WO2024090035A1 - Method for producing copolymer, and copolymer - Google Patents

Method for producing copolymer, and copolymer Download PDF

Info

Publication number
WO2024090035A1
WO2024090035A1 PCT/JP2023/032002 JP2023032002W WO2024090035A1 WO 2024090035 A1 WO2024090035 A1 WO 2024090035A1 JP 2023032002 W JP2023032002 W JP 2023032002W WO 2024090035 A1 WO2024090035 A1 WO 2024090035A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
compound
mass
producing
ring
Prior art date
Application number
PCT/JP2023/032002
Other languages
French (fr)
Japanese (ja)
Inventor
オリビエ タルディフ
悟司 浜谷
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024090035A1 publication Critical patent/WO2024090035A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the present invention relates to a method for producing a copolymer, and to the copolymer.
  • vulcanized rubber can be decomposed by devulcanization using a solvent, but the decomposition conditions are unavoidably strict.
  • the polymer (rubber component) that is the main component of a rubber product is easily decomposed in the first place, used rubber products can be easily decomposed and the obtained material can be easily reused.
  • an easily decomposable polymer can be obtained by introducing an easily decomposable segment into an unsaturated hydrocarbon segment that exhibits viscoelastic behavior.
  • an object of the present invention is to provide a method for producing an easily decomposable polymer. Another object of the present invention is to provide an easily decomposable polymer obtained by the method for producing such a polymer.
  • the method for producing the copolymer of the present invention which solves the above problems, and the main configuration of the copolymer are as follows:
  • a method for producing a copolymer characterized by ring-opening polymerization of a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds, an unsaturated heterocyclic compound (B) containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds, and a compound (C) having a norbornene skeleton, as monomers.
  • a method for producing an easily decomposable copolymer can be provided. Furthermore, according to the present invention, it is possible to provide an easily decomposable copolymer obtained by the method for producing such a copolymer.
  • the compounds described herein may be derived in whole or in part from fossil sources, from biological sources such as plant sources, from recycled sources such as used tires, or from a mixture of two or more of fossil sources, biological sources, and/or renewable sources.
  • the method for producing the copolymer of the present embodiment is characterized by ring-opening polymerization of monomers: a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds; an unsaturated heterocyclic compound (B) containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds; and a compound (C) having a norbornene skeleton.
  • the segment derived from the cyclic unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, and imparts elastomeric properties to the copolymer itself and to a composition containing the copolymer. Furthermore, in the copolymer obtained by the production method of a copolymer of the present embodiment, the segment derived from the unsaturated heterocyclic compound (B) contains oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling decomposition of the copolymer itself and a composition containing the copolymer. Therefore, the copolymer obtained by the method for producing a copolymer of the present embodiment is easily decomposed.
  • the present inventors have found that polymerization is difficult to proceed when only the cyclic unsaturated hydrocarbon compound (A) and the unsaturated heterocyclic compound (B) are used as monomers.
  • the present inventors have found that ring-opening polymerization proceeds quickly by adding a compound (C) having a norbornene skeleton as a monomer. Therefore, according to the method for producing a copolymer of the present embodiment, a polymer that is easily decomposed can be efficiently obtained.
  • -Cyclic unsaturated hydrocarbon compound (A)- The method for producing a copolymer of this embodiment uses, as one of the monomers, a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds.
  • the cyclic unsaturated hydrocarbon compound (A) has one or two carbon-carbon double bonds in the main chain of the ring, and the main chain of the ring is a hydrocarbon.
  • the cyclic unsaturated hydrocarbon compound (A) may have a substituent other than a hydrocarbon group in the side chain.
  • examples of the hydrocarbon group that can be bonded to the side chain include an alkyl group
  • examples of the substituent other than a hydrocarbon group that can be bonded to the side chain include a halogen group.
  • the cyclic unsaturated hydrocarbon compound (A) is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization).
  • the segment (monomer unit) derived from the cyclic unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, imparting elastomeric properties to the copolymer itself and to a composition containing the copolymer.
  • the cyclic unsaturated hydrocarbon compound (A) is preferably a compound having a 6- to 10-membered ring.
  • the cyclic unsaturated hydrocarbon compound (A) preferably has 6 to 10 carbon atoms.
  • the cyclic unsaturated hydrocarbon compound (A) preferably has two carbon-carbon double bonds. In these cases, the reactivity of the cyclic unsaturated hydrocarbon compound (A) in the ring-opening polymerization is improved.
  • the cyclic unsaturated hydrocarbon compound (A) is represented by the following general formula (1): [wherein R 1 is each independently a halogen atom or an alkyl group, and n 1 is an integer of 0 to 12] is preferred.
  • examples of the halogen atom include fluorine, chlorine, and bromine.
  • examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 1 is a substituent of the cyclooctadiene ring and may substitute any hydrogen atom bonded to the cyclooctadiene ring, and n 1 is the number of substituents R 1 .
  • cyclooctadiene compound of the general formula (1) a commercially available product may be used, or a product synthesized according to a known method may be used. From the viewpoint of availability, etc., when n 1 is 0 or n 1 is an integer of 1 to 12, a compound in which R 1 is a halogen atom, a methyl group, or an ethyl group is preferred, and a compound in which R 1 is a methyl group is more preferred.
  • cyclooctadiene compound of the general formula (1) examples include 1,5-cyclooctadiene, 1-chloro-1,5-cyclooctadiene, 1,5-dichloro-1,5-cyclooctadiene, 1-methyl-1,5-cyclooctadiene, and 1,5-dimethyl-1,5-cyclooctadiene.
  • the cyclooctadiene compound represented by the above general formula (1) can be incorporated into a copolymer by ring-opening metathesis polymerization to form a butadiene segment.
  • the amount of the cyclic unsaturated hydrocarbon compound (A) used is preferably in the range of 60 to 99.99 mass% of the total amount of monomers used, more preferably in the range of 90 to 99.99 mass%, even more preferably in the range of 95 to 99.99 mass%, and particularly preferably in the range of 97 to 99.99 mass%.
  • the amount of the cyclic unsaturated hydrocarbon compound (A) used is 60 mass% or more of the total amount of monomers used, the resulting copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
  • -Unsaturated heterocyclic compound (B)- The method for producing a copolymer according to the present embodiment uses, as one of the monomers, a cyclic unsaturated heterocyclic compound (B) that contains oxygen or sulfur in the main chain of the ring and has one or two carbon-carbon double bonds.
  • a cyclic unsaturated heterocyclic compound (B) that contains oxygen or sulfur in the main chain of the ring and has one or two carbon-carbon double bonds.
  • "containing oxygen or sulfur in the main chain of the ring” means that one or more of the constituent atoms (constituent members) of the ring is oxygen or sulfur.
  • the cyclic unsaturated heterocyclic compound (B) is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization).
  • the segments (monomer units) derived from the unsaturated heterocyclic compound (B) contain oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling the decomposition of the copolymer itself and the composition containing the copolymer.
  • Enol ether moieties and enol thioether moieties are easily hydrolyzed by acids, etc., and when a copolymer has an enol ether moiety or an enol thioether moiety in the main chain, the main chain of the copolymer becomes easily cleaved and decomposed.
  • the unsaturated heterocyclic compound (B) is represented by the following general formula (2): [wherein, each R 2 is independently a halogen atom or an alkyl group, and n 2 is an integer of 0 to 6.] is preferred.
  • examples of the halogen atom include fluorine, chlorine, and bromine.
  • examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R2 is a substituent of the dihydrofuran ring and may substitute any hydrogen atom bonded to the dihydrofuran ring, and n2 is the number of substituents R2 .
  • dihydrofuran compound of the general formula (2) commercially available products may be used, or products synthesized according to known methods may be used. From the viewpoint of availability, etc., when n2 is 0 or n2 is an integer of 1 to 6, a compound in which R2 is a halogen atom, a methyl group, or an ethyl group is preferred, and a compound in which R2 is a methyl group is more preferred.
  • Examples of the dihydrofuran compound of the general formula (2) include 2,3-dihydrofuran, 5-methyl-2,3-dihydrofuran, etc.
  • the amount of the unsaturated heterocyclic compound (B) used is preferably 0.005 to 40% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, more preferably 0.005 to 10% by mass, even more preferably 0.005 to 5% by mass, and particularly preferably 0.005 to 3% by mass.
  • the amount of the unsaturated heterocyclic compound (B) used is 0.005% by mass or more of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the copolymer itself and the composition containing the copolymer are easily decomposed.
  • the copolymer when the amount of the unsaturated heterocyclic compound (B) used is 40% by mass or less of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products. Furthermore, when the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 40% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, a copolymer that is easily decomposed and has sufficient elastomeric properties is obtained.
  • the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 10% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ease of decomposition of the copolymer and the elastomeric properties of the copolymer can be highly compatible.
  • the amount of the unsaturated heterocyclic compound (B) used is preferably 0.005% by mass or more, more preferably 40% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably 3% by mass or less, of the total amount of monomers used. If the amount of the unsaturated heterocyclic compound (B) used is 0.005% by mass or more of the total amount of monomers used, the resulting copolymer itself and the composition containing the copolymer are easily decomposed.
  • the amount of the unsaturated heterocyclic compound (B) used is 3% by mass or less of the total amount of monomers used, a copolymer having excellent elastomeric properties is obtained, and the copolymer is particularly suitable for use in rubber products.
  • a compound (C) having a norbornene skeleton is used as one of the monomers.
  • ring-opening polymerization proceeds quickly, and the copolymer can be efficiently obtained.
  • the compound (C) having a norbornene skeleton is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization).
  • the segment (monomer unit) derived from the compound (C) having a norbornene skeleton becomes a segment containing a cyclopentane ring in the main chain.
  • the compound (C) having a norbornene skeleton is represented by the following general formula (3): [wherein R 3 is each independently a halogen atom, an alkyl group, or an alkenyl group, two R 3s bonded to the same carbon atom may together form an alkylidene group, and n 3 is an integer of 0 to 10.] is preferred.
  • the halogen atom include fluorine, chlorine, and bromine.
  • examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • examples of the alkenyl group include an alkenyl group having 2 to 5 carbon atoms, such as a vinyl group and an allyl group.
  • R3 is a substituent of the norbornene ring and may substitute any hydrogen atom bonded to the norbornene ring, and n3 is the number of substituents R3 .
  • the norbornene compound of the general formula (3) may be a commercially available product or may be synthesized according to a known method. From the viewpoint of availability, etc., when n 3 is 0 or n 3 is an integer of 1 to 10, a compound in which R 3 is a halogen atom, a methyl group, or an ethyl group, or a compound in which two R 3s bonded to the same carbon atom together form an ethylidene group, are preferred.
  • Examples of the norbornene compound of the general formula (3) include norbornene, 5-methyl-2-norbornene, 5-vinyl-2-norbornene, and 5-ethylidene-2-norbornene.
