。 According to the first to fourth aspects, light reception peaks that do not meet the normal conditions in detection data with different light emission intensities are excluded from the distance measurement data. Since the light reception intensity of crosstalk light from other light sources does not depend on the light emission intensity of the optical sensor and the light reception timing can change significantly, light reception peaks that do not meet the normal conditions can be attributed to crosstalk light. This makes it possible to suppress erroneous detections.
第一実施形態の全体構成を示すブロック図である。FIG. 1 is a block diagram showing an overall configuration of a first embodiment. 第一実施形態による光学センサの適用される自律搬送車両の走行環境を示す模式図である。1 is a schematic diagram showing a driving environment of an autonomous guided vehicle to which an optical sensor according to a first embodiment is applied; 第一実施形態による制御ユニットの機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a control unit according to the first embodiment. 第一実施形態によるデータ処理フローを示すフローチャートである。4 is a flowchart showing a data processing flow according to the first embodiment. 各フレームからの距離画像の生成を概念的に示す図である。FIG. 2 is a diagram conceptually showing generation of a distance image from each frame. 一つの走査ラインにおける測距フレームの受発光処理を概念的に示す図である。13 is a diagram conceptually showing light receiving and emitting processing of a distance measurement frame in one scanning line. FIG. 比較フレームにおける受発光処理を概念的に示す図である。13A and 13B are diagrams conceptually illustrating light receiving and emitting processes in a comparison frame. クロストーク光入射時の背景光データの一例を示すグラフである。11 is a graph showing an example of background light data when crosstalk light is incident. 比較発光強度のパターンの一例を示す表である。11 is a table showing an example of a pattern of comparative luminescence intensities. 各パターンにおける具体的な数値例を示す表である。13 is a table showing specific numerical examples for each pattern.
 以下、本開示の実施形態を図面に基づき複数説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことで、重複する説明を省略する場合がある。又、各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。さらに、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Below, several embodiments of the present disclosure will be described with reference to the drawings. Note that in each embodiment, corresponding components are given the same reference numerals, and duplicated descriptions may be omitted. Furthermore, when only a portion of the configuration is described in each embodiment, the configuration of another embodiment previously described may be applied to the other portions of the configuration. Furthermore, in addition to the combinations of configurations explicitly stated in the description of each embodiment, configurations of multiple embodiments may be partially combined together even if not explicitly stated, provided that there is no particular problem with the combination.
 (第一実施形態)
 図1に示す第一実施形態の光学センサ1は、図2に示す自律搬送車両2に搭載される。自律搬送車両2を中心とする視点において、自律搬送車両2は自車両(ego-vehicle)であるともいえる。自律搬送車両2は、前後左右の任意方向に自律走行可能な自律走行ロボットである。自律搬送車両2は、倉庫等の施設を自律走行して搬送物を搬送する車両である。自律搬送車両2は、例えば自律走行可能なフォークリフトである。光学センサ1は、走行エリア内における搬送物等のターゲットTを、検知する。
First Embodiment
The optical sensor 1 of the first embodiment shown in Fig. 1 is mounted on an autonomous transport vehicle 2 shown in Fig. 2. From a viewpoint centered on the autonomous transport vehicle 2, the autonomous transport vehicle 2 can also be said to be an ego-vehicle. The autonomous transport vehicle 2 is an autonomous travel robot capable of autonomous travel in any direction, including forward, backward, left and right. The autonomous transport vehicle 2 is a vehicle that autonomously travels in a facility such as a warehouse to transport an object. The autonomous transport vehicle 2 is, for example, a forklift capable of autonomous travel. The optical sensor 1 detects a target T, such as an object to be transported, within a travel area.
 光学センサ1は、照射光BiがターゲットTにて反射した反射光Brを受光することによりターゲットTを検出する、所謂LiDARである。光学センサ1は、照射光Biを照射して反射光Brとして受光されるまでの飛行時間(Time Of Flight)に応じて、光学センサ1からターゲットTまでの距離を検出可能である。光学センサ1は、発光ユニット10と、走査ユニット20と、受光ユニット30と、制御ユニット100と、を含んで構成されている。 The optical sensor 1 is a so-called LiDAR that detects the target T by receiving the reflected light Br of the irradiated light Bi reflected by the target T. The optical sensor 1 can detect the distance from the optical sensor 1 to the target T according to the time of flight (Time Of Flight) from when the irradiated light Bi is irradiated to when it is received as the reflected light Br. The optical sensor 1 is composed of a light emitting unit 10, a scanning unit 20, a light receiving unit 30, and a control unit 100.
 発光ユニット10は、例えばレーザダイオード等の、指向性レーザ光を発する半導体素子を複数含んで構成されている。発光ユニット10は、制御ユニット100からの制御信号に応じた電流を半導体素子に印加することで、自律搬送車両2の外界へ向かう光を、断続的なパルスビーム状に照射する。発光ユニット10は、例えば後述の走査ユニット20の反射角に応じて、各半導体素子が、各走査ラインLにおける各画素に対応する照射光Biを照射可能である。発光ユニット10は、半導体素子に対して境界電流値よりも大きい範囲の電流を印加することで、発振状態のLD(Laser Diode)モードによるレーザ光を、照射可能である。そして、発光ユニット10は、半導体素子に対して境界電流値よりも小さい範囲の電流を印加することで、未発振状態のLED(Light Emitting Diode)モードによるLED光を、照射可能である。尚、本実施形態においては、LEDモードは実行されない。 The light-emitting unit 10 includes a plurality of semiconductor elements, such as laser diodes, that emit directional laser light. The light-emitting unit 10 applies a current to the semiconductor elements in response to a control signal from the control unit 100, thereby irradiating light toward the outside of the autonomous transport vehicle 2 in the form of an intermittent pulse beam. In the light-emitting unit 10, each semiconductor element can irradiate irradiation light Bi corresponding to each pixel in each scanning line L, for example, in response to the reflection angle of the scanning unit 20 described below. The light-emitting unit 10 can irradiate laser light in an oscillating LD (Laser Diode) mode by applying a current in a range larger than the boundary current value to the semiconductor elements. The light-emitting unit 10 can irradiate LED light in a non-oscillating LED (Light Emitting Diode) mode by applying a current in a range smaller than the boundary current value to the semiconductor elements. In this embodiment, the LED mode is not executed.
 走査ユニット20は、発光ユニット10から照射されたビームを光学センサ1の出射面へと反射する反射鏡と、アクチュエータとを含んで構成されている。アクチュエータが反射鏡の反射角を制御することで、レーザ光がスキャンされる。スキャン方向は、水平方向であってもよく、垂直方向であってもよい。尚、走査ユニット20は、光学センサ1の筐体自体の姿勢角を制御することで、ビームを走査するものであってもよい。 The scanning unit 20 includes a reflector that reflects the beam emitted from the light emitting unit 10 to the emission surface of the optical sensor 1, and an actuator. The actuator controls the reflection angle of the reflector, thereby scanning the laser light. The scanning direction may be either horizontal or vertical. The scanning unit 20 may also scan the beam by controlling the attitude angle of the housing of the optical sensor 1 itself.
