WO2024089997A1 - Future system snapshot creation system and future system snapshot creation method - Google Patents

Future system snapshot creation system and future system snapshot creation method Download PDF

Info

Publication number
WO2024089997A1
WO2024089997A1 PCT/JP2023/030595 JP2023030595W WO2024089997A1 WO 2024089997 A1 WO2024089997 A1 WO 2024089997A1 JP 2023030595 W JP2023030595 W JP 2023030595W WO 2024089997 A1 WO2024089997 A1 WO 2024089997A1
Authority
WO
WIPO (PCT)
Prior art keywords
power flow
flow calculation
calculation unit
future
section
Prior art date
Application number
PCT/JP2023/030595
Other languages
French (fr)
Japanese (ja)
Inventor
秀岳 今井
健太 桐原
英佑 黒田
雅浩 渡辺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022170025A external-priority patent/JP2024062187A/en
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024089997A1 publication Critical patent/WO2024089997A1/en

Links

Images

Definitions

  • the present invention relates to a system for creating a future system cross section and a method for creating a future system cross section.
  • Power grids are made up of generators, power transmission and distribution equipment, consumers, etc., and are known to be influenced by many factors. Traditionally, designs and plans were based on certain scenarios, but in recent years, with the introduction of new equipment such as renewable energy sources, plans are required to be more multifaceted. In order to create multifaceted plans, it is necessary to take into account multiple future scenarios. When verifying future scenarios, it is necessary to evaluate future snapshots that allocate demand by time period and region, etc.
  • Patent Document 1 discloses a power generation plan determination system including: a power generation demand forecast value determination unit that determines a power generation demand forecast value, which is a forecast value of the amount of power required for the generator, based on a demand forecast value in a power system facility to which multiple renewable energy power sources and multiple generators are connected, and an output forecast value, which is a forecast value of the amount of power output by the renewable energy power sources; an initial power generation plan determination unit that determines an initial power generation plan for the generator based on the power generation demand forecast value determined by the power generation demand forecast value determination unit; an output fluctuation pattern creation unit that creates multiple output fluctuation patterns of the output forecast value based on the output forecast value and multiple variable output forecast values having different occurrence probabilities; and an optimal power generation plan determination unit that derives the transient stability of the power system facility predicted after the expected accident based on information about the expected accident and the multiple output fluctuation patterns created by the output fluctuation pattern creation unit, and determines an optimal power generation plan that can maintain the transient stability in the output fluctuation pattern based
  • Patent Document 1 The invention described in Patent Document 1 does not allow for appropriate reactive power setting.
  • a future power system cross section creation system includes an initial value calculation unit that calculates an initial setting value of a reactive power resource introduction amount, which is the amount of reactive power resource introduction, using supply and demand data, system configuration data, a voltage profile, power flow calculation conditions, and generator parameters, an optimal power flow calculation unit that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation unit, and an adjustment unit that modifies the initial setting value using a calculation result of the optimal power flow calculation unit and creates a future cross section of the power system.
  • a future system cross section creation method is a future system cross section creation method executed by a computer, and includes an initial value calculation process that calculates an initial setting value of a reactive power resource introduction amount, which is the amount of reactive power resources to be introduced, using supply and demand data, system configuration data, a voltage profile, power flow calculation conditions, and generator parameters, an optimal power flow calculation process that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation process, and an adjustment process that modifies the initial setting value using a calculation result of the optimal power flow calculation process to create a future cross section of the power system.
  • an initial value calculation process that calculates an initial setting value of a reactive power resource introduction amount, which is the amount of reactive power resources to be introduced, using supply and demand data, system configuration data, a voltage profile, power flow calculation conditions, and generator parameters
  • an optimal power flow calculation process that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation process
  • an adjustment process that modifies the initial setting value using a calculation result of the optimal power flow calculation process to
  • future cross sections can be created by setting appropriate reactive power.
  • FIG. 1 is a diagram showing an example of a supply DB.
  • FIG. 1 is a diagram showing an example of a system configuration DB.
  • FIG. 1 is a diagram showing an example of a generator parameter DB.
  • FIG. 1 is a diagram showing an example of a voltage profile DB;
  • FIG. 13 is a diagram showing an example of a power flow calculation condition DB.
  • FIG. 2 is a diagram showing an example of a reactive power resource introduction amount DB;
  • FIG. 13 is a diagram showing an example of a display screen displayed on a display unit.
  • Functional configuration diagram of a calculation unit in the second embodiment 11 is a flowchart showing the process of the initial value calculation unit in the second embodiment.
  • ⁇ Power system configuration> 1 is a configuration diagram of a power system 1 targeted by the future cross-section creation system.
  • the power system 1 is composed of a generator 10, a load 14, and a photovoltaic power generation 15, which are connected via a branch (line) 12, a node (bus) 11, and a transformer 13, respectively, and a phase modifying equipment 16 connected to the bus.
  • Reactive power resources include the tap position of the transformer 13, the reactive power output of the generator 10 and the photovoltaic power generation 15, the reactive power consumed and generated by the load 14, the phase modifying equipment 16, and the like.
  • the phase correcting equipment 16 includes a power capacitor (SC: Shunt Capacitor), a shunt reactor, a static voltage compensator, and a synchronous coder (SC: Synchronous Coder). Although not shown in FIG. 1, resources related to reactive power such as storage batteries are also included as reactive power resources. In this embodiment, the main purpose is to set the state and introduction amount of the phase correcting equipment 16, and these calculations are performed by the future cross-section creation system 100.
  • SC Shunt Capacitor
  • SC Synchronous Coder
  • ⁇ Configuration of the future cross-section creation system> 2 is a configuration diagram of a future cross section creation system 100 according to a first embodiment of the present invention.
  • the future cross section creation system 100 includes one or more computer systems, and is equipped with a display unit 101, an input unit 102, a communication unit 103, a processor 104, a memory 105, and a plurality of databases described below.
  • Each of these devices that configure the future cross section creation system 100 is connected to a bus 106, and transmits and receives information using this bus 106.
  • the processor 104 and the memory 105 are collectively referred to as a calculation unit 110.
  • the display unit 101 is, for example, a display device.
  • the display unit 101 may be configured to use a printer device, an audio output device, or the like instead of or together with the display device.
  • the input unit 102 is configured to include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, an audio instruction device, and the like.
  • the communication unit 103 includes a line connection method and a communication protocol for communicating with the future cross-section creation system 100.
  • the processor 104 executes calculation programs to instruct image data to be displayed and to search for data in various databases.
  • the processor 104 may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 105 is configured, for example, with a RAM (Random Access Memory) and a ROM (Read Only Member).
  • RAM Random Access Memory
  • ROM Read Only Member
  • computer programs are stored in the ROM, and calculation result data, image data, processing programs, etc. required for each process are temporarily stored in the RAM.
  • screen data stored in the memory 105 is sent to the display unit 101 and displayed.
  • the future cross section creation system 100 comprises multiple databases (hereinafter referred to as "DBs") as described below. That is, the future cross section creation system 100 comprises a program DB 41, a supply and demand DB 42, a system configuration DB 43, a generator parameter DB 44, a voltage profile DB 45, a power flow calculation condition DB 46, a reactive power resource introduction amount DB 47, and a reactive power resource schedule DB 48. Data is stored in advance in the program DB 41, the supply and demand DB 42, the system configuration DB 43, the generator parameter DB 44, the voltage profile DB 45, and the power flow calculation condition DB 46. Data is added to the reactive power resource introduction amount DB 47 and the reactive power resource schedule DB 48 by the process described below. Details of these databases will be described later.
  • ⁇ Functional configuration of the calculation unit> 3 is a functional configuration diagram of the calculation unit 110.
  • the calculation unit 110 has, as its functions, an initial value calculation unit 111, an optimal power flow calculation unit 112, and an adjustment unit 113. These functions are realized by the processor 104 executing a program read from the program DB 41 to the memory 105.
  • the calculation unit 110 obtains data required for calculation from the supply and demand DB 42, the system configuration DB 43, the generator parameter DB 44, the voltage profile DB 45, and the power flow calculation condition DB 46. Then, the calculation results of the initial value calculation unit 111, the optimal power flow calculation unit 112, and the adjustment unit 113 are stored in the reactive power resource introduction amount DB 47 and the reactive power resource schedule DB 48 via the bus 106.
  • the program DB 41 stores programs for implementing the initial value calculation unit 111, the optimal power flow calculation unit 112, and the adjustment unit 113 that constitute the calculation unit 110.
  • FIG. 4 is a diagram showing an example of the supply and demand DB 42.
  • the supply and demand DB 42 stores the supply amount of each power source for each section and the demand amount for each load.
  • the section is every hour, but the time interval can be any interval.
  • FIG. 5 is a diagram showing an example of the system configuration DB 43.
  • the system configuration DB 43 stores parameters for each transmission line. Specifically, for each transmission line name, the sending end, receiving end, impedance, upper and lower limits of current and voltage, etc. are recorded.
  • the system configuration DB 43 is used for power flow calculations, as described below. Note that while FIG. 5 shows a bus branch model that omits circuit breakers, it may also be configured as a node breaker model that includes circuit breakers, etc.
  • FIG. 6 is a diagram showing an example of the generator parameter DB 44.
  • the generator parameter DB 44 stores parameters for each generator, specifically, rated capacity, minimum output, rated power factor, power factor limit, etc.
  • parameters related to the ramp rate, continuous start time, or dynamic characteristics of the generator may also be stored.
  • FIG. 7 shows an example of the voltage profile DB 45.
  • the voltage profile DB 45 stores the target voltage for each cross section and each busbar.
  • FIG 8 is a diagram showing an example of the power flow calculation condition DB 46.
  • the power flow calculation condition DB 46 stores the power flow calculation conditions for each bus. Specifically, for each bus and for each type, the power flow calculation condition stored is either PV-specified, PQ-specified, or V ⁇ -specified.
  • the power flow calculation conditions can be set separately for the first time and for subsequent times.
  • the first time power flow calculation refers to the power flow calculation performed by the initial value calculation unit 111
  • the power flow calculations from the first time onwards refer to the optimal power flow calculation and power flow calculation in the optimal power flow calculation unit 112 and the adjustment unit 113.
  • FIG. 9 is a diagram showing an example of reactive power resource introduction amount DB47.
  • Reactive power resource introduction amount DB47 stores the introduction amount of reactive power resources for each bus. For example, among reactive power resources, the equipment capacities of SC and ShR are stored as the introduction amount of phase modifying equipment for each bus.
  • FIG. 10 is a diagram showing an example of reactive power resource schedule DB48.
  • Reactive power resource schedule DB48 stores the parallel amount of adjustment equipment on the bus, the transformer tap, the reactive power output, etc. for each cross-section time for each bus and for each time, and by utilizing this data, an appropriate power flow cross-section can be created, making it possible to evaluate future stability scenarios. However, it is not essential to use all three of the parallel amount of adjustment equipment, the transformer tap, and the reactive power output as reactive power resources, and it is sufficient to use at least one of them.
  • the initial value calculation unit 111 receives the supply and demand data stored in the supply and demand DB 42, the system information stored in the system configuration DB 43, the generator parameters stored in the generator parameter DB 44, the reference voltage stored in the voltage profile DB 45, and the system constraints stored in the power flow calculation condition DB 46, and calculates an initial setting value of the amount of phase modifying equipment introduction. The initial value calculation unit 111 then outputs the calculated initial setting value of the amount of phase modifying equipment introduction to the optimal power flow calculation unit 112.
  • the optimal power flow calculation unit 112 receives the initial setting value of the amount of phase modifying equipment introduction calculated by the initial value calculation unit 111, the supply and demand data stored in the supply and demand DB 42, the system information stored in the system configuration DB 43, the generator parameters stored in the generator parameter DB 44, and the power flow calculation condition DB 46, and creates time series data of a future system cross section. The optimal power flow calculation unit 112 then outputs the created time series data of the future system cross section to the adjustment unit 113.
  • the adjustment unit 113 receives as input the initial setting value of the amount of phase modifying equipment introduction calculated by the initial value calculation unit 111 and the time series data of the future system cross section created by the optimal power flow calculation unit 112, and calculates the amount of phase modifying equipment introduction, the amount of phase modifying equipment in parallel, the transformer tap position, and the generator reactive power output. The adjustment unit 113 then sends the calculated amount of phase modifying equipment introduction, the amount of phase modifying equipment in parallel, the transformer tap position, and the generator reactive power output to the reactive power resource introduction amount DB47 and the reactive power resource schedule DB48.
  • the processing of each component of the calculation unit 110 will be described below with reference to a flowchart.
  • FIG. 11 is a flowchart showing the processing of the initial value calculation unit 111.
  • the initial value calculation unit 111 sets constraint conditions for the power flow calculation and proceeds to step S101. Specifically, the initial value calculation unit 111 reads the upper and lower limit values of the voltage and current of each transmission line to be calculated from the system configuration DB 43. In step S101, the initial value calculation unit 111 initializes the variable time T to "1" and proceeds to step S102.
  • the initial value calculation unit 111 sets the power flow calculation conditions. Specifically, the initial value calculation unit 111 obtains supply and demand data from the supply and demand DB 42 and a voltage profile from the voltage profile DB 45, and sets the power flow calculation conditions for each busbar in the target cross section. For example, for a busbar designated as PV, an active power designation value is set from the supply and demand data, and a voltage designation value is set from the voltage profile.
  • PV designation PQ designation
  • V ⁇ stack busbar
  • a busbar in which a phase modifying equipment is introduced is set to PV designation, so that the amount of reactive power injection required to achieve the set voltage designation can be calculated, and the amount of phase modifying equipment to be introduced can be estimated from the reactive power amount.
  • step S103 the power flow calculation is executed.
  • step S104 the power flow calculation is judged to have converged. If convergence is confirmed, the process proceeds to step S105. If not, the process proceeds to step S106.
  • the initial value calculation unit 111 can judge whether the power flow calculation has converged, for example, by checking whether the difference in output for each loop is equal to or less than a predetermined value.
  • step S105 the initial value calculation unit 111 judges whether the result of the power flow calculation in step S103 satisfies the voltage and current constraint conditions. Specifically, the initial value calculation unit 111 judges whether the voltage is between a predetermined lower limit and an upper limit, and the current is between a predetermined lower limit and an upper limit, in the result of the power flow calculation.