  • the amount of the compound (C) having a norbornene skeleton is preferably 0.005 to 40% by mass, more preferably 0.005 to 10% by mass, even more preferably 0.005 to 5% by mass, and particularly preferably 0.005 to 3% by mass, of the amount of the cyclic unsaturated hydrocarbon compound (A) used.
  • the amount of the compound (C) having a norbornene skeleton is 0.005% by mass or more of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ring-opening polymerization is more likely to proceed.
  • the resulting copolymer has sufficient elastomeric properties and can be suitably used for rubber products.
  • the amount of the compound (C) having a norbornene skeleton is 0.005 to 10% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ease of synthesis of the copolymer and the elastomeric properties of the copolymer can be highly compatible.
  • the amount of the compound (C) having a norbornene skeleton used is preferably in the range of 0.005 to 40 mass% of the total amount of monomers used, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%.
  • the amount of the compound (C) having a norbornene skeleton used is 0.005 mass% or more of the total amount of monomers used, ring-opening polymerization is more likely to proceed.
  • the amount of the compound (C) having a norbornene skeleton used is 40 mass% or less of the total amount of monomers used, the resulting copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
  • the amount of the other monomer (D) used is preferably in the range of 0.005 to 40 mass% of the total amount of the monomers used, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%.
  • the above-mentioned monomers are subjected to ring-opening polymerization, preferably ring-opening metathesis polymerization.
  • ring-opening polymerization preferably ring-opening metathesis polymerization.
  • a cyclooctadiene compound represented by the above general formula (1), a dihydrofuran compound represented by the above general formula (2), and a norbornene compound represented by the above general formula (3) to ring-opening metathesis polymerization.
  • a known catalyst can be used.
  • a known catalyst can also be used, and examples of such catalysts include transition metal complexes such as titanium complexes, zirconium complexes, molybdenum complexes, ruthenium complexes, tantalum complexes, tungsten complexes, and rhenium complexes.
  • transition metal-carbene complexes such as Grubbs first generation catalysts, Grubbs second generation catalysts, and Hoveyda-Grubbs catalysts, are preferred.
  • the Grubbs second generation catalysts are represented by the following structural formula: and commercially available products are available.
  • the amount of the catalyst used is, for example, preferably 0.00001 to 0.1 mol, more preferably 0.0001 to 0.01 mol, and particularly preferably 0.0001 to 0.001 mol, per mol of the raw material monomer.
  • the reaction temperature is preferably -50°C to 200°C, more preferably 0 to 200°C.
  • the reaction time is preferably 1 to 24 hours, more preferably 1 to 6 hours.
  • the reaction pressure may be increased, reduced, or atmospheric pressure, but atmospheric pressure is preferred.
  • the reaction atmosphere is preferably an inert gas atmosphere such as nitrogen or argon.
  • the ring-opening polymerization may be carried out in a batch manner or a flow manner.
  • the ring-opening polymerization may be carried out in a solvent, and the solvent is preferably a solvent inert to the reaction, such as an aliphatic halogen-based solvent such as dichloromethane, chloroform, or 1,2-dichloroethane; an ether-based solvent such as diethyl ether, tetrahydrofuran, or dioxane; an aromatic hydrocarbon-based solvent such as benzene, toluene, xylene, or mesitylene; an aromatic halogen-based solvent such as monochlorobenzene or dichlorobenzene; or an aliphatic hydrocarbon-based solvent such as hexane, heptane, octane, or cyclohexane.
  • a solvent inert to the reaction such as an aliphatic halogen-based solvent such as dichloromethane, chloroform, or 1,2-dichloroethane; an ether-based solvent such as die
  • the copolymer of the present embodiment is characterized in that it is obtained by the above-mentioned method for producing the copolymer of the present embodiment.
  • the segment derived from the unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, and imparts elastomeric properties to the copolymer itself and to a composition containing the copolymer.
  • the segment derived from the unsaturated heterocyclic compound (B) contains oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling decomposition of the copolymer itself and a composition containing the copolymer. Therefore, the copolymer of this embodiment is easily decomposed.
  • the proportion of the segments derived from the cyclic unsaturated hydrocarbon compound (A) in the copolymer of this embodiment is preferably in the range of 60 to 99.995 mass%, more preferably in the range of 90 to 99.995 mass%, even more preferably in the range of 95 to 99.995 mass%, and particularly preferably in the range of 97 to 99.995 mass%.
  • the proportion of the segments derived from the unsaturated hydrocarbon compound (A) in the copolymer is 60 mass% or more, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
  • the proportion of the segments derived from the unsaturated heterocyclic compound (B) is preferably in the range of 0.005 to 40 mass%, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%. If the proportion of the segments derived from the unsaturated heterocyclic compound (B) in the copolymer is 0.005 mass% or more, the copolymer itself and compositions containing the copolymer are easily decomposed. Furthermore, if the proportion of the segments derived from the unsaturated heterocyclic compound (B) in the copolymer is 40 mass% or less, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
  • the proportion of segments derived from the compound (C) having a norbornene skeleton is preferably in the range of 0.005 to 40 mass%, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%.
  • a copolymer in which the proportion of segments derived from the compound (C) having a norbornene skeleton is 0.005 mass% or more is easy to synthesize.
  • the proportion of segments derived from the compound (C) having a norbornene skeleton in the copolymer is 40 mass% or less, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
  • the proportion of the segments derived from other monomers (D) in the copolymer is preferably in the range of 0.005 to 40% by mass, more preferably in the range of 0.005 to 10% by mass, even more preferably in the range of 0.005 to 5% by mass, and particularly preferably in the range of 0.005 to 3% by mass.
  • the proportions of the segment derived from the cyclic unsaturated hydrocarbon compound (A), the segment derived from the unsaturated heterocyclic compound (B), the segment derived from the compound having a norbornene skeleton (C), and the segment derived from the other monomer (D) can be calculated from (1) the integral ratio of each peak in a 1 H-NMR spectrum, or (2) the amount of each monomer used in the production of the copolymer and the amount of each unreacted monomer, and the mass ratio of each content can be calculated from each calculated proportion.
  • the copolymer of the present embodiment preferably has a number average molecular weight (Mn) of 10,000 to 2,000,000, and more preferably 20,000 to 1,000,000.
  • Mn number average molecular weight
  • the copolymer can be suitably used for various rubber products such as tires, rubber crawlers, and seismic isolation rubber, and when the number average molecular weight (Mn) is 2,000,000 or less, the copolymer can be easily kneaded with various compounding agents for rubber products.
  • the copolymer of the present embodiment preferably has a weight average molecular weight (Mw) of 20,000 to 4,000,000, and more preferably 40,000 to 2,000,000.
  • the copolymer When the weight average molecular weight (Mw) is 20,000 or more, the copolymer can be suitably used for various rubber products such as tires, rubber crawlers, and seismic isolation rubber, and when the weight average molecular weight (Mw) is 4,000,000 or less, the copolymer can be easily mixed with various compounding agents for rubber products.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the copolymer are determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • copolymer of the present embodiment can be used in various rubber products, such as tires, rubber crawlers, and seismic isolation rubber. When used in these rubber products, the copolymer can be mixed with various compounding ingredients to form a rubber composition depending on the desired performance. If desired, the copolymer can also be blended with other rubber components.
  • Examples of the other rubber components include natural rubber (NR), synthetic diene rubber, non-diene rubber, etc.
  • the synthetic diene rubber include synthetic isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), styrene-isoprene rubber (SIR), chloroprene rubber (CR), ethylene-butadiene copolymer, ethylene-styrene-butadiene copolymer, etc.
  • Examples of the non-diene rubber include silicone rubber, fluororubber, urethane rubber, etc.
  • the compounding agents include fillers (carbon black, silica, etc.), softeners, wax, stearic acid, antioxidants, silane coupling agents, zinc oxide, vulcanization accelerators, and the like.
  • the copolymer of this embodiment is easily decomposed, and therefore the rubber composition containing the copolymer of this embodiment and the other rubber components and compounding agents is also easily decomposed. Furthermore, rubber products made from such rubber compositions are easily decomposed after use and can be easily reused.
  • the copolymer of the present embodiment is easily decomposed, particularly in the presence of acid, and the materials obtained by decomposing the copolymer of the present embodiment can be reused for various purposes, for example, as raw materials for producing copolymers, or as raw materials for synthesizing other chemical substances.
  • the acid may be an inorganic acid or an organic acid.
  • the inorganic acid include hydrochloric acid, sulfuric acid, and nitric acid.
  • the organic acid include formic acid, acetic acid, and propionic acid.
  • hydrochloric acid is preferred as the acid. When hydrochloric acid is used as the acid, the copolymer is more easily decomposed, and the waste liquid is also easily treated.
  • the decomposition temperature in the presence of the acid is not particularly limited, and is preferably in the range of 0°C to 100°C, and may be a temperature near room temperature of 15°C to 30°C.
  • the decomposition time in the presence of the acid is not particularly limited, and may be appropriately selected depending on the decomposition temperature and the properties of the copolymer, but is preferably 1 to 24 hours, and more preferably 1 to 6 hours.
  • the reaction pressure in the decomposition may be pressurized, reduced, or atmospheric pressure, but atmospheric pressure is preferred.
  • the reaction atmosphere is not particularly limited, and may be air or an inert gas atmosphere such as nitrogen or argon.
  • the decomposition in the presence of the acid is preferably carried out in a solvent.
  • the solvent used is preferably one in which the acid used is easily soluble, such as water or alcohol. Of these, water is the most preferred solvent. Water has excellent solubility for acids, and the waste liquid after use is also easy to treat.
  • ⁇ Polymer analysis method> (1) Method for Analyzing Proportion of Each Segment in a Polymer The proportions of the 1,5-cyclooctadiene-derived segment, the 2,3-dihydrofuran-derived segment, and the 5-ethylidene-2-norbornene-derived segment in a polymer were determined from the integral ratio of each peak in a 1 H-NMR (room temperature, CDCl 3 solvent) spectrum.
  • Example 1 Into a nitrogen-substituted glass vessel were placed 11.20 g (103.5 mmol) of 1,5-cyclooctadiene, 0.06 g (0.86 mmol) of 2,3-dihydrofuran, and 0.60 g (4.99 mmol) of 5-ethylidene-2-norbornene. The vessel was closed and purged with nitrogen for 5 minutes, after which 40 g of dehydrated tetrahydrofuran was added. Next, 2 mL of a 0.00718 M Ru catalyst (Grubbs second generation catalyst) in toluene was added to the vessel, and the polymerization reaction was carried out at room temperature for 180 minutes.
  • Ru catalyst Greens second generation catalyst
  • the reaction was then quenched by adding excess ethyl vinyl ether to the vessel and stirring for 30 minutes, after which the contents of the vessel were poured into a large amount of isopropanol solution containing BHT (2,6-di-tert-butyl-4-methylphenol) to precipitate the polymer, which was then filtered and dried under reduced pressure at 60° C. for 5 hours to obtain 10.4 g of polymer.