 受光ユニット30は、受光レンズと、受光素子ユニットと、受光回路と、を備えている。受光レンズは、反射光Brを含む外界から入射した光を、受光素子ユニットに集光する。受光素子ユニットは、例えばSPAD(Single Photon Avalanche Diode)等の、光に対して高感度な複数の受光素子により構成されている。受光ユニット30の外界のうち、受光ユニット30の画角により決まる検出エリアAから入射する光により、受光素子ユニットが露光される。受光素子ユニットを構成する受光素子は、例えば二次元方向にアレイ状に複数配列されている。隣接する複数の受光素子の組により、反射光Br検出における画素が構成される。走査ユニット20による照射光Biの反射角度に応じた複数の走査ラインL毎に、各画素において受光した光の強度(受光強度)に応じた電気信号が、出力される。電気信号は、受光回路へと出力する。 The light receiving unit 30 includes a light receiving lens, a light receiving element unit, and a light receiving circuit. The light receiving lens focuses the light, including the reflected light Br, incident from the outside world onto the light receiving element unit. The light receiving element unit is composed of a plurality of light receiving elements, such as a SPAD (Single Photon Avalanche Diode), that are highly sensitive to light. The light receiving element unit is exposed to light incident from a detection area A, determined by the angle of view of the light receiving unit 30, within the outside world of the light receiving unit 30. The light receiving elements constituting the light receiving element unit are arranged in a two-dimensional array, for example. A set of a plurality of adjacent light receiving elements constitutes a pixel for detecting the reflected light Br. For each of a plurality of scanning lines L corresponding to the reflection angle of the irradiated light Bi by the scanning unit 20, an electrical signal corresponding to the intensity of the light received at each pixel (received light intensity) is output. The electrical signal is output to the light receiving circuit.
 受光回路は、各検出フレームに規定された、背景光検出期間Pe及び測距期間Prのそれぞれの期間ごとに、受光素子ユニットからの電気信号を、取得する。具体的には、発光ユニット10からの断続的な光照射の停止中に受光素子ユニットを露光する背景光検出期間Peでは、検出エリア内の物点が背景光の反射点となる。その結果、外界からの光が反射点で反射された背景光が、入射面を通して受光ユニット30に入射する。このとき受光回路は、受光素子ユニットの複数画素を走査して景光をセンシングする。ここで特に設定ブロック110は、センシングした背景光の強度に応じて画素毎に取得される輝度値を、各画素値としてデータ化することで、背景光データを取得することが可能である。尚、背景光データは、外光データ又は外乱光データと呼称することも可能である。背景光検出期間Peは、「照射停止期間」の一例である。背景光データは、「停止データ」の一例である。 The light receiving circuit acquires an electrical signal from the light receiving element unit for each of the background light detection period Pe and the distance measurement period Pr, which are defined in each detection frame. Specifically, during the background light detection period Pe, during which the light receiving element unit is exposed to light while the light emission unit 10 is stopped from intermittently emitting light, an object point in the detection area becomes a reflection point of the background light. As a result, background light, which is light from the outside world reflected by the reflection point, enters the light receiving unit 30 through the incident surface. At this time, the light receiving circuit scans multiple pixels of the light receiving element unit to sense the surrounding light. Here, the setting block 110 in particular can acquire background light data by converting the luminance value acquired for each pixel according to the intensity of the sensed background light into data as each pixel value. The background light data can also be called external light data or ambient light data. The background light detection period Pe is an example of an "illumination stop period". The background light data is an example of "stop data".
 一方で、発光ユニット10からの光照射により受光ユニット30を露光する測距期間Prでは、検出エリア内の物点がレーザ光の反射点となる。その結果、反射点で反射されたレーザ光が、入射面を通して受光ユニット30に入射する。このとき受光回路は、受光素子ユニットの複数画素を走査することで、反射光Brをセンシングする。 On the other hand, during the distance measurement period Pr in which the light receiving unit 30 is exposed to light emitted from the light emitting unit 10, an object point in the detection area becomes a reflection point of the laser light. As a result, the laser light reflected at the reflection point enters the light receiving unit 30 through the incident surface. At this time, the light receiving circuit senses the reflected light Br by scanning multiple pixels of the light receiving element unit.
 受光回路は、各画素において走査された受光強度を受光周波数ごとに積算することで、図6及び図7等に示すように、受光までの照射光Biの飛行時間と受光強度の関係を、画素ごとに取得する。具体的には、受光回路は、受光強度を所定の時間ビンごとに積算したヒストグラム情報、又はヒストグラムにおける時間ビンごとの受光強度に基づく波形情報を、取得可能である。このとき受光回路は、背景光検出期間Peにて取得された背景光データに応じて測距期間Prにおける背景光をノイズとして除去し、照射光Biに対する反射光Brによる受光強度のデータを取得可能である。又、受光回路は、画素ごとの受光強度のピークにおける飛行時間を光学センサ1からターゲットTまでの距離に換算することで、飛行時間に応じた反射物までの距離を取得可能である。 The light receiving circuit integrates the received light intensity scanned at each pixel for each received light frequency, thereby acquiring the relationship between the flight time of the irradiated light Bi until reception and the received light intensity for each pixel, as shown in Figures 6 and 7. Specifically, the light receiving circuit can acquire histogram information in which the received light intensity is integrated for each predetermined time bin, or waveform information based on the received light intensity for each time bin in the histogram. At this time, the light receiving circuit can eliminate background light during the distance measurement period Pr as noise according to the background light data acquired during the background light detection period Pe, and acquire data on the received light intensity of the reflected light Br for the irradiated light Bi. In addition, the light receiving circuit can acquire the distance to the reflecting object according to the flight time by converting the flight time at the peak of the received light intensity for each pixel into the distance from the optical sensor 1 to the target T.
 尚、自律搬送車両2には、光学センサ1以外の外界センサが搭載されてもよい。光学センサ1以外の外界センサは、例えばカメラ、ミリ波レーダ及びソナー等の少なくとも一種類である。 The autonomous transport vehicle 2 may be equipped with an external sensor other than the optical sensor 1. The external sensor other than the optical sensor 1 may be at least one type of sensor, such as a camera, a millimeter wave radar, or a sonar.
 制御ユニット100は、例えばLAN(Local Area Network)回線、ワイヤハーネス、内部バス、及び無線通信回線等のうち、少なくとも一種類を介して発光ユニット10、走査ユニット20、受光ユニット30に接続されている。制御ユニット100は、例えば、少なくとも一つの専用コンピュータを含んで構成されている。 The control unit 100 is connected to the light emitting unit 10, the scanning unit 20, and the light receiving unit 30 via at least one of the following: a LAN (Local Area Network) line, a wire harness, an internal bus, and a wireless communication line. The control unit 100 is configured to include, for example, at least one dedicated computer.
 制御ユニット100を構成する専用コンピュータは、光学センサ1を制御するセンサECUであってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の走行する目標軌道を計画する、プランニングECU(Electronic Control Unit)であってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の目標軌道に実軌道を追従させる、軌道制御ECUであってもよい。制御ユニット100を構成する専用コンピュータは、自律搬送車両2の各電動アクチュエータ等を制御する、アクチュエータECUであってもよい。 The dedicated computer constituting the control unit 100 may be a sensor ECU that controls the optical sensor 1. The dedicated computer constituting the control unit 100 may be a planning ECU (Electronic Control Unit) that plans a target trajectory along which the autonomous transport vehicle 2 travels. The dedicated computer constituting the control unit 100 may be a trajectory control ECU that causes the actual trajectory to follow the target trajectory of the autonomous transport vehicle 2. The dedicated computer constituting the control unit 100 may be an actuator ECU that controls each electric actuator of the autonomous transport vehicle 2, etc.
 制御ユニット100を構成する専用コンピュータは、自律搬送車両2の自己状態量を推定する、ロケータECUであってもよい。制御ユニット100を構成する専用コンピュータは、例えば自律搬送車両2と通信可能な外部センタ又はモバイル端末等を構築する、自律搬送車両2以外のコンピュータであってもよい。 The dedicated computer constituting the control unit 100 may be a locator ECU that estimates the self-state quantity of the autonomous transport vehicle 2. The dedicated computer constituting the control unit 100 may be a computer other than the autonomous transport vehicle 2 that constitutes, for example, an external center or a mobile terminal capable of communicating with the autonomous transport vehicle 2.