  • step S107 If the initial value calculation unit 111 judges that the result of the power flow calculation satisfies the constraint conditions, the process proceeds to step S106.
  • step S106 the initial value calculation unit 111 modifies the conditions for the power flow calculation and returns to step S103. Specifically, the initial value calculation unit 111 calculates the evaluation value ⁇ for all sections in which the calculation conditions for the busbars at both ends are PV specified, using the following formula 1.
  • V(1) and V(2) are the designated voltage values of each bus at time T
  • Z(12) is the impedance of the transmission line connecting the buses.
  • the designated voltage values of each bus at each time are stored in the voltage profile DB45.
  • the impedance of each transmission line is stored in the system configuration DB43.
  • the initial value calculation unit 111 then changes one of the buses in the section with the lowest evaluation value ⁇ from PV designated to PQ designated.
  • the value of Q in this case is a value that is predetermined for each section.
  • the significance of the processing in this step is as follows.
  • the power flow calculation used in power system analysis generally involves a calculation to minimize the difference between the power flowing into the bus and the power flowing out of the bus from the initial point, as in the Newton-Raphson method.
  • the Jacobian matrix used in this calculation process is calculated using the transmission line impedance between the buses, and is generally used to solve simultaneous equations using LU decomposition, etc. In this case, if the transmission line impedance between the PV-designated buses is smaller than the others in the modeling, the Jacobian matrix elements may approximate 0, and the Jacobian matrix may become a singular matrix. In this case, there is a concern that the simultaneous equations will not be solved and the calculations will not converge. Therefore, for points where the buses at both ends are PV-designated, an index ⁇ that indicates the convergence of the power flow calculation is calculated, and points where convergence is unlikely to occur are changed from PV-designated to PQ-designated, making it easier to converge.
  • step S107 the initial value calculation unit 111 records the reactive power injection amount of the busbar connected to the phase modifying equipment based on the result of the power flow calculation for the target time section.
  • step S108 the initial value calculation unit 111 judges whether the time T is greater than a predetermined time T_MAX, that is, whether the calculation for a predetermined time has been completed. If the initial value calculation unit 111 judges that the time T is greater than the predetermined time T_MAX, the process proceeds to step S110, and if the initial value calculation unit 111 judges that the time T is equal to or less than the predetermined time T_MAX, the process proceeds to step S109.
  • step S109 the initial value calculation unit 111 updates the time T to a number that is "1" greater, and returns to step S102.
  • step S110 the initial value calculation unit 111 sets the initial value of the amount of phase modifying equipment introduction based on the result of the power flow calculation, and ends the process shown in FIG. 11.
  • FIG. 12 is a flowchart showing the processing of the optimal power flow calculation unit 112.
  • the optimal power flow calculation unit 112 sets an objective function for the optimal power flow calculation. This objective function is used in the optimal power flow calculation in step S203, which will be described later. For example, when implementing the operation of voltage and reactive power control, the objective function can be set to at least one of minimizing active power loss, minimizing reactive power loss, and minimizing the number of times the phase modifying equipment operates.
  • the optimal power flow calculation unit 112 sets constraint conditions for the optimal power flow calculation. These constraint conditions are the upper and lower limits of the voltage and current of each transmission line stored in the system configuration DB 43, and the amount of phase modifying equipment introduced calculated by the initial value calculation unit 111.
  • step S202 the variable time T is initialized to "1" and the process proceeds to step S203.
  • step S203 the optimal power flow calculation unit 112 executes the optimal power flow calculation. Specifically, the optimal power flow calculation unit 112 performs the optimal power flow calculation according to the objective function of the optimal power flow calculation set in step S200 and the constraint conditions of the optimal power flow calculation set in step S201.
  • explanatory variables when implementing the operation of voltage reactive power control are the voltage of each bus, the parallel amount of phase modifying equipment, the transformer tap position, and the generator reactive power output or voltage specified value.
  • step S204 the optimal power flow calculation unit 112 records the results of the optimal power flow calculation.
  • step S205 it is determined whether time T is greater than a predetermined time T_MAX, i.e., whether the calculation for a predetermined period of time has been completed. If the optimal power flow calculation unit 112 determines that time T is greater than the predetermined time T_MAX, it ends the process shown in FIG. 12, and if it determines that time T is equal to or less than the predetermined time T_MAX, it proceeds to step S206.
  • step S206 the optimal power flow calculation unit 112 updates time T to a number that is "1" greater, and returns to step S203.
  • voltage reactive power control was given as an example of an optimal power flow calculation, but load frequency control may also be implemented.
  • the objective function of voltage reactive power control is not limited to the above example, and may be reactive power loss minimization, or an objective function may be defined by combining multiple objectives.
  • FIG. 13 is a flowchart showing the processing of the adjustment unit 113.
  • the adjustment unit 113 first judges whether the constraint condition is satisfied in step S300, and ends the processing shown in FIG. 13 if it judges that the constraint condition is satisfied, and proceeds to step S301 if it judges that the constraint condition is not satisfied. Specifically, the adjustment unit 113 judges whether the calculation result by the optimal power flow calculation unit 112 satisfies the upper and lower limit conditions of the voltage and current of each transmission line stored in the system configuration DB 43.
  • the adjustment unit 113 judges that the constraint condition is satisfied when the voltage is equal to or greater than the lower limit and equal to or less than the upper limit, and further the current is equal to or greater than the lower limit and equal to or less than the upper limit, for all transmission lines subject to calculation, and judges that the constraint condition is not satisfied when the voltage is less than the lower limit or greater than the upper limit, or the current is less than the lower limit or greater than the upper limit, for one or more transmission lines subject to calculation.
  • step S301 the adjustment unit 113 extracts sections that deviate from the constraint conditions, i.e., violation sections, from the results of the optimal power flow calculation.
  • step S302 the adjustment unit 113 corrects the amount of phase modifying equipment introduced. Specifically, the adjustment unit 113 corrects the amount of phase modifying equipment introduced for the violation sections extracted in step S301.
  • the minimum amount of phase modifying equipment correction can be calculated by using an optimization problem of the amount of phase modifying equipment correction using the sensitivity to the violation node calculated during the power flow calculation process. Specifically, the objective function shown in Equation 2 and the constraint condition shown in Equation 3 are used.
  • ⁇ Q i is the phase modifying equipment correction amount of node i
  • LV i is the lower limit voltage value of node i
  • UV i is the upper limit voltage value of node i
  • ⁇ i is the voltage sensitivity to the reactive power of node i obtained in the process of power flow calculation.
  • the upper limit voltage value of each node is set as a constraint condition
  • a quadratic function of the change in the phase modifying equipment correction amount is set as the objective function, so that the minimum phase modifying equipment introduction amount that eliminates the constraint deviation can be calculated.
  • an optimization method such as quadratic programming may be applied.
  • step S303 the adjustment unit 113 initializes the variable time T to "1" and proceeds to step S304.
  • step S304 the adjustment unit 113 performs an optimal power flow calculation at time T.
  • step S305 the adjustment unit 113 records the result of the optimal power flow calculation in step S304.
  • step S306 the adjustment unit 113 determines whether time T is greater than a predetermined time T_MAX, that is, whether calculation for a predetermined period of time has been completed.
  • step S308 the adjustment unit 113 updates time T to a number that is "1" greater and returns to step S304.
  • step S308 the adjustment unit 113 determines whether the calculation result in step S304 satisfies the constraint conditions.
  • the processing in this step is the same as step S300 except for the evaluation target. If the adjustment unit 113 determines that the calculation result in step S304 satisfies the constraint conditions, the adjustment unit 113 proceeds to step S309, and if the calculation result in step S304 does not satisfy the constraint conditions, the adjustment unit 113 returns to step S301.
  • step S309 the adjustment unit 113 records the amount of phase modifying equipment introduction in the power flow calculation result, and ends the processing shown in FIG. 13.
  • FIG. 14 is a diagram showing an example of a display screen 101A displayed on the display unit 101.
  • a combination of the reactive power resource introduction amount stored in the reactive power resource introduction amount DB 47 and the system configuration stored in the system configuration DB 43 is displayed in the upper part of the display screen 101A.
  • the introduction amount of the phase modifying equipment is shown as the reactive power resource, but in addition, the upper and lower limit values of the reactive power of the generator and the tap width of the transformer tap may be shown.
  • a schedule of the reactive power resource is displayed in a graph.
  • the parallel amount of the phase modifying equipment, the transformer tap position, and the generator reactive power output are shown as the reactive power resource, but are not limited to these.
  • the upper limit value of the reactive power supply amount may be added to these graphs.
  • the future cross-section creation system 100 includes an initial value calculation unit 111 that calculates an initial setting value of a reactive power resource introduction amount, which is an introduction amount of reactive power resources, using a supply and demand DB 42, a system configuration DB 43, a voltage profile DB 45, a power flow calculation condition DB 46, and a generator parameter DB 44, an optimal power flow calculation unit 112 that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation unit 111, and an adjustment unit 113 that modifies the initial setting value using a calculation result of the optimal power flow calculation unit 112 and creates a future cross-section of the power system. Therefore, a future cross-section can be created by setting an appropriate reactive power. Specifically, this is as follows.
  • the initial value calculation unit 111 can calculate the initial introduction amount of phase modifying equipment by specifying PV as the power flow calculation condition for the busbar for which the introduction amount of phase modifying equipment is to be calculated.
  • the adjustment unit 113 can calculate the introduction amount of phase modifying equipment and its schedule that does not cause a voltage violation by adjusting the introduction amount of the phase modifying equipment. This makes it possible to create a system cross section that allows the system stability to be appropriately evaluated.
  • step S106 of FIG. 11 the initial value calculation unit 111 calculates an index ⁇ , which indicates the convergence of the power flow calculation, for each section using the power flow calculation conditions, and modifies the power flow calculation conditions for the section with the lowest index ⁇ . As a result, the accuracy of the calculation results decreases, but the convergence can be improved.
  • the optimal power flow calculation unit 112 sets at least one of minimizing active power loss, minimizing reactive power loss, and minimizing tap operation as an objective function. Therefore, the objective function can be changed as appropriate.
  • step S302 of FIG. 13 the adjustment unit 113 uses a reactive power resource introduction amount minimization problem using sensitivity coefficients for violating nodes generated during the power flow calculation process as a method for correcting the initial setting values. Therefore, it is possible to appropriately set the initial setting values of violating nodes that do not satisfy the constraint conditions.
  • an initial value calculation unit 111 calculates the initial introduction amount of the phase modifying equipment
  • an optimal power flow calculation unit 112 calculates the parallel amount of the phase modifying equipment
  • an adjustment unit 113 corrects the introduction amount of the phase modifying equipment and recalculates the parallel amount.
  • the transformer tap is targeted as the reactive power resource, and the optimal power flow calculation unit 112 calculates the tap position of the transformer, and the adjustment unit 113 recalculates the tap position.
  • the generator is targeted as the reactive power resource, and the optimal power flow calculation unit 112 calculates the reactive power output of the generator, and the adjustment unit 113 recalculates the reactive power output.
  • the reactive power resources are exemplified by a phase modifying facility, a transformer tap, and a generator reactive power output.
  • a phase modifying facility exemplified by a transformer tap, and a generator reactive power output.
  • other reactive power resources such as a storage battery and a static synchronous compensator (STATCOM) may be used.
  • STATCOM static synchronous compensator
  • the initial value calculation unit 111 corrected the power flow calculation conditions in the section with the smallest evaluation value ⁇ in step S106 in Fig. 11.
  • the initial value calculation unit 111 may change the power flow calculation conditions in two or more sections in step S106.
  • the initial value calculation unit 111 may change the power flow calculation conditions in the section with the smallest evaluation value ⁇ and the section with the second smallest evaluation value ⁇ .
  • FIG. 15 is a functional configuration diagram of the calculation unit 110a in the second embodiment.
  • the difference from the functional configuration shown in FIG. 3 in the first embodiment is that an initial value calculation unit 111a is provided instead of the initial value calculation unit 111.
  • the operation of the optimal power flow calculation unit 112 and the adjustment unit 113 is the same as in the first embodiment, so a description thereof will be omitted.
  • FIG. 16 is a flowchart showing the processing of the initial value calculation unit 111a in the second embodiment.
  • steps S111 and S112 are provided instead of step S101
  • step S113 is provided instead of step S108
  • step S114 is provided instead of step S109.
  • the operation of the other processing steps is the same as in the first embodiment, so a description thereof will be omitted.
  • step S111 the initial value calculation unit 111a clusters the supply and demand data.
  • Clustering methods that can be used include DBSCAN (Density-based spatial clustering of applications with noise) and the k-means method. In this clustering, similar scenarios are identified by clustering the supply and demand data using demand, thermal power generation, and renewable energy power generation as evaluation indicators.
  • step S112 the initial value calculation unit 111a sets a representative cross section of the cluster as the target cross section. The initial value calculation unit 111a may set the average value of each cluster as the representative cross section, or may set the median value as the representative cross section.
  • step S113 the initial value calculation unit 111a determines whether or not the power flow calculation has been completed for all representative cross sections. If the initial value calculation unit 111a determines that the power flow calculation has been completed for all representative cross sections, it proceeds to step S110, and if it determines that there is a representative cross section for which the power flow calculation has not been completed, it proceeds to step S114. In step S114, the initial value calculation unit 111a sets another representative cross section for which the power flow calculation has not been completed as the target cross section, and returns to step S102.
  • the initial value calculation unit 111a clusters the supply and demand data using the feature quantities of the supply and demand data, and calculates the initial setting values using the representative cross section of each cluster. Therefore, since the power flow calculation is performed for the representative cross section of each cluster, the calculation can be completed in a shorter time than in the first embodiment.
  • the functional block configurations are merely examples. Several functional configurations shown as separate functional blocks may be configured together, or a configuration shown in a single functional block diagram may be divided into two or more functions. In addition, some of the functions of each functional block may be provided by other functional blocks.
  • the programs are stored in the program DB 41, but in the future the cross-section creation system 100 may be equipped with an input/output interface (not shown), and the programs may be read from other devices via the input/output interface when necessary.
  • the medium refers to, for example, a storage medium that is detachable from the input/output interface, or a communication medium, i.e., a network such as a wired, wireless, or optical network, or a carrier wave or digital signal that propagates through the network.
  • some or all of the functions realized by the programs may be realized by a hardware circuit or FPGA.