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • Examples 2 to 5, Comparative Examples 1 to 3 A polymer was obtained in the same manner as in Example 1, except that the amounts of 2,3-dihydrofuran used, 5-ethylidene-2-norbornene used, the molar concentration of the Ru catalyst in the toluene solution of the Ru catalyst used, the amount of the toluene solution of the Ru catalyst used, and the polymerization time were as shown in Table 1. The yields and masses of the produced polymers are shown in Table 1. In Comparative Example 3, no polymer was obtained.
  • copolymers obtained by the copolymer manufacturing method of the present invention can be used in a variety of rubber products, such as tires, rubber crawlers, and seismic isolation rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The problem addressed by the present invention is to provide a method for producing a polymer that is easily decomposed. The problem is resolved by a method for producing a polymer, said method characterized by performing ring-opening polymerization of the following monomers: a cyclic unsaturated hydrocarbon compound (A) having 4-12 carbon atoms and one or two carbon-carbon double bonds; an unsaturated heterocyclic compound (B) containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds; and a compound (C) having a norbornene skeleton.

Description

共重合体の製造方法、及び共重合体Method for producing copolymer, and copolymer
 本発明は、共重合体の製造方法、及び共重合体に関するものである。 The present invention relates to a method for producing a copolymer, and to the copolymer.
 従来、ゴム製品は、再利用し難く、製品寿命後は、特にセメント工場等を中心として燃料として再利用される場合が多い。しかしながら、昨今、環境問題の高まりと共に、使用済みのゴム製品を燃料として燃やすのではなく、使用済みのゴム製品を分解して得た材料を再利用する検討が行われている。例えば、加硫されたゴムを分解する手法としては、溶媒による脱硫等が挙げられる(特許文献1参照)。 Traditionally, rubber products have been difficult to reuse, and after the end of their lifespan, they have often been reused as fuel, particularly in cement plants. However, in recent years, with growing environmental concerns, there has been research into recycling materials obtained by decomposing used rubber products, rather than burning them as fuel. For example, one method for decomposing vulcanized rubber is desulfurization using a solvent (see Patent Document 1).
特開2000-128901号公報JP 2000-128901 A
 上記特許文献1等に記載のように、溶媒による脱硫等よって、加硫されたゴムを分解できるものの、分解条件は厳しくならざるを得ない。これに対して、ゴム製品の主成分である重合体(ゴム成分)がそもそも分解され易ければ、使用済みのゴム製品を容易に分解して、得られる材料を再利用し易くなる。例えば、粘弾性挙動を示す不飽和炭化水素セグメントに、分解され易いセグメントを導入することで、分解され易い重合体が得られるものと考えられる。
 しかしながら、従来、粘弾性挙動を示す不飽和炭化水素セグメントと、分解され易いセグメントと、を有する共重合体を得ることは、合成上困難であった。
As described in the above Patent Document 1, vulcanized rubber can be decomposed by devulcanization using a solvent, but the decomposition conditions are unavoidably strict. On the other hand, if the polymer (rubber component) that is the main component of a rubber product is easily decomposed in the first place, used rubber products can be easily decomposed and the obtained material can be easily reused. For example, it is thought that an easily decomposable polymer can be obtained by introducing an easily decomposable segment into an unsaturated hydrocarbon segment that exhibits viscoelastic behavior.
However, it has been conventionally difficult to synthesize a copolymer having an unsaturated hydrocarbon segment exhibiting viscoelastic behavior and an easily decomposable segment.
 そこで、本発明は、分解され易い重合体の製造方法を提供することを課題とする。
 また、本発明は、かかる重合体の製造方法で得られた、分解され易い重合体を提供することを更なる課題とする。
Therefore, an object of the present invention is to provide a method for producing an easily decomposable polymer.
Another object of the present invention is to provide an easily decomposable polymer obtained by the method for producing such a polymer.
 上記課題を解決する本発明の共重合体の製造方法、及び共重合体の要旨構成は、以下の通りである。 The method for producing the copolymer of the present invention, which solves the above problems, and the main configuration of the copolymer are as follows:
[1] 単量体としての、炭素数が4~12で、炭素-炭素二重結合を1つ又は2つ有する環状の不飽和炭化水素化合物(A)と、環の主鎖に酸素又は硫黄を含み、炭素-炭素二重結合を1つ又は2つ有する不飽和ヘテロ環化合物(B)と、ノルボルネン骨格を有する化合物(C)と、を開環重合させることを特徴とする、共重合体の製造方法。 [1] A method for producing a copolymer, characterized by ring-opening polymerization of a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds, an unsaturated heterocyclic compound (B) containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds, and a compound (C) having a norbornene skeleton, as monomers.
[2] 前記不飽和ヘテロ環化合物(B)の使用量が、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~40質量%である、[1]に記載の共重合体の製造方法。 [2] The method for producing the copolymer described in [1], in which the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 40 mass% of the amount of the cyclic unsaturated hydrocarbon compound (A) used.
[3] 前記不飽和ヘテロ環化合物(B)の使用量が、単量体の総使用量の3質量%以下である、[1]又は[2]に記載に共重合体の製造方法。 [3] The method for producing a copolymer according to [1] or [2], wherein the amount of the unsaturated heterocyclic compound (B) used is 3 mass% or less of the total amount of monomers used.
[4] [1]~[3]のいずれか一つに記載の共重合体の製造方法で得られたことを特徴とする、共重合体。 [4] A copolymer obtained by the method for producing a copolymer described in any one of [1] to [3].
 本発明によれば、分解され易い共重合体の製造方法を提供することができる。
 また、本発明によれば、かかる共重合体の製造方法で得られた、分解され易い共重合体を提供することができる。
According to the present invention, a method for producing an easily decomposable copolymer can be provided.
Furthermore, according to the present invention, it is possible to provide an easily decomposable copolymer obtained by the method for producing such a copolymer.
 以下に、本発明の共重合体の製造方法、及び共重合体を、その実施形態に基づき、詳細に例示説明する。 The method for producing the copolymer of the present invention and the copolymer are described in detail below with reference to the embodiments.
<定義>
 本明細書に記載されている化合物は、部分的に、又は全てが化石資源由来であってもよく、植物資源等の生物資源由来であってもよく、使用済タイヤ等の再生資源由来であってもよい。また、化石資源、生物資源、再生資源のいずれか2つ以上の混合物由来であってもよい。
<Definition>
The compounds described herein may be derived in whole or in part from fossil sources, from biological sources such as plant sources, from recycled sources such as used tires, or from a mixture of two or more of fossil sources, biological sources, and/or renewable sources.
<共重合体の製造方法>
 本実施形態の共重合体の製造方法は、単量体としての、炭素数が4~12で、炭素-炭素二重結合を1つ又は2つ有する環状の不飽和炭化水素化合物(A)と、環の主鎖に酸素又は硫黄を含み、炭素-炭素二重結合を1つ又は2つ有する不飽和ヘテロ環化合物(B)と、ノルボルネン骨格を有する化合物(C)と、を開環重合させることを特徴とする。
<Method of Producing Copolymer>
The method for producing the copolymer of the present embodiment is characterized by ring-opening polymerization of monomers: a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds; an unsaturated heterocyclic compound (B) containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds; and a compound (C) having a norbornene skeleton.
 本実施形態の共重合体の製造方法により得られる共重合体においては、前記環状の不飽和炭化水素化合物(A)に由来するセグメントが、粘弾性挙動を示し、共重合体自体及び該共重合体を含む組成物に、エラストマー性をもたらす。
 また、本実施形態の共重合体の製造方法により得られる共重合体においては、前記不飽和ヘテロ環化合物(B)に由来するセグメントが、主鎖に酸素又は硫黄を含み、該主鎖の酸素又は硫黄が、分解点となり、共重合体自体及び該共重合体を含む組成物の分解を可能にする。
 従って、本実施形態の共重合体の製造方法により得られる共重合体は、分解され易い。
In the copolymer obtained by the production method of a copolymer of the present embodiment, the segment derived from the cyclic unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, and imparts elastomeric properties to the copolymer itself and to a composition containing the copolymer.
Furthermore, in the copolymer obtained by the production method of a copolymer of the present embodiment, the segment derived from the unsaturated heterocyclic compound (B) contains oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling decomposition of the copolymer itself and a composition containing the copolymer.
Therefore, the copolymer obtained by the method for producing a copolymer of the present embodiment is easily decomposed.
 しかしながら、本発明者が検討したところ、単量体として、前記環状の不飽和炭化水素化合物(A)及び前記不飽和ヘテロ環化合物(B)のみを使用した場合、重合が進み難いことが分かった。これに対して、本発明者が更に検討したところ、単量体として、ノルボルネン骨格を有する化合物(C)を加えることで、開環重合が速やかに進むことを見出した。
 従って、本実施形態の共重合体の製造方法によれば、分解され易い重合体を効率的に得ることができる。
However, the present inventors have found that polymerization is difficult to proceed when only the cyclic unsaturated hydrocarbon compound (A) and the unsaturated heterocyclic compound (B) are used as monomers. In response to this, the present inventors have found that ring-opening polymerization proceeds quickly by adding a compound (C) having a norbornene skeleton as a monomer.
Therefore, according to the method for producing a copolymer of the present embodiment, a polymer that is easily decomposed can be efficiently obtained.
-環状の不飽和炭化水素化合物(A)-
 本実施形態の共重合体の製造方法は、単量体の1つとして、炭素数が4~12で、炭素-炭素二重結合を1つ又は2つ有する環状の不飽和炭化水素化合物(A)を用いる。
 前記環状の不飽和炭化水素化合物(A)は、環の主鎖に炭素-炭素二重結合を1つ又は2つ有し、また、環の主鎖が炭化水素である化合物である。なお、環状の不飽和炭化水素化合物(A)は、側鎖に炭化水素基以外の置換基を有していてもよい。ここで、側鎖に結合し得る炭化水素基としては、アルキル基等が挙げられ、側鎖に結合し得る炭化水素基以外の置換基としては、ハロゲン基等が挙げられる。
-Cyclic unsaturated hydrocarbon compound (A)-
The method for producing a copolymer of this embodiment uses, as one of the monomers, a cyclic unsaturated hydrocarbon compound (A) having 4 to 12 carbon atoms and one or two carbon-carbon double bonds.
The cyclic unsaturated hydrocarbon compound (A) has one or two carbon-carbon double bonds in the main chain of the ring, and the main chain of the ring is a hydrocarbon. The cyclic unsaturated hydrocarbon compound (A) may have a substituent other than a hydrocarbon group in the side chain. Here, examples of the hydrocarbon group that can be bonded to the side chain include an alkyl group, and examples of the substituent other than a hydrocarbon group that can be bonded to the side chain include a halogen group.