 制御ユニット100を構成する専用コンピュータは、メモリ101とプロセッサ102とを、少なくとも一つずつ有している。メモリ101は、コンピュータにより読み取り可能なプログラム及びデータ等を非一時的に記憶する、例えば半導体メモリ、磁気媒体、及び光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。ここで記憶とは、自律搬送車両2の起動オフによってもデータが保持される蓄積であってもよいし、自律搬送車両2の起動オフによりデータが消去される一時的な格納であってもよい。プロセッサ102は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、RISC(Reduced Instruction Set Computer)-CPU、DFP(Data Flow Processor)、及びGSP(Graph Streaming Processor)等のうち、少なくとも一種類をコアとして含んでいる。 The dedicated computer constituting the control unit 100 has at least one memory 101 and one processor 102. The memory 101 is at least one type of non-transitory tangible storage medium, such as a semiconductor memory, a magnetic medium, or an optical medium, that non-temporarily stores computer-readable programs and data. Here, storage may be accumulation in which data is retained even when the autonomous transport vehicle 2 is turned off, or temporary storage in which data is erased when the autonomous transport vehicle 2 is turned off. The processor 102 includes at least one type of core, such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a RISC (Reduced Instruction Set Computer)-CPU, a DFP (Data Flow Processor), or a GSP (Graph Streaming Processor).
 制御ユニット100においてプロセッサ102は、光学センサ1にて生成された検出データを処理するためにメモリ101に記憶された、データ処理プログラムに含まれる複数の命令を実行する。これにより制御ユニット100は、自律搬送車両2を制御するための機能ブロックを、複数構築する。制御ユニット100において構築される複数の機能ブロックには、図3に示すように設定ブロック110、取得ブロック120、及び出力ブロック130が含まれている。制御ユニット100は、「データ処理装置」の一例である。 In the control unit 100, the processor 102 executes a plurality of instructions contained in a data processing program stored in the memory 101 in order to process the detection data generated by the optical sensor 1. In this way, the control unit 100 constructs a plurality of functional blocks for controlling the autonomous guided vehicle 2. The multiple functional blocks constructed in the control unit 100 include a setting block 110, an acquisition block 120, and an output block 130, as shown in FIG. 3. The control unit 100 is an example of a "data processing device".
 これらのブロック110,120,130の共同により、制御ユニット100が光学センサ1にて生成された検出データを処理するデータ処理方法は、図4に示すデータ処理フローに従って実行される。本処理フローは、光学センサ1の起動中に繰り返し実行される。尚、本処理フローにおける各「S」は、データ処理プログラムに含まれた複数命令によって実行される複数ステップを、それぞれ意味している。 The data processing method in which the control unit 100 processes the detection data generated by the optical sensor 1 by cooperation of these blocks 110, 120, and 130 is executed according to the data processing flow shown in FIG. 4. This processing flow is executed repeatedly while the optical sensor 1 is running. Note that each "S" in this processing flow represents multiple steps executed by multiple commands included in the data processing program.
 まずS10では、取得ブロック120が、測距フレームFrにおいて、1つの走査ラインLでの個々の画素ごとに、背景光検出期間Peの背景光データを取得する。具体的には、取得ブロック120は、照射光Biの照射が停止される背景光検出期間Peにわたって受光強度を積算した積算受光強度を含む情報として、背景光データを取得する。例えば、取得ブロック120は、図7に示すように、背景光検出期間Peにおける所定の時刻ごとの積算受光強度を、背景光データとして取得する。 First, in S10, the acquisition block 120 acquires background light data for the background light detection period Pe for each individual pixel on one scanning line L in the ranging frame Fr. Specifically, the acquisition block 120 acquires the background light data as information including the integrated received light intensity obtained by integrating the received light intensity over the background light detection period Pe during which the irradiation of the irradiation light Bi is stopped. For example, as shown in FIG. 7, the acquisition block 120 acquires the integrated received light intensity for each predetermined time in the background light detection period Pe as background light data.
 続くS20では、設定ブロック110が、背景光検出期間Peの後の測距期間Prにおいて、発光ユニット10から照射光Biを照射させる発光制御を実行する。測距フレームFrにおいては、設定ブロック110は、予め規定された一定の発光強度である測距発光強度Iiaにて、照射光Biを照射させる。 In the next step S20, the setting block 110 executes light emission control to emit irradiation light Bi from the light-emitting unit 10 during the distance measurement period Pr following the background light detection period Pe. In the distance measurement frame Fr, the setting block 110 emits irradiation light Bi at a distance measurement light emission intensity Iia, which is a predetermined constant light emission intensity.
 そしてS30では、取得ブロック120が、測距期間Prにおける測距データDrを、受光ユニット30から走査ラインLにおける個々の画素ごとに取得する。測距データDrは、照射光BiがターゲットTにて反射された反射光Brにおける受光ピークに関する物理情報を、含んでいる。例えば図5に示すように、測距データDrは、受光ピークの物理情報として、各ピークの受光時刻La及び受光強度Iraを少なくとも含んでいる。S10にて取得された背景光データと本ステップにて取得された測距データDrとが、測距フレームFrにおける検出データに含まれる情報となる。 In S30, the acquisition block 120 acquires distance measurement data Dr during the distance measurement period Pr from the light receiving unit 30 for each individual pixel on the scan line L. The distance measurement data Dr includes physical information related to the light reception peaks in the reflected light Br when the irradiated light Bi is reflected by the target T. For example, as shown in FIG. 5, the distance measurement data Dr includes at least the light reception time La and light reception intensity Ira of each peak as physical information of the light reception peaks. The background light data acquired in S10 and the distance measurement data Dr acquired in this step become information included in the detection data in the distance measurement frame Fr.
 尚、受光ユニット30は、反射光Br以外に、外部光源3から照射された光を、クロストーク光Bcとして受光する場合がある。外部光源3は、例えば他の自律走行車両(以下、他車両)4に搭載された別の光学センサ等である。この場合、測距データDrには、反射光Brに由来する受光ピークと、クロストーク光Bcに由来する受光ピークと、が含まれ得る。 In addition to the reflected light Br, the light receiving unit 30 may receive light irradiated from an external light source 3 as crosstalk light Bc. The external light source 3 may be, for example, another optical sensor mounted on another autonomous vehicle (hereinafter, other vehicle) 4. In this case, the distance measurement data Dr may include a light receiving peak resulting from the reflected light Br and a light receiving peak resulting from the crosstalk light Bc.
 次に、S40では、取得ブロック120が、全走査ラインLについて、検出データの取得が完了したか否かを判定する。全走査ラインLについての検出データ取得未完了との判定が下された場合、本フローはS10へと戻る。これにより、次の走査ラインLについて画素ごとの検出データの取得が実行される。 Next, in S40, the acquisition block 120 determines whether or not acquisition of detection data has been completed for all scan lines L. If it is determined that acquisition of detection data for all scan lines L has not been completed, the flow returns to S10. This causes acquisition of detection data for each pixel for the next scan line L to be performed.
 一方で、全走査ラインLについての検出データ取得完了との判定が下された場合、本フローはS50へと進む。S50では、取得ブロック120が、比較フレームFcにおいて、1つの走査ラインLの各画素について背景光検出期間Peの背景光データを取得する。背景光データは、例えば測距フレームFrと同様に、積算受光強度を含んでいる。 On the other hand, if it is determined that detection data acquisition has been completed for all scan lines L, the flow proceeds to S50. In S50, the acquisition block 120 acquires background light data for the background light detection period Pe for each pixel of one scan line L in the comparison frame Fc. The background light data includes the integrated received light intensity, for example, similar to the ranging frame Fr.