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This future system snapshot creation system comprises: an initial value calculation unit that uses supply and demand data, system configuration data, a voltage profile, a power flow calculation condition, and power generator parameters to calculate an initial setting value of a reactive power resource introduction amount that is the introduction amount of a reactive power resource; an optimal power flow calculation unit that uses the initial setting value calculated by the initial value calculation unit to perform optimal power flow calculation; and an adjustment unit uses the calculation result of the optimal power flow calculation unit to modify the initial setting value and create the future snapshot of a power system.

Description

将来系統断面作成システム、将来系統断面作成方法Future system cross section creation system, future system cross section creation method
 本発明は、将来系統断面作成システム、および将来系統断面作成方法に関する。 The present invention relates to a system for creating a future system cross section and a method for creating a future system cross section.
 電力系統は、発電機、送配電機器、需要家などから構成され、多くの要因に影響される傾向が知られている。従来では、一定のシナリオに基づいて設計や計画を進められていたが、近年では再生可能エネルギー電源などの新規機器の導入に伴い、計画に多面性が求められるようになってきている。多面的な計画を立案するために、複数の将来シナリオを考慮することが求められている。将来シナリオを検証するにあたり、時間帯や地域毎の需要などを振り分ける将来断面(future snapshot)の評価が必要とされている。特許文献1には、複数の再生可能エネルギー電源と複数の発電機とが接続された電力系統設備における需要予測値と、前記再生可能エネルギー電源により出力される電力量の予測値である出力予測値とに基づいて、前記発電機に要求される電力量の予測値である発電需要予測値を決定する発電需要予測値決定部と、前記発電需要予測値決定部により決定された前記発電需要予測値に基づいて、前記発電機の初期発電計画を決定する初期発電計画決定部と、前記出力予測値と発生確率が互いに異なる複数の変動出力予測値に基づいて、前記出力予測値の出力変動パターンを複数作成する出力変動パターン作成部と、想定される事故に関する情報と、前記出力変動パターン作成部により作成された複数の前記出力変動パターンとに基づいて、前記想定される事故後において予測される前記電力系統設備の過渡安定度を導出し、導出された前記過渡安定度に基づいて、前記出力変動パターンにおいて前記過渡安定度を維持できる最適発電計画を決定する最適発電計画決定部と、を備える発電計画決定システムが開示されている。  Power grids are made up of generators, power transmission and distribution equipment, consumers, etc., and are known to be influenced by many factors. Traditionally, designs and plans were based on certain scenarios, but in recent years, with the introduction of new equipment such as renewable energy sources, plans are required to be more multifaceted. In order to create multifaceted plans, it is necessary to take into account multiple future scenarios. When verifying future scenarios, it is necessary to evaluate future snapshots that allocate demand by time period and region, etc. Patent Document 1 discloses a power generation plan determination system including: a power generation demand forecast value determination unit that determines a power generation demand forecast value, which is a forecast value of the amount of power required for the generator, based on a demand forecast value in a power system facility to which multiple renewable energy power sources and multiple generators are connected, and an output forecast value, which is a forecast value of the amount of power output by the renewable energy power sources; an initial power generation plan determination unit that determines an initial power generation plan for the generator based on the power generation demand forecast value determined by the power generation demand forecast value determination unit; an output fluctuation pattern creation unit that creates multiple output fluctuation patterns of the output forecast value based on the output forecast value and multiple variable output forecast values having different occurrence probabilities; and an optimal power generation plan determination unit that derives the transient stability of the power system facility predicted after the expected accident based on information about the expected accident and the multiple output fluctuation patterns created by the output fluctuation pattern creation unit, and determines an optimal power generation plan that can maintain the transient stability in the output fluctuation pattern based on the derived transient stability.
日本国特開2020-65368号公報Japanese Patent Publication No. 2020-65368
 特許文献1に記載されている発明では、適切な無効電力を設定できない。 The invention described in Patent Document 1 does not allow for appropriate reactive power setting.
 本発明の第1の態様による将来系統断面作成システムは、需給データ、系統構成データ、電圧プロファイル、潮流計算条件、および発電機パラメータを用いて無効電力リソースの導入量である無効電力リソース導入量の初期設定値を算出する初期値算出部と、前記初期値算出部が算出した前記初期設定値を用いて最適潮流計算を実施する最適潮流計算部と、前記最適潮流計算部の計算結果を用いて前記初期設定値を修正し、電力系統の将来断面を作成する調整部と、を備える。
 本発明の第2の態様による将来系統断面作成方法は、コンピュータが実行する将来系統断面作成方法であって、需給データ、系統構成データ、電圧プロファイル、潮流計算条件、および発電機パラメータを用いて無効電力リソースの導入量である無効電力リソース導入量の初期設定値を算出する初期値算出処理と、前記初期値算出処理により算出された前記初期設定値を用いて最適潮流計算を実施する最適潮流計算処理と、前記最適潮流計算処理による計算結果を用いて前記初期設定値を修正し、電力系統の将来断面を作成する調整処理と、を含む。
A future power system cross section creation system according to a first aspect of the present invention includes an initial value calculation unit that calculates an initial setting value of a reactive power resource introduction amount, which is the amount of reactive power resource introduction, using supply and demand data, system configuration data, a voltage profile, power flow calculation conditions, and generator parameters, an optimal power flow calculation unit that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation unit, and an adjustment unit that modifies the initial setting value using a calculation result of the optimal power flow calculation unit and creates a future cross section of the power system.
A future system cross section creation method according to a second aspect of the present invention is a future system cross section creation method executed by a computer, and includes an initial value calculation process that calculates an initial setting value of a reactive power resource introduction amount, which is the amount of reactive power resources to be introduced, using supply and demand data, system configuration data, a voltage profile, power flow calculation conditions, and generator parameters, an optimal power flow calculation process that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation process, and an adjustment process that modifies the initial setting value using a calculation result of the optimal power flow calculation process to create a future cross section of the power system.
 本発明によれば、適切な無効電力を設定して将来断面を作成できる。 According to the present invention, future cross sections can be created by setting appropriate reactive power.
電力系統の構成図Power system configuration diagram 将来断面作成システムの構成図Diagram of the future cross-section creation system 第1の実施の形態における演算部の機能構成図Functional configuration diagram of a calculation unit in the first embodiment 供給DBの一例を示す図FIG. 1 is a diagram showing an example of a supply DB. 系統構成DBの一例を示す図FIG. 1 is a diagram showing an example of a system configuration DB. 発電機パラメータDBの一例を示す図FIG. 1 is a diagram showing an example of a generator parameter DB. 電圧プロファイルDBの一例を示す図FIG. 1 is a diagram showing an example of a voltage profile DB; 潮流計算条件DBの一例を示す図FIG. 13 is a diagram showing an example of a power flow calculation condition DB. 無効電力リソース導入量DBの一例を示す図FIG. 2 is a diagram showing an example of a reactive power resource introduction amount DB; 無効電力リソーススケジュールDBの一例を示す図FIG. 2 is a diagram showing an example of a reactive power resource schedule DB; 第1の実施の形態における初期値算出部の処理を示すフローチャート1 is a flowchart showing a process of an initial value calculation unit according to the first embodiment. 最適潮流計算部の処理を示すフローチャートFlowchart showing the process of the optimal power flow calculation unit 調整部の処理を示すフローチャートFlowchart showing the process of the adjustment unit 表示部に表示される表示画面の一例を示す図FIG. 13 is a diagram showing an example of a display screen displayed on a display unit. 第2の実施の形態における演算部の機能構成図Functional configuration diagram of a calculation unit in the second embodiment 第2の実施の形態における初期値算出部の処理を示すフローチャート11 is a flowchart showing the process of the initial value calculation unit in the second embodiment.
―第1の実施の形態―
 以下、図1~図14を参照して、将来断面作成システムの第1の実施の形態を説明する。なお、以下は1つの実施の形態にすぎず、下記の具体的内容に発明自体が限定されることを意図するものではない。
-First embodiment-
A first embodiment of the future cross section creation system will be described below with reference to Figures 1 to 14. Note that the following is merely one embodiment, and it is not intended that the invention itself be limited to the specific content described below.
<電力系統の構成>
 図1は、将来断面作成システムが対象とする電力系統1の構成図である。電力系統1は、ブランチ(線路)12、ノード(母線)11、および変圧器13を介してそれぞれ接続する、発電機10、負荷14および太陽光発電15と、母線に接続される調相設備16から構成される。無効電力リソースには、変圧器13のタップ位置、発電機10および太陽光発電15の無効電力出力、負荷14が消費および発生する無効電力、調相設備16などがある。
<Power system configuration>
1 is a configuration diagram of a power system 1 targeted by the future cross-section creation system. The power system 1 is composed of a generator 10, a load 14, and a photovoltaic power generation 15, which are connected via a branch (line) 12, a node (bus) 11, and a transformer 13, respectively, and a phase modifying equipment 16 connected to the bus. Reactive power resources include the tap position of the transformer 13, the reactive power output of the generator 10 and the photovoltaic power generation 15, the reactive power consumed and generated by the load 14, the phase modifying equipment 16, and the like.
 調相設備16には、電力用コンデンサ(SC:Shunt Capacitor)、分路リアクトル(Shunt Reactor)、静止型無効電力補償装置(Static Voltage Compensator)、同期調相機(SC:Synchronous Codenser)などがある。また、図1には記載していないが、蓄電池など無効電力に関わるリソースは無効電力リソースとして含まれるものとする。本実施例では、主に調相設備16の状態や導入量を設定することを目的としており、将来断面作成システム100によってこれらの計算をする。 The phase correcting equipment 16 includes a power capacitor (SC: Shunt Capacitor), a shunt reactor, a static voltage compensator, and a synchronous coder (SC: Synchronous Coder). Although not shown in FIG. 1, resources related to reactive power such as storage batteries are also included as reactive power resources. In this embodiment, the main purpose is to set the state and introduction amount of the phase correcting equipment 16, and these calculations are performed by the future cross-section creation system 100.
<将来断面作成システムの構成>
 図2は、本発明の実施例1に係る将来断面作成システム100の構成図である。将来断面作成システム100は、1または複数の計算機システムを含み、表示部101、入力部102、通信部103、プロセッサ104、メモリ105、および後述する複数のデータベースを備える。将来断面作成システム100を構成するこれらの装置は、それぞれバス106に接続され、このバス106を利用して情報を授受する。以下では、プロセッサ104およびメモリ105をあわせて演算部110とも呼ぶ。
<Configuration of the future cross-section creation system>
2 is a configuration diagram of a future cross section creation system 100 according to a first embodiment of the present invention. The future cross section creation system 100 includes one or more computer systems, and is equipped with a display unit 101, an input unit 102, a communication unit 103, a processor 104, a memory 105, and a plurality of databases described below. Each of these devices that configure the future cross section creation system 100 is connected to a bus 106, and transmits and receives information using this bus 106. Hereinafter, the processor 104 and the memory 105 are collectively referred to as a calculation unit 110.
 表示部101は、たとえば、ディスプレイ装置である。表示部101は、ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置や音声出力装置等を用いる構成でもよい。入力部102は、たとえば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成される。通信部103は、将来断面作成システム100と通信するための回線接続方式、および通信プロトコルを備える。 The display unit 101 is, for example, a display device. The display unit 101 may be configured to use a printer device, an audio output device, or the like instead of or together with the display device. The input unit 102 is configured to include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, an audio instruction device, and the like. The communication unit 103 includes a line connection method and a communication protocol for communicating with the future cross-section creation system 100.
 プロセッサ104は、計算プログラムを実行して、表示すべき画像データの指示や、各種データベース内のデータの検索等を行う。なお、プロセッサ104は、一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。メモリ105は、たとえば、RAM(Random Access Memory)、およびROM(Read Only Member)を搭載して構成される。たとえば、ROMにコンピュータプログラムを記憶したり、RAMに各処理に必要な計算結果データや画像データや処理プログラム等を一時的に記憶したりする。また、たとえば、メモリ105に格納された画面データは、表示部101に送られて表示される。 The processor 104 executes calculation programs to instruct image data to be displayed and to search for data in various databases. The processor 104 may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server. The memory 105 is configured, for example, with a RAM (Random Access Memory) and a ROM (Read Only Member). For example, computer programs are stored in the ROM, and calculation result data, image data, processing programs, etc. required for each process are temporarily stored in the RAM. Also, for example, screen data stored in the memory 105 is sent to the display unit 101 and displayed.
 将来断面作成システム100は、以下に説明する複数のデータベース(以下、「DB」と記載する)を備える。すなわち将来断面作成システム100は、プログラムDB41、需給DB42、系統構成DB43、発電機パラメータDB44、電圧プロファイルDB45、潮流計算条件DB46、無効電力リソース導入量DB47、および無効電力リソーススケジュールDB48を備える。プログラムDB41、需給DB42、系統構成DB43、発電機パラメータDB44、電圧プロファイルDB45、および潮流計算条件DB46には、あらかじめデータが格納されている。後述する処理により、無効電力リソース導入量DB47、および無効電力リソーススケジュールDB48にデータが追加される。これらのデータベースの詳細は後述する。 The future cross section creation system 100 comprises multiple databases (hereinafter referred to as "DBs") as described below. That is, the future cross section creation system 100 comprises a program DB 41, a supply and demand DB 42, a system configuration DB 43, a generator parameter DB 44, a voltage profile DB 45, a power flow calculation condition DB 46, a reactive power resource introduction amount DB 47, and a reactive power resource schedule DB 48. Data is stored in advance in the program DB 41, the supply and demand DB 42, the system configuration DB 43, the generator parameter DB 44, the voltage profile DB 45, and the power flow calculation condition DB 46. Data is added to the reactive power resource introduction amount DB 47 and the reactive power resource schedule DB 48 by the process described below. Details of these databases will be described later.
<演算部の機能構成>