 前記環状の不飽和炭化水素化合物(A)は、開環重合により(好ましくは、開環メタセシス重合により)、共重合体に組み込まれる。本実施形態の共重合体の製造方法により得られる共重合体においては、前記環状の不飽和炭化水素化合物(A)に由来するセグメント(単量体単位)が、粘弾性挙動を示し、共重合体自体及び該共重合体を含む組成物に、エラストマー性をもたらす。 The cyclic unsaturated hydrocarbon compound (A) is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization). In the copolymer obtained by the method for producing a copolymer of this embodiment, the segment (monomer unit) derived from the cyclic unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, imparting elastomeric properties to the copolymer itself and to a composition containing the copolymer.
 前記環状の不飽和炭化水素化合物(A)は、6~10員環の化合物であることが好ましい。また、前記環状の不飽和炭化水素化合物(A)は、炭素数が6~10であることが好ましい。また、前記環状の不飽和炭化水素化合物(A)は、炭素-炭素二重結合を2つ有することが好ましい。これらの場合、環状の不飽和炭化水素化合物(A)の開環重合における反応性が向上する。 The cyclic unsaturated hydrocarbon compound (A) is preferably a compound having a 6- to 10-membered ring. The cyclic unsaturated hydrocarbon compound (A) preferably has 6 to 10 carbon atoms. The cyclic unsaturated hydrocarbon compound (A) preferably has two carbon-carbon double bonds. In these cases, the reactivity of the cyclic unsaturated hydrocarbon compound (A) in the ring-opening polymerization is improved.
 前記環状の不飽和炭化水素化合物(A)としては、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、それぞれ独立して、ハロゲン原子又はアルキル基であり、nは、0~12の整数である。]で表されるシクロオクタジエン化合物が好ましい。ここで、ハロゲン原子としては、フッ素、塩素、臭素等が挙げられる。また、アルキル基としては、炭素数1~5のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。
 一般式(1)中、Rは、シクロオクタジエン環の置換基であり、シクロオクタジエン環に結合するいずれの水素原子を置換してもよく、また、nは、置換基Rの数である。
The cyclic unsaturated hydrocarbon compound (A) is represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000001
[wherein R 1 is each independently a halogen atom or an alkyl group, and n 1 is an integer of 0 to 12] is preferred. Here, examples of the halogen atom include fluorine, chlorine, and bromine. Furthermore, examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
In general formula (1), R 1 is a substituent of the cyclooctadiene ring and may substitute any hydrogen atom bonded to the cyclooctadiene ring, and n 1 is the number of substituents R 1 .
 一般式(1)のシクロオクタジエン化合物としては、市販のものを使用してもよいし、公知の方法に従って合成したものを使用してもよい。入手容易性等の観点から、nが0であるか、nが1~12の整数である場合は、Rが、ハロゲン原子、メチル基又はエチル基である化合物が好ましく、メチル基である化合物がより好ましい。一般式(1)のシクロオクタジエン化合物として、具体的には、1,5-シクロオクタジエン、1-クロロ-1,5-シクロオクタジエン、1,5-ジクロロ-1,5-シクロオクタジエン、1-メチル-1,5-シクロオクタジエン、1,5-ジメチル-1,5-シクロオクタジエン等が挙げられる。 As the cyclooctadiene compound of the general formula (1), a commercially available product may be used, or a product synthesized according to a known method may be used. From the viewpoint of availability, etc., when n 1 is 0 or n 1 is an integer of 1 to 12, a compound in which R 1 is a halogen atom, a methyl group, or an ethyl group is preferred, and a compound in which R 1 is a methyl group is more preferred. Specific examples of the cyclooctadiene compound of the general formula (1) include 1,5-cyclooctadiene, 1-chloro-1,5-cyclooctadiene, 1,5-dichloro-1,5-cyclooctadiene, 1-methyl-1,5-cyclooctadiene, and 1,5-dimethyl-1,5-cyclooctadiene.
 また、上記一般式(1)で表されるシクロオクタジエン化合物は、開環メタセシス重合により共重合体に組み込まれることにより、ブタジエンセグメントを形成できる。ここで、ブタジエンセグメントとは、1,3-ブタジエンが1,4-結合で重合体に組み込まれた際に形成されるセグメント(単量体単位)であり、主鎖を構成する炭素原子の結合様式が-C-C=C-C-で表され、該主鎖を構成する炭素原子には、種々の置換基が結合していてもよい。 The cyclooctadiene compound represented by the above general formula (1) can be incorporated into a copolymer by ring-opening metathesis polymerization to form a butadiene segment. Here, a butadiene segment is a segment (monomer unit) formed when 1,3-butadiene is incorporated into a polymer via a 1,4-bond, and the bond pattern of the carbon atoms constituting the main chain is represented by -C-C=C-C-, and various substituents may be bonded to the carbon atoms constituting the main chain.
 前記環状の不飽和炭化水素化合物(A)の使用量は、単量体の総使用量中、60~99.99質量%の範囲が好ましく、90~99.99質量%の範囲が更に好ましく、95~99.99質量%の範囲がより一層好ましく、97~99.99質量%の範囲が特に好ましい。環状の不飽和炭化水素化合物(A)の使用量が、単量体の総使用量中、60質量%以上であると、得られる共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。 The amount of the cyclic unsaturated hydrocarbon compound (A) used is preferably in the range of 60 to 99.99 mass% of the total amount of monomers used, more preferably in the range of 90 to 99.99 mass%, even more preferably in the range of 95 to 99.99 mass%, and particularly preferably in the range of 97 to 99.99 mass%. When the amount of the cyclic unsaturated hydrocarbon compound (A) used is 60 mass% or more of the total amount of monomers used, the resulting copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
-不飽和ヘテロ環化合物(B)-
 本実施形態の共重合体の製造方法は、単量体の1つとして、環の主鎖に酸素又は硫黄を含み、炭素-炭素二重結合を1つ又は2つ有する環状の不飽和ヘテロ環化合物(B)を用いる。ここで、「環の主鎖に酸素又は硫黄を含む」とは、環の構成原子(構成員)の1つ以上が酸素又は硫黄であることを意味する。
-Unsaturated heterocyclic compound (B)-
The method for producing a copolymer according to the present embodiment uses, as one of the monomers, a cyclic unsaturated heterocyclic compound (B) that contains oxygen or sulfur in the main chain of the ring and has one or two carbon-carbon double bonds. Here, "containing oxygen or sulfur in the main chain of the ring" means that one or more of the constituent atoms (constituent members) of the ring is oxygen or sulfur.
 前記環状の不飽和ヘテロ環化合物(B)は、開環重合により(好ましくは、開環メタセシス重合により)、共重合体に組み込まれる。本実施形態の共重合体の製造方法により得られる共重合体は、前記不飽和ヘテロ環化合物(B)に由来するセグメント(単量体単位)が、主鎖に酸素又は硫黄を含み、該主鎖の酸素又は硫黄が、分解点となり、共重合体自体及び該共重合体を含む組成物の分解を可能にする。 The cyclic unsaturated heterocyclic compound (B) is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization). In the copolymer obtained by the method for producing a copolymer of this embodiment, the segments (monomer units) derived from the unsaturated heterocyclic compound (B) contain oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling the decomposition of the copolymer itself and the composition containing the copolymer.
 前記不飽和ヘテロ環化合物(B)に由来するセグメントは、主鎖にエノールエーテル部位(-C=C-O-)、又はエノールチオエーテル部位(-C=C-S-)を有することが好ましく、エノールエーテル部位を有することが更に好ましい。エノールエーテル部位及びエノールチオエーテル部位は、酸等により加水分解し易く、共重合体が主鎖にエノールエーテル部位又はエノールチオエーテル部位を有することで、共重合体の主鎖が開裂し易くなり、分解され易くなる。 The segment derived from the unsaturated heterocyclic compound (B) preferably has an enol ether moiety (-C=C-O-) or an enol thioether moiety (-C=C-S-) in the main chain, and more preferably has an enol ether moiety. Enol ether moieties and enol thioether moieties are easily hydrolyzed by acids, etc., and when a copolymer has an enol ether moiety or an enol thioether moiety in the main chain, the main chain of the copolymer becomes easily cleaved and decomposed.
 前記不飽和ヘテロ環化合物(B)としては、下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、それぞれ独立して、ハロゲン原子又はアルキル基であり、nは、0~6の整数である。]で表されるジヒドロフラン化合物(環状エノールエーテル化合物)が好ましい。ここで、ハロゲン原子としては、フッ素、塩素、臭素等が挙げられる。また、アルキル基としては、炭素数1~5のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。
 一般式(2)中、Rは、ジヒドロフラン環の置換基であり、ジヒドロフラン環に結合するいずれの水素原子を置換してもよく、また、nは、置換基Rの数である。
The unsaturated heterocyclic compound (B) is represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000002
[wherein, each R 2 is independently a halogen atom or an alkyl group, and n 2 is an integer of 0 to 6.] is preferred. Here, examples of the halogen atom include fluorine, chlorine, and bromine. Furthermore, examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
In general formula (2), R2 is a substituent of the dihydrofuran ring and may substitute any hydrogen atom bonded to the dihydrofuran ring, and n2 is the number of substituents R2 .
 一般式(2)のジヒドロフラン化合物としては、市販のものを使用してもよいし、公知の方法に従って合成したものを使用してもよい。入手容易性等の観点から、nが0であるか、nが1~6の整数である場合は、Rが、ハロゲン原子、メチル基又はエチル基である化合物が好ましく、メチル基である化合物がより好ましい。一般式(2)のジヒドロフラン化合物としては、2,3-ジヒドロフラン、5-メチル-2,3-ジヒドロフラン等が挙げられる。 As the dihydrofuran compound of the general formula (2), commercially available products may be used, or products synthesized according to known methods may be used. From the viewpoint of availability, etc., when n2 is 0 or n2 is an integer of 1 to 6, a compound in which R2 is a halogen atom, a methyl group, or an ethyl group is preferred, and a compound in which R2 is a methyl group is more preferred. Examples of the dihydrofuran compound of the general formula (2) include 2,3-dihydrofuran, 5-methyl-2,3-dihydrofuran, etc.