 続くS60では、設定ブロック110が、背景光検出期間Peの後の測距期間Prにおいて、発光制御を実行する。比較フレームFcにおいては、設定ブロック110は、画素ごとにクロストーク光Bcの受光強度(クロストーク受光強度)と、測距フレームFrでの測距データDrにおける受光ピークの受光強度と、に応じた比較発光強度Iibにて、照射光Biを照射させる。 In the next step S60, the setting block 110 executes light emission control during the distance measurement period Pr following the background light detection period Pe. In the comparison frame Fc, the setting block 110 irradiates the irradiation light Bi at a comparative light emission intensity Iib corresponding to the light reception intensity (crosstalk light reception intensity) of the crosstalk light Bc for each pixel and the light reception intensity of the peak light reception in the distance measurement data Dr in the distance measurement frame Fr.
 クロストーク受光強度について詳記すると、設定ブロック110は、まず背景光データからクロストーク光Bcの入射有無を推定する。具体的には、設定ブロック110は、背景光データにおける受光強度の時間変化幅が許容幅範囲外となる場合に、クロストーク光Bcの入射有との判定を下す。例えば、設定ブロック110は、図7に示すように、積算受光強度の時刻毎の差分Vdを受光強度の時間変化幅として判定を実行する。ここで、許容幅範囲は、差分Vdが閾値以下又は未満となる数値範囲である。 To go into more detail about the crosstalk light receiving intensity, the setting block 110 first estimates whether crosstalk light Bc is incident from the background light data. Specifically, the setting block 110 determines that crosstalk light Bc is incident when the time-varying width of the light receiving intensity in the background light data is outside the allowable range. For example, as shown in FIG. 7, the setting block 110 performs the determination by using the difference Vd of the integrated light receiving intensity for each time as the time-varying width of the light receiving intensity. Here, the allowable range is a numerical range in which the difference Vd is equal to or less than a threshold value.
 背景光検出期間Peでは照射光Biを照射しないため、クロストーク光Bcが入射しない場合、積算受光強度は線形的に増加することになる。一方で、他の光学センサ等の周期的且つ瞬時的に光照射を行う外部光源3からのクロストーク光Bcが入射すると、図8に示すように入射前後で積算受光強度は非線形的に増加することになる。すなわち、設定ブロック110は、積算受光強度の増加が線形的であるか非線形的であるかを、差分Vdにより判定することになるといえる。尚、本ステップにて利用される背景光データは、測距フレームFrにて取得されたものであってもよいし、比較フレームFcにて取得されたものであってもよい。又は、各フレームFr,Fcの背景光データについての判定結果が統合されてもよい。 Since the irradiation light Bi is not emitted during the background light detection period Pe, if the crosstalk light Bc is not incident, the integrated received light intensity will increase linearly. On the other hand, if crosstalk light Bc is incident from an external light source 3 that periodically and instantaneously emits light, such as another optical sensor, the integrated received light intensity will increase nonlinearly before and after the incidence, as shown in FIG. 8. In other words, the setting block 110 determines whether the increase in the integrated received light intensity is linear or nonlinear based on the difference Vd. The background light data used in this step may be that acquired in the distance measurement frame Fr or that acquired in the comparison frame Fc. Alternatively, the determination results for the background light data of each frame Fr, Fc may be integrated.
 設定ブロック110は、差分Vdが許容幅範囲外となる場合、クロストーク光Bcの入射有として、差分Vdの大きさから、クロストーク受光強度の大きさを推定する。設定ブロック110は、差分Vdが大きいほど、大きいクロストーク受光強度を推定する。設定ブロック110は、例えば予め規定された差分Vdとクロストーク受光強度との関係情報から、クロストーク受光強度を推定すればよい。又は、設定ブロック110は、差分Vdをそのままクロストーク受光強度を示すパラメータとして利用してもよい。 When the difference Vd falls outside the allowable range, the setting block 110 determines that crosstalk light Bc is incident and estimates the magnitude of the crosstalk received light intensity from the magnitude of the difference Vd. The larger the difference Vd, the larger the crosstalk received light intensity that the setting block 110 estimates. The setting block 110 may estimate the crosstalk received light intensity from, for example, predetermined relationship information between the difference Vd and the crosstalk received light intensity. Alternatively, the setting block 110 may use the difference Vd as it is as a parameter indicating the crosstalk received light intensity.
 受光ピークの受光強度について詳記すると、設定ブロック110は、注目距離範囲内に含まれる受光ピークの受光強度をピーク受光強度として取得する。注目距離範囲は、光学センサ1による測距シーンに応じて設定される距離範囲である。例えば、本実施形態の場合、自律搬送車両2が屋内を走行中の場合、光学センサ1に比較的近い距離範囲が、注目距離範囲に設定される。又、自律搬送車両2が屋外を走行中の場合には、屋内の場合と比較して遠い距離範囲が、注目距離範囲に設定される。注目距離範囲内に複数の受光ピークが検出されている場合、設定ブロック110は、それら複数の受光ピークの平均受光強度を算出すればよい。尚、ターゲットTまでの距離は飛行時間、すなわち受光タイミングに相関するため、設定ブロック110は注目距離範囲に対応する注目時間範囲を規定してもよい。 To describe in detail the light receiving intensity of the light receiving peak, the setting block 110 acquires the light receiving intensity of the light receiving peak included in the attention distance range as the peak light receiving intensity. The attention distance range is a distance range set according to the distance measurement scene by the optical sensor 1. For example, in the case of this embodiment, when the autonomous transport vehicle 2 is traveling indoors, a distance range relatively close to the optical sensor 1 is set as the attention distance range. Also, when the autonomous transport vehicle 2 is traveling outdoors, a distance range farther than when indoors is set as the attention distance range. When multiple light receiving peaks are detected within the attention distance range, the setting block 110 may calculate the average light receiving intensity of the multiple light receiving peaks. Note that since the distance to the target T correlates with the flight time, i.e., the light receiving timing, the setting block 110 may specify an attention time range corresponding to the attention distance range.
 設定ブロック110は、以上のクロストーク受光強度と、測距フレームFrでの測距データDrにおけるピーク受光強度と、に応じて、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさを決定する。例えば、設定ブロック110は、図9,10に示すような組み合わせパターンにより規定される大きさの比較発光強度Iibにて、該当する画素に対応する照射光Biを照射する。 The setting block 110 determines the relative magnitude of the comparative light emission intensity Iib to the ranging light emission intensity Iia based on the above crosstalk light reception intensity and the peak light reception intensity in the ranging data Dr in the ranging frame Fr. For example, the setting block 110 irradiates the corresponding pixel with the comparative light emission intensity Iib of a magnitude determined by the combination pattern shown in Figures 9 and 10.