 図3は、演算部110の機能構成図である。演算部110はその機能として、初期値算出部111、最適潮流計算部112、および調整部113を備える。これらの機能は、プログラムDB41からメモリ105に読み出されたプログラムをプロセッサ104が実行することで実現される。演算部110は、計算に必要なデータを需給DB42、系統構成DB43、発電機パラメータDB44、電圧プロファイルDB45、潮流計算条件DB46から得る。そして、初期値算出部111、最適潮流計算部112、および調整部113の演算結果は、バス106を介して無効電力リソース導入量DB47および無効電力リソーススケジュールDB48に格納される。
<Functional configuration of the calculation unit>
3 is a functional configuration diagram of the calculation unit 110. The calculation unit 110 has, as its functions, an initial value calculation unit 111, an optimal power flow calculation unit 112, and an adjustment unit 113. These functions are realized by the processor 104 executing a program read from the program DB 41 to the memory 105. The calculation unit 110 obtains data required for calculation from the supply and demand DB 42, the system configuration DB 43, the generator parameter DB 44, the voltage profile DB 45, and the power flow calculation condition DB 46. Then, the calculation results of the initial value calculation unit 111, the optimal power flow calculation unit 112, and the adjustment unit 113 are stored in the reactive power resource introduction amount DB 47 and the reactive power resource schedule DB 48 via the bus 106.
<データベース>
 プログラムDB41には、演算部110を構成する初期値算出部111、最適潮流計算部112、および調整部113を実現するプログラムが格納される。
<Database>
The program DB 41 stores programs for implementing the initial value calculation unit 111, the optimal power flow calculation unit 112, and the adjustment unit 113 that constitute the calculation unit 110.
 図4は、需給DB42の一例を示す図である。需給DB42には、断面ごとのそれぞれの電源の供給量、負荷ごとの需要量が格納される。図4に示す例では断面が1時間ごとであるが、時間の間隔は任意である。 FIG. 4 is a diagram showing an example of the supply and demand DB 42. The supply and demand DB 42 stores the supply amount of each power source for each section and the demand amount for each load. In the example shown in FIG. 4, the section is every hour, but the time interval can be any interval.
 図5は、系統構成DB43の一例を示す図である。系統構成DB43には、送電線毎のパラメータが格納される。具体的には、送電線の名称ごとに、送電端、受電端、インピーダンス、電流および電圧の上下限値などが記載される。系統構成DB43は、後述するように潮流計算に用いられる。なお、図5ではサーキットブレーカーを省略したバスブランチモデルを記載しているが、サーキットブレーカーなどを記載したノードブレイカーモデルで構成されてもよい。 FIG. 5 is a diagram showing an example of the system configuration DB 43. The system configuration DB 43 stores parameters for each transmission line. Specifically, for each transmission line name, the sending end, receiving end, impedance, upper and lower limits of current and voltage, etc. are recorded. The system configuration DB 43 is used for power flow calculations, as described below. Note that while FIG. 5 shows a bus branch model that omits circuit breakers, it may also be configured as a node breaker model that includes circuit breakers, etc.
 図6は、発電機パラメータDB44の一例を示す図である。発電機パラメータDB44には、発電機ごとのパラメータ、具体的には定格容量、最低出力、定格力率、力率限度、などが格納される。図6に記載のパラメータ以外にも、発電機のランプレート、連続起動時間、または発電機の動特性に係るパラメータが格納されてもよい。 FIG. 6 is a diagram showing an example of the generator parameter DB 44. The generator parameter DB 44 stores parameters for each generator, specifically, rated capacity, minimum output, rated power factor, power factor limit, etc. In addition to the parameters shown in FIG. 6, parameters related to the ramp rate, continuous start time, or dynamic characteristics of the generator may also be stored.
 図7は、電圧プロファイルDB45の一例を示す図である。電圧プロファイルDB45には、断面ごと、および母線ごとの目標電圧が格納される。 FIG. 7 shows an example of the voltage profile DB 45. The voltage profile DB 45 stores the target voltage for each cross section and each busbar.
 図8は、潮流計算条件DB46の一例を示す図である。潮流計算条件DB46には各母線の潮流計算条件が格納される。具体的には、母線ごと、かつ種類ごとに潮流計算条件がPV指定、PQ指定、Vδ指定のいずれかが格納される。潮流計算条件は、初回と初回以降とを個別に設定できる。ここで、初回の潮流計算とは初期値算出部111で実施される潮流計算のことであり、初回以降の潮流計算は最適潮流計算部112および調整部113における最適潮流計算および潮流計算のことである。 Figure 8 is a diagram showing an example of the power flow calculation condition DB 46. The power flow calculation condition DB 46 stores the power flow calculation conditions for each bus. Specifically, for each bus and for each type, the power flow calculation condition stored is either PV-specified, PQ-specified, or Vδ-specified. The power flow calculation conditions can be set separately for the first time and for subsequent times. Here, the first time power flow calculation refers to the power flow calculation performed by the initial value calculation unit 111, and the power flow calculations from the first time onwards refer to the optimal power flow calculation and power flow calculation in the optimal power flow calculation unit 112 and the adjustment unit 113.
 図9は、無効電力リソース導入量DB47の一例を示す図である。無効電力リソース導入量DB47には、母線ごとの無効電力リソースの導入量が格納される。たとえば、無効電力リソースのうち、各母線の調相設備導入量としてSCとShRの設備容量が格納される。 FIG. 9 is a diagram showing an example of reactive power resource introduction amount DB47. Reactive power resource introduction amount DB47 stores the introduction amount of reactive power resources for each bus. For example, among reactive power resources, the equipment capacities of SC and ShR are stored as the introduction amount of phase modifying equipment for each bus.
 図10は、無効電力リソーススケジュールDB48の一例を示す図である。無効電力リソーススケジュールDB48は、断面時刻ごとに、母線の調整設備並列量と、変圧器タップと、無効電力出力などを母線毎、時刻毎に格納しており、このデータを活用することで適切な潮流断面を作成でき、安定性将来シナリオの評価が可能となる。ただし無効電力リソースとして調整設備並列量、変圧器タップ、および無効電力出力の3つ全てを利用することは必須の構成ではなく、少なくとも1つを利用すればよい。 FIG. 10 is a diagram showing an example of reactive power resource schedule DB48. Reactive power resource schedule DB48 stores the parallel amount of adjustment equipment on the bus, the transformer tap, the reactive power output, etc. for each cross-section time for each bus and for each time, and by utilizing this data, an appropriate power flow cross-section can be created, making it possible to evaluate future stability scenarios. However, it is not essential to use all three of the parallel amount of adjustment equipment, the transformer tap, and the reactive power output as reactive power resources, and it is sufficient to use at least one of them.
<演算部>
 初期値算出部111は、需給DB42に格納された需給データ、系統構成DB43に格納された系統情報、発電機パラメータDB44に格納された発電機パラメータ、電圧プロファイルDB45に格納された基準電圧、および潮流計算条件DB46に格納された系統制約を入力とし、調相設備導入量の初期設定値を算出する。そして初期値算出部111は、算出した調相設備導入量の初期設定値を最適潮流計算部112に出力する。最適潮流計算部112は、初期値算出部111が算出した調相設備導入量の初期設定値と、需給DB42に格納された需給データ、系統構成DB43に格納された系統情報、発電機パラメータDB44に格納された発電機パラメータ、および潮流計算条件DB46を入力とし、将来系統断面の時系列データを作成する。そして最適潮流計算部112は、作成した将来系統断面の時系列データを、調整部113に出力する。
<Calculation section>
The initial value calculation unit 111 receives the supply and demand data stored in the supply and demand DB 42, the system information stored in the system configuration DB 43, the generator parameters stored in the generator parameter DB 44, the reference voltage stored in the voltage profile DB 45, and the system constraints stored in the power flow calculation condition DB 46, and calculates an initial setting value of the amount of phase modifying equipment introduction. The initial value calculation unit 111 then outputs the calculated initial setting value of the amount of phase modifying equipment introduction to the optimal power flow calculation unit 112. The optimal power flow calculation unit 112 receives the initial setting value of the amount of phase modifying equipment introduction calculated by the initial value calculation unit 111, the supply and demand data stored in the supply and demand DB 42, the system information stored in the system configuration DB 43, the generator parameters stored in the generator parameter DB 44, and the power flow calculation condition DB 46, and creates time series data of a future system cross section. The optimal power flow calculation unit 112 then outputs the created time series data of the future system cross section to the adjustment unit 113.
 調整部113は、初期値算出部111が算出した調相設備導入量の初期設定値と、最適潮流計算部112で作成した将来系統断面の時系列データを入力として、調相設備導入量、調相設備並列量、変圧器タップ位置および発電機無効電力出力を算出する。そして調整部113は、算出した調相設備導入量、調相設備並列量、変圧器タップ位置および発電機無効電力出力を無効電力リソース導入量DB47、および無効電力リソーススケジュールDB48に送る。以下では、フローチャートを参照して演算部110の各構成の処理を説明する。 The adjustment unit 113 receives as input the initial setting value of the amount of phase modifying equipment introduction calculated by the initial value calculation unit 111 and the time series data of the future system cross section created by the optimal power flow calculation unit 112, and calculates the amount of phase modifying equipment introduction, the amount of phase modifying equipment in parallel, the transformer tap position, and the generator reactive power output.The adjustment unit 113 then sends the calculated amount of phase modifying equipment introduction, the amount of phase modifying equipment in parallel, the transformer tap position, and the generator reactive power output to the reactive power resource introduction amount DB47 and the reactive power resource schedule DB48.The processing of each component of the calculation unit 110 will be described below with reference to a flowchart.
 図11は、初期値算出部111の処理を示すフローチャートである。初期値算出部111は、まずステップS100において潮流計算の制約条件を設定してステップS101に進む。具体的には、系統構成DB43から算出対象の各送電線の電圧および電流の上下限値を読み込む。ステップS101では初期値算出部111は、変数である時刻Tを「1」で初期化してステップS102に進む。 FIG. 11 is a flowchart showing the processing of the initial value calculation unit 111. First, in step S100, the initial value calculation unit 111 sets constraint conditions for the power flow calculation and proceeds to step S101. Specifically, the initial value calculation unit 111 reads the upper and lower limit values of the voltage and current of each transmission line to be calculated from the system configuration DB 43. In step S101, the initial value calculation unit 111 initializes the variable time T to "1" and proceeds to step S102.
 ステップS102では初期値算出部111は、潮流計算条件を設定する。具体的には初期値算出部111は、需給DB42から需給データ、電圧プロファイルDB45から電圧プロファイルを取得し、対象断面における各母線の潮流計算の条件を設定する。たとえば、PV指定されている母線は需給データから有効電力指定値、電圧プロファイルから電圧指定値を設定する。一般的にはPV指定、PQ指定、Vδ(スラック母線)指定のいずれか設定し、調相設備が導入される母線は、PV指定に設定することで、設定された電圧指定とするために必要な無効電力注入量を算出でき、その無効電力量から調相設備導入量を推定できる。 In step S102, the initial value calculation unit 111 sets the power flow calculation conditions. Specifically, the initial value calculation unit 111 obtains supply and demand data from the supply and demand DB 42 and a voltage profile from the voltage profile DB 45, and sets the power flow calculation conditions for each busbar in the target cross section. For example, for a busbar designated as PV, an active power designation value is set from the supply and demand data, and a voltage designation value is set from the voltage profile. Generally, one of PV designation, PQ designation, and Vδ (slack busbar) designation is set, and a busbar in which a phase modifying equipment is introduced is set to PV designation, so that the amount of reactive power injection required to achieve the set voltage designation can be calculated, and the amount of phase modifying equipment to be introduced can be estimated from the reactive power amount.
 ステップS103では、潮流計算を実行する。ステップS104では潮流計算の収束判定をし、収束が確認されればステップS105へ進み、未収束であればステップS106へ進む。初期値算出部111は、たとえば1ループごとの出力の差が所定値以下か否かにより、潮流計算が収束したか否かを判断できる。ステップS105では初期値算出部111は、ステップS103における潮流計算の結果が電圧および電流の制約条件を満たすか否かを判定する。具体的には初期値算出部111は、潮流計算の結果において、電圧が所定の下限値から上限値の間にあり、かつ電流が所定の下限値から上限値の間にあるか否かを判断する。この電圧および電流の条件は、系統構成DB43に記載されている。初期値算出部111は、潮流計算の結果が制約条件を満たすと判断する場合はステップS107に進み、制約条件を満たさないと判断する場合はステップS106に進む。 In step S103, the power flow calculation is executed. In step S104, the power flow calculation is judged to have converged. If convergence is confirmed, the process proceeds to step S105. If not, the process proceeds to step S106. The initial value calculation unit 111 can judge whether the power flow calculation has converged, for example, by checking whether the difference in output for each loop is equal to or less than a predetermined value. In step S105, the initial value calculation unit 111 judges whether the result of the power flow calculation in step S103 satisfies the voltage and current constraint conditions. Specifically, the initial value calculation unit 111 judges whether the voltage is between a predetermined lower limit and an upper limit, and the current is between a predetermined lower limit and an upper limit, in the result of the power flow calculation. These voltage and current conditions are written in the system configuration DB 43. If the initial value calculation unit 111 judges that the result of the power flow calculation satisfies the constraint conditions, the process proceeds to step S107. If the initial value calculation unit 111 judges that the result of the power flow calculation satisfies the constraint conditions, the process proceeds to step S106.
 ステップS106では初期値算出部111は、潮流計算の条件を修正してステップS103に戻る。具体的には初期値算出部111は、両端の母線の計算条件がPV指定である全ての区間に対して、次の式1により評価値αを算出する。 In step S106, the initial value calculation unit 111 modifies the conditions for the power flow calculation and returns to step S103. Specifically, the initial value calculation unit 111 calculates the evaluation value α for all sections in which the calculation conditions for the busbars at both ends are PV specified, using the following formula 1.
   α=|V(1)-V(2)|/|Z(12)| …(式1) α=|V(1)-V(2)|/|Z(12)| …(Equation 1)
 ここで、V(1)、V(2)は各母線の時刻Tの電圧指定値、Z(12)は母線間を接続する送電線のインピーダンスである。各母線の時刻ごとの電圧指定値は、電圧プロファイルDB45に格納されている。各送電線のインピーダンスは、系統構成DB43に格納されている。そして初期値算出部111は、評価値αが最も低い区間のいずれかの母線をPV指定からPQ指定に変更する。なおこの場合におけるQの値は、区間ごとにあらかじめ定められた値である。 Here, V(1) and V(2) are the designated voltage values of each bus at time T, and Z(12) is the impedance of the transmission line connecting the buses. The designated voltage values of each bus at each time are stored in the voltage profile DB45. The impedance of each transmission line is stored in the system configuration DB43. The initial value calculation unit 111 then changes one of the buses in the section with the lowest evaluation value α from PV designated to PQ designated. Note that the value of Q in this case is a value that is predetermined for each section.