 前記不飽和ヘテロ環化合物(B)の使用量は、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~40質量%であることが好ましく、0.005~10質量%であることが更に好ましく、0.005~5質量%であることがより一層好ましく、0.005~3質量%であることが特に好ましい。不飽和ヘテロ環化合物(B)の使用量が、環状の不飽和炭化水素化合物(A)の使用量の0.005質量%以上であることで、共重合体自体及び該共重合体を含む組成物が分解され易くなる。また、不飽和ヘテロ環化合物(B)の使用量が、環状の不飽和炭化水素化合物(A)の使用量の40質量%以下であると、共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。また、不飽和ヘテロ環化合物(B)の使用量が、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~40質量%であると、分解され易く、且つ、十分なエラストマー性を有する共重合体が得られる。また、不飽和ヘテロ環化合物(B)の使用量が、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~10質量%であると、共重合体の分解容易性と、共重合体のエラストマー性とを高度に両立できる。 The amount of the unsaturated heterocyclic compound (B) used is preferably 0.005 to 40% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, more preferably 0.005 to 10% by mass, even more preferably 0.005 to 5% by mass, and particularly preferably 0.005 to 3% by mass. When the amount of the unsaturated heterocyclic compound (B) used is 0.005% by mass or more of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the copolymer itself and the composition containing the copolymer are easily decomposed. Furthermore, when the amount of the unsaturated heterocyclic compound (B) used is 40% by mass or less of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products. Furthermore, when the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 40% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, a copolymer that is easily decomposed and has sufficient elastomeric properties is obtained. Furthermore, when the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 10% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ease of decomposition of the copolymer and the elastomeric properties of the copolymer can be highly compatible.
 前記不飽和ヘテロ環化合物(B)の使用量は、単量体の総使用量の、0.005質量%以上が好ましく、また、40質量%以下が好ましく、10質量%以下が更に好ましく、5質量%以下がより一層好ましく、3質量%以下が特に好ましい。前記不飽和ヘテロ環化合物(B)の使用量が、単量体の総使用量の0.005質量%以上であると、得られる共重合体自体及び該共重合体を含む組成物が分解され易くなる。また、前記不飽和ヘテロ環化合物(B)の使用量が、単量体の総使用量の3質量%以下であると、優れたエラストマー性を有する共重合体が得られ、該共重合体は、ゴム製品に特に好適に利用できる。 The amount of the unsaturated heterocyclic compound (B) used is preferably 0.005% by mass or more, more preferably 40% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, and particularly preferably 3% by mass or less, of the total amount of monomers used. If the amount of the unsaturated heterocyclic compound (B) used is 0.005% by mass or more of the total amount of monomers used, the resulting copolymer itself and the composition containing the copolymer are easily decomposed. If the amount of the unsaturated heterocyclic compound (B) used is 3% by mass or less of the total amount of monomers used, a copolymer having excellent elastomeric properties is obtained, and the copolymer is particularly suitable for use in rubber products.
-ノルボルネン骨格を有する化合物(C)-
 本実施形態の共重合体の製造方法は、単量体の1つとして、ノルボルネン骨格を有する化合物(C)を用いる。単量体として、ノルボルネン骨格を有する化合物(C)を加えることで、開環重合が速やかに進み、共重合体を効率的に得ることができる。
-Compound (C) having a norbornene skeleton-
In the method for producing a copolymer according to the present embodiment, a compound (C) having a norbornene skeleton is used as one of the monomers. By adding the compound (C) having a norbornene skeleton as a monomer, ring-opening polymerization proceeds quickly, and the copolymer can be efficiently obtained.
 前記ノルボルネン骨格を有する化合物(C)は、開環重合により(好ましくは、開環メタセシス重合により)、共重合体に組み込まれる。一例においては、ノルボルネン骨格を有する化合物(C)に由来するセグメント(単量体単位)は、主鎖にシクロペンタン環を含むセグメントとなる。 The compound (C) having a norbornene skeleton is incorporated into the copolymer by ring-opening polymerization (preferably by ring-opening metathesis polymerization). In one example, the segment (monomer unit) derived from the compound (C) having a norbornene skeleton becomes a segment containing a cyclopentane ring in the main chain.
 前記ノルボルネン骨格を有する化合物(C)としては、下記一般式(3):
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基であり、同一炭素原子に結合する2つのRは、一緒になってアルキリデン基を形成してもよく、nは、0~10の整数である。]で表されるノルボルネン化合物が好ましい。ここで、ハロゲン原子としては、フッ素、塩素、臭素等が挙げられる。また、アルキル基としては、炭素数1~5のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。また、アルケニル基としては、炭素数2~5のアルケニル基が好ましく、例えば、ビニル基、アリル基等が挙げられる。また、同一炭素原子に結合する2つのRが一緒になって形成するアルキリデン基としては、メチリデン基(=CH)、エチリデン基(=CH-CH)等が挙げられる。
 一般式(3)中、Rは、ノルボルネン環の置換基であり、ノルボルネン環に結合するいずれの水素原子を置換してもよく、また、nは、置換基Rの数である。
The compound (C) having a norbornene skeleton is represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000003
[wherein R 3 is each independently a halogen atom, an alkyl group, or an alkenyl group, two R 3s bonded to the same carbon atom may together form an alkylidene group, and n 3 is an integer of 0 to 10.] is preferred. Here, examples of the halogen atom include fluorine, chlorine, and bromine. Furthermore, examples of the alkyl group include an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Furthermore, examples of the alkenyl group include an alkenyl group having 2 to 5 carbon atoms, such as a vinyl group and an allyl group. Furthermore, examples of the alkylidene group formed by two R 3s bonded to the same carbon atom together include a methylidene group (=CH 2 ), an ethylidene group (=CH-CH 3 ), and the like.
In the general formula (3), R3 is a substituent of the norbornene ring and may substitute any hydrogen atom bonded to the norbornene ring, and n3 is the number of substituents R3 .
 一般式(3)のノルボルネン化合物としては、市販のものを使用してもよいし、公知の方法に従って合成したものを使用してもよい。入手容易性等の観点から、nが0であるか、nが1~10の整数である場合は、Rが、ハロゲン原子、メチル基又はエチル基である化合物や、同一炭素原子に結合する2つのRが一緒になってエチリデン基を形成している化合物が好ましい。一般式(3)のノルボルネン化合物としては、ノルボルネン、5-メチル-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン等が挙げられる。 The norbornene compound of the general formula (3) may be a commercially available product or may be synthesized according to a known method. From the viewpoint of availability, etc., when n 3 is 0 or n 3 is an integer of 1 to 10, a compound in which R 3 is a halogen atom, a methyl group, or an ethyl group, or a compound in which two R 3s bonded to the same carbon atom together form an ethylidene group, are preferred. Examples of the norbornene compound of the general formula (3) include norbornene, 5-methyl-2-norbornene, 5-vinyl-2-norbornene, and 5-ethylidene-2-norbornene.
 前記ノルボルネン骨格を有する化合物(C)の使用量は、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~40質量%であることが好ましく、0.005~10質量%であることが更に好ましく、0.005~5質量%であることがより一層好ましく、0.005~3質量%であることが特に好ましい。ノルボルネン骨格を有する化合物(C)の使用量が、環状の不飽和炭化水素化合物(A)の使用量の0.005質量%以上であると、開環重合が更に進み易い。また、ノルボルネン骨格を有する化合物(C)の使用量が、環状の不飽和炭化水素化合物(A)の使用量の40質量%以下であると、得られる共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。また、ノルボルネン骨格を有する化合物(C)の使用量が、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~10質量%であると、共重合体の合成容易性と、共重合体のエラストマー性とを高度に両立できる。 The amount of the compound (C) having a norbornene skeleton is preferably 0.005 to 40% by mass, more preferably 0.005 to 10% by mass, even more preferably 0.005 to 5% by mass, and particularly preferably 0.005 to 3% by mass, of the amount of the cyclic unsaturated hydrocarbon compound (A) used. When the amount of the compound (C) having a norbornene skeleton is 0.005% by mass or more of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ring-opening polymerization is more likely to proceed. When the amount of the compound (C) having a norbornene skeleton is 40% by mass or less of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the resulting copolymer has sufficient elastomeric properties and can be suitably used for rubber products. When the amount of the compound (C) having a norbornene skeleton is 0.005 to 10% by mass of the amount of the cyclic unsaturated hydrocarbon compound (A) used, the ease of synthesis of the copolymer and the elastomeric properties of the copolymer can be highly compatible.
 前記ノルボルネン骨格を有する化合物(C)の使用量は、単量体の総使用量の0.005~40質量%の範囲が好ましく、0.005~10質量%の範囲が更に好ましく、0.005~5質量%の範囲がより一層好ましく、0.005~3質量%の範囲が特に好ましい。ノルボルネン骨格を有する化合物(C)の使用量が、単量体の総使用量の0.005質量%以上であると、開環重合が更に進み易い。また、ノルボルネン骨格を有する化合物(C)の使用量が、単量体の総使用量の40質量%以下であると、得られる共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。 The amount of the compound (C) having a norbornene skeleton used is preferably in the range of 0.005 to 40 mass% of the total amount of monomers used, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%. When the amount of the compound (C) having a norbornene skeleton used is 0.005 mass% or more of the total amount of monomers used, ring-opening polymerization is more likely to proceed. Furthermore, when the amount of the compound (C) having a norbornene skeleton used is 40 mass% or less of the total amount of monomers used, the resulting copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
-その他の単量体(D)-
 本実施形態の共重合体の製造方法は、更にその他の単量体(D)を用いてもよい。
 本実施形態の共重合体の製造方法において、その他の単量体(D)を用いる場合、その他の単量体(D)の使用量は、単量体の総使用量の0.005~40質量%の範囲が好ましく、0.005~10質量%の範囲が更に好ましく、0.005~5質量%の範囲がより一層好ましく、0.005~3質量%の範囲が特に好ましい。
-Other monomers (D)-
In the method for producing the copolymer of the present embodiment, another monomer (D) may further be used.
In the method for producing the copolymer of the present embodiment, when the other monomer (D) is used, the amount of the other monomer (D) used is preferably in the range of 0.005 to 40 mass% of the total amount of the monomers used, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%.
-開環重合-
 本実施形態の共重合体の製造方法は、上述の単量体を開環重合させ、好ましくは開環メタセシス重合させる。例えば、上記一般式(1)で表されるシクロオクタジエン化合物と、上記一般式(2)で表されるジヒドロフラン化合物と、上記一般式(3)で表されるノルボルネン化合物とを、開環メタセシス重合させることが好ましい。一例として、一般式(1)で表される化合物として、1,5-シクロオクタジエンを使用し、一般式(2)で表される化合物として、2,3-ジヒドロフランを使用し、一般式(3)で表される化合物として、5-エチリデン-2-ノルボルネンを使用した場合の開環メタセシス重合の反応スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000004
- Ring-opening polymerization -
In the method for producing the copolymer of the present embodiment, the above-mentioned monomers are subjected to ring-opening polymerization, preferably ring-opening metathesis polymerization. For example, it is preferable to subject a cyclooctadiene compound represented by the above general formula (1), a dihydrofuran compound represented by the above general formula (2), and a norbornene compound represented by the above general formula (3) to ring-opening metathesis polymerization. As an example, the reaction scheme of ring-opening metathesis polymerization in the case where 1,5-cyclooctadiene is used as the compound represented by the general formula (1), 2,3-dihydrofuran is used as the compound represented by the general formula (2), and 5-ethylidene-2-norbornene is used as the compound represented by the general formula (3) is shown below.