 図9,10に示す例では、クロストーク受光強度及びピーク受光強度について、大レベル、中レベル、小レベルの3レベルにて分類し、それらのレベルの組み合わせにて、比較発光強度Iibを決定する。図10の数値例に示すように、ピーク受光強度が小レベル及び中レベルの場合には、比較発光強度Iibは測距発光強度Iiaに対して大きく設定される。すなわち、比較発光強度Iibは、測距フレームFrにて検知した注目距離範囲内の受光ピークが消失しないように増大される。一方で、ピーク受光強度が大レベルの場合には、比較発光強度Iibは測距発光強度Iiaに対して小さく設定される。すなわち、比較発光強度Iibは、測距フレームFrにて検知した注目距離範囲内の受光ピークが飽和しないように減少される。そして、各ピーク受光強度に対するクロストーク受光強度の対応関係に応じて、比較フレームFcにおける反射光Brの受光強度がクロストーク光の受光強度と差が出るように、具体的な比較発光強度Iibの大きさが決定される。 9 and 10, the crosstalk light receiving intensity and the peak light receiving intensity are classified into three levels, high, medium, and low, and the comparative emission intensity Iib is determined by combining these levels. As shown in the numerical example of FIG. 10, when the peak light receiving intensity is low and medium, the comparative emission intensity Iib is set high relative to the distance measurement emission intensity Iia. That is, the comparative emission intensity Iib is increased so that the light receiving peak within the attention distance range detected in the distance measurement frame Fr does not disappear. On the other hand, when the peak light receiving intensity is high, the comparative emission intensity Iib is set low relative to the distance measurement emission intensity Iia. That is, the comparative emission intensity Iib is decreased so that the light receiving peak within the attention distance range detected in the distance measurement frame Fr does not become saturated. Then, the specific magnitude of the comparative emission intensity Iib is determined so that the light receiving intensity of the reflected light Br in the comparison frame Fc differs from the light receiving intensity of the crosstalk light according to the correspondence relationship between each peak light receiving intensity and the crosstalk light receiving intensity.
 S70では、取得ブロック120が、前のステップにて設定された比較発光強度Iibにて照射された照射光Biに対する反射光Brにおける受光ピークに関する物理情報を含む比較データDcを、取得する。比較データDcは、測距データDrと同様に、各ピークの受光時刻La及び受光強度Iraを少なくとも含んでいる。S50にて取得された背景光データと本ステップにて取得された比較データDcとが、比較フレームFcにおける検出データに含まれる情報となる。 In S70, the acquisition block 120 acquires comparison data Dc including physical information related to the light reception peaks in the reflected light Br for the irradiated light Bi irradiated at the comparative emission intensity Iib set in the previous step. The comparison data Dc includes at least the light reception time La and light reception intensity Ira of each peak, similar to the distance measurement data Dr. The background light data acquired in S50 and the comparison data Dc acquired in this step become the information included in the detection data in the comparison frame Fc.
 そして、S80では、出力ブロック130が、画素ごとの測距データDr及び比較データDcの間に、正規条件が成立するか否かを判定する。正規条件は、発光強度と受光ピークでの受光強度との強度比の差が許容強度範囲内且つ受光ピークについて受光タイミングの差が許容時間範囲内となることとされる。ここで許容強度範囲は、強度比が閾値以下又は未満となる範囲とされる。又、許容時間範囲は、受光タイミングの差が閾値以下又は未満となる範囲とされる。許容時間範囲は、自律搬送車両2の走行速度が小さいほど小さい範囲に設定されてもよい。受光ピークが複数ある場合、出力ブロック130は、全ての受光ピークについて正規条件が成立するか否かを判定する。尚、出力ブロック130は、測距データDrにおける特定の受光ピークに対応する比較データDcの受光ピークを、当該特定の受光ピークとの受光タイミングの差が最も小さい受光ピークとして特定すればよい。 In S80, the output block 130 determines whether the normal condition is satisfied between the distance measurement data Dr and the comparison data Dc for each pixel. The normal condition is that the difference in the intensity ratio between the emission intensity and the light reception intensity at the light reception peak is within the allowable intensity range, and the difference in the light reception timing for the light reception peak is within the allowable time range. Here, the allowable intensity range is the range in which the intensity ratio is equal to or smaller than the threshold value. Also, the allowable time range is the range in which the difference in the light reception timing is equal to or smaller than the threshold value. The allowable time range may be set to a smaller range as the traveling speed of the autonomous guided vehicle 2 is slower. When there are multiple light reception peaks, the output block 130 determines whether the normal condition is satisfied for all light reception peaks. The output block 130 may identify the light reception peak of the comparison data Dc corresponding to a specific light reception peak in the distance measurement data Dr as the light reception peak with the smallest difference in light reception timing from the specific light reception peak.
 例えば、測距データDrにおける特定の受光ピークの受光強度をIra、受光タイミングをTaとおき、比較データDcにおいて対応する受光ピークの受光強度をIrb、受光タイミングをTbとおく。特定の受光ピークについて正規条件が成立する場合、以下の数式(1)(2)の関係がそれぞれ満たされることになる。
 (数1)
 |Ira-(Iia/Iib)Irb|≦Ei ・・・(1)
 (数2)
 |Ta-Tb|≦Et ・・・(2)
For example, the light receiving intensity of a particular light receiving peak in the distance measurement data Dr is Ira, the light receiving timing is Ta, and the light receiving intensity of the corresponding light receiving peak in the comparison data Dc is Irb, and the light receiving timing is Tb. When the normal condition is satisfied for the particular light receiving peak, the relationships in the following formulas (1) and (2) are satisfied.
(Equation 1)
|Ira-(Iia/Iib)Irb|≦Ei ... (1)
(Equation 2)
|Ta-Tb|≦Et ... (2)
 尚、数式(1)におけるEiは、強度比の閾値である。又、数式(2)におけるEtは受光タイミングの差の閾値である。数式(1)(2)は、それぞれ閾値以下を許容強度範囲及び許容時間範囲としているが、上述したように少なくとも一方が閾値未満となる範囲であってもよい。数式(1)の関係を満たす受光ピーク、すなわち強度比の差が許容強度範囲内となる受光ピークは、各フレームFr,Fcにおける受光強度が発光強度に相関することになる。換言すれば、照射光Biに対する反射光Brに由来する受光ピークである可能性が比較的高いことになる。さらに、数式(2)の関係を満たす受光ピーク、すなわち受光タイミングの差が許容時間範囲内となる受光ピークは、同じターゲットTからの反射光Brに由来する可能性が比較的高い。したがって、正規条件が成立する受光ピークは、同じターゲットTからの反射光Brに由来すると推定できる受光ピークである。 Note that Ei in formula (1) is the threshold value of the intensity ratio. Et in formula (2) is the threshold value of the difference in light reception timing. Formulas (1) and (2) respectively have the allowable intensity range and allowable time range below the threshold, but as described above, at least one of them may be a range below the threshold. A light reception peak that satisfies the relationship of formula (1), i.e., a light reception peak where the difference in the intensity ratio is within the allowable intensity range, has a light reception intensity in each frame Fr, Fc that correlates with the emission intensity. In other words, there is a relatively high possibility that the light reception peak is derived from the reflected light Br of the irradiated light Bi. Furthermore, there is a relatively high possibility that a light reception peak that satisfies the relationship of formula (2), i.e., a light reception peak where the difference in the light reception timing is within the allowable time range, is derived from the reflected light Br from the same target T. Therefore, a light reception peak for which the normal condition is satisfied is a light reception peak that can be estimated to be derived from the reflected light Br from the same target T.
 S80にて1つの走査ラインLにおける各画素の全受光ピークについて正規条件成立の判定が下された場合には、出力ブロック130は、全受光ピークが反射光Br由来である正規のデータとして測距データDrを採用する。 If it is determined in S80 that the normal condition is met for all light reception peaks of each pixel in one scan line L, the output block 130 adopts the distance measurement data Dr as normal data in which all light reception peaks are derived from reflected light Br.
 一方で、S80にて正規条件不成立の受光ピークがあるとの判定が下された場合には、本フローはS100へと移行する。例えば図6,7の最も受光タイミングが遅い受光ピークは、強度比の差が許容強度範囲外となる、各フレームFr,Fcにおける受光強度が発光強度に相関しない受光ピークである。S100では、出力ブロック130が、こうした正規条件不成立の受光ピークが存在する測距データDrから、当該受光ピークをクロストーク光Bcに由来する受光ピークとして除外した除外済データを生成する。 On the other hand, if it is determined in S80 that there is a light reception peak for which the normal condition is not met, the flow proceeds to S100. For example, the light reception peak with the latest light reception timing in Figures 6 and 7 is a light reception peak for which the difference in intensity ratio falls outside the allowable intensity range and the light reception intensity in each frame Fr, Fc is not correlated with the emission intensity. In S100, the output block 130 generates excluded data by excluding such light reception peaks for which the normal condition is not met from the distance measurement data Dr that contains such light reception peaks as light reception peaks resulting from crosstalk light Bc.