 本ステップにおける処理の意義は以下のとおりである。電力系統解析で使われる潮流計算は、ニュートンラプソン法のように、初期点から母線流入電力と母線流出電力の差分を最小化する計算を行うことが一般的である。この計算の経過で活用されるヤコビアン行列は、母線間の送電線インピーダンスなどを用いて計算されており、一般的にはLU分解などを用いて連立方程式を解くために用いられる。このとき、モデリング上で、PV指定された母線間の送電線インピーダンスが他と比べ小さい場合は、ヤコビアン行列成分が0に近似することがあり、ヤコビアン行列が特異行列となる可能性がある。この場合には、連立方程式が解けなくなり、計算が収束しなくなることが懸念される。そこで、両端の母線がPV指定となる箇所については、潮流計算の収束性を表す指標αを算出し、収束する見込みが低い箇所をPV指定からPQ指定に変更することで、収束しやすくする。 The significance of the processing in this step is as follows. The power flow calculation used in power system analysis generally involves a calculation to minimize the difference between the power flowing into the bus and the power flowing out of the bus from the initial point, as in the Newton-Raphson method. The Jacobian matrix used in this calculation process is calculated using the transmission line impedance between the buses, and is generally used to solve simultaneous equations using LU decomposition, etc. In this case, if the transmission line impedance between the PV-designated buses is smaller than the others in the modeling, the Jacobian matrix elements may approximate 0, and the Jacobian matrix may become a singular matrix. In this case, there is a concern that the simultaneous equations will not be solved and the calculations will not converge. Therefore, for points where the buses at both ends are PV-designated, an index α that indicates the convergence of the power flow calculation is calculated, and points where convergence is unlikely to occur are changed from PV-designated to PQ-designated, making it easier to converge.
 ステップS107では初期値算出部111は、対象とする時間断面の潮流計算の結果から、調相設備接続される母線の無効電力注入量を記録する。続くステップS108では初期値算出部111は、時刻Tが所定の時刻T_MAXよりも大きい、すなわちあらかじめ定めた時間分の計算が完了したか否かを判断する。初期値算出部111は、時刻Tが所定の時刻T_MAXよりも大きいと判断する場合はステップS110に進み、時刻Tが所定の時刻T_MAX以下であると判断する場合はステップS109に進む。ステップS109では初期値算出部111は、時刻Tを「1」だけ大きい数に更新してステップS102に戻る。ステップS110では初期値算出部111は、潮流計算の結果に基づき調相設備導入量の初期値を設定し、図11に示す処理を終了する。 In step S107, the initial value calculation unit 111 records the reactive power injection amount of the busbar connected to the phase modifying equipment based on the result of the power flow calculation for the target time section. In the following step S108, the initial value calculation unit 111 judges whether the time T is greater than a predetermined time T_MAX, that is, whether the calculation for a predetermined time has been completed. If the initial value calculation unit 111 judges that the time T is greater than the predetermined time T_MAX, the process proceeds to step S110, and if the initial value calculation unit 111 judges that the time T is equal to or less than the predetermined time T_MAX, the process proceeds to step S109. In step S109, the initial value calculation unit 111 updates the time T to a number that is "1" greater, and returns to step S102. In step S110, the initial value calculation unit 111 sets the initial value of the amount of phase modifying equipment introduction based on the result of the power flow calculation, and ends the process shown in FIG. 11.
 図12は、最適潮流計算部112の処理を示すフローチャートである。最適潮流計算部112は、まずステップS200において、最適潮流計算の目的関数を設定する。この目的関数は、後述するステップS203の最適潮流計算で用いられる。たとえば、電圧無効電力制御の動作を実装する場合は、目的関数には有効電力損失の最小化、無効電力損失の最小化、および調相設備の動作回数の最小化の少なくとも1つに設定できる。続くステップS201では最適潮流計算部112は、最適潮流計算の制約条件を設定する。この制約条件は、系統構成DB43に格納された各送電線の電圧および電流の上下限値と、初期値算出部111において算出された調相設備導入量である。 FIG. 12 is a flowchart showing the processing of the optimal power flow calculation unit 112. First, in step S200, the optimal power flow calculation unit 112 sets an objective function for the optimal power flow calculation. This objective function is used in the optimal power flow calculation in step S203, which will be described later. For example, when implementing the operation of voltage and reactive power control, the objective function can be set to at least one of minimizing active power loss, minimizing reactive power loss, and minimizing the number of times the phase modifying equipment operates. In the following step S201, the optimal power flow calculation unit 112 sets constraint conditions for the optimal power flow calculation. These constraint conditions are the upper and lower limits of the voltage and current of each transmission line stored in the system configuration DB 43, and the amount of phase modifying equipment introduced calculated by the initial value calculation unit 111.
 続くステップS202では、変数である時刻Tを「1」で初期化してステップS203に進む。ステップS203では最適潮流計算部112は、最適潮流計算を実行する。具体的には最適潮流計算部112は、ステップS200で設定した最適潮流計算の目的関数およびステップS201で設定した最適潮流計算の制約条件に従って最適潮流計算を行う。たとえば、電圧無効電力制御の動作を実装する場合の説明変数は、各母線の電圧、調相設備の並列量、変圧器タップ位置、および発電機の無効電力出力または電圧指定値である。 In the following step S202, the variable time T is initialized to "1" and the process proceeds to step S203. In step S203, the optimal power flow calculation unit 112 executes the optimal power flow calculation. Specifically, the optimal power flow calculation unit 112 performs the optimal power flow calculation according to the objective function of the optimal power flow calculation set in step S200 and the constraint conditions of the optimal power flow calculation set in step S201. For example, explanatory variables when implementing the operation of voltage reactive power control are the voltage of each bus, the parallel amount of phase modifying equipment, the transformer tap position, and the generator reactive power output or voltage specified value.
 続くステップS204では最適潮流計算部112は、最適潮流計算の結果を記録する。続くステップS205では、時刻Tが所定の時刻T_MAXよりも大きい、すなわちあらかじめ定めた時間分の計算が完了したか否かを判断する。最適潮流計算部112は、時刻Tが所定の時刻T_MAXよりも大きいと判断する場合は図12に示す処理を終了し、時刻Tが所定の時刻T_MAX以下であると判断する場合はステップS206に進む。ステップS206では最適潮流計算部112は、時刻Tを「1」だけ大きい数に更新してステップS203に戻る。 In the following step S204, the optimal power flow calculation unit 112 records the results of the optimal power flow calculation. In the following step S205, it is determined whether time T is greater than a predetermined time T_MAX, i.e., whether the calculation for a predetermined period of time has been completed. If the optimal power flow calculation unit 112 determines that time T is greater than the predetermined time T_MAX, it ends the process shown in FIG. 12, and if it determines that time T is equal to or less than the predetermined time T_MAX, it proceeds to step S206. In step S206, the optimal power flow calculation unit 112 updates time T to a number that is "1" greater, and returns to step S203.
 なお、図12の説明において、最適潮流計算の一例として電圧無効電力制御を挙げたが、負荷周波数制御を実装してもよい。また、電圧無効電力制御の目的関数は上述した例に限定されず、無効電力損失最小化としてもよいし、複数の目的を組み合わせて目的関数を定義してもよい。 In the explanation of FIG. 12, voltage reactive power control was given as an example of an optimal power flow calculation, but load frequency control may also be implemented. Furthermore, the objective function of voltage reactive power control is not limited to the above example, and may be reactive power loss minimization, or an objective function may be defined by combining multiple objectives.
 図13は、調整部113の処理を示すフローチャートである。調整部113は、まずステップS300において制約条件の判定を行い、制約条件を満たすと判断する場合は図13に示す処理を終了し、制約条件を満たさないと判断する場合はステップS301に進む。具体的には調整部113は、最適潮流計算部112による計算結果が、系統構成DB43に格納された各送電線の電圧および電流の上下限値の条件を満たすか否かを判断する。調整部113は、計算対象となった全ての送電線について、電圧が下限値以上かつ上限値以下で、さらに電流が下限値以上かつ上限値以下である場合に制約条件を満たすと判断し、計算対象の1つ以上の送電線でも、電圧が下限値未満または上限値より大きい、または電流が下限値未満または上限値より大きい場合に制約条件を満たさないと判断する。 FIG. 13 is a flowchart showing the processing of the adjustment unit 113. The adjustment unit 113 first judges whether the constraint condition is satisfied in step S300, and ends the processing shown in FIG. 13 if it judges that the constraint condition is satisfied, and proceeds to step S301 if it judges that the constraint condition is not satisfied. Specifically, the adjustment unit 113 judges whether the calculation result by the optimal power flow calculation unit 112 satisfies the upper and lower limit conditions of the voltage and current of each transmission line stored in the system configuration DB 43. The adjustment unit 113 judges that the constraint condition is satisfied when the voltage is equal to or greater than the lower limit and equal to or less than the upper limit, and further the current is equal to or greater than the lower limit and equal to or less than the upper limit, for all transmission lines subject to calculation, and judges that the constraint condition is not satisfied when the voltage is less than the lower limit or greater than the upper limit, or the current is less than the lower limit or greater than the upper limit, for one or more transmission lines subject to calculation.
 ステップS301では調整部113は、最適潮流計算の結果から制約条件を逸脱している断面、すなわち違反断面を抽出する。ステップS302では調整部113は、調相設備導入量を修正する。具体的には調整部113は、ステップS301で抽出した違反断面に対して調相設備導入量を修正する。この修正はたとえば、潮流計算の過程で算出される違反ノードに対する感度を用いて、調相設備修正量の最適化問題を用いることで最小の調相設備修正量を算出できる。具体的には、式2に示す目的関数と、式3に示す制約条件を用いる。 In step S301, the adjustment unit 113 extracts sections that deviate from the constraint conditions, i.e., violation sections, from the results of the optimal power flow calculation. In step S302, the adjustment unit 113 corrects the amount of phase modifying equipment introduced. Specifically, the adjustment unit 113 corrects the amount of phase modifying equipment introduced for the violation sections extracted in step S301. For this correction, for example, the minimum amount of phase modifying equipment correction can be calculated by using an optimization problem of the amount of phase modifying equipment correction using the sensitivity to the violation node calculated during the power flow calculation process. Specifically, the objective function shown in Equation 2 and the constraint condition shown in Equation 3 are used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、ΔQはノードiの調相設備修正量、LVはノードiの電圧下限値、UVはノードiの電圧上限値、αは潮流計算の過程で得たノードiの無効電力に対する電圧感度である。上記の最適化問題では、各ノードの電圧上限値を制約条件とし、調相設備修正量の変化量による二次関数を目的関数とすることで、制約逸脱を解消する最小の調相設備導入量を算出できる。なお、この最適化問題の解を得るためには、たとえば二次計画法などの最適化手法を適用すればよい。 Here, ΔQ i is the phase modifying equipment correction amount of node i, LV i is the lower limit voltage value of node i, UV i is the upper limit voltage value of node i, and α i is the voltage sensitivity to the reactive power of node i obtained in the process of power flow calculation. In the above optimization problem, the upper limit voltage value of each node is set as a constraint condition, and a quadratic function of the change in the phase modifying equipment correction amount is set as the objective function, so that the minimum phase modifying equipment introduction amount that eliminates the constraint deviation can be calculated. Note that, in order to obtain a solution to this optimization problem, an optimization method such as quadratic programming may be applied.
 ステップS303では調整部113は、変数である時刻Tを「1」で初期化してステップS304に進む。ステップS304では調整部113は、時刻Tにおける最適潮流計算を行う。続くステップS305では調整部113は、ステップS304における最適潮流計算の結果を記録する。ステップS306では、時刻Tが所定の時刻T_MAXよりも大きい、すなわちあらかじめ定めた時間分の計算が完了したか否かを判断する。調整部113は、時刻Tが所定の時刻T_MAXよりも大きいと判断する場合はステップS308に進み、時刻Tが所定の時刻T_MAX以下であると判断する場合はステップS307に進む。ステップS307では調整部113は、時刻Tを「1」だけ大きい数に更新してステップS304に戻る。 In step S303, the adjustment unit 113 initializes the variable time T to "1" and proceeds to step S304. In step S304, the adjustment unit 113 performs an optimal power flow calculation at time T. In the following step S305, the adjustment unit 113 records the result of the optimal power flow calculation in step S304. In step S306, the adjustment unit 113 determines whether time T is greater than a predetermined time T_MAX, that is, whether calculation for a predetermined period of time has been completed. If the adjustment unit 113 determines that time T is greater than the predetermined time T_MAX, the adjustment unit 113 proceeds to step S308, and if the adjustment unit 113 determines that time T is equal to or less than the predetermined time T_MAX, the adjustment unit 113 proceeds to step S307. In step S307, the adjustment unit 113 updates time T to a number that is "1" greater and returns to step S304.
 ステップS308では調整部113は、ステップS304における計算結果が制約条件を満たすか否かを判断する。本ステップにおける処理は、評価対象以外はステップS300と同一である。調整部113は、ステップS304における計算結果が制約条件を満たすと判断する場合はステップS309に進み、ステップS304における計算結果が制約条件を満たさないと判断する場合はステップS301に戻る。ステップS309では調整部113は、潮流計算の結果における調相設備導入量を記録して図13に示す処理を終了する。 In step S308, the adjustment unit 113 determines whether the calculation result in step S304 satisfies the constraint conditions. The processing in this step is the same as step S300 except for the evaluation target. If the adjustment unit 113 determines that the calculation result in step S304 satisfies the constraint conditions, the adjustment unit 113 proceeds to step S309, and if the calculation result in step S304 does not satisfy the constraint conditions, the adjustment unit 113 returns to step S301. In step S309, the adjustment unit 113 records the amount of phase modifying equipment introduction in the power flow calculation result, and ends the processing shown in FIG. 13.
<表示部>
 図14は、表示部101に表示される表示画面101Aの一例を示す図である。表示画面101Aの上部には、無効電力リソース導入量DB47に格納された無効電力リソース導入量と、系統構成DB43に格納された系統構成との組み合わせが表示される。図14では無効電力リソースとして調相設備導入量を示しているが、このほかにも発電機の無効電力上下限値や変圧器タップのタップ幅を示してもよい。図14の下部には、無効電力リソースのスケジュールがグラフ表示される。図14では無効電力リソースとして調相設備並列量、変圧器タップ位置、発電機無効電力出力を示しているが、これらに限定されるわけではない。またこれらのグラフに無効電力供給量の上限値を加えて示してもよい。
<Display section>