Figure JPOXMLDOC01-appb-C000004
 前記開環重合においては、公知の触媒を使用することができる。
 また、前記開環メタセシス重合においても、公知の触媒を使用することができ、例えば、チタン錯体、ジルコニウム錯体、モリブデン錯体、ルテニウム錯体、タンタル錯体、タングステン錯体、レニウム錯体等の遷移金属錯体が挙げられる。これらの中でも、遷移金属-カルベン錯体、例えば、グラブス第一世代触媒、グラブス第二世代触媒、Hoveyda-Grubbs触媒等の触媒が好ましい。なお、グラブス第二世代触媒は、下記構造式:
Figure JPOXMLDOC01-appb-C000005
で表され、市販品を利用することができる。
 前記触媒の使用量は、例えば、原料の単量体1molに対して、0.00001~0.1molが好ましく、0.0001~0.01molが更に好ましく、0.0001~0.001molが特に好ましい。
In the ring-opening polymerization, a known catalyst can be used.
In the ring-opening metathesis polymerization, a known catalyst can also be used, and examples of such catalysts include transition metal complexes such as titanium complexes, zirconium complexes, molybdenum complexes, ruthenium complexes, tantalum complexes, tungsten complexes, and rhenium complexes. Among these, transition metal-carbene complexes, such as Grubbs first generation catalysts, Grubbs second generation catalysts, and Hoveyda-Grubbs catalysts, are preferred. The Grubbs second generation catalysts are represented by the following structural formula:
Figure JPOXMLDOC01-appb-C000005
and commercially available products are available.
The amount of the catalyst used is, for example, preferably 0.00001 to 0.1 mol, more preferably 0.0001 to 0.01 mol, and particularly preferably 0.0001 to 0.001 mol, per mol of the raw material monomer.
 前記開環重合において、反応温度は、-50℃~200℃が好ましく、0~200℃が更に好ましい。また、反応時間は、1~24時間が好ましく、1~6時間が更に好ましい。また、反応圧力は、加圧、減圧、大気圧のいずれでもよいが、大気圧が好ましい。また、反応雰囲気は、窒素、アルゴン等の不活性ガス雰囲気下が好ましい。また、前記開環重合は、バッチ式で行ってもよいし、流通式で行ってもよい。 In the ring-opening polymerization, the reaction temperature is preferably -50°C to 200°C, more preferably 0 to 200°C. The reaction time is preferably 1 to 24 hours, more preferably 1 to 6 hours. The reaction pressure may be increased, reduced, or atmospheric pressure, but atmospheric pressure is preferred. The reaction atmosphere is preferably an inert gas atmosphere such as nitrogen or argon. The ring-opening polymerization may be carried out in a batch manner or a flow manner.
 前記開環重合は、溶媒中で行ってもよく、溶媒としては、反応に不活性な溶媒、例えば、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が好ましい。 The ring-opening polymerization may be carried out in a solvent, and the solvent is preferably a solvent inert to the reaction, such as an aliphatic halogen-based solvent such as dichloromethane, chloroform, or 1,2-dichloroethane; an ether-based solvent such as diethyl ether, tetrahydrofuran, or dioxane; an aromatic hydrocarbon-based solvent such as benzene, toluene, xylene, or mesitylene; an aromatic halogen-based solvent such as monochlorobenzene or dichlorobenzene; or an aliphatic hydrocarbon-based solvent such as hexane, heptane, octane, or cyclohexane.
<共重合体>
 本実施形態の共重合体は、上述の本実施形態の共重合体の製造方法で得られたことを特徴とする。本実施形態の共重合体においては、前記不飽和炭化水素化合物(A)に由来するセグメントが、粘弾性挙動を示し、共重合体自体及び該共重合体を含む組成物に、エラストマー性をもたらす。
 また、本実施形態の共重合体においては、前記不飽和ヘテロ環化合物(B)に由来するセグメントが、主鎖に酸素又は硫黄を含み、該主鎖の酸素又は硫黄が、分解点となり、共重合体自体及び該共重合体を含む組成物の分解を可能にする。
 従って、本実施形態の共重合体は、分解され易い。
<Copolymer>
The copolymer of the present embodiment is characterized in that it is obtained by the above-mentioned method for producing the copolymer of the present embodiment. In the copolymer of the present embodiment, the segment derived from the unsaturated hydrocarbon compound (A) exhibits viscoelastic behavior, and imparts elastomeric properties to the copolymer itself and to a composition containing the copolymer.
In the copolymer of the present embodiment, the segment derived from the unsaturated heterocyclic compound (B) contains oxygen or sulfur in the main chain, and the oxygen or sulfur in the main chain serves as a decomposition point, enabling decomposition of the copolymer itself and a composition containing the copolymer.
Therefore, the copolymer of this embodiment is easily decomposed.
 本実施形態の共重合体中の、前記環状の不飽和炭化水素化合物(A)に由来するセグメントの割合は、60~99.995質量%の範囲が好ましく、90~99.995質量%の範囲が更に好ましく、95~99.995質量%の範囲がより一層好ましく、97~99.995質量%の範囲が特に好ましい。共重合体中の不飽和炭化水素化合物(A)に由来するセグメントの割合が60質量%以上であると、共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。 The proportion of the segments derived from the cyclic unsaturated hydrocarbon compound (A) in the copolymer of this embodiment is preferably in the range of 60 to 99.995 mass%, more preferably in the range of 90 to 99.995 mass%, even more preferably in the range of 95 to 99.995 mass%, and particularly preferably in the range of 97 to 99.995 mass%. When the proportion of the segments derived from the unsaturated hydrocarbon compound (A) in the copolymer is 60 mass% or more, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
 本実施形態の共重合体中の、前記不飽和ヘテロ環化合物(B)に由来するセグメントの割合は、0.005~40質量%の範囲が好ましく、0.005~10質量%の範囲が更に好ましく、0.005~5質量%の範囲がより一層好ましく、0.005~3質量%の範囲が特に好ましい。共重合体中の不飽和ヘテロ環化合物(B)に由来するセグメントの割合が0.005質量%以上であると、共重合体自体及び該共重合体を含む組成物が分解され易くなる。また、共重合体中の不飽和ヘテロ環化合物(B)に由来するセグメントの割合が40質量%以下であると、共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。 In the copolymer of this embodiment, the proportion of the segments derived from the unsaturated heterocyclic compound (B) is preferably in the range of 0.005 to 40 mass%, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%. If the proportion of the segments derived from the unsaturated heterocyclic compound (B) in the copolymer is 0.005 mass% or more, the copolymer itself and compositions containing the copolymer are easily decomposed. Furthermore, if the proportion of the segments derived from the unsaturated heterocyclic compound (B) in the copolymer is 40 mass% or less, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
 本実施形態の共重合体中の、ノルボルネン骨格を有する化合物(C)に由来するセグメントの割合は、0.005~40質量%の範囲が好ましく、0.005~10質量%の範囲が更に好ましく、0.005~5質量%の範囲がより一層好ましく、0.005~3質量%の範囲が特に好ましい。ノルボルネン骨格を有する化合物(C)に由来するセグメントの割合が0.005質量%以上である共重合体は、合成し易い。また、共重合体中のノルボルネン骨格を有する化合物(C)に由来するセグメントの割合が40質量%以下であると、共重合体が十分なエラストマー性を有し、ゴム製品に好適に利用できる。 In the copolymer of this embodiment, the proportion of segments derived from the compound (C) having a norbornene skeleton is preferably in the range of 0.005 to 40 mass%, more preferably in the range of 0.005 to 10 mass%, even more preferably in the range of 0.005 to 5 mass%, and particularly preferably in the range of 0.005 to 3 mass%. A copolymer in which the proportion of segments derived from the compound (C) having a norbornene skeleton is 0.005 mass% or more is easy to synthesize. Furthermore, when the proportion of segments derived from the compound (C) having a norbornene skeleton in the copolymer is 40 mass% or less, the copolymer has sufficient elastomeric properties and can be suitably used in rubber products.
 本実施形態の共重合体がその他の単量体(D)に由来するセグメントを有する場合、共重合体中の、その他の単量体(D)に由来するセグメントの割合は、0.005~40質量%の範囲が好ましく、0.005~10質量%の範囲が更に好ましく、0.005~5質量%の範囲がより一層好ましく、0.005~3質量%の範囲が特に好ましい。 When the copolymer of this embodiment has segments derived from other monomers (D), the proportion of the segments derived from other monomers (D) in the copolymer is preferably in the range of 0.005 to 40% by mass, more preferably in the range of 0.005 to 10% by mass, even more preferably in the range of 0.005 to 5% by mass, and particularly preferably in the range of 0.005 to 3% by mass.
 なお、本実施形態の共重合体中の、前記環状の不飽和炭化水素化合物(A)に由来するセグメント、前記不飽和ヘテロ環化合物(B)に由来するセグメント、前記ノルボルネン骨格を有する化合物(C)に由来するセグメント、前記その他の単量体(D)に由来するセグメントの各割合は、(1)H-NMRスペクトルにおける各ピークの積分比や、(2)共重合体の製造に使用した各単量体の量と、未反応の各単量体の量から算出でき、また、算出した各割合から、各含有量の質量比を算出できる。 In the copolymer of the present embodiment, the proportions of the segment derived from the cyclic unsaturated hydrocarbon compound (A), the segment derived from the unsaturated heterocyclic compound (B), the segment derived from the compound having a norbornene skeleton (C), and the segment derived from the other monomer (D) can be calculated from (1) the integral ratio of each peak in a 1 H-NMR spectrum, or (2) the amount of each monomer used in the production of the copolymer and the amount of each unreacted monomer, and the mass ratio of each content can be calculated from each calculated proportion.
-共重合体の分子量-
 本実施形態の共重合体は、数平均分子量(Mn)が10,000~2,000,000であることが好ましく、20,000~1,000,000であることが更に好ましい。数平均分子量(Mn)が10,000以上であると、タイヤ、ゴムクローラ、免震ゴム等の種々のゴム製品に好適に利用でき、また、数平均分子量(Mn)が2,000,000以下であると、ゴム製品用の種々の配合剤と共に混錬し易い。
 本実施形態の共重合体は、重量平均分子量(Mw)が20,000~4,000,000であることが好ましく、40,000~2,000,000であることが更に好ましい。重量平均分子量(Mw)が20,000以上であると、タイヤ、ゴムクローラ、免震ゴム等の種々のゴム製品に好適に利用でき、また、重量平均分子量(Mw)が4,000,000以下であると、ゴム製品用の種々の配合剤と共に混錬し易い。
 なお、本明細書において、共重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。
-Molecular weight of copolymer-
The copolymer of the present embodiment preferably has a number average molecular weight (Mn) of 10,000 to 2,000,000, and more preferably 20,000 to 1,000,000. When the number average molecular weight (Mn) is 10,000 or more, the copolymer can be suitably used for various rubber products such as tires, rubber crawlers, and seismic isolation rubber, and when the number average molecular weight (Mn) is 2,000,000 or less, the copolymer can be easily kneaded with various compounding agents for rubber products.