 続くS110では、出力ブロック130が、全走査ラインLに対して正規条件の成立判定が完了したか否かを判定する。正規条件の成立判定未完了との判定が下された場合には、本フローはS50へと戻る。一方で、S110にて正規条件の成立判定完了との判定が下された場合には、本フローはS120へと移行する。S120では、出力ブロック130が、画素ごとの正規条件の成立した測距データDr又は除外済みデータを、全走査ラインLにわたって合成することで、距離画像を生成する。 In the next step S110, the output block 130 determines whether the determination of whether the normal conditions are satisfied has been completed for all scan lines L. If it is determined that the determination of whether the normal conditions are satisfied has not been completed, the flow returns to S50. On the other hand, if it is determined in S110 that the determination of whether the normal conditions are satisfied has been completed, the flow proceeds to S120. In S120, the output block 130 generates a distance image by synthesizing the distance measurement data Dr or the excluded data for each pixel for which the normal conditions are satisfied across all scan lines L.
 尚、以上の設定ブロック110、取得ブロック120、出力ブロック130は、それぞれ設定部、取得部、出力部と称することもできる。又、出力ブロック130は、除外部と称することもできる。 The setting block 110, acquisition block 120, and output block 130 can also be referred to as a setting section, an acquisition section, and an output section, respectively. The output block 130 can also be referred to as an exclusion section.
 以上の第一実施形態によれば、発光強度の異なる検出データにおいて正規条件が不成立となる受光ピークが、測距データから除外される。他の光源からのクロストーク光は、受光強度が光学センサの発光強度によらず、受光タイミングも大きく変化し得るため、正規条件が不成立の受光ピークは、クロストーク光に由来するものとなり得る。したがって、誤検知を抑制可能となる。 According to the first embodiment described above, light reception peaks for which the normal conditions are not met in detection data with different light emission intensities are excluded from the distance measurement data. Since the light reception intensity of crosstalk light from other light sources does not depend on the light emission intensity of the optical sensor and the light reception timing can change significantly, light reception peaks for which the normal conditions are not met can be attributed to crosstalk light. Therefore, it is possible to suppress erroneous detection.
 又、第一実施形態によれば、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさが設定される。故に、受光ピークの正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。 Furthermore, according to the first embodiment, the magnitude of the comparative light emission intensity Iib relative to the distance measurement light emission intensity Iia is set. Therefore, a more appropriate comparative light emission intensity Iib can be set for determining whether the normal condition for the light reception peak is satisfied.
 さらに、第一実施形態によれば、背景光データにおける受光強度の時間変化幅が許容幅範囲外となる場合に、比較発光強度Iibの大きさが時間変化幅に応じて設定される。故に、背景光データにより、外部光源3からのクロストーク光Bcの受光強度が推定され得る。したがって、より適切な比較発光強度Iibが設定され得る。 Furthermore, according to the first embodiment, when the time-varying width of the received light intensity in the background light data falls outside the allowable range, the magnitude of the comparative emission intensity Iib is set according to the time-varying width. Therefore, the received light intensity of the crosstalk light Bc from the external light source 3 can be estimated from the background light data. Therefore, a more appropriate comparative emission intensity Iib can be set.
 加えて、第一実施形態によれば、比較フレームFcに先行する測距フレームFrにおける測距データDrでの受光ピークの受光強度に応じて比較発光強度Iibの相対的な大きさが設定される。故に、測距フレームFrでの受光ピークの受光強度に応じて、受光ピークの正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。さらに、第一実施形態においては注目距離範囲内に含まれる受光ピークの受光強度に応じて比較発光強度Iibの相対的な大きさが設定される。したがって、注目する必要性の高い距離範囲の受光ピークについて、正規条件成立判定のためのより適切な比較発光強度Iibが設定され得る。 In addition, according to the first embodiment, the relative magnitude of the comparative emission intensity Iib is set according to the light receiving intensity of the light receiving peak in the distance measurement data Dr in the distance measurement frame Fr preceding the comparison frame Fc. Therefore, a more appropriate comparative emission intensity Iib for determining whether the normal condition is met for the light receiving peak can be set according to the light receiving intensity of the light receiving peak in the distance measurement frame Fr. Furthermore, in the first embodiment, the relative magnitude of the comparative emission intensity Iib is set according to the light receiving intensity of the light receiving peak included in the attention distance range. Therefore, a more appropriate comparative emission intensity Iib for determining whether the normal condition is met can be set for light receiving peaks in a distance range that requires high attention.
 又、第一実施形態によれば、ターゲットTとしての搬送物を搬送する自律搬送車両2に搭載された光学センサ1にて生成された検出データが処理される。こうした車両は、公道を走行する一般的な車両と比較して走行速度が比較的小さくなり得る。光学センサ1の搭載された移動体の走行速度が小さいほど、受光ピークにおける測距フレームFrでの受光タイミングと比較フレームFcでの受光タイミングとの時間差が小さくなり得る。したがって、第一実施形態におけるデータ処理方法により適した移動体に搭載された光学センサ1にて、データ処理方法を実行可能となる。 Furthermore, according to the first embodiment, the detection data generated by the optical sensor 1 mounted on the autonomous transport vehicle 2 that transports the transported object as the target T is processed. Such vehicles can have a relatively slow running speed compared to general vehicles that travel on public roads. The slower the running speed of the moving body on which the optical sensor 1 is mounted, the smaller the time difference between the light reception timing in the ranging frame Fr at the light reception peak and the light reception timing in the comparison frame Fc can be. Therefore, the data processing method can be executed by the optical sensor 1 mounted on a moving body that is more suitable for the data processing method in the first embodiment.
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
Other Embodiments
Although several embodiments have been described above, the present disclosure should not be construed as being limited to those embodiments, and can be applied to various embodiments and combinations within the scope not departing from the gist of the present disclosure.
 変形例において、光学センサ1は、公道を走行する車両に搭載されてもよい。この場合、光学センサ1は、車両の走行速度が閾値以下又は未満となる速度範囲内において、上述したデータ処理方法を実行するようにしてもよい。 In a modified example, the optical sensor 1 may be mounted on a vehicle traveling on a public road. In this case, the optical sensor 1 may execute the above-described data processing method within a speed range in which the traveling speed of the vehicle is equal to or less than a threshold value.
 変形例において、測距フレームFrに対応する比較フレームFcは、測距フレームFrに先行するフレームであってもよい。この場合、設定ブロック110は、測距発光強度Iiaの大きさを直接設定することで、比較発光強度Iibの測距発光強度Iiaに対する相対的な大きさを設定すればよい。 In a modified example, the comparison frame Fc corresponding to the ranging frame Fr may be a frame preceding the ranging frame Fr. In this case, the setting block 110 may set the relative magnitude of the comparison light emission intensity Iib to the ranging light emission intensity Iia by directly setting the magnitude of the ranging light emission intensity Iia.
 変形例において制御ユニット100を構成する専用コンピュータは、デジタル回路及びアナログ回路のうち、少なくとも一方をプロセッサとして有していてもよい。ここでデジタル回路とは、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、及びCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。又こうしたデジタル回路は、プログラムを記憶したメモリを、有していてもよい。 In a modified example, the dedicated computer constituting the control unit 100 may have at least one of a digital circuit and an analog circuit as a processor. Here, the digital circuit is at least one of the following types: ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), SOC (System on a Chip), PGA (Programmable Gate Array), and CPLD (Complex Programmable Logic Device). Such a digital circuit may also have a memory that stores a program.