FIG. 14 is a diagram showing an example of a display screen 101A displayed on the display unit 101. A combination of the reactive power resource introduction amount stored in the reactive power resource introduction amount DB 47 and the system configuration stored in the system configuration DB 43 is displayed in the upper part of the display screen 101A. In FIG. 14, the introduction amount of the phase modifying equipment is shown as the reactive power resource, but in addition, the upper and lower limit values of the reactive power of the generator and the tap width of the transformer tap may be shown. In the lower part of FIG. 14, a schedule of the reactive power resource is displayed in a graph. In FIG. 14, the parallel amount of the phase modifying equipment, the transformer tap position, and the generator reactive power output are shown as the reactive power resource, but are not limited to these. In addition, the upper limit value of the reactive power supply amount may be added to these graphs.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)将来断面作成システム100は、需給DB42、系統構成DB43、電圧プロファイルDB45、潮流計算条件DB46、および発電機パラメータDB44を用いて無効電力リソースの導入量である無効電力リソース導入量の初期設定値を算出する初期値算出部111と、初期値算出部111が算出した初期設定値を用いて最適潮流計算を実施する最適潮流計算部112と、最適潮流計算部112の計算結果を用いて初期設定値を修正し、電力系統の将来断面を作成する調整部113とを備える。そのため、適切な無効電力を設定して将来断面を作成できる。具体的には次のとおりである。
According to the above-described first embodiment, the following advantageous effects can be obtained.
(1) The future cross-section creation system 100 includes an initial value calculation unit 111 that calculates an initial setting value of a reactive power resource introduction amount, which is an introduction amount of reactive power resources, using a supply and demand DB 42, a system configuration DB 43, a voltage profile DB 45, a power flow calculation condition DB 46, and a generator parameter DB 44, an optimal power flow calculation unit 112 that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation unit 111, and an adjustment unit 113 that modifies the initial setting value using a calculation result of the optimal power flow calculation unit 112 and creates a future cross-section of the power system. Therefore, a future cross-section can be created by setting an appropriate reactive power. Specifically, this is as follows.
 初期値算出部111は、調相設備導入量を算出したい母線の潮流計算条件をPV指定とすることで調相設備の初期導入量を算出できる。また、初期値算出部111で算出した調相設備の初期導入費を制約条件として最適潮流計算部112により将来断面を作成したのち、調整部113において最適潮流計算部112の結果において違反があれば、調相設備の導入量を調整することで、電圧違反が生じない調相設備導入量およびそのスケジュールを算出することができる。これにより系統安定性を適切に評価可能な系統断面を作成できる。 The initial value calculation unit 111 can calculate the initial introduction amount of phase modifying equipment by specifying PV as the power flow calculation condition for the busbar for which the introduction amount of phase modifying equipment is to be calculated. In addition, after a future cross section is created by the optimal power flow calculation unit 112 using the initial introduction cost of the phase modifying equipment calculated by the initial value calculation unit 111 as a constraint condition, if there is a violation in the results of the optimal power flow calculation unit 112, the adjustment unit 113 can calculate the introduction amount of phase modifying equipment and its schedule that does not cause a voltage violation by adjusting the introduction amount of the phase modifying equipment. This makes it possible to create a system cross section that allows the system stability to be appropriately evaluated.
(2)初期値算出部111は、図11のステップS106において、潮流計算条件を用いて潮流計算の収束性を表す指標αを区間ごとに算出し、指標αが最も低い区間の潮流計算条件を修正する。そのため、計算結果の厳密性は低下するが、収束性を向上できる。 (2) In step S106 of FIG. 11, the initial value calculation unit 111 calculates an index α, which indicates the convergence of the power flow calculation, for each section using the power flow calculation conditions, and modifies the power flow calculation conditions for the section with the lowest index α. As a result, the accuracy of the calculation results decreases, but the convergence can be improved.
(3)最適潮流計算部112は、最適潮流計算として電圧無効電力制御を実装するために、有効電力損失の最小化、無効電力損失の最小化、およびタップ動作最小化の少なくとも1つを目的関数とする。そのため、目的関数を適宜変更できる。 (3) In order to implement voltage and reactive power control as an optimal power flow calculation, the optimal power flow calculation unit 112 sets at least one of minimizing active power loss, minimizing reactive power loss, and minimizing tap operation as an objective function. Therefore, the objective function can be changed as appropriate.
(4)調整部113は、図13のステップS302において、初期設定値を修正する方法として、潮流計算の過程で生成される違反ノードに対する感度係数を用いた無効電力リソース導入量最小化問題を用いる。そのため、制約条件を満たさない違反ノードの初期設定値を適切に設定できる。 (4) In step S302 of FIG. 13, the adjustment unit 113 uses a reactive power resource introduction amount minimization problem using sensitivity coefficients for violating nodes generated during the power flow calculation process as a method for correcting the initial setting values. Therefore, it is possible to appropriately set the initial setting values of violating nodes that do not satisfy the constraint conditions.
(5)無効電力リソースとして調相設備を対象とし、初期値算出部111が調相設備の初期導入量を算出し、最適潮流計算部112が調相設備の並列量を算出し、調整部113が調相設備の導入量を修正し、並列量を再算出する。 (5) Targeting phase modifying equipment as a reactive power resource, an initial value calculation unit 111 calculates the initial introduction amount of the phase modifying equipment, an optimal power flow calculation unit 112 calculates the parallel amount of the phase modifying equipment, and an adjustment unit 113 corrects the introduction amount of the phase modifying equipment and recalculates the parallel amount.
(6)無効電力リソースとして変圧器タップを対象とし、最適潮流計算部112は変圧器のタップ位置を算出し、調整部113はタップ位置を再算出する。 (6) The transformer tap is targeted as the reactive power resource, and the optimal power flow calculation unit 112 calculates the tap position of the transformer, and the adjustment unit 113 recalculates the tap position.
(7)無効電力リソースとして発電機を対象とし、最適潮流計算部112は発電機の無効電力出力を算出し、調整部113は無効電力出力を再算出する。 (7) The generator is targeted as the reactive power resource, and the optimal power flow calculation unit 112 calculates the reactive power output of the generator, and the adjustment unit 113 recalculates the reactive power output.
(変形例1)
 第1の実施の形態では、無効電力リソースとして調相設備、変圧器タップ、および発電機無効電力出力を例示した。しかし、蓄電池やSTATCOM(Static Synchronous Compensator:自励式無効電力補償装置)などの他の無効電力リソースを対象としてもよい。
(Variation 1)
In the first embodiment, the reactive power resources are exemplified by a phase modifying facility, a transformer tap, and a generator reactive power output. However, other reactive power resources such as a storage battery and a static synchronous compensator (STATCOM) may be used.
(変形例2)
 初期値算出部111は、図11のステップS106において評価値αが最も小さい区間における潮流計算条件を修正した。しかし初期値算出部111は、ステップS106において2以上の区間の潮流計算条件を変更してもよい。たとえば初期値算出部111は、評価値αが最も小さい区間と、評価値αが2番目に小さい区間の潮流計算条件を変更してもよい。
(Variation 2)
The initial value calculation unit 111 corrected the power flow calculation conditions in the section with the smallest evaluation value α in step S106 in Fig. 11. However, the initial value calculation unit 111 may change the power flow calculation conditions in two or more sections in step S106. For example, the initial value calculation unit 111 may change the power flow calculation conditions in the section with the smallest evaluation value α and the section with the second smallest evaluation value α.
―第2の実施の形態―
 図15~図16を参照して、将来断面作成システムの第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、需給データをクラスタリングにより類似シナオリごとにまとめ点で、第1の実施の形態と異なる。
--Second embodiment--
A second embodiment of the future cross section creation system will be described with reference to Figures 15 and 16. In the following description, the same components as in the first embodiment are given the same reference numerals, and differences will be mainly described. Points that are not specifically described are the same as in the first embodiment. This embodiment differs from the first embodiment mainly in that supply and demand data is organized into similar scenarios by clustering.
 図15は、第2の実施の形態における演算部110aの機能構成図である。第1の実施の形態において図3に示した機能構成との相違点は、初期値算出部111の代わりに初期値算出部111aを備える点である。最適潮流計算部112および調整部113の動作は第1の実施の形態と同様なので説明を省略する。 FIG. 15 is a functional configuration diagram of the calculation unit 110a in the second embodiment. The difference from the functional configuration shown in FIG. 3 in the first embodiment is that an initial value calculation unit 111a is provided instead of the initial value calculation unit 111. The operation of the optimal power flow calculation unit 112 and the adjustment unit 113 is the same as in the first embodiment, so a description thereof will be omitted.
 図16は、第2の実施の形態における初期値算出部111aの処理を示すフローチャートである。第1の実施の形態において図11に示した処理との相違点は、ステップS101の代わりにステップS111およびS112を備え、ステップS108の代わりにステップS113を備え、ステップS109の代わりにステップS114を備える点である。その他の処理ステップの動作は第1の実施の形態と同様なので説明を省略する。 FIG. 16 is a flowchart showing the processing of the initial value calculation unit 111a in the second embodiment. The difference from the processing shown in FIG. 11 in the first embodiment is that steps S111 and S112 are provided instead of step S101, step S113 is provided instead of step S108, and step S114 is provided instead of step S109. The operation of the other processing steps is the same as in the first embodiment, so a description thereof will be omitted.
 ステップS111では初期値算出部111aは、需給データをクラスタリングする。クラスタリングの手法には、DBSCAN(Density-based spatial clustering of applications with noise)やk-means法などを用いることができる。このクラスタリングでは、需要と火力発電量と再エネ発電量などを評価指標として、需給データをクラスタリングすることで、類似のシナリオを特定する。続くステップS112では初期値算出部111aは、クラスターの代表断面を対象断面として設定する。初期値算出部111aは、各クラスターの平均値を代表断面にしてもよいし、中央値を代表断面にしてもよい。 In step S111, the initial value calculation unit 111a clusters the supply and demand data. Clustering methods that can be used include DBSCAN (Density-based spatial clustering of applications with noise) and the k-means method. In this clustering, similar scenarios are identified by clustering the supply and demand data using demand, thermal power generation, and renewable energy power generation as evaluation indicators. In the following step S112, the initial value calculation unit 111a sets a representative cross section of the cluster as the target cross section. The initial value calculation unit 111a may set the average value of each cluster as the representative cross section, or may set the median value as the representative cross section.
 ステップS113では初期値算出部111aは、すべての代表断面での潮流計算が完了したか否かを判断する。初期値算出部111aは、全ての代表断面で潮流計算が完了していると判断する場合はステップS110に進み、潮流計算が完了していない代表断面があると判断する場合はステップS114に進む。ステップS114では初期値算出部111aは、潮流計算が完了していない別の代表断面を対象断面に設定してステップS102に戻る。 In step S113, the initial value calculation unit 111a determines whether or not the power flow calculation has been completed for all representative cross sections. If the initial value calculation unit 111a determines that the power flow calculation has been completed for all representative cross sections, it proceeds to step S110, and if it determines that there is a representative cross section for which the power flow calculation has not been completed, it proceeds to step S114. In step S114, the initial value calculation unit 111a sets another representative cross section for which the power flow calculation has not been completed as the target cross section, and returns to step S102.
 上述した第2の実施の形態によれば、次の作用効果が得られる。
(8)初期値算出部111aは、需給データの特徴量を用いて需給データをクラスタリングし、クラスターごとの代表断面を用いて初期設定値を算出する。そのため、各クラスターの代表断面に対して潮流計算を行うので、第1の実施の形態に比べて短時間で演算を完了できる。
According to the above-described second embodiment, the following advantageous effects can be obtained.
(8) The initial value calculation unit 111a clusters the supply and demand data using the feature quantities of the supply and demand data, and calculates the initial setting values using the representative cross section of each cluster. Therefore, since the power flow calculation is performed for the representative cross section of each cluster, the calculation can be completed in a shorter time than in the first embodiment.
 上述した各実施の形態および変形例において、機能ブロックの構成は一例に過ぎない。別々の機能ブロックとして示したいくつかの機能構成を一体に構成してもよいし、1つの機能ブロック図で表した構成を2以上の機能に分割してもよい。また各機能ブロックが有する機能の一部を他の機能ブロックが備える構成としてもよい。 In each of the above-mentioned embodiments and variations, the functional block configurations are merely examples. Several functional configurations shown as separate functional blocks may be configured together, or a configuration shown in a single functional block diagram may be divided into two or more functions. In addition, some of the functions of each functional block may be provided by other functional blocks.
 上述した各実施の形態および変形例において、プログラムはプログラムDB41に格納されるとしたが、将来断面作成システム100が不図示の入出力インタフェースを備え、必要なときに入出力インタフェースを介して他の装置からプログラムが読み込まれてもよい。ここで媒体とは、たとえば入出力インタフェースに着脱可能な記憶媒体、または通信媒体、すなわち有線、無線、光などのネットワーク、または当該ネットワークを伝搬する搬送波やディジタル信号、を指す。また、プログラムにより実現される機能の一部または全部がハードウエア回路やFPGAにより実現されてもよい。 In each of the above-mentioned embodiments and variations, the programs are stored in the program DB 41, but in the future the cross-section creation system 100 may be equipped with an input/output interface (not shown), and the programs may be read from other devices via the input/output interface when necessary. Here, the medium refers to, for example, a storage medium that is detachable from the input/output interface, or a communication medium, i.e., a network such as a wired, wireless, or optical network, or a carrier wave or digital signal that propagates through the network. In addition, some or all of the functions realized by the programs may be realized by a hardware circuit or FPGA.
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The above-mentioned embodiments and modifications may be combined with each other. Although various embodiments and modifications have been described above, the present invention is not limited to these. Other aspects that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention.
111、111a:初期値算出部
112     :最適潮流計算部
113     :調整部
42      :需給DB
43      :系統構成DB
44      :発電機パラメータDB
45      :電圧プロファイルDB
46      :潮流計算条件DB
47      :無効電力リソース導入量DB
48      :無効電力リソーススケジュールDB
α       :評価値
111, 111a: Initial value calculation unit 112: Optimal power flow calculation unit 113: Adjustment unit 42: Supply and demand DB
43: System configuration DB
44: Generator parameter DB
45: Voltage profile DB
46: Power flow calculation condition DB
47: Reactive power resource introduction amount DB
48: Reactive power resource schedule DB
α : Evaluation value