The copolymer of the present embodiment preferably has a weight average molecular weight (Mw) of 20,000 to 4,000,000, and more preferably 40,000 to 2,000,000. When the weight average molecular weight (Mw) is 20,000 or more, the copolymer can be suitably used for various rubber products such as tires, rubber crawlers, and seismic isolation rubber, and when the weight average molecular weight (Mw) is 4,000,000 or less, the copolymer can be easily mixed with various compounding agents for rubber products.
In this specification, the number average molecular weight (Mn) and weight average molecular weight (Mw) of the copolymer are determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
-共重合体の用途-
 本実施形態の共重合体は、種々のゴム製品に利用できる。例えば、ゴム製品としては、タイヤ、ゴムクローラ、免震ゴム等が挙げられる。
 これらのゴム製品に使用する場合、目的とする性能に応じて、共重合体を種々の配合剤と混合して、ゴム組成物とすることができる。また、所望により、共重合体を、他のゴム成分とブレンドしてもよい。
- Applications of copolymers -
The copolymer of the present embodiment can be used in various rubber products, such as tires, rubber crawlers, and seismic isolation rubber.
When used in these rubber products, the copolymer can be mixed with various compounding ingredients to form a rubber composition depending on the desired performance. If desired, the copolymer can also be blended with other rubber components.
 前記他のゴム成分としては、天然ゴム(NR)、合成ジエン系ゴム、非ジエン系ゴム等が挙げられる。合成ジエン系ゴムとしては、合成イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、スチレン-イソプレンゴム(SIR)、クロロプレンゴム(CR)、エチレン-ブタジエン共重合体、エチレン-スチレン-ブタジエン共重合体等が挙げられ、非ジエン系ゴムとしては、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。
 前記配合剤としては、充填剤(カーボンブラック、シリカ等)、軟化剤、ワックス、ステアリン酸、老化防止剤、シランカップリング剤、亜鉛華(酸化亜鉛)、加硫促進剤等が挙げられる。
Examples of the other rubber components include natural rubber (NR), synthetic diene rubber, non-diene rubber, etc. Examples of the synthetic diene rubber include synthetic isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), styrene-isoprene rubber (SIR), chloroprene rubber (CR), ethylene-butadiene copolymer, ethylene-styrene-butadiene copolymer, etc. Examples of the non-diene rubber include silicone rubber, fluororubber, urethane rubber, etc.
The compounding agents include fillers (carbon black, silica, etc.), softeners, wax, stearic acid, antioxidants, silane coupling agents, zinc oxide, vulcanization accelerators, and the like.
 上述のように、本実施形態の共重合体は、分解され易いため、本実施形態の共重合体と、前記他のゴム成分や配合剤と、を含むゴム組成物も、分解され易い。また、かかるゴム組成物から作製したゴム製品は、使用後に分解して再利用し易い。 As described above, the copolymer of this embodiment is easily decomposed, and therefore the rubber composition containing the copolymer of this embodiment and the other rubber components and compounding agents is also easily decomposed. Furthermore, rubber products made from such rubber compositions are easily decomposed after use and can be easily reused.
-共重合体の分解方法-
 本実施形態の共重合体は、容易に分解し、特には、酸の存在下で、加水分解し易い。本実施形態の共重合体を分解して得られる材料は、種々の用途に再利用することができ、例えば、共重合体の製造原料として利用することもできるし、他の化学物質の合成原料とすることもできる。
-Method of decomposing copolymer-
The copolymer of the present embodiment is easily decomposed, particularly in the presence of acid, and the materials obtained by decomposing the copolymer of the present embodiment can be reused for various purposes, for example, as raw materials for producing copolymers, or as raw materials for synthesizing other chemical substances.
 前記酸は、無機酸でも、有機酸でもよい。前記無機酸としては、塩酸、硫酸、硝酸等が挙げられる。前記有機酸としては、ギ酸、酢酸、プロピオン酸等が挙げられる。これらの中でも、酸としては、塩酸が好ましい。酸として塩酸を使用した場合、共重合体が更に分解され易く、また、廃液の処理も容易である。 The acid may be an inorganic acid or an organic acid. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, and nitric acid. Examples of the organic acid include formic acid, acetic acid, and propionic acid. Among these, hydrochloric acid is preferred as the acid. When hydrochloric acid is used as the acid, the copolymer is more easily decomposed, and the waste liquid is also easily treated.
 前記酸の存在下での分解温度は、特に限定されず、0℃~100℃の範囲が好ましく、15℃~30℃の室温付近の温度でもよい。また、前記酸の存在下での分解時間は、特に限定されず、上述した分解温度や、共重合体の諸性質に応じて適宜選択することができるが、1~24時間が好ましく、1~6時間が更に好ましい。また、分解における反応圧力は、加圧、減圧、大気圧のいずれでもよいが、大気圧が好ましい。また、反応雰囲気は、特に限定されず、空気下でもよいし、窒素、アルゴン等の不活性ガス雰囲気下でもよい。 The decomposition temperature in the presence of the acid is not particularly limited, and is preferably in the range of 0°C to 100°C, and may be a temperature near room temperature of 15°C to 30°C. The decomposition time in the presence of the acid is not particularly limited, and may be appropriately selected depending on the decomposition temperature and the properties of the copolymer, but is preferably 1 to 24 hours, and more preferably 1 to 6 hours. The reaction pressure in the decomposition may be pressurized, reduced, or atmospheric pressure, but atmospheric pressure is preferred. The reaction atmosphere is not particularly limited, and may be air or an inert gas atmosphere such as nitrogen or argon.
 前記酸の存在下での分解は、溶媒中で行うことが好ましい。使用する溶媒は、使用する酸が溶解し易いものが好ましく、例えば、水、アルコール等が挙げられる。これの中でも、溶媒としては、水が好ましい。水は、酸の溶解性に優れ、また、使用後の廃液の処理も容易である。 The decomposition in the presence of the acid is preferably carried out in a solvent. The solvent used is preferably one in which the acid used is easily soluble, such as water or alcohol. Of these, water is the most preferred solvent. Water has excellent solubility for acids, and the waste liquid after use is also easy to treat.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples in any way.
<ポリマーの分析方法>
(1)ポリマー中の各セグメントの割合の分析方法
 ポリマー中の1,5-シクロオクタジエン由来のセグメント、2,3-ジヒドロフラン由来のセグメント、5-エチリデン-2-ノルボルネン由来のセグメントの各割合は、H-NMR(室温、CDCl溶媒)スペクトルにおける、各ピークの積分比より求めた。
 なお、算出に当り、
 5.8~6.4ppmのピークの積分値をI(下記構造式のaの水素に由来)、
 5.0~5.7ppmのピークの積分値をI(下記構造式のb、c、dの水素に由来)、
 2.4~2.6ppmのピークの積分値をI(下記構造式のeの水素に由来)として、
Figure JPOXMLDOC01-appb-C000006
 x=I/1、y=I/1、z=(I-(3y))/4を求め、得られたx、y、zの値から、
 2,3-ジヒドロフラン由来のセグメントの含有量(mol%)=x/(x+y+z)
 5-エチリデン-2-ノルボルネン由来のセグメントの含有量(mol%)=y/(x+y+z)
 1,5-シクロオクタジエン由来のセグメントの含有量(mol%)=z/(x+y+z)を求めた。
 また、「mol%」を「質量%」に換算して、2,3-ジヒドロフラン由来のセグメント、5-エチリデン-2-ノルボルネン由来のセグメント、1,5-シクロオクタジエン由来のセグメントの各割合(質量%)を求めた。
 なお、実施例1のポリマーについては、測定を行わなかったが、各原料の使用量、収量から、実施例4のポリマーと同様の組成を有しているものと考えられる。
<Polymer analysis method>
(1) Method for Analyzing Proportion of Each Segment in a Polymer The proportions of the 1,5-cyclooctadiene-derived segment, the 2,3-dihydrofuran-derived segment, and the 5-ethylidene-2-norbornene-derived segment in a polymer were determined from the integral ratio of each peak in a 1 H-NMR (room temperature, CDCl 3 solvent) spectrum.
In addition, when calculating
The integral value of the peak at 5.8 to 6.4 ppm is I 1 (derived from hydrogen a in the following structural formula),
The integral value of the peak at 5.0 to 5.7 ppm is I 2 (derived from hydrogens b, c, and d in the following structural formula),
The integral value of the peak between 2.4 and 2.6 ppm is taken as I 3 (derived from hydrogen e in the following structural formula),
Figure JPOXMLDOC01-appb-C000006
Find x = I 1 /1, y = I 3 /1, z = (I 2 - (3y))/4, and from the obtained values of x, y, and z,
Content (mol%) of 2,3-dihydrofuran-derived segment=x/(x+y+z)
Content (mol%) of segment derived from 5-ethylidene-2-norbornene=y/(x+y+z)
The content (mol %) of the segment derived from 1,5-cyclooctadiene was calculated as z/(x+y+z).
Furthermore, the "mol %" was converted to "mass %" to determine the respective proportions (mass %) of the segment derived from 2,3-dihydrofuran, the segment derived from 5-ethylidene-2-norbornene, and the segment derived from 1,5-cyclooctadiene.
Although no measurements were performed on the polymer of Example 1, it is considered to have a similar composition to the polymer of Example 4, judging from the amounts of each raw material used and the yields.
(2)ポリマーの分子量の分析方法
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8321GPC/HT、カラム:昭和電工社製HT-806M×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、ポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、ピークトップ分子量(Mp)、分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(2) Method for Analyzing Molecular Weight of Polymer The number average molecular weight (Mn), weight average molecular weight (Mw), peak top molecular weight (Mp), and molecular weight distribution (Mw/Mn) of the polymer were determined by gel permeation chromatography [GPC: HLC-8321GPC/HT manufactured by Tosoh Corporation, column: HT-806M × 2 manufactured by Showa Denko K.K., detector: differential refractometer (RI)] using monodisperse polystyrene as a standard. The measurement temperature was 40°C.