 ここまでの説明形態の他に上述の実施形態及び変形例は、自律搬送車両2に搭載可能に構成されてプロセッサ及びメモリを少なくとも一つずつ有する制御装置として、処理回路(例えば処理ECU等)又は半導体装置(例えば半導体チップ等)の形態で実施されてもよい。 In addition to the forms described so far, the above-mentioned embodiments and modified examples may be implemented in the form of a processing circuit (e.g., a processing ECU, etc.) or a semiconductor device (e.g., a semiconductor chip, etc.) as a control device that is configured to be mountable on the autonomous transport vehicle 2 and has at least one processor and one memory.
 (付記)
 この明細書には、以下に列挙する複数の技術的思想と、それらの複数の組み合わせが開示されている。
(Additional Note)
This specification discloses the following technical ideas and combinations thereof.
 (技術的思想1)
 プロセッサ(102)を有し、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するデータ処理装置であって、
 前記プロセッサは、
 測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
 前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
 を実行するように構成されるデータ処理装置。
(Technical Concept 1)
A data processing device having a processor (102) for processing detection data generated by an optical sensor (1) that detects a target (T) by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A), the data processing device comprising:
The processor,
acquiring the detection data including: distance measurement data including physical information regarding a light reception peak in the reflected light received in response to the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame; and comparison data including the physical information regarding the light reception peak in the reflected light in response to the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
excluding, from the distance measurement data, the light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls within an allowable time range is not satisfied between the distance measurement data and the comparison data;
23. A data processing apparatus configured to:
 (技術的思想2)
 前記比較発光強度の前記測距発光強度に対する相対的な大きさを設定することをさらに実行するように構成される技術的思想1に記載のデータ処理装置。
(Technical Concept 2)
The data processing device according to Technical Idea 1, further configured to set a relative magnitude of the comparative emission intensity with respect to the distance measurement emission intensity.
 (技術的思想3)
 前記検出データを取得することは、
 前記照射光の照射停止期間における前記受光強度を含む停止データを取得することを含み、
 前記比較発光強度の相対的な大きさを設定することは、
 前記停止データにおける前記受光強度の時間変化幅が許容幅範囲外となる場合に、前記比較発光強度の大きさを前記時間変化幅に応じて設定することを含む技術的思想2に記載のデータ処理装置。
(Technical Concept 3)
The acquiring of the detection data includes:
acquiring stop data including the received light intensity during a period when irradiation of the irradiation light is stopped;
Setting the relative magnitude of the comparative emission intensity includes:
The data processing device according to Technical Idea 2 includes, when a time-varying width of the received light intensity in the stop data falls outside an allowable range, setting a magnitude of the comparative light emission intensity in accordance with the time-varying width.
 (技術的思想4)
 前記比較発光強度の相対的な大きさを設定することは、
 前記比較フレームに先行する前記測距フレームにおける前記測距データでの前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む技術的思想2又は技術的思想3に記載のデータ処理装置。
(Technical Concept 4)
Setting the relative magnitude of the comparative emission intensity includes:
A data processing device according to Technical Idea 2 or Technical Idea 3, which includes setting the relative magnitude of the comparative emission intensity according to the received light intensity of the received light peak in the distance measurement data in the distance measurement frame preceding the comparison frame.
 (技術的思想5)
 前記比較発光強度の相対的な大きさを設定することは、
 注目距離範囲内に含まれる前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む技術的思想4に記載のデータ処理装置。
(Technical Concept 5)
Setting the relative magnitude of the comparative emission intensity includes:
The data processing device according to Technical Idea 4, further comprising setting a relative magnitude of the comparative emission intensity in accordance with the received light intensity of the received light peak included within a distance range of interest.
 (技術的思想6)
 前記ターゲットとしての搬送物を搬送する搬送車両に搭載された前記光学センサにて生成された前記検出データを処理する技術的思想1から技術的思想5のいずれか1項に記載のデータ処理装置。
(Technical Concept 6)
A data processing device according to any one of Technical Ideas 1 to 5, which processes the detection data generated by the optical sensor mounted on a transport vehicle that transports the transported object as the target.
 尚、以上において技術的思想1~6は、光学センサ1、方法及びプログラムの形態で実現されてもよい。 In addition, the above technical ideas 1 to 6 may be realized in the form of an optical sensor 1, a method, and a program.

Claims (9)

  1.  プロセッサ(102)を有し、検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するデータ処理装置であって、
     前記プロセッサは、
     測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
     前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
     を実行するように構成されるデータ処理装置。
    A data processing device having a processor (102) for processing detection data generated by an optical sensor (1) that detects a target (T) by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A), the data processing device comprising:
    The processor,
    acquiring the detection data including: distance measurement data including physical information regarding a light reception peak in the reflected light received in response to the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame; and comparison data including the physical information regarding the light reception peak in the reflected light in response to the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
    excluding, from the distance measurement data, the light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls within an allowable time range is not satisfied between the distance measurement data and the comparison data;
    23. A data processing apparatus configured to:
  2.  前記比較発光強度の前記測距発光強度に対する相対的な大きさを設定することをさらに実行するように構成される請求項1に記載のデータ処理装置。 The data processing device according to claim 1, further configured to set the relative magnitude of the comparison emission intensity to the ranging emission intensity.
  3.  前記検出データを取得することは、
     前記照射光の照射停止期間における前記受光強度を含む停止データを取得することを含み、
     前記比較発光強度の相対的な大きさを設定することは、
     前記停止データにおける前記受光強度の時間変化幅が許容幅範囲外となる場合に、前記比較発光強度の大きさを前記時間変化幅に応じて設定することを含む請求項2に記載のデータ処理装置。
    The acquiring of the detection data includes:
    acquiring stop data including the received light intensity during a period when irradiation of the irradiation light is stopped;
    Setting the relative magnitude of the comparative emission intensity includes:
    3. The data processing device according to claim 2, further comprising: when a time-varying width of the received light intensity in the stop data falls outside an allowable range, setting a magnitude of the comparative light emission intensity in accordance with the time-varying width.
  4.  前記比較発光強度の相対的な大きさを設定することは、
     前記比較フレームに先行する前記測距フレームにおける前記測距データでの前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む請求項2に記載のデータ処理装置。
    Setting the relative magnitude of the comparative emission intensity includes:
    3. The data processing apparatus according to claim 2, further comprising setting a relative magnitude of the comparative emission intensity in accordance with the received light intensity of the peak of received light in the distance measurement data in the distance measurement frame preceding the comparison frame.
  5.  前記比較発光強度の相対的な大きさを設定することは、
     注目距離範囲内に含まれる前記受光ピークの前記受光強度に応じて前記比較発光強度の相対的な大きさを設定することを含む請求項4に記載のデータ処理装置。
    Setting the relative magnitude of the comparative emission intensity includes:
    5. The data processing apparatus according to claim 4, further comprising setting a relative magnitude of the comparative emission intensity in accordance with the received light intensity of the received light peak included within a distance range of interest.
  6.  前記ターゲットとしての搬送物を搬送する搬送車両(2)に搭載された前記光学センサにて生成された前記検出データを処理する請求項1に記載のデータ処理装置。 The data processing device according to claim 1, which processes the detection data generated by the optical sensor mounted on the transport vehicle (2) that transports the target object.