Claims (9)

  1.  需給データ、系統構成データ、電圧プロファイル、潮流計算条件、および発電機パラメータを用いて無効電力リソースの導入量である無効電力リソース導入量の初期設定値を算出する初期値算出部と、
     前記初期値算出部が算出した前記初期設定値を用いて最適潮流計算を実施する最適潮流計算部と、
     前記最適潮流計算部の計算結果を用いて前記初期設定値を修正し、電力系統の将来断面を作成する調整部と、を備える将来系統断面作成システム。
    an initial value calculation unit that calculates an initial setting value of a reactive power resource introduction amount, which is an introduction amount of reactive power resources, by using supply and demand data, system configuration data, a voltage profile, a power flow calculation condition, and a generator parameter;
    an optimal power flow calculation unit that performs an optimal power flow calculation using the initial setting value calculated by the initial value calculation unit;
    and an adjustment unit that uses a calculation result of the optimal power flow calculation unit to correct the initial setting value and create a future cross section of the power system.
  2.  請求項1に記載の将来系統断面作成システムであって、
     前記初期値算出部は、前記潮流計算条件を用いて潮流計算の収束性を表す指標を区間ごとに算出し、少なくとも、前記指標が最も低い前記区間の前記潮流計算条件を修正する、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    a power flow calculation condition calculation unit that calculates an index representing convergence of the power flow calculation for each section using the power flow calculation conditions, and corrects at least the power flow calculation condition for the section in which the index is the lowest.
  3.  請求項1に記載の将来系統断面作成システムであって、
     前記最適潮流計算部は、
     最適潮流計算として電圧無効電力制御を実装するために、有効電力損失の最小化、無効電力損失の最小化、およびタップ動作最小化の少なくとも1つを目的関数とする、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    The optimal power flow calculation unit is
    A future power system cross section creation system that uses at least one of minimizing active power loss, minimizing reactive power loss, and minimizing tap operation as an objective function in order to implement voltage and reactive power control as an optimal power flow calculation.
  4.  請求項1に記載の将来系統断面作成システムであって、
     前記調整部は、前記初期設定値を修正する方法として、潮流計算の過程で生成される違反ノードに対する感度係数を用いた無効電力リソース導入量最小化問題を用いる、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    A future system cross-section creation system, wherein the adjustment unit uses a reactive power resource introduction minimization problem using a sensitivity coefficient for a violation node generated during a power flow calculation as a method for correcting the initial setting value.
  5.  請求項1に記載の将来系統断面作成システムであって、
     前記無効電力リソースとして調相設備を対象とし、
     前記初期値算出部は調相設備の初期導入量を算出し、
     前記最適潮流計算部は調相設備の並列量を算出し、
     前記調整部は調相設備の導入量を修正し、前記並列量を再算出する、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    The reactive power resource is a phase modifying device,
    The initial value calculation unit calculates an initial introduction amount of the phase modifying equipment,
    The optimal power flow calculation unit calculates the amount of parallel operation of the phase modifying equipment,
    The adjustment unit corrects the amount of phase modifying equipment introduced and recalculates the amount of paralleling, in a future system cross-section creation system.
  6.  請求項1に記載の将来系統断面作成システムであって、
     前記無効電力リソースとして変圧器タップを対象とし、
     前記最適潮流計算部は変圧器のタップ位置を算出し、
     前記調整部は前記タップ位置を再算出する、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    The reactive power resource is a transformer tap;
    The optimal power flow calculation unit calculates a tap position of a transformer,
    The adjustment unit recalculates the tap position.
  7.  請求項1に記載の将来系統断面作成システムであって、
     前記無効電力リソースとして発電機を対象とし、
     前記最適潮流計算部は発電機の無効電力出力を算出し、
     前記調整部は前記無効電力出力を再算出する、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    The reactive power resource is a generator,
    The optimal power flow calculation unit calculates a reactive power output of a generator,
    The adjustment unit recalculates the reactive power output.
  8.  請求項1に記載の将来系統断面作成システムであって、
     前記初期値算出部は、需給データの特徴量を用いて需給データをクラスタリングし、クラスターごとの代表断面を用いて前記初期設定値を算出する、将来系統断面作成システム。
    The future system cross section creation system according to claim 1,
    The initial value calculation unit clusters the supply and demand data using a feature of the supply and demand data, and calculates the initial setting value using a representative cross section for each cluster.
  9.  コンピュータが実行する将来系統断面作成方法であって、
     需給データ、系統構成データ、電圧プロファイル、潮流計算条件、および発電機パラメータを用いて無効電力リソースの導入量である無効電力リソース導入量の初期設定値を算出する初期値算出処理と、
     前記初期値算出処理により算出された前記初期設定値を用いて最適潮流計算を実施する最適潮流計算処理と、
     前記最適潮流計算処理による計算結果を用いて前記初期設定値を修正し、電力系統の将来断面を作成する調整処理と、を含む将来系統断面作成方法。
    A method for creating a future system cross section executed by a computer, comprising the steps of:
    An initial value calculation process of calculating an initial setting value of a reactive power resource introduction amount, which is an introduction amount of reactive power resources, using supply and demand data, system configuration data, a voltage profile, a power flow calculation condition, and a generator parameter;
    an optimal power flow calculation process for performing an optimal power flow calculation using the initial setting values calculated by the initial value calculation process;
    and an adjustment process for correcting the initial setting value using a calculation result from the optimal power flow calculation process, and creating a future cross section of the power system.
PCT/JP2023/030595 2022-10-24 2023-08-24 Future system snapshot creation system and future system snapshot creation method WO2024089997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170025A JP2024062187A (en) 2022-10-24 Future cross-section creation system, future cross-section creation method
JP2022-170025 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024089997A1 true WO2024089997A1 (en) 2024-05-02