<共重合体の合成方法>
(実施例1)
 窒素置換したガラス容器に、1,5-シクロオクタジエンを11.20g(103.5mmol)、2,3-ジヒドロフランを0.06g(0.86mmol)、5-エチリデン-2-ノルボルネンを0.60g(4.99mmol)、入れた。容器を閉め、容器内を窒素で5分間パージした後、脱水テトラヒドロフラン40gを加えた。
 次に、容器に0.00718MのRu触媒(グラブス第二世代触媒)のトルエン溶液を2mL加えた。重合反応は、室温で180分間行った。
 次に、容器に過剰のエチルビニルエーテルを加えて30分間攪拌し、反応をクエンチした。その後、容器の内容物を、BHT(2,6-ジ-tert-ブチル-4-メチルフェノール)を含む多量のイソプロパノール溶液に注いでポリマーを沈殿させ、これを濾過し、減圧下60℃で5時間乾燥して、ポリマー10.4gを得た。
<Method of synthesizing copolymer>
Example 1
Into a nitrogen-substituted glass vessel were placed 11.20 g (103.5 mmol) of 1,5-cyclooctadiene, 0.06 g (0.86 mmol) of 2,3-dihydrofuran, and 0.60 g (4.99 mmol) of 5-ethylidene-2-norbornene. The vessel was closed and purged with nitrogen for 5 minutes, after which 40 g of dehydrated tetrahydrofuran was added.
Next, 2 mL of a 0.00718 M Ru catalyst (Grubbs second generation catalyst) in toluene was added to the vessel, and the polymerization reaction was carried out at room temperature for 180 minutes.
The reaction was then quenched by adding excess ethyl vinyl ether to the vessel and stirring for 30 minutes, after which the contents of the vessel were poured into a large amount of isopropanol solution containing BHT (2,6-di-tert-butyl-4-methylphenol) to precipitate the polymer, which was then filtered and dried under reduced pressure at 60° C. for 5 hours to obtain 10.4 g of polymer.
(実施例2~5、比較例1~3)
 2,3-ジヒドロフランの使用量、5-エチリデン-2-ノルボルネンの使用量、Ru触媒のトルエン溶液中のRu触媒のモル濃度、Ru触媒のトルエン溶液の使用量、重合時間を表1に示す通りとして、実施例1と同様にして、ポリマーを得た。生成したポリマーの収量と収率を表1に示す。
 なお、比較例3においては、ポリマーを得ることができなかった。
(Examples 2 to 5, Comparative Examples 1 to 3)
A polymer was obtained in the same manner as in Example 1, except that the amounts of 2,3-dihydrofuran used, 5-ethylidene-2-norbornene used, the molar concentration of the Ru catalyst in the toluene solution of the Ru catalyst used, the amount of the toluene solution of the Ru catalyst used, and the polymerization time were as shown in Table 1. The yields and masses of the produced polymers are shown in Table 1.
In Comparative Example 3, no polymer was obtained.
<共重合体の分解方法>
 5mLの脱水テトラヒドロフラン(THF)にポリマー10mgを溶解させて、溶液を得た。この溶液に1NのHCl溶液を2滴加え、室温で、表1に示す反応時間、分解反応を行った。分解反応前の分子量と、分解反応終了後の分子量を、GPCで分析し、分子量の減少程度を確認した。結果を表1に示す。
<Method of decomposing copolymer>
A solution was obtained by dissolving 10 mg of the polymer in 5 mL of dehydrated tetrahydrofuran (THF). Two drops of 1N HCl solution were added to this solution, and the decomposition reaction was carried out at room temperature for the reaction time shown in Table 1. The molecular weight before the decomposition reaction and the molecular weight after the completion of the decomposition reaction were analyzed by GPC to confirm the degree of reduction in molecular weight. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から、本発明に従う実施例1~5の製造方法によれば、共重合体が得られ、また、得られた共重合体は、酸の存在下で、分解して、分子量が大幅に低下していることが分かる。 From Table 1, it can be seen that the manufacturing methods of Examples 1 to 5 according to the present invention produced copolymers, and that the resulting copolymers decomposed in the presence of acid, resulting in a significant decrease in molecular weight.
 一方、単量体として、環状の不飽和炭化水素化合物(A)のみを用いた比較例1の製造方法や、単量体として、環状の不飽和炭化水素化合物(A)及びノルボルネン骨格を有する化合物(C)のみを用いた比較例2の製造方法では、(共)重合体が得られるものの、得られた(共)重合体は、酸存在下で処理しても、分子量が低下せず、分解が進行し難いことが分かる。 On the other hand, in the manufacturing method of Comparative Example 1, in which only the cyclic unsaturated hydrocarbon compound (A) is used as the monomer, and in the manufacturing method of Comparative Example 2, in which only the cyclic unsaturated hydrocarbon compound (A) and the compound having a norbornene skeleton (C) are used as the monomer, a (co)polymer is obtained, but it is clear that the molecular weight of the obtained (co)polymer does not decrease even when treated in the presence of an acid, and decomposition does not progress easily.
 また、単量体として、ノルボルネン骨格を有する化合物(C)を使用せず、環状の不飽和炭化水素化合物(A)及び不飽和ヘテロ環化合物(B)のみを用いた比較例3の製造方法では、共重合体が得られなかった。 In addition, in the manufacturing method of Comparative Example 3, which did not use the compound (C) having a norbornene skeleton as a monomer, and used only the cyclic unsaturated hydrocarbon compound (A) and the unsaturated heterocyclic compound (B), no copolymer was obtained.
 本発明の共重合体の製造方法で得られる共重合体は、タイヤ、ゴムクローラ、免震ゴム等の種々のゴム製品に利用できる。 The copolymers obtained by the copolymer manufacturing method of the present invention can be used in a variety of rubber products, such as tires, rubber crawlers, and seismic isolation rubber.

Claims (4)

  1.  単量体としての、炭素数が4~12で、炭素-炭素二重結合を1つ又は2つ有する環状の不飽和炭化水素化合物(A)と、環の主鎖に酸素又は硫黄を含み、炭素-炭素二重結合を1つ又は2つ有する不飽和ヘテロ環化合物(B)と、ノルボルネン骨格を有する化合物(C)と、を開環重合させることを特徴とする、共重合体の製造方法。 A method for producing a copolymer, characterized by ring-opening polymerization of monomers: (A) a cyclic unsaturated hydrocarbon compound having 4 to 12 carbon atoms and one or two carbon-carbon double bonds; (B) an unsaturated heterocyclic compound containing oxygen or sulfur in the main chain of the ring and having one or two carbon-carbon double bonds; and (C) a compound having a norbornene skeleton.
  2.  前記不飽和ヘテロ環化合物(B)の使用量が、前記環状の不飽和炭化水素化合物(A)の使用量の0.005~40質量%である、請求項1に記載の共重合体の製造方法。 The method for producing a copolymer according to claim 1, wherein the amount of the unsaturated heterocyclic compound (B) used is 0.005 to 40 mass% of the amount of the cyclic unsaturated hydrocarbon compound (A) used.
  3.  前記不飽和ヘテロ環化合物(B)の使用量が、単量体の総使用量の3質量%以下である、請求項1に記載に共重合体の製造方法。 The method for producing a copolymer according to claim 1, wherein the amount of the unsaturated heterocyclic compound (B) used is 3 mass% or less of the total amount of monomers used.
  4.  請求項1~3のいずれか一項に記載の共重合体の製造方法で得られたことを特徴とする、共重合体。 A copolymer obtained by the method for producing a copolymer according to any one of claims 1 to 3.
PCT/JP2023/032002 2022-10-24 2023-08-31 Method for producing copolymer, and copolymer WO2024090035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-170084 2022-10-24
JP2022170084 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090035A1 true WO2024090035A1 (en) 2024-05-02

Family

ID=90830460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032002 WO2024090035A1 (en) 2022-10-24 2023-08-31 Method for producing copolymer, and copolymer

Country Status (1)

Country Link
WO (1) WO2024090035A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1257429B (en) * 1964-08-17 1967-12-28 Basf Ag Process for the production of crosslinkable or crosslinked copolymers
WO2022212752A1 (en) * 2021-04-01 2022-10-06 The Board Of Trustees Of The Leland Stanford Junior University Degradable copolymers of enol ethers with olefinic monomers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1257429B (en) * 1964-08-17 1967-12-28 Basf Ag Process for the production of crosslinkable or crosslinked copolymers
WO2022212752A1 (en) * 2021-04-01 2022-10-06 The Board Of Trustees Of The Leland Stanford Junior University Degradable copolymers of enol ethers with olefinic monomers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVYDOVICH OLEG, PAUL JUSTINE E., FEIST JOHN DAVID, AW JIA EN, BALTA BONNER FRANCISCO JAVIER, LESSARD JACOB J., TAWFICK SAMEH, XIA: "Frontal Polymerization of Dihydrofuran Comonomer Facilitates Thermoset Deconstruction", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 34, no. 19, 11 October 2022 (2022-10-11), US , pages 8790 - 8797, XP093069756, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.2c02045 *

Similar Documents

Publication Publication Date Title
Saengdee et al. Chemical modification of natural rubber in latex stage for improved thermal, oil, ozone and mechanical properties
CN111801361B (en) Copolymers of ethylene and 1, 3-diene
JP5422936B2 (en) Cyclopentene ring-opening polymer rubber and process for producing the same
JP2013216850A (en) Method for preparing synthetic polyisoprene, synthetic polyisoprene, rubber composition and tire
WO2014006830A1 (en) Method for producing polybutadiene, polybutadiene, rubber composition and tire
Feng et al. Preparation and characterization of silicone rubber cured via catalyst-free aza-Michael reaction
Coste et al. Non-isocyanate polyurethane foams based on six-membered cyclic carbonates
WO2024090035A1 (en) Method for producing copolymer, and copolymer
Dai et al. Facile access to carboxyl‐terminated polybutadiene and polyethylene from cis‐polybutadiene rubber
CN111819206A (en) Copolymers of ethylene and myrcene
WO2024090034A1 (en) Copolymer, and method for decomposing copolymer
JP5614472B2 (en) Cyclopentene ring-opening polymer composition
EP3710497B1 (en) Recyclable cross-linked diene elastomers comprising furanyl groups and precursors thereof
Chanroj et al. Chlorohydrination of NR latex by using sodium hypochlorite for fuel-resistant materials
KR20040098437A (en) High 1,4-cis polybutadiene-co-polyurethane and manufacturing method thereof
JP2002322185A (en) Trialkoxysilyl group-containing norbornene composition
CN114206949B (en) Polymers having specific N-substituted imidazolidone side chain functionalities
CN113242798B (en) Copolymer of conjugated diene and ethylene
Dodd et al. Inverse vulcanisation of self-activating amine and alkyne crosslinkers
Gnecco et al. Chlorination of low-molecular-weight Euphorbia lactiflua natural rubber
KR101659681B1 (en) Method for synthesizing copolymer of compound containing epoxide and CO2 cross-linked by vulcanization
US20110282009A1 (en) Free-radical Curable Isobutylene-rich Polymers
WO1992000350A1 (en) Reduced heat-buildup rubber composition
WO2018178282A1 (en) Recyclable cross-linked diene elastomers comprising furanyl groups and precursors thereof
JP3151910B2 (en) Method for producing butadiene-based polymer