  7.  検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサであって、
     前記照射光を照射する発光ユニット(10)と、
     前記反射光を受光する受光ユニット(30)と、
     前記受光ユニットからの検出データを取得する制御ユニット(100)と、
     を備え、
     前記制御ユニットは、
     測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得する取得部(120)と、
     前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外する除外部(130)と、
     を有する光学センサ。
    An optical sensor that detects a target by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A) that is reflected by the target (T),
    A light-emitting unit (10) that irradiates the irradiation light;
    a light receiving unit (30) for receiving the reflected light;
    A control unit (100) for acquiring detection data from the light receiving unit;
    Equipped with
    The control unit
    an acquisition unit (120) that acquires the detection data including distance measurement data including physical information regarding a light reception peak in the reflected light received for the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame, and comparison data including the physical information regarding the light reception peak in the reflected light for the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
    an exclusion unit (130) that excludes from the distance measurement data a light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls within an allowable time range is not satisfied between the distance measurement data and the comparison data;
    An optical sensor having
  8.  検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するために、プロセッサ(102)により実行されるデータ処理方法であって、
     測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
     前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
     を含むデータ処理方法。
    A data processing method executed by a processor (102) for processing detection data generated by an optical sensor (1) that detects a target (T) by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A), comprising:
    acquiring the detection data including: distance measurement data including physical information regarding a light reception peak in the reflected light received in response to the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame; and comparison data including the physical information regarding the light reception peak in the reflected light in response to the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
    excluding, from the distance measurement data, the light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls within an allowable time range is not satisfied between the distance measurement data and the comparison data;
    Data processing methods, including:
  9.  検出エリア(A)に対する照射光(Bi)がターゲット(T)にて反射した反射光(Br)を受光することにより前記ターゲットを検出する光学センサ(1)にて生成された検出データを処理するために記憶媒体(101)に記憶され、プロセッサ(102)に実行させる命令を含むデータ処理プログラムであって、
     前記命令は、
     測距フレームでの発光強度である測距発光強度にて照射された前記照射光に対して受光された前記反射光における受光ピークに関する物理情報を含む測距データと、前記測距フレームと異なる比較フレームにおいて、前記測距発光強度と異なる比較発光強度にて照射された前記照射光に対する前記反射光における前記受光ピークに関する前記物理情報を含む比較データと、を含む前記検出データを取得することと、
     前記測距データと前記比較データとの間において、前記発光強度と前記受光ピークでの受光強度との強度比の差が許容強度範囲内且つ前記受光ピークにおける受光タイミングの差が許容時間範囲内となる正規条件が不成立となる前記受光ピークを、前記測距データから除外することと、
     を含むデータ処理プログラム。
    A data processing program stored in a storage medium (101) for processing detection data generated by an optical sensor (1) that detects a target (T) by receiving reflected light (Br) of irradiation light (Bi) onto a detection area (A), the data processing program including instructions to be executed by a processor (102),
    The instruction:
    acquiring the detection data including: distance measurement data including physical information regarding a light reception peak in the reflected light received in response to the irradiation light irradiated at a distance measurement light emission intensity that is an emission intensity in a distance measurement frame; and comparison data including the physical information regarding the light reception peak in the reflected light in response to the irradiation light irradiated at a comparative light emission intensity different from the distance measurement light emission intensity in a comparison frame different from the distance measurement frame;
    excluding, from the distance measurement data, the light reception peak for which a normal condition that a difference in an intensity ratio between the emission intensity and the light reception intensity at the light reception peak falls within an allowable intensity range and a difference in light reception timing at the light reception peak falls within an allowable time range is not satisfied between the distance measurement data and the comparison data;
    A data processing program including:
PCT/JP2023/035322 2022-10-28 2023-09-28 Data processing device, optical sensor, data processing method, and data processing program WO2024090116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-173227 2022-10-28
JP2022173227A JP2024064554A (en) 2022-10-28 2022-10-28 Data processing device, optical sensor, data processing method, and data processing program

Publications (1)

Publication Number Publication Date
WO2024090116A1 true WO2024090116A1 (en) 2024-05-02

Family

ID=90830599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035322 WO2024090116A1 (en) 2022-10-28 2023-09-28 Data processing device, optical sensor, data processing method, and data processing program

Country Status (2)

Country Link
JP (1) JP2024064554A (en)
WO (1) WO2024090116A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167120A (en) * 2016-03-10 2017-09-21 株式会社リコー Distance measurement device, moving body, robot, device and three-dimensional measurement method
US20200158876A1 (en) * 2018-11-21 2020-05-21 Zoox, Inc. Intensity and Depth Measurements in Time-of-Flight Sensors
JP2021535406A (en) * 2018-08-24 2021-12-16 ベロダイン ライダー ユーエスエー,インコーポレイテッド Systems and methods to reduce optical crosstalk in photodetection and ranging systems
JP2022506031A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Methods and systems for retroreflector mapping
WO2022034856A1 (en) * 2020-08-13 2022-02-17 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2022190634A1 (en) * 2021-03-12 2022-09-15 オムロン株式会社 Transport possibility determining device, distance measuring device, transportation unit, transport possibility determining method, and transport possibility determining program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167120A (en) * 2016-03-10 2017-09-21 株式会社リコー Distance measurement device, moving body, robot, device and three-dimensional measurement method
JP2021535406A (en) * 2018-08-24 2021-12-16 ベロダイン ライダー ユーエスエー,インコーポレイテッド Systems and methods to reduce optical crosstalk in photodetection and ranging systems
JP2022506031A (en) * 2018-11-02 2022-01-17 ウェイモ エルエルシー Methods and systems for retroreflector mapping
US20200158876A1 (en) * 2018-11-21 2020-05-21 Zoox, Inc. Intensity and Depth Measurements in Time-of-Flight Sensors
WO2022034856A1 (en) * 2020-08-13 2022-02-17 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2022190634A1 (en) * 2021-03-12 2022-09-15 オムロン株式会社 Transport possibility determining device, distance measuring device, transportation unit, transport possibility determining method, and transport possibility determining program

Also Published As

Publication number Publication date
JP2024064554A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
CN109959942B (en) Distance measuring apparatus, identifying apparatus, and distance measuring method
US11609329B2 (en) Camera-gated lidar system
US11579254B2 (en) Multi-channel lidar sensor module
US20190310375A1 (en) Automatic gain control for lidar for autonomous vehicles
US10242262B2 (en) Dynamic adjustment of imaging parameters
US11961306B2 (en) Object detection device
US11908119B2 (en) Abnormality detection device for vehicle
JP2011247872A (en) Distance measurement device, distance measurement method, and distance measurement program
US20200300988A1 (en) Electronic apparatus and method
KR102664396B1 (en) LiDAR device and operating method of the same
WO2024090116A1 (en) Data processing device, optical sensor, data processing method, and data processing program
US20230219532A1 (en) Vehicle control device, vehicle control method, and computer program product
US11181364B2 (en) Object detection system and method for a motor vehicle
JP2022125966A (en) Ranging correction device, ranging correction method, ranging correction program, and ranging device
WO2020116232A1 (en) Control device, control method, and program
WO2022176679A1 (en) Distance measurement correction device, distance measurement correction method, distance measurement correction program, and distance measurement device
US20220404499A1 (en) Distance measurement apparatus
JP2004325202A (en) Laser radar system
CN117471431B (en) Laser radar optical power automatic gain adjustment method, device and system
WO2023079944A1 (en) Control device, control method, and control program
EP4303615A1 (en) Lidar system and method to operate
US20230078063A1 (en) Distance measurement device and distance measurement system
JP7135846B2 (en) Object detection device and object detection method
WO2023047886A1 (en) Vehicle detection device, vehicle detection method, and vehicle detection program
CN117616304A (en) Distance measuring device and distance measuring method