Family

ID=90830567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030595 WO2024089997A1 (en) 2022-10-24 2023-08-24 Future system snapshot creation system and future system snapshot creation method

Country Status (1)

Country Link
WO (1) WO2024089997A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087177A (en) * 2004-09-15 2006-03-30 Hitachi Ltd State estimating device, method, and program for distribution system
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2017229110A (en) * 2016-06-20 2017-12-28 株式会社日立製作所 Voltage reactive power monitoring control device and method
CN112583025A (en) * 2020-12-15 2021-03-30 中国科学院电工研究所 Optimal configuration method, device and medium for reactive compensation equipment of power distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087177A (en) * 2004-09-15 2006-03-30 Hitachi Ltd State estimating device, method, and program for distribution system
JP2008154418A (en) * 2006-12-20 2008-07-03 Hitachi Ltd Device and method for estimating state of distribution system, and program thereof
JP2017229110A (en) * 2016-06-20 2017-12-28 株式会社日立製作所 Voltage reactive power monitoring control device and method
CN112583025A (en) * 2020-12-15 2021-03-30 中国科学院电工研究所 Optimal configuration method, device and medium for reactive compensation equipment of power distribution system

Similar Documents

Publication Publication Date Title
Bernstein et al. A composable method for real-time control of active distribution networks with explicit power setpoints. Part I: Framework
Hosseini et al. Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control
US10296988B2 (en) Linear optimal power flow system and method
Krishnamurthy et al. Effects of power electronics, energy storage, power distribution architecture, and lifeline dependencies on microgrid resiliency during extreme events
US7203622B2 (en) Value-based transmission asset maintenance management of electric power networks
Ahmadi et al. Information-gap decision theory for robust security-constrained unit commitment of joint renewable energy and gridable vehicles
Jin et al. Two-timescale multi-objective coordinated volt/var optimization for active distribution networks
Huang et al. An endogenous approach to quantifying the wind power reserve
Luburić et al. Transmission expansion planning model considering battery energy storage, TCSC and lines using AC OPF
Wu et al. AC/DC hybrid distribution system expansion planning under long-term uncertainty considering flexible investment
CN111009914A (en) Active power distribution network-oriented energy storage device location and volume determination method
CN111725798A (en) Distributed economic dispatching prediction control method for direct-current micro-grid cluster
Kontis et al. Provision of primary frequency response as ancillary service from active distribution networks to the transmission system
Kirilenko et al. A framework for power system operational planning under uncertainty using coherent risk measures
Zhu et al. Energy optimal dispatch of the data center microgrid based on stochastic model predictive control
WO2024089997A1 (en) Future system snapshot creation system and future system snapshot creation method
Barrios et al. A network reinforcement method based on bottleneck indicators
De Barros et al. Optimal AC/DC Distribution Systems Expansion Planning from DSO's Perspective Considering Topological Constraints
Vrakopoulou et al. Optimal policy-based control of generation and HVDC lines in power systems under uncertainty
JP2024062187A (en) Future cross-section creation system, future cross-section creation method
CN114006410B (en) Large-scale offshore wind power access point optimization method based on opportunity constraint planning
US11881713B1 (en) Digital twin advanced distribution management systems (ADMS) and methods
WO2017046840A1 (en) Voltage reliability evaluation/management system and voltage reliability evaluation/management method
Han et al. Distributionally robust generation expansion planning model considering res integrations
Mnguni A Multi-Stage Under-Voltage Load Shedding Scheme using a Dig SILENT power factory software to stabilize the power